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Abstract

Access to significant amounts of data is typically required to develop structural health
monitoring (SHM) systems. In this study, a novel SHM approach was evaluated, with all
training data collected solely from a validated finite element analysis (FEA) of a reinforced
concrete (RC) beam and the structural health based on the tension side of a rebar under flex-
ural loading. The developed SHM system was verified by four-point bending experiments
on three RC beams cast in the dimensions of 4000 mm x 200 mm x 400 mm. Distributed
optical fibre sensors (DOFS) were mounted on the concrete surface and on the bottom rebar
to maximise sample points and investigate the reliability of the strain data. The FEA model
was validated using a single beam and subsequently used to generate labelled SHM strain
data by altering the dilation angle and rebar sizes. The generated strain data were then used
to train an artificial neural network (ANN) classifier using deep learning (DL). Training
and validation accuracy greater than 98.75% were recorded, and the model was trained to
predict the tension state up to 90% of the steel yield limit. The developed model predicts
the health condition with the input of strain data acquired from the concrete surface of
reinforced concrete beams under various loading regimes. The model predictions were
accurate for the experimental DOFS data acquired from the tested beams.

Keywords: reinforced concrete; distributed fibre optic sensing; deep learning; artificial
neural networks; structural health monitoring

1. Introduction

SHM reduces maintenance costs and helps prevent irreparable damage. Therefore,
SHM is essential and relevant today, as it prevents considerable deterioration by finding
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irregularities as soon as possible. The early detection of structural faults extends service
life and reduces repair expenses. An SHM approach entails gathering structural response
data over time and analysing these data to identify characteristics that may convey infor-
mation about the occurrence and extent of potential damage. Large infrastructures such as
bridges [1-3], pipelines [4—6], tunnels [7-9], and buildings [10,11] need SHM and associated
systems to avoid catastrophic failures during their operational lifetime. Beyond these
conventional applications, SHM has demonstrated significant utility in specialised fields
like hydraulic engineering, contributing substantially to the structural safety assessment
of critical infrastructure such as water dams and hydraulic power plants. For instance,
distributed optical fibre sensors are effectively utilised for modal analysis based on dynamic
strain measurements in such large-scale structures [12], while spatiotemporal analysis aids
in predicting deformation behaviour in complex structures like super-high arch dams [13].
The principles and methodologies leveraged in this study, particularly the use of distributed
sensing and data-driven assessment, align well with the advanced SHM needs observed
across various engineering disciplines, including hydraulic structures.

The scope of SHM further extends to diverse methodologies and sensing technologies
for damage identification. This includes advanced deep learning techniques employing
autoencoder neural networks for comprehensive structural damage identification [14], the
application of piezoelectric sensors for dynamic strain monitoring to detect local seismic
damage in steel buildings [15], and their use in assessing the health of secondary building
components [16]. Moreover, innovative methods are continuously being developed to
estimate strain responses in complex structures like steel moment-resisting frames using
even limited acceleration data [17]. By continuously monitoring the condition of these
structures across various scales and types, potential damage can be detected early, enabling
timely intervention and preventing catastrophic failures. The ongoing advancements in
sensing technologies and data analysis methods continue to significantly enhance SHM
system capabilities across all these diverse applications.

Traditional SHM techniques have been widely employed for decades to assess struc-
tural integrity, leveraging various sensor types and analysis approaches. For instance,
Acoustic Emission (AE) monitoring, while effective in detecting sudden crack propagation
and material damage, often struggles with pinpointing exact damage locations in large
structures and can be highly sensitive to ambient noise, making long-term, continuous
monitoring challenging for slow-developing damage [18]. Similarly, Modal Analysis, which
infers structural changes by monitoring alterations in natural frequencies and mode shapes,
provides a global assessment of structural health. However, this approach typically lacks
the spatial resolution required to detect localised damage effectively, particularly in early
stages, and small changes in global modal parameters can be difficult to attribute to spe-
cific damage mechanisms [19,20]. These established methods, while valuable, often face
limitations in terms of spatial resolution, data interpretation complexity, and suitability for
continuous, long-term monitoring, especially for specific damage indicators such as rebar
tension state under service loads. By continuously monitoring the condition of structures,
potential damage can be detected early, allowing for timely intervention and preventing
catastrophic failures. This proactive approach directly translates into significant economic
benefits through optimised maintenance planning, extension of service life, and prevention
of costly repairs in real-world applications [21,22].

In the context of SHM over the long run, the system’s purpose is to provide up-to-date
details on the structure’s feasibility to carry out its original function [23,24]. There are three
primary phases in the design of an SHM system, which can be classified as data collection,
analysis, and actual testing [25].
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Data gathering or data collection is the most crucial phase of an SHM process because
it determines the efficacy of future operations. Actual structures require much time and
money to experiment with, and causing damage to existing structures is impractical. There-
fore, data collection is generally performed on laboratory-scale equivalents or finite element
(FE) models. Furthermore, if FE models are sufficiently precise, an arbitrary number of load
situations and damage types can be simulated with less effort, and a significant number of
measurements can be extracted. Constitutive models provide a mathematical framework
for describing the material’s mechanical behaviour. The accuracy of numerical simulation
approaches for nonlinear dynamic problems has improved thanks to the recent develop-
ment of numerical methods and material constitutive models. Consequently, FE-based
numerical approaches have been widely used [26]. Due to concrete’s complex nonlinear
behaviour, selecting an appropriate concrete constitutive model for numerical simulations
is difficult. In related investigations, the smeared crack constitutive (SCM) model [27]
and the concrete damaged plasticity (CDP) model [28] are used to analyse the behaviour
of concrete. While both the CDP and the SCM can simulate RC behaviour in FEA, the
CDP model is often preferred due to its ability to deliver more thorough and consistent
results [29]. The CDP model has been used in a substantial number of FE assessments for
concrete structures due to its acceptable performance [30].

