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Abstract

The idea of improving the properties of estimators by pre-testing the uncertain

non-sample prior information (NSPI) is adopted in the testing regime to achieve

better power of the ultimate test. In this thesis, the studies on increasing power

of the ultimate test through pre-testing the uncertain NSPI are carried out

for four types of regression models, namely the simple regression model, the

multivariate simple regression model, the parallelism model and the multiple

linear regression model.

In this thesis, procedures are developed for

• testing the intercept of a simple regression model, when the NSPI on

the slope can either be (i) unknown, (ii) certain or (iii) uncertain, or

equivalently, when the slope is (i) completely unspecified, (ii) specified to

a fixed value, or (iii) suspected to be a fixed value.

• testing the intercept vector of a multivariate simple regression model when

the NSPI on the slope vector can either be (i) unknown, (ii) certain or

(iii) uncertain, or equivalently, when the slope vector is (i) completely

unspecified, (ii) specified to a fixed value, or (iii) suspected to be a fixed

value.

• testing the intercepts of p (> 1) simple regression models when the NSPI

on the slopes can either be (i) unknown, (ii) certain or (iii) uncertain, or

equivalently, when the slopes are (i) completely unspecified, (ii) equal at

a fixed value or (iii) suspected to be equal at a fixed value.
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• testing a set of parameters of the multiple linear regression when the NSPI

on the other set of parameters can either be (i) unknown, (ii) certain or

(iii) uncertain, or equivalently, when the other set of parameters is (i)

completely unspecified, (ii) zero or (iii) suspected to be zero.

Under the three different scenarios, the (i) unrestricted (UT), (ii) restricted

(RT) and (iii) pre-test test (PTT) test functions are used to formulate the M-

tests. The M-tests are derived using the score function in the M-estimation

methodology. The sensitivity of the M-test to aberrant observations depends

on the choice of the score function.

For each regression model, the following steps are carried out: (i) the test

statistics for the UT, RT and PTT are proposed, (ii) the asymptotic distri-

butions of the test statistics under the local alternative are derived, (iii) the

asymptotic power functions of the tests are derived, (iv) the performance (size

and power) of the UT, RT and PTT are compared analytically, (v) the perfor-

mance of the UT, RT and PTT are compared, computationally using illustrative

data of a two-sample case or data simulated using the Monte Carlo method.

Under a sequence of local alternative hypothesis when the sample size is

large, the sampling distributions for the UT, RT and PT of the simple regression

model follow a normal distribution. However, that of the PTT is a bivariate

normal distribution. For the multivariate simple regression model, parallelism

model and multiple linear regression model, the sampling distributions of the

UT, RT and PT follow a univariate noncentral chi-square distribution under

the alternative hypothesis when the sample size is large. However, that of the

PTT is a bivariate noncentral chi-square distribution. For all regression models,

there is a correlation between the UT and PT but there is no such correlation

between the RT and PT. To evaluate the power function of the PTT, a package

in R is used to compute the probability integral of the bivariate normal while

a new R code is written to compute the probability integral of the bivariate

noncentral chi-square distribution.
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The robustness properties of the M-test are studied computationally on the

simulated data for the simple regression model and the multivariate simple

regression model. The power of the M-test using the Huber score function

is better than in the least-square (LS) based test because the former is not

significantly affected by slight departures from the model assumptions while

the latter depends heavily on the normality assumptions. For all regression

models, the PTT demonstrates a reasonable domination over the other two

tests asymptotically when the suspected NSPI value is not too far away from

that under the null hypothesis.
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Chapter 1

Overview

1



2 CHAPTER 1. OVERVIEW

1.1 Introduction

In the course of statistical inference, inferences about a population parame-

ter are usually drawn from the sample data using statistical methods such

as parameter estimation and hypothesis testing. Inferences about a popula-

tion parameter could be improved by using information given by any trusted

sources. Such information, which is usually provided by experts or experienced

researchers, and is not related to any sample data, is known as the non-sample

prior information (NSPI). We suspect that the inclusion of NSPI in addition

to the sample data, in the statistical methods improves the quality of the es-

timator and the performance of the test. However, any NSPI value may be

uncertain. If the NSPI value is uncertain or unsure, the information can be ex-

pressed in the form of a null hypothesis. An appropriate statistical test on this

null hypothesis may be useful to eliminate the uncertainty on this suspected

information. We also suspect that the preliminary testing (pre-testing) on the

uncertain NSPI value used in the parameter estimation or hypothesis testing

may improve the quality of the estimator and the performance of the statistical

test (Saleh, 2006, Khan and Saleh, 2001, p.1-2).

The NSPI on any parameter may be classified as: (i) unknown if no NSPI is

available, (ii) known if the exact value is found from NSPI, and (iii) uncertain if

the suspected value is unsure. Under the three different scenarios, three types

of estimators: (i) the unrestricted estimator (UE), (ii) the restricted estimator

(RE) and (iii) the pre-test estimator (PTE) and three types of statistical tests:

(i) the unrestricted test (UT), (ii) the restricted test (RT) and (iii) the pre-test

test (PTT) are defined. The UE and UT use the sample data alone. The RE

and RT do not use the sample data alone because the NSPI on the parameter is

also included in the parameter estimation or hypothesis testing. The PTE and

PTT use both the NSPI and the sample data. The PTE is a choice between the

UE and the RE. Similarly, the PTT is a choice between the UT and the RT.



1.1. INTRODUCTION 3

The choice depends on the outcome of the pre-testing on the uncertain NSPI

value.

To see the idea of UE, RE and PTE in a regression model, we consider a

simple regression model. This model has two unknown regression coefficients

that are the intercept and the slope that relate a response variable (which

value is to be predicted) to a predictor variable (which assumes fixed values).

Obviously the estimation of the intercept parameter depends on the conditions

on the slope parameter. Therefore, there are three situations considered for

slope when the primary interest is to estimate the intercept parameter, namely

(i) the slope is completely unspecified or there is no NSPI on the value of slope

parameter, (ii) the slope is completely specified and fixed or the NSPI on the

value of slope parameter is known with certainty, (iii) the slope is suspected at

a fixed constant or the NSPI on the value of the slope parameter is uncertain or

doubtful. For these three cases, we respectively define three estimators, namely,

(i) UE, (ii) RE and (iii) PTE. The bias quadratic risk and mean square error

are some of the statistical criteria to compare the performance of the UE, RE

and PTE (Saleh, 2006, Khan et al., 2002).

