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Abstract

Open research practices have been highlighted extensively during the last 10 years in many fields of scientific study as essential standards needed to
promote transparency and reproducibility of scientific results. Scientific claims can only be evaluated based on how protocols, materials, equipment,
and methods were described; data were collected and prepared; and analyses were conducted. Openly sharing protocols, data, and computational code
is central to current scholarly dissemination and communication, but in many fields, including plant pathology, adoption of these practices has been
slow. We randomly selected 450 articles published from 2012 to 2021 across 21 journals representative of the plant pathology discipline and assigned
them scores reflecting their openness and computational reproducibility. We found that most of the articles did not follow protocols for open science
and failed to share data or code in a reproducible way. We propose that use of open-source tools facilitates computationally reproducible work and
analyses, benefitting not just readers but the authors as well. Finally, we provide ideas and suggest tools to promote open, reproducible computational
research practices among plant pathologists.
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Modern plant pathological research has many facets given the
array of disciplines and subdisciplines currently involved. Collec-
tively, they contribute to increasing our basic and applied knowledge
of several aspects of pathogen biology and disease development to
ultimately improve plant disease management. Scientific research
in the field varies from the purely observational or descriptive in
nature to inferential (based on experimental or simulation-derived
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data sets). Whatever the case, the verifiability of research findings
depends on how much of the research materials, processes, and out-
comes are made available beyond what is reported in the scientific
article and the ability of others to make use of the methods and re-
sults. Examples of such resources include biological materials (host
and pathogen genotypes), nucleic/protein sequences, experimental
and simulated raw data annotations, drawings and photographs, and
statistical analysis code.

Open science and reproducibility are becoming more main-
stream, with many funding agencies expecting data to be available
on conclusion of the research project (e.g., Australian Research
Council 2018; Government of Canada 2016; European Commis-
sion 2022; Gates Foundation 2022; Noorden 2017). Journals in the
field are promoting the sharing of data (Del Ponte 2020), and more
scientists are becoming interested in sharing their raw data and even
lab notebook contents (Wald 2010) or drawing attention to the lack
of code and data that makes published work less useful (Barton et al.
2022).

Reproducibility is one component under the umbrella of open
science. By proactively practicing open science, scientists increase
the chance that their works become more reproducible due to the
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availability of data and code. That is, open science enables repro-
ducibility and replicability.

To ensure clear communication on this topic, we must first de-
fine terms such as reproducibility. Many of the terms used in this
area have varying definitions that may or may not agree with each
other. For instance, reproducible research was recently highlighted
by many authors (Baker 2016; Brunsdon 2015; Dienlin et al. 2020;
Eckert et al. 2020; Editors at Nature 2016; Fidler and Gordon 2013;
FitzJohn et al. 2014; Ioannidis 2014; Iqbal et al. 2016; Patil et al.
2016; Preeyanon et al. 2018; Stodden et al. 2013; Sweedler 2015;
Tiwari et al. 2021; Wallach et al. 2018; Weissgerber et al. 2016) as
an important issue.

However, in the biological sciences, it is not always possible to
use identical test material or environmental conditions (e.g., field
trials that span years and locations or complex glasshouse exper-
iments). In other cases, there is insufficient time and resources to
reproduce the entire study. Therefore, we will follow Peng’s (2009)
definition that provides clear guidelines for a minimum standard of
“reproducible research”:

“The replication of scientific findings using independent inves-

tigators, methods, data, equipment, and protocols has long been,

and will continue to be, the standard by which scientific claims are

evaluated. However, in many fields of study there are examples of

scientific investigations that cannot be fully replicated because of

a lack of time or resources. In such a situation, there is a need for

a minimum standard that can fill the void between full replication

and nothing. One candidate for this minimum standard is ‘repro-

ducible research’, which requires that data sets and computer code

be made available to others for verifying published results and

conducting alternative analyses” (Peng 2009).

Therefore, our definition of computational reproducibility will
be that the computer code and data are made freely available to
others for verification and conducting alternate analyses or for use
in instructional purposes. In addition, the software used should be
easily obtained and preferably open source to avoid licensing or
other issues related to accessibility for end users related to costs or
nonstandard file formats.

Plant pathologists often provide information on protocols and
chemicals allowing for reproducibility. However, frequently, bi-
ological specimens such as strains, cultures, or cultivars are not
available after publication. These cases do constitute a lack of
reproducibility but will not be covered here.

Materials and Methods
Article selection and evaluation events

To understand where we stand as a discipline regarding open
science and reproducible research, we surveyed a broad selection
of articles representing a wide swath of publications to evaluate our
collective status. We hand-picked 21 journals that represent research
publications in the field of plant pathology (Table 1) that encompass
a range of subject matter foci, including applied and fundamental
work, country of origin, and ranking metrics (e.g., quartile range or
citation index). The aim was to gather as complete an overview of the
status of computational reproducibility in plant pathology journals
as possible and avoid bias in the findings by skewing toward high-
impact journals that may have a greater influence. From those 21
journals, we randomly selected 450 articles published from 2012 to
2021. Using R (R Core Team 2022), two lists were created. The
first was a list of the 21 journals, and the second was a list of
the evaluators that were evaluating the articles for reproducibility.
Initially, there were four evaluators; later, a fifth was added, and

TABLE 1
Journal titles selected for inclusion representing 21 plant pathology journals or specialized journals featuring plant pathology focused

articles, their respective 5-year impact factors (IFs) as of 2022, number of articles per year, and the total number (n) of articles
from each journal that were evaluated

Journal IF 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 n

Australasian Plant Pathology 1.708 0 2 2 0 0 3 1 0 2 1 11

Canadian Journal of Plant Pathology 1.993 3 1 1 2 0 3 3 3 2 1 19

Crop Protection 3.110 3 2 2 1 1 4 1 1 3 5 23

European Journal of Plant Pathology 2.022 1 4 1 1 1 2 1 5 1 2 19

Forest Pathology 1.595 3 1 2 1 2 3 2 2 1 1 18

Journal of Phytopathology 1.574 0 4 1 2 0 2 5 4 1 0 19

Journal of Plant Pathology 1.681 3 3 1 1 3 1 3 4 4 0 23

Journal of General Plant Pathology 1.416 4 3 2 1 2 3 2 1 3 3 24

Molecular Plant−Microbe Interactions 4.836 2 2 2 0 4 2 4 2 0 4 22

Molecular Plant Pathology 5.626 6 3 2 1 3 2 1 3 5 3 29

Nematology 1.485 0 2 3 0 2 1 3 2 1 2 16

Physiological and Molecular Plant Pathology 2.388 4 1 3 0 3 3 4 0 0 6 24

Phytoparasitica 1.569 2 5 0 4 2 1 5 2 1 1 23

Phytopathologia Mediterranea 2.080 2 1 1 0 3 2 0 0 4 7 20

Phytopathology 4.394 4 2 3 4 3 2 1 5 3 1 28

Plant Disease 4.700 1 3 2 3 0 3 3 3 4 2 24

Plant Health Progress 0.000 1 1 1 1 2 2 2 4 2 0 16

Plant Pathology 2.924 2 3 4 1 4 5 5 2 3 1 30

Revista Mexicana de Fitopatología 0.000 4 1 1 2 0 0 2 1 6 2 19

Tropical Plant Pathology 1.675 1 1 3 1 0 2 1 4 2 3 18

Virology Journal (Plant Viruses Section) 3.719 0 3 4 2 2 4 1 3 2 4 25
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the list was recreated. There were three evaluation events that took
place to increase the yearly coverage of the evaluations. During each
scoring event, each evaluator was randomly assigned 50 unique
articles to evaluate.

A list of randomly generated numbers representing page numbers
from 1 to 150, sampled with replacement, was assigned to a ran-
domized list of 21 journals for each sampling event. This was done
to ensure that the randomly generated number had a corresponding
number in the journal.

A Google Sheets file was created to hold the article details and
metadata for the paper’s authors to refer to in finding their assigned
articles. The 5-year impact factor for 2022 for each journal was re-
trieved from InCites Journal Citation Reports, Clarivate, and entered
in the spreadsheet with the article details for the respective journals.
The authors entered article scores and comments about the article in
a separate spreadsheet in the Google Sheets file to keep the original
details intact and avoid overwriting or making possible errors that
would lead to the loss of data. The entire workbook was downloaded
and saved as an Open Document Spreadsheet file for analysis after
all the values were recorded.

Articles were then manually selected by visiting the journals’
websites and selecting the articles within which the randomly as-
signed page numbers fell; that is, if the page number was 32, the
article that started on page 28 and ended on page 35 was selected
as it contained page 32. In cases where an article was not suitable
(e.g., a review or otherwise not related to plant pathology or the
randomly assigned numbers for that journal and year fell within the
same article), the next article in that journal was selected until a
suitable article was found.

