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Abstract: The accuracy of most SAR-based flood classification and segmentation derived from semi-

automated algorithms is often limited due to complicated radar backscatter. However, deep learn-

ing techniques, now widely applied in image classifications, have demonstrated excellent potential 

for mapping complex scenes and improving flood mapping accuracy. Therefore, this study aims to 

compare the image classification accuracy of three convolutional neural network (CNN)-based en-

coder–decoders (i.e., U-Net, PSPNet and DeepLapV3) by leveraging the end-to-end ArcGIS Pro 

workflow. A specific objective of this method consists of labelling and training each CNN model 

separately on publicly available dual-polarised pre-flood data (i.e., Sentinel-1 and NovaSAR-1) 

based on the ResNet convolutional backbone via a transfer learning approach. The neural network 

results were evaluated using multiple model training trials, validation loss, training loss and confu-

sion matrix from test datasets. During testing on the post-flood data, the results revealed that U-Net 

marginally outperformed the other models. In this study, the overall accuracy and F1-score reached 

99% and 98% on the test data, respectively. Interestingly, the segmentation results showed less use 

of manual cleaning, thus encouraging the use of open-source image data for the rapid, accurate and 

continuous monitoring of floods using the CNN-based approach. 

Keywords: remote sensing; floods; convolutional neural network; deep learning; U-Net; PSPNet; 

DeepLab; NovaSAR-1; Sentinel-1; SAR 

 

1. Introduction 

Floods are among the most frequent and devastating natural disasters in the world 

today, and floods have accounted for the large-scale destruction of property and loss of 

human life [1,2]. In most cases, floods are associated with long-lasting periods of cloud 

cover when heavy rainfall occurs [3]. However, during these events, the accessibility to 

accurate information is often limited, and a cost- and time-efficient approach that is crucial 

for situation awareness, the allocation of resources and emergency response operations is 

generally lacking [4]. 

Remote sensing techniques have been proven to provide valuable information for 

monitoring and rescue operations in the event of floods in a time- and cost-efficient man-

ner due to their synoptic view [4]. The synthetic aperture radar (SAR) is one of the most 

used satellite-based systems in recent years due to the increased availability of high spa-

tio-temporal resolution imagery, its frequent revisit capability and its ability to capture 
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data from targets on the earth’s surface in nearly all weather conditions and during any 

time of the day [5–8]. A SAR sensor not only offers advantages in all weather conditions 

but also enables shape distinctions between water and land [9–11]. 

In SAR imagery, the detection and extraction of water pixels is a measure of its dis-

tinctive radar signature. However, the side-viewing geometry and the sensitivity of the 

microwaves to surface roughness often complicate the radar backscatter response during 

flood detection [12–14]. Calm water produces a smooth surface, which is often in a dark 

tone, indicating low backscatters on SAR images [4]. In contrast, rough water appears 

brighter on SAR imagery than calm water as it reflects signals in different directions [15]. 

Oftentimes during flooding, the variability of different environmental conditions such as 

topography, shadows and wind can adversely complicate the radar backscatter response, 

which creates some challenges in establishing the optimal threshold values to map the 

extent of a flooded area. 

In built-up areas for instance, the double-bounce effect has been observed due to the 

presence of buildings, hence leading to the application of several analytical methods to 

address this [16–19]. For instance, [16] used SAR interferometry coherence and intensity 

to map floodwater in urban and agricultural areas via thresholding, region growing and 

change detection methods. The combination of these methods achieved compelling results 

as a multitemporal coherence trend was seen to compliment SAR intensity, thus reducing 

misclassification errors. Similarly, [17] performed urban flood mapping from a very high-

resolution TerraSAR-X via a hybrid method comprising radiometric thresholding, region 

growing and change detection. The results revealed that the methods can achieve a satis-

factory outcome in mapping challenging situations. In another urban flood mapping 

study, [18] used an unsupervised Bayesian network fusion framework for SAR intensity 

and interferometric coherence. According to the study, the fusion of the coherence and the 

intensity image can account for flood uncertainty and provide valuable information for 

urban flood mapping. In addition, the authors of [19] demonstrated the use of a Sentinel-

1 based SAR coherence to detect floodwater in urban areas. Using an automatic algorithm, 

the study leveraged the Sentinel-1 short temporal and perpendicular baselines, in which 

the evaluation compared well with Digital Global crowdsourcing and the FEMA hydro-

logical models during a cross-comparison. 

In rural areas, vegetation cover causes ambiguity in SAR radar signature’s ability to 

accurately detect the presence of flood [20,21]. However, a common way to identify a 

flooded area under vegetation cover is largely dependent on the intensity of the radar 

signature from the flooded vegetation compared to a non-flooded area due to double-

bounce effects [22]. 

For many years, the thresholding method has been used in SAR-based flood detec-

tion and is usually categorised into flooded and not flooded areas in SAR images. To per-

form floodwater extraction, a threshold value is assigned such that a pixel with a radar 

backscatter lower than the assigned value is classified as flood [16,17]. This method is com-

putationally efficient and can be applied in real time. However, a notable shortcoming 

with thresholding is the mapping of areas with similar low radar backscatter as not all 

pixels with low radar backscatter are covered with water. Overall, some studies have es-

tablished that there is no universal threshold value for water backscatter [4]. One way to 

overcome this is using an InSAR change detection approach to map floodwater in urban 

and vegetated areas [16]. However, even though this approach is effective, image segmen-

tation and classification require necessary ancillary data, which may not be readily avail-

able. 

Similarly, region growing is one method that has been used in many studies for ho-

mogeneous flood mapping. In this method based on seed pixels, adjacent pixels within a 

whole SAR are connected to seed pixels belonging to the seed region. This iterative pro-

cess stops when conditions are met, and then the seed pixels are classified as water. Cre-

ating accurate seed pixels manually can be challenging and time-consuming. To address 

this limitation, the selection of seed pixels can be performed automatically using the 
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thresholding method. Overall, these techniques are still faced with the inherent limitations 

of thresholding methods [14,15]. 

As noted in several studies, these methods have achieved some successful results but 

not without some limitations. Firstly, due to the sensitivity of these models to the presence 

of speckle noise in SAR images, pre-processing filters are applied; however, these filters 

can also cause information loss, thus affecting the overall performance of these techniques. 

Additionally, most of these models need some careful human interventions to manually 

update training parameters and require high accuracy DEM and ancillary data from dif-

ferent sources, which are not readily available, to achieve optimal results. It intuitively 

follows that during human intervention, errors and bias may be introduced in overall data 

management. A major disadvantage of these methods is the loss of time in producing 

maps, especially for the activation of an emergency response in the event of flood disasters 

[4,23]. 

To address this knowledge gap, machine learning techniques have increasingly been 

applied to a wide range of Earth observation studies due to the increasingly large amount 

of data that are being collected and the timely image processing required [24,25]. Some 

studies revealed that the emergence of deep learning can automate image processing and 

compare well with human performance or even achieve superior results [26,27]. These 

techniques have proven to provide solutions that generalise varying complex and dy-

namic environmental settings [23,27–30]. In recent years, machine learning, a purely data-

driven technique, has been used to extract water pixels, with most focusing on flood map-

ping and monitoring. 

