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Abstract 

The behavior of concentrically loaded geopolymer-concrete circular columns reinforced 

longitudinally and transversely with glass-fiber-reinforced-polymer (GFRP) bars was 

investigated. Six full-scale short columns (L/r = 8) were cast: one column without transverse 

reinforcement; three columns with circular hoops spaced at 50 mm, 100 mm, and 200 mm on 

centers; and two columns with spirals spaced at 50 mm and 100 mm on centers. In addition, 

two slender columns (L/r = 16) transversely reinforced with hoops and spirals both spaced at 

100 mm on centers were fabricated. Based on the experimental results, the GFRP bars 

contributed an average of 7.6% to the overall capacity of the tested columns. The hoop- and 

spiral-confined slender columns failed at a load equal to 66% and 82%, respectively, of the 

strength of their counterpart short columns. Irrespective of the tie configuration, the columns 

with higher volumetric ratios showed better compressive behavior than those with lower 

volumetric ratios. The ductility and confinement efficiency of the spiral-confined columns 

were higher than that of their counterpart hoop-confined columns. The tested columns yielded 

relatively superior compression performance compared to OPC-based concrete columns 

reinforced with GFRP bars and ties. Further studies dealing with the behaviour and slenderness 

limit in GFRP-reinforced geopolymer concrete slender columns are recommended to increase 

its uptake in the construction industry.    
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1. Introduction 

Fiber-reinforced-polymer (FRP) bars and geopolymer concrete have been increasingly used in 

the construction industry because of their many advantageous properties. Aside from being 

innately corrosion resistant, FRP bars are lightweight (20% to 25% of steel’s density), have 

superior tensile strength (two to three times that of steel’s yield strength), have high fatigue 

endurance, and are electromagnetically neutral [1-3], making them suitable as internal 

reinforcement for concrete structures. Geopolymer concrete, on the other hand, is a “green” 

material because it utilizes a geopolymer binder, rather than cement binder, thatcan be 

manufactured by the reaction of an alkaline liquid – normally a mixture of sodium silicate and 

sodium hydroxide solution – with industrial waste materials that are rich in silica and alumina, 

like fly ash (FA) and blast-furnace slag (BFS) [4, 5]. Davidovits [6] coined the generic  term 

“geopolymer” because the chemical reaction taking place is a geopolymerization process 

wherein a large amount of amorphous  alumino-silicate oxides reacts with alkali polysilicates 

yielding a polymeric Si-O-Al bonds . Geopolymers are intrinsically fire and chemical resistant, 

have excellent thermal stability, and exhibit low shrinkage and creep, owing to their inorganic 

framework [7]. Furtheremore,a number of studies have shown that geopolymer concrete has 

mechanical properties that are either comparable or superior to that of normal concrete of the 

same grade [8-10]. While there are significant studies on the flexural and shear behavior of 

FRP-reinforced concrete (FRP-RC) [11-17], steel-reinforced geopolymer-concrete (S-RGC) 
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[18-23] systems, and FRP-reinforced geopolymer concrete (FRP-RGC) [24, 25], relatively few 

studies are available that deal with the behavior of compression members comprised of these 

systems [26]. In fact, among the current design guidelines and codes of practice for FRP-RC 

systems, only the Japan Society of Civil Engineers (JSCE) has established a design procedure 

for FRP-RC columns [27]. The ACI 440.1R-06 [28] does not recommend the use of FRP bars 

in columns while the CSA S806-12 [29] ignores the compression contribution of FRP bars, 

owing to their low compression contribution. Moreover, design guidelines for S-RGC systems 

have yet to be established. 

The strength and stiffness of glass-FRP (GFRP) bars in compression, based on earlier 

research [30-33], ranged from 30% to 70% and from 77% to 100%, respectively, of the tension 

values. Paramanantham [34] tested fourteen 200 x 200 x 1800 mm GFRP-reinforced beam 

columns and stated that the GFRP bar was stressed to up to 20% to 30% of its ultimate strength 

when subjected to pure compression. Based on fifteen 450 x 250 x 1200 mm columns, Alsayed 

et al. [35] reported that, irrespective of the tie type (steel or GFRP), replacing the longitudinal 

steel bars with an equal amount of GFRP bars reduced column capacity by 13%. The results of 

the experimental investigation conducted by De Luca et al. [27] and Tobbi et al. [36] on a 

number of square columns reinforced with GRFP bars and ties revealed that the longitudinal 

GFRP bars contributed 5% to 10% of column capacity. The series of studies conducted by 

Tobbi et al. [36-38] on a number of 350 x 350 mm concrete columns with GFRP bars and ties 

showed that (1) the GFRP bars could be used in compression members provided that there is 

sufficient confinement to eliminate bar buckling; (2) GFRP ties are effective in increasing the 

strength, toughness, and ductility of the confined concrete core; and (3) the strength-reduction 

factor of 0.85 and the equations used for conventional RC columns can be adopted for GFRP-

RC columns with some modifications to account for the different mechanical properties of 

GFRP bars compared to steel bars. Pantelides et al. [26] tested two circular columns with 
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internal GFRP spirals and vertical reinforcement under axial compressive loading to failure. 

The test results indicated that these columns achieved 84% of the axial load capacity of the all-

steel control column. Afifi et al. [39] and Mohamed et al. [40] investigated the axial capacity 

of circular columns reinforced with GFRP bars and ties. Their study indicated that concrete 

columns reinforced with GFRP and steel bars behaved similarly, although the axial capacities 

of the GFRP-RC columns were, on the average, 7.0% lower than their counterpart steel-RC 

columns. Moreover, the experimental findings showed that GFRP hoops and spirals enhanced 

the ductility and effectively confined the concrete core in the post-peak stages. In conclusion, 

the research work cited indicates the suitability of concrete columns longitudinally and 

transversely reinforced with GFRP bars. 

Some researchers have investigated the applicability of geopolymer concrete for 

reinforced columns. Sumajouw et al. [41, 42] tested 12 slender fly-ash-based, geopolymer-

concrete columns reinforced with steel bars. Their results showed that the column capacity 

increased when the longitudinal reinforcement and concrete compressive strength increased. 

Furthermore, they stated that the current design provisions for conventional concrete could be 

adopted for geopolymer concrete. Sarker [43] analyzed the behavior of geopolymer-concrete 

columns reinforced with steel bars. He recommended that the analytical method for 

conventional concrete columns could be used for geopolymer-concrete columns with the 

appropriate stress–strain relationship of geopolymer concrete. Sujatha et al. [44] tested a total 

of 12 slender geopolymer-concrete column specimens reinforced with M30 and M60 grade 

bars. The results showed that the geopolymer-concrete columns behaved similarly to OPC 

columns regardless of the concrete grade, with the geopolymer concrete yielding higher load 

and deflection capacities and more ductile behavior than OPC. 

The studies cited above demonstrate that FRP bars and geopolymer concrete are 

suitable materials for compression members. Moreover, combining them would yield a more 
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durable and more sustainable structural member with adequate strength and structural integrity. 

As of this writing, however, there have been only two studies that dealt with the bond behaviour 

of FRP bars in geopolymer concrete [45, 46], two research works about the structural behaviour 

of  FRP-RGC beams [24, 25], and none about compression members. Thus, gaining an 

understanding of their structural performance is very important. This study investigated the 

compression behavior of geopolymer-concrete columns longitudinally and transversely 

reinforced with GFRP bars. The parameters considered were tie configuration (hoops and 

spirals), tie spacing, and slenderness ratio.   