During three scoring events, two to five of this paper’s authors
were each assigned to rate a randomized list of journal articles using
scoring criteria devised for the purposes of this research as their time
allowed for their participation. In the first event, three authors (AS,
EDP, and ZF) evaluated a total of 200 unique articles; in the second
event, two authors (EDP and KA) evaluated a total of 100 unique
articles; and in the third round, five authors (AS, EDP, KA, ZF,
and NG) evaluated a total of 150 unique articles for a total of 450
articles. Each article was evaluated by only one evaluator save five
articles randomly selected for inter-rater repeatability analysis from
the third and final evaluation event.

Scoring criteria
Each article was rated on a 0 to 3 scale for its data and code

availability. “Code availability” rated how easily and openly avail-
able the computational methods used in the article were. Scores
were assigned as follows: 0 was not available or not mentioned
in the publication; 1 was available upon request to the author; 2
was online, but inconvenient or nonpermanent (e.g., login needed,
paywall, FTP server, personal lab website that may disappear, or
may have already disappeared); and 3 was freely available online
to anonymous users for the foreseeable future (e.g., archived us-
ing Zenodo, dataverse, or university library or some other proper
archiving system). NA indicates that no code was created to con-
duct the work that was detectable. Second, the “Data availability”
evaluated how freely and openly available the data presented in the
article were. This was evaluated as follows: 0 was not available or
not mentioned in the publication; 1 was available upon request to the
author; 2 was online, but inconvenient or nonpermanent (e.g., login
needed, paywall, FTP server, personal lab website that may disap-
pear, or may have already disappeared); and 3 was freely available
online to anonymous users for the foreseeable future (e.g., archived
using Zenodo, dataverse, or university library or some other proper
archiving system). NA indicates that no data were generated (e.g.,
a methods paper).

For the purposes of this research paper, the word “code” in “code
availability” was defined as including any software that was used in
the data import, cleaning, analysis, genome assembly, or manuscript

preparation or, in the case of modelling papers, the model’s software
code itself. The word “data” in “data availability” was defined as
including any data created or collected and presented in the research
manuscript.

In cases where partial computational materials or data were made
available, the score was assigned the lowest score reflecting the
completeness of the availability, all or nothing. That is, in cases
where some data, such as sequences, were deposited in a database
(e.g., GenBank) but other data that were collected and used were
not made available, the score assigned was 0.

Where possible, the software used in conducting the research
behind the publication was recorded in the notes when it was cited
or otherwise specified in the article text.

Data cleaning
The criteria scores were checked for inconsistencies using the

evaluators’ comments in the spreadsheet and based on the software
used. In some cases, these comments were used to adjust the criteria
score to align with the scoring definitions. This was not possible in
all cases but only in cases where the evaluator had left comments
that could be checked and acted on. For example, a reviewer noted
that all data were deposited in GenBank, but the data score was 0;
this was changed to 3 to align with the definition. Or in other cases,
some software packages used were Excel add-ins, but Excel was
not recorded as being used; Excel was added to the list of software
used to rectify this.

A custom function, import_notes(), was written to import the data
and format the columns properly in R (R Core Team 2022). Values
for software packages were checked for spelling consistency, and
corrections were made manually where necessary. When working
with these data in R, all strings of software character values were
converted to fully uppercase to standardize the capitalization and
alleviate any issues with capitalization used between evaluators.

Statistical analysis
Inter-rater differences were evaluated using the percentage of

agreement and Fliess’ Kappa (Del Ponte et al. 2019).
Six models were applied, with half predicting the response of

code availability and the other half predicting data availability.
Models 1 and 2 were used to predict responses with publishing
journal, using a factor, the journals’ abbreviation, as the predictor
(formula: response ∼ abbreviation). Models 3 and 4 were used to
predict the two responses with a continuous value, year, as the pre-
dictor (formula: response ∼ year), and the models included abbre-
viation and assignee as random effects (formula: list(∼1 | abbrevia-
tion, ∼1 | assignee)) to detect changes that occurred over the years in
which the manuscripts were published that were included. Models 5
and 6 were used to predict the responses using a continuous value,
IF_5year, as the predictor (formula: response ∼ IF_5year) (for-
mula: ∼1 | assignee) without journal as a random effect to mitigate
correlation between impact factor and the journal of publication. All
models included the assigned article evaluator as a random effect
(formula: ∼1 | assignee) to address inter-rater effects on scoring.

We fit Bayesian logistic mixed models (estimated using MCMC
sampling with 4 chains of 10,000 iterations and a warm-up of 5,000
and thinning of 1) using the cumulative family function with a logit
link for ordinal data using the contributed package ‘brms’ (version
2.18.0) (Bürkner 2017, 2018, 2021). The cumulative logit family is
often used for ordinal data as it uses cumulative probabilities up to a
threshold, making all of the ordinal categories binary at that thresh-
old. Priors were selected to be weakly informative and deemed
suitable through using pp_check() to examine the models’ predic-
tions based on priors only (using the parameter sample_prior = only
in brm()). Priors over all parameters were set as normal (mean =
0.00, SD = 1.0) distributions for both fixed parameters and random
effects. The best fitting models were selected by using the widely
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applicable information criterion and the expected log point-wise
predictive density via loo_compare().

The adapt_delta() and max_treedepth() values were adjusted as
necessary on a case-by-case basis for each of the models to ensure
a good model fit to the data and that the chains mixed well.

The fitness of all models was evaluated using model summaries
and diagnostic plots from ‘brms’ (version 2.18.0) and posterior
fits using pp_check() from the contributed R package ‘bayesplot’
(version 1.10.0) (Gabry et al. 2019).

A test for practical equivalence, equivalence_test(), was per-
formed for each model using the contributed R package ‘bayestestR’
(version 0.13.0) (Makowski et al. 2019) with the region of practical
equivalence set to -0.1 to 0.1 and a confidence interval of 0.95.

Using the Sequential Effect eXistence and sIgnificance Testing
(SEXIT) framework, the median of the posterior distribution and
its 95% CI (highest density interval), along with the probability of
direction (pd), the probability of significance, and the probability
of being large, are reported. The thresholds beyond which the effect
is considered significant (i.e., nonnegligible) and large are 0.05 and
0.3, as suggested by Makowski et al. (2019). The convergence and
stability of the Bayesian sampling was assessed using R-hat, which
should be below 1.01 (Vehtari et al. 2021), and effective sample size
(ESS), which should be greater than 1,000 (Bürkner 2017).

A full report of all parameters and model details is available in the
Supplementary Materials, generated using the contributed package
‘report’ (version 0.5.5) (Makowski et al. 2021). Additionally, all
methods are described in greater detail with the code necessary to
reproduce the work in Sparks et al. (2022).

All statistical analysis was performed using R version 4.2.2
(2022-10-31) (R Core Team 2022) on an Apple MacBook Pro
(13-inch, M1, 2020).

Results
Inter-rater agreement

All authors agreed on the five inter-rater article evaluations for
the data availability, 0, not available for an inter-rater score of 100%.
However, one of the authors rated one article as NA or not having
any computational methods used rather than 0 as with the other four
authors, giving the inter-rater agreement a score of 100% with the
NA value dropped from the code availability.

Looking at the ratings for all 450 articles and given the differing
number of articles each co-author evaluated, there was broad agree-
ment, with no discernible patterns showing a strong bias or cause
for concern (Supplementary Fig. S1). However, the analyses did
account for different raters (assignees) for each article by including
this as a random effect.

Code and data sharing findings
Most articles did not make any computational methods available

in any fashion, with four (0.9%) classified as 3, which was the high-
est score available (Fig. 1A). Four hundred and thirty-five (96.7%)
were classed as 0, and 10 articles (2%) appeared to not use any
computational methods.

Additionally, data that supported the articles were mostly un-
available, with 364 (81%) scoring 0, where the original data were
not available or mentioned in the article. However, more articles,
48 (11%), scored 3 than scored 1 or 2 combined, at 36 (8%), with
two articles not producing shareable data (Fig. 1B).

Software used
There were 255 unique software applications recorded being used

in the articles that were evaluated (Table 2). These included desk-
top programs, web-based software, and databases. From the top 10
most frequently cited software, the most frequently cited program
was MEGA, for which different versions were not distinguished for
this work. The next three programs were statistical software, SAS

(second), SPSS (third), and R (fourth), with two other statistical
programs also frequently cited, GenStat and Statistica (tied eighth).
The remainder of the top 10 programs we found were mostly re-
lated to sequence analysis (i.e., Clustal [fifth], BLAST [sixth], and
BioEdit [ninth]) or phylogenetic analysis (MrBayes [eighth]), tied
with the most general-purpose software cited in the top 10, Excel.
In tenth place was FigTree, used for rendering phylogenetic trees.
The Python programming language was cited only twice.