Various techniques have been applied to automate the mapping of flood extent. In 

recent years, a common way has been the use of machine learning-based techniques on 

imagery collected from optical and multispectral sensors, which is often a fusion of mul-

tiple datasets [31–35]. While passive sensors have shown great promise, they are still lim-

ited to a time interval and restricted to weather conditions such as cloud cover, thus mak-

ing them less suited for emergency response operations in the event of floods. Due to the 

increased availability of high spatio-temporal resolution imagery from SAR sensors and 

their ability to capture data from Earth’s surface in all weather conditions, the use of ma-

chine learning techniques for SAR-based flood detection has continued to improve. Some 

notable studies include the use of Sentinel-1 imagery and machine learning for the super-

vised and unsupervised flood image classification of the City of San Diego, CA, USA [36]. 

The study applied machine learning random forest (RF), support vector machine (SVM) 

and maximum likelihood classifier and developed a new unsupervised framework that 

was combined with the Otsu algorithm, fuzzy rules and iso-clustering [36]. The analysis 

of the results obtained from this study showed that this approach can provide a more 

robust and time-efficient solution for the mapping and risk management of flooded trans-

portation facilities [36]. Another method tested for flood mapping was the use of the 

Gaussian mixture model [37]. The convolutional neural network (CNN), a deep learning 

neural network, is now becoming one of the most frequently used machine learning pixel-

based segmentation techniques [4]. This automatic processing chain was tested on multi-

ple sites and was found to be efficient in extracting flood and surface waters automatically 

using smooth labelling on Sentinel-1 data [37] The huge computational requirements for 

the analyses and interpretation of large datasets make it of great interest to researchers, 

even though it has not been widely explored [38]. It has the capability of multiple high 

levels of generalisation in the extraction of complex spatial features [27,39]. Moreover, it 

is a scalable technique that allows the increase in and management of large datasets with 

increasing performance [40,41]. 

CNNs have been used in several studies for the classification of land cover and 

groundwater potential zones, polarimetric SAR landcover classification [42], crop classifi-

cation [43] and urban growth [44]. However, more recently, there have been different 

CNN techniques applied to the detection of various scenarios of water bodies and flood 

events globally. Wu, Yang and Wang [45] used an SAR-based multi-depth flood detection 
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convolutional neural network (MDFD-CNN) for water region classification and extraction 

in a complex environment. The MDFD-CNN achieved a more robust result compared to 

traditional methods. In addition, Li et al. [16] introduced and experimented on the multi-

temporal SAR-data-derived self-learning convolutional neural network (A-SL CNN) to 

reduce the impact of limited annotated training samples. The achieved result has shown 

that the proposed ASL-CNN outperformed its supervised counterpart. 

Similarly, Nemni et al. [4] designed a Sentinel-1 -based fully convolution neural net-

work (CNN) for flood pixels extraction. The methodology was found to speed up the de-

velopment of flood maps by 80%, as well as obtain strong performance metrics over the 

selected locations with varying environmental conditions [4]. Furthermore, Wu et al. [46] 

used dual-polarised SAR images based on multi-scale DeepLab model for flood detection. 

The study proposed a CNN-based MS-DeepLab model and other models, (i.e., PSPNet, 

U-Net and DeeLabV3) with the MobileNetV2 convolutional backbone. The results 

showed that the MS-DeepLab model successfully improved the feature extraction ability, 

especially for boundary detection, and was the best performing model in the study [46]. 

Furthermore, Zhao et al. [30] used a CNN deep learning-based model for flood de-

tection in Xinxiang, China. The authors successfully developed and implemented the U-

Net-based model for water body extraction with Gaofen-3 (GF3) SAR data, which showed 

strong model performance in water extraction. Compared to the standard U-Net struc-

ture, an attention mechanism was integrated into the encoding part of the neural network 

to improve the accuracy and efficiency of the water extraction [30]. As shown in these 

studies, the application of convolutional neural networks has the potential to revolution-

ise the development of flood maps given their high classification accuracy over traditional 

methods. In another study, Katiyar, Tamkuan and Nagai [47] implemented SAR images 

with a deep neural network (DNN) for flood area detection. The authors used a U-Net 

model for the binary classification of a flood event that occurred in Kyushu, Japan. The 

encoder part of this model used alternate 5 × 5 convolution to 3 × 3 convolution to capture 

more contextual information, which showed a significant improvement compared to the 

thresholding method [47]. For this reason, we seek to build on these studies to assess the 

classification accuracy of three CNN deep learning models using NovaSAR-1 and Senti-

nel-1 datasets. 

The major contributions of this paper are, firstly, the introduction of a publicly avail-

able SAR dataset (i.e NovaSAR-1) used jointly with Sentinel-1 for the segmentation and 

classification of floodwater. To the best of our knowledge, no previous study has used a 

NovaSAR-1 dataset for flood mapping using a CNN-based deep learning image segmen-

tation method. Secondly, we demonstrated that the pre-flood and post-flood datasets from 

these two different SAR sensors (i.e., NovaSAR-1 and Sentinel-1) over the same area can 

achieve very high and similar performance metrics, as one would expect that different 

pre-flood and post-flood characteristics could affect the results negatively. Thirdly, our 

study built on research conducted in this domain using a simplified end-to-end CNN-

based pre-trained transfer learning workflow of the widely used ESRI ArcGIS Pro 3.0 Soft-

ware platform. Our work uncovered more benefits of this technology for SAR-based flood 

mapping to researchers, students and geospatial analysts. 

Therefore, the main objective of this paper was to compare the accuracy and predic-

tion performance of three CNN encoder–decoder models (i.e., U-Net, PSPNet and 

DeepLabV3) for automatic flood mapping using NovaSAR-1 and Sentinel-1 data. This ap-

proach consists of annotating and training each CNN model separately on these publicly 

available dual-polarised pre-flood data (i.e., NovaSAR-1 and Sentinel-1) based on the Res-

Net convolutional backbone using a transfer learning approach and testing the generali-

sability of each trained model on post-flood datasets. 

The rest of this paper is structured as follows. Section 2 describes the study area, the de-

tails of the datasets, SAR pre-processing and the implementation of the CNN-based deep 

learning workflow. Section 3 presents the results and analysis. Section 4 presents the discus-

sion and compares our results to previous studies. Finally, Section 5 concludes the paper. 
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2. Materials and Methods 

2.1. Study Area 

Deep learning techniques, as demonstrated in many image classification studies, 

have great potential for improving flood mapping accuracy. Therefore, to compare the 

classification accuracy of our selected CNN-based deep learning models, Ulmarra was 

selected as the study area. Ulmarra is located on the North of New South Wales, Australia, 

and geographically located on latitude 29°37′50 S and longitude 153°1′40 E, flanked by the 

regional centre of Grafton on the southwest (Figure 1). A small town bounded by Clarence 

River, it had a population of 779 people according to the 2016 Census and had experienced 

widespread floods before the 28 February–3 March 2022 events. On 28 February 2022, due 

to a large amount of precipitation, the Clarence River rose significantly in under two 

hours, breaching the levee designed to protect the community. By midday of 1 March 

2022, the town recorded an unprecedented flood. Ulmarra suffered minimal property 

damage and disruptions due to power outages during the flood event. 

 

Figure 1. Study area location within New South Wales, Australia. The red polygon is Ulmarra, the 

region of interest, and its surrounding area. 

2.2. Dataset 

Four SAR datasets from two different sensors were acquired over the study area. The 

first pair of datasets collected includes NovaSAR-1 pre-flood and post-flood images for 17 

April 2021 and 05 March 2022. NovaSAR-1 is one of the low-cost S-band SAR missions 

launched in 2018 (Table 1). The small SAR satellite is designed to provide medium spatial 

resolution (6–50 m) imagery for Earth observation, including flood monitoring, and is, to 

some extent, expected to overcome the limitations of low- and high-frequency SAR mis-

sions [48]. While data from the sensor has been applied in different natural resource man-

agement fields, not much has been exploited for mapping natural disasters, especially 

floods. Interestingly, as the use of SAR-derived measurements continues to grow and con-

tribute immensely to hazard mapping such as floods, the data from this sensor is now of 

great interest to researchers. In this work, dual-polarised ScanSAR_195 km_HHHV (SCD 

Wide) swath (50 m ground resolution) datasets were acquired from CSIRO NovaSAR-1 

National Facility Datahub as presented in Table 1. The ScanSAR wide mode is usually 
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emitted in a variety of polarisations and reduced resolutions (30 m-50 m) and is suitable 

for large-area monitoring. For this study, dualCo-Cross polarized datasets were used (Ta-

ble 1 and Appendix A: Table A1) 

Table 1. Experimental SAR images used in this study. 

Sensor NovaSAR-1 NovaSAR-1 Sentinel-1 Sentinel-1 

Band Used 
S-dual polarised 

(HHHV) 

S-dual polarised 

(HHHV) 

C-dual polarised 

(VVVH) 

C-dual polarised 

(VVVH) 

Spatial Res-

olution (m) 
50 50 5 × 20 5 × 20 

Date 17 April 2021 05 March 2022 18 February 2022 03 March 2022 

Product 

Type 
SCD SCD GRD GRD 

Remark 
Pre-flood 

for training 

Post-flood for 

testing 

Pre-flood for train-

ing  

Post-flood tor test-

ing 

Secondly, Sentinel-1 C-band pre-flood and post-flood images for 18 February 2022 

and 2 March 2022, consisting of dual-polarised VV+VH Interferometric Wide (IW) swath 

mode, Ground Range Detected (GRD) (20 m ground resolution) datasets were down-

loaded from the European Space Agency Copernicus Open Access Hub (Table 1, Figure 2 

and Appendix A: Table A2). 

2.3. Image Pre-Processing 

Given the inherent speckle noise and geometric errors often associated with SAR 

data, the need to improve data quality to achieve robust performance metrics cannot be 

overemphasized. SNAP 8.0 (Sentinel Application Platform) was used to perform the pre-

processing tasks (Figure 3). Both Sentinel-1 and NovaSAR-1 were collected in UTM Zone 

56J/WGS84 coordinate systems, which consequently facilitated the creation of the inter-

sections for all images. We clipped all data to the study area by creating subsets using the 

SNAP toolbox. We also applied radiometric calibration to calculate the sigma nought val-

ues; however, this step did not apply to NovaSAR-1 as datasets emitted by the SSTL-Im-

age Formation Processor-IFP are fully radiometrically calibrated images. Speckle reduc-

tion was performed using multi-looking processing parameters to minimise the effect of 

noise. Furthermore, geometric Doppler terrain correction was performed by applying 

SRTM 3s DEM to easily oversee geometric errors due to the side-looking geometry of the 

SAR systems. The co-registered sigma nought datasets of Sentinel-1 VV and NovaSAR-1 

HV polarisations were exported as one band Geotiff image file for CNN-based deep learn-

ing techniques as shown in Figure 2. 

    
(a) Sentinel-1 Pre-Flood (b) Sentinel-1 Post-Flood (c) NovaSAR-1 Pre-Flood (d) NovaSAR-1 Post-Flood  

Figure 2. (a) Pre-flood and (b) post-flood pre-processed dual-polarised Sentinel-1 VV amplitude 

images of Ulmarra acquired in IW mode with 2 × 5 mm resolution. (c) Pre-flood and (d) post-flood 

pre-processed dual-polarised NovaSAR-1 HV amplitude images of Ulmarra acquired in ScanSAR 

wide mode with 50 m spatial resolution. 
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Figure 3. The pre-processing workflow for dual-polarised Sentinel-1 (VV) and NovaSAR-1 (HV) 

amplitude images. 

2.4. Data Preparation and Labelling 

A challenge often associated with the SAR dataset is the non-availability of large-

scale labelled training data compared to optical datasets. In this supervised CNN-based 

deep learning technique, the unlabelled pre-processed Sentinel -1 sigma0_VV_db (18 Feb-

ruary 2022) and NovaSAR-1 sigma0_HV_db (17 April 2021) pre-flood datasets were im-

ported to ArcGIS Pro 3.0, with all data georeferenced and projected to the same UTM Zone 

56J/WGS84 coordinate systems. To improve our classification results and determine the 

actual flooded areas, we prepared the pre-flood images (as reference data) for training 

purposes. The images were converted to 8-bit unsigned RGB 3-band composite images 

suitable for deep learning. Since SAR data is generally complex and less intuitive [28], and 

the performance of a CNN model largely depends on the quality and amount of training 

sample datasets, we relied on pre-processed pre-flood datasets from Sentinel-1 and No-

vaSAR-1 imagery, as well as an ESRI World dataset, to manually create a large amount of 

image annotations required to train convolution neural network models for highly accu-

rate feature extraction and pattern recognition [30]. The training data is characterised by 

different landcover types such as river, built-up area, forest vegetation, crop/cultivated 

land and roads. For this study, a detailed specification of pre-flood and post-flood ampli-

tude datasets is provided in Table 1. The decision to use pre-flood data for training is 

three-fold. Firstly, it was used to distinctively clarify the extent of the flood as permanent 

water also existed in the area prior to the flood disaster. Secondly, the training data were 

used to test the generalisability of the trained CNN classifiers (i.e., to evaluate the perfor-

mance of the trained model on completely unseen post-flood data) as this is a way of eval-

uating model performance [23,30]. Thirdly, it was used to address any uncertainty relating 

to post-flood water characteristics with different datasets. In this study, we separately 
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trained two pre-flood datasets from NovaSAR-1 and Sentinel-1 imagery with different 

wavelengths, polarisations, incidence angles, spatial resolutions, product types, sensor 

modes and imaging dates. Overall, a similar outcome was achieved. 

In generating training data, this study experimented on two types of classifications, 

namely, binary and multiple categories. While the Sentinel-1 dataset was trained for both 

binary and multiple classifications, the NovaSAR-1 dataset was trained using the binary 

classification due to its low resolution. To perform this, the Training Sample Manager 

pane of ArcGIS Pro was used to create the class categories from our classification schema. 

This step furnished us with vital information as to the size and number of samples and 

often plays a significant role in improving the accuracy of a classification model. To collect 

training samples from the input data sets, polygons were created around the pixels in the 

schema with corresponding class values. 