 

2. Experimental Program 

 

2.1. Materials  

2.1.1. Longitudinal and transverse reinforcement 

No. 5 high-modulus (HM) GFRP bars (CSA S807-10 [47]) with a nominal diameter of 

15.9 mm (Figure 1) were used to reinforce the circular column specimens in the longitudinal 

direction. No. 3 HM GFRP spirals and circular hoops with a nominal diameter of 9.5 mm 

(Figure 2) were used to reinforce the corresponding columns transversely. These two types of 

lateral reinforcement are most commonly adopted for circular columns, and are the only 

currently available types of lateral FRP reinforcement in the market. The transverse 

reinforcement had an inner diameter of 180 mm. The hoops had an overlap length of 80 mm. 

The GFRP reinforcement was manufactured by pultruding E-glass fibers impregnated with 

modified vinyl-ester resin and had a sand-coated surface to enhance the bond and force transfer 

between the bars and the geopolymer concrete. Table 1 provides the mechanical properties of 

the reinforcement as reported by the manufacturer. The tensile properties of the bars were 

determined in accordance with the B.2 test method in ACI 440.3R-12 [48]. The tensile strength 
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ffu and elastic modulus Ef were calculated using the nominal cross-sectional area Ab. Currently, 

there is no standard method for determining the compressive strength of FRP bars since it is  

complicated due to the occurrence of fiber micro-buckling. Nevertheless, this study utilized 

five 15.9 mm GFRP bars, with a length of 50 mm,  that were cut as flat as possible and were 

subjected to axial loads. Based on the test, the average compressive strength of the GFRP bars 

was 612.5 MPa, which was 51.7% of the bars’ tensile strength. This strength ratio was 

comparable to that proposed by Deitz el. [31] (50%), but was higher than that stated by 

Kobayashi and Fujisaki [32] (30% to 40%) for GFRP bars. In addition, this study assumed that 

the GFRP bars’ elastic modulus in compression was similar to its elastic modulus in tension 

and that the tension and compression behaviour of GFRP bars was linearly elastic up to failure. 

These assumptions were also reported by the previous researchers.  

 

2.1.2. Geopolymer concrete 

A commercially produced geopolymer concrete with a proprietary mixture consisting of fine 

and medium sands, 10 and 20 mm coarse aggregates, plasticizer, water, and a geopolymer 

binder resulting from the alkali activation of two industrial waste materials – class F fly ash 

(FA) and ground granulated blast-furnace slag (BFS) – were used to fabricate the column 

specimens. All the geopolymer concrete cylinders and column specimens were cured in an 

ambient condition. Figure 3 shows the typical stress-strain curves of the geopolymer concrete 

with an average 28-day compressive strength f’c and modulus of elasticity Ec of 38 MPa and 

33 GPa, respectively, as determined in accordance with ASTM C39/C39M-15a [49]. The 

average slump and setting time of the geopolymer concrete, following the ASTM 

C143/C143M-15[50] and ASTM C807-13 [51], respectively, were 150 mm and 90 minutes, 

respectively. The unique feature of this geopolymer concrete is that the entire constituent 

materials can be mixed in a truck bowl and remain completely dormant until the activator 
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chemicals are added [52]. The other mechanical properties of the geopolymer concrete were 

reported by Maranan et al. [24] and Aldred and Day [52]. 

Table 1 
Mechanical properties of the reinforcement. 

Bar ϕf, mm Ab, mm2 ffu,* MPa Ef, GPa εf, % 

No. 3 9.5  71.3 1372 65.1 + 2.5 2.11 
No. 5 15.9 197.9 1184 62.6 + 2.5 1.89 

*Guaranteed tensile strength: average value – 3x standard deviation (ACI 440.3R-12 [48]) 

 

    
 

Fig. 1. 15.9 mm GFRP bars. 

 

 
 

a. Circular hoops  
 

a. Spirals 
 

Fig. 2. 9.5 mm GFRP ties. 
 

   
 

Fig. 3. Typical stress-strain curve of the 100 mm diameter by 200 mm high geopolymer 
concrete cylinder. 
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2.2. Test Specimens 

Eight full-scale GFRP-RGC columns were cast and tested. One short column was fabricated 

without transverse reinforcement in the test region, which served as the control specimen. 

Three short columns reinforced with circular hoops uniformly spaced at 50, 100, and 200 mm 

on centers and two short columns reinforced with spirals spaced at 50 and 100 mm on centers 

were fabricated to investigate the influence of tie spacing and configuration. The specimen with 

spirals at 200 mm on centers was not considered in this study because this spacing caused the 

GFRP bars to buckle inward, yielding an almost hourglass-shaped reinforcement cage. In 

addition, two slender columns reinforced with circular hoops and spirals spaced at 100 mm on 

centers were produced to examine the slenderness effect. The short and slender columns had 

total heights (L) of 1.0 m and 2.0 m, respectively, yielding slenderness ratios (L/r) of 8 and 16, 

respectively. The L/r of 16 was practically equivalent to the slenderness limit of 17.2 suggested 

by Mirmiran [53], Mirmiran et al. [54], and Zadeh and Nanni [55] for GFRP-reinforced 

concrete columns. Figure 4 presents the specific details and configurations of the tested GFRP-

RGC columns. All of the columns had a diameter of 250 mm and were reinforced with similar 

amounts of longitudinal reinforcement, consisting of six 15.9 mm GFRP bars, equivalent to 

2.43% of the column’s gross cross-sectional area (Ag). The column height was divided into a 

middle test region of 2L/3 and two end regions of L/6. The columns’ end regions were 

strengthened with ties spaced at 50 mm on centers to make sure that failure occurred in the test 

region. Figure 5 shows the actual configuration of the GFRP reinforcement cages. Figure 6, on 

the other hand, shows the wooden framework and the plastic-tube formwork with cast column 

specimens. 

Table 2 depicts the column specimen identification and the test matrix. The columns 

were labelled as follows: GGC-L/r-H(S)##. The first three letters (GGC) stand for “GFRP-

reinforced geopolymer-concrete column” followed by the corresponding L/r. The next letter 
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represents the type of transverse reinforcement: H for circular hoops and S for spirals. The ## 

sign represents the hoop center-to-center spacing or the spiral pitch in millimeters. For 

example, the specimen identified as GGC-8-H50 is a GFRP-reinforced geopolymer-concrete 

column with a L/r of 8 and transversely reinforced with 9.5 mm circular GFRP hoops spaced 

at 50 mm on centers. The specimen labelled as GGC-8-S50, on the other hand, is a GFRP-

reinforced geopolymer-concrete column with a L/r of 8 and transversely reinforced with 

9.5 mm GFRP spirals with a pitch of 50 mm on centers. 

 

 

Fig. 4. Details and configuration of the column specimens. 
 

      
 

a. for short columns 
 

 

b. for slender columns 

Fig. 5. Configuration of the GFRP reinforcement cages. 

 



105 
 

 

Fig. 6. Wooden framework and plastic formworks with cast column specimens. 
 

Table 2 
Specimen identification and test matrix. 

Column D, mm Dc, mm ρf, % s, mm ρft, % L/r Type 
GGC-8-00 250 200 2.43 - - 8 - 
GGC-8-H50 250 200 2.43 50 3.13 8 Hoops 
GGC-8-H100 250 200 2.43 100 1.57 8 Hoops 
GGC-8-H200 250 200 2.43 200 0.78 8 Hoops 
GGC-8-S50 250 200 2.43 50 3.13 8 Spirals 
GGC-8-S100 250 200 2.43 100 1.57 8 Spirals 
GGC-16-H100 250 200 2.43 100 1.57 16 Hoops 
GGC-16-S100 250 200 2.43 100 1.57 16 Spirals 

 

2.3. Test Program and Instrumentation 

Figure 7 shows the test setup and instrumentation employed to investigate the compression 

behavior of the GFRP-RGC column specimens. The columns were supported at both ends with 

two pairs of 10 mm thick steel collars/clamps, with an inner radius of 127 mm, to confine the 

top and bottom of the columns to prevent end crushing, thereby ensuring failure at the test 

region. Three-millimeter-thick neoprene rubber were also provided to fill the gaps between the 
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clamps and specimens, thereby ensuring that the end regions were properly confined. The top 

and bottom ends were smoothened and levelled evenly during the casting process and were 

provided with 3 mm thick neoprene rubber during testing to ensure uniform distribution of the 

applied load across the cross section. Furthermore, chicken wire was placed around the column 

specimens for safety purposes. 