In recent years, many researchers have contributed to the estimation of

parameter(s) in the presence of uncertain NSPI. In spite of a plethora of work in

the area of improved estimation using NSPI (Saleh, 2006), there is a very limited

number of studies on the testing of parameters in the presence of uncertain

NSPI. For testing the intercept of the simple regression model, we define three

statistical tests, namely (i) UT, (ii) RT and (iii) PTT based on the knowledge of

the NSPI on the slope. The slope can either be: (i) completely unspecified, (ii)

specified at fixed value or (iii) uncertain. The statistical criteria that are used to

compare the performance of the UT, RT and PTT are the size and power of the

tests. A statistical test that has a smaller size is preferable because it guarantees

the probability of a Type I error (probability of rejecting the null hypothesis

when it is true) to be small. Furthermore, a test that has larger power than
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the other tests is preferable because it means the probability of Type II error

(probability of fail to reject the null hypothesis when it is not true) is small.

A test that minimizes both the probability of Type I and Type II errors is

desirable though it is impossible to attain these two objectives simultaneously.

So, normally an attempt is made to reduce the probability of a Type II error,

keeping the probability of a Type I error fixed.

The UE, RE and PTE (as well as the UT, RT and PTT) have been studied

for parametric cases (Bechhofer, 1951, Bozivich et al., 1956, Bancroft, 1964,

Saleh, 2006) which rely heavily on the model assumptions. The parametric

method is no longer an appropriate technique when the model assumptions

are not met (Montgomery et al., 2001, p.386). Usually, it is assumed that the

error term of a regression model is normally distributed, however, in reality, this

may not be true (Goodall, 1983, p.350). The true underlying distribution could

be any symmetric distribution such as the Student-t or Cauchy distribution,

which is heavier in both tails than that of the Gaussian distribution (Khan

and Dellaert, 2004, Rosenberger and Gasko, 1983). The true distribution could

be a skewed distribution with one of the tails longer than the other. Also,

the presence of outliers in the data can be the cause of poor performance of

the estimators and tests. Outliers are observations that lie far away from the

majority of the data and probably do not follow the assumed model (Becker

and Gather, 1999). Assuming normal distribution on the error variables of the

regression model, we find that the maximum likelihood (ML) estimators for the

regression coefficients are identical to those of the least square (LS) estimators

(Montgomery et al., 2001, p.52). So, both ML and LS estimators are sensitive

to outliers or any departures from the assumed normal model. In the same

manner, statistical tests based on the ML and LS estimators perform well only

when the assumptions of the model hold. Since the parametric methods rely

heavily on model assumptions, this have led to an increasing interest in other

alternative methods in the literature such as the nonparametric and robust
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methods.

Nonparametric methods require relatively weak distributional assumptions

for their validity, while robust methods make inferences that are little affected

by a small number of outliers in the data or slight departures from the distribu-

tional assumptions (Garthwaite et al., 2002, p.185). When the model assump-

tions of the errors under a parametric model are not met, the nonparametric

methods and tests are superior to those of the parametric ones. Many nonpara-

metric procedures are based on rank-order statistics (Lindgren, 1993, Flaherty,

1999, p.445). Robust methods are as efficient as the parametric methods when

the model assumptions of the parametric methods are met, but are more effi-

cient than the parametric methods when there are departures from the model

assumptions (Huber, 1981, p.5). There are three broad fundamental classes

of robust estimation - R, M and L-estimation. To be short, the R-estimation

is generally applied to some statistical rank test, the M-estimation is based

on the so-called generalized maximum likelihood estimation theory and it is

strongly related to the LS procedures and the L-estimation is conceived as a

linear combination of order statistics (Wang and Wang, 2007, Jurečková and

Sen, 1996, p.80). Several robust tests were derived using the robust estimation

methodology found in literature. It is suspected that the robustness properties

of a robust estimator should be inherited by the respective robust statistical

test because both are derived from the same methodology.

Realizing the disadvantages of parametric methods, the UE, RE and PTE

(as well as the UT, RT and PTT) for the nonparametric cases (Tamura, 1965,

Saleh and Sen, 1982, 1983, Saleh, 2006) were proposed in literature. The rank

statistics are mostly used for these nonparametric procedures. When obser-

vations are replaced with ranks, the more extreme observations are pulled in

closer to the other observations. However, the nonparametric estimation meth-

ods and tests (based on ranked data) often preserve information about the order

of the data but discard the actual values, thus overlook information that may
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have led to a better solution. The sign test, for example, uses only the sign of

the deviation of each observation from the median. This thesis considers the

statistical tests using the M-estimation methodology; the most popular esti-

mation method among the robust estimation methods. To my knowledge, so

far no UT, RT and PTT are proposed in literature that uses the M-estimation

methodology. Several robust tests derived using the M-estimation methodol-

ogy were proposed in the literature (Sen, 1982, Schrader and Hettmansperger,

1980, Shiraishi, 1990) but none of them were devoted to testing the parameters

following a pre-testing on uncertain NSPI. We suspect some information may

be lost when using tests based on the rank or order of the actual data. The

statistical test derived using the M-estimation methodology does not suffer the

same kind of loss of information as the rank test because the actual data are

directly involved in the estimation and test procedures. In M-estimation, the

squared of residual is replaced by an objective function of the residuals that

could downweight the influence of some observations with large residuals; this

makes the M-estimator robust against departures from model assumptions. The

M-estimation methodology is chosen for its simplicity, it is well known, and it

covers the ML method as a special case (Montgomery et al., 2001, p.405) and is

less sensitive to departures from the assumed model or the presence of outliers.

The PTT was investigated for one and two sample problems (Tamura, 1965),

for the simple regression model (Saleh and Sen, 1982), for the multivariate sim-

ple regression model (Saleh and Sen, 1983) using the nonparametric rank test

and for the parallelism model (Lambert et al., 1985a) using the LS based test.

However, there is no work investigating the PTT for the multiple linear regres-

sion model found in the literature. Apart from the simple regression model,

the multivariate simple regression model and parallelism model, this thesis also

covers the multiple linear regression model which has never been considered

for the PTT. Also, the published articles were devoted to testing the value(s)

of intercept(s) and slope(s) at zero(s). This thesis considers the problem of
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testing the intercept(s) and slope(s) for any arbitrary value, and hence the pre-

vious studies are special case studies of the current study. Obviously testing

the null hypothesis about any value of the model parameters is more realistic

than testing the significance of the parameters.

