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Jumping Knowledge Based Spatial-Temporal
Graph Convolutional Networks for Automatic

Sleep Stage Classification
Xiaopeng Ji , Yan Li , and Peng Wen

Abstract— A novel jumping knowledge spatial-temporal
graph convolutional network (JK-STGCN) is proposed
in this paper to classify sleep stages. Based on this
method, different types of multi-channel bio-signals, includ-
ing electroencephalography (EEG), electromyogram (EMG),
electrooculogram (EOG), and electrocardiogram (ECG) are
utilized to classify sleep stages, after extracting features by
a standard convolutional neural network (CNN) named Fea-
tureNet. Intrinsic connections among different bio-signal
channels from the identical epoch and neighboring epochs
can be obtained through two adaptive adjacency matrices
learning methods. A jumping knowledge spatial-temporal
graph convolution module helps the JK-STGCN model to
extract spatial features from the graph convolutions effi-
ciently and temporal features are extracted from its common
standard convolutions to learn the transition rules among
sleep stages. Experimental results on the ISRUC-S3 dataset
showed that the overall accuracy achieved 0.831 and the
F1-score and Cohen kappa reached 0.814 and 0.782, respec-
tively, which are the competitive classification performance
with the state-of-the-art baselines. Further experiments on
the ISRUC-S3 dataset are also conducted to evaluate the
execution efficiency of the JK-STGCN model. The train-
ing time on 10 subjects is 2621s and the testing time on
50 subjects is 6.8s, which indicates its highest calculation
speed compared with the existing high-performance graph
convolutional networks and U-Net architecture algorithms.
Experimental results on the ISRUC-S1 dataset also demon-
strate its generality, whose accuracy, F1-score, and Cohen
kappa achieve 0.820, 0.798, and 0.767 respectively.

Index Terms— Deep learning, graph convolutional net-
works, sleep stage classification.

I. INTRODUCTION

SLEEP plays an important role in human life. Sleep dis-
orders, like insomnias, apnea, and circadian rhythm sleep
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disorders affect our daily life psychologically and physically.
Disturbed sleep patterns lead to sleeplessness at night, which
affects our mental status and results in poor mental functions
[1]. Poor sleep quality also raises risks of cardiovascular
diseases and strokes [2]. Bio-signals, including electroen-
cephalography (EEG), electromyogram (EMG), electrooculo-
gram (EOG), and electrocardiogram (ECG), collected through
electrodes placed in different locations in humans, such as
the brain, chest, and face, called polysomnograms (PSGs),
are powerful tools to help experts and researchers to diagnose
sleep disorders [3]. These PSGs are segmented into epochs,
which are classified into sleep stages by experienced experts
according to the sleep staging criteria such as the Rechtschaf-
fen and Kales sleep staging rules (R&K rules) [4] and
American Academy of Sleep Medicine (AASM) standards [5].
Although the PSG-based sleep stage classification is a power-
ful tool for experts to analyze sleep quality and diagnose sleep
disorders, this visual inspection-based manual sleep scoring is
a tedious and time-consuming task for trained specialists [6].

To identify sleep stages efficiently, many automatic sleep
stage classification methods have been reported. Traditional
machine learning methods have given reasonably high sleep
stage classification performance in past decades. Inputs of
traditional machine learning algorithms are usually extracted
from the time-domain [7], [8], frequency-domain [9], [10],
or time-frequency domain [11], [12], which requires a lot of
prior knowledge [8], [13]. For example, a preprocessing phase
is required to eliminate cognitive noise and interference among
channels. Often principal component analysis is a typical data
reduction technique to seek undesired linear correlation among
variables [14]. Due to this limitation, the performance of
those algorithms heavily depends on feature engineering and
feature selections. Compared to traditional machine learning
algorithms, deep learning methods can extract higher-level
features from original inputs and output classification results
directly. Convolutional neural networks (CNNs) have demon-
strated their advanced performance in sleep stage classification
[15], [16], while other popular deep learning algorithms like
recurrent neural networks (RNNs) [17], [18] and deep belief
networks [19] have achieved reliable results as well.