2.4.1. Data Augmentation and Generation of Training Datasets 

Prior to feeding the training CNN models, we converted the annotated Sentinel-1 and 

NovaSAR-1 vectors into a suitable deep-learning training dataset. However, due to the 

insufficient memory footprint on the computer hardware to process a whole image in its 

original resolution in deep learning, the class training samples are generated and trained 

on small sub-images called image chips [49,50]. This step was performed to address the 

memory limitations rather than improve the accuracy of the model [50]. The generation 

of training sets in this study included resampling the input image at a specified tile size 

of 256 × 256 pixels. The stride parameter was set to 128 × 128 pixels to ensure an overlap 

of 50% across the pixel tiles, which helped to overcome border artifacts commonly associ-

ated with CNN-based image segmentation [4]. 

We experimented on different rotation angles and observed that image chips in-

creased as the value tends to 1 degree, with 0 degree being no rotation and no additional 

chips. Considering the balancing of the feature class, we decided to use a rotation angle 

of 30 degrees to generate additional image chips, which improved our model accuracy. 

To eliminate the unwanted image chips for training purposes, especially those that did 

not capture training samples, the software was tasked to output only feature tiles. Fur-

thermore, the appropriate training metadata format (i.e., classified tiles) was specified to 

create label and image chips from the polygon shapefile for pixel-based semantic segmen-

tation. These pairs of chips (often called tiles) have corresponding locations, and they con-

sist of sub-images containing the feature of interest and indicate the RGB values of the 

input feature. The label chip is a raster with information about the class number of the 

pixels derived from the training polygon [49]. Other outputs of this step consist of feature 

class statistics, metadata files (i.e., ESRI model definition and accumulated-statistics) and 

a map file containing a list of corresponding images and labelled chips. More importantly, 

the output herein supports the implementation of third-party deep learning frameworks 

such as Keras, Google TensorFlow and PyTorch. 

2.5. CNN Implementation and System Specification 

Deep learning was implemented using the ArcGIS Pro Geoprocessing tool with the 

Image Analyst extension. The simplified workflow does not require the use of specific 

computer programming skills. Given the large amount of training sample data in this ex-

periment, each of the multiple layers in the convolutional neural networks was required 

to extract features in the image. Therefore, we relied on a 40 GB RAM, NVIDIA GeForce 

RTX 3060 with 8 GB of dedicated GPU memory to perform our model training and infer-

encing. 
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2.6. CNN Deep Learning Models 

The motivation to use CNN in this experiment stems from its widespread application 

in computer vision and image classification analysis. The use of convolutional neural net-

works (CNNs) has brought about a large and important improvement in pattern recogni-

tion. During detection, each neuron is localised within the region of interest of the input 

image, thus allowing it to greatly reduce training time and easily overcome overfitting, 

especially for a large dataset. The CNNs, unlike traditional neural networks (NNs), have 

significantly fewer trainable parameters, making the network computationally efficient. 

The CNNs models have been used to extract object and pixel-based features [51]. There-

fore, in the next section, we examined the three CNN-based models used in this study. 

2.6.1. U-Net Model 

The U-Net model is an encoder–decoder model originally designed for biomedical 

image segmentation [52]. It has been widely used for research due to its robust promi-

nence and well-defined structure [27]. In recent years, the occurrence of tiny and fine-

grained targets in remote sensing data has led to the application of the model for better 

spatial refinement. For this reason, it is now the most widely used encoder–decoder de-

sign and has now been used in many research studies including remote sensing applica-

tions [27,53]. 

In this study, the encoder part of the neural network (i.e., ResNet), is a pre-trained 

convolutional backbone capable of high-level feature extraction, while the decoder helps 

to precisely localise features in the image tile [4,27,49,52,53]. The model was separately 

trained on NovaSAR-1 and Sentinel-1 labelled SAR pre-flood datasets and tested on the 

post-flood image to detect flood and determine the accuracy of model generalisability. We 

re-implemented U-Net in this study due to its demonstrated ability to achieve robust per-

formance in pixel-based semantic segmentation, especially in the mapping of SAR-based 

floods, as previous studies have shown. 

2.6.2. PSPNet Model (Pyramid Scene Parsing Network) 

The PSPNet model is a widely known image segmentation model and can be trained 

to extract pixels in a raster image. This model was invented as an improvement over the 

fully convolutional network (FCN) segmentation model. It became handy in capturing the 

global context of a whole image as opposed to FCN pixel-based classifiers. It uses a pyra-

mid parsing module to develop the global context of an image for predictions via local-

based context aggregation, hence demonstrating better and more robust performance [54]. 

Like the U-Net model used in this study, PSPNet was trained on labelled SAR-pre-

flood datasets with ResNet as the encoder (i.e., a pre-trained CNN backbone) to extract 

high-features in the input image, while the decoder played an important role in taking 

features in the encoder to predict results. For better performance, this study applied 

PSPNet with the U-Net-like decoder known as the feature pyramid network (FPN), which 

has learnable parameters capable of capturing small details and generating a high-resolu-

tion output. The whole post-flood images were used to test the generalisability of the 

model. Our decision to use PSPNet in this study stems from its ability to achieve compel-

ling results in image classification as noted in [49,54]. The PSPNet model, according to 

[54], won the ImageNet Scene Parsing Challenge 2016 and has been highly cited and ap-

plied in many computer vision and Earth observation studies since then. 

2.6.3. DeepLabV3 Model 

DeepLabV3 is an encoder–decoder semantic segmentation model developed as an 

improvement over DeepLabV2 [49,55]. DeepLapV3 uses atrous convolution and has also 

experienced significant improvement in its Atrous Spatial Pyramid Pooling (ASPP) mod-

ule compared to the CRF (Conditional Random Field) used in its previous versions [56]. 

The modifications in DeepLabV3 improved high-level features extraction in global context 
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with increasingly better performance [57]. For this reason, in this study, DeepLabV3 was 

used to separately train our datasets with ResNet, particularly the ResNet 152 convolution 

back backbone, for the classification of each pixel to their corresponding classes. The use 

of DeepLabV3 in this study is due to its ability to achieve comparable performance metrics 

with other classifiers such as U-Net and PSPNet on the PASCAL VOC 2012 semantic im-

age segmentation benchmark [55]. 

2.7. Convolutional Backbones 

Convolutional backbones are feature extractors in the input layer of a CNN architec-

ture, and they perform the specific function of extracting features for object and pixel im-

age segmentation [27]. The two commonly used backbones are the ResNet family and the 

Vintage architecture, while others include DensNet, DarkNet and ImageNet. The ResNet 

backbones have shown superior performance in terms of accuracy in Earth observation 

image classifications over other convolutional architectures [27,58]. 

Several studies have shown that the depths of convolutional backbones that have 

been used in remote sensing are not the same as the depths of best performing models 

used on datasets in computer vision [27]. It is known in the field of computer vision that 

a deeper backbone, such as ResNet 152, has better performance than shallower variants 

such as ResNet, 101, 50, 34 and 18 [27,59]. The deeper a CNN model, the better because it 

contains more hidden convolutional layers capable of accurately classifying 1000 classes 

and can easily overcome the tiny objects and fine-grained targets that characterize remote 

sensing data [27]. 

In this work, we experimented on the ResNet family, especially the recent variant 

ResNet 152. The 152 layer-deep residual network is a preconfigured model trained on the 

ImageNet dataset containing over 1 million images., The authors of [27] argued that the 

deeper a model, the more parameters it has. However, due to many insufficiently trained 

parameters arising from small datasets in Earth observation imagery, they are not fre-

quently used [27,60] but can easily oversee spatially tiny targets in Earth observation com-

pared to shallower models. As observed in our experiment, ResNet 152 model can overfit 

on a small dataset due to its depth, which we addressed by performing data augmentation 

to increase our training samples. 

2.7.1. CNN Model Training 

In this study, we trained the CNN models using the geoprocessing tools of ArcGIS 

Pro 3.0 Image Analyst extension. The model training was implemented using the image 

chips generated in Section 2.4.1 Each proposed CNN model in this work was trained sep-

arately, and model training parameters were populated accordingly. The different train-

ing epochs, (i.e., the number of times the dataset passes forward and backward through 

the convolutional neural network) were tested and set to 50 for best results in the whole 

experiment. The software was tasked to grid search the optimum learning rate from the 

learning curve during each training stage. 

We performed hyperparameter optimisation using varying batch sizes. As men-

tioned before, the ResNet family, especially ResNest 152, was chosen as the convolutional 

backbone architecture for this experiment due to its depth and relatively low application 

in Earth observation. During the training process, early stopping was implemented as too 

much training can lead to overfitting on the training model. The early stopping technique 

ends the model training when model accuracy no longer improves regardless of the max-

imum epoch specified. To validate the models, some input training samples were used as 

shown in Table 2. [4,61]. While training was in progress, training and validation losses for 

each iteration were monitored to ascertain the performance of the neural networks. 
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Table 2. Training sample summary. 

Category/Dataset Sentinel-1  NovaSAR-1 

Binary Class 

 

Image tiles for Training and 

Validation 

Image tiles for Validation 

Water 

Non-Water 

2120 

 

 

Water 

Non-Water 

2196 

 

Multi-Class 

 

 

 

 

Image tiles for Training and 

Validation 

Water 

Built-up 

Forest 

Cropland/ 

Cultivated 

     1980 

 

 
   Not 

Applicable 

Afterwards, an ESRI model definition file (EMD), (i.e., a configuration file that con-

tains parameters to run deep learning model inference) and a deep learning package 

(.dkp), which also contains an ESRI Model Definition file, as well as a trained model met-

rics file, are generated. Another output includes a loss graph showing training and vali-

dation losses, which helps to visualise and diagnose the performance of the model as well 

as to identify where tuning is needed. In this work pipeline, the trained model file exten-

sion is dependent on a deep learning framework. Specifically, ArcGIS Pro implemented 

the PyTorch backbend for our classification. For clarity, we present a CNN-based deep 

learning workflow for our study in Figure 4. 

 

Figure 4. CNN-based deep learning workflow for this study. The workflow shows the three funda-

mental parts of our methodology, which include data preparation, model training and model test-

ing. 
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2.7.2. Transfer Learning 

Building a neural network can be challenging given the vast computing and time 

resources required, as well as the complexities associated with the input datasets on which 

these models are trained. To reduce training requirements, neural network parameters 

can be reused from the previously learnt features to fine-tune a new model; this is known 

as transfer learning. This method is an optimiser, which can speed up training time and 

improve model performance and generalizability [4,62]. 

In machine learning, transfer learning refers to the process of using a pretrained 

model as the starting point for a second task with a similar convolutional neural backbone. 

The extraction of information in CNNs is generally implemented using a hierarchical 

method. While the first convolutional layer detects the edges and corners of an image, the 

last layer gives more sophisticated information about extracted features. These CNNs 

structure make them well suited for transfer learning [4]. 

To perform image classification task in this study, we implemented the pre-trained 

model approach of transfer learning in Section 2.7.1, which allowed us to specify a pre-

configured neural network as the convolutional architecture for training the CNN models, 

as shown in Figure 5. ResNet, a convolutional backbone, which was pre-trained on the 

ImageNet database, acts as the encoding part of the neural networks for the extraction of 

complex features such as edge detection and pattern recognition. The fine-tuning was per-

formed on our new labelled datasets (SAR data) to evaluate the training performance of 

U-Net, PSPNet and DeepLapV3 models. [4]. 

 

Figure 5. Pre-trained transfer learning approach for this study. 

2.7.3. Neural Network Hyper-Parameter Tuning 

Hyper-parameters are the configurable variables that govern the model training pro-

cess, and they are usually fixed during training. In this study, we ran multiple model 

training trials for U-Net, PSPNet and DeepLabV3 by varying their training parameters to 

obtain the best performance in Section 2.7.1. After some multiple training trials, we set the 

epoch to 50, varied the batch size and grid-searched the optimum learning rates for the 

whole training. This was implemented manually and found to be computationally expen-

sive. For this reason, we implemented a trade-off between parameters that have been 

tested but were found to have no significant impact on the model performance and those 

parameters that have a significant impact on the model performance. For computational 

efficiency, we opted for the latter. 

2.8. Accuracy Assessment and Confusion Matrix 

To further test the performance of the models and their ability to generalise varying 

complex and dynamic environmental settings, especially for operational flood conditions, 

we performed both binary and multi-classification accuracy assessments using unseen 

post-flood datasets (i.e., Sentinel-1 and NovaSAR-1). A stratified random approach of at 
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least 500 randomly distributed points was used. These points were distributed such that 

they were proportional to the relative area of each class. This was followed by the gener-

ation of a confusion matrix to determine the overall kappa index of agreement. This ap-

proach describes how well a model has performed much better than just training accuracy 

as, sometimes, the training accuracy metrics can be misleading. 

Neural Network Evaluation Metrics 

The evaluation of model performance is an essential part of the CNN-based deep 

learning workflow. In flood water detection, confusion matrix has been frequently used 

for measuring model performance as this helps to assess how well different classification 

models have performed. For this purpose, four quantitative evaluation metrics have been 

chosen to evaluate the accuracy of water extraction as well as other classes. The assessment 

criteria were overall accuracy (OA), recall (R), precision (P), recall and F1-score. 

Overall accuracy is the percentage of training samples that are correctly classified. 

Accuracy for binary classification can be mathematically expressed as follows [30,63]: 

OA = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
  (1) 

Recall (R) is expressed as the ratio of number of positive samples correctly classified 

as positive to the total number of positive samples and mathematically represented as 

follows [30,63,64]: 

R = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

In multi-classification, it is hard to generalize performance; thus, we examined the 

results based on class. For this reason, we use recall values of each class for both binary 

and multi-classification. 

Precision is the ratio of numbers of positive samples that are correctly predicted to 

the total number of samples classified as positive and can be expressed as follows 

[30,63,64]: 

P = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

F1-Score is defined as the harmonic mean of recall and precision and can be expressed 

as follows [30,63,64]: 

F1 = 
2∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

2∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
 (4) 

Our datasets are unbalanced and, therefore, have unequally distributed classes. For 

this reason, the F1-Score was used to measure the results between the different classes. 