To carry out a statistical test, the distribution of the test statistic under

the null hypothesis must be known (van der Vaart, 1998, p.1). The asymptotic

distribution theory of the test statistics that are based on the score function in

the M-estimation methodology developed by Jurečková (1977) and Jurečková

and Sen (1996) is used in the thesis. Although the asymptotic results of

Jurečková and Sen (1996) are used in deriving the distribution of the proposed

test statistics in this thesis, these results are used in a different model in the

context of testing after pre-testing on uncertain NSPI. Although there are ro-

bust tests derived using the other robust estimation methodologies such as the

GM-estimation (Markatou and Hettmansperger, 1990, Heritier and Ronchetti,

1994, Gagliardini et al., 2005), the asymptotic distributions of these test statis-

tics are complicated (Muller, 1998). As a result, we believe that it will be

difficult to derive the asymptotic power function under the sequence of a lo-

cal alternative hypothesis for these test statistics. The concept of contiguity

probability measures is used to derive the asymptotic distributions under the

alternative hypotheses.

The investigations into the comparisons of the UT, RT and PTT for the

simple multivariate model by Saleh and Sen (1983) and the parallelism model

by Lambert et al. (1985a) are limited to an analytical discussion only; the

computational comparisons of the UT, RT and PTT are not provided in these

papers. Perhaps, the computational comparison of the UT, RT and PTT could

not be given due to the nonexistence tool to compute the power functions at

that time. To compute the power of the PTT, the bivariate integral of the non-

central chi-square distribution is required. However, the bivariate non-central

chi-square distribution, available at the time their papers were published, were
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very complicated and not practical for computation. In this thesis, we refer to

Yunus and Khan (2009) for the computation of the bivariate integral of the non-

central chi-square distribution. For a simple multivariate model and parallelism

model, according to Saleh and Sen (1983) and Lambert et al. (1985a), the power

of the PTT may be between those of the UT and RT. However, this statement

is not clearly supported by arguments in their papers, probably due to the

complicated form of the bivariate noncentral chi-square distribution that they

used in their papers. No graphical or numerical comparisons of the power

functions were provided in the previous studies.

1.2 Contribution of Thesis

The objectives of this thesis are

• to develop robust procedures for testing some parameters of a regression

model when the remaining parameters are (i) unspecified (ii) fixed and

specified (iii) uncertain values.

• to propose robust test statistics for the UT, RT and PTT using the M-

estimation methodology,

• derive the sampling distributions of each test statistics under the sequence

of a local alternative hypothesis,

• to derive the asymptotic power functions for each test statistics,

• to compare the performance (size and power) of the UT, RT and PTT

analytically and computationally and

• to recommend an optimum test.

Main contributions of the thesis are as follows:
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• Propose the UT, RT and PTT for the multiple linear regression (which

model has never been considered in the pre-testing uncertain NSPI disci-

pline) as well as the simple regression model, multivariate simple regres-

sion model and parallelism model.

• Use the statistical test derived in the M-estimation methodology for the

UT, RT and PTT.

– So far, only an LS based test and rank test are used to propose UT,

RT and PTT for nonparametric cases in the literature.

– So far, a robust statistical test derived in the M-estimation method-

ology has never been used to define the PTT.

• Improve the investigation into the comparison of power of the UT, RT

and PTT through computational results. The investigation into the power

function of the UT, RT and PTT that used the rank statistics in the pub-

lished articles was limited due to the nonexistence tool to compute the

power function. In the thesis, the performance of the tests is investi-

gated through a simulated example using a program written in R and is

supported by theoretical explanation.

• Consider testing the parameters at any arbitrary value which is more

realistic and general.

• Search for an optimum test or a test that is a compromise between mini-

mizing the size and maximizing the power.

• Propose the noncentral bivariate chi-square distribution by using the idea

of compounding distribution. This distribution is required for the com-

putation of the power of the PTT for regression models other than the

simple regression model. A new program (R-code) for the computation of

the bivariate integral of the bivariate noncentral chi-square distribution

is written for this thesis.
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1.3 Thesis Outlines

Chapter 2 presents a review of several topics related to the theory of pre-

testing and robust procedures. Chapter 3 focuses on a simple regression model,

Chapter 4 on a multivariate simple regression model, Chapter 5 on a parallelism

model and Chapter 6 on a multiple linear regression model. In each Chapter,

3 through 6, along with preliminary notions, the method of M-estimation is

presented, the M-tests for the UT, RT and PTT are defined and the asymptotic

distribution theory involving the statistical tests are given. These results are

then used to study the asymptotic size and power of the UT, RT and PTT. The

analytical and graphical comparisons of the power of the UT, RT and PTT are

provided. Discussions and concluding remarks are given in the final Section of

each Chapter. The final Chapter contains the summary of the results, the final

conclusions, the limitations of the study, and the recommendations for future

work.



Chapter 2

Literature Review

11



12 CHAPTER 2. LITERATURE REVIEW

2.1 Introduction

This Chapter covers previous work in the literature about statistical inference

using NSPI. On the estimation side, this includes the UE, RE and PTE and in

the testing context it deals with the UT, RT and PTT. Some technical concepts

such as pre-testing, robust estimation, robust test, contiguity probability mea-

sure, bivariate noncentral chi-square distribution and outliers are also revisited.

This Chapter also provides some statistical findings that are essential for some

of the later derivations in the current study.

2.2 The UE, RE and PTE

The use of prior information in the procedure of estimating the parameter of

interest of a statistical model usually improves the quality of the estimator. In

many cases, the prior information is available as a suspected value of the pa-

rameter interest. However, such a prior value is likely to be uncertain. This has

led to the suggestion of pre-testing the suspected value to remove the uncer-

tainty. The outcome of the pre-test is then incorporated into the procedure of

estimating the interested parameter or performing test on another parameter.

A variety of topics associated with the theory of pre-test is covered in Saleh

(2006). This provides a thorough coverage of the related work published in the

area of parameter estimation including the UE, RE and PTE. The parametric

and non-parametric estimations are among the topics covered in the book.