Statistical analysis
All models’ diagnostic plots indicated good chain mixing, and

all were deemed suitable for the data by the checking posterior fits
(Fig. 2).

When predicting the availability of computational methods
(code), all journals were compared with Phytopathology as the
reference, with latent scores having a mean of zero.

There were no clear differences that the analysis could detect
between any of the journals compared with Phytopathology for
the sharing of computational methods (code); the effects of all
parameters were undecided (Fig. 3A; Supplementary Table S1).

When predicting the availability of data as compared with Phy-
topathology, publications in one journal, Phytopathologia Mediter-
ranea, can be considered clearly more likely to share data than
publications in Phytopathology, but no effects were detectable in
any other journal title (Fig. 3B; Supplementary Table S2).

A B

FIGURE 1
Aggregated article scores for each of the two categories evaluated.
A, Code availability, where 0 was not available or not mentioned in the
publication; 1 was available upon request to the author; 2 was online, but
inconvenient or nonpermanent (e.g., login needed, paywall, FTP server,
personal lab website that may disappear, or may have already disap-
peared); 3 was freely available online to anonymous users for foresee-
able future (e.g., archived using Zenodo, dataverse, or university library
or some other proper archiving system); and NA indicates that no code
was created to conduct the work that was detectable. B, Data availabil-
ity, where 0 was not available or not mentioned in the publication; 1
was available upon request to the author; 2 was online, but inconvenient
or nonpermanent (e.g., login needed, paywall, FTP server, personal lab
website that may disappear, or may have already disappeared); 3 was
freely available online to anonymous users for foreseeable future (e.g.,
archived using Zenodo, dataverse, or university library or some other
proper archiving system); and NA indicates that no data were generated
(e.g., a methods paper).
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The effect of Phytopathologia Mediterranea (median = 1.68,
95% CI [0.78, 2.57]) had a 99.99% probability of being positive
(>0), 99.98% of being significant (>0.05), and 99.83% of being
large (>0.30). The estimation successfully converged (Rhat =
1.000), and the indices were reliable (ESS = 19,017).

The analysis for the effect of year when predicting the availability
of computational methods was undecided (median = 0.20, 95% CI
[−0.13, 0.58]) and had an 88.38% probability of being positive
(>0), 81.03% of being significant (>0.05), and 28.31% of being
large (>0.30) (Fig. 4A; Supplementary Table S1). The estimation
successfully converged (Rhat=1.000), and the indices were reliable
(ESS = 19,643).

We failed to reject the null hypothesis that the year of publication
had no effect on the availability of data. The analysis indicated that
there was no effect of year of publication on the availability of data
(median = 0.08, 95% CI [−8.06e-03, 0.18]), with a 96.19% proba-
bility of being positive (>0), 75.92% of being significant (>0.05),
and 0.00% of being large (>0.30) (Fig. 4B; Supplementary Table
S2). The estimation successfully converged (Rhat = 1.000), and the
indices were reliable (ESS = 21,692).

The analyses were undecided when predicting the effects of the
5-year impact factor on the availability of computational methods
(code) and data. The effect of the 5-year impact factor (median =
0.45, 95% CI [−0.05, 1.04]) had a 96.00% probability of being posi-
tive (>0), 94.25% of being significant (>0.05), and 72.26% of being
large (>0.30) (Fig. 5A). The estimation successfully converged
(Rhat = 1.000), and the indices were reliable (ESS = 14,595).
The effect of the 5-year impact factor on data availability (me-
dian = 0.15, 95% CI [−3.75e-03, 0.30]) had a 97.21% probability
of being positive (>0), 89.41% of being significant (>0.05), and
2.48% of being large (>0.30) (Fig. 5B). The estimation success-
fully converged (Rhat = 1.000), and the indices were reliable
(ESS = 4,188).

Discussion
Except for a few isolated cases, most papers were not fully com-

putationally reproducible. Very few authors chose to share both data
and code. More authors shared data due to journal requirements to
share sequence data, but other types of data related to field experi-
ments or other laboratory studies were not likely to be shared. Code
sharing was extremely rare, but in cases where it was shared, most
was included as a part of the journal article’s publication as extra ma-
terials rather than through data repositories. Authors publishing in
Phytopathologia Mediterranea were more likely than authors pub-

lishing in Phytopathology to share data. Several articles published
in Phytopathologia Mediterranea either made the data available
through GenBank or noted that all data were available through the
article and associated supplementary materials, which may be the
reason for this effect.

The reasons for not sharing code or data were not clearly avail-
able from the papers themselves, and so this work was unable to
determine possible reasons for this situation. We recognize that in
some cases, there may be commercial or intellectual property (IP)
reasons for not sharing data or code, but these reasons should be
clearly stated. However, in most cases, the data are collected with
public funding, the code was developed using similar funding, there
are no commercial or IP issues that preclude sharing, and in fact,
the funding agency may have guidelines in place for sharing these
materials.

Much of the software that was used in the papers examined were
free open-source software (FOSS) packages, which means that the
workflow can easily be recreated by anyone with the proper skills
in using the software. However, the top three most widely used soft-
ware packages were not FOSS, limiting the ability of the authors to
share workflows with others. MEGA was the most widely cited soft-
ware in this evaluation, reflecting the widespread use of sequence
analysis in the field of plant pathology. The second, third and fourth,
and eighth most frequently cited software packages were all statis-
tical programs. SAS remains firmly entrenched in the discipline as
the choice of software for statistical analysis, followed by SPSS,
but R, the most frequently occurring FOSS, is not far removed from
SPSS in fourth place, with Statistica and Genstat tied for eighth. It is
interesting to note however, that even with the popularity of Python
in scientific programming, it only appears in the survey twice in
2020 for both articles, not enough times to be in the top 10 most
cited.

Limitations to our approach
We acknowledge that the number of articles that are cross scored

is low. However, our aim was not to test inter-rater reproducibility.
Our goal was to evaluate as many articles as realistically possible to
obtain as broad an overview of the discipline as possible. Because
of this, aside from the five that were used to compare the inter-rater
differences, each article was evaluated by only one of this paper’s
co-authors. Therefore, we concluded that the inter-rater agreement
was good enough for this paper to illustrate that code and data are
not being widely shared with peer-reviewed publications.

Furthermore, the methods for selecting articles meant that only
page numbers between 1 and 150 were selected. This approach as-

TABLE 2
The frequency of use of top 10 most used software programs that were found in 450 papers published in 21 plant pathology journals or

plant pathology-focused articles from other specialized journals by year of publication

Software 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Total

MEGA 4 5 5 5 7 9 8 14 9 7 73

SAS 9 9 9 9 5 7 5 5 7 5 70

SPSS 3 3 5 1 4 6 5 8 8 5 48

R 1 1 3 2 5 4 3 10 7 5 41

CLUSTAL 3 1 2 0 3 8 3 5 1 2 28

BLAST 5 5 3 1 2 0 0 1 1 4 22

MRBAYES 0 1 0 1 0 1 4 5 2 2 16

GENSTAT 3 1 1 1 2 0 2 2 1 1 14

STATISTICA 1 3 4 0 1 2 0 1 1 1 14

EXCEL 3 1 1 1 1 2 0 2 2 0 13

BIOEDIT 0 0 1 0 1 3 0 4 0 1 10
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sumed that there was no effect on or bias in reproducibility based on
the time of year that an article was published because most journals
start with page number one at the beginning of the year, and some
journals, such as Phytopathology, have focus issues with invited
authors. Despite some publications being from special issues, there
were no detectable differences in the reproducibility of the articles
as defined and measured by this article, so the assumption appears
to be correct and, more importantly, may show that even when au-
thors are specifically recruited, they are no more likely to share the
supporting materials for the articles that they write.

Examples and efforts from other disciplines
Plant pathology is not alone in the lack of reproducibility and the

closed nature of data and code.
Seibold et al. (2021) carried out a similar study on the types

of methods and software used in PLOS ONE articles and whether
they were able to reproduce the data analysis using open-source

software for papers that dealt with longitudinal data, used mixed-
effect models or generalized estimating equations for analysis, and
provided the data. They found that most articles provided tables
and visualizations only. However, unlike our analysis, even with
the data being supplied, they found that only one article used open-
source software, whereas R prominently featured in the articles we
examined, along with other FOSS packages. Not surprisingly, they
found that replication was mostly difficult and required the results
to be reverse engineered or the authors to be contacted. They were
unable to reproduce the results for three articles and only parts
of another two. They needed to contact the articles’ authors for
all articles save two. Their main conclusion was that reproducing
papers is difficult if no code is provided, which puts an undue burden
on those interested in reproducing the work.