In the above equations, TP is True Positive, FP is False Positive, TN is True Negative 

and FN is False Negative. 

3. Results 

3.1. Training Data Comparison for Binary Classification 

In this section, we present our binary classification results for training datasets using 

four model metrics. The quantitative comparisons in Figure 6a–c represent the overall 

performance of the three CNN deep learning models selected for this study. 
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(a) (b) 

 
(c) 

Figure 6. Training results: (a) Sentinel-1 binary classification; (b) NovaSAR-1 binary classification; 

(c) overall accuracy comparison for Sentinel-1 and NovaSAR-1. 

Figure 6a,b represent the model training results for the Sentinel-1 and NovaSAR-1 

pre-flood datasets, respectively. The main differences between the two sets of SAR data 

are the polarisations, ground resolutions and sensing periods. As can be seen, the models 

do not show any significant difference in performance. After training each model sepa-

rately, U-Net + ResNet 152 achieved a marginally higher average overall accuracy and 

showed strong recall/precision statistics in the extraction of permanent water pixels. In 

addition, the three models achieved strong recall, precision and F1-score statistics, which 

implies that there were a few missing water pixels in our prediction, thus decreasing the 

amount of manual cleaning that was performed. Overall, Figure 6c summarises the overall 

accuracy of the two training datasets. As can be seen, NovaSAR-1 compares well with 

Sentinel-1 in overall accuracy, except for the 1% loss during PSPNet model training. 

3.2. Test Data Analysis for Binary Classification 

We present the test results of both seen and unseen binary classifications for both 

Sentinel-1 and NovaSAR-1 in Figure 7a,b: 
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(a) (b) 

Figure 7. (a) Sentinel-1 semantic segmentation results for training and unseen data. (b) NovaSAR-1 

semantic segmentation results for training and unseen data. 

In this section, we present the analysis of the inference performed on the unseen (i.e., 

post-flood) datasets from the trained models. Each model was performed in a slightly dif-

ferent manner in terms of the extraction of flood pixels and accuracy; despite this, the 

semantic segmentation outputs generally showed a much higher level of detail. For in-

stance, while PSPNet + ResNet 152 maintained flood and permanent water boundaries, 

with some insignificant false negatives, it showed a better ability to detect small and iso-

lated water, as well as a strip of water, as can be seen in Figure 7a,b. DeepLabV3 + ResNet 

152 did not perform well in maintaining flood and permanent water boundaries but 

showed how well it can extract small and isolated water. Generally, we noticed a few false 

positives along the flood and water permanent water boundaries. While U-Net + ResNet 

152 appeared to have a marginally higher and more accurate feature extraction ability 

along the flood and permanent water boundaries, it also performed well in extracting 

small and isolated water as well as long and tiny strips of water. From our observation, 

the pixel extraction by U-Net showed minimal misclassification and substantially con-

sistent details with the ground truth data, thus making the model superior to PSPNet and 

DeepLapV3. 

Statistically, inference was performed on the trained models using the Sentinel-1 and 

NovaSAR-1 datasets, and, as can be seen, the models achieved good test results with a 

99% average overall accuracy, as shown in Figure 8a, b below. Specifically, the 99% aver-

age overall accuracy obtained for U-Net + 152 in Figure 6c during the model training is 



ISPRS Int. J. Geo-Inf. 2023, 12, 194 16 of 26 
 

 

consistent with that achieved during the testing stages. Overall, the results in Sections 3.1. 

and 3.2. compare well and further demonstrate the generalisability of the models. 

  
(a) (b) 

Figure 8. Test results for the unseen data: (a) Sentinel -1 dataset and (b) NovaSAR -1 dataset. 

3.3. Training Data Comparison for Multi-Classification 

The result from the training of neural networks for the multi-classifications showed 

that the three models performed well in each class. Given the high resolution of the Sen-

tinel-1 dataset, we were able to classify the land cover into permanent water, built-up area, 

forest and crop/cultivated area. The idea is to establish a relationship among the classes 

and the extent to which each of these classes was affected during the flood disaster. To 

achieve this, we trained the three models using the pre-flood dataset and performed in-

ference with the flood datasets to determine the flooded area, after which we carried out 

quantitative and qualitative analysis of the results. 

The results of the network performance are shown in Figure 9a–c. As can be seen in 

Figure 9a, U-Net + ResNet 152 was trained with a 4 batch size, and a 0.0000014454 learning 

rate achieved the best accuracy. The overall accuracy reached 97%, i.e., 2% less than the 

Sentinel-1 binary classification accuracy. Interestingly, both achieved a similar recall value 

of 98% for permanent water. The built-up class showed some false positives, in which few 

forest pixels were classified as built-up areas. Similarly, the forest and crop/cultivated clas-

ses both recorded recall values of 96%. Overall, the three models performed well during 

training and produced a marginally different result across the evaluation metrics. 
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(c) 

Figure 9. Multi-classification training data comparison for (a) U-Net, (b) PSPNet and (c) DeepLabV3. 

3.4. Test Data Analysis for Multi-Classification 

The multi-classification results presented in Figure 10enabled us to assess the impact 

of floods on other classes during testing. Our estimation from the ground truth showed 

that the flood event covered approximately 188.731 square kilometres and compared well 

with the U-Net + ResNet 152-based inference. In Figure 11a, the recall and precision scores 

for the flood class reached 98% and 97%, respectively, leading to an F1-Score of 98%, which 

indicates the presence of few false positives and negatives. It can be seen in Figure 10 that 

the U-Net model showed superiority in maintaining flood boundaries and improving the 

detection of large and small bodies. Similarly, PSPNet + ResNet 152 and DeepLabV3 + 

ResNet 152 produced F1-Scores of 98% and 96%, respectively, for this class. 

 

Figure 10. Semantic segmentation results for multi-classification. Blue represents flood water, green 

shows forest area, yellow corresponds to crop/cultivated area and red indicates built-up area. 

The built-up area accounting for approximately 0.739 square kilometres achieved F1-

score statistics of 92% for the U-Net model. On the other hand, PSPNet + ResNet 152 

achieved an F1-score value of 88% and DeepLabV3 + ResNet 152 produced a value of 86%. 

In summary, U-Net gained 4% and 6% over PSPNet and DeepLabV3, thus outperforming 

the other models in classifying the built-up area. However, while the models were to de-

lineate the built-up area, they could not identify few water pixels in some parts of the 

densely populated area. It is believed that the flood had receded in the affected areas when 

the image was captured. 
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Figure 10 shows a large extent of forest bordering the crop/cultivated area. In Figure 

11a, the forest class achieved a recall value of 98%, with a record of some false positives, 

as 2% of the pixels were incorrectly classified when they should have been classified as 

crop/cultivated. In addition, it achieved a precision score of 96%, which implies that 4% 

of the pixels were omitted from the class and classified as built-up, leading to an F1-score 

of 97% for U-Net + ResNet 152. While the PSPNet + ResNet 152 achieved an F-Score of 

97%, the DeepLabV3 + ResNet 152 scored 94%. Overall, the three models demarcated the 

forest extent as can be seen from the results, but the U-Net and PSPNet models produced 

the best classification performance for the forest class. 