Machine learning (ML) models can be used for health monitoring tasks during the
second phase of the SHM process, previously referred to as the analysing phase [31].
Traditional ML algorithms are limited in their ability to interpret raw data in its unprocessed
form, demanding the use of feature extraction specialists to discover patterns in the input.
DL is a subfield of ML, and when raw data are given to a DL model, the model learns the
representation needed for classification or identification in the absence of a human mediator.
DL’s strength is in its ability to explore and understand high-dimensional, complicated
data, which has led to its widespread acceptance in the scientific community. One key
benefit of DL approaches is that they operate incrementally to uncover high-level features
in the data. Because of this, standard feature extraction and knowledge of the relevant
area are no longer necessary. To perform big data analytic tasks like classification and
prediction, DL enables the use of relatively simple linear models [32]. Furthermore, the
fact that massive amounts of data fuel DL is a significant factor in understanding why it is
gaining so much popularity [25,33,34].

ANN s form the foundation of DL algorithms and are neural networks with more than
three layers. Biological nervous systems have influenced the development of ANN meth-
ods [35]. The ability of an ANN to improve its performance by learning identification from
experience is one of its most remarkable characteristics. Consequently, trained networks
can be applied to the classification and analysis of new datasets that exhibit similarities
to trained datasets. ANNs have the potential to model both linear and nonlinear func-
tions. Therefore, this methodology can address various complex problems whose solutions
are challenging by using only standard techniques. These include image processing [36],
classification [37], pattern recognition [38,39], control systems [40], and identification [41].

The actual testing of SHM systems relies overly on the sensors’ precision and the quan-
tity of experimental data captured. Fibre optic sensors (FOS) are used in civil infrastructures
for data capture. When compared to conventional sensors, FOS have a number of benefits,
including light weight, dependability, stability, compact size, high sensitivity, resistance to
electromagnetic disturbances, lower power consumption, multiplexing capabilities, and a
broad bandwidth [42]. DOFS can monitor the fibre’s physical variations over a network of
fibres, unlike a point sensor, which only measures variations at its location. This makes
DOFS cost-effective and suitable for civil infrastructure [9,43-45]. Over time, the fibre optic
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sensor networks installed on critical civil constructions produce enormous volumes of raw
data (big data) [46,47].

Although FOS and DL have limited shared applications, the following applications
were noteworthy: operational status of the continuous welded turnouts [1], the evaluation
of prestressed concrete bridge girder performance [48], the prediction of column strain
responses in high-rise buildings subjected to wind loading [11], recognising and classifying
third-party intrusion (external) [49], and preventing third-party damage to underground
municipal pipes [50]. Most of these studies utilise FBGs, and the data to test the SHM
models can only be extracted at a specific sensing location. In addition, most of the DL and
FOS shared applications based on DOFS are used to assess the safety of pipelines.

To the authors” knowledge, there is limited literature on the application of DL and
DOFS to monitor the structural health of RC beams [51]. Therefore, the authors present a
novel SHM approach to evaluate the structural health of RC beams, utilising FEA for data
generation, DL for analysis, and DOFS for data extraction during testing. This research
proposes a novel supervised learning method in which the required SHM training data
are produced from optimised CDP-based FE simulations by fitting model data to the
experimental conditions. Furthermore, the proposed method was applied to real-world
beam sizes and generated data for the DL model by modifying the FE model’s parameters.

Furthermore, the authors have improved the flexibility of the SHM system by min-
imising its dependence on sensor location for accurate predictions. In most RC structures,
the concrete has already cracked, but steel reinforcement bars are within their elastic limit
under service loads [52]. When an RC member is subjected to extreme tension that exceeds
the allowable stress in steel, the member goes into yielding. Therefore, when monitoring
the structural health of an RC beam, it is essential to be aware of the tension state of the
rebar. Although DOFS can be applied to rebars to measure rebar strain in concrete directly
in a laboratory setting, the placement and protection of DOFS-attached rebar sensors are
difficult in ongoing construction premises due to the fragile nature of the DOFS. Therefore,
it would be more convenient if the sensors could be mounted on the concrete surface
after construction.

An innovative SHM technique for RC beams was introduced in this study; it combined
DOFEFS, FEA, and DL to forecast rebar tension state under service loads. Superior accuracy
was attained by the DL model throughout training, surpassing 98.75%, and it was further
validated on experimental data at 100%. Featuring redundancy and adaptability, both
the side and bottom sensors exhibited an accuracy of 100%. Additional investigation is
required to validate the efficacy of this SHM method under complex loading conditions,
despite the method’s potential for practical implementation.

2. Materials and Methods
2.1. DL Methods

Recently, DL has emerged as a powerful tool in SHM due to its exceptional ability
to learn complex patterns directly from data. This advancement offers new avenues
for structural assessment, particularly with the large and high-dimensional sensor data
characteristic of modern monitoring technologies like distributed optical fibre sensors.
While traditional machine learning (ML) methods often require extensive manual feature
engineering and can struggle with the scalability and complexity of such data, DL models
inherently excel at these challenges. Their multi-layered architectures enable automatic
feature extraction and the identification of intricate, non-linear patterns directly from
raw, high-dimensional inputs, significantly reducing reliance on expert-driven feature
selection [53-55].



Metrology 2025, 5, 40

50f29

For instance, in the domain of civil SHM, advanced DL-based approaches have demon-
strated superior performance in identifying multiclass damage, localising damage, and
predicting severity from voluminous vibration data (specifically, acceleration data collected
from accelerometers) compared to conventional machine learning algorithms, particu-
larly when dealing with varying environmental conditions like temperature fluctuations.
Such models have been validated using both simulated and field experimental data from
bridges [53]. Therefore, DL is uniquely suited for the vast and complex data generated
by advanced SHM systems, consistently surpassing traditional ML in pattern recognition
and data handling capacity for complex SHM applications [56]. However, despite these
advantages, DL models in SHM face key limitations. These include a heavy reliance on
large, high-quality labelled datasets, susceptibility to overfitting from noise or insufficient
data, challenges with interpretability (‘black box” nature is critical for safety-sensitive ap-
plications), and potential difficulties in generalising to novel damage or environmental
conditions [55]. While excelling in data-driven learning, other methods, such as physics-
based models, offer inherent interpretability and robust extrapolation, especially with
scarce data [57].

Supervised DL is the most common technique for DL. For the training of a DL model,
a sizeable dataset is needed, and the output must have the proper labels [30]. An objective
function is used to determine the error between the actual and anticipated output during
the training phase, and the weights are adjusted through backpropagation to decrease
the error value. To optimise the objective function, gradient-based approaches (Adamax)
are applied [58]. A test set is utilised to assess the model’s performance, and the testing
procedure assesses the ability to generalise for novel inputs. Figure 1 shows the proposed
approach to training the DL model.