CNNs have the capacity of extracting high-level features
from raw data, which allows researchers to input raw data
directly instead of hand-crafted features. However, these meth-
ods require Euclidean inputs and ignore connections among
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brain regions. Considering the limited understanding of the
intrinsic relationship among different channels in different
sleep stages, graph-based methods are more advantageous in
representing brain connections and their activities. Compared
to CNNs, graph convolution networks (GCNs) [20], [21]
have the capacity to extract spatial features efficiently on
topological data structures, which would provide a potential
way to explore the relationship among multiple bio-signal
channels during the sleep stage classification.

According to the R&K rules and AASM standards, the
transition pattern between neighboring sleep stages is also
an essential factor to be considered when sleep stages are
identified. However, most of those deep learning algorithms
are focused on model development while little attention is paid
to the transition mechanism during the sleep process.

To tackle the above challenges, a jumping knowledge
spatial-temporal graph convolutional network (JK-STGCN)
is proposed to identify sleep stages automatically in this
study. With two adaptive graph learning layers and a jumping
knowledge graph convolution structure, the JK-STGCN not
only learns functional connections among brain regions at
each epoch and aggregates temporal functional connections
from neighboring epochs but also extracts spatial and temporal
features from inputs. The main contributions of this paper are
summarized as follows:

• A novel adaptive graph learning method is designed to
aggregate the temporal functional relationship among different
bio-signal channels from neighboring epochs for the localized
spatial graph convolution.

• A novel jumping knowledge spatial-temporal graph con-
volutional module is proposed to capture the localized spatial
correlations and temporal features directly.

• Sleep stage classification experiments are conducted on
the ISRUC-S3 and ISRUC-S1 (https://sleeptight.isr.uc.pt/) to
test the performance of the JK-STGCN model on healthy
subjects and sleep-disordered cases. The experimental results
demonstrate that the proposed model achieves the competi-
tive overall performance compared to existing baselines. The
experimental results of sleep stage classification on healthy-
unhealthy mixed cases indicate that the JK-STGCN model
achieves the best performance to classify sleep stages of both
healthy and unhealthy cases when the unhealthy samples take
around 60% of occupancy.

• Ablation experiments are also carried out on the
ISRUC-S3 dataset to explore the effects of different mod-
ules on the sleep stage classification performance and the
experimental results show that the JK-STGCN model has
the best performance when there is a jumping knowledge
spatial-temporal graph convolutional module with no attention
mechanism.

II. RELATED WORK

A. Sleep Stage Classification

Traditional machine learning classification algorithms, such
as support vector machines [22], [23] and random forest
[24], [25], have been used for decades in bio-signal analysis,

and many studies have reported their high performance in
sleep scoring. However, these algorithms require prior knowl-
edge about signal characteristics and feature engineering.
That means that the performance may be severely limited
by researchers’ understanding of data. Due to the fact that
deep learning has brought significant breakthroughs in many
research areas, such as image processing [26], [27] and natural
language processing [28], more and more researchers apply
deep learning to sleep stage classification [29], [30].

Unlike traditional machine learning methods, deep learning
algorithms, such as CNNs and RNNs [31], have the capacity to
extract abstract and high-level features from raw data directly,
which allows researchers to use the raw data instead of hand-
picked features. Sors et al. [32] proposed a 14-layer CNN to
extract features from the original single EEG channel inputs.
A two-step training CNN model named DeepSleepNet [15]
extracts time-invariant features and bidirectional-long short-
term memory to learn transition rules among EEG segments.
The combination of a long short-term memory unit and a
deep belief network [19] has also been applied to identify
sleep stages. The U-Net is a very complex architecture with
a multi-scale extraction module, which also demonstrates its
performance in sleep stage classification [33], [34].

Although these algorithms can extract spatial features and
temporal features manually or automatically, they still failed
to explore the functional connections among different brain
regions during sleep stage classification.

