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Streamflow prediction using 
an integrated methodology based 
on convolutional neural network 
and long short‑term memory 
networks
Sujan Ghimire1, Zaher Mundher Yaseen2,3*, Aitazaz A. Farooque4, Ravinesh C. Deo1, 
Ji Zhang1 & Xiaohui Tao1

Streamflow (Qflow) prediction is one of the essential steps for the reliable and robust water resources 
planning and management. It is highly vital for hydropower operation, agricultural planning, and flood 
control. In this study, the convolution neural network (CNN) and Long-Short-term Memory network 
(LSTM) are combined to make a new integrated model called CNN-LSTM to predict the hourly Qflow 
(short-term) at Brisbane River and Teewah Creek, Australia. The CNN layers were used to extract the 
features of Qflow time-series, while the LSTM networks use these features from CNN for Qflow time 
series prediction. The proposed CNN-LSTM model is benchmarked against the standalone model CNN, 
LSTM, and Deep Neural Network models and several conventional artificial intelligence (AI) models. 
Qflow prediction is conducted for different time intervals with the length of 1-Week, 2-Weeks, 4-Weeks, 
and 9-Months, respectively. With the help of different performance metrics and graphical analysis 
visualization, the experimental results reveal that with small residual error between the actual and 
predicted Qflow, the CNN-LSTM model outperforms all the benchmarked conventional AI models as 
well as ensemble models for all the time intervals. With 84% of Qflow prediction error below the range 
of 0.05 m3 s−1, CNN-LSTM demonstrates a better performance compared to 80% and 66% for LSTM 
and DNN, respectively. In summary, the results reveal that the proposed CNN-LSTM model based on 
the novel framework yields more accurate predictions. Thus, CNN-LSTM has significant practical value 
in Qflow prediction.

Accurate streamflow (Qflow) prediction is crucial for efficient water management tasks, such as improving the 
efficiency of hydroelectricity generation, irrigation planning and flood management1. However, because of the 
nonlinear behaviour of the streamflow time series, streamflow prediction remains one of the very difficult mat-
ters in the field of hydrological sciences2,3. In addition, the accurate prediction of Qflow can contribute to several 
advantages for water resources project operation, efficient programming for flood monitoring, scheduling for 
reservoir operation, and several other hydrological processes. Therefore, the prediction of Qflow is essential in 
the field of hydrological engineering4.

Several models have been used in the past research for the development of Qflow prediction model in order 
to increase the accuracy in prediction. Stochastic models like, Auto Regressive (AR)5, Auto Regressive Moving 
Average (ARMA)6 and Autoregressive Moving Average with Exogenous Inputs (ARMAX)7, have been used 
for Qflow prediction based on the time series8. These statistical models analyze the time series dataset for the 
goal of developing a reliable technology for simulating the streamflow using classical statistics. However, those 
models have shown limitations to capture the nonlinear characteristics of the Qflow. On the other hand, Artifi-
cial Intelligence (AI) based data-driven models such as Artificial Neural Network (ANN)9,10, Support Vector 
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Machine (SVM)11–13, Extreme Learning Machine (ELM)14,15, Fuzzy Neural Network (FNN)16,17 and Genetic 
Programming (GP)18–20, have proven superior in modelling processes compared to the stochastic model. These 
AI models have demonstrated an excellent capacity in the field of hydrology owing to their potential in solving 
the mimicking the associated non-linearity and non-stationarity in the hydrological processes and reported a 
successful implementation for Qflow process simulation21–23. For time series forecasting, it is important to abstract 
the correlated lagged Qflow for building any data driven predictive model24.

Among several massively employed AI models in the field of hydrology, ANN model is the one for stream-
flow prediction25, which imitates the operation of biological neuron and can solve the associated nonlinearity 
phenomenal time-series data. One of the earliest conducted studies, Zealand et al.26 utilized ANN model to 
simulate Qflow to a portion of the Winnipeg River system in Northwest Ontario, Canada. Authors concluded that 
the employed ANN model is superior to the conventional Winnipeg Flow Forecasting model (WIFFS) in term 
of the prediction capacity. Kerh and Lee27 predicted the Qflow at the downstream of catchment using the data 
of upstream historical data. The research was conducted on the basis of flood forecasting due to the data non-
availability at the downstream. The research evidenced the potential of the ANN over the classical Muskingum 
model. In another study, Adamowski and Sun28 developed ANN model coupled with discrete wavelet transform 
(DWT-ANN) for Qflow prediction and found that DWT-ANN model outperformed the standalone ANN model. 
Demirel et al.29 studied the issue of flow prediction based on the soil and water assessment tool (SWAT) and 
ANN models; ANN shows better performance in peak flow prediction compared to SWAT.

Over the literature, several AI models introduced for the streamflow modelling such as support vector regres-
sion (SVR), adaptive neuro fuzzy inference system (ANFIS), extreme learning machine (ELM), random forest 
(RF), and their hybridized version with several optimization algorithms30. SVR model was used for long term 
(monthly) as well as short-term (hourly) Qflow prediction and shown a better performance than ANFIS and 
GP31,32. Atiquzzaman and Kandasamy33 employed ELM model for streamflow prediction for two different catch-
ment sizes from two different climatic conditions and benchmarked it with SVR and GP. The results showed that 
the prediction accuracy was increased, and computational time was minimised. ELM has been further employed 
by34 to predict mean Qflow water level for three hydrological sites in eastern Queensland (Gowrie Creek, Albert, 
and Mary River).

Nevertheless, the implementation of AI models in the prediction of Qflow are not consistent and it is difficult 
to conclude which method is superior. Additionally, the AI model, like the ANN model, has some limitations 
such as learning divergence, shortcoming in the generalizing performance, trapping in the local minimum 
and over-fitting problems35. Whereas, SVR model seems to be overcoming some drawbacks of ANN, however, 
requires a long simulation time because of the kernel function (penalty factor and kernel width)13. Hence, if the 
data complexity is high, the AI models (e.g., ANN, SVR, ELM, ANFIS, etc.) may fail to learn all the conditions 
effectively. The motivation on the new discovery for new and robust machine learning models is still ongoing 
in the field of hydrology. In the recent research, new AI models represented by deep learning (DL) models have 
been developed for Qflow simulation. Various DL architectures (Deep Neural Network [DNN], Convolutional 
Neural Network [CNN] and Long Short-Term Memory [LSTM]) have been developed and widely used in the 
time-series prediction of solar radiation, wind, stock price etcetera36,37. These DL models such as the potential 
in handling highly stochastic datasets and abstracting the internal physical mechanism38. In more representative 
manner, Fig. 1 was generated using the VOSviewer software to exhibit the major keywords occurrence within 
Scopus database on the implementation of DL models in the field of hydrology in addition to the countries where 
the researches were adopted.

This study offers a deep learning model based on the integration of CNN and LSTM, where the CNN model is 
applied to extract the intrinsic features of the Qflow time series while LSTM model utilizes the feature extracted by 
CNN for Qflow prediction. The reason to use the CNN-LSTM for the prediction of Qflow is to utilize the nonlinear 
processing capacity of CNN to obtain precise short-term Qflow prediction accuracy. Moreover, in CNN-LSTM 
model, CNN is used to remove noise and to take into account the correlation between lagged variables of Qflow, 
LSTM models temporal information and maps time series into separable spaces to generate predictions. This 
CNN-LSTM model has been used previously in various areas; in the field of natural language processing, emo-
tions were analyzed using the CNN-LSTM model with text input39; in the field of speech processing, voice search 
tasks were done using the CLDNN model combining CNN, LSTM, and DNN40; in the field of video processing, a 
model combining CNN and Bi-directional LSTM was designed to recognize human action in video sequences41; 
in the field of medical field, CNN-LSTM was developed to accurately detect arrhythmias in the electrocardio-
gram (ECG)42; in the field of industrial area, convolutional bi-directional long short-term memory network was 
designed to predict tool wear43. Furthermore, in time series application CNN-LSTM model was developed for 
efficient prediction of residential energy consumption44,45, solar radiation forecasting46, wind speed prediction47 
and stock price prediction48. In this study the prediction of Qflow is done on hourly basis for two hydrological 
catchments (Brisbane River:26.39° S 152 22° E and Teewah Creek: 26.16° S 153.03° E) in Australia. The main 
aim of the current research is to inspect the prediction capacity of several DL models in modelling hourly Qflow 
and compare the DL model performance (CNN-LSTM, LSTM, CNN, DNN) with other AI models (Multilayer 
Perceptron [MLP], ELM) as well as ensemble models (Decision Tree [DT], Gradient Boosting Regression [GBM], 
Extreme Gradient Boosting [XGB] and Multivariate Adaptive Regression Splines [MARS]). This investigation is 
considered one the earliest in the Australian region that is conducted on the examination of the deep learning, 
conventional AI models and ensemble models for the problem of streamflow prediction.
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Figure 1.   (a) The reported keywords occurrence (107 keywords) over the literature on the implementation 
of the deep learning models within the research domain of hydrology, (b) The investigated region around the 
globe.
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Theoretical overview
The theoretical overview of the deep learning model, CNN, LSTM, DNN and CNN-LSTM is presented in this 
section. The theoretical explanation of the MLP49, GBM50, ELM51, XGB52, DT53, MARS54 and RFR55 are all elu-
cidated elsewhere since they are well-known conventional AI models (MLP, ELM) and ensemble methodologies 
(GBM, XGB, DT, MARS and RFR).