In this study, we estimated approximately 225 square kilometres of crop/cultivated 

area, of which approximately 188.732 square kilometres (corresponding to 84%) were 

flooded during the disaster. During our testing, the crop/cultivated area achieved a recall 

score of 96% and a precision value of 95%, suggesting the presence of some false negatives, 

as 5% of the pixels were incorrectly classified as forest and built-up areas. As a result, an 

F1-Score of 95% was obtained for U-Net + ResNet 152; the result is 1% higher than the F1-

Score values obtained from the other models. 

Overall, the models performed superbly and achieved similar outcomes, making 

them well suited for SAR-based flood mapping. The overall accuracy and Kappa achieved 

by U-Net + ResNet 152 are 98% and 97%, respectively. On the other hand, PSPNet + Res-

Net 152 achieved 97% and 95%, while the DeepLabV3 +ResNet 152 scored 96% and 95%, 

respectively. 

  
(a) (b) 

 
(c) 

Figure 11. Multi-classification test results comparison for (a) U-Net, (b) PSPNet and (c) DeepLabV3. 
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3.5. Hyper-parameter Tuning Results 

In this section, we present the results of our hyper-parameter tuning experiment for 

the selected neural network models and backbone. We varied hyper-parameters such as 

batch size and epoch and grid-searched for the optimum learning rates, which are perhaps 

the most important hyper-parameter for each training. 

As can be seen from the results in Table 3, varying the batch size, backbone and learn-

ing rates and setting the epochs can influence model performance. In this work, we noticed 

that with larger batch sizes, the training and validation losses decreased slowly, and it 

took more epochs to converge. Additionally, as we increased the depth of the neural net-

work and batch size, the model became more difficult to train and sometimes became 

overfit. In contrast to larger batch sizes, smaller batch sizes proved to be effective in speed-

ing up the processing time while still achieving high model accuracy, especially with 

deeper convolutional backbones. To reduce training time and improve computational ef-

ficiency, we lowered our batch sizes while increasing the depth of the neural network. In 

the process, the validation and training losses took less time to converge at fewer training 

epochs for many numbers of iterations. The training was automatically stopped during 

separate training times due to the implementation of the early stopping technique, after 

which we compared training and validation losses as well as overall accuracy, from which 

we selected the best-performing models. 

Table 3. Hyper-parameter tuning results for binary classification. 

Model + Back-

bone 
Batch Size Epochs Learning Rate Overall Accuracy 

Unet+ Resnet 18 2 29/50 7.5858 × 10−6 99% 

Unet+ Resnet 18 4 23/50 6.3096 × 10−6 99% 

Unet+ Resnet 18 8 30/50 7.5858 × 10−6 99% 

Unet+ Resnet 18 16 49/50 2.5119 × 10−6 96% 

Unet+ Resnet 34 2 17/50 6.3096 × 10−6 99% 

Unet+ Resnet 34 16 34/50 6.3096 × 10−6 96% 

Unet+ Resnet 34 32 49/50 3.6308 × 10−6 97% 

PSPN + Resnet 

18 
2 19/50 3.9811 × 10−3 99% 

PSPN + Resnet 

18 
4 32/50 1.0965 × 10−3 99% 

PSPN + Resnet 

34 
2 17/50 2.2909 × 10−3 99% 

PSPN + Resnet 

34 
8 28/50 7.5858 × 10−4 99% 

PSPN + Resnet 

34 
4 46/50 6.3096 × 10−4 99% 

PSPN + Resnet 

50 
2 20/50 1.0000 × 10−2 99% 

3.6. Impact of Class Structure 

In this study, the test results for our binary classification in comparison with multi-

classification showed that the latter decreased in overall accuracy. For instance, in the 

multi-class category, U-Net, PSPNet and DeepLabV3 decreased by 1%, 2% and 3%, re-

spectively. Overall, our binary classification achieved superior results. 
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4. Discussion 

In this work, we demonstrated that CNN-based deep learning techniques performed 

very well on well-prepared SAR-based training samples. The achieved results suggest that 

these techniques are well suited for operational flood mapping given their ability to gen-

eralise different conditions over significantly large training datasets. The strong model 

performance obtained from our CNN-based model training and those achieved from the 

completely unseen post-flood image, which was never part of our training samples, fur-

ther demonstrate it. We adopted this approach of testing the unseen dataset to overcome 

the findings in Kang et al. [23]. The authors argued that the test set captured in the training 

dataset is often small and has great randomness. Therefore, it cannot fully reflect model 

generalisability as it becomes difficult to measure model performance in other scenes [23]. 

As can be seen, the results from our unseen test set (i.e., whole post-flood image) in Figure 

8a,b are comparable to the large training set used for permanent water detection (i.e., pre-

flood image) in Figure 6a–c. Interestingly, the scores achieved helped to validate the gen-

eralisability of the models on different scenes. While we established that images with dif-

ferent polarisations can achieve similar model performance, we also noted that the detec-

tion capability of the models can improve with high-resolution imagery, especially for 

multi-classification. 

Earlier in this paper, we introduced the work of Nemni et al. [4], Li et al. [18], Zhao 

et al. [30], Wu et al. [46], Katiyar et al. [47] and Kang et al. [23] using CNN-based deep 

learning for the extraction of flood pixels from SAR images over different locations and 

environmental conditions. Comparing the results presented in these studies to our study, 

we found that our scores are either similar or superior to the scores presented. Specifically, 

the result from Nemni et al. [4] showed that the U-Net + ResNet quantitative comparison 

used when considering Sagaing Region in Myanmar achieved an overall accuracy of 99%, 

which is comparable to our score, but recorded marginally lower recall/precision scores 

compared to our results. Similarly, Kang et al. [23] showed that the overall accuracy of 

FCN16 can reach 99%, which is comparable to our method. In another SAR-data-driven 

flood detection, Wu et al. [46] achieved an average IoU score of 86.33% and PA score of 

95.75%. Furthermore, the overall accuracy score in [46] appeared to be similar to that of 

Zhao et al. [30], who achieved 95.95% for water and non-water classes, thus scoring about 

3% lower than our best overall accuracy. However, [47] compared to our method, they 

presented a marginally lower overall accuracy of close to 90%. Overall, the results pre-

sented in Sections 3.2. and 3.4. are a proof of concept that our methodology can compete 

and even achieve superior scores for SAR-based flood mapping. 

From our results, we observed that the U-Net model showed less complexity and a 

relatively low training time as well as a higher score, especially with the ResNet encoder. 

The ResNet backbone is known to have a better accuracy–parameter ratio, is less complex 

and can easily adapt to complex scenarios [65–68]. It can retain the original features of an 

image, thus making it well-suited for transfer learning [62]. 

A problem we noticed during the generation of input data was unbalanced classes. 