 

a. Schematic Diagram 
 

b. Actual 
 

Fig. 7. Test Set-up. 
 

Figure 4 provides the location of the electrical strain gauges. Three strain gauges were 

mounted onto three longitudinal bars to capture their compression contribution. Another three 

strain gauges were attached to the geopolymer concrete to measure the concrete strain; the 

strain gauges were positioned/aligned with the strain gauges on the bars. Four strain gauges set 

90° apart were also used to capture the strains in the transverse reinforcement. All the strain 

gauges were positioned at mid-height of the test region. Two laser displacement sensors (LDSs) 

set 90º apart were used to record the columns’ lateral deformations and/or lateral deflections. 

The columns were subjected to monotonically increasing axial concentric loads and were 
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loaded to failure in displacement control with a hydraulic jack to allow for the observation of 

both the pre- and post-peak behavior. The magnitude of the applied loads was measured with 

a 3000 kN capacity load cell, whereas the corresponding deformations were measured with a 

string pot. The strain, load, and deflection readings were recorded with a data logger attached 

to the machine, while the failure modes were documented with a video recorder.  

 

3. Experimental Results 

3.1. Load–Deformation Response 

Figure 8 shows the relationships between the axial load and the deformation of the tested 

columns. The load–deformation of the unconfined short column (GGC-8-00) consisted only of 

a relatively linear ascending segment, with a stiffness of 301 kN/mm, up until the peak load 

level, denoted as Pg in this study. Pg represents the gross capacity of the geopolymer-concrete 

column or the column’s capacity before concrete cover spalling. After exceeding Pg, the 

column failed suddenly and did not show any post-peak behavior.  

 

Fig. 8. Load-deformation response of the specimens. 
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The load–deformation responses of GGC-8-H50, GGC-8-H100, GGC-8-S50, and 

GGC-8-S100 can be divided into three phases. The first phase was comparable to that of GGC-

8-00, a relatively linear load–deformation relationship with an average stiffness of 318 kN/mm. 

This can be expected since, at this stage, the columns’ behavior was governed predominantly 

by the geopolymer concrete’s compressive properties with little or no significant contribution 

from the GFRP ties. Furthermore, to activate the passive confinement of the GFRP ties, a 

higher magnitude of applied loads was needed due to the low elastic-modulus characteristics 

of these ties. Upon exceeding a load level approximately equivalent to GGC-8-00’s Pg, micro-

cracks were formed causing the lateral expansion of the geopolymer concrete that subsequently 

yielded vertical hairline cracks on the concrete surface. At this stage, the passive confinement 

of the lateral reinforcement was marginally activated. A short nonlinear segment with reduced 

slope occurred prior to Pg owing to simultaneous crushing and cracking of the geopolymer 

concrete. Right after exceeding Pg, the concrete cover began to spall, producing a short 

descending branch that represents the second phase response of the columns. These columns, 

except GGC-8-H200, continued to sustain additional loads owing to the still-intact concrete 

core confined by lateral ties as represented by ascending or descending lines, depending on the 

amount of transverse reinforcement. This behavior represents the  third phase response. A 

second peak load Pc was recorded that corresponds to the maximum load capacity of the 

confined geopolymer-concrete core. This load level also marks the initiation of geopolymer-

concrete core crushing failure. The load-deformation response of GGC-8-H200, on the other 

hand, consisted only of two phases: a linear load-deformation response and a short descending 

branch.  

GGC-16-H100 and GGC-16-S100 columns yielded similar initial linear load–

deformation curves, although their initial stiffness (221 kN/mm) was lower compared to the 

GGC-8 columns. This is expected since the axial stiffness is inversely proportional to the height 
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of the column. These columns also showed more noticeable nonlinear behavior and stiffness 

degradation before reaching their Pg compared to their counterpart GGC-8 columns. 

 

3.2. Failure Mode 

Figures 8 shows the post-failure overview of the tested columns, while Figure 10 displays the 

specific failure of each material. As can be expected, the specimens failed by either crushing 

failure or buckling failure depending upon the slenderness ratio, suggesting the effectiveness 

of the design and construction procedure employed in the study. Right after reaching Pg, GGC-

8-00 failed suddenly through the simultaneous crushing of the geopolymer concrete and global 

buckling of the GFRP bars (Figure 10a). The columns failed in a brittle manner accompanied 

with an explosive sound. A well-formed cone on both ends (Figures 8a) characterized GGC-8-

00’s post-failure configuration.  

The failure of GGC-8-H200 commenced with the formation of vertical hairline cracks 

at an applied load approximately equivalent to GGC-8-00’s Pg. Since the columns had poor 

confinement, the longitudinal bars started to deflect laterally that contributed further to the 

splitting of the geopolymer-concrete cover. Upon reaching its Pg, simultaneous crushing of the 

geopolymer-concrete core and buckling of the longitudinal bars occurred. Concrete-cover 

spalling and concrete shearing outward along the inclined plane (Figure 9d) typified GGC-8-

H200’s failure, with relatively more intact geopolymer-concrete core compared to GGC-8-00, 

owing to the presence of circular ties. 

GGC-8-H50 (Figure 9b), GGC-8-H100 (Figure 9c), GGC-8-S50 (Figure 9e), and GGC-

8-S100 (Figure 9f), on the other hand, failed in a relatively ductile and more complex manner 

compared to the other columns. The failure can be described, generally, as the sequential 

occurrence of the following mechanism. The concentric compression load induced longitudinal 

strains that yielded transverse tensile strains due to Poisson’s effect. At higher load levels, the 
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axial strains and Poisson’s effect increased, thereby increasing the geopolymer concrete’s 

lateral strain, which consequently induced the formation of vertical columnar hairline cracks 

on the concrete surface. These cracks progressively widened and increased in number prior to 

Pg, as shown in Figure 9b. More but narrower cracks were formed with increasing amounts of 

transverse reinforcement. After the concrete cover spalled, the geopolymer-concrete core 

underwent significant cracking, followed by the lateral expansion of the core, again, due to 

Poisson’s effect. The longitudinal GFRP bars, on the other hand, started to kink and to 

delaminate due to the closely spaced ties preventing the bar lateral movement (Figure 10c). 

These events were subsequently followed by GFRP-bar rupture, geopolymer-concrete core 

crushing, and lap-splice joint failure of the GFRP hoops (Figure 10c) or rupture of the GFRP 

spirals (Figure 10d), specifically at the intersection of the longitudinal and transverse 

reinforcement. 

GGC-16-H50 (Figure 9g) and GGC-16-S50 (Figure 9f) underwent cracking and 

crushing mechanisms similar to that of their counterpart short columns before reaching ultimate 

failure. The failure of these columns, however, was governed by column buckling and not by 

the crushing or shear failure of the concrete, as shown by post-failure curvature/shape of the 

specimens. 