Reinforced Concrete

Beam
[
v
Concrete damaged Sample preparation
plasticity (CDP) based
finite element analysis Installation of
distributed fibre
optic sensors

(DOES)
v

Numerical

strain data Flexural loading

Experimental
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o

Figure 1. The proposed approach to training the DL model.
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2.1.1. ANN Based Framework

An input layer, a hidden layer, and an output layer comprise a neuronal network,
which is further connected via training parameters. The primary aim of the ANN is to
utilise the concrete surface strain data as input in order to predict the structural integrity
of the tension rebar of an RC beam. The determination of the optimal number of hidden
layers was based on the complexity of the problem. While ANNSs are highly effective with
structured numerical inputs, a significant challenge arose from the inherent difference in
the number of effective sensor locations (spatial resolution) between the FEA-generated
training data and the experimentally acquired DOFS testing data. To address this crucial
dimensionality mismatch and ensure a consistent input for the ANN, Principal Component
Analysis (PCA) was employed as a robust solution. PCA transforms high-dimensional
data into a lower-dimensional representation while preserving underlying trends and
patterns [59,60], making it ideal for harmonising data from diverse sources and preparing
it for the ANN.

Beyond dimensionality reduction, PCA also offered additional benefits by effectively
reducing the inherent redundancy and correlation among adjacent strain measurements
along the optical fibre, extracting the most salient features. This improved computational
efficiency during ANN training on the large synthetic dataset and helped mitigate over-
fitting, enhancing model generalisation. While Convolutional Neural Networks (CNNs)
excel at spatial feature extraction, their direct application would necessitate a uniform and
consistent spatial grid, which was not practically feasible given the inherent differences in
data acquisition resolution between FEA and experimental setups. Thus, the combination
of PCA for data harmonisation and dimensionality reduction, coupled with an ANN for
classification, proved to be an optimal and highly effective solution for our specific problem.

The quantity of variables in the input and output datasets is proportional to the num-
ber of input and output nodes in each network. The determination of the optimal number of
hidden layers and the number of neurons within each hidden layer was conducted through
a systematic trial-and-error approach. This process involved iterative manual exploration
of diverse hyperparameter combinations, rather than automated grid or random search.
This methodology was chosen for its simplicity and intuitiveness, allowing for a deeper un-
derstanding of how specific hyperparameter configurations influence model performance.
The ‘optimal’ configuration was defined as the architecture that consistently achieved the
highest validation accuracy while simultaneously preventing overfitting and maintaining
high training accuracy. This iterative refinement ensured a robust model performance
across both training and unseen validation datasets. The ANN proposed for this study
comprised the following: 101 input neurons, 10 neurons in the first hidden layer, 8 neurons
in the second hidden layer, and 1 output neuron.

The ANN was compiled using the Adamax optimiser and binary cross-entropy as the
loss function. Adamax is a robust variant of the stochastic gradient descent (SGD) algorithm,
which iteratively adjusts the network’s weights based on the calculated gradients of the
loss function. It is particularly effective for deep learning models due to its adaptive
learning rate properties, making it suitable for handling the large datasets encountered
in our study. The binary cross-entropy loss function was chosen as it is the standard and
most appropriate error function for binary classification problems like this, where the
model predicts between two discrete outcomes: ‘rebar tension not exceeded” and ‘rebar
tension exceeded’.

The objective of minimising this binary cross-entropy error function is paramount in
the context of SHM. A lower error signifies that the model’s predicted rebar tension state
is in close agreement with the true (labelled) state from our FEA data. In practical SHM
applications, accurately predicting whether a critical rebar tension limit has been exceeded



Metrology 2025, 5, 40

7 of 29

directly corresponds to identifying potential structural damage or performance degradation.
Therefore, the successful minimisation of this error function ensures the reliability and
effectiveness of our deep learning model in providing accurate early warnings for proactive
structural assessment and intervention.

It is important to note that the raw strain data obtained from the FEA exhibited a class
imbalance between the “tension not exceeded” and ‘tension exceeded’ states. To address
this challenge and ensure that the deep learning model did not bias its predictions towards
the majority class, the SMOTETomek technique was applied as a preprocessing step to the
training dataset. SMOTETomek combines the Synthetic Minority Over-sampling Technique
(SMOTE) with Tomek links to both oversample the minority class and clean up the majority
class examples, thereby balancing the class distribution and promoting more robust and
unbiased model learning during the training phase [61,62].

The selection of a fully connected ANN for this classification task was primarily based
on its proven capability for handling high-dimensional numerical inputs, its relative archi-
tectural simplicity, and its demonstrated computational efficiency [63,64]. For the specific
objective of classifying the rebar tension state from the principal components extracted from
the strain data, an ANN offered an optimal balance of model complexity and predictive
power. While more intricate deep learning architectures might be considered for processing
raw spatial or sequential data (e.g., Convolutional Neural Networks or Recurrent Neural
Networks), the fully connected ANN, leveraging the effective dimensionality reduction
performed by PCA, provided a highly effective and computationally less demanding solu-
tion for the defined problem [65]. This approach allowed for rapid training on the large
synthetic dataset while maintaining exceptional predictive accuracy for both validation
and experimental testing data. The direct nature of the classification problem, involving
the transformation of pre-processed strain features into a binary tension state, made the
ANN a highly suitable and efficient choice, achieving convincing modelling effectiveness
with optimised resource consumption.

2.1.2. ANN Training

In an ANN, all of the nodes in one layer are connected to all of the nodes in the
following layer. Only after training with a remaining collection of input—-output datasets can
an ANN be deployed for predictions. The backpropagation supervised learning algorithm
was employed to train the Artificial Neural Network. In essence, backpropagation is
the core mechanism by which the network learns from its errors. It involves two main
phases: first, the input data is fed forward through the network to generate a prediction.
Then, the difference between this prediction and the actual target value (the ‘error’) is
calculated. This error is then propagated backward through the network, layer by layer, to
adjust the weights of each connection. The iterative process of adjusting weights based on
the error gradient ensures that the network continuously refines its understanding of the
input-output relationships, effectively minimising the prediction error.