An easy way to understand the concept of PTE is to consider a problem

of estimating the population mean µ for one-sample data when it is apriori

suspected that µ = µ0 for any µ0 ∈ <. Khan (1998), Khan and Saleh (2001),

Kabir and Khan (2009) are among the authors who consider a one-sample

problem for the PTE. Let X1, X2, . . . , Xn be random variable of size n from

N(µ, σ2). Assume that NSPI on the value of µ is available. Then define the

RE of µ as µ̂ = µ0 and the UE of µ as µ̃ = X̄. Based on the likelihood ratio



2.2. THE UE, RE AND PTE 13

test for testing H0 : µ = µ0 against HA : µ 6= µ0, the PTE of µ is defined by

µ̂PTE = µ̃I(|t| > tα/2) + µ̂I(|t| < tα/2), where I(A) is an indicator function of

the set A and tα/2 is the critical value chosen for a two-sided α-level test based

on the Student’s t distribution with n− 1 degrees of freedom. Obviously for a

one-sample problem, the PTE is an UE if H0 is rejected, otherwise it is an RE.

The idea of PTE was first introduced by Bancroft (1944) in his seminal

work and later in Bancroft (1964, 1965). The PTE was studied for the clas-

sical problem of pooling means in a two-sample situation. Given two sam-

ples, the problem is to estimate the mean when it is apriori suspected that

the two population means may be equal. For example, if we have two samples

{(Xi1, . . . , Xini
)|i = 1, 2} from two normal distributions N(θ1, σ

2) and N(θ2, σ
2)

respectively, then in order to estimate θ1 when it is suspected that θ1 may be

equal to θ2, one may use the first sample mean, X̄1 if the hypothesis H0 : θ1 = θ2

is rejected or use X̄ = n1X̄1+n2X̄2

n1+n2
(pooled mean) if H0 is accepted. This pro-

cedure is known as the PTE in the literature (c.f. Kim, 2003, p.2-3). The

problem concerning the pooling of data was also discussed in Mosteller (1948).

This work was motivated by the problem of testing the difference between two

means after testing the equality of unknown variances found in Snedecor (1938).

Note that this classical problem is also discussed in many undergraduate sta-

tistical books. Bancroft (1944, 1964, 1965) implemented the idea of PTE in the

ANOVA setup to study the effect of pre-testing on the estimation of variance.

The PTE was also studied for the simple regression model by Ahsanullah

and Saleh (1972) and further extended by Ahmed and Saleh (1989). Consider

a simple regression model

Xi = θ + βci + ei, i = 1, . . . , n, (2.2.1)

where ei is the error variable that is identically and independently distributed

as normal with mean 0 and variance σ2, N(0, σ2), ci is the explanatory variable,

Xi is the response variable, and θ and β are the unknown intercept and slope
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parameters respectively. When it is suspected that β = β0, the UE, RE and

PTE, as defined in Chapter 1, are given as below

• The UE of θ is θ̃UE = X̄ − β̃c̄, where β̃ is the maximum likelihood (ML)

or least-square (LS) estimators of β, c̄ = 1
n

∑n
i=1 ci and X̄ = 1

n

∑n
i=1 Xi.

• The RE of θ is θ̂RE = X̄ − β̂c̄, where β̂ = β0 is the RE of β.

• If the NSPI on β is uncertain, the uncertainty of the NSPI on the value

of β is removed by testing H0 : β = β0 with test statistic, Ln = (β̃−β0)2Q

SE(β̃)
,

where Q =
∑n

i=1 c2
i − 1

n

∑n
i=1 c2

i . Based on the rejection or acceptance of

H0, the PTE is a choice between the UE and the RE. The PTE of θ is

θ̂PT = θ̂REI(Ln < F1,n−2(α)) + θ̃UEI(Ln ≥ F1,n−2(α)), where F1,n−2(α) is

the α-level upper critical value of a central F distribution with (1, n− 2)

degrees of freedom and I(A) is the indicator function of the set A that

takes value 1 if A occurs, otherwise it is 0.

In the studies on the comparison of the quadratic bias and MSE, the quadratic

bias for the PTE increases to a maximum as ∆2 = (β−β0)2Q
σ2 moves away from

the origin, and decreases toward zero as ∆2 → ∞, while the quadratic bias

for the RE is linear in ∆2 and zero for the UE (c.f. Saleh, 2006, p.61). As

for the MSE criterion, the RE performs better than the UE whenever ∆2 < 1,

otherwise the UE performs better (c.f. Saleh, 2006, p.62). The PTE performs

better than the UE if ∆2 < ∆2
0, where ∆2

0 is some positive number that depends

on the significance level, otherwise the UE is better than the PTE (c.f. Saleh,

2006, p.63).

The UE, RE and PTE were also studied for other regression models such

as the parallelism model (Akritas et al., 1984, Lambert et al., 1985a, Khan,

2003) and the multivariate simple regression model (Sen and Saleh, 1979). The

properties of these estimators are also discussed in Saleh (2006).

Some studies proposed alternative estimators to the UE, RE and PTE by

introducing the coefficient of distrust in the suspected value. This idea was
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applied to several models such as the location model (Khan and Saleh, 2001),

the simple regression model (Khan et al., 2002) and the two suspected parallel

models (Khan, 2006a). The coefficient of distrust for the NSPI represents the

degree of distrust in the null hypothesis. These studies show that the efficiency

of the estimators depends on the departure constant, a function of the differ-

ence between the suspected and true value of the parameter and also on the

coefficient of distrust.

The developments and investigations into the properties of the PTE have

been contributed to by a host of authors, notably, Kitagawa (1963), Saleh and

Han (1990), Mahdi et al. (1998), Ali and Saleh (1990), Khan and Saleh (2001)

and Khan et al. (2002). All of these studies were carried out assuming a normal

model. The normal model assumption is now being criticized more and more.

The true underlying distribution of the error variables of the model may not

follow the normality assumption in practice. The true underlying distribution of

the error variables could be the Student-t distribution which is heavier at both

tails than that of the normal distribution. The PTE has also been proposed

and studied for the non-normal model. Assuming the Student-t distribution

on the error terms of the model, the PTE was proposed and investigated for

the non-normal model in the literature (see Khan and Saleh, 1997, Khan, 2005,

2008). This PTE is appropriate only if the assumptions for the underlying

distribution of the error terms for this parametric model are met.