     
 

a. GGC-8-00 
 

b. GGC-8-H50 
 

c. GGC-8-H100 
 

d. GGC-8-H200
 

e. GGC-8-S50 
 

f. GGC-8-S100
 

g. GGC-8-H100 
 

h. GGC-8-S100

 
Fig. 9. Overview of the column specimens after failure. 
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a. GFRP bars’ global 

buckling  
b. Vertical cracks formation and 

geopolymer concrete cover 
spalling  

c. GFRP bars’ kinking and 
delamination, geopolymer concrete core 
crushing, and circular hoops’ lap splice 

joint failure   

d. GFRP bars’ kinking and delamination, 
geopolymer concrete core crushing, and 

spiral rupture   

 
Fig. 10. Different failure mode configurations of the column specimens  

 

3.3. Strength and Deformation Capacity 

Table 3 summarizes the gross concrete and concrete-core load capacities (Pg and Pc, 

respectively) of the tested columns. The Pg of GGC-8-00 was 1772 kN. The geopolymer 

concrete’s strength was calculated by subtracting the compression contribution of the GFRP 

bars from this load and then dividing the remaining load by the difference between the 

geopolymer concrete’s gross area and total bar area ((Pg-Pfg)/(Ag-Af)). The resulting strength 

was equivalent to 34.42 MPa, which was approximately 90% of the average compressive 

strength of the standard geopolymer-concrete cylinders used in the study. Interestingly, this 

ratio was higher than the commonly used value of 85% for estimating the theoretical capacity 

of ordinary-concrete column sections, which tends to support Maranan et al.’s [24] conclusion 

that geopolymer concrete has better mechanical properties than ordinary portland-cement 

concrete of the same grade such as higher elastic modulus (leading to its better compatibility 

with GFRP bars compared to normal concrete), greater ultimate compressive strain (as much 

as 4800 με), and larger tensile strength. The use of lateral ties, however, increased the Pg of 

GGC-8-00. GGC-8-H50, GGC-8-H100, and GGC-8-H200 yielded Pg values of 1791 kN, 1981 

kN, and 1988 kN, respectively, which translated into strength increases of 1%, 12%, and 12%, 

respectively. Similarly, the Pg of GGC-8-S50 (1838 kN) and GGC-8-S100 (2063 kN) increased 
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by 4% and 16%, respectively. As mentioned earlier, this enhancement could be attributed to 

the activation of the lateral confining pressures of the circular hoops or spirals right after a load 

level approximately equivalent to GGC-8-00’s Pg had been achieved. The Pg of GGC-8-H50 

and GGC-8-S50 were relatively low compared to the columns with lower volumetric ratios. 

Given that the Pg was mainly dependent on the geopolymer concrete, this result could be due 

to the presence of closely spaced ties that caused discontinuity of the geopolymer concrete 

between the cover and core, making the column more susceptible to early concrete-cover 

spalling. Only GGC-8-H50, GGC-8-H100, GGC-8-S50, and GGC-8-S100, however, yielded 

Pc of 1872 kN, 1763 kN, 2160 kN, and 1691 kN, respectively, which were 105%, 89%, 118% 

and 82% of their respective Pg,. As can be expected, the well-confined columns (GGC-8-H50 

and GGC-8-H100) yielded Pc that were higher than their Pg. The columns with spiral 

reinforcement, in general, produced higher Pg and Pc compared to their counterpart circular-

tie-reinforced columns. GGC-16-H100 and GGC-16-S100, on the other hand, reached Pg of 

1624 kN and 1208 kN, respectively, which were just 90% and 64%, respectively, of that of 

GGC-8-H100 and GGC-8-S100, respectively. This result could be expected since these 

columns failed due to buckling, a geometric type of failure, and not by compressive or shear 

failure.  

Table 3 summarizes the GFRP bars’ compression contribution at Pg load level (Pfg),  

which was determined by multiplying the measured average longitudinal bar strain (εfg) with 

the total nominal area (Af) and elastic modulus (Ef) of the GFRP bars. Pfg represents the 

maximum compression contribution of the GFRP bars since the bars yielded an almost plateau 

behavior right after reaching this load level. The control specimen GGC-8-00 yielded the 

lowest Pfg of 123 kN, while those with lateral ties obtained Pfg ranging from 133 KN to 188 

kN. The columns with widely spaced lateral ties (GGC-8-H100, GGC-8-H200, and GGC-8-

S100) yielded an average Pfg/Pg of 6.9%, which was similar to GGC-8-00, whereas those with 
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closely spaced lateral ties (GGC-8-H50 and GGC-8-S50) produced higher Pfg/Pg than GGC-8-

00, with an average of 9.5%. The Pfg of GGC-16-H100 and GGC-16-S100 were 107 kN and 

143 kN, respectively, which is generally lower than their counterpart GGC-8 columns. 

Nevertheless, it can be generalized from these results that the longitudinal GFRP bars made a 

notable compression contribution and that it could be enhanced through the provision of 

adequate lateral confinement. This generalization contradicts De Luca et al.’s [27] findings that 

the compression contribution of GFRP bars was less than 5% of column capacity. Hence, they 

concluded that the bar contribution could be ignored when evaluating the nominal capacity of 

an axially loaded square RC column. This could be related to the lower longitudinal 

reinforcement ratio (1.0%) they used and the better mechanical properties of the GFRP bars 

used in this study compared to the bars they used for their research work. 

Table 3 also provides the axial deformation at Pg and Pc load levels (Δg and Δc, 

respectively). Except for GGC-8-H100 (5.6 mm), all the transversely reinforced GGC-8 

columns produced Δg values that were higher than that of GGC-8-00 (7.2 mm). GGC-8-H100 

yielded a lower axial deformation than GGC-8-00 because the former column exhibited less 

severe cracking, prior to reaching its peak capacity, compared to the latter column, owing to 

the circular hoops that restrained the expansion of concrete core and delayed the formation of 

cracks. The Δg of the hoop-confined columns were in the following increasing order: GGC-8-

H100 (5.6 mm), GGC-8-H200 (7.3 mm), and GGC-8-H50 (8.6 mm), respectively. The axial 

deformation of GGC-H-100 was lower than GGC-8-H200 because the former column had 

higher volumetric ratio, resulting to a larger volume of effectively confined geopolymer 

concrete; hence, the premature dilation of the core was prevented and the formation of cracks 

was delayed.  The well confined column (GGC-8-H50), on the other hand, had denser 

arrangement of the steel cage that produced planes of weakness between the cover and core, 

and hence, this column yielded a larger axial deformation than GGC-8-H100. This was also 
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the reason why the axial deformation of GGC-8-S50 (8.0 mm) was greater than that of GGC-

8-S100 (7.2 mm). GGC-16-H100 and GGC-16-S100, on other hand, achieved Δg of 14.1 mm 

and 12.9 mm, respectively, which are higher than that of GGC-8-H100 and GGC-8-S100, 

respectively. The Δc of GGC-8-H50 (12.1 mm), GGC-8-H100 (6.9 mm), GGC-8-S50 (19.7 

mm), and GGC-8-S100 (11.4) were approximately 1.41, 1.23, 2.46, and 1.57 times that of their 

corresponding Δg, respectively. Obviously, the column with higher volumetric ratio or lower 

tie spacing, irrespective of the tie configuration, demonstrated better deformability 

performance compared to those with lower volumetric ratios. Furthermore, the column with 

spiral reinforcement showed higher deformability compared to that with circular ties. The Δg 

of GGC-16-H100 (11.09 mm) and GGC-16-S100 (10.39 mm) were greater than their 

counterpart short columns. 

Table 3 
Peak loads and the corresponding deformations.  