For instance, water had fewer class samples than other classes, leading to the models being 

biased towards classes with many samples and making the models learn more about the 

large samples than small samples. In this work, we tested four different shifts or rotations 

for the Sentinel-1 and NovaSAR-1 datasets to improve the distribution of the dataset 

among the classes. When 0-, 15-, 30- and 45-degree rotations were experimented during 

the resampling process, it was observed that the 30-degree shift significantly improved 

model performance over others as it generated a relatively balanced sample among the 

classes. Additionally, to deal with problems associated with class imbalance, we also ap-

plied the focal loss function during model training to obtain speedy convergence between 

the training loss and validation loss. The loss function focused on samples that would 

have been predicted wrongly by the models over those they can correctly predict, which 

was achieved via the down-weighting technique. The bias towards the majority class was 

significantly reduced and their total loss contribution was downsized. 
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Furthermore, the results from the loss charts in Figure 12 suggest how the CNN-

based deep learning models we tested fit our training data (i.e., pre-flood Sentinel-1 and 

NovaSAR-1). Sometimes, models can be susceptible to poor performance on training data 

and hence produce large errors. In this case, we reduced the need for further training and 

downsized the potentially large training errors by augmenting our training samples. In 

this study, the validation loss and training loss metrics were used to evaluate the perfor-

mance of the three models during training. These losses account for the errors produced 

by these models and determine the difference between the training and validation data. 

As can be seen from the loss charts below, however, the training and the validation losses 

are as low as possible, indicating some overfit. In training our sample data, an early stop-

ping approach was implemented to prevent overfitting where a model became too com-

plex for the training data. 

  
(a) (b) 

Figure 12. Training loss and validation loss for (a) Sentinel-l and (b) NovaSAR-1. 

5. Conclusions 

In this work, we present the implementation of the near real-time deployment of a 

CNN-based transfer learning technique for a synthetic aperture radar (SAR)-derived flood 

data. The ArcGIS Pro deep learning workflow offered the possibility to implement U-Net, 

PSPNet and DeepLabV3 for automated, rapid and continuous flood mapping while 

achieving strong performance metrics over datasets with different polarizations, spatial 

resolutions and bands. The experimental results from our comparative study showed that 

U-Net marginally outperformed the other models, thus showing the good retention of 

image resolution during feature extraction and the generation of fine-grained class bound-

aries. 

We not only demonstrated that CNN models trained on datasets from two different 

SAR sensors (i.e., NovaSAR-1 and Sentinel-1) [69,70], over the same area can achieve high 

performance scores but also sufficiently provided semantic segmentation outputs and sta-

tistics for both the seen tiles (pre-flood) and the completely unseen tiles (post-flood) to test 

the generalisability of these trained models. Overall, both trials produced similar results. 

For real-time deployment, we found that the pre-trained model approach of transfer 

learning is a viable option for speeding-up model training and reducing training require-

ments as building a new neural network from scratch requires vast computing and time 

resources. Additionally, it was observed that the depth of a model can influence training 

time. For instance, while ResNet 152 demonstrated less complexity with remarkable 

model performance metrics, the shallower convolutional backbones were trained quicker. 

Based on our hyper-parameter experimental results, we found that smaller batch 

sizes can be effective in speeding up the processing time while still achieveing high model 

performance metrics, especially when training a deeper convolutional backbone such as 

ResNet 152, with small computational resources. 
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Therefore, we conclude this paper with the following remarks: 

1. The adopted workflow can produce comparable or even superior results to some pre-

vious SAR and optical flood-based studies. The method not only speeds up inferenc-

ing but also does not depend on many ancillary data from other sources. 

2. One of the findings of this study suggests that training a different pre-flood dataset 

and testing post-flood water characteristics over the same area may not influence re-

sults negatively given the efficiency of the CNN models, thus encouraging the train-

ing of a new model on new data in a short time. 

3. As we have seen in our experiment, the depth of a convolutional backbone vis-a-vis 

the hyper-parameter setup can determine the training time and model accuracy. 

4. To improve computational efficiency and reduce training time when training with a 

deeper neural network, we recommend the use of small batch sizes as large batch 

sizes can make CNN models difficult to train, especially on machines with low com-

putational power. 

5. It is also worth pointing out that despite the 50 m low spatial resolution of dual-

polarised ScanSAR_195 km_HV NovaSAR-1 imagery, it is suitable for large area 

monitoring, especially for flood mapping. 

With the potential of floodwater characteristics changing quickly, this study offers a 

significantly time-efficient and fully automated workflow to map floodwater and dissem-

inate crucial information to emergency responders. 

Despite successfully demonstrating the significance of implementing the CNN en-

coder–decoder models for automated flood mapping using SAR data, there have been 

some limitations and constraints in this work. As can be seen in our semantic segmenta-

tion results, it is believed that the flood within the built-up area had partially receded 

between the time the flood peaked on 1 March 2022 and when the Sentinel-1 image of 2 

March 2022 and NovaSAR-1 image of 5 March 2022 were sensed. This factor, combined 

with the effect of the relatively low ground resolution of our training and test sets over a 

small town such as Ulmarra, where heavily built landscape is lacking, makes it difficult to 

test these models for the extraction of flood pixels on heavily built-up environment. 

In our future work, we will explore CNN-based deep learning for high-resolution 

SAR flood-derived data in urban areas. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

ASL Active Self Learning 

ASPP Atrous Spatial Pyramid Pooling 

CFR Conditional Random Field 

CNN Convolutional Neural Network 

CSIRO Commonwealth Scientific and Industrial Organisation 

DEM Digital Elevation Model 

DNN Deep Neural Network 
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DPK Deep Learning Package 

EMD ESRI Model Definition 

ESRI Environmental Systems Research Institute 

FN False Negative 

FP False positive 

FPN Feature Pyramid Network 

GF-3 Gaofen-3 

GPU Graphic Processing Unit 

GRD Ground Range Detected 

HV Horizontal Vertical 

IFP Image Formation Process 

IW Interferometric Wide 

MDFD Multi Depth Flood Detection 

NNs Neural Networks 

OA Overall Accuracy 

P Precision 

PSPNet Pyramid Scene Parsing Network 

R Recall 

RAM Random Access Memory 

RF Random Forest 

RGB Red Green Blue 

ROI Region of Interest 

SAR Synthetic Aperture Radar 

SCD ScanSAR 

SNAP Sentinel Application Platform 

SRTM Shuttle Radar Topographic Mission 

SSTL Surrey Satellite Technology Limited 

SVM Support Vector Machine 

TN True Negative 

TP True Positive 

UTM Universal Transverse Mercator 

VV Vertical Vertical 

WGS World Geodetic System 

Appendix A 

Table A1. Location, sensing date and image name can be downloaded from the CSIRO NovaSAR-1 

National Facility Datahub [69]. 

Location Sensing Date Image Name 

Ulmarra 17 April 2021 NovaSAR_01_21984_scd_29_210417_005131_HH_HV 

Ulmarra 5 March 2022 NovaSAR_01_32067_scd_220305_121059_HH_HV 

Table A2. Location, sensing date and image name can be downloaded from Copernicus Open Ac-

cess Hub [70]. 

Location Sensing Date Image Name 

Ulmarra 18 February 2022 
S1A_IW_GRDH_1SDV_20220218T190635_20220218T190700_041971_04FF93_F9

72 

Ulmarra 02 March 2022 
S1A_IW_GRDH_1SDV_20220302T190635_20220302T190700_042146_050598_23

F0 
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