The non-parametric methods do not rely on assumptions that the observa-

tions are drawn from a given probability distribution. The asymptotic theory

and properties of the PTE were investigated for the nonparametric estimation

cases by Saleh and Sen (1978), Sen and Saleh (1979), Saleh and Sen (1985),

Saleh and Sen (1987) and Saleh (2006). Most of the studies on the PTE in

the non-parametric setting were formulated using rank statistics. These PTEs

are also categorized as the robust R-estimators (c.f. Saleh, 2006, p.109). The

analytical results for the asymptotic distributional bias and the asymptotic dis-
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tributional MSE of the nonparametric UE, RE and PTE are given in (Saleh,

2006, p.114) for several regression models. The PTE obviously depends on the

choice of the level of significance (c.f. Saleh, 2006, p.58).

The definition of the UE, RE and PTE using statistics from the robust M-

estimation methodology were proposed and their behaviors were investigated

in only a few papers (Sen and Saleh, 1987, Saleh and Shiraishi, 1989, Ahmed

et al., 2006). These studies found that there is no uniform domination among

UE, RE and PTE, but the PTE is a compromise between the UE and RE from

the risk efficiency point of view. The PTE performs better than the UE when

the true parameter is closer to the suspected NSPI value on the parameter, but

the RE may still be better than the others. These results invite the question

of whether the UT, RT and PTT under the M-estimation methodology deliver

the same kind of properties.

The PTE is a choice of the UE or the RE. It does not allow any smooth tran-

sition between the two estimators. The PTE is optimum for large values of the

significance level (α ≥ 0.20) and this is practically inappropriate. A shrinkage

estimator (SE) does not depend on the significance level of the pre-test and pro-

vides a smooth transition between the UE and RE (c.f. Khan and Saleh, 2001,

Khan, 2006b, 2008, Saleh, 2006, p.76). The shrinkage (Stein-rule) technique

was introduced by Stein (1956) and James and Stein (1961). The estimators

that are derived using this technique are also known as the Stein-type estima-

tors. The shrinkage estimator dominates the MLE for its smaller quadratic risk

and this important result is recommended in the study of estimating mean for

a multivariate normal population. This shrinkage technique is widely used in

this area of study for a variety of multivariate models. The pre-test approach to

Stein-rule estimation regarding the robust M-estimation method was explored

by Saleh and Sen (1985), Sen and Saleh (1987) and Ahmed et al. (2006). The

Stein-type estimators were also investigated for a family of Student-t distribu-

tion by Khan and Saleh (1995) and Khan and Saleh (1997). Many authors have
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contributed to this area, notably Sclove et al. (1972), Judge and Bock (1978),

Stein (1981), Maatta and Casella (1990) and Khan (1998) to mention a few.

2.3 Robust Estimation – General Idea and Prop-

erties

Statistical inference involves two analysis methods: estimation and hypothesis

testing. The development of robustness statistical inference was first established

significantly by Huber starting in 1964 (Huber, 1964). Good coverage of the

basic theory developed during the 1960 and 1970s is provided in his text book.

Huber (1981, p.1) says, “The word robust is loaded with many ... conno-

tations. We use it in a relatively narrow sense: for our purposes, robustness

signifies insensitivity to small deviations from the assumptions.”

The word ‘deviations’ in the previous paragraph suggests two kinds of ro-

bustness, namely distributional robustness and robustness against contamina-

tion (c.f. Barnett and Lewis, 1995, p.55). The former suggests procedures that

are robust against the possibility that the entire sample comes from some other

distributions while the latter are procedures that are robust against the pres-

ence of outliers arising from contamination.

The differences among outliers, contaminants and extreme values are dis-

cussed in Barnett and Lewis (1995, p.7-9). Extreme values may or may not

be outliers but any outlier is always an extreme value. Whether we declare

the extreme value as an outlier depend on consideration of how it appears in

relation to the assumed model. Outliers may or may not be contaminants and

contaminants may or may not be outliers. Outliers are observations which

appear to be inconsistent with the remainder of the data while contaminants

are observations that arise from distribution other than the assumed one (c.f.

Barnett and Lewis, 1995, p.7-9).

Outliers are observations that lie far away from the majority of the data and
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possibly do not follow the assumed model (c.f. Becker and Gather, 1999). A

routine data set typically contains about 1-10% outliers, and even the highest

quality data set can not be guaranteed free of outliers (c.f. Hampel et al., 1986,

p.26-28). It is well known that they can strongly influence the classical inferen-

tial procedure and even cause misleading results. In particular, some classical

parametric test and estimator performances are affected by the influential out-

lying observations (c.f. Becker and Gather, 1999).

Desirable properties of robust procedures are that they should be nearly

as efficient as (or perform as well as) the classical procedures in the assumed

model and more efficient over (or perform better than) the classical procedures

in the presence of small deviations or violations from the model assumptions

(c.f. Huber, 1981, Ryan, 1997, p.5). The performance of robust procedures is

measured by means of a so-called efficiency criterion. Examples of efficiency

criteria are the asymptotic variance of an estimate, the level and power of a test

(Huber, 1981, p.5), the mean square error (Montgomery et al., 2001, p.401),

the ratio of squared distance (Imon, 2003) and the relative efficiency (Hoaglin

et al., 1983, p.327). The efficiency criterion should be close to the nominal

value calculated within the assumed model.

There are several basic ways to measure robustness of an estimator, namely,

the influence curve, the gross error sensitivity and the breakdown point (see

Hampel, 1971, 1974, Hampel et al., 1986). Basically, the breakdown point is

simply the smallest fraction of contamination (or largest possible fraction of the

alterations of observations) that can completely ruin an estimator (c.f. Donoho

and Huber, 1983, Efron and Tibshirani, 1993, Rousseeuw, 1984, p.157-184,

Montgomery et al., 2001, p.400).

Several definitions of empirical influence functions are found in the litera-

ture, for instance in Hampel et al. (1986, p.93) and Davison and Hinkley (1997,

p.46). In spite of the differences, all of them are trying to measure, in some way,

the influence that one observation has on the value of an estimate (c.f. Amado
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and Pires, 2004). The influence function (Hampel, 1974) gives the amount of

changes in the estimator that can be wrought by an infinitesimal amount of

contamination (c.f. Coakley and Hettmansperger, 1993). The gross error sen-

sitivity expresses the maximum effect a contaminated observation can have on

the estimator (c.f. Goodall, 1983, p.358). There are yet other tools dealing

with this robustness measurement such as the sensitivity curves, the local shift

sensitivity and the rejection point. Readers could refer to Goodall (1983) and

Wilcox (2005) for an excellent dissertation of this subject matter.