Column 
Pg,  
kN 

Pc,  
kN 

Pfg,  
kN 

Δg,  
mm 

Δc,  
mm 

GGC-8-00 1772 - 123 7.2 - 
GGC-8-H50 1791 1872 188 8.6 12.1 
GGC-8-H100 1981 1763 133 5.6 6.9 
GGC-8-H200 1988 - 134 7.3 - 
GGC-8-S50 1838 2160 158 8.0 19.7 
GGC-8-S100 2063 1717 147 7.2 11.4 
GGC-16-H100 1624 - 107 11.1 - 
GGC-16-S100 1208 - 102 10.4 - 

 

3.4. Geopolymer Concrete and GFRP Reinforcement Strains 

Figure 11 shows the relationships between the axial load and the average axial strains in the 

geopolymer concrete. These strains were similar for all the tested columns up until an applied 

load approximately equivalent to 81% of GGC-8-00’s Pg. Table 4, on the other hand, shows 

the maximum average strains in the geopolymer concrete at the Pg load level or the average 

concrete strain when the cover began to spall (εcg). Right after reaching its Pg, GGC-8-00 failed 

suddenly at a εcg of 1424 με. The εcg of the GGC-8 columns, however, varied from 1776 με to 
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2183 με. These strain values were larger than GGC-8-00’s εcg, owing to the transverse 

reinforcement that prevented the premature cracking within the specimen and prevented the 

early buckling of the GFRP bars. Interestingly, the average εcg of the tested short columns εcg-

ave, equivalent to 2032 με, was comparable to that of the normal concrete (2000 με) suggested 

by Afifi [56] and Saatcioglu [57]. The εcg of GGC-16-H100 and GGC-16-S100 were 1266 με 

and 637 με, respectively, which is generally lower than their counterpart short columns.  

Figure 12 displays the relationships between the axial load and the axial compression 

strains in the longitudinal bars. As with the geopolymer concrete’s strains, at the same load 

levels, relatively comparable strain readings were obtained from all specimens up until 81% of 

GGC-8-00’s Pg. The figure clearly shows that the GFRP bars maintained their integrity and 

load resistance until after the surrounding concrete was crushed and spalled off after the peak 

load. Table 4 summarizes the strains in the longitudinal GFRP bars at Pg load level (εfg). The 

εfg of GGC-8-00 was 1647 με, which is equivalent to 8.7% of the GFRP bars’ ultimate tensile 

strain εf. Generally, the GFRP ties enhanced the εfg of the short columns. The εfg of GGC-8-

H100 and GGC-8-H200 were 1779 με and 1803 με, respectively, yielding εfg/εf ratios of 9.4% 

and 9.5%, respectively. The well-confined GGC-8-H50, on the other hand, yielded the highest 

εfg among the columns with circular hoops, equivalent to 3070 με or 13.3% of εf. GGC-8-S50 

and GGC-8-S100 developed εfg of 2116 με and 1967 με, respectively, translating to strain 

development of 11.2% and 10.4% of εf, respectively. The strains in the bars at Pc load level 

were also summarized in Table 4. The εfc were 6047 με, 5955 με, 8648 με, and 7866 με for 

GGC-8-H50, GGC-8-H100, GGC-8-S50, and GGC-8-S100, respectively, translating to εfc/εf 

ratios of 32.0%, 31.5%, 45.8%, and 41.6%, respectively. These values were lower than the 

strain ratio capacity (51.7%) reported earlier. GGC-16-H100 (1436 με) and GGC-16-S100 

(1922 με) produced εfg/εf ratios of 7.6% and 10.2%, respectively. These results showed that the 

GFRP bars had a compression contribution that cannot be neglected. Interestingly, the average 
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εfg of the short columns εfg-av (2036 με) was relatively comparable to εcg-ave, suggesting the 

compatibility between the bars and the geopolymer concrete and that equivalency between 

these materials could be assumed for design and analysis purposes. Furthermore, this strain 

value was higher than the design strain limit of 1000 με proposed by Zadeh and Nanni [55] to 

avoid exaggerated deflections. 

Figure 13 shows the relationships between the axial load and the lateral-tie strain. 

Marginal strains (εftg) were recorded at lower loads. After exceeding the load equivalent to 

GGC-8-H100’s Pg, however, relatively higher strains were obtained from GGC-8-H50 and 

GGC-8-S50 because of the early spalling of their concrete covers compared to the columns 

with wider tie spacing. The εftg of GGC-8-H50 (1729 με) was higher than that of GGC-8-H100 

(664 με) and GGC-8-H200 (853 με). A similar trend was also observed in the spiral-confined 

columns with GGC-8-S50 (968 με) yielding a higher εftg than GGC-8-S100 (730 με). The trend 

reversed, however, right after the Pg load level was reached. The εftc, the transverse 

reinforcement strain at Pc load level, were 5569 με and 13131 με for GGC-8-H100 and GGC-

8-S100, respectively. These strains were higher than that of GGC-8-H100 (3302 με) and GGC-

8-S100 (7765 με), respectively. On the other hand, the columns with spiral reinforcement 

generally yielded higher εftc compared to their counterpart columns with circular hoops. GGC-

16-H100 and GGC-16-S100 recorded εftg values of 552 με and 700 με, respectively, which 

were lower than their counterpart short columns. 

Table 4 
Geopolymer concrete and GFRP reinforcement strains.  

Column εcg, με εfg, με εfc, με εftg, με εftc, με 
GGC-8-00 1424 1647 - - - 
GGC-8-H50 2129 2518 6047 1729 3302 
GGC-8-H100 1845 1779 5955 664 5569 
GGC-8-H200 2183 1803 - 853 - 
GGC-8-S50 2183 2116 8680 968 7765 
GGC-8-S100 1821 1967 7866 730 13131 
GGC-16-H100 1266 1436 - 552 - 
GGC-16-S100 637 1922 - 700 - 
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Fig. 11. Axial load versus geopolymer 
concrete strain curves. 

 

Fig. 12. Axial load versus longitudinal bar 
strain curves. 

 

 

Fig. 13. Axial load versus lateral-tie strain curves. 
 

3.5. Confinement Efficiency and Ductility Index 

In this study, the column ductility index (D.I.) was defined as the ratio of the displacement that 

corresponds to 85% of Ppeak to the displacement that corresponds to the elastic behavior limit 

(Δ85/Δ1), as shown in Figure 14. The procedure for determining these displacements was based 

on Pantelides et al.’s [26] recommendations. The confinement efficiency (C.E.), on the other 

hand, was computed as the ratio of the compressive strength of the confined column to the 

compressive strength of the unconfined column (f’cc/f’co). The f’cc was calculated as the peak 

load divided by the area of the confined geopolymer concrete, which is represented by point C 
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in Figure 15. The f’co, on the other hand, was equivalent to 0.90f’c. Table 5 summarizes the D.I. 

and C.E. values of the tested columns. Based on the experimental results, the ductility index 

and confinement efficiency increased when the amount of transverse reinforcement increased. 

These results are consistent with Afifi et al.’s [39] findings on circular concrete columns 

reinforced with GFRP bars and spirals. Sharma et al. [58] also reported a similar trend 

regarding the ductility of the confined columns for conventional RC columns. The geopolymer 

concrete columns with spiral reinforcement, in general, showed higher ductility and 

confinement efficiency than those with circular hoops. These findings are not consistent with 

those of Mohamed et al. [40] wherein they concluded that the FRP circular hoops have similar 

confining efficiency as the FRP spirals. This could be expected since they utilized hoops with 

longer lap or splice lengths, approximately 2.5 to 5 times longer than that of the hoops 

employed in this study. The ductility and confinement efficiency of the slender geopolymer 

concrete columns were not considered in this study, mainly because of the nature of failure of 

these specimens. 

 

 

Fig. 14. Definition of Δ85 and Δ1. 
 