B. Graph Convolutional Networks

Recently, visibility graphs have been utilized in the bio-
signal analysis [35] and the sleep stage classification area
[36]. Experimental results indicate that graph features make
many contributions to improving the classification accuracies.
Combining the graph construction and convolutional oper-
ation, also known as GCN, has become popular in many
fields, like calculating molecular fingerprints [37], text clas-
sification [38], neural machine translation [39], etc. Motivated
by its success, many researchers have turned to these non-
Euclidean input neural networks in the bio-signal process-
ing area, including motor imagery recognition [40], emotion
recognition [41], [42], and epileptic seizure detection [43].
However, for sleep scoring, only a few GCN models have
been reported. GraphSleepNet [44] is a spatial-temporal graph
convolutional network with a spatial attention layer and a
temporal attention layer [45], which inputs differential entropy
features [46] extracted from multi-channel bio-signals into
a learnable adjacency matrix to calculate the graph con-
volution and classify sleep stages. Jia et al. [47] designed
a multi-view spatial-temporal graph convolutional network
(MSTGCN) and applied the spatial-temporal graph neural
network with domain generalization for sleep stage classifi-
cation. Although the existing GCN models were claimed to
be able to solve the problem of obtaining dynamical func-
tional connections among different brain regions and achieved
some higher classification accuracies than traditional methods,
they fail to aggregate temporal information from neighboring
epochs.
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Fig. 1. An example of sleep graph mapped from electrodes at time t.

Fig. 2. The structure of a n-layer jumping knowledge network.

III. PRELIMINARIES

In this study, a sleep graph is defined as an undirected graph
G = (V , E, A), where V denotes the set of nodes with the
number of |V | = N ; E denotes the set of edges connecting
these nodes; A ∈ R

N×N denotes an adjacency matrix of G.
At epoch t , attached electrodes will be mapped to a graph as
shown in Fig. 1. The connections (edges) between nodes are
controlled by a learnable adjacency matrix A.

The raw signal sequences containing L samples are defined
as S = (s1, s2, . . . , sL) ∈ R

L×N×Ts , where N denotes
the number of channels, Ts denotes sample data points.
For each sleep epoch si ∈ S(i ∈ {1, 2, . . . , L}), features
are extracted from a CNN named FeatureNet [47] and a
N-channel feature matrix of the i -th epoch is defined as
Xi = (xi

1, xi
2, . . . , xi

N )T ∈ R
N×F , where xi

n ∈ R
F (n ∈

{1, 2, . . . , N}) denotes features extracted from channel n at
epoch i .

The jumping knowledge spatial-temporal graph convolu-
tion module is a combination of spatial graph convolution
and temporal convolution based on a JK-Net structure [48].
It aggregates both neighborhoods at each independent layer
and neighborhoods from previous layers, which increases the
size of the influence distribution. As Fig. 2 shows, for each
independent node in a graph, the last layer can select from
all of those intermediate representations to adapt an effective
neighborhood size for each node as needed, and this can lead
to a desired adaptivity.

IV. JUMPING KNOWLEDGE SPATIAL-TEMPORAL GCN

Fig. 3 illustrates the architecture of the proposed model.
There are three key components in this model: 1) Two adaptive

graph learning layers are designed to construct adjacency
matrixes for the two graph convolutional layers. 2) Based
on the JK-Net [48], graph convolutional layers with residual
connections are utilized to capture the localized spatial features
from neighboring nodes at the same epoch and to aggregate
information from different layers. 3) A jumping knowledge
spatial-temporal graph convolution module is designed to
extract both spatial features and temporal features.

A. Adaptive Graph Learning

Motivated by their high performance of adaptive graph
learning methods in the studies of [44], [47], two different
graph learning layers are utilized in this study for the localized
spatial graph convolution operation.

1) Function-Based Adaptive Graph Learning: As proposed in
[44], this connection Amn between node n and node m in an
adaptive graph is defined by a non-negative function:

Amn = g(xm, xn)

= exp(ReLU(ωT |xm − xn|))∑N
n=1 exp(ReLU(ωT |xm − xn|))

(1)

where xm and xn are the nodes of the adaptive graph, ω =
(ω1, ω2, . . . , ωF )T ∈ R

F×1 is a learnable parameter set. The
activation function ReLU guarantees that Amn is non-negative.
The softmax operation normalizes each row of A. Weight
vector ω is updated by minimizing the following loss function,

Lgraph_learning =
N∑

m,n=1

�xm − xn�2
2 Amn + λ �AF�2 (2)

where λ ≥ 0 is a regularization parameter.
2) Temporal-Information-Based Graph Learning: A function-

based adaptive graph learning method can learn the intrinsic
connections among different bio-signal channels at one epoch.
However, it fails to aggregate functional connections from
neighboring epochs, which means that, for each node, the tem-
poral influences from its neighboring nodes of previous epochs
and coming epochs are ignored. A temporal-information-based
graph learning method considers the intrinsic connections from
both temporal and spatial view. A 2d +1 time steps temporal-
information-based adaptive graph is defined as

AT = avg(X · W ) (3)

where X = (xt−d , . . . , xt , . . . , xt+d) ∈ R
(2d+1)×N×F is a

feature set. W = (wt−d , . . . , wt , . . . , wt+d ) ∈ R
(2d+1)×F×N

is a learnable parameter set. The avg function calculates
the mean values of 2d + 1 adjacency matrixes from time
step t − d to t + d , which helps to aggregate connections
from 2d + 1 neighboring epochs. The loss of this temporal-
information-based graph learning will be considered during
calculating the overall loss which is defined as in equation (4):

Lloss = Lcross_entropy + Lgraph_learning + β �AT �2 (4)

where β denotes the strength of L2 regularization for temporal-
information-based adjacency matrix AT , and Lgraph_learning
is the loss of the function-based adaptive graph learning as
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Fig. 3. The structure of the JK-STGCN model. The features are used to generate two adaptive graphs for the jumping knowledge spatial-temporal
graph convolution module. The features of t + 2d time steps are utilized for the spatial features extraction. The temporal features are extracted by
the 2D standard convolution.

defined in the equation (4). Lcross_entropy denotes the original
loss function as defined in equation (5):

Lcross_entropy = − 1

L

L∑
i=1

R∑
r=1

yi,r log ŷi,r (5)

where L denotes the number of samples, R denotes the number
of classes. y is the true label and ŷ is the predicted value.

B. Jumping Knowledge Spatial-Temporal Graph
Convolution

The jumping knowledge spatial-temporal graph convolution
module is a combination of spatial graph convolution and tem-
poral convolution based on the JK-Net structure as mentioned
previously, and the spatial graph convolution has the ability to
capture spatial features from neighboring graph nodes at the
same epoch and the temporal convolution exploits temporal
dependencies from nearby epochs.

1) Spatial Graph Convolution: In this study, a GCN is uti-
lized from the perspective of spectral graph theory, and the
K − 1 order Chebyshev polynomials is adopted to reduce the
computational complexity

The Laplacian matrix is defined as [42]:

L = D − A (6)

where A is an adjacency matrix learned based on equation (1)
or equation (3), and D ∈ R

N×N denotes the diagonal degree
matrix of A.

The graph convolution on input x is defined as [49]:

gθ ∗G x = gθ (L)x =
K−1∑
k=0

θkTk(L̃)x (7)

where gθ denotes the convolution kernel, ∗G is the graph
convolutional operation, θ ∈ R

K is a vector of polynomial
coefficients. L̃ = 2/λmax L − IN , where λmax denotes the
Laplacian matrix’s maximum eigenvalue, IN denotes the unit
matrix. The K −1 order Chebyshev polynomials is recursively
defined as:

Tk(x) = 2xTk−1(x) − Tk−2(x) (8)

where T0(x) = 1, T1(x) = x .
2) Jumping Knowledge Graph Convolution: Based on the

JK-Net, a jumping knowledge module is used to extract the
spatial information from each node and to aggerate features
from different layers. This aggregating layer can be formulated
as:
AGGh = ReLu(gθ ∗G χ(l−1))

+ sigmoid(ReLu(gθ � ∗G � χ(l−2))) (9)

where gθ and gθ � are different convolution kernels defined
by equation (7), ∗G and ∗G� are graph convolution based
on two adaptive graphs learned through equation (1) and
equation (3), χ(l−1) and χ(l−2) are inputs of graph convolu-
tion layer l − 1 and graph convolution layer l − 2, ReLu and
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TABLE I
NUMBERS OF EPOCHS FOR EACH SLEEP STAGE FROM ISRUC-S1

AND ISRUC-S3 DATASETS

sigmoid are activation functions as defined below:
ReLu(x) = max(0, x) (10)

sigmoid(x) = 1

1 + e−x
(11)

3) Temporal Convolution: Common standard 2D convolution
layers are utilized to extract temporal features after a spatial
graph convolution layer. Based on the combination of suffi-
cient extracted localized spatial features and aggregated local-
ized spatial features at each epoch, the temporal convolution
learns the transition rules from the neighboring epochs of the
current sleep stages. The temporal convolution of the l-th 2D
convolution layer is defined as:

χ(l) = σ(� ∗ (σ (AGG(l−1)))) ∈ R
N×Cl ×Tl (12)

where σ is the activation function, � denotes the convolution
kernel, ∗ is the standard convolution operation, and AGG
denotes the output of the aggregate layer defined as the
equation (9), Cl is the number of channels, and Tl is the l-th
layer’s temporal dimension.

V. EXPERIMENTS

A. Datasets Used and Experiment Setting

In this study, experiments are conducted on two subsets
of the ISRUC-Sleep database [50]: 1) Both the ISRUC-S3
and the ISRUC-S1 data are utilized to evaluate the classifi-
cation performance of the proposed model. The ISRUC-S3
subgroup contains 10 healthy adults (9 males and 1 female,
aged from 30 to 58). The ISRUC-S1 subgroup contains
100 adults with evidence of having sleep disorders (55 males
and 45 females, aged from 20 to 85). Each recording from
these two subgroups contains 2 EOG channels (LOC-A2 and
ROC-A1), 6 EEG channels (F3-A2, C3-A2, O1-A2, F4-A1,
C4-A1, and O2-A1), 3 EMG channels (Chin EMG, left leg
movements and right leg movements), and 1 ECG channel, and
all signals were sampled at 200Hz. The PSG was segmented
into 30-second-length epochs and annotated by two experts
according to the AASM standards. 2) The ISRUC-S1 data is
also used to test the generality of the proposed method. The
distribution of sleep stages is shown in TABLE I.

The inputs to the proposed model are extracted from a
standard CNN named FeatureNet. This feature extractor aims
to extract high-level features from the raw input feature matrix,
which means that 3000 original data points from each channel
at each epoch will be transferred into a 256-dimension feature
vector. 2 EOG channels, 6 EEG channels, 1 EMG channel
(Chin EMG), and 1 ECG channel are fed into the CNN
to extract features. After that, these extracted features are
fed into the proposed model for classifying sleep stages.
Detailed hyper-parameters are shown in TABLE II, where
the parameter ‘neighboring epoch size’ means the number

TABLE II
HYPER-PARAMETERS OF JK-STGCN

of neighboring epochs to aggregate temporal functional con-
nections among brain regions, and the parameter ‘Order of
Chebyshev polynomials’ is set to 9 to aggerate the spatial
information from all nine neighboring channels at each epoch.