Convolutional neural network.  CNN model56,57 differs from MLP by relying on the weight sharing con-
cept. In literatures, three types of CNN networks are found, one-dimensional CNN (Conv1D), two-dimensional 
CNN (Conv2D) and three-dimensional CNN (Conv3D). In Conv1D, the convolution kernels move in one direc-
tion. The input and output data of Conv1D is 2-dimensional58. Mainly used for time series data59, the Conv1D 
has powerful capability of feature extraction: the non-linear features hidden in the raw data can be automatically 
extracted by the alternating convolutional layer and pooling layer in the Conv1D, and the adaptive feature learn-
ing is completed at the fully-connected layer. In this way, the Conv1D algorithm eliminates the manual process 
of feature extraction in traditional algorithms and end-to-end information processing is realized60. Conv2D is 
the first standard CNN introduced in the Lenet-5 architecture61. Conv2D is usually used for image data62. It is 
called Conv2D because the convolution kernels slide along the data in 2 dimensions. The input and output data 
of Conv2D is 3-dimensional, for instance, in image classifications CNN can detect edges, color distribution, 
etc. in an image, making these networks very powerful in image classification and other similar data contain-
ing spatial characteristics63,64. In Conv3D, the convolution kernels moves in 3 directions, the input and output 
data of Conv3D is 4-dimensional65. Conv3D is mainly used for 3D image data, for instance, magnetic resonance 
imaging (MRI) data. MRI data is widely used to examine the brain, spinal cord, internal organs, etc., computer 
tomography (CT) scans are also three-dimensional data, which is an example of the creation of a series of X-ray 
images taken from different angles around the body. Conv3D are used to classify the medical data or extract 
features from it66–68. Figure 2 shows a one-dimensional (1D) convolution operation, where x1 to x6 represent the 
inputs while c1 to c4 represent the feature maps after 1D convolution. The red, blue, and green connections are 
the links between the input layer and the convoluting layer and each connection is weighted while connections 
that have the same color have equivalent weight value. Thus, only 3 weight values are needed in Fig. 2 to imple-
ment the convolution operation. One major advantage of the CNN model lies in its easy training phase due to 
the fewer number of weights compared to the number of weights in a fully-connected architecture. Furthermore, 
it allows the effective extraction of important features. Each convolutional layer may be represented as follow69:

where f  is the activation function, Wk is weights of the kernel linked to the kth feature map, while ∗ represents 
a convolution operator.

The considered CNN in this study has a fully connected layer and three convolutional layers; the selection 
of the convolutional layer channels was based on grid search. Furthermore, the activation function used is the 
rectified linear units (ReLU) while adaptive moment estimation (Adam) is used as the optimization algorithm. 
The ReLU can be expressed thus:

The one-dimensional (1D) convolution operator is used to ensure simplification of the modeling processes, 
as well as to ensure real-time Qflow prediction. The 1D convolution operator can make a direct prediction of the 
1D Qflow data.

Long short‑term memory.  Recurrent neural network (RNN) are powerful and robust type of artificial 
neural networks that uses existing time-series data to predict the future data over a specified length of time70. 
However, the RNNs can only recollect the recent information but not the earlier information56. Though the 
RNNs can be trained by back-propagation, it will be very difficult to train them for long input sequences due 
to vanishing gradients. Hence, the main drawback of the RNN architecture is its shorter memory to remember 
the features, vanishing and exploding gradients71,72. In order to overcome the vanishing and exploding gradi-
ents problem LSTM model was proposed73, LSTMs are a special class of RNN that relies on special units called 
memory blocks in their hidden layers; these memory blocks perform the role of the normal neurons in the 
hidden layers73,74. There are also three gate units in the memory blocks called input, output, and forget gates; 
these gates help in updating and controlling the flow of information through the memory blocks75. The LSTM 
network is calculated as follows76: (i) if the input gate is activated, any new input information into the system will 
be accumulated to the cell; (ii) the status of the previous cell is forgotten if the forget gate is activated; (iii) the 

(1)hkij = f ((Wk ∗ x)ij + bk)

(2)f (x) = max(0, x)

Figure 2.   The 1-dimensional convolution operation. Symbol as per “Theoretical overview” section.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17497  | https://doi.org/10.1038/s41598-021-96751-4

www.nature.com/scientificreports/

propagation of the output of the latest cell to the ultimate state is controlled by the output gate. Figure 3 depicts 
the LSTM architecture.

Regarding streamflow prediction, the historical lagged input data is represented as x = (x1, x2, . . . , xT ) while 
the predicted data is depicted as y = (y1, y2, . . . , yT ) . The computation of the predicted streamflow series is 
performed thus77:

where ct : the activation vectors for cell, mt : activation vectors for each memory block, W : weight, b : bias vectors, 
◦ : scalar product, σ(.) : gate activation function, g(.) : input activation function, h(.) : output activation function.

Proposed deep CNN‑LSTM network.  Figure 4 shows the proposed CNN-LSTM architecture in which 
the lagged hourly streamflow series serve as the inputs while the next hour streamflow is the output. In the pro-
posed CNN-LSTM architecture, the first half is CNN that is used for feature extraction while the latter half is 
LSTM prediction that is for the analysis of the CNN-extracted features and for next-point streamflow prediction. 
There are three ID convolution layers in the CNN part of the proposed CNN-LSTM architecture.

Deep neural network.  There is a close similarity between the DNN concept and artificial neural network 
with many hidden layers and nodes in each layer. It can be trained on a set of features which will be later used 
for the objective function approximation78. The naming of DNNs is based on the networks as they are typically 
a compilation of numerous functions. The notable application of DNN is the prediction of global solar radiation 
and wind speed79–81.

(3)Input gate it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi)

Forget gate ft = σ(Wfxxt +Wfmmt−1 +Wfcct−1 + bf )

Output gate ot = σ(Woxxt +Wommt−1 +Wocct + bo)

ct = ft ◦ ct−1 + it ◦ g(Wcxxt +Wcmmt−1 + bc)

mt = ot ◦ h(ct)

yt = Wymmt + by

Figure 3.   Topological structure of Long Short-Term Memory (LSTM) Network used in this study for the 
prediction of short-term (hourly) streamflow (Q, m3 s−1) at Brisbane River and Teewah Creek. Symbols as per 
“Theoretical overview” section.
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Study area and model development
In order to develop a prediction model based on deep learning, conventional AI and ensemble models, this 
study has utilized lagged hourly data of streamflow (Qflow) from 01-January-2014 to 16-October-2017. Figure 5 
plots a geographic map of the present study site, namely Brisbane River (Brisbane) and Teewah Creek (Noosa). 
The hourly streamflow (Qflow) data were acquired from the Water Monitoring Data Portal (Dept of Environment 
& Resource Management, http://​water​monit​oring.​dnrm.​qld.​gov.​au/​host.​htm). Figure 6 plots an average Qflow 
characteristics for Brisbane River and Teewah Creek by year, month, and day. It can be seen from the figure that 
the Qflow of the Brisbane river is more than that of Teewah creek, for Brisbane River the Qflow is minimum at June 
whereas for Teewah creek Qflow is significantly reduced at July, September and December. Similarly, the peak Qflow 
occurs in February for Brisbane river whereas for Teewah creek the peak Qflow occurs at March, June, August, 
and November. In addition, the time series plot of the Qflow for the year 2017 is shown in Fig. 7.