Fig. 15. Confined stress-deformation curve 
of GGC-8-S50. 
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Table 5 
Normalised strength, ductility index (D.I.) and confinement efficiency (C.E.) of GFRP-RGC 
and GFRP-RC circular columns.  

Author Specimen Type 
ρft 

(%) 
 D.I. C.E. 

       
Current Study GGC-8-H50 Hoop 3.13 85.9 2.08 1.84 

GGC-8-H100 Hoop 1.57 99.1 1.32 1.74 
GGC-8-S50 Spiral 3.13 90.1 2.99 2.13 
GGC-8-S100 Spiral 1.57 102.7 1.79 1.67 

       
Afifi et al. 2013 G4V-3H80 Spiral 1.48 89.0 1.13 1.37 

G8V-3H40 Spiral 2.95 89.4 4.75 1.89 
G8V-3H80 Spiral 1.48 89.2 2.00 1.69 
G8V-3H120 Spiral 0.98 85.9 1.54 1.32 
G12V-3H80 Spiral 1.48 89.4 2.45 1.78 

       
Mohamed et al. 2014 G3H200 Hoop 1.48 88.8 1.83 1.57 

G3H400 Hoop 1.48 84.8 1.88 1.60 
G3H600 Hoop 1.48 87.7 1.91 1.63 

       
Pantelides et al. 2013 13GLCTL Spiral 1.91 - 1.70 1.76 

14GLCTL Spiral 1.91 - 3.60 1.59 
 

3.6. Lateral Deflection 

Figure 16 shows the typical lateral deflection readings, just before the initiation of concrete-

cover spalling, obtained from the horizontally positioned laser displacement sensors. The black 

lines represent that of the short columns while the red and green lines correspond to that of 

GGC-16-H100 and GGC-16-S100. At lower applied loads, the deflection was approximately 

equivalent to zero for both column types. At higher loads, however, the GGC-8 columns 

yielded relatively random readings owing to the geopolymer-concrete crushing and cracking. 

The slender columns, on the other hand, yielded deflections that increased hyperbolically with 

increasing loads, clearly indicating that the columns were undergoing lateral buckling. 
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Fig. 16. Axial load versus lateral deflection. 
 

4. Discussion 

 

4.1. Influence of the Transverse Reinforcement 

The provision of transverse reinforcement generally enhanced the compression performance of 

the tested GFRP-RGC columns. The compression failure of the confined columns was less 

brittle compared to the unconfined control specimen. At Pg load level, the average strength and 

deformation capacity of the confined columns were 10% and 1%, respectively, higher than that 

of the corresponding values for the unconfined column. Furthermore, the average geopolymer 

concrete and longitudinal GFRP bar strains of confined columns were 24% and 43% higher, 

respectively, than that of the unconfined column, suggesting the ties’ effectiveness in 

enhancing the strain development in each component material of the column. 

 

4.2. Influence of the Transverse-Reinforcement Spacing 

The effect of the amount of transverse reinforcement on the performance of confined concrete 

has been well studied. As can be expected, the closer the tie spacing or the larger the volumetric 

ratio, the less brittle the compression failure of the tested columns, showing a slower rate of 

strength decay after the peak. After the geopolymer-concrete cover spalled, the well-confined 
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columns (GGC-8-H50 and GGC-8-S50) showed relatively higher strength and deformation 

capacities than the less-confined columns (GGC-8-H100 and GGC-8-S100). These 

observations tend to support Paultre and Legeron’s [59] generalization for confined columns, 

which states that the effectiveness of confinement reinforcement in restraining concrete varies 

from “one” for a continuous tube to “zero” when the ties are spaced more than half the 

minimum core cross section. This conclusion may also explain why the poorly confined GGC-

8-200 evidenced load–deformation behavior and failure mode similar to GGC-8-00, since the 

hoop spacing was too wide to provide any lateral confinement. Interestingly, the columns with 

a volumetric ratio of 3.13% or a transverse-reinforcement spacing of 50 mm on centers yielded 

another peak and deformation capacities that were higher than their initial capacities. This can 

be related to the high confinement that enhanced the geopolymer-concrete core and prevented 

vertical GFRP bar buckling, owing to reduced the unbraced length of the bars, which enhanced 

the compression contribution of the GFRP bars. 

The amount of transverse reinforcement, expressed in terms of ρft, played a major role 

after the concrete cover spalled. An adequate amount of lateral reinforcement with respect to 

the unsupported length of longitudinal reinforcement ensured the stability of the longitudinal 

reinforcement between the ties. Furthermore, after the concrete spalled, the well-confined 

geopolymer-concrete columns yielded an ascending load–deformation relationship, while the 

poorly confined geopolymer-concrete columns produced a descending response. 

 

4.3. Influence of the Transverse-Reinforcement Configuration 

The geopolymer-concrete columns confined by spirals exhibited relatively higher ductility and 

confinement efficiency compared to their counterpart columns confined with circular hoops, 

owing to the continuous nature of the spirals, which effectively confined the whole 

geopolymer-concrete core by distributing the lateral confining pressures uniformly around the 
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perimeter and along the height of the geopolymer-concrete core. This observation corroborates 

Yong et al.’s [60] and Mohamed et al.’s [40] findings for conventional RC and FRP-RC 

columns, respectively. Furthermore, the difference between the two types of lateral ties can be 

clearly seen after the spalling of the concrete cover of the well-confined columns. The Pc-to-

Pg ratio of GGC-8-S50 was 1.18, whereas, for GGC-8-H50, the ratio was just 1.04. This result 

tends to suggest that the strength enhancement in hoop-confined columns due to transverse 

reinforcement could be ignored. Interestingly, this finding corroborates those of Kent and Park 

[61] for rectangular conventional RC columns transversely reinforced with rectilinear ties, in 

which the concrete core delineated by the outer tie diameter was not fully confined due to the 

non-uniform lateral pressure that resulted in poor strength enhancement. This could be 

attributed to the discontinuous nature of the circular hoops, since the column failure was 

governed by lap-splice failure at the joint and not by the GFRP ties rupturing. It can be deduced, 

therefore, with the same amount of strength and ductility improvement, hoop-confined 

columns should be much more confined than spiral-confined columns.  

 

4.4. Influence of the Slenderness Ratio (L/r) 

Generally, the columns with higher slenderness ratios and confined with hoops and spirals 

yielded strength capacities (Pg) that were 66% and 82% of the strength of their short-column 

counterparts. The hoop-confined slender column yielded εcg, εfg, and εftg that were just 35%, 

80%, and 83%, respectively, of the strains of their counterpart hoop-confined short columns. 

The spiral-confined slender column, on the other hand, recorded strains that were 68%, 97%, 

and 95%, respectively, of the corresponding values for spiral-confined short columns.  

Furthermore, the confinement efficiency of the hoop- and spiral-confined slender columns was 

just 59% and 46%, respectively, of their counterpart short columns. These results could be 

attributed to the buckling failure of the slender columns—a geometric type of failure not related 
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to the strength of the material—which lowered their strength capacities and did not allow the 

efficient use of each component material. The higher deformation values could be attributed to 

column lateral movement. Clearly, these results indicate the influence of slenderness in the 

tested columns with L/r =16, thereby suggesting that the previously proposed slenderness limit 

for GFRP-RC columns (17.2) must be lowered for the proposed system. The critical buckling 

load Pc—estimated from Equation 1—was equivalent to 1898 kN. This is higher than the Pg of 

the tested slender columns, indicating that a lower Pc limit must be adopted for the proposed 

system. Further research is needed, however, to support these generalizations. 
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4.5. Theoretical Prediction 

The nominal capacities of the tested GFRP-RGC columns were determined using the equations 

below. These formulas were used to estimate column strength at Pg load levels. Figure 17 

shows the comparison of the experimental-to-predicted (Pg-to-Po) ratios using these equations.  