Other disciplines related to plant pathology have published
guides or started communities to promote and support tools and
methods that promote good practices that lead to open and re-

A B

C D

E F

FIGURE 2
Posterior distribution visualizations for each of six models fit to scoring data that were used to evaluate factors on the reproducibility of 450 papers
published in 21 plant pathology journals or plant pathology-focused articles from other specialized journals. The journal title was tested for an effect
on A, code availability and B, data availability. The year of publication was tested for an effect on C, code availability and D, data availability. Five-year
impact factor of the journal was tested for effect on E, code availability and F, data availability. Code Availability was scored 1 to 3 as follows: 0
was not available or not mentioned in the publication; 1 was available upon request to the author; 2 was online, but inconvenient or nonpermanent
(e.g., login needed, paywall, FTP server, personal lab website that may disappear, or may have already disappeared); 3 was freely available online to
anonymous users for foreseeable future (e.g., archived using Zenodo, dataverse, or university library or some other proper archiving system); and NA
indicates that no code was created to conduct the work that was detectable. Data Availability was scored 1 to 3 as follows: 0 was not available or
not mentioned in the publication; 1 was available upon request to the author; 2 was online, but inconvenient or nonpermanent (e.g., login needed,
paywall, FTP server, personal lab website that may disappear, or may have already disappeared); 3 was freely available online to anonymous users for
foreseeable future (e.g., archived using Zenodo, dataverse, or university library or some other proper archiving system); and NA indicates that no data
were generated (e.g., a methods paper). Yrep indicates 50 random draws for model predictions, and y are the observed values. No article scored 3
for data availability. The fitness was found to be good for all models.
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producible research. In entomology, Wittman and Aukema (2020)
published “A Guide and Toolbox to Replicability and Open Science
in Entomology,” which documented both the benefits and draw-
backs of an open and reproducible workflow. Weed scientists started
a community to promote openness in the discipline, Open Weed
Science, which stated that they valued, “open access knowledge-
sharing as a strategy to enhance reproducibility within our dis-
cipline,” but the website is no longer available, and the Twitter
account, @OpenWeedSci, appeared to be inactive when the account
was viewed as of October 2022 (Open Weed Science and Oliveira
2021). Serra da Cruz and Pires do Nascimento (2019) proposed a
framework for capturing the provenance of data-centric agronomic
experiments using an R-based workflow, ‘RFlow’, which would al-
low reuse of R scripts using generic workflows and saving data and
metadata to web repositories that other researchers and referees can
browse using web interfaces. Fernandez et al. (2022b) provided an
R package, ‘cndcR’ (Fernandez 2022), that supports the manuscript
“Dataset characteristics for the determination of critical nitro-
gen dilution curves: from the past to new guidelines” (Fernandez
et al. 2022a). The package contains source data and R code that
Fernandez et al. (2022a) used for their sensitivity analyses when
fitting critical N dilution curves in crop species using Bayesian
models. The package allows the user to recreate the figures in the
manuscript and includes all of the data files required to produce all
results and figures presented in the manuscript. More broadly within
agricultural research, articles have been published highlighting the
advantages of, the need for, and how to publish Findable, Accessi-
ble, Interoperable and Reusable (FAIR) data in agriculture (Arnaud
et al. 2020; Smith et al. 2018; Stacey et al. 2022). However, we
were unable to find any quantification of the reproducibility of any
of these related disciplines as we have done here.

Suggestions for improving computational reproducibility
When making science more open and computationally repro-

ducible, the methods and software used (e.g., R, Julia, or Python
packages that were directly used in the analysis or production of the
paper, etc.) should be cited properly. This allows end users to iden-
tify the tools and methods used more accurately. Just as importantly,
this acknowledges the contributions of others whose works were in-
strumental in the research. This also helps to ensure that researchers
can reconstruct what they did more easily because good notes and
documentation exist and are able to identify if something changes
(e.g., a package version or what effect it had on the research).

To help create a good set of data and code that can easily be
shared, the use of programming or scripting languages such as R,
Julia, SAS, or Python enables researchers to keep detailed records
of what was computationally performed. This is as opposed to using
software such as spreadsheet programs like Excel, Google Sheets,
Numbers, Calc, or others that can be used for simple statistical anal-
yses and visualization or other point-and-click software packages
that do not enable researchers to keep an accurate record of the steps
taken to import, format, visualize, and analyze data. Text files for
saving small sets of data are preferable to proprietary file formats.
Data that are saved in binary formats such as PDF files are diffi-
cult to reuse because they are not easily machine readable. In many
cases, data sets are small enough and curated in spreadsheets, which
should be saved as a plain text file, (e.g., comma separated or tab
separated files). This also helps to ensure that the data are reusable.
Larger data sets may warrant the use of a proper database such as
a lightweight personal database (e.g., SQLite or DuckDB); larger,
more robust databases (e.g., MariaDB or PostgreSQL); or a special-
ized database such as GenBank, which provides users with several
benefits. Two important benefits to mention here are (i) avoiding

FIGURE 3
Equivalence test for the effect

associated with the journal title for
A, computational materials (code) and
B, data being made readily available to
the public. A test for equivalence was
unable to detect any clear differences
between Phytopathology and all other

journals sharing computational
materials (code). However, a test for

equivalence found that articles in
Phytopathologia Mediterranea were

more likely to have data available than
articles found in Phytopathology.

Intervals in gray have a median value
less than that of Phytopathology, the
base level used for the analysis, and

articles in these journals could be less
likely to share computational materials

and data than articles published in
Phytopathology. The region of

practical equivalence (ROPE) is shown
between two dotted lines. If the entire
distribution falls within the ROPE, the

hypothesis is accepted. If the entire
distribution falls outside the ROPE, the
hypothesis is rejected. In some cases,

the data do not provide a definitive
answer, and the decision on H0 is

undecided.
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data redundancy, ensuring no records are duplicated, and (ii) data
consistency, ensuring that all records in a data set are recorded in the
same format for every observation. Databases such as GenBank are
preferable for molecular data and ensure data integrity and machine
readability. Although databases may offer many advantages, such
as speed and data integrity, they are also more complex to set up
and administer, and so they may not be the best choice for a small
data set.

Ideally, once the data are complete, best practices for keeping
data as researchers perform their work include treating the raw data
as read-only and using file permissions to prevent changes to the raw
data files. It should be noted that the use of a database management
system also allows for both at the expense of added complexity.
Saving files in proprietary formats such as .xls(x) can also lead to
issues in the future when opening using newer (or older) software
versions. Unexpected changes to values in the data (Ziemann et al.
2016) may also occur when using proprietary formats.

Once these practices are in place, sharing the code and data
becomes easier and can be thought of as a layered approach to
computational reproducibility.

Proper cataloguing and descriptions of the computational mate-
rials and data enable others to easily find and understand what the
materials are. Properly constructed metadata allow for interoper-
ability by allowing both humans and machines to understand what
the materials are that are included in the resources and make use
of them more easily. Metadata also protect the resource and its fu-
ture availability by tracking the resource’s lineage, describing the
resource’s physical characteristics and behavior so that it can be
replicated using future technologies. That is, without metadata, the

A B

FIGURE 4
Equivalence test for the effect associated with the year of publication for
A, computational materials (code) and B, data being made readily avail-
able to the public. A test for practical equivalence was unable to detect
an effect of year of publication on computational materials (code) being
shared. A test for practical equivalence found that there was no effect
of year of publication on the availability of supporting data. The region of
practical equivalence (ROPE) is shown between two dotted lines. If the
entire distribution falls within the ROPE, the hypothesis is accepted. If
the entire distribution falls outside the ROPE, the hypothesis is rejected.
In some cases, the data do not provide a definitive answer and the de-
cision on H0 is undecided. Here, year is treated as a continuous variable
to determine if there are changes over time in the likelihood of sharing
code and data.

data are not FAIR, and the computational materials lose value by
not having good documentation.

If steps are followed to make the data FAIR, then they will be
readable by humans and machines alike, which will help support
discoveries and further research. In turn, sharing data can lead to
new citations for the work as others discover and use them. To
make data the most widely discoverable and usable, researchers
must ensure that they have a persistent identifier. A digital object
identifier (DOI) is the most common (https://www.doi.org/), but the
Handle.Net Registry (https://handle.net/) is also an option. There
are different options for generating a DOI for data and other ma-
terials. FigShare, Zenodo, and OSF.io all offer persistent archives
along with a service to generate a DOI. The use of a persistent iden-
tifier works to ensure that even if the data are moved, they can still
be located using that unique identifier. For more on FAIR data, visit
Go-Fair (https://www.go-fair.org/fair-principles/).