One of the earliest and well known estimators for the purpose of making

statistical inference is the LS estimator (c.f. Chakraborty, 1999), which is de-

fined as the estimator that minimizes the sum of squared of residuals. The LS

estimator is sensitive to possible variations from the assumed normal model

(c.f. Rousseeuw, 1984, Coakley and Hettmansperger, 1993). It is clear that this

estimator is not robust, because only one observation can change the estima-

tor to any value. The LS estimator has both a low breakdown point and an

unbounded influence function. However, it has the advantage of having the

highest possible efficiency when normality assumptions hold (c.f. Coakley and

Hettmansperger, 1993). The ML estimator is another classical estimator de-

rived by maximizing the likelihood (probability) function of observations which

are assumed to follow a known distribution (c.f. Montgomery et al., 2001, p.50).

Thus, it is not robust when the assumed model is not met. As stated in Yohai

and Zamar (1988), one of the goals of robust regression estimation is to simulta-

neously achieve a breakdown point of roughly .50, a bounded influence function

and a high efficiency compared to LS when the underlying distribution of the

model errors is normal (c.f. Coakley and Hettmansperger, 1993).

The L-, R- and M-estimators have played an important role in the study

of robust estimations. L-estimators are linear combinations of order statistics

(c.f. Rosenberger and Gasko, 1983, p.306). For example, suppose we wish to

estimate the location parameter of a distribution. Let the order statistics of a
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sample of size n be x[1] ≤ . . . ≤ x[n]. Let a1, . . . , an be real numbers, 0 ≤ ai ≤ 1,

i = 1, . . . , n, such that
∑n

i=1 ai = 1. An L-estimator with weights a1, . . . , an is

given by Ln =
∑n

i=1 aix[i]. Sample mean and trimmed mean are two examples

of L-estimators. The sample mean of a sample size n is an L-estimator with all

weights equal to 1/n. A trimmed mean is identified by the proportion that is

trimmed off from each of the ordered samples.

R-estimates are derived from the nonparametric rank tests. Let X1, . . . , Xn

be n independently and identically distributed random variables with continu-

ous distribution function Fθ, where θ is the median of the distribution and is

assumed to be unique. Then, Rn, an R-estimator of θ is the value of t such

that

Rn =
1

2
[sup{t : Sn(t) > 0}+ inf{t : Sn(t) < 0}] , (2.3.2)

where Sn(t) =
∑n

i=1 sign(Xi − t), t ∈ <. Here, Sn(t) is nondecreasing in

t ∈ <. This R-estimator of location is derived from the sign test. See Jurečková

and Sen (1996, p.103-4) for more general cases of R-estimators. Important

references on R-estimation in regression include Adichie (1967), Jurečková and

Sen (1996, Ch.3 & 6) and Montgomery et al. (2001, p.407).

The M-estimation method is a generalization of the maximum likelihood

estimation (MLE) (c.f. van der Vaart, 1998, p.61, Thisted, 1988, p.150). The

method minimizes a function of a residual or solving for the root of an estimat-

ing equation (c.f. Carroll and Ruppert, 1988, p.209).

There are other robust estimators studied in the literature, such as the least

median of squares estimator (LMS) (Rousseeuw, 1984, Rousseeuw and Leroy,

1987), the least trimmed of squares estimator (LTS) (Rousseeuw, 1984, Jung,

2005, Rousseeuw and Van Driessen, 2006), the generalized M-estimators (GM

or also known as the bounded influence estimators) (Krasker and Welsch, 1982,

Wilcox, 2005, Ryan, 1997, p.218-223), reweighted least squares, S-estimators

(Rousseeuw and Leroy, 1987) and MM-estimators (Yohai, 1987).
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For a location model, the breakdown point of an M-estimator with an un-

bounded objective function is about 0.5 (c.f. Huber, 1984, Zhang and Li, 1998)

in the presence of vertical outliers (observations remote in the dependent vari-

ables direction). However, the breakdown point for the M-estimator is the

same as the LS estimator in the presence of bad leverage points (observations

remote in the independent variables direction) (c.f. Montgomery et al., 2001,

p.406). So, the M-estimator is not robust against a leverage point (c.f. Hampel,

2001). The leverage points are points with large values on the diagonal of what

is usually called the hat matrix (c.f. Kelly, 1992). They could be given full

weight by an M-estimator. As a result, the GM-estimator is developed. The

GM-estimator tolerates a small positive fraction of the leverage point and has a

breakdown point of 1/p where p is the number of parameters (c.f. Montgomery

et al., 2001, p.406). The LMS, LTS, S- and MM-estimators are estimators with

very high breakdown points (c.f Montgomery et al., 2001, p.401-405), however,

they need a lot of computing power, so they too can only be used for rather

low-dimensional parameter spaces (c.f. Hampel, 2001).

Another important aspect of robustness properties is asymptotic efficiency.

Unfortunately, the estimators with a high breakdown point such as the LMS,

LTS and S -estimators have very small asymptotic efficiency. They perform

poorly relative to the LS under the assumed model (Montgomery et al., 2001,

p.404-406). The M-estimator has a very high efficiency under the assumed

model relative to the LS estimator (c.f. Goodall, 1983, p.388-395).

Huber (1964) introduced the concept of minimax robust. The Huber M-

estimator minimizes the asymptotic variance over some neighborhood of the

model (Huber, 1983). The famous Huber-estimator solves a minimax problem

for the contaminated normal data, thus being an optimal compromise for a

whole neighborhood of the normal model as well as being numerically almost

optimal under the normality assumption (c.f. Hampel, 2001). Huber (1983)

examined the GM-estimator proposed by Krasker and Welsch (1982) and criti-
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cised this estimator in terms of the aspect of minimax properties and developed

a minimax approach to handle the influence of leverage points.

In this thesis, the UT, RT and PTT are proposed using tests formulated in

the M-estimation methodology. The asymptotic properties of the M-estimator

are already established in the literature and have a long track record since they

were first introduced more than 40 years ago. Huber (1981, p.132), Jurečková

and Sen (1996, p.218-220), Rieder (1994, p.11) and van der Vaart (1998, p.44)

are among authors who provide studies using the asymptotic theory of the M-

estimators and test statistics in their articles and text books. The regularity

conditions for the existence of a consistent M-estimator are also provided in

these text books.