' '
1 1( ); 0.85 0.0015 0.67o c g f cP f A A f           (2) 

'0.85 ( )o c g fP f A A     (3) 

'0.85 ( )o c g f g fu fP f A A f A      (4) 

'0.90 ( )o c g f fg f fP f A A E A      (5) 
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Of the current North American standards for FRP-RC systems, only CSA S806-12 has 

established a prediction equation for FRP-RC columns, as depicted by Equation 2. This 

equation, however, ignores the compression contribution of the FRP bars. Using this equation, 

the ratios of the peak experimental load-to-predicted nominal capacity (Pg/Po) varied from 

113% to 143%, with an average value of 129%. Equation 3 was based on the equation in ACI 

318-11 [62] recommended for conventional RC columns. It neglects, however, the 

compression contribution of GFRP bars. Based on this formula, the Pg/Po ratios ranged from 

105% to 129% with an average value of 121%, yielding less conservative estimates compared 

to Equation 1. 

Equation 4 depicts the equation recommended by Afifi et al. [39]. The compression 

contribution of the GFRP bars was considered by introducing a factor αg that accounts for the 

reduced compressive strength of the GFRP bars as a function of their tensile strength. 

Currently, no standard test is available to determine the compressive strength of FRP bars. 

Hence, in order to determine the factor αg in this study, five 15.9 mm GFRP bars 40 mm in 

length were used and were subjected to compressive testing. The test yielded an average αg 

approximately equivalent to 0.5. From Equation 4, the Pg/Po ratios ranged from 72% to 92% 

and an average of 83%. This equation generally yielded unconservative estimates, indicating 

its inapplicability for the proposed system. Equation 5 was based on Mohamed et al.’s [40] 

recommendations, although we used a reduction factor of 0.90 obtained from the experiment 

instead of the commonly used value of 0.85. Adoption of higher strength-reduction factor 

seems to be logical for the proposed system owing to the higher elastic modulus of the 

geopolymer concrete (33 GPa) compared to a normal concrete (29 GPa, calculated using the 

ACI 318-11 formula) of the same grade (38 MPa). This would result in better compatibility in 

the GFRP-RGC system, as evidenced by the recorded average strains in the GFRP bars and 

geopolymer concrete that, subsequently, would yield more area under the stress–strain curve 
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compared to a GFRP-RC system. Further studies, however, are recommended to validate these 

conclusions. The longitudinal reinforcement’s contribution was calculated based on the actual 

strains in the bars, represented by εfg-ave. This strain corresponds to the average compression 

strain in GFRP bars at the Pg load level or the strain at which the plastic deformation of the 

geopolymer concrete initiated. Based on the column compression test, the εfg-ave was equivalent 

to 0.002. The Pg/Po ratios varied from 68% to 111%, with an average value of 100%. 

Interestingly, among the equations considered herein, this equation yielded the relatively most 

accurate prediction of the nominal capacity of the column specimens. In addition, this equation 

produced conservative estimates, except for the slender columns, thereby suggesting the 

equation’s suitability in predicting the capacity of short GFRP-RGC columns. A new equation 

must, therefore, be proposed to consider the slenderness effect on the capacity of GFRP-RGC 

columns.  

 
 

Fig. 17. Pg-to-Po ratios. 
 

4.6. Comparison with the GFRP-RC Circular Columns 

The performance of the tested GFRP-RGC circular columns was compared to that of Afifi et 

al.’s [39], Mohamed et al.’s [40], and Pantelides et al.’s [26] GFRP-RC circular columns in 

terms of normalized strength, ductility index, and confinement efficiency. These values were 
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summarized in Table 5. The normalized strength was calculated as the difference between Pg 

and Pf divided by the concrete strength (f’c) and the gross area (Ag) of the column. From the 

table, it can be seen that the strength of the GFRP-RGC columns were higher than that of the 

GFRP-RC columns. Interestingly, this finding tends to support the authors’ earlier claim that 

GFRP bars have better compatibility with geopolymer concrete compared with OPC concrete, 

owing to the higher elastic modulus of the former concrete compared to the latter concrete. 

Comparing the ductility and confinement efficiency of GFRP-RGC columns to that of GFRP-

RC columns with comparable amounts and types of transverse reinforcement, the two systems 

showed relatively comparable performance. From these findings, it can be inferred that GFRP 

bars can be used as reinforcement for geopolymer-concrete columns, particularly when 

structural columns that are corrosion resistant and electromagnetic transparent are targeted. 

This conclusion corroborates Zadeh and Nanni’s [55] generalization based on past 

experimental research, stating that GFRP bars can be used to strengthen conventional RC 

columns.  

4.7. Proposed stress-strain model for GFRP-RGC Circular Columns 

Figure 18 shows the stress-strain curve adopted in this study. The linear elastic segment 

represents that of the unconfined and confined behaviour while the remaining segment  

embodies that of the confined behaviour only, upon the activation of the GFRP ties’ passive 

confinement. Equations 6a-e, proposed by Popovics [63], was employed to model the 

ascending branch (O-A-B) while Equations 7a-c, which was proposed by Han et al. [64] for 

high strength reinforced concrete tied columns, was used to model the descending part (B-C-

D). The maximum confining pressure (flGFRP) was computed from Equation 8a-b. The constants 

a, b, c, d, e, f, g, h, i, and j were determined through  the regression analysis of short columns’ 

experimental results, as implemented by Han et al. [64],  such as the confined compressive 

strength (f’cc); the axial strains, derived from longitudinal reinforcement strains, at f’cc, 0.85f’cc, 



127 
 

and 0.50 f’cc (εcc, ε0.85cc, and ε0.50cc, respectively); and transverse reinforcement strain at f’cc 

(εftcc). These constants were tabulated in Table 6. Figure 19 shows a good correlation between 

the predicted and the experimental stress-strain curves for the tested GFRP-RGC column 

specimens. The proposed equations, however, are applicable only for the specimens considered 

in this study. Further research works are needed to further calibrate the proposed equations.   
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Fig. 18. Adopted stress-strain curve for the confined geopolymer concrete. 
 

Table 6 
Constants a, b, c, d, e, f, g, h, i, and j.  

Column a b c d e f g h i j 
Hoop-
confined 
column 

22.01 -0.03 72.23 0.54 
102.4

0 
0.40 210.54 0.36 790.1 0.003 

Spiral-
confined 
column 

34.88 0.05 
132.8

8 
0.64 35.39 0.36 7.25 0.02 196.1 0.009 

 
 

 
 

a. GGC-8-00 
 

 

b. GGC-8-H50 
 

c. GGC-8-H100 

 
 

d. GGC-8-H200 

 

e. GGC-8-S50 

 

f. GGC-8-S100 
 

Fig. 19. Experimental and predicted stress-strain curves of the GFRP-RGC columns. 
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4.8. Proposed compression relationship for GFRP bars 

It was evident from the experiment that the GFRP bars in the columns with ties spaced at 50-

200 mm exhibited local combined crushing and buckling failure while the control specimen 

undergone buckling failure; hence, two equations were proposed. Equation 9a shows the 

proposed relationship for predicting the ultimate compression stress in the GFRP bars (f’fu) that 

undergone local combined crushing and buckling failure. The maximum value of 612.5 MPa 

was adopted from the compression test of GFRP bars. This equation was basically derived from 

the regression analysis of the experimental results acquired from the actual column test. To 

calculate the experimental f’fu, the load Pfg was divided by the total area and number of 

longitudinal bars. The compression behaviour of GFRP bars encased in geopolymer concrete 

and confined by a closely spaced ties can intuitively be expected to be different from that of 

buckling test of the bars.  The buckling test resulted in a fixed-fixed end condition while in the 

column test, the end conditions are not as simply defined. Furthermore, buckling behaviour of 

GFRP bars is not only influenced by the lateral bracing distance (or tie spacing) but also by the 

geopolymer concrete core condition [65]. Equation 9b, on the other hand, predicts that of GFRP 

bars that undergone global buckling failure, the bars in the control specimen. Interestingly, the 

obtained effective length factor k (0.926) was approximately equivalent to 1.0, which is 

typically adopted for pinned-end specimen. Table 7 shows a good agreement between the 

experimental and predicted results. Further research works, however, are needed to enhance 

the accuracy the proposed equations.  
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Table 7 
Compressive stress in GFRP bars. 

Column Luf, mm Experimental, MPa Predicted, MPa 
GGC-8-00 667 102 101.5 
GGC-8-H50 50 158 142.2 
GGC-8-H100 100 112 124.3 
GGC-8-H200 200 112 105.7 
GGC-8-S50 50 133 142.2 
GGC-8-S100 100 123 124.3 

 
 

5. Conclusion 

 

This study investigated the behavior of geopolymer-concrete columns reinforced 

longitudinally and transversely with GFRP bars. From the experimental results, the following 

conclusions were drawn: 

 The compression contribution of the GFRP bars (2.43% reinforcement ratio) with 

respect to column capacity prior to concrete spalling varied from 6.6% to 10.5%, with 

an average value of 7.6%.  

 Irrespective of tie configuration, the columns with closely spaced lateral ties or higher 

volumetric ratios failed in a more ductile manner and showed higher confinement 

efficiency compared to the columns with relatively lower volumetric ratios. The hoop- 

and spiral-confined columns with ties spaced at 50 mm on centers yielded ductility 

indices [confinement efficiency] that were 58% [7%] and 67% [28%], respectively, 

higher than their counterpart columns with ties spaced 100 mm on centers.  

 The spiral-confined columns exhibited a more ductile behavior and higher post-

concrete-cover spalling strength compared to their hoop-confined counterparts, as 

proven by the higher average ductility index and average confinement efficiency (2.39 

and 1.90, respectively) of the spiral-confined columns compared to the hoop-confined 



131 
 

ones (1.79 and 1.70, respectively). These findings could be attributed to the uniform 

lateral confining pressure of the spirals. 

 The short columns failed due to crushing and/or shear failure, while the slender columns 

failed due to buckling. Hence, irrespective of the type and amount of transverse 

reinforcement, the short columns yielded higher compression capacities than the 

slender columns. The hoop- and spiral-confined short columns with ties spaced at 100 

mm on centers yielded strength capacities that were 22% and 71%, respectively, higher 

than their counterpart slender columns. 

 The GFRP-RGC circular columns yielded a relatively higher normalized strength 

(97.3%) compared to GFRP-RC circular columns (88.3%). This could be attributed to 

the higher elastic modulus of geopolymer concrete (33 GPa) compared to normal 

concrete (29 GPa) of the same grade (38 MPa), resulting in better compatibility in the 

GFRP-RGC system than in a GFRP-RC system. Further studies, however, are needed 

to validate this generalization.  

 The slender columns failed at a load 66% and 82% of the strength of their short-column 

counterparts. They exhibited higher deformation compared to the short columns due to 

the lateral movement and they failed due to buckling.  

 The nominal capacity of the tested columns could be estimated accurately using the 

proposed equation because it considers the actual geopolymer-concrete strength-

reduction factor (0.90) and the actual compression contribution of the GFRP bars (using 

the average bar strain as being equivalent to 2000 με). 

 The proposed confined stress-strain equations show good correlation with the 

experimentally established stress-strain relationship for the GFRP-RGC columns. 

Further research works, however, are needed to further calibrate these equations.  
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 It can be inferred, therefore, that a GFRP-RGC system could be adopted as compression 

members, particularly when corrosion resistance, electromagnetic transparency, 

material greenness, durability, and sustainability are sought.  

Nomenclature: 
Ab = nominal area of the GFRP bars (mm2) 
Af = total area of the longitudinal GFRP reinforcement (mm2) 
Ag = gross cross-sectional area of the column (mm2) 
Aft = cross-sectional area of the trsnaverse reinforcement (mm2) 
D = column diameter (mm) 
Dc = concrete-core diameter delineated by the outside diameter of hoops or spirals 

(mm) 
Ec = modulus of elasticity of the concrete (MPa) 
Ef = tensile modulus of the GFRP bars (MPa) 
E’f = compression modulus of the GFRP bars (MPa) 
Esec = tangent modulus modulus of elasticity of the concrete (MPa) 
EI = flexural stiffness of the reinforced-concrete column 
ffu = tensile strength of the GFRP bars (MPa)  
f'fu = ultimate compressive stress in the GFRP bars (MPa)  
f’c = concrete compressive strength (MPa) 
f’cc = confined-column compressive strength (MPa) 
f’co = unconfined-column in-place compressive strength, 0.9f’c (MPa) 
f’lGFRP = maximum confinement pressure 
Ise = moment of inertia of reinforcement about members’ centroidal axis (mm4) 
k = effective length factor for buckling 
ka = efficiency factor that accounts for the geometry of the section, taken as 1.0 

for circular sections 
ke = efficiency factor that accounts for the premature failure of the FRP system 
L = column height (mm) 
L/r = slenderness ratio 
Luf = unsupported length of GFRP bars (mm) 
m = parameter that controls the initial slope and curvature of the ascending 

branch  
n = number of longitudinal bars 
Pc = concrete core capacity (N, kN) 
Pfc = compression contribution of GFRP bars at Pc load level (N, kN) 
Pfg = compression contribution of GFRP bars at Pg load level (N, kN) 
Pg = gross capacity of the column (N, kN) 
Po = nominal capacity of the column (N, kN) 
Ppeak = peak capacity of the column (N, kN) 
r = radius of gyration (mm)  
rf = radius of gyration of GFRP bars (mm)  
s = circular hoop spacing or spiral pitch on-center (mm) 
αg = compressive-strength reduction of the GFRP bar as a function of its tensile 

strength 
βd = concrete creep factor (assumed equivalent to 1.0 in this study)  
Δc = deformation at Pc load level (mm) 
Δg = deformation at Pg load level (mm) 
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Δ1 = displacement that corresponds to the limit of the elastic behavior (mm) 
Δ85 = displacement that corresponds to 85% of maximum load (mm) 
εc = axial strain in geopolymer concrete (με) 
εcc = axial strain in confined geopolymer concrete at f’cc (με) 
ε0.50cc = axial strain in confined geopolymer concrete at 0.50f’cc (με) in the 

descending branch of the stress-strain model 
ε0.85cc = axial strain in confined geopolymer concrete at 0.85f’cc (με) in the 

descending branch of the stress-strain model 
εcg = average axial concrete strain at Pg load level (με) 
εcg-ave = average of εcg (με) 
εco = axial strain in unconfined geopolymer concrete corresping to f’co (με) 
εf = ultimate tensile strain of the GFRP bars  
εfc = average strain in the longitudinal GFRP bars at Pc load level (με)  
εfg = average strain in the longitudinal GFRP bars at Pg load level (με)  
εfg-ave = average of εfg (με) 
εftg = average tie strain at Pg load level (με) 
εftc = average tie strain at Pc load level (με) 
εftcc = tie strain at f’cc (με) 
εft = ultimate tensile strain of the transverse reinforcement (με) 
γb = safety factor 
μ = ductility index 
ϕf = nominal diameter of the GFRP bars (mm) 
ρf = longitudinal reinforcement ratio 
ρft = transverse reinforcement volumetric ratio  
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