Once it has been determined how to best manage the source code
and the data sets for analysis, the next step is to consider how to
share the data. Providers such as FigShare, Dataverse, OSF.io, and
Zenodo allow researchers to deposit their data, provide metadata,
and generate a DOI for sharing the project once it is finished. Other
providers exist that allow researchers to not only track changes
but also share the data openly. These include GitHub, Gitlab, and
Bitbucket. GitHub is arguably the most popular and widely used
open-source software development platform currently. However,
we would advise against the practice of depositing data on a labora-
tory website or a site such as GitHub only as these are not an optimal
way to preserve and share work over the long term. Doing either
of these leaves the work in an unstable state, where future users
may be unable to access the work as they are fraught with link-rot

A B

FIGURE 5
Equivalence test for the effect associated with the publishing journal’s
5-year impact factor for A, computational materials (code) and B, data be-
ing made readily available to the public. A test for practical equivalence
was undecided on any detectable effects of impact factor. The region of
practical equivalence (ROPE) is shown between two dotted lines. If the
entire distribution falls within the ROPE, the hypothesis is accepted. If
the entire distribution falls outside the ROPE, the hypothesis is rejected.
In some cases, the data do not provide a definitive answer, and the deci-
sion on H0 is undecided. Here, impact factor is a continuous variable to
determine if greater or lesser impact factor values affect the likelihood
of sharing code and data.
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and other issues. It is a best practice to always ensure that the data
are deposited with a provider such as GenBank, Zenodo, FigShare,
or OSF.io and a DOI is generated for the materials to help en-
sure continued accessibility. Many of these providers provide easy
ways to link the project with a software development repository to
help ensure that the data are available in perpetuity. If readers are
uncertain, we suggest also consulting with local librarians about
possible resources. Most universities and other research-focused
workplaces provide a facility for staff to deposit papers and other
academic materials, but this may extend to software development
or data repositories as well. It is important that data, once deposited,
cannot be modified.

Layered reproducibility
If a general workflow for producing academic research involves

defining a research question; obtaining data for testing the hypoth-
esis; analyzing, summarizing, and presenting data and results; and
writing the manuscript, then the next logical steps are depositing
any code used along with the raw data in proper repositories (Fig. 6).
Here, we define three layers of reproducibility, which are also re-
lated to the evolution of computational methods and reproducible
practices, and highlight papers that fit these definitions.

The first layer is including tables of raw data or code with the pa-
per as a supplementary file or even within the paper as tables where
possible. This is suitable for studies that may have a small data set
or simple analysis or for demonstration purposes, as Madden et al.
(2015) demonstrate in their discussion regarding the use of values in
statistical analyses, where they supply an e-Xtra with reproducible
examples for readers to refer to. Hill et al. (2019) also shared code
and example data to reproduce the results of the paper as supple-
mentary materials, citing all packages used and the versions. The
scripts provided used an R package, checkpoint (Ooi et al. 2022),
to provide a mechanism to help ensure reproducibility by installing
the package versions used by the authors that were necessary to
reproduce the work rather than defaulting to the latest versions,
which may cause failures due to changes in the package codebases.
However, the scripts did not run unhindered as the supplementary

materials suggested without changes to the data. However, with
some modifications to the data, and file name changes, the scripts
ran, allowing examples of the research to be reproduced using the
definition of Peng (2009). One drawback to this approach is that
journals are often not equipped to handle code (e.g., script files)
that may be developed as a part of the research process and so they
are often archived as PDF or Word documents, which hinders the
ability to easily ingest and start working with them, or, if they are
provided in a native text format, they do not render via the web
properly. However, this should be possible given some effort from
the publishing journal to share simple text files rather than binary
formats along with the proper instructions and handling of these
file formats rather than a one-size-fits all approach that we com-
monly see for supplementary materials. For example, the R scripts
for Hill et al. (2019) were provided as supplementary materials
but do not actually appear in the browser window when requested,
which may confuse readers and makes downloading them more
difficult. Although this allows the reader to quickly view the ex-
tra materials and a DOI is assigned as a part of the article itself,
the data or code is not readily findable and accessible through a
searchable database. Furthermore, in many cases, this does not allow
prompt access to the data and running the code because of a journal
paywall.

The second layer is providing machine-readable text files of the
raw data and code in a public code repository such as GitHub or
GitLab but without a DOI or some other long-term repository as
provided by an institutional library, Zenodo, FigShare, and so on.
Fewer authors choose to follow this method, but in one instance
that we found, which was not a part of this analysis, Vogel et al.
(2021) deposited Fastq files in the National Center of Biotech-
nology Information Sequence Read Archive (BioProject accession
number PRJNA616021) and provided the scripts for analysis via
a GitHub repository (https://github.com/gmv23/pcap-gwas), but
we were unable to find a DOI that refers to these materials or a
citation to properly cite them here, which illustrates that simply de-
positing code and data in repositories is not enough. Efforts must
be made to annotate and structure the raw data to make it FAIR

FIGURE 6
An example of an open and reproducible research workflow. Starting with the question, determine the methodology, describe it, make it available,
and cite it. Data are used in analysis, and any binary files or code are made available as supplements to the manuscript. Source code and raw data
are made available in a public repository, preferably with version control for tracking changes through time, and a DOI for final released products.
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(Wilkinson et al. 2016). Making the raw data FAIR means pro-
viding proper metadata, a clear description of what the resource
contains, how it can be used, and other attributes about it that help
users understand it. Furthermore, fully documenting the code used
for the analysis is necessary for other researchers to fully use and
understand it.

The third layer is the use of proper code repositories such as a
library resource, or code (e.g., GitHub or GitLab) and data reposito-
ries (e.g., FigShare, Zenodo, or OSF.io), allowing for the deposition
and updating of code, figures, data preprints, or any other materials
that support the article itself while providing a DOI and citation.
As an example, Sparks et al. (2011, 2014) and Sparks (2016) used
FigShare to provide the models, data, and code necessary to
replicate model development and the subsequent study on the
effects of climate change on potato late blight. Similarly, Carleson
et al. (2019) hosted the code for reproducing a population genomic
analysis of Phytophthora plurivora on GitHub while providing all
data on OSF.io (the Open Science Framework). Lehner et al. (2017)
used GitHub to host a code repository of their research compendium
website with data and a reproducible report that explains in detail all
steps of the analysis and the R code for conducting a meta-analysis
for assessing heterogeneity in the relationship between white mold
incidence and soybean yield and between incidence and soy-
bean yield (https://emdelponte.github.io/paper-white-mold-meta-
analysis/). The website clearly demonstrates the analysis to readers
and uses R so that anyone can easily replicate the work. Using a
public code repository resource allows other researchers to easily
contact the authors by opening “Issues” and to report bugs or ask
questions in an open forum that are not as straightforward when
the data are provided as supplementary material.

Taking this approach even further, packaging the full analysis
in a containerized software application (Docker) is a way to help
ensure computational reproducibility, but at the expense of added
complexity (Merkel 2014). Docker is an open-source container-
ization platform that enables users to package several applications
and an operating system into containers, thereby standardizing the
executable components by combining application source code (or
analyses) with the operating system required to run that analysis on
a user’s computer. However, there are drawbacks to using Docker.
It can be difficult to understand for a new user, and new platforms,
such as the Apple M1 chip, may not be fully supported, which
hinders the ability to share the container. However, in most cases,
using an open-source language such as R, Julia, or Python allows
researchers to share their work in a fashion by which they know
that the analysis will run the same on every computer. For more on
using Docker for reproducible research, we refer readers to Nüst
et al. (2020). As an example of this approach, Khaliq et al. (2020a)
provided a research compendium as a Docker container with a DOI
and a full R package. This enables readers to fully replicate their
analysis of Ascochyta rabiei conidia dispersal in chickpea using the
data collected. It also allows for more in-depth investigation by step-
ping through other points where weather data were investigated and
various models were fit before deciding on the best fit and recreating
any figures as published in the article (Khaliq et al. 2020b). When
this layer is employed, tools such as Binder (https://mybinder.org)
can be used that allow readers and reviewers to launch an interactive
session in their web browser, interact with the data, and rerun the
analysis in an RStudio instance or Jupyter notebooks, a “web appli-
cation for creating and sharing computational documents” (Jupyter
2022), as Miorini et al. (2018, 2019). Kamvar et al. (2015) took a
slightly different approach by including all files necessary for the
analysis and most output files in a repository (Kamvar et al. 2014)
that also included an installable R package that was used for the
original analysis. Although there are many other methods, these
two approaches illustrate some of the best practices where the data
and other files were deposited in repositories with DOIs, and re-
producibility issues were addressed by using R packages to handle

dependencies and other versioning issues, making the work more
portable.