For this thesis, the studies on the behaviour of the power functions of the

UT, RT and PTT only require the stated regularity conditions. Few of the lat-

est articles use the regularity conditions proposed by Jurečková and Sen (1996)

(see Appendix A.1) in their studies. For instance, Ahmed et al. (2006) pro-

posed the PTE and shrinkage estimator under these regularity conditions. In

the thesis, we also use the regularity conditions by Jurečková and Sen (1996)

to guarantee the consistency of the M-estimators. Since the idea is to use the

existing asymptotic results of the M-estimation methodology in the pre-testing

framework, we do not intend to update the regularity conditions of a consis-

tent M-estimator, because this is not essential for this study. Readers are re-

ferred to a few recent articles, for example, Bantli (2004) and Bachmaier (2007)

that provide the nonstandard regularity conditions of a consistent M-estimator.

Bantli (2004) proposed the M-estimators that allow for the discontinuity density

function while Bachmaier (2007) studied the consistency of the redescending

M-estimators.

The asymptotic distributions of the M-estimators are not required to derive

the power functions of the UT, RT and PTT. Instead, the asymptotic distribu-

tions of the test statistics are required to derive the power functions of UT, RT
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and PTT under parallel regularity conditions such as those of the M-estimators.

In order to derive the asymptotic distribution of the test statistics, results in

Lemma 5.5.1 of Jurečková and Sen (1996) are used in this thesis. Therefore,

under the standard regularity conditions by Jurečková and Sen (1996) (see

Appendix A.1), the UT, RT and PTT are proposed in this thesis.

2.3.1 M-estimation for Location

Let X1, . . . , Xn, n ≥ 1 be independently and identically distributed random

variables with an unknown distribution G. For a parametric family of distri-

bution function {Fθ(x) : θ ∈ Θ}, Θ ⊆ Rp, p ≥ 1, we wish to estimate θ for

which Fθ provides the closest approximation of G.

For the location model, we assume that

Fθ(x) = F0(x− θ), (2.3.3)

where θ is real and F0 belongs to a class F0 (see Jurečková and Sen, 1996, p.79).

We may write (2.3.3) as

Xi = θ + ei, i = 1, . . . , n, (2.3.4)

where the error ei is assumed to be independently and identically distributed

with a distribution function, F0.

The classical LS procedure tries to minimize the sum of the squared of

residuals to obtain its estimates. Despite of its mathematical beauty and com-

putational simplicity, there is an increasing criticism of the LS estimator for its

dramatic lack of robustness. A single outlier can have an arbitrarily huge effect

on the LS estimates (c.f. Rousseeuw, 1984). The LS estimator is sensitive to any

observation with a large residual. The M-estimation procedure (Huber, 1973,

p.80) is introduced based on the idea of replacing the squared residuals by a

function of residuals, say ρ(·), which is known as the objective function. Thus,

the M-estimator, say θ̂n is the solution (with respect to t) of the minimization
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of
n∑

i=1

ρ(Xi − t), (2.3.5)

where t is a real number.

If Fθ(x) has the density f(x, θ) which is differentiable in θ, choosing ρ(x, θ) =

− log f(x, θ), we find an M-estimator is an ML estimator (c.f. Carroll and

Ruppert, 1988, p.210, Jurečková and Sen, 1996, p.81). Choosing ρ(x, t) =

1
2
(x− t)2, for a real x, t, an M-estimator is an LS estimator (c.f. Goodall, 1983,

Montgomery et al., 2001, p.388).

The minimization problem in equation (2.3.5) leads to the solving of equa-

tion
n∑

i=1

ψ(Xi − t) = 0, (2.3.6)

with the score function ψ(x, t) = ∂
∂t

ρ(x, t) for all x and t.

The influence function of θ̂n is given by

IF (x; F, θ̂n) = ψ(x)/γ(F ), (2.3.7)

where

γ(F ) =

∫
ψ′(x)dF (x), (2.3.8)

which means the influence function of θ̂n is proportional to the score function,

ψ. Also, the IF (x; F, θ̂n) is bounded whenever ψ is bounded and γ(F ) 6= 0.

Note, for the LS estimator, the score function ψ(x, t) = x−t,−∞ < x < ∞.

Obviously the influence of a datum on the estimate increases linearly with the

magnitude of its error. Thus, the LS method is non-robust since the alteration

of a single observation is sufficient to yield any significant offset. As for the

Huber estimator (Huber, 1964), the score function is given by

ψ(x, t) =





x− t |x− t| ≤ k

k sign(x− t) |x− t| > k
(2.3.9)
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for k > 0. This estimator has a monotone ψ function and does not weight

large residuals as heavily as the LS (c.f. Montgomery et al., 2001, p.388). The

Huber estimator is asymptotically minimax over a contaminated neighborhood

of a standard normal distribution (c.f. Jurečková and Sen, 1996, Hampel, 2001,

p.35).

If ψ(x, t) is monotone in t, then the existence of M-estimators can be estab-

lished under very general regularity conditions (see Huber, 1981, Ch.6) and a

consistent sequence of solutions of 2.3.6 can be easily identified under the same

regularity conditions. Moreover, for monotone ψ(x, t), the asymptotic normal-

ity result is generally obtained. However, the monotonicity of ψ in t is only

a sufficient condition and the existence of a consistent M-estimator can also

be established for some non-monotone ψ(x, t). Under the general regularity

conditions, the asymptotic distribution of a consistent M-estimator is given by

n1/2(θ̂n − θ)
d→ N(0, σ2(ψ, F )) (2.3.10)

with σ2(ψ, F ) = γ−2
∫

ψ2(x, F )dF (x) (c.f Jurečková and Sen, 1996, p.182-3).

The M-estimator for the regression cases also carry the same properties as the

location model (c.f Jurečková and Sen, 1996, p.84).