To evaluate the classification performance of the proposed
method, we compare it with traditional machine learning meth-
ods, Euclidean-inputs deep learning algorithms like CNNs,
RNNs, U-Nets, and existing GCN models on the ISRUC-S3
subgroup and further evaluation experiments for deep learning
methods are carried out on the ISRUC-S1 subset. For a
fair comparison with the MSTGCN model proposed in [47],
we use the same features extracted from the FeatureNet
to test the performance, due to the fact that the inputs of
both the proposed model and MSTGCN are extracted from
the FeatureNet, which means the performance of these two
methods may be influenced by the CNN. Moreover, the code
is uploaded on Github (https://github.com/XiaopengJi-USQ/
JK-STGCN).

The evaluation measures accuracy (ACC), Cohen’s kappa
(κ), precision (PR), recall (RE) and F1-score (F1) are defined
as below:

Accuracy = T P + T N

T P + F N + F P + T N
% (13)

κ = p0 − pe

1 − pe
(14)

where p0 is the overall accuracy of the model and pe is the
hypothetical probability of chance agreement.

precision = T P

T P + F P
% (15)

F1 = 2 × RE × precision

RE + precision
(16)

All these experiments are conducted in a computer with
an Intel I9-10900K CPU, 64 GB Memory and a Nvidia
2080ti GPU.

B. Comparison With the State-of-the-Art Methods

The details of the performance comparison with these
baselines on the ISRUC-S3 subgroup data are presented in
TABLE III.

The performance of traditional machine learning algorithms
heavily depends on researchers’ prior knowledge and feature
engineering, which means both the spatial features and tem-
poral features cannot be extracted effectively. As a result, their
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TABLE III
COMPARISON BETWEEN JK-STGCN AND OTHER DEEP LEARNING METHODS ON ISRUC-S1 SUBGROUP

performance cannot be as high as those by deep learning
methods.

In terms of deep learning algorithms, both CNNs and RNNs
have the ability to extract spatial features or temporal features
from original data effectively. However, they ignore the impor-
tance of potential connections (relationships) among different
channels, which also limits their performances. Because of
their special architecture, the U-Net model and U2-Net model
perform as well as the traditional CNNs and RNNs on the
ISRUC-S3 dataset. However, their complex architecture and
large size training set requirements limit their application.

Although the GraphSleepNet model and the MSTGCN
model consider the functional connection among differ-
ent brain regions and reach higher performance than most
Euclidean-inputs deep learning methods like CNNs, RNNs,
and the U-Net model, they fail to consider the effects of
neighboring nodes from neighboring epochs.

For the classification results, the JK-STGCN can identify
most of the corresponding stages. The stage of Wake, N2, and
N3 achieve the highest performance among all the algorithms.
The reason that stage N1 has a lower classification is because
N1 is a transitional stage between the Wake and N2 stages,
which means its characteristic is not as clear as the deep sleep
stages. From the classification results in TABLE IV, we can
find that the JK-STGCN model can classify most Wake stage
and most deep sleep stages successfully. The non-symmetric
confusion matrix indicates that these misclassifications are
caused by the imbalanced class data.

The classification performance of deep learning algorithms
can be affected by the dataset size. To further evaluate the
classification performance of non-Euclidean inputs models and
Euclidean inputs models on large dataset size, the classification
experiments were also conducted on the ISRUC-S1 subgroup.
50 subjects are randomly selected from the ISRUC-S1 sub-
set for 25-fold cross validation. The results in TABLE V
demonstrate that the JK-STGCN model has more reliable
performance compared with other models.

The execution time of a model reflects the complexity of
its architecture and its efficiency. Under the same computer
setting and similar classification accuracy, the shorter time it

TABLE IV
CONFUSION MATRIX OBTAINED FROM 10-FOLD VALIDATION ON

ISRUC-S3 DATASET

takes, the higher efficiency the model has. Models with the top
three classification performances on both the ISRUC-S1 and
ISRUC-S3 are selected to compare their training time and test-
ing time. Considering the different structures of each model,
several training parameters, such as the features extracted from
the FeatureNet, the training epochs, batch size, and others are
set the same for the MSTGCN and the JK-STGCN. However,
the architecture of the U2-Net model is much more complex
than these two GCN methods. As a result, all training parame-
ters of the U2-Net are set the same as those in [34]. As Fig. 4
illustrates, both the training time and the training time plus
the feature extraction time of the proposed model are much
lower than those by the MSTGCN and the U2-Net model. The
main reason is that the parameter size of MSTGCN or the
U2-Net is much larger than that in JK-STGCN, which means
the two models are much more complex than the JK-STGCN
model. Fig. 5 illustrates the testing time of the JK-STGCN,
the MSTGCN and the U2-Net model on 50 subjects. The
testing time of the proposed method is a little shorter than the
MSTGCN’s testing time, which are both around 7 seconds,
whereas the U2-Net takes about 37 seconds to complete the
same prediction task. The faster prediction speed and smaller
storage space requirement of the JK-STGCN model make
it possible to deploy this algorithm to some edge artificial
intelligence devices, like the smartphone and the smartwatch.

C. Model Analysis

Experiments above demonstrate that the JK-STGCN model
has the capacity to classify sleep stages on both healthy
subjects and unhealthy cases. The results in TABLE III and
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TABLE V
COMPARISON BETWEEN JK-STGCN AND OTHER DEEP LEARNING METHODS ON ISRUC-S1 SUBGROUP

Fig. 4. Training time for the U2-Net, MSTGCN and JK-STGCN based
on k-fold training.

Fig. 5. Testing time for the U2-Net, MSTGCN and JK-STGCN based on
50 subjects.

TABLE V imply that the classification performance may be
affected by two factors, one being the proportion of unhealthy
subjects in the training set and the other being the size of
the training set. To further evaluate the effects of these two
factors on the classification performance, two more experi-
ments are conducted on the ISRUC-S1 subset which contains
100 patients with sleep disorders like sleep apnea obstructive
syndrome, periodic limb movements of sleep, etc.

1) Effects of the Proportion of the Unhealthy Subjects in
Training Set: The testing set contains 10 patients which are
randomly selected from the ISRUC-S1 subset. The initial
training set contains ten healthy subjects selected from the
ISRUC-S3. The proportion of the unhealthy subjects in the
training set is changed by removing one healthy subject from
the training set randomly and adding a new random unhealthy
subject from the rest subjects in ISRUC-S1 and this operation
repeats until all healthy subjects are removed.

Fig. 6. The trend of accuracy, F1-score and Cohen kappa with different
proportion of unhealthy subjects in training set.

Fig. 6 illustrates the changing trend of accuracy, F1-score,
and Cohen kappa of the experiment above. The classifica-
tion accuracy of the JK-STGCN model is much lower in
this disordered sleep stage classification task when all the
training data is from the healthy subjects. However, the
classification accuracies rise rapidly when there are 10%
unhealthy subjects. Then the performance improves slowly
as the proportion of unhealthy subjects in the training set
increases. The JK-STGCN achieves the best performance to
classify disordered sleep stages when the unhealthy subjects
reach 60%. After that, the performance reduces slightly as
the proportion of unhealthy data increases. It is believed
that the classification performance improves as the unhealthy
data increase at first mainly because the JK-STGCN model
starts to learn and recognize the features in abnormal bio-
signals and this leads to the improvement of abnormal bio-
signals classification. However, the JK-STGCN model starts to
misclassify the normal bio-signals, when abnormal bio-signals
and abnormal transition ratio reach a high level, resulting
in a performance reduction. Even though the classification
accuracies are heavily affected by the ratio of the healthy
subjects to unhealthy patients, this negative effect may be
eliminated by increasing the training set size.

2) Effects of the Size of the Training Set: The ISRUC-S1
subset is randomly divided into four disjoint subgroups, and
each subgroup contains 10, 20, 30, and 40 patients respec-
tively. One-subject validation is carried out on each subgroup
to validate the influence of the train set size on the JK-STGCN
model. As shown in Fig. 7, the classification performance
keeps rising with the training set size increases. It is believed
that the JK-STGCN model has the capacity to learn and
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Fig. 7. The performance of JK-STGCN on four disjoint groups from
ISRUC-S1.

Fig. 8. Comparison of the designed variant models.

recognize both the normal data and the abnormal data if there
are sufficient training data.

3) Ablation Experiment: To explore the effects of each
module used in the proposed model, four variant models are
designed and evaluated using the ISRUC-S3 database. The
details are described below:

1. variant a (basic model): The basic model is an indepen-
dent adaptive graph learning STGCN model without the jump-
ing knowledge spatial-temporal graph convolutional module.

2. variant b (+ jumping knowledge spatial-temporal
graph convolutional module): The jumping knowledge spatial-
temporal graph convolutional module is added to the basic
model to form a JK-STGCN model.

3. variant c (+spatial attention): A spatial attention layer is
added to the JK-STGCN to indicate the importance of different
channels.

4. variant d (+spatial attention and temporal attention): A
spatial attention layer and a temporal attention layer are both
added to the JK-STGCN to learn the importance of different
channels and different sleep epochs.

As Fig. 8 illustrates, the basic model has the lowest per-
formance among all these variant models. The main reason
may be that the parameter size is too small to learn such
complex spatial-temporal features, even the adaptive graph
learning algorithm provides the optimal connections among
channels.

The performance improves when the jumping knowledge
spatial-temporal graph convolutional module is added to the
basic STGCN model. According to [48], GCN models can
achieve the best accuracies when there are two graph con-
volutional layers with residual connections. The classification

results also demonstrate that the two-layer GCN model with
residual connections may extract sufficient spatial features,
which are more important than global information. The clas-
sification accuracies decrease when the attention mechanisms
are added. The reason is that the attention mechanisms pay
more attention to the important channels and sleep EEG
segment sequences, which means some unimportant factors
that are related to channels and epochs are ignored, result-
ing in an inefficient information extraction for sleep stage
classification.

VI. CONCLUSION

In this paper, a JK-STGCN model is proposed to classify
sleep stages. The JK-STGCN model contains two adaptive
graph learning layers that explore intrinsic connections and
relationships among multi-channel bio-signals during sleep
stage classification. A jumping knowledge spatial-temporal
graph convolution module is designed to extract spatial fea-
tures and temporal features, which helps the model learn
transitional rules among epochs. The experimental results
on the ISRUC-S3 subset show that the overall accuracy,
the F1-score, and Cohen kappa reached 0.831, 0.814, and
0.782, respectively, which is much better in performance
compared to those Euclidean-input deep learning methods and
the existing STGCN methods. The experimental results on the
ISRUC-S1 subset demonstrate its high performance of sleep
stage classification on unhealthy subjects, compared to other
deep learning baselines. In addition, extensive experiments
are carried out to evaluate the training time and testing
time among the top three models. The fastest training speed
and prediction speed imply that the proposed model has the
ability to be deployed on edge artificial intelligence devices.
Moreover, the effects of the distribution of the datasets on the
classification performance are explored. The results indicate
that the proposed model has reliable robustness to classify
both normal data and abnormal data when there is sufficient
training data. The ablation experiment is also conducted to
find the most important module of the proposed model. Even
though the JK-STGCN demonstrates its high performance on
sleep stage classification, there is still some space to improve.
One drawback is that the GCN model is a multi-channel-based
classification algorithm, which means the storage space of the
dataset it requires is larger than single-channel-based classi-
fication algorithms. One solution is to use the connections
among frequency bands instead of the connections among
channels and this change allows GCN to classify sleep stages
by using a single channel bio-signal, which can decrease the
storage space and accelerate the training speed and testing
speed. Another improvement that may be considered in the
future is the jumping-knowledge module. In the proposed
model, the jumping-knowledge operation only happens in each
epoch, rather than happens among neighboring epochs. It is
believed that the neighboring-epoch-crossed jumping opera-
tion would help the aggregate layers to aggregate both spatial
and temporal information from the graph convolutional layers,
and it would also help the standard temporal convolutional
layers to learn the transition rules effectively.
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