Model development.  Data preparation.  During data preparation, the first step is to determine the sta-
tionarity of the Qflow time series. To do this, the Dicky–Fuller (DF) test was used in this study. With the applica-
tion of the DF test, it implies that the null-hypothesis which suggests that the Qflow time series is non-stationary, 
will be rejected. The next step is correlation analysis phase which aims at identifying the model order. The 
autocorrelation function (ACF) analysis was adopted in this study for the determination of the input of the Qflow 
prediction model; this implies the determination of the input values that correlates maximally with the predic-
tion values (Fig. 8). The major aim of using the ACF analysis method is to perform prediction tasks82. Owing 
to the stationarity of the Qflow time series data, the computed 1-h interval autocorrelation function deteriorates 
at values < 0.27 as shown in Fig. 8 (the so-called correlation time (τc) in about 6-h (i.e., 6 lags of 1-h)). Qflow(t) is 
considered the time series variable while the vector (Qflow(t-6), Qflow(t-5), Qflow(t-4), Qflow(t-3), Qflow(t-2), Qflow(t-1), Qflow(t)) 
is used in the next step as the input for the prediction of the value Qflow(t+1).

Data normalization.  Using Eq. (5), the modelled dataset was scaled between 0 and 1 to avoid the high values of 
variation in the dataset for easier simulation and converted to its original scale after modeling using Eq. (6)83,84, 
where Qflow, Qflow(min) and Qflow(max) represent the input data value and its overall minimum and maximum values, 
respectively

After normalization the data are segregated into training and testing sets as demonstrated in Table 1. The Qflow 
prediction was done for the year 2018 in the different range, spanning from 1-Week to 9-Months.

Main model development.  This study developed a 3-layer CNN model, 6-layer LSTM model, 4-layer 
CNN-LSTM model, and 4-layer DNN model. Table 2 presents the hyperparameters of the respective models 
which are selected based on the trial-and-error method as presented in Table 3. Some of these hyperparameters 
are model specific.

(4)Qflow(n) =
Qflow(actual)

− Qflow(min)

Qflow(max)
− Qflow(min)

(5)Qflow(actual)
= Qflow(n)

(

Qflow(max)
− Qflow(min)

)

+ Qflow(min)

Figure 4.   Topological structure of Convolutional neural Network (CNN) integrated with Long Short-Term 
Memory (LSTM) Network used in this study for the prediction of short-term (hourly) streamflow (Q, m3 s−1) at 
Brisbane River and Teewah Creek.

http://watermonitoring.dnrm.qld.gov.au/host.htm
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Common hyperparameters.  The DL modes share the following four common hyperparameters:

•	 Activation function: All the network layers rely on the same activation function ReLU except for the output 
layer.

•	 Dropout: This was considered a potential regularization technique for minimizing the issue of overfitting in 
order to improve the training performance84. Hence, dropout selects a fraction of the neurons (defined as a 
real hyperparameter in the range of 0 and 1) at each iteration and prevent them from training. This fraction 
of neurons was maintained at 0.1 in this study.

•	 Two statistics regularizations including L1: least absolute deviation and L2: least square error was used 
together with dropout. The role of the L1 and L2 penalization parameters is to minimize the sum of the 
absolute differences and sum of the square of the differences between the predicted and the target Qflow values, 
respectively. The addition of a regularization term to the loss is believed to encourage smooth network map-
pings in a DL network by penalizing large values of the parameters; this will reduce the level of nonlinearity 
that the network models.

Figure 5.   Location of Brisbane River and Teewah Creek study site in Australia, where experiments are carried 
out to validate the Deep Learning model for the prediction of hourly streamflow (Q, m3 s−1).
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•	 Early stopping: The problem of overfitting was further addressed by introducing the early stopping (ES) cri-
teria from Kera’s work85; the mode was set to minimum while patience was set to 20. This is to ensure that the 
training will terminate when the validation loss has stopped decreasing for the number of patience-specified 
epochs.

CNN model hyperparameter. 

•	 Filter size: The size of the convolution operation filter.
•	 Number of convolutions: The number of convolutional layers in each CNN.
•	 Padding: This study utilized the same padding in order to ensure that the dimensions of input feature map 

and output feature map are the same.
•	 Pool-size: A pooling layer is used between each convolution layer to avoid overfitting; this pooling layer helps 

in decreasing the number of parameters and network complexity. This study utilized a pool-size of 2 between 
layer 1 and 2.

CNN‑LSTM model development.  The proposed CNN-LSTM in this study is comprised of three convolutional 
layers with pooling operations; the selection of the convolutional layers channels was based on grid search. In the 
architecture of the model, the outputs of the flattening layer serve as the inputs of the LSTM recurrent layer while 
the LSTM recurrent layer is directly linked to the final outputs. The inputs of networks are the lagged matrix of 
hourly Qflow. The input parameter is the hourly Qflow while the CNN-LSTM hyperparameters are deduced via the 
trial and error method as presented in Tables 2 and 3.

Benchmark models.  Open source Python libraries such as Scikit-Learn, PyEarth86,87 and Keras deep learn-
ing library85,88 were used to implement the conventional AI (MLP, ELM) and ensemble models (Decision Tree 
[DT], Random Forest [RFR], Gradient Boosting Regression [GBM], Extreme Gradient Boosting [XGB] and 
Multivariate Adaptive Regression Splines [MARS]. The hyperparameters of the conventional AI models and 
ensemble models were deduced through the trial-and-error method which are outlined in Table 2.

All the simulations were performed in a computer with Intel core i7 @ 3.3 GHz and 16 GB of RAM memory. 
For the simulation of model Python89 programming language was used with deep learning library like Keras90 

Figure 6.   Variation of streamflow (Q, m3 s−1) by year, month and day for (a) Brisbane River and (b) Teewah 
Creek.
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Figure 7.   Hydrograph of streamflow during 2017 for (a) Brisbane River and (b) Teewah Creek, where the 
current study being done for hourly streamflow (Q, m3 s−1) prediction.
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and TensorFlow91. Several other programming tools are also used, for instance MATLAB for plotting92, Minitab 
for statistical analysis93.

Performance metrics.  In this section, the statistical metrics used for the model’s evaluation were reported. 
Following several machine learning models for hydrological process simulation, the following statistical metrics 
were used, including Correlation Coefficient (r), root mean square error (RMSE), mean absolute error (MAE), 
relative absolute error (RAE), Integral normalized root squared error (INRSE), Nash–Sutcliffe coefficient (ENS), 
Willmott’s index (WI), normalised root mean square error (NRMSE) and Legate and McCabe’s index (LM)94–98. 
Several researches found during their study that ENS and RMSE are the most commonly used reliable metrics for 
prediction problem99.

Additionally, for the comparison of different models, the promoting percentages of mean absolute error 
(PMAE) and promoting percentages of root mean square error (PRMSE) were computed. Furthermore, the absolute 
percentage bias (APB) and Kling Gupta efficiency (KGE) as key performance indicators for Qflow prediction, were 
calculated as well100.

The formulations of the metrics are:

Figure 8.   Autocorrelation (ACF) and partial autocorrelation (PACF) plot of the streamflow (Q, m3 s−1) time 
series for Brisbane river with lag in hours in order to make the input matrix of lagged streamflow series for the 
model input.

Table 1.   Data segregation in terms of training, validation and testing for the hourly streamflow (Q, m3 s−1) 
prediction at Brisbane River and Teewah Creek.