In the context of SHM, the minimisation of this error through backpropagation is
paramount. By constantly adjusting the network’s weights to reduce discrepancies between
predicted and actual rebar tension states, backpropagation enables our model to accurately
identify critical strain conditions. This direct link between error minimisation and precise
structural state prediction is fundamental to achieving reliable damage assessment and
providing timely warnings for maintenance and intervention in real-world structures.

In technical terms, this is known as backpropagation via gradient descent. To minimise
the output error, the error derivative is utilised to alter the weights [66]. Figure 2 shows a
typical ANN topology.
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Figure 2. Typical ANN topology.

At the end of the forward pass, the error function corresponding to the weight W is
calculated as shown in Equation (1).

E(W) = 510 Y- Vil <1>

where
X = [X1, Xy, ... Xy = Input Vector
Y = [Y1,Ys,...Yy] = Output Vector

Y = {Yl, Yy, ... Yn] = ANN'’s estimated output vector

W = |[WM), W@ | = Weight matrices vector for Layers 1 and 2

The derivative of the error function is computed in the backwards pass and used to
update the weights according to the following equation.
OE(W)

=Wjj —a—— 2)

W4
SW;;

ij
where « = Learning rate

Wi; = Specific weight connecting the Units i and j.

Random subdivision of the training data into three distinct subsets—training, vali-
dation, and testing—is utilised to ascertain the proportion between the training set and
the testing set in the paper. Datasets are typically partitioned into ranges of 5% to 20%
for testing, 60% to 90% for training, and 5% to 20% for validation, in accordance with
established machine learning practices [67-71]. This allocation of data into these subsets
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adheres to this standard procedure. A subset of the data was allocated as follows for the
purposes of this study: 64% was designated for training, 16% for validation, and 20%
for testing. As the activation function, the ReLU is employed between the initial three
adjacent layers, while the sigmoid function is utilised between the last two layers. The
ANN architecture is a sequential model with an input layer (101 neurons), two hidden
layers (10 and 8 neurons, both with ReLU activation and ‘the uniform’ initialisation), and
a single-neuron output layer (sigmoid activation, ‘glorot_uniform’ initialisation) for bi-
nary classification. Hyperparameters were empirically tuned for optimal performance.
The ANN was compiled with the ‘Adamax” optimiser, ‘binary_cross-entropy’ loss, and
‘accuracy’ metric. Training involved 100 epochs with a batch size of 200, utilising a valida-
tion_split of 0.20 to monitor performance and prevent overfitting. Noise treatment involved
preprocessing strain data with Quantiletransformer (outputting a normal distribution) to
handle non-Gaussian data and outliers. By utilising this methodology, the efficacy of the
model was effectively optimised.

Various performance indicators can be used in classification tasks, but no single
metric is comprehensively instructive. Therefore, this investigation used accuracy (the
percentage of correctly classified observations), precision, and recall to demonstrate the
model performance for each case. The percentage of correctly anticipated positive outcomes
(true positives) divided by the total number of positive outcomes projected is how precision
is computed. The percentage of positives that were accurately identified as such (true
positives) divided by the total number of positives yields recall, a metric of completeness.

2.2. Materials and Experimental Methods
2.2.1. Specimen Geometry and Materials

The casting process produced three beams, each of which was 4000 mm long and had
a cross section that measured 200 mm by 400 mm. Rebars measuring 12 mm in diameter
were used to reinforce each beam’s top (compression side). Rebars measuring 12 mm,
16 mm, and 20 mm were used to reinforce the bottom of each beam (tension side). The
beam definitions are shown in Figure 3. A 30 mm concrete cover was maintained for all
beams. The beams were cast with a Grade 25 concrete premix and kept in wet conditions
for seven days. The experimentally measured characteristic cylinder compressive strength
(Fck) of the concrete was 29.9 MPa. The RC beams were named R12C30, R16C30, and
R20C30 according to the tension rebar sizes of 12 mm, 16 mm, and 20 mm, respectively. All
beams maintained a 30 mm concrete covering. The beam was designed according to the
European community code EN 1992-1-1: Eurocode 2: Design of concrete structures. All
dimensions are in mm.

#7@200 c/c #2@500 c/c #7@200 cl/c

L/
4

!
.
400

4000

Longitudinal Section

(C30)

Figure 3. Cont.
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Figure 3. Beam definitions.

2.2.2. Sensor Installation and Strain Monitoring

Strain measurements were taken using an SMF-28 optical fibre. The concrete surface
sensor was divided into two segments: the side sensor and the bottom sensor. Two types
of epoxy glues were used to mount the rebar and surface sensors. The surface-mounted
sensor length was limited to 3000 mm for ease of beam handling (see Figure 4). A slot was
ground in a tension rebar using an angle grinder to accommodate the rebar sensors. The
fibre is positioned on the rebar so that it faces the bottom of the beam in order to detect the
maximum strain.

r N

< <

C v /-—-i\ From rebar
= i
A T 25 mm \{
Side sensor
4600
Bottom
Slde VleW sensor
3000 mm
Bottom View

Figure 4. Surface sensor layout.

Figure 4 displays the surface sensor layout, and Figure 5 shows the attached surface
and rebar sensors. During the flexural testing, a variation in strain along the surfaces and
rebars was monitored and recorded using an OBR 4600. The sensor gauge length and
sensor spacing were selected as 2.5 cm and 1 cm, respectively, using the OBR 4600 software,
Version 3.10.1.
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Side Sensor

Bottom Sensor

Rebar Sensor

Figure 5. Attached surface sensors and rebar sensors.

2.2.3. Loading Setup

The beams were tested using a hydraulically powered load frame with a 50-tonne
capacity. A four-point bending configuration was used for the loading, and all beams were
simply supported with a supporting span of 3800 mm. The beam loading configuration
is shown in Figure 6, and the loading was maintained until failure occurred. The beams
R12C30, R16C30, and R20C30 were loaded up to 60 kN, 120 kN, and 160 kN, respectively,
and the readings were recorded at every 10 kN interval.

Figure 6. Beam loading arrangement.
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2.3. Finite Element Methods

Finite element (FE) analyses of reinforced concrete beams were performed us-
ing commercially available software packages. The FE analysis was conducted using
ABAQUS/Explicit Version 2019. Strong discontinuities in the geometry or material prop-
erties are better suited to an explicit analysis, as it has a higher probability of numerical
convergence [72]. The model’s accuracy for estimating stress, strain, and displacements
should be within acceptable limits. The selection of the CDP model for concrete behaviour
was made after careful consideration of various constitutive models, including the Smeared
Crack Method (SCM).

The SCM, while capable of considering variables like bond, fracture energy, and
mesh size, and effective in predicting maximum crack width in certain engineering ap-
plications [73,74], exhibits notable limitations. Its shortcomings become apparent when
attempting to predict the maximum to mean crack width ratio, likely due to concrete’s in-
herent heterogeneity [75]. Furthermore, despite its computational efficiency, SCM may face
convergence problems stemming from cracking and strain localisation [76] and can suffer
from mesh-dependency issues where results depend on element size and orientation [77].
Despite these limitations, the SCM remains a valuable tool for simulating concrete and
other material behaviour in numerous structural engineering applications.

In contrast, the CDP model is a more complex yet powerful material model designed to
effectively represent concrete’s intricate, nonlinear behaviour under load [28]. Founded on
a combination of continuum damage mechanics and plasticity theory, it comprehensively
accounts for both plastic deformation and damage evolution [78]. Although both the CDP
model and SCM can simulate the behaviour of RC in FEA, the CDP model frequently
provides more comprehensive and reliable results, making it the preferred choice in many
situations, particularly for SHM applications [29]. A key advantage of the CDP model
lies in its ability to precisely represent both damage initiation/evolution and plasticity
in concrete, capturing the entire nonlinear response, including both cracking and plastic
deformation [29]. Therefore, considering its superior capability to capture complex concrete
behaviour crucial for accurate SHM simulations, the CDP model was selected for this study.

2.3.1. Finite Element Modelling

Standard 8-node linear brick elements (C3D8R) were used to model the concrete as a
solid, homogeneous material using reduced integration and hourglass control. Utilising this
element type prevents shear lockup [76,79]. The stirrups and rebars were modelled using
the truss elements (T3D2), and truss elements only support compressive or tensile loads.
Hexahedral elements (C3D8R) were used to simulate the proposed loading configuration
that mimics the experimental loading. The quantity and type of elements utilised in
the model were 22156—C3D8R and 1512-T3D2. For modelling simplicity, the constraint
among the reinforcement and the beam was modelled using the embedded region function
of ABAQUS.

The analysis assumed a perfect interaction between the reinforcement cage and the
concrete. A hard contact was used as the contact interaction property for the concrete beam
and the loading arrangement in the normal behaviour, while a friction coefficient of 0.3
was used for the tangential behaviour [80]. Material properties of concrete stress-strain
data for tensile and compressive behaviour, and the damage parameters for tension and
compression, were calculated using the CEB-FIP model code 1990 [81]. Table 1 summarises
the properties of concrete and steel.



Metrology 2025, 5, 40 13 of 29
Table 1. Concrete and steel properties.
Material Type Young’'s Modulus (MPa) Poisson’s Ratio
Concrete Isotropic 27,106 0.2
Steel Isotropic 200,000 0.3

2.3.2. Concrete Damaged Plasticity (CDP) Model

CDP is a widely established model for simulating the nonlinear behaviour of
RC [80,82]. The CDP model includes concrete’s plastic, compressive, and tensile behaviours,
and concrete is assumed to be homogeneous, isotropic, and continuous [83]. The primary
parameters considered in this study were flow potential eccentricity (¢), dilation angle
(), the ratio of the compressive strength under biaxial loading to uniaxial compressive
strength (fb0/fc), shape factor (K), viscosity parameter (), elasticity modulus of concrete
(Ec), and density. It should be noted that a viscosity parameter was not utilised because
ABAQUS/Explicit was used for the simulation; hence, its value was assumed to be 0 [84].
The CDP model was validated for the R20C30, and the R12C30 and R16C30 beams were
kept for use in the prediction stage. Table 2 summarizes the optimal dilation angle and
other CDP parameters for the R20C30 beam. Mesh sizes smaller than 25 mm were not
considered because the aggregate size was 20 mm. A convergence study was conducted
utilising 50 mm, 40 mm, 30 mm, and 25 mm mesh sizes. The investigation for mesh size
selection revealed that using the mesh size of 25 mm yields the most realistic modelling of
the observed behaviour. Only 4.2% variation was observed when compared to the R20C30
beam displacement at failure load; therefore, FEA was performed using a 25 mm mesh.

Table 2. CDP properties for the R20C30 beam.

Beam No.

Dilation Angle Eccentricity fro/feo K Viscosity Parameter

R20C30

43° 0.1 1.16 0.667 0

2.3.3. Synthetic Strain Data Generation

The amount of training data used to train a DL model determines its precision. The
dilatational angle is a very important parameter in the CDP model. For lesser values, the
material is brittle, while for higher values, it is stiffer. Typically, the dilatation angle of
concrete ranges from 13° to 56° [82]. In this work, strain data was generated by a series
of simulations in which the dilation angle was varied from 31° to 45° (with an increment
of 1°). The change in dilatation angle led to generalising the training data from brittle to
stiffer conditions. The field output request interval was adjusted to 2500 at a frequency
of evenly spaced time intervals for each simulation, and the CDP model loaded until the
rebar yields. Therefore, the surface and rebar data can be extracted until the elastic limit
ends. Along the sensor path for each sensor, 37500 data points can be extracted using this
method for each beam definition. The varied CDP model parameters to generate strain
data are tabulated in Table 3.

In this study, the strain retrieved along the surface sensor path from the FEA model was
the input data, and the output was the rebar status indicating whether or not a predefined
rebar strain was exceeded. Here, in the proposed ANN, the output node is adopted in the
output layer, where the value “1” means that the limit was exceeded, and “0” indicates that
the limit was not exceeded. The model was trained to predict the rebar tension statuses,
from 10% to 90%, in 10% steps by considering the rebar yield limit (yield strain of steel
considered 2500 pe).
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Table 3. CDP model parameters for strain data generation.