These layers provide increasing openness and reproducibility, so
Layer 1 should not be viewed as the starting point before moving
on to Layer 2 and then Layer 3. Rather, the layers are provided to
give the reader some idea of how much benefit end users of the
computational materials and data will derive at the expense of the
increasing complexity. Authors need not start with Level 1 before
moving to Level 2 and then Level 3. If they can start with deposit-
ing the computational materials and data and generating DOIs, all
parties will benefit from it. However, we recognize that these steps
may not be appropriate or attractive for various reasons and so have
detailed other layers that improve openness and reproducibility.

Closing
In this work, we have evaluated the state of computational repro-

ducibility in the plant pathology literature and presented suggestions
for areas of improvement. As we prepared this letter, we became
more aware of the urgent need to spread and establish an open
science attitude and culture among plant pathologists. To assist in
fostering this sort of change in our discipline, Open Plant Pathol-
ogy (https://openplantpathology.org/), an institution-independent
and nonfunded initiative, was founded in January 2018 by two of this
letter’s co-authors, Del Ponte and Sparks, with the following vision:
“foster a diverse community culture that values openness, trans-
parency and reproducibility of scientific research data and methods
in our field.” We started Open Plant Pathology with a minimal infras-
tructure and support from other enthusiastic colleagues that allows
members to interact, sharing and gathering ideas on how we can
improve the openness and reproducibility in our discipline.

We believe that adopting an attitude of open and collaborative
science and using the best reproducibility practices in our daily
work directly benefits us as researchers. For example, between com-
plicated analyses, reviews and revisions, and questions years later
about the data that were collected or analysis that was conducted, it
is extremely beneficial to be able to easily reproduce work quickly
and easily. This manuscript was drafted over the course of several
years as the authors had time to devote to it. Having everything in a
reproducible framework made it easy to resume work and set aside
as necessary without losing information, and having everything well
documented made it simpler to do this. Second, it benefits the re-
viewer by aiding in their understanding of the work done and gives
them more materials to use to make suggestions for improvements
when reviewing, and the end user or reader is better able to verify the
validity of the methods used and recreate the analysis. Perhaps more
importantly, sharing these details helps with knowledge transfer by
showing other interested parties how something was done rather
than simply describing it. Lastly, openly sharing work and making
it discoverable can lead to new collaborations and synergistic ideas.
One of the most important messages that we would like to share is
that there is more to the work than just the paper. Sharing materials
detailing the analysis that was performed and documenting the data
provide citable products and enhance the manuscript, providing the
reader with a richer set of information with which to understand
the work that was performed. This open sharing of code and data
leads to a greater impact as work is cited if resources such as code
or data are reused. However, it is not just up to the authors to ensure
that their work is reproducible. At the very least, journals can and
should provide clear instructions for how to deposit the data and
code in a repository and mint a DOI to accompany these resources
to encourage authors to share the data and code that support the
manuscript. Ideally, with mandates for openly sharing data becom-
ing more common with funding agencies, journals should also be
mandating this practice. We can and should embrace this to move
the discipline forward and have a greater impact with our work.
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Technical Details
Data

The raw data for this work are documented and available from
https://doi.org/10.5281/zenodo.4941722.

Code
All code used in the analyses and data visualization and

associated materials have been made available as a research
compendium available from https://doi.org/10.5281/zenodo.
1250664. A webpage version of the compendium is available from
https: //openplantpathology.github. io /Reproducibility_in_Plant_
Pathology/.

Computational details
All relevant computational information (R and package versions,

operating system) are given in the Methods for the data gathering
and analysis. The relevant details for this article itself are shown
here.

R version 4.2.2 (2022-10-31)
Platform: aarch64-apple-darwin20 (64-bit)
locale: en_US.UTF-8||en_US.UTF-8||en_US.UTF-8||C||en_US.

UTF-8||en_US.UTF-8
Attached base packages: tools, stats, graphics, grDevices, utils,

datasets, methods, and base
Other attached packages: Reproducibility.in.Plant.Pathology

(v.1.0.0), tidyr(v.1.2.1), rsvg(v.2.4.0), rope(v.1.0), report(v.0.5.5),
posterior(v.1.3.1), patchwork(v.1.1.2), parameters(v.0.20.0), officer
(v.0.5.0), knitr(v.1.41), janitor(v.2.1.0), here(v.1.0.1), ggpubr
(v.0.5.0), ggplot2(v.3.4.0), flextable(v.0.8.3), extrafont(v.0.18),
effectsize(v.0.8.2), english(v.1.2-6), dplyr(v.1.0.10), cowplot
(v.1.1.1), brms(v.2.18.0), Rcpp(v.1.0.9), bayestestR(v.0.13.0),
bayesplot(v.1.10.0), DiagrammeRsvg(v.0.1), and DiagrammeR
(v.1.0.9)

Loaded via a namespace (and not attached): uuid(v.1.1-0),
backports(v.1.4.1), systemfonts(v.1.0.4), plyr(v.1.8.8), igraph
(v.1.3.5), splines(v.4.2.2), crosstalk(v.1.2.0), TH.data(v.1.1-1),
rstantools(v.2.2.0), inline(v.0.3.19), digest(v.0.6.31), htmltools
(v.0.5.4), fansi(v.1.0.3), magrittr(v.2.0.3), checkmate(v.2.1.0),
tzdb(v.0.3.0), readr(v.2.1.3), RcppParallel(v.5.1.5), matrixS-
tats(v.0.63.0), xts(v.0.12.2), sandwich(v.3.0-2), extrafontdb(v.1.0),
timechange(v.0.1.1), prettyunits(v.1.1.1), colorspace(v.2.0-3),
xfun(v.0.36), callr(v.3.7.3), crayon(v.1.5.2), jsonlite(v.1.8.4),
lme4(v.1.1-31), survival(v.3.4-0), zoo(v.1.8-11), glue(v.1.6.2),
gtable(v.0.3.1), emmeans(v.1.8.3), V8(v.4.2.2), distributional
(v.0.3.1), car(v.3.1-1), pkgbuild(v.1.4.0), Rttf2pt1(v.1.3.11),
rstan(v.2.21.7), abind(v.1.4-5), scales(v.1.2.1), mvtnorm(v.1.1-3),
DBI(v.1.1.3), rstatix(v.0.7.1), miniUI(v.0.1.1.1), xtable(v.1.8-4),
stats4(v.4.2.2), StanHeaders(v.2.21.0-7), DT(v.0.26), datawizard
(v.0.6.5), htmlwidgets(v.1.6.0), threejs(v.0.3.3), RColorBrewer
(v.1.1-3), ellipsis(v.0.3.2), pkgconfig(v.2.0.3), loo(v.2.5.1),
farver(v.2.1.1), utf8(v.1.2.2), tidyselect(v.1.2.0), rlang(v.1.0.6),
reshape2(v.1.4.4), later(v.1.3.0), munsell(v.0.5.0), visNet-
work(v.2.1.2), cli(v.3.5.0), generics(v.0.1.3), broom(v.1.0.2),
evaluate(v.0.19), stringr(v.1.5.0), fastmap(v.1.1.0), yaml(v.2.3.6),
processx(v.3.8.0), pander(v.0.6.5), zip(v.2.2.2), purrr(v.1.0.0), nlme
(v.3.1-161), mime(v.0.12), projpred(v.2.2.2), xml2(v.1.3.3), com-
piler(v.4.2.2), shinythemes(v.1.2.0), rstudioapi(v.0.14), curl
(v.4.3.3), gamm4(v.0.2-6), ggsignif(v.0.6.4), tibble(v.3.1.8),
stringi(v.1.7.8), ps(v.1.7.2), Brobdingnag(v.1.2-9), gdtools(v.0.2.4),
readODS(v.1.7.0), lattice(v.0.20-45), Matrix(v.1.5-3), nloptr
(v.2.0.3), markdown(v.1.4), shinyjs(v.2.1.0), tensorA(v.0.36.2),
vctrs(v.0.5.1), pillar(v.1.8.1), lifecycle(v.1.0.3), bridgesampling
(v.1.1-2), estimability(v.1.4.1), data.table(v.1.14.6), insight
(v.0.18.8), httpuv(v.1.6.7), R6(v.2.5.1), bookdown(v.0.31),
promises(v.1.2.0.1), gridExtra(v.2.3), codetools(v.0.2-18),
boot(v.1.3-28.1), colourpicker(v.1.2.0), MASS(v.7.3-58.1), gtools

(v.3.9.4), assertthat(v.0.2.1), rprojroot(v.2.0.3), withr(v.2.5.0),
shinystan(v.2.6.0), multcomp(v.1.4-20), hms(v.1.1.2), mgcv(v.1.8-
41), parallel(v.4.2.2), grid(v.4.2.2), coda(v.0.19-4), minqa(v.1.2.5),
snakecase(v.0.11.0), rmarkdown(v.2.19), carData(v.3.0-5), lubri-
date(v.1.9.0), shiny(v.1.7.4), base64enc(v.0.1-3), and dygraphs
(v.1.1.1.6)

Acknowledgments

We thank David Ferris, Rebecca O’Leary, Tinula Kariyawasam, and the
USQ Centre for Crop Health Advisory Group for insightful comments on
the final manuscript; Anna Hepworth for statistical guidance on evaluat-
ing inter-rater scores; and the anonymous reviewers and Nian Wang for
comments that greatly improved the quality of this manuscript.