Dataset

Training Validation Testing

Period Data point Interval (h) Percentage of train data Period Data point Interval (h) Percentage

1W prediction 01-Jan-14 to 09-Oct-
2017 41,812 1 10 10-Oct-2017 to 16-Oct-

2018 167 1 0.4

2W prediction 01-Jan-14 to 01-Jan-2018 41,619 1 10 02-Jan-2018 to 16-Oct-
2018 360 1 0.9

4W prediction 01-Jan-14 to 16-Sept-
2018 41,258 1 10 31-Jan-2017 to 16-Oct-

2018 721 1 1.7

20% of total data predic-
tion 01-Jan-14 to 30-Jan-2017 33,589 1 10 31-Jan-2017 to 16-Oct-

2018 8390 1 20.0



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17497  | https://doi.org/10.1038/s41598-021-96751-4

www.nature.com/scientificreports/

	 i.	 Correlation Coefficient (r):

	 ii.	 Mean Absolute Error (MAE, m3 s−1):
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Table 2.   The architecture of Deep learning models (Convolutional Neural Network (CNN) and CNNLSTM) 
and the respective conventional data-driven (MLP, ELM) and ensemble model (DT, GBM, XGB, MARS) 
used in the corresponding model development for Brisbane River and Teewah Creek streamflow (Q, m3 s−1) 
prediction, also the averaged training time for the optimum model is shown. ReLU, Adam and lbfgs stands for 
Rectified Linear Units, adaptive moment estimation and limited memory Broyden–Fletcher–Goldfarb–Shanno 
algorithm respectively. The selected parameter for the prediction of streamflow are bold faced.

Model Model hyperparameters Hyperparameter selection Run time (MM: SS)

CNNLSTM

Filter1 [50, 80,100,200]

20:42

Filter 2 [40,50,60,70,80]

Filter 3 [20,10,30,5]

LSTM cell units [40,50,60,100,150]

Epochs [1000,1200,300,400,700]

Batch size [400,500,800,1000,750]

CNN

Filter1 [50, 60,100,200]

16:18

Filter 2 [40,50,60,70,130]

Filter 3 [20,10,30,5]

Epochs [1000,1200,300,400,700]

Batch size [400,500,800,1000,750]

LSTM

LSTM cell 1 [50, 60,100,200]

14.47

LSTM cell 2 [40,50,60,70,130]

LSTM cell 3 [20,10,30,5]

LSTM cell 4,5 and 6 [Fixed as 30,20,10]

Epochs [1000,1200,300,400,700]

Drop rate [0.1,0.2]

Batch size [400,500,800,1000,750]

DNN

Hiddenneuron 1 [100,200,300,400,50]

10:18

Hiddenneuron 2 [20,30,40,50,60,70]

Hiddenneuron 3 [10,20,30,40,50]

Hiddenneuron 4 [5,6,7,8,12,15,18]

Epochs [1000,1200,1500,1800,2000]

Batch size [800,1000,1200,1500,1700,400]

MLP

Activation [ReLU, logistic, tanh]

7:12

Solver [Adam, lbfgs]

Learning rate [’constant’, ’invscaling’, ’adaptive’]

Maximum iteration [500,1000,1500,2000]

Hidden layer size [(100,), (150,), (50,), (200,), (40,), (75,)]

ELM
Hiddenneuron 3 [20,30,40,50]

4:25
Activation function [ReLU, logistic, tanh]

GBM and XGB

Learning rate [0.01, 0.1 ,0.001, 0.005]

9:08

Maximum depth of the individual regression estima-
tors [5,8,10,20,25]

Number of boosting stages to perform [50,100,150,200]

Minimum number of samples to split an internal node [20]

Number offeatures for best split [’auto’, ’sqrt’, ’log2’]

MARS
Maximum term generated by forward pass [10,20,30]

7:16
Maximum degree of terms generated by forward pass [5,10,15,20]

Decision Tree

Maximum depth of the tree [5,10,20]

3:30Minimum number of samples to split an internal node [20]

Number of features for best split [’auto’, ’sqrt’, ’log2’]
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	 iii.	 Relative Root Mean Square Error (RMAE, %):

	 iv.	 Root Mean Square Error (RMSE, m3 s−1):

	 v.	 Absolute Percentage Bias (APB, %):

	 vi.	 Kling Gupta Efficiency (KGE):

	 vii.	 Integral Normalized Mean Square Error (INRSE):

	viii.	 Normalized Root Mean Square Error (NRMSE):

	 ix.	 Relative absolute error (RAE, %):
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Table 3.   The architecture of Deep learning (DL) models (Convolutional Neural Network (CNN), Long Short 
Term Memory Network (LSTM), Deep Neural Network (DNN), and the respective backpropagation algorithm 
used in the DL model development for Brisbane River and Teewah Creek streamflow (Q, m3 s−1) prediction 
in hourly basis. ReLU stands for Rectified Linear Units. α = Learning rate, the proportion that weights are 
updated, e = Is a very small number to prevent any division by zero in the model implementation, b1 = The 
exponential decay rate for the 1st moment estimates, b2 = The exponential decay rate for the 2nd moment 
estimates.

Architecture of deep learning

Model Layer 1 (L1)
L1 activation 
function

Dropout 
percentage Layer 2 (L2)

L2 activation 
function Layer 3 (L3)

Layer 4,5 
and 6 (L4, L5 
and L6)

L4, L5 and 
L6 activation 
function Batch size Epochs

LSTM 100 ReLU 0.1 40 ReLU 5 30,20 and 10 ReLU 400 300

DNN 50 ReLU 0.1 30 ReLU 20 12 ReLU 1200 1000

Convolution 
layers 1 (C1)

Convolution 
layers 2 (C2)

Convolutional 
layers 3 (C3)

Activation 
function Pooling size Padding

LSTM layer 
(L1)

L1 
Activation 
function Dropout rate Batch Size Epochs

CNN-LSTM 80 50 10 ReLU 2 Same 100 ReLU 0.1 500 300

CNN 50 40 5 ReLU 2 Same 400 300

Architecture of backpropagation (BP) algorithm for deep learning

BP 
optimizers 
for deep 
learning 
model Alpha, α Epsilon, e Beta, b1 Beta,b2

Adaptive 
moment 
estimation, 
(Adam)

0.001 1E−07 0.99 0.99
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	 x.	 Promoting Percentages of Mean Absolute Error (PMAE):

	 xi.	 Promoting Percentages of Root Mean Square Error (PRMSE)

	 xii.	 Nash–Sutcliffe coefficient (ENS):

	xiii.	 Willmott’s index (WI):

	 xiv.	 Legate and McCabe’s index (LM):

 where r: correlation coefficient, CV: coefficient of variation, Qflow
m : measured Qflow, Qflow

p : predicted 
Qflow,< Qflow

m > : average value of the Qflow
m, < Qflow

p > : average value of the Qflow
p, N: number of the 

dataset, MAE1 and RMSE1 : mean model performance metrics (CNN = LSTM), MAE2 and RMSE2 : bench-
marked model performance (CNN, LSTM, DNN, MLP, etc.).

Applications results and analysis
In this section, the predictability performance of the proposed CNN-LSTM model and the comparable models for 
the four experimental tests are conducted for 1-Week, 2-Weeks, 4-Weeks, and 9-months [20% of total Streamflow 
data (Table 1)] for hourly Qflow prediction at Brisbane River and Teewah Creek. Each experiment consists of 10 
Qflow prediction models, including the CNN-LSTM, CNN, LSTM, DNN, DT, ELM, GBM, MARS, MLP and XGB. 
The performance metrics of proposed CNN-LSTM, deep learning (CNN, LSTM, DNN), conventional AI and 
ensemble models in terms of r, RMSE, MAE, WI, LM and ENS are shown in Tables 4 and 5. The model prediction 
results over the testing phase represent the ability of the predictive models in simulating the streamflow data. 
Thus, the following sections will be focused on the model evaluation and assessment over the testing phase.

For both sites (Brisbane River and Teewah Creek), it can be seen that the 1.00 ≤ r ≥ 0.88 for all deep learn-
ing model, 0.999 ≤ r ≥ 0.728 for conventional AI and 0.344 ≤ r ≥ 0.996 ensemble model for all prediction 
interval. Since r is parametric and oversensitive to extreme values98, the conclusion of model performance 
based on this coefficient is not sufficient. Therefore, further assessment of model performance was done using 
MAE and RMSE. With low RMSE (CNN-LSTM/0.226 ≤ RMSE ≥ 0.155 m3 s−1(BrisbaneRiver)) and MAE 
(CNN-LSTM/0.196 ≤ MAE ≥ 0.054 m3 s−1(TewahCreek)) the CNN-LSTM model outperform the all con-
ventional data driven [e.g. ELM/0.182 ≤ MAE ≥ 0.701 m3s−1(BrisbaneRiver) ] as well as the ensemble model 
[e.g. DT/0.734 ≤ MAE ≥ 0.275 m3 s−1(TeewahCreek)] for all prediction interval of 1-Week, 2-Weeks, 4-Weeks 
and 9-Months (20% testing data).

Additionally, in hydrological model the ENS is a widely used metric for prediction of streamflow, water level, 
drought etcetera and is considered as an expertise score calculated as the reasonable capability100 that presents 
the mean values of the Qflow. However, ENS metric neglects the lower values and overestimates the larger ones98. 
In addition, Willmott’s index (WI) metric is calculated due to its merits over the r and ENS. In the computation 
of the WI metric, errors and differences are given their appropriate weighting, which overcomes the insensitivity 
issues98. Further, WI and ENS do not take the absolute value into account and are oversensitive to peak residual 
values101, therefore LM was taken into consideration for further model assessment. The LM is not overestimated 
since it takes absolute values into account102. As shown in Table 5, with high magnitude of ENS, WI and LM, CNN-
LSTM model [1.00 ≤ WI ≥ 0.96, 0.989 ≤ LM ≥ 0.868, 1.00 ≤ ENS ≥ 0.955 (Brisbane River)] outperform all the 
models [MLP : 0.994 ≤ WI ≥ 0.931, 0.901 ≤ LM ≥ 0.337, 0.973 ≤ ENs· ≥ 0.739(BrisbaneRiver);DT : 0.952 ≤ WI ≥
0.716, 0.982 ≤ LM ≥ 0.684, 0.983 ≤ ENs· ≥ 0.467(BrisbaneRiver)] for all the prediction levels for both sites.

Figures 9 and 10 show the hydrograph and the scatterplots (Fig. 11) of both the actual and predicted Qflow 
obtained by proposed CNN-LSTM model as well as conventional AI and ensemble models during the testing 
period. For the purpose of brevity, only the plots for prediction interval of 2-Weeks are shown. The hydrographs 
and the scatterplots demonstrate that the prediction of the CNN-LSTM model was closest to the observed Qflow 
values in comparison to the other models. The fit line formula ( y = mx + c ) presented in scatterplots where m 
and c are the model coefficients, respectively, closer to the 1 and 0 with a higher r value of 1.00 than ELM, MLP, 
LSTM, GBM and XGB models. Additionally, in hydrograph the relative error (RE) percentage are also shown, 
indicating that the RE of the CNN-LSTM model is comparatively smaller than that of other comparable models.
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It is worthwhile highlighting that ELM, MLP, XGB models are able to achieve a good predictability perfor-
mance with the limitation in maintaining the good prediction for the high Qflow values (Figs. 8 and 9). On the 
contrary, the CNN-LSTM model achieves a superior prediction result for the peak values compared to ELM, MLP 
and XGB models. The CNN-LSTM model only underestimates the peak values by 1.15% as opposed to 2.57%, 
3.98% and 2.69% for the XGB, ELM and MLP, respectively for Brisbane River. This demonstrates the suitability 
of the CNN-LSTM for streamflow prediction.

To avoid the scale dependencies and impact of the outliers in the predicted streamflow, the RAE, NRMSE 
and INRSE were also recommended in some literatures103. Therefore, in this study further evaluation of model 
performance is conducted by using the RAE, NRMSE and INRSE (Table 6). For both sites, the CNN-LSTM 
model achieves a lower value of RAE, NRMSE and INRSE, outperforming the conventional AI and ensemble 
models. In line with the results presented in Tables 4 and 5, the integration of CNN and LSTM again has shown 
to enhance the prediction capability.

Furthermore, a comparison of the CNN-LSTM model without other models is performed in terms of the 
APB and KGE. The KGE and APB evaluation for the prediction of hourly Qflow reveals that the CNN-LSTM is 
the best performing model with KGE ≥ 0.991, APB ≤ 0.527 and KGE ≥ 0.991, APB ≤ 1.159 for Brisbane River and 
Teewah creek, respectively (Table 7), indicating a good model performance104 and making the CNN-LSTM model 
a reliable and powerful tool for the prediction of Qflow.

Figure 12 compares the boxplot of the proposed CNN-LSTM model with that of the standalone deep learning 
model as well as conventional AI and ensemble models. The ♦ markers in the figure demonstrate the outliers 
of the absolute prediction error (|PE|) of the testing data together with their upper quartile, median, and lower 
quartile. The distributions of the |PE| error acquired by the proposed CNN-LSTM model for all sites exhibit a 
much smaller quartile followed by the standalone deep learning models. By analysing Fig. 11, the accuracy of 
the proposed CNN-LSTM model for all sites is shown to be better than the comparative models.

The empirical cumulative distribution function (ECDF, Fig. 12) at each site depicts the prediction capacity of 
different models. The proposed CNN-LSTM model is shown to be superior to the conventional AI and ensemble 
models as well as the standalone models including LSTM and DNN. Based on the error (0 to ± 0.05 m3 s−1) for 

Table 4.   Comparison of CNNLSTM model performances with the comparative counterpart models: 
Convolutional Neural Network (CNN) and Long Short Term Memory Network (LSTM) as well as the Deep 
Neural Network (DNN), Multi-Layer Perceptron (MLP), Extreme Learning Machine (ELM), Gradient 
Boosting Regression (GBM), Decision Tree(DT), Multivariate Adaptive Regression Splines (MARS) and 
Extreme Gradient Boosting Regression (XGB) model as measured by the correlation coefficient (r), root mean 
square error (RMSE; m3 s−1) and mean absolute error (MAE; m3 s−1) in the testing phase for hourly streamflow 
(Q, m3 s−1) prediction. Prediction was done for 1-hour horizon for 20% of total data(9-Months), 1-Week (1W), 
2-Week (2W) and 4-Week (4W) Best Model is highlighted in boldfaced.

Metrics Sites Prediction interval CNN CNN-LSTM DNN DT ELM GBM LSTM MARS MLP XGB

r

Brisbane River

20% data 0.856 0.949 0.888 0.508 0.803 0.344 0.927 0.643 0.728 0.307

1-week 0.953 0.980 0.973 0.892 0.900 0.902 0.950 0.902 0.846 0.905

2-week 0.999 1.000 1.000 0.982 0.999 0.996 0.999 0.982 0.979 0.996

4-week 0.955 0.985 0.980 0.801 0.938 0.826 0.974 0.783 0.739 0.827

Teewah Creek

20% data 0.997 0.999 0.996 0.980 0.997 0.985 0.999 0.997 0.994 0.985

1-week 0.999 1.000 0.999 0.974 0.999 0.993 0.999 0.974 0.998 0.993

2-week 0.999 1.000 1.000 0.982 0.999 0.996 0.999 0.982 0.979 0.996

4-week 0.999 1.000 0.999 0.984 0.999 0.996 0.999 0.984 0.997 0.996

RMSE (m3s−1)

Brisbane River

20% data 2.641 1.578 2.328 11.222 3.091 5.644 1.879 4.166 3.638 5.799

1-week 0.270 0.176 0.204 0.408 0.394 0.389 0.279 0.390 0.487 0.384

2-week 0.402 0.226 0.290 1.776 0.377 0.866 0.296 1.776 1.918 0.870

4-week 0.266 0.155 0.176 0.561 0.313 0.526 0.203 0.586 0.643 0.524

Teewah Creek

20% data 0.373 0.230 0.443 1.055 0.405 0.925 0.265 0.417 0.587 0.906

1-week 0.569 0.318 0.389 2.584 0.573 1.292 0.397 2.584 0.795 1.315

2-week 0.402 0.226 0.290 1.776 0.377 0.866 0.296 1.776 1.918 0.870

4-week 0.251 0.176 0.224 1.255 0.273 0.616 0.234 1.255 0.496 0.619

MAE (m3s−1)

Brisbane River

20% data 0.601 0.150 0.396 0.734 0.701 0.970 0.516 0.318 2.010 0.949

1-week 0.225 0.130 0.152 0.275 0.312 0.321 0.238 0.222 0.428 0.318

2-week 0.191 0.112 0.121 0.610 0.182 0.351 0.129 0.610 0.872 0.359

4-week 0.203 0.094 0.128 0.394 0.239 0.440 0.161 0.406 0.508 0.437

Teewah Creek

20% data 0.097 0.054 0.097 0.195 0.085 0.165 0.063 0.079 0.349 0.164

1-week 0.361 0.196 0.231 1.263 0.371 0.713 0.235 1.263 0.475 0.742

2-week 0.191 0.112 0.121 0.610 0.182 0.351 0.129 0.610 0.872 0.359

4-week 0.101 0.065 0.079 0.329 0.105 0.190 0.079 0.329 0.262 0.198
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both Brisbane River and Teewah Creek, Fig. 13 depicts that the proposed CNN-LSTM model is the most precise 
model in streamflow prediction.

Figure 14 presents the frequency percentage distribution “histogram” of the predicted error (PE) based on 
the calculation of the error brackets with a 0.025 step size for Brisbane River. The presented graphical presen-
tation can assist in a better understanding of model’s prediction performance83. The figure clearly reveals the 
outperformance of the CNN-LSTM model against the standalone models (DNN and LSTM), conventional AI 
models (MLP and ELM) and ensemble model (XGB), since its PE values are close to the zero frequency distribu-
tion. In a more quantitative term, the CNN-LSTM model shows the highest percentage of PE (56%) in the bin 
(0 < PE ≤ 0.025) followed by the ELM (49%), LSTM (44%), GBM (41%) DNN (40%), and finally the MLP model 
(0%). The accumulated PE percentages indicate that the PE of the CNN-LSTM model was below 0.15, while the 
conventional AI models yield a total of 97% and ensemble model yield a total of 89% of the PE in this band. This 
again supports the conclusion that CNN-LSTM is a superior technique for streamflow prediction.

To further investigate the prediction performance of the proposed CNN-LSTM model, the PMAE and PRMSE 
of the experimental tests are employed to make the comparisons and analysis. Table 8 give the comparative 
analysis between the CNN-LSTM model and other involved models for the four experimental tests (1-Week, 
2-Week, 4-Week and 9-Months). For instance, in 1-Week prediction, compared to LSTM model, the MAE and 
RMSE of CNN-LSTM model are reduced by 36.79% and 45.53% respectively for Brisbane River and 19.84% and 
16.40% respectively for Teewah Creek. Similarly, reduction in MAE and RMSE of CNN-LSTM model compared 
to other model can be seen in 1-Week, 2-Weeks,4-Weeks, and 9-Months, hourly Qflow prediction. There are no 
negative values in promoting percentage error, which indicates that the integration of CNN and LSTM model 
can derive better prediction accuracy.

The model performance using Taylor diagram is presented in Fig. 15105. The main usage of this diagram is to 
present the closest predictive model with the observation in two-dimensional scale (standard deviation on the 
polar axis and correlation coefficient on the radial axis). Taylor diagram shows that the output of CNN-LSTM 
model is much closer to the actual observations compared to conventional AI and ensemble models.

Overall, the aforementioned evaluation results suggest that the CNN-LSTM model is superior to the stan-
dalone deep learning model as well as conventional AI and ensemble models. The proposed model CNN-LSTM 

Table 5.   Performance evaluation of CNN-LSTM model with the comparative counterpart models: 
Convolutional Neural Network (CNN) and Long Short Term Memory Network (LSTM) as well as the Deep 
Neural Network (DNN), Multi-Layer Perceptron (MLP), Extreme Learning Machine (ELM), Gradient 
Boosting Regression (GBM), Decision Tree(DT), Multivariate Adaptive Regression Splines (MARS) and 
Extreme Gradient Boosting Regression (XGB) model as measured by Willmott’s index (WI), ) Legates and 
McCabe’s Index (LM) and Nash–Sutcliffe Coefficient (ENS) in the testing phase for hourly streamflow (Q, 
m3 s−1) prediction. Prediction was done for 1-hour horizon for 20% of total data (9-Months), 1-Week (1W), 
2-Week (2W) and 4-Week (4W) Best Model is highlighted in boldfaced.

Metrics Sites Prediction Interval CNN CNN-LSTM DNN DT ELM GBM LSTM MARS MLP XGB

WI

Brisbane River

20% data 0.966 0.988 0.975 0.716 0.950 0.888 0.982 0.920 0.931 0.880

1-week 0.988 0.995 0.994 0.975 0.975 0.973 0.989 0.977 0.957 0.973

2-week 1.000 1.000 1.000 0.996 1.000 0.999 1.000 0.996 0.994 0.999

4-week 0.987 0.996 0.995 0.952 0.986 0.948 0.994 0.948 0.941 0.948

Teewah Creek

20% data 0.999 1.000 0.999 0.995 0.999 0.996 1.000 0.999 0.998 0.996

1-week 1.000 1.000 1.000 0.994 1.000 0.998 1.000 0.994 0.999 0.998

2-week 1.000 1.000 1.000 0.996 1.000 0.999 1.000 0.996 0.994 0.999

4-week 1.000 1.000 1.000 0.996 1.000 0.999 1.000 0.996 0.999 0.999

LM

Brisbane River

20% data 0.786 0.952 0.867 0.780 0.747 0.676 0.827 0.895 0.337 0.675

1-week 0.762 0.868 0.854 0.738 0.684 0.649 0.777 0.788 0.509 0.648

2-week 0.981 0.989 0.988 0.940 0.982 0.964 0.987 0.940 0.901 0.964

4-week 0.779 0.907 0.879 0.642 0.795 0.505 0.854 0.635 0.578 0.510

Teewah Creek

20% data 0.971 0.984 0.970 0.940 0.974 0.948 0.981 0.976 0.891 0.949

1-week 0.975 0.986 0.984 0.913 0.974 0.950 0.984 0.913 0.967 0.948

2-week 0.981 0.989 0.988 0.940 0.982 0.964 0.987 0.940 0.901 0.964

4-week 0.983 0.989 0.986 0.944 0.982 0.967 0.987 0.944 0.954 0.965

ENS

Brisbane River

20% data 0.877 0.955 0.911 0.467 0.812 0.710 0.931 0.745 0.739 0.689

1-week 0.949 0.980 0.975 0.907 0.900 0.886 0.958 0.914 0.813 0.886

2-week 0.999 1.000 1.000 0.983 0.999 0.996 0.999 0.983 0.973 0.995

4-week 0.944 0.984 0.981 0.826 0.950 0.763 0.976 0.816 0.799 0.764

Teewah Creek

20% data 0.997 0.999 0.996 0.978 0.997 0.983 0.999 0.997 0.994 0.983

1-week 0.999 1.000 0.999 0.976 0.999 0.993 0.999 0.976 0.998 0.993

2-week 0.999 1.000 1.000 0.983 0.999 0.996 0.999 0.983 0.973 0.995

4-week 0.999 1.000 0.999 0.985 0.999 0.996 0.999 0.985 0.997 0.996
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Figure 9.   Hydrograph of predicted versus actual streamflow (Q, m3 s−1) from (a) CNN-LSTM model during 
test period (2-Weeks) compared with standalone model (b) Deep Neural Network (DNN), (c) Extreme Gradient 
Boosting Regression Model (XGB) , (d) Extreme Learning Machine (ELM) and (e) Multi-Layer Perceptron 
(MLP) for Brisbane River. The relative error are shown in blue color.
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Figure 10.   Hydrograph of predicted versus actual streamflow (Q, m3 s−1) from (a) CNN-LSTM model during 
test period (2 Weeks) compared with standalone model (b) Deep Neural Network (DNN), (c) Extreme Gradient 
Boosting Regression Model (XGB), (d) Extreme Learning Machine (ELM) and (e) Multi-Layer Perceptron 
(MLP) for Teewah Creek. The relative error are shown in blue color.
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is able to achieve a promising prediction performance and could be successfully applied to accurate and reliable 
hourly streamflow prediction. Furthermore, the averaged training time for the CNN-LSTM and the benchmarked 
models are listed in Table 2. Based on the results, DT followed by ELM, MARS and MLP requires the shortest 
training time but performs the worst in term of prediction accuracy. The proposed CNN-LSTM framework 
produces the most accurate prediction results with reasonable training time on various time horizons, including 
1-Week, 2-Weeks, 4-Weeks and 9-Months.

Conclusions and possible future research directions
This research investigated a new AI model based on the integration CNN with LSTM for modelling hourly 
streamflow at two different catchments of Australia (Brisbane River and Teewah Creek). The CNN network is 
employed to abstract the essential streamflow (Qflow) features while the LSTM is used for the prediction process 
based on the abstracted time series features. To validate the proposed CNN-LSTM prediction model, nine 
different well-established AI models (i.e., CNN, LSTM, DNN, MLP, ELM, GBM, XGB, DT, MARS) were also 
implemented. The construction of the proposed predictive model (i.e., CNN-LSTM) is designed based on six 
antecedent values recognised through statistical autocorrelation analysis of the streamflow data time series. 
Prediction has been established at different time intervals: 1-Week, 2-Weeks, 4-Weeks and 9-Months, which 

Figure 11.   Scatterplot of predicted (Qpred) and actual (Qact) hourly streamflow (Q, m3 s−1) for (a) Brisbane River 
and (b) Teewah Creek using the CNN-LSTM, Extreme Learning Machine (ELM), Multi-Layer Perceptron 
(MLP), Long Short Term Memory Network (LSTM), Gradient Boosting Regression (GBM) and Extreme 
Gradient Boosting Regression Model (XGB) model. Least square regression equations of the form y = mx + C 
and the correlation coefficient (r) is inserted in each panel.
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were evaluated based on graphical and statistical metrics. According to the attained prediction results, it can be 
concluded that:

•	 With low value of RMSE 
(

0.226 ≤ RMSE ≥ 0.155 m3 s−1(BrisbaneRiver)
)

 and MAE (0.196 ≤ MAE ≥

0.054 m
3
s
−1(TewahCreek)) a n d  h i g h  m a g n i t u d e  [1.00 ≤ WI ≥ 0.996, 0.989 ≤ LM ≥ 0.868,

1.00 ≤ ENs· ≥ 0.955(BrisbaneRiver)] of the normalized index (WI, LM and ENS), CNN-LSTM model out-
perform the conventional AI as well as ensemble models;

•	 The streamflow prediction during testing phase in terms of APB and KGE were compared with the stan-
dalone deep learning models, conventional AI and ensemble models. The results revealed that CNN-LSTM 
(KGE ≥ 0.991 and APB ≤ 0.527) model is able to accomplish accurately prediction capacity in comparison 
with LSTM, CNN, DNN, MLP, ELM, XGB, GBM, DT and MARS models for both Brisbane River and Teewah 
Creek for all prediction intervals;

•	 With low normalized errors ( 0.007 ≤ NRMSE ≤ 0.028, 0.050 ≤ RAE ≤ 0.132, 0.017 ≤ NRMSE ≤ 0.020 ), the 
CNN-LSTM model displays a better prediction accuracy against the comparative models in all the prediction 
intervals for both sites;

•	 With no negative value in promoting percentage error, the CNN-LSTM model demonstrates the best pre-
diction accuracy PMAE = 92.55% and PRMSE = 56.62% for the MLP model (Brisbane River, 9-Months Qflow 
prediction);

•	 The hydrograph and scatter plot reveal that the prediction from the CNN-LSTM model is closer to the cor-
responding actual values with a minimum relative error ( RE ≤ 1.15 for CNN − LSTM,RE ≤ 2.69 for MLP) 
for peak flow values for both Brisbane River and Teewah Creek. In accordance to the error graphical presen-
tation of boxplot, prediction error histogram and empirical cumulative distribution function confirmed the 
overall superior performance by the CNN-LSTM model with 84% of prediction error within 0–0.05 m3 s−1 
range; Taylor plot of the compared models also reveals that the value of r for the CNN-LSTM model is closer 
to the actual Qflow and this is evidencing the predictability performance capacity of the proposed model. All 
the above visualization results suggest that the CNN-LSTM model is the best model for Qflow prediction in 
our comparison.

Table 6.   Comparison of CNN-LSTM model performances with the comparative counterpart models: 
Convolutional Neural Network (CNN) and Long Short Term Memory Network (LSTM) as well as the Deep 
Neural Network (DNN), Multi-Layer Perceptron (MLP), Extreme Learning Machine (ELM), Gradient 
Boosting Regression (GBM), Decision Tree (DT), Multivariate Adaptive Regression Splines (MARS) and 
Extreme Gradient Boosting Regression (XGB) model, as measured by Normalized root mean squared error 
(NRMSE), relative absolute error (RAE) and Integral normalized root squared error (INRSE) in the testing 
phase. Prediction was done for 1-h horizon for 20% of total data (9-Months), 1-Week (1W), 2-Week (2W) and 
4-Week (4W) Best Model is highlighted in boldfaced.

Metrics Sites Prediction interval CNN CNN-LSTM DNN DT ELM GBM LSTM MARS MLP XGB

NRMSE

Brisabne River

20% data 0.011 0.007 0.010 0.047 0.013 0.024 0.008 0.017 0.015 0.024

1-week 0.043 0.028 0.032 0.065 0.062 0.061 0.044 0.062 0.077 0.061

2-week 0.008 0.004 0.006 0.035 0.007 0.017 0.006 0.035 0.038 0.017

4-week 0.042 0.024 0.028 0.089 0.050 0.083 0.032 0.093 0.102 0.083

Teewah Creek

20% data 0.004 0.003 0.005 0.012 0.005 0.011 0.003 0.005 0.007 0.011

1-week 0.011 0.006 0.008 0.051 0.011 0.026 0.008 0.051 0.016 0.026

2-week 0.008 0.004 0.006 0.035 0.007 0.017 0.006 0.035 0.038 0.017

4-week 0.005 0.003 0.004 0.025 0.005 0.012 0.005 0.025 0.010 0.012

RAE

Brisabne River

20% data 0.199 0.050 0.132 0.244 0.233 0.322 0.172 0.106 0.668 0.315

1-week 0.229 0.132 0.154 0.280 0.317 0.326 0.242 0.226 0.435 0.323

2-week 0.019 0.011 0.012 0.061 0.018 0.035 0.013 0.061 0.087 0.036

4-week 0.195 0.090 0.123 0.378 0.229 0.421 0.154 0.389 0.486 0.419

Teewah Creek

20% data 0.030 0.016 0.030 0.059 0.026 0.050 0.019 0.024 0.106 0.050

1-week 0.025 0.014 0.016 0.088 0.026 0.049 0.016 0.088 0.033 0.052

2-week 0.019 0.011 0.012 0.061 0.018 0.035 0.013 0.061 0.087 0.036

4-week 0.017 0.011 0.014 0.057 0.018 0.033 0.014 0.057 0.045 0.034

INRSE

Brisabne River

20% data 0.379 0.226 0.334 1.610 0.443 0.810 0.270 0.598 0.522 0.832

1-week 0.217 0.142 0.164 0.328 0.317 0.313 0.224 0.314 0.392 0.309

2-week 0.031 0.017 0.022 0.136 0.029 0.066 0.023 0.136 0.146 0.066

4-week 0.211 0.123 0.140 0.446 0.249 0.418 0.161 0.466 0.511 0.416

Teewah Creek

20% data 0.050 0.031 0.060 0.142 0.054 0.124 0.036 0.056 0.079 0.122

1-week 0.036 0.020 0.024 0.161 0.036 0.081 0.025 0.161 0.050 0.082

2-week 0.031 0.017 0.022 0.136 0.029 0.066 0.023 0.136 0.146 0.066

4-week 0.025 0.018 0.023 0.127 0.028 0.062 0.024 0.127 0.050 0.063
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Future work could involve testing the CNN-LSTM model through integration of more casual hydromete-
orological datasets (e.g., synoptic climate data or rainfall data) as an input predictor. During model develop-
ment, the CNN-LSTM as well as other comparative models’ architecture that performed the best in the training 
period was determined as the optimal model (Table 2). However, the hyperparameter tuning methods like, Grid 
search106, Tree-structured Parzen estimators (Hyperopt)107, Population-based training108, Bayesian Optimiza-
tion and HyperBand109 can also be used. These hyperparameter tuning methods can be time-consuming and 
resource-consuming, therefore separate study on the selection of best hyperparameter tuning methods can be 
conducted for Qflow prediction. In addition, data uncertainty and non-stationarity can be investigated for further 
insights on their influence on the modeling predictability performance. Furthermore, research could also include 

Table 7.   Comparison of CNNLSTM model performances with the comparative counterpart models: 
Convolutional Neural Network (CNN) and Long Short Term Memory Network (LSTM) as well as the Deep 
Neural Network (DNN), Multi-Layer Perceptron (MLP), Extreme Learning Machine (ELM), Gradient 
Boosting Regression (GBM), Decision Tree(DT), Multivariate Adaptive Regression Splines (MARS) and 
Extreme Gradient Boosting Regression (XGB) model, as measured by Kling Gupta Efficiency (KGE) and the 
absolute percentage bias (APB) in the testing phase. Prediction was done for 1-h horizon for 20% of total data 
(9-Months), 1-Week (1W), 2-Week (2W) and 4-Week (4W) Best Model is highlighted in boldfaced.

Metrics Sites Prediction interval CNN CNNLSTM DNN DT ELM GBM LSTM MARS MLP XGB

APB

Brisbane River

20% data 3.381 0.856 2.243 4.124 3.931 5.406 3.037 1.816 10.466 5.302

1-week 1.279 0.739 0.865 1.568 1.795 1.826 1.348 1.268 2.425 1.807

2-week 2.173 1.284 1.393 6.928 2.097 4.086 1.498 6.928 11.081 4.177

4-week 1.151 0.527 0.723 2.218 1.344 2.473 0.908 2.274 2.882 2.456

Teewah Creek

20% data 2.083 1.159 2.098 4.234 1.832 3.600 1.373 1.706 7.146 3.582

1-week 2.231 1.192 1.410 7.655 2.274 4.403 1.429 7.655 2.885 4.588

2-week 2.173 1.284 1.393 6.928 2.097 4.086 1.498 6.928 11.081 4.177

4-week 1.937 1.235 1.510 6.204 1.985 3.649 1.484 6.204 5.215 3.804

KGE

Brisbane River

20% data 0.900 0.934 0.886 0.395 0.901 0.639 0.950 0.793 0.861 0.637

1-week 0.959 0.990 0.952 0.916 0.956 0.906 0.917 0.921 0.874 0.896

2-week 0.981 0.991 0.993 0.963 0.992 0.982 0.984 0.963 0.840 0.982

4-week 0.878 0.967 0.976 0.890 0.897 0.812 0.954 0.879 0.841 0.813

Teewah Creek

20% data 0.994 0.998 0.995 0.946 0.989 0.935 0.981 0.996 0.947 0.936

1-week 0.979 0.996 0.994 0.960 0.990 0.982 0.992 0.960 0.996 0.981

2-week 0.981 0.991 0.993 0.963 0.992 0.982 0.984 0.963 0.840 0.982

4-week 0.986 0.998 0.987 0.970 0.984 0.985 0.982 0.994 0.947 0.983

Figure 12.   Box plots of spread of prediction error (PE, m3 s−1) for proposed CNN-LSTM model during test 
period compared with standalone model Convolutional Neural Network (CNN) and Long Short Term Memory 
Network (LSTM) as well as the Deep Neural Network (DNN), Multi-Layer Perceptron (MLP), Extreme 
Learning Machine (ELM), Gradient Boosting Regression (GBM) and Extreme Gradient Boosting Regression 
(XGB) model.
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the application of the CNN-LSTM model as new computer aid for watershed monitoring and management by 
incorporating a wider range of climate scenarios.

Figure 13.   Empirical cumulative distribution function (ECDF) of absolute prediction error, |PE| (m3 s−1) of the 
testing data using CNN-LSTM vs. Deep Neural Network (DNN), Long Short Term Memory Network (LSTM), 
Multi-Layer Perceptron (MLP), and Extreme Gradient Boosting Regression (XGB) models in predicting 
streamflow (Q, m3 s−1) for Brisbane River (Left) and Teewah Creek (Right).

Figure 14.   Histogram illustrating the frequency (in percentages) of absolute Prediction errors (|PE|, m3 s−1) of 
the best performing CNNLSTM model during test period (4-weeks) compared with Long Short-Term Memory 
Network (LSTM), Deep Neural Network (DNN), Extreme Learning Machine (ELM), Gradient Boosting 
Regression (GBM) and Multi-Layer Perceptron (MLP) model. for the prediction of hourly streamflow (Q, 
m3 s−1) at Brisbane River.
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Table 8.   Promoting percentages of the comparison models [Convolutional Neural Network (CNN) and Long 
Short Term Memory Network (LSTM) as well as the Deep Neural Network (DNN), Multi-Layer Perceptron 
(MLP), Extreme Learning Machine (ELM), Gradient Boosting Regression (GBM), Decision Tree (DT), 
Multivariate Adaptive Regression Splines (MARS) and Extreme Gradient Boosting Regression (XGB) model] 
by the CNN-LSTM model for the testing period for 20% of total data (9-months), 1-Week (1W), 2-Week (2W) 
and 4-Week (4W) prediction. PMAE = promoting percentages of mean absolute error and PRMSE = promoting 
percentages of root mean square error.

PRMSE (%) PMAE (%)

Brisbane River Teewah Creek Brisbane River Teewah Creek

20% 1W 2W 4W 20% 1W 2W 4W 20% 1W 2W 4W 20% 1W 2W 4W

CNN 40.26 34.82 43.69 41.75 38.31 44.11 43.69 29.98 75.07 42.38 41.61 54.00 44.59 45.61 41.61 35.73

DNN 32.22 13.88 21.93 12.05 48.00 18.28 21.93 21.60 62.21 14.28 7.68 27.04 44.53 14.93 7.68 17.84

DT 85.94 56.81 87.26 72.42 78.15 87.69 87.26 85.99 79.61 52.78 81.71 76.28 72.29 84.45 81.71 80.29

ELM 48.95 55.31 39.93 50.54 43.08 44.51 39.93 35.50 78.64 58.35 38.69 60.88 36.47 47.08 38.69 38.18

GBM 72.04 54.69 73.87 70.56 75.08 75.39 73.87 71.45 84.56 59.55 68.21 78.74 67.30 72.45 68.21 65.93

LSTM 16.03 36.79 23.55 23.60 13.08 19.84 23.55 25.02 71.00 45.53 13.70 41.86 14.71 16.40 13.70 17.61

MARS 62.13 54.84 87.26 73.61 44.76 87.69 87.26 85.99 52.89 41.56 81.71 76.97 31.82 84.45 81.71 80.29

MLP 56.62 63.87 88.20 75.93 60.73 59.98 88.20 64.56 92.55 69.66 87.20 81.58 84.56 58.64 87.20 75.31

XGB 72.79 54.13 73.99 70.47 74.57 75.81 73.99 71.62 84.23 59.10 68.91 78.60 67.14 73.55 68.91 67.28

Figure 15.   Taylor diagram showing the correlation coefficient between observed and predicted streamflow (Q, 
m3s−1) and standard deviation of CNN-LSTM, Convolutional Neural Network (CNN), Deep Neural Network 
(DNN), Multi-Layer Perceptron (MLP), Gradient boosting regression (GBM), Extreme Gradient Boosting 
Regression (XGB) model, Decision Tree (DT) and Multivariate Adaptive Regression Splines (MARS) during 
testing period (4-Week) for Brisbane River.
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