Usually ρ is a convex function and ψ is a bounded variation. For monotone

ψ (nondecreasing), the solution to (2.3.6) is expressed as

θ̃n =
1

2

[
sup

{
t :

∑
ψ(Xi − t) > 0

}
+ inf

{
t :

∑
ψ(Xi − t) < 0

}]
. (2.3.11)

Note for nondecreasing ψ,
∑

ψ(Xi − t) is nonincreasing in t ∈ <. Hence θ̂n

represents the centroid of the set of solutions of (2.3.6) and it removes the

possible arbitrariness of such a solution.
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2.4 Statistical Tests using Robust Methodol-

ogy

2.4.1 Hypothesis Testing

A hypothesis is represented by a family of probability distributions of the set of

observations X (see Hájek et al., 1999, p.22). Let H = {p} or H = {P} be the

null hypothesis and K = {q} or K = {Q} be the alternative hypothesis with

density p and distribution P are members of H while density q and distribution

Q are members of K. The space X is divided into two disjoint parts, the critical

region, AK and the region of acceptance AH . Whenever the observed value x of

X falls into AK , the null hypothesis H is rejected or else it is accepted. There

are two errors one may commit, the Type I error (reject H when it is true) or

the Type II error (failure to reject H when it is false). To keep the probability

of Type I low, choose a number α, 0 < α < 1 with condition, P (X ∈ AK) ≤ α

for all P ∈ H. The number α is called the level of significance. The test is

based on a statistic t(x), called the test statistic. The correspondence between

AK and t(x) are three types: (i) {x ∈ AK} ⇐⇒ {t(x) ≥ cu}, (ii) {x ∈ AK} ⇐⇒
{t(x) ≤ cl}, (iii) {x ∈ AK} ⇐⇒ {t(x) ≥ cu or t(x) ≤ cl}.

The first two cases (i) and (ii) are for the one sided tests based on t and the

last case (iii) is for the two sided test based on t. The numbers cu and cl are

called the upper and the lower critical value, respectively. The test function is

defined by

Ψ(x) = I (t(x) < cl or t(x) > cu) . (2.4.12)

According to Hájek et al. (1999, p.23), the size of Ψ(x) is defined as
∫

ΨdP

or supP∈H

∫
ΨdP for composite hypotheses. The power of Ψ(x) is defined as

∫
ΨdQ or supQ∈K

∫
ΨdQ for composite hypotheses. The main purpose of the

theory of hypothesis is to provide tests with the largest power for a given level

of significance (Hájek et al., 1999, p.24).
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Often, the level of significance α is chosen and is set as the probability of

a Type I error (see Wackerly et al., 2008, p.491, De Veaux et al., 2009, p.544,

Hettmansperger and McKean, 1998, p.16). However, when interest is to test

the intercept parameter given the NSPI on the slope parameter of the simple

regression model, the (actual) size of the test is different from the level of

significance. Note, the preassigned level of significance is sometimes known as

the nominal size of the test (see Pinto et al., 2003, Carolan and Rayner, 2000).

Saleh and Sen (1982, 1983) and Lambert et al. (1985a) show that the (actual)

asymptotic size of the RT is larger than the preassigned level of significance.

The size and power of the test are obtained from the power function of the test

(see Pinto et al., 2003, Saleh and Sen, 1982, 1983).

2.4.2 Robust Test and its Properties

A test is said to be robust if the power of the test is not significantly affected by

any departures from the model assumptions (c.f. Burt and Barber, 1996, p.332)

and when the nominal and actual sizes are not significantly different under a

slight model failure (c.f. Carolan and Rayner, 2000). According to Heritier and

Ronchetti (1994), there are two robustness properties a test should achieve.

First, the level (size) of a test should be stable under small departures from the

null hypothesis (i.e. robustness of validity). Second, the test should still have a

good power under small departures from specified alternatives (i.e. robustness

efficiency).

One would expect that the sensitivity of an estimator to departures from

model assumptions should be inherited by the statistical test which is derived

using the same estimation methodology (c.f. Schrader and Hettmansperger,

1980). Using the M-estimation methodology, several robust versions of the

Wald, scores and likelihood ratio test have been proposed and investigated

in the literature (Schrader and Hettmansperger, 1980, Sen, 1982, Shiraishi,

1990, Silvapulle, 1992, Wu et al., 2007). The text by Jurečková and Sen (1996,
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Ch.10) provides a note about robust statistical tests for the location model and

few other regression models. These robust tests are analogous to the classical

counterpart, see for example, Silvey (1975).

The influence with respect to the residuals is bounded for the tests derived

using the M-estimation methodology; however, the influence with respect to

the regressor is unbounded. As a result, robust tests that are formulated us-

ing the GM methodology have been introduced and studied by Markatou and

Hettmansperger (1990), Heritier and Ronchetti (1994) and Gagliardini et al.

(2005) in the literature. However, the asymptotic distributions of the tests for-

mulated using GM methodology are complicated (c.f. Muller, 1998) and thus

may cause difficulties in deriving the power function for the PTT.

The influence function and breakdown point are two important properties

in statistics to measure robustness of an estimator; these properties are car-

ried over to the hypothesis testing framework. The influence function approach

for parameter estimation developed by Ronchetti and Rousseeuw (see Ham-

pel et al., 1986, Ch.3) is extended to the testing situation (c.f. Heritier and

Ronchetti, 1994). The idea is to define a level influence function and power

influence function (Hampel et al., 1986, p.198) that describe the influence of

contamination on the asymptotic level and power. Further studies of the in-

fluence function of the tests are presented by Markatou and Hettmansperger

(1990), Markatou and He (1994), Büning (2000), Wang and Qu (2007).

The breakdown point gives the maximum amount of contamination that

a test can tolerate (c.f. He et al., 1990, Heritier and Ronchetti, 1994). The

breakdown versions for tests were proposed and studied in the literature by

few authors, namely Rieder (1982), He et al. (1990), Heritier and Ronchetti

(1994), Hettmansperger and McKean (1998, p.31) and Wang and Qu (2007).

The power breakdown function gives the amount of contamination of each al-

ternative distribution that can carry the test statistic to a null value. The level

breakdown function gives the amount of contamination of a null distribution
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that can carry the test statistic to each value in the alternative space (c.f. He

et al., 1990).

A comprehensive picture of rank tests based methodology is available in

Adichie (1967), Hájek et al. (1999), Puri and Sen (1985), Jurečková and Sen

(1996, Ch.3 & 6) and Hettmansperger and McKean (1998, p.11). The robust-

ness properties of rank tests are given in Rieder (1982) and Büning (2000).

Note that the rank tests have been used to propose the PTE (Saleh and Sen,

1978, 1987, 1985, Sen and Saleh, 1979, