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Abstract: The aim of this study was to develop a new spatially-explicit analytical approach for urban 
flood risk assessment and generation of climate adaptation capacity metrics for vulnerability assessment of 
critical electricity infrastructure.  

Using the January 2011 flood in Queensland (Australia) with the core suburbs of Brisbane City as the study 
area, this study addressed the sufficiency of indicating variables and their suitability for climate risk 
modelling. A range of geographical variables were analysed using  a) high resolution digital elevation 
modelling and urban morphological characterisation with 3D analysis, b) spatial analysis with fuzzy logic, c) 
proximity analysis, d) quadrat analysis, e) collect events analysis, f) geospatial autocorrelation techniques 
with global Moran’s I and Anselin Local Moran’s I, and g) hot spot analysis. The issue on the sufficiency of 
indicating variables was addressed using the topological cluster analysis of a 2-dimension self-organising 
neural network (SONN) structured with 100 neurons and trained by 200 epochs. Furthermore, the suitability 
of flood risk modelling was addressed by aggregating the indicating variables with weighted overlay and 
modified fuzzy gamma overlay operations using Bayesian joint conditional probability. Variable weights 
were assigned to address the limitations of normative (equal weights) and deductive (expert judgment) 
approaches.  

The outputs of the topological cluster analysis showed that 15 out of 22 indicating variables were found 
sufficient to spatially model the flood risk and climate adaptation capacity metrics. The analyses showed that 
214 ha (9%) and 255 ha (11%) of the study area were very highly impacted by the January 2011 flood as 
indicated by the very high flood risk metrics and the very low adaptation capacity metrics, respectively. In 
the electricity network vulnerability assessment, a total count of 72 critical assets (zone supply substations, 
high voltage switching sites, and pole transformer sites) were found highly vulnerable to flood hazard. The 
flood damage disrupted electricity supply along 627 km and 212 km of transmission lines on the north 
eastern to south western and south eastern sides of the study area, respectively.  

The newly developed spatially-explicit analytical technique, identified in this study as the flood risk-
adaptation capacity index/metrics-adaptation strategies (FRACIAS) linkage model, will allow the integration 
of flood risk and climate adaptation assessments which have been treated separately in the past. As technical 
support to the Queensland Floods Commission of Inquiry (QFCI) recommendations, this study also provides 
a tool and identifies adaptation strategies to enable urban communities and the power industry to better 
prepare and mitigate future flood events. 

The tool can also be used to assess the physical vulnerability of other critical assets (e.g. water supply, 
sewerage, communication, stormwater, roads and rails) to flooding.  

Keywords: Flood risk assessment, climate adaptation capacity, geospatial autocorrelation, Bayesian joint 
conditional probability, self-organising neural network 
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1. INTRODUCTION 

During December 2010 to February 2011, the State of Queensland, in Australia, experienced a series of 
damaging floods which consequently affected over 200,000 people (McDougall 2012), damaged 29,000 
homes and businesses, and killed 37 people (QRA 2011 and QFCI 2012). The damage was expected to cost 
the Australian economy triple the original estimate of AU$10 billion (ABC 2011). Specifically, in January 
2011, the city of Brisbane had experienced a major flood event inundating more than 14,000 properties 
(McDougall 2012). As a result of flooding, the government spent almost AU$7 billion rebuilding and 
upgrading the State’s infrastructures (QFCI 2012, QRA 2011). 

Established under the Commission of Inquiry Act 1950, the Queensland Floods Commission of Inquiry 
(QFCI) was set up to enquire into matters arising out of the 2010/2011 floods (QFCI 2012). The Commission 
made recommendations for the improvement of preparation and planning and how can flood damage be 
minimised across essential infrastructures such as electricity, sewerage, storm water, telecommunications, 
and roads and rails in the future.  

In response to these recommendations, the development of flood risk and adaptation capacity metrics was 
considered in this study. However, developing a comprehensive set of metrics is challenging due to a wide 
variety of adaptations as well as the dynamic nature of various environmental and socio-economic factors 
(Szlafsztein 2008). This research problem is further exacerbated by inductive argumentation which 
particularly pertains to the sufficiency of indicating variables and availability of statistical models in climate 
risk assessment. When these indicating variables are aggregated with deductive approach (e.g. expert 
judgment) or by normative approach (e.g. equal weighting), the delivery of robust results is an issue due to 
subjective judgments in the former case and the multi-dimensionality of variables to different stakeholders in 
the latter case (Hinkel 2011). This issue is further aggravated by the process of selecting the indicating 
variables to indicate flood risk and its application to adaptation capacity assessment. This study had devised 
an ArcGIS-MATLAB algorithm interface in working the self-organising neural network (SONN) to select 
appropriate indicating variables and aggregate them with weights based on Bayesian probability rule.  

Furthermore, the techniques available for critical infrastructure protection modelling are heavily focused on 
physical interdependency with limited consideration on the geographical interdependency. In a research 
survey of U.S. and international research on critical infrastructure interdependency modeling conducted by 
Pederson et al. (2006), modeling and simulation that provide geospatial relationships were excluded in their 
analysis. Because floods exert spatially correlated disturbances to multiple infrastructures and consequently 
disrupt services to community, a research question arises as to how geographic interdependency and spatial 
autocorrelation operate in flood risk assessment. This study also developed a spatially-explicit analytical tool 
exploring global Moran’s I and local Moran’s I to simulate geographic interdependency of indicating 
variables for critical infrastructure and urban community vulnerability assessments.  

With these complex issues in mind, this study developed new analytical techniques that will address these 
research problems and systematically quantify flood risk and climate adaptation capacity metrics of an urban 
area.  

Specifically, the objective of this study was to generate spatially-explicit flood risk and climate adaptation 
capacity metrics that will aid to address flood risk management and climate resiliency issues of an urban area 
and critical electricity infrastructure.  

2. THE STUDY AREA 

The study area is located in the core suburbs of 
Brisbane City, the Queensland’s capital in 
Australia. The City is traversed by the 345-
kilometer long Brisbane River, which is the 
longest river in South East Queensland and 
flows down from Mount Stanley to Moreton Bay 
(Middelman 2002). Including the Lockyer Creek 
and Bremer River catchments, around 6,500 km2 
(approximately 50%) of the Brisbane River 
catchment is below Wivenhoe and Somerset 
Dams (Robinson 2011).  

Brisbane City had an $85 billion worth of 
economy in 2011. However, the City’s economic progress together with more than a million estimated 
residents, had been hampered and devastated recently by 2010/2011 floods. In January 2011, flood waters in 

Figure 1. The extent of the study area 
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Brisbane peaked at 4.46 metres making it one of the worst floods in the city’s recorded history with 
significant damage to transport, infrastructure, 
and residential properties (Queensland Museum 
2011).  

Comprising an area of approximately 2,200 ha, 
the study area includes the 22 central suburbs of 
Brisbane City as shown in Figure 1.  

3. RESEARCH METHODS  

Figure 2 is the input-process-output (IPO) model 
used in this study. Highlighted in the figure were 
data inputs used, processes involved, and the 
outputs generated from the comprehensive 
analysis. Under the input component, the flood 
hazard, vulnerability, and exposure indicators 
were assessed (Table 1). Under the process 
component, four main GIS operation challenges 
were addressed to generate the flood risk and 
adaptation capacity metrics: 1) transformation 
and standardisation of indicating variables, 2) 
topological cluster analysis, 3) quantification of 
flood risk and adaptation capacity metrics, and (4) electricity network analysis. 

The final outputs (i.e. flood risk and adaptation capacity metrics) were then applied in assessing the 
vulnerability of urban community in general and critical electricity infrastructure in particular.  

4. FLOOD RISK AND ADAPTATION CAPACITY MODELLING 

4.1. Key Concepts and Data Inputs 

Mathematically, risk can be expressed in the following forms (Mirfenderesk and Corkill 2009; Downing 
2002; Hughey and Bell 2010): 

 Risk = Hazard * Vulnerability * Exposure                         (1) 

 Risk = Hazard + Vulnerability                                 (2) 

 Risk = Hazard + Vulnerability – Adaptation Capacity                      (3) 

The UNISDR (2009) defined hazard as a “dangerous phenomenon, substance, human activity or condition 
that may cause loss of life, injury or other health impacts, property damage, loss of livelihoods and services, 
social and economic disruption, or environmental damage”. Geoscience Australia (2010) conceptualised 
vulnerability as “the impact a hazard has on the people, infrastructure, and the economy”. For this study, the 
term vulnerability has been introduced to consider the extent to which people suffer from calamities which 
depend on the likelihood of being exposed to hazards and their capacity to withstand them, which relates to 
their socio-economic circumstances (Schneiderbauer and Ehrlich 2004) rather than a response to the hazard-
centric perception of disaster (Schneiderbauer and Ehrlich 2004). Exposure is defined as the number of assets 
such as “people, property, systems or other elements present in hazard zones that are thereby subject to 
potential losses” (UNISDR 2009). In this study, the term infrastructure assets include the “interrelated built, 
institutional and environmental systems and services” (Jollands et al. 2006).  

Finally, the term adaptation capacity has been viewed as a system response to perturbations or stress that are 
sufficient to make fundamental changes in the system itself, shifting the system to a new state or how the 
system responds (Gallopin 2006; Preston and Stafford-Smith 2009); hence, may also be referred to as 
response capacity (Preston and Stafford-Smith 2009). This study, on the other hand, attempts to apply Eq. 3 
in quantifying adaptation capacity, such that by mathematical transformation, adaptation capacity can be 
expressed as follows (Espada et al. 2012): 

Adaptation Capacity (AC) = Vulnerability – (Risk + Hazard)            (4) 

 Equation 4 has been further expressed in Equations 5 and 6.  

AC = Social Vulnerability – (Risk + Flood Hazard)             (5) 

Figure 2. The input-process-output (IPO) model used in the study
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AC = Social Vulnerability – [(Fuzzy Gamma Function  
                    {Hazards, Physical Vulnerability, and Exposure} + Flood Hazard)]           (6) 
 
Table 1 under Section 4.2 summarises the list of thematic layers/indicating variables used to analyse the 
components of flood risk and adaptation capacity.  

 

 

4.2 Topological Cluster Analysis with Self-Organising Neural Network (SONN) 

For this study, 22 initial indicating variables (5 
for hazards, 13 for vulnerability, and 4 for 
exposure) were used in the analysis. Challenged 
by the selection of the most appropriate indicating 
variables for inclusion in the flood risk and 
climate adaptation capacity assessments, the 
Artificial Neural Network (ANN) particularly the 
Kohonen self-organising map (KSOM) was 
applied in this study. The SOM operates with the 
input layer where the inputs refer to the indicating 
variables (i.e. flood risk), neuron computation, 
and output layer, and a map of clustered variables 
as shown in Figure 3 (Mele and Crowley 2008).     

Processed with MATLAB version R2011b 
program, the standardised indicating variables (in 
raster formats) were structured with 907266 x 5 
hazard, 907266 x 13 vulnerability, and 907266 x 4 
exposure matrices. Utilising the Neural Network 
Clustering Tool, the indicating variables were 
grouped or clustered by similarity through the 
process of classifying a 2–dimension layer of 100 
neurons arranged in a 10x10 hexagonal grids, 
trained twice with 200 epochs.  

Taking flood hazard as the basis in the pair-wise 
comparison, seven (7) variables (i.e. biological 
hazard, total building value, total counts of 
registered businesses with turnover, revenue from 
small businesses, estimated period of settlement, 
people in need of assistance, and heritage sites) 
were removed from further analysis because these 
variables showcased dissimilar pattern from flood 
hazard.   

4.3 Quantification of Flood Risk and 
Adaptation Capacity Metrics 

From the SONN analysis, the final 15 indicating variables which were selected to include in quantifying the 
flood risk and adaptation capacity metrics are summarised in Table 1. 

Calculated with Bayesian joint conditional probability, the weights column from the Table indicates the 
weight values used in the weighted overlay operations of indicating variables of hazard, vulnerability, and 
exposure in ArcGIS 10. This was done to address the multi-dimensionality issue in the normative argument 
of equal weights. The results of applying Equations 1 and 6 are shown in Figures 4 and 5 with the flood risk 
metrics and adaptation capacity metrics are shown on the maps’ background.  

4.3.1 Applications of Flood Risk and Adaptation Capacity Metrics 

Table 2 shows that 1306 ha (58%) and 214 ha (9%) of the study area were highly and very highly impacted 
by the January 2011 flood event, respectively. Furthermore, 896 ha (40%) and 255 ha (11%) were 
characterised of having low and very low climate adaptation capacity, respectively.  
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Figure 3. The conceptual self-organising neural network of the study

Table 1. The selected indicating variables from SOM analysis and 
corresponding Bayesian joint conditional probable weights 

Flood Risk/ 
Adaptation Capacity 

Component 

Selected Indicating 
Variable 

Joint Conditional 
Probable Weight 

Hazard Electricity Hazard 0.28 
Building Damage 

Hazard 
0.28 

Chemical Hazard 0.31 
Flood Hazard 0.13 

Social Vulnerability Household Income 0.13 
SEIFA Index 0.14 

Emergency Services 
Response Time 

0.16 

Home and Content 
Insurance 

0.17 

Residential Tenure 
(Rental) 

0.19 

Access to Emergency 
Services 

0.21 

Physical Vulnerability Electricity Network 
Assets 

0.44 

Building Floor Space 
Index 

0.56 

Exposure 2011 Population 0.20 
Age (% of 0 to 11 and 

above 70) 
0.27 

2011 Flooded 
Properties 

0.53 
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Interestingly, majority of the study area (95%) revealed negative adaptation capacity metrics (-22 to <0) 
(Table 2). This significant finding would imply that vulnerability as a resource-oriented factor determines the 
strength or weakness of the study area; such that the generated negative values for adaptation capacity meant 
that the resources are not enough to increase climate resiliency of the urban community and critical 
infrastructures (Espada et al. 2012). The result also signifies that the resources of the community are 
outbalanced by 22 units taking zero as the break-even metric.   

Also important to further examine are the physical and socio-economic characteristics of the study area (the 
remaining 5%) that indicates positive adaptation capacity metrics (>0 to 1) (Table 2). This signifies that the 
resources within those areas are one unit above the zero break-even or just enough to alleviate climate risk. 
However, extra caution should be taken into account considering that some areas are positioned in a highly 
favourable physical condition (e.g. higher elevation) but the socio-economic resources inhibit the adaptation 
to climate risk.  

Adopted from Queensland Reconstruction Authority’s (QRA) (2011) four phases of disaster risk reduction, 
the broad adaptation strategies identified in this study to increase community resiliency include mitigation, 
preparedness, response, and recovery. 

To recap, Table 2 is the summary of a methodology identified in this study as flood risk-adaptation capacity 
index-adaptation strategies (FRACIAS) linkage model (Espada et al. 2012) that allows the integration of a 
range of spatially explicit analytical techniques used 
in the flood risk assessment, quantification of 
adaptation capacity metrics, and identification of 
adaptation strategies. This model addresses the issue 
of integrating disaster risk reduction-climate change 
adaptation framework, which had been treated 
separately for the past years (Joshi et al. 2011).  

4.3.2 Critical Electricity Network Vulnerability 
Assessment 

Using the results from the flood risk and adaptation 
capacity assessments in the electricity network 
vulnerability assessment, 72 highly vulnerable 
critical electricity assets were found to be within 
areas of very high flood risk and very low adaptation 
capacity as summarised in Table 3. Using these 
highly vulnerable critical electricity assets as flag 
junctions (see brown square dots in Figures 4 and 5) 
in the Utility Network Analysis of ArcGIS 10, the 
connections of electricity transmission lines were 
traced and calculated the total linear 
kilometers. Results of the path analysis 
revealed that electricity supplies were 
disrupted along the 627km and 212km 
transmission lines in the North East – North 
West – South West (NE-NW-SW) and South 
East (SE) areas, respectively, due to the flood 
event (Table 4 and Figures 4 and 5).  

During the January 2011 flood, power was 
disconnected in flooded and selected non-

Table 4. Lengths of electricity network flood-disrupted 
connections 

Transmission 
Line 

Disrupted Connections  
(linear km) Total 

(km) NE-NW-
SW Areas 

SE Area 

110 kV 13.80 4.72 18.51 
33 kV 22.86 3.90 26.77 
11 kV 260.49 81.34 341.83 
Low Voltage 330.12 121.82 451.95 
Total 627.27 211.78 839.06 

Table 2. Summary of flood risk and adaptation capacity metrics with corresponding adaptation strategies 

Flood Risk Adaptation 
Description Metrics Area 

(ha) 
% Description Capacity 

Metrics 
Area 
(ha) 

% Strategy/Measure 

Low 1 – 1.01 29 1 High 0 – 1 120 5 Mitigation 
Moderate 1.01 – 1.14 716 32 Moderate -1.24 – 0 996 44 Mitigation to 

Preparedness  
High 1.14 – 2.69 1306 58 Low -3.26 - -1.24 896 40 Mitigation to 

Response 
Very High 2.69 – 20.77 214 9 Very Low -21.84 - -3.26 255 11 Mitigation to 

Recovery 
Total  2267 100   2267 100  

Figure 4. The generated electricity network vulnerability map on North East, 
North West, and South West areas 

Table 3. Counts of highly vulnerable critical electricity assets 

Electricity 
Asset 

NE-NW-SW 
Areas (No.) 

SE Area 
(No.) 

Total 
(No.) 

Supply 
substations 

14 0 14 

High voltage 
switches 

30 7 37 

Pole 
transformers 

10 11 21 

Total 54 18 72 
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flooded areas as precautionary measure (Arnold 2011, Energex 2011, QFCI 2012). Validated from the QFCI 
Final Report, the Milton electricity supply substation was inundated with flood waters reached 0.95m above 
the 1% annual exceedance probability (AEP) causing damage to the substation’s equipment with an 
estimated cost of $750,000 (QFCI 2012). 

Learning from the breakdown of some power stations (e.g. zone substations or bulk supply) due to flooding, 
examples of climate adaptation and resiliency strategies recommended for electricity service providers are 
the following (Arnold 2011, Energex 2011, Sun 2011, and QFCI 2012): 

• Construction of critical electricity 
facilities above the defined flood level 
(DFL); 

• Implementation of flood resilience 
measures such as moving critical 
equipment to higher locations, 
building bunds around substation, 
installing sump pumps, scaling vents 
and replacing all local power sockets 
below the DFL with appropriately 
rated outlets; 

• Installation of connection points in the 
network for generators to supply 
electricity to non-flooded customers; 
and 

• Electrical conduits below the 
applicable DFL should be sealed and 
water proofed to prevent floodwaters from flowing into them. 

5. CONCLUSIONS AND RECOMMENDATIONS 

As newly developed innovative technique, this study allowed the integration of complex spatially-explicit 
analytical methods and systematically assessed the flood risk and adaptation capacity of an urban 
community. This was achieved by a range of analytical methods such as 3D analysis, spatial analysis with 
fuzzy logic, proximity analysis, and other spatial statistics. Equally significant innovations in this study were 
the application of geographic interdependency modelling with spatial autocorrelation techniques such as 
global Moran’s I and local Moran’s I, topological cluster analysis with self-organising neural network, and 
utility network analysis. 

The analyses also enabled to examine the vulnerability of critical infrastructures to climate risk and the 
implications once their services got disrupted. Extreme weather event caused the most damage on areas with 
high to very high flood risk and very low to low adaptation capacity wherein a range of critical 
infrastructures were found. Using this approach, power industry, for example, can explore different 
adaptation strategies to reduce future risk both to the power supply and the physical conditions of critical 
electricity infrastructure. This study may also give opportunity to urban residents to be informed on the 
impacts of floods to their lives, properties, in the entire community and how to better prepare for future 
weather risk. With emphasis on the spatial component, this study can also provide significant technical 
support to get the recommendations started from recently concluded enquiries on the matters arising out of 
the 2010/2011 floods in Queensland conducted by the Queensland Floods Commission of Inquiry (QFCI).  

Finally, the following are some factors recommended to consider in the future research works:  

1. Integration of hydrologic and/or hydraulic components and climate change factors in analysing 
flood hazards; and 

2. Vulnerability assessment of water supply, roads and rails, communication, sewerage, and storm 
water infrastructures.  
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Figure 5. The generated electricity network vulnerability map  
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