Literature Cited

Arnaud, E., Laporte, M.-A., Kim, S., Aubert, C., Leonelli, S., Miro, B., Cooper,
L., Jaiswal, P., Kruseman, G., Shrestha, R., Buttigieg, P. L., Mungall, C. J.,
Pietragalla, J., Agbona, A., Muliro, J., Detras, J., Hualla, V., Rathore, A., Das,
R. R., Dieng, I., Bauchet, G., Menda, N., Pommier, C., Shaw, F., Lyon, D.,
Mwanzia, L., Juarez, H., Bonaiuti, E., Chiputwa, B., Obileye, O., Auzoux,
S., Yeumo, E. D., Mueller, L. A., Silverstein, K., Lafargue, A., Antezana, E.,
Devare, M., and King, B. 2020. The ontologies community of practice: A
CGIAR initiative for big data in agrifood systems. Patterns 1:100105.

Australian Research Council. 2018. ARC Open Access Policy. https://www.arc.
gov.au/policies-strategies/policy/arc-open-access-policy (accessed April 20,
2020).

Baker, M. 2016. Muddled meanings hamper efforts to fix reproducibility crisis.
Nature. https://doi.org/10.1038/nature.2016.20076

Barton, C. M., Lee, A., Janssen, M. A., van der Leeuw, S., Tucker, G. E., Porter,
C., Greenberg, J., Swantek, L., Frank, K., Chen, M., and Jagers, H. R. A. 2022.
How to make models more useful. Proc. Natl. Acad. Sci. 119:e2202112119.

Brunsdon, C. 2015. Quantitative methods I: Reproducible research and quanti-
tative geography. Prog. Hum. Geogr. 40:687-696.

Bürkner, P.-C. 2017. brms: An R package for Bayesian multilevel models using
Stan. J. Stat. Softw. 80:1-28.

Bürkner, P.-C. 2018. Advanced Bayesian multilevel modeling with the R pack-
age brms. R J. 10:395-411.

Bürkner, P.-C. 2021. Bayesian item response modeling in R with brms and Stan.
J. Stat. Softw. 100:1-54.

Carleson, N. C., Fieland, V. J., Scagel, C. F., Weiland, J. E., and Grünwald, N. J.
2019. Population structure of Phytophthora plurivora on rhododendron in
Oregon nurseries. Plant Dis. 103:1923-1930.

Del Ponte, E. M. 2020. Towards a more open and transparent plant pathology
research. Trop. Plant Pathol. 45:361-362.

Del Ponte, E. M., Nelson, S. C., and Pethybridge, S. J. 2019. Evaluation of app-
embedded disease scales for aiding visual severity estimation of cercospora
leaf spot of table beet. Plant Dis. 103:1347-1356.

Dienlin, T., Johannes, N., Bowman, N. D., Masur, P. K., Engesser, S., Kümpel,
A. S., Lukito, J., Bier, L. M., Zhang, R., Johnson, B. K., Huskey, R., Schneider,
F. M., Breuer, J., Parry, D. A., Vermeulen, I., Fisher, J. T., Banks, J., Weber,
R., Ellis, D. A., Smits, T., Ivory, J. D., Trepte, S., McEwan, B., Rinke, E. M.,
Neubaum, G., Winter, S., Carpenter, C. J., Krämer, N., Utz, S., Unkel, J.,
Wang, X., Davidson, B. I., Kim, N., Won, A. S., Domahidi, E., Lewis, N. A.,
and de Vreese, C. 2020. An agenda for open science in communication. J.
Commun. 71:1-26.

Eckert, E. M., Di Cesare, A., Fontaneto, D., Berendonk, T. U., Bürgmann, H.,
Cytryn, E., Fatta-Kassinos, D., Franzetti, A., Larsson, D. G. J., Manaia, C. M.,
Pruden, A., Singer, A. C., Udikovic-Kolic, N., and Corno, G. 2020. Every fifth
published metagenome is not available to science. PLoS Biol. 18:e3000698.

Editors at Nature. 2016. Reality check on reproducibility. Nature 533:437.
European Commission. 2022. Open science. https://research-and-innovation.ec.

europa.eu/strategy/strategy-2020-2024/our-digital-future/open-science_en
Fernandez, J. 2022. jafernandez01/cndcR: V1.0.0. Zenodo. https://doi.org/10.

5281/zenodo.6468142
Fernandez, J. A., Versendaal, E. van, Lacasa, J., Makowski, D., Lemaire, G.,

and Ciampitti, I. A. 2022a. Dataset characteristics for the determination of
critical nitrogen dilution curves: From past to new guidelines. Eur. J. Agron.
139:126568.

Fernandez, J. A., Versendaal, E., Lacasa, J., Makowski, D., Lemaire, G., and
Ciampitti, I. A. 2022b. Dataset characteristics for the determination of critical
nitrogen dilution curves: From the past to new guidelines. Eur. J. Agron.
139:126568.

Fidler, F., and Gordon, A. 2013. Science is in a reproducibility crisis: How do
we resolve it? Phys.org. https://phys.org/news/2013-09-science-crisis.html

Vol. 113, No. 7, 2023 1169

https://doi.org/10.5281/zenodo.4941722
https://doi.org/10.5281/zenodo.1250664
https://openplantpathology.github.io/Reproducibility_in_Plant_Pathology/
https://www.arc.gov.au/policies-strategies/policy/arc-open-access-policy
https://doi.org/10.1038/nature.2016.20076
https://research-and-innovation.ec.europa.eu/strategy/strategy-2020-2024/our-digital-future/open-science_en
https://doi.org/10.5281/zenodo.6468142
https://phys.org/news/2013-09-science-crisis.html


FitzJohn, R., Pennell, M., Zanne, A., and Cornwell, W. 2014. Reproducible
research is still a challenge. rOpenSci. http://ropensci.org/blog/2014/06/09/
reproducibility/

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., and Gelman, A. 2019.
Visualization in Bayesian workflow. J. R. Stat. Soc. A. 182:389-402.

Gates Foundation. 2022. Gates Foundation open access policy. https://
openaccess.gatesfoundation.org/open-access-policy/

Government of Canada. 2016. Tri-Agency Open Access Policy on Pub-
lications. http://www.science.gc.ca/eic/site/063.nsf/eng/h_F6765465.html?
OpenDocument (accessed April 12, 2019).

Hill, G. N., Beresford, R. M., and Evans, K. J. 2019. Automated analysis of
aggregated datasets to identify climatic predictors of Botrytis bunch rot in
wine grapes. Phytopathology 109:84-95.

Ioannidis, J. P. A. 2014. How to make more published research true. PLoS Med.
11:e1001747.

Iqbal, S. A., Wallach, J. D., Khoury, M. J., Schully, S. D., and Ioannidis, J. P. A.
2016. Reproducible research practices and transparency across the biomedical
literature. PLoS Biol. 14:1-13.

Jupyter, P. 2022. Jupyter. https://jupyter.org
Kamvar, Z. N., Larsen, M. M., Kanaskie, A. M., Hansen, E. M., and Grünwald,

N. J. 2014. Sudden Oak Death in Oregon Forests: Spatial and temporal popu-
lation dynamics of the sudden oak death epidemic in Oregon Forests. Zenodo.
https://doi.org/10.5281/zenodo.13007

Kamvar, Z. N., Larsen, M. M., Kanaskie, A. M., Hansen, E. M., and Grünwald,
N. J. 2015. Spatial and temporal analysis of populations of the sudden oak
death pathogen in Oregon forests. Phytopathology 105:982-989.

Khaliq, I., Fanning, J., Melloy, P., Galloway, J., Moore, K., Burrell, D., and
Sparks, A. H. 2020a. The role of conidia in the dispersal of Ascochyta rabiei.
Eur. J. Plant Pathol. 158:911-924.

Khaliq, I., Fanning, J., Melloy, P., Galloway, J., Moore, K., Burrell, D., and
Sparks, A. H. 2020b. ChickpeaAscoDispersal: A research compendium to
accompany “The role of conidia in the dispersal of Ascochyta rabiei”. Zenodo.
https://doi.org/10.5281/zenodo.3810826

Lehner, M. S., Pethybridge, S. J., Meyer, M. C., and Del Ponte, E. M. 2017.
Meta-analytic modelling of the incidence–yield and incidence–sclerotial pro-
duction relationships in soybean white mould epidemics. Plant Pathol. 66:
460-468.

Madden, L. V., Shah, D. A., and Esker, P. D. 2015. Does the P value have a
future in plant pathology? Phytopathology 105:1400-1407.

Makowski, D., Ben-Shachar, M. S., and Lüdecke, D. 2019. bayestestR: De-
scribing effects and their uncertainty, existence and significance within the
Bayesian framework. J. Open Source Softw. 4:1541.

Makowski, D., Ben-Shachar, M. S., Patil, I., and Lüdecke, D. 2021. Automated
results reporting as a practical tool to improve reproducibility and method-
ological best practices adoption. CRAN. https://github.com/easystats/report

Merkel, D. 2014. Docker: Lightweight Linux containers for consistent develop-
ment and deployment. Linux J. 2014:2.

Miorini, T. J. J., Kamvar, Z. N., Higgins, R., Raetano, C. G., Steadman, J., and
Everhart, S. E. 2018. Data and analysis for variation in pathogen aggression
and cultivar performance against Sclerotinia sclerotiorum in soybean and dry
bean from the U.S. and Brazil. Open Science. https://osf.io/2x7fc/ (accessed
July 29, 2020).

Miorini, T. J. J., Kamvar, Z. N., Higgins, R. S., Raetano, C. G., Steadman,
J. R., and Everhart, S. E. 2019. Differential aggressiveness of Sclerotinia
sclerotiorum isolates from North and South America and partial host resis-
tance in Brazilian soybean and dry bean cultivars. Trop. Plant Pathol. 44:
73-81.

Noorden, R. 2017. Gates Foundation demands open access. Nature 541:270.
Nüst, D., Sochat, V., Marwick, B., Eglen, S. J., Head, T., Hirst, T., and Evans,

B. D. 2020. Ten simple rules for writing dockerfiles for reproducible data
science ed. Scott Markel. PLoS Comput. Biol. 16:e1008316.

Ooi, H., and de Vries, A., and Microsoft. 2022. checkpoint: Install packages
from snapshots on the Checkpoint server for reproducibility. https://CRAN.
R-project.org/package=checkpoint

Open Weed Science, and Oliveira, M. C. 2021. Maxwelco/OpenWeedSci: First
release. Zenodo. https://doi.org/10.5281/zenodo.5079863

Patil, P., Peng, R. D., and Leek, J. 2016. A statistical definition for reproducibility
and replicability. bioRxiv 066803.

Peng, R. D. 2009. Reproducible research and biostatistics. Biostatistics 10:
405-408.

Preeyanon, L., Pyrkosz, A. B., and Brown, T. C. 2018. Reproducible bioinfor-
matics research for biologists. Pages 185-217 in: Implementing Reproducible

Research. Vol. 546. V. Stodden, F. Leisch, and R. D. Peng, eds. CRC Press,
Boca Raton, FL.

R Core Team. 2022. R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing. Vienna, Austria. https://www.
R-project.org/

Seibold, H., Czerny, S., Decke, S., Dieterle, R., Eder, T., Fohr, S., Hahn, N.,
Hartmann, R., Heindl, C., Kopper, P., Lepke, D., Loidl, V., Mandl, M.,
Musiol, S., Peter, J., Piehler, A., Rojas, E., Schmid, S., Schmidt, H., Schmoll,
M., Schneider, L., To, X.-Y., Tran, V., Völker, A., Wagner, M., Wagner, J.,
Waize, M., Wecker, H., Yang, R., Zellner, S., and Nalenz, M. 2021. A com-
putational reproducibility study of PLOS ONE articles featuring longitudinal
data analyses. PLoS One 16:e0251194.

Serra da Cruz, S. M., and Pires do Nascimento, J. A. 2019. Towards integration of
data-driven agronomic experiments with data provenance. Comput. Electron.
Agric. 161:14-28.

Smith, F., Dodds, L., Day, C., Musker, R., and Parr, M. 2018. Creating FAIR
and open data ecosystems for agricultural programmes. Gates Open Res. 2.42.
https://gatesopenresearch.org/documents/2-42

Sparks, A. 2016. Global-late-blight (meta) modelling. https://figshare.com/
articles/dataset/Global_Late_Blight_Modelling/1066124/6

Sparks, A. H., Del Ponte, E. M., Alves, K. S., Foster, Z., and Grünwald, N. J.
2022. Compendium of R code and data for ‘Status and Best Practices for
Reproducible Research In Plant Pathology’. Zenodo. https://doi.org/10.5281/
zenodo.1250665

Sparks, A. H., Forbes, G. A., Hijmans, R. J., and Garrett, K. A. 2011. A meta-
modeling framework for extending the application domain of process-based
ecological models. Ecosphere 2:art90.

Sparks, A. H., Forbes, G. A., Hijmans, R. J., and Garrett, K. A. 2014. Climate
change may have limited effect on global risk of potato late blight. Glob.
Change Biol. 20:3621-3631.

Stacey, D., Wulff, K., Chikhalla, N., and Bernardo, T. 2022. From FAIR to
FAIRS: Data security by design for the global burden of animal diseases.
Agron. J. 114:2693-2699.

Stodden, V., Guo, P., and Ma, Z. 2013. Toward reproducible computational
research: An empirical analysis of data and code policy adoption by journals.
PLoS One 8:2-9.

Sweedler, J. V. 2015. Striving for reproducible science. Anal. Chem. 87:
11603-11604.

Tiwari, K., Kananathan, S., Roberts, M. G., Meyer, J. P., Shohan, M. U. S.,
Xavier, A., Maire, M., Zyoud, A., Men, J., Ng, S., Nguyen, T. V. N., Glont,
M., Hermjakob, H., and Malik-Sheriff, R. S. 2021. Reproducibility in systems
biology modelling. Mol. Syst. Biol. 17:e9982.

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., and Bürkner, P.-C. 2021.
Rank-normalization, folding, and localization: An improved Rˆ for assessing
convergence of MCMC (with discussion). Bayesian Anal. 16:667-718.

Vogel, G., Gore, M. A., and Smart, C. D. 2021. Genome-wide association study
in New York Phytophthora capsici isolates reveals loci involved in mating
type and mefenoxam sensitivity. Phytopathology 111:204-216.

Wald, C. 2010. Scientists embrace openness. Science. https://www.science.org/
content/article/scientists-embrace-openness (accessed May 1, 2022).

Wallach, J. D., Boyack, K. W., and Ioannidis, J. P. A. 2018. Reproducible research
practices, transparency, and open access data in the biomedical literature,
2015−2017. PLoS Biol. 16:e2006930.

Weissgerber, T. L., Garovic, V. D., Winham, S. J., Milic, N. M., and Prager,
E. M. 2016. Transparent reporting for reproducible science. J. Neurosci. Res.
94:859-864.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E.,
Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O.,
Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G.,
Groth, P., Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A. C., Hooft, R.,
Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer,
A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A.,
Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson,
M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A.,
Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B. 2016. The FAIR
Guiding Principles for scientific data management and stewardship. Sci. Data
3:1-9.

Wittman, J. T., and Aukema, B. H. 2020. A guide and toolbox to replicability
and open science in entomology. J. Insect Sci. 20.

Ziemann, M., Eren, Y., and El-Osta, A. 2016. Gene name errors are widespread
in the scientific literature. Genome Biol. 17:177.

1170 PHYTOPATHOLOGY®

http://ropensci.org/blog/2014/06/09/reproducibility/
https://openaccess.gatesfoundation.org/open-access-policy/
http://www.science.gc.ca/eic/site/063.nsf/eng/h_F6765465.html?OpenDocument
https://jupyter.org
https://doi.org/10.5281/zenodo.13007
https://doi.org/10.5281/zenodo.3810826
https://github.com/easystats/report
https://osf.io/2x7fc/
https://CRAN.R-project.org/package=checkpoint
https://doi.org/10.5281/zenodo.5079863
https://www.R-project.org/
https://gatesopenresearch.org/documents/2-42
https://figshare.com/articles/dataset/Global_Late_Blight_Modelling/1066124/6
https://doi.org/10.5281/zenodo.1250665
https://www.science.org/content/article/scientists-embrace-openness