Number of Data Points per Each Sensor

Rebar Size (mm) Dilation Angle (°) Steps (No of Dilation Angles x Steps)
12 a1 45 37,500
[0) tO [}
16 (15 angles) 2500 37,500
20 37,500
Total no. of data for each sensor 112,500

Total number of data used to train the model

(Bottom sensor + Side sensor) 225,000

It is important to acknowledge that while FEA provides a controlled and detailed
dataset for training and validating the deep learning model, an inherent limitation lies in
the potential for overfitting or biasing the model towards idealised simulation conditions.
FEA models, by nature, simplify real-world complexities such as material inhomogeneities,
exact boundary conditions, and unforeseen loading irregularities. Consequently, this re-
liance on simulated data might, to some extent, limit the model’s generalisation capability
when exposed to the full spectrum of real-world variations or highly complex loading
scenarios. Validating the model’s performance under a wider array of real-world condi-
tions, including diverse material properties, environmental effects, and dynamic loading,
warrants additional investigation. This is a crucial step towards ensuring the robustness
and practical applicability of the proposed SHM approach.

3. Results and Discussion

This section presents and discusses the analysis of the DOFS and FEA rebar strain
results, the analysis of DOFS and FEA surface strain results, and DL predictions. Even
though ultimate load testing was performed on the beams, the data reported here are based
only on the sensor readings’ spectral shift quality (55Q). The manufacturer of the data
acquisition system (OBR 4600) states that the SSQ quantifies the correlation between the
measured and reference reflected spectra [85]. SSQ values can be calculated using the
following expression:

MAXIMUM (U;(0)%U; (v — ;)

Spectral Shift Quality(SSQ) = Y Uj(v)?
j

(3)

U;(v) = Baseline spectrum for a given data segment

Uj(v — v;) = The spectrum measured during a strain or temperature change

* = The symbol represents the cross-correlation operator.

Theoretically, the SSQ should have a value between 0 and 1, with 1 indicating perfect
correlation and 0 indicating no correlation. The manufacturer recommends disregarding
data with a spectral shift quality (SSQ) equal to or less than 0.15, as this threshold indicates
that the strain or temperature variation has unequivocally exceeded the measurable range.
Consequently, measurements falling below this SSQ threshold were excluded. Despite
this initial filtering, other strain reading anomalies, such as implausible high- or low-value
strain spikes, were still observed in the data [31]. Such inconsistencies in optical fibre sensor
measurements have also been reported in existing literature [86,87]. Therefore, anomalous
data points were identified using scatter plots and removed from the dataset.

The removal of these anomalies is crucial because their presence would directly lead
to unreliable outcomes. Anomalous data points, such as those with poor SSQ, do not
represent the true strain state of the reinforced concrete beam and, if retained, would
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introduce significant errors into the FEA model validation process and distort the testing
data for the deep learning model. This would ultimately undermine the accuracy and
reliability of the model’s predictions regarding rebar tension states, potentially leading to
incorrect structural health assessments and flawed maintenance decisions.

Experimental observations indicated that the SSQ values of the rebar were within an
acceptable range until 80% of the elastic strain limit (2000 pe). The bottom surface sensor
first reached the 0.15 SSQ threshold, followed by the side sensor for all three beams. The
data presented in this section depend purely on the side surface sensors’ maximum load,
which could be reached for the beams R20C30, R16C30, and R12C30 before dropping below
the 0.15 SSQ limit: 60 kN, 40 kN, and 20 kN, respectively. Table 4 illustrates the effect of
SSQ on beams R12C30, R16C30 and R20C30.

Table 4. Effect of SSQ on beams R12C30, R16C30, and R20C30.

R12C30 R16C30 R20C30
Load (kN)  Bottom Side Bottom Side Bottom Side
Sensor Sensor Sensor Sensor Sensor Sensor
10
——  S5Q>0.15
20 SSQ > 0.15
30 SSQ>0.15 SSQ>0.15
SSQ > 0.15
40
50 SSQ < 0.15
SSQ < 0.15
60 SSQ <0.15 SSQ <0.15
70 S5Q <0.15

3.1. Analysis of DOFS and FEA Rebar Strain Results

Figure 7 illustrates the strain measurements from the experiment and simulation along
the rebar for the beam R20C30 under two distinct load circumstances, including 40 kN and
60 kN. Both experimental and simulated strain patterns exhibited excellent correlation. At
a load of 60 kN, the maximum rebar strain was measured as 992 .

40 kN
—— 60 kN

40 kN FEA
............. 60 kN FEA

1 2 3 4
Sensor length (m)

Figure 7. Experimental vs. simulation rebar strain for beam R20C30.

Strain peaks in the rebar exhibit a wavey behaviour for all measurements, and this
wavy behaviour is amplified as the load increases. This resulted from the crack propagating
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along the longitudinal direction of the beam. Figure 8 explains this trend in greater detail.
The illustration presents the fluctuation in the strain result for the bottom surface sensor
and rebar sensor under a 10 kN load for the beam R20C30. Examining the graph, it is
evident that the rebar strain spikes correspond with the surface strain peaks. In DOFS
measurements, the appearance of distinct strain peaks serves as a direct indicator of crack
formation induced by tension at that corresponding location. This phenomenon arises
because as a crack opens and propagates, the optical fibre spanning the crack experiences
a sharp localisation and amplification of tensile strain. Conversely, strain valleys within
the profile typically correspond to areas where the concrete is subjected to lower strain
levels. As the surface strain spikes result from crack formation, so do the rebar strain spikes.
Therefore, it can be deduced that the rebar strain peaks are caused by the concrete cracks
that traverse beyond the rebars.

——Rebar sensor

—— Bottom surface

/ sensor
\

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Sensor length (m)

Figure 8. Strain variation of the rebar and bottom surface sensor under a 10 kN load for beam R20C30.

This phenomenon holds significant implications for SHM applications. Firstly, the
strain peaks serve as a clear and quantifiable fingerprint of damage initiation and progres-
sion within the reinforced concrete beam. Secondly, the strong correlation between surface
and internal (rebar) strain peaks is crucial, validating the use of surface-mounted DOFS to
infer the critical internal tension state of the rebar. This is particularly advantageous in real-
world scenarios where direct rebar sensor installation and protection can be challenging
due to the fragile nature of DOFS and ongoing construction activities.

The difference between the maximum experimental and simulation strains was 128 e
under a 60 kN load. The maximum simulation rebar strain was 864 e. This is because the
wavy behaviour was significantly more pronounced in the experimental strain data than in
the simulation results for all readings.

3.2. Analysis of DOFS and FEA Surface Strain Results

Figure 9 displays the strain measurements from the experiment and simulation along
the bottom surface sensor length of the R20C30 beam at 40 kN. The maximum experimental
strain measured was 3557 pe, while the simulation peak strain was measured as 2811 pe.
Figure 10a,b shows the experimental and simulation strain variation in the side surface
along the sensor length of beam R20C30 at 40 kN and 60 kN, respectively. Under a load of
60 kN, the maximum strain measured experimentally was 5614 pe, while the maximum
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strain recorded in simulations was 4753 pe. This surface sensor was positioned 25 mm
above the bottom surface of a concrete beam wall.

4000
3000
@
=
;’ 2000 .
'3 —— Experimental
2 ——FEA
1000
0
0.0 1.0 2.0 3.0
Length (m)
Figure 9. Experimental vs. simulation bottom surface strain for beam R20C30 at 40 kN.
4000
3000
m
2
.8 2000
g — Experiment
n
1000 —FEA
0
0.0 1.0 2.0 3.0
Length (m)
(@)
6000
4000
w
2
'g —— Experiment
& 2000 ——FEA
0
0.0 1.0 2.0 3.0
Length (m)
(b)

Figure 10. Experimental vs. simulation side surface strain for beam R20C30 (a) at 40 kN and (b) at 60 kN.
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Figure 10 shows a progressive increase in the amplitude and number of strain peaks as
the load increased. This is due to the onset of cracks and the widths of the cracks increasing
with the increasing load. Furthermore, the progressive increase in the amplitude and
number of strain peaks with increasing loads (Figures 9 and 10) provides valuable insight
into the evolution of crack widths and overall structural degradation. Capturing and
analysing these crack-induced strain patterns is fundamental for training and validating
robust SHM systems, especially those leveraging deep learning. Our developed model
is designed to effectively handle these peaks generated by cracks on the surface, thereby
enhancing its robustness for health prediction across a wider range of RC concrete beams.
By considering Figures 9 and 10, both the bottom and the side surfaces were substantially
cracked for the loads presented. Strain peaks are visible from the very beginning to the
very end of the sensor length.

The experimental and simulated crack positions and the strain magnitude along the
length of the beam exhibit notable differences, which could be attributable to various
reasons. To begin with, it is conceivable that the presence of small cracks on the surface
of the concrete material, caused by the shrinkage process during its casting, may have
been a contributing factor. Additionally, errors in misalignment that occurred during
testing, as well as any damage sustained during the lifting of the specimens, could also
have played a role. Lastly, it is important to note that in practical construction settings,
imperfections such as uneven compaction of concrete, misalignment of reinforcement,
or variations in cross-sectional dimensions may also be present. While these factors can
impact experimental results, on the other hand, the default CDP model’s isotropic nature
may limit its ability to accurately predict complex anisotropic cracking patterns. However,
the number of peak strains and overall pattern in the experiment and simulation were
in admissible agreement. After examining Figure 9, the experiment yielded a total of
14 instances of peak strain values, whereas the FEA revealed 13 instances of peak strains.
In Figure 10a, a comparison between the experimental and FEA results indicates a total of
15 peak strains in the experimental data and 13 peak strains in the FEA data. In Figure 10b,
the experimental data recorded 17 instances of peak strains, which is consistent with the
17 instances of peak strains identified by the FEA analysis. Consequently, the FEA model
can be validated by considering strain distribution. The generation of the strain data and
DL model training using CDP-based FEA data were performed.

Deep Learning Predictions

The trained DL model’s performance indicators are reported in Table 5. Maximum
training accuracy, validation accuracy, and precision were 99.76%, 99.77%, and 0.9983,
respectively, for the 20% rebar strain limit. The maximum recall for the 30% rebar strain
limit was measured at 0.9971. Training and model validation accuracy for all rebar strain
limits was greater than 98.66%. To further elaborate on the classification effectiveness
of the developed deep learning model, additional visual performance metrics are pre-
sented. Figure 11 presents the confusion matrix, providing a detailed breakdown of the
model’s true positive, true negative, false positive, and false negative predictions for the
testing dataset. This matrix clearly illustrates the precise classification accuracy for both
‘tension not exceeded” and ‘tension exceeded” states across different output percentages
(e.g., 10% to 90% of yield). The confusion matrix provides a direct and comprehensive
visual assessment of the model’s ability to correctly classify each tension state and identify
potential misclassifications.
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Table 5. Model performance indicators.

Model Performance

Model Training
(Rebar Strain Limits)  Training Accuracy (%)  Validation Accuracy (%) Precision Recall
10% 99.64 99.63 0.9971 0.9965
20% 99.76 99.77 0.9983 0.9965
30% 99.73 99.70 0.9966 0.9971
40% 99.23 99.24 0.9934 0.9916
50% 99.17 99.14 0.9947 0.9874
60% 99.11 99.10 0.9912 0.9904
70% 98.94 98.84 0.9821 0.9951
80% 98.88 98.83 0.9806 0.9968
90% 98.75 98.66 0.9800 0.9953
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Figure 11. Confusion matrix.

The variation in the total number of data points observed across different confusion
matrices (e.g., 'Model Training—10%" to ‘Model Training—90%) is directly attributed to
each matrix being generated on a distinct subset of the overall dataset. These subsets are
defined by the ‘output percentage’ context, meaning each evaluation point corresponds to
a specific threshold of rebar tension (e.g., 10% of yield, 20% of yield, etc.). Consequently,
as this rebar tension threshold changes for each ‘output percentage’ subset, the inherent
definition of ‘rebar tension not exceeded’ versus ‘rebar tension exceeded’ is altered, natu-
rally leading to different total numbers of samples and varying class compositions within
each respective subset. As previously discussed, class imbalance in the original dataset
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was addressed using SMOTETomek during the model’s training phase to ensure robust
learning and unbiased evaluation across these varying tension ranges.

After training, the DL model was utilised and programmed to predict the rebar ten-
sion state as a class for the experimental result obtained using DOFS. Tables 6 and 7
show the assigned classes for each rebar tension state and guide for prediction, respec-
tively. The experiment results from the bottom sensor and side sensor for the beams
R12C30, R16C30, and R20C30 were entered into the DL model, and the results are tabulated
in Tables 8-10, respectively.

Table 6. Assigned classes.

Class Rebar Tension State

Class 0 Rebar is strained within 0-250 e
Class 1 Rebar is strained within 251-500 pe
Class 2 Rebar is strained within 501-750 pe
Class 3 Rebar is strained within 751-1000 pe
Class 4 Rebar is strained within 1001-1250 pe
Class 5 Rebar is strained within 1251-1500 e
Class 6 Rebar is strained within 1501-1750 pe
Class 7 Rebar is strained within 1751-2000 e
Class 8 Rebar is strained within 2001-2250 e

Table 7. Guide for predictions.

Colour Description
Correct prediction
Incorrect prediction

Table 8. DL model predictions for R12C30.

Load (kN) Maximum Experimental Rebar Strain (pu¢) in Rebar Tension State Prediction
Input Dataset Bottom Sensor Side Sensor

10 80 Class 0 Class 0

20 776 Class 3 Class 3

Table 9. DL model predictions for R16C30.

Load (kN) Maximum Experimental Rebar Strain (pe) In Rebar Tension State Prediction
Input Dataset Bottom Sensor Side Sensor

10 74 Class 0 Class 0

20 267 Class 1 Class 1

30 645 Class 2 Class 2

40 994 SSQ < 0.15 Class 3

Table 10. DL model predictions for R20C30.

Load (kN) Maximum Experimental Rebar Strain (ue) in Rebar Tension State Prediction
Input Dataset Bottom Sensor Side Sensor

10 71 Class 0 Class 0

20 185 Class 0 Class 0

30 438 Class 1 Class 1

40 638 Class 2 Class 2

50 823 Class 3

60 992 55Q <0.15 Class 3
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Appendix A provides the graphs of experimental data for the R12C30 and R16C30
beams. The proposed DL model was evaluated with 21 experimental findings in each of
the three beams. The DL model predicted 21 correct results out of 21 experimental data
points, corresponding to an overall accuracy of 100%.

The results from the bottom and side sensors were independently evaluated in the
following stage. The DL model predicted nine correct results out of nine experimental
results for the bottom sensor, resulting in an accuracy of 100%, and 12 accurate results
out of 12 experimental results for the side sensor, resulting in an accuracy of 100%. Since
the prediction accuracy for both sensors was 100%, if one sensor fails, the other can be
deployed as a substitute, improving the suggested SHM system’s usefulness since the
dependence on a single sensor can be eliminated. Even though the accuracy of the bottom
sensor was 100%, under increasing loads, the bottom sensor exhibited significantly low
55Q values (below 0.15). This indicated that its measurements became unreliable at higher
loads. Consequently, the side sensor was identified as more reliable due to its consistent
SSQ with increasing loads when compared to the bottom sensor. This finding is crucial,
informing our recommendation for optimal sensor placement on the beam sidewall for
robust, long-term structural health assessment in practical applications. Finally, the DL
model was updated to predict the maximum rebar strain status as a class when a series
of input data was offered to the model to improve robustness. While the proposed deep
learning model demonstrated exceptional accuracy in predicting rebar tension states for
the experimental data generated in this study, it is important to acknowledge that the
validation was based on a limited number of RC beams.

Traditional benchmarks in the domain of SHM for RC beams have been established
using vibration-based monitoring, AE monitoring, and ultrasonic testing. The study
presents an innovative approach that utilizes the surface strain of concrete as the main
input to a deep learning model in order to forecast classifications of rebar strain. This
method for SHM in concrete beams has not yet been implemented, resulting in a dearth
of direct benchmarks for this technique, as far as the author is aware. One of the main
considerations is the practicality of the DL model, which, notwithstanding its remarkable
precision, has solely undergone evaluation in controlled experimental environments.

While the experimental validation presented provides crucial insights and confirms
the feasibility of the proposed approach, it is acknowledged that the current scope is limited
to specific beam sizes and loading regimes. The conducted tests served to demonstrate the
fundamental principles of distributed sensing and deep learning for SHM of reinforced
concrete beams under controlled laboratory conditions. For future work, broader experi-
mental testing encompassing diverse geometries (e.g., varying beam depths, widths, and
span lengths), a wider range of environmental conditions (e.g., temperature fluctuations,
humidity), and varied sensor placements would be invaluable. Such comprehensive vali-
dation would further solidify the robustness claims of the proposed method and enhance
its generalisation capability for real-world structural health assessment applications.

4. Conclusions

In this investigation a novel SHM technique for RC beams is proposed to predict
the rebar tension state of a structure under service loads by employing DOFS, FEA, and
DL. A validated CDP-based FEA model was used to generate concrete surface and rebar
strain data. The generated strain data was used to train a DL model which predicts the
structural health of three reinforced concrete beams. The DL model needs only the extracted
strain data (SSQ > 0.15 for DOFS) from the bottom or side concrete surface of an RC beam.
Furthermore, it automatically handles the peaks created by cracks on the surface, and
therefore, the model is robust enough to apply to health prediction for a wider range of RC
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concrete beams. Finally, the proposed DL model predicts the status of rebar tension as a
class, and the following remarks can be drawn at the end of this study:

1.  The DL model recorded more than 98.75% training and validation accuracy.

2. The overall prediction accuracy of the DL model was 100% for the experimental dataset.

3. The prediction accuracy of both side and bottom sensors was 100%, and the side sensor
could replace the bottom sensor if it were damaged, or vice versa, so decreasing sensor
position reliance.

4.  Itis recommended to attach sensors on the beam sidewall compared to the bottom
surface due to the low SSQ values (<0.15).

Therefore, the proposed SHM approach can be implemented in real-world structures,
and additional research is necessary to determine the accuracy of the predictions under
complex operational loading conditions such as the asymmetric loading condition.
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Figure A1. Rebar strain along the sensor length for beam R12C30.
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Figure A2. Rebar strain along the sensor length for beam R16C30.
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Figure A3. Rebar strain along the sensor length for beam R20C30.
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Figure A4. Surface strain along the bottom sensor length for beam R12C30.
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Figure A5. Surface strain along the bottom sensor length for beam R16C30.
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Figure A6. Surface strain along the bottom sensor length for beam R20C30.
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Figure A7. Surface strain along the side sensor length for beam R12C30.



Metrology 2025, 5, 40 25 of 29

4000
3000
——10kN
g
E 2000 ——20kN
o]
Z 30kN
1000 40kN
0 AAA MA‘A A&—_A-A-A&
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Sensor length (m)
Figure A8. Surface strain along the side sensor length for beam R16C30.
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Figure A9. Surface strain along the side sensor length for beam R20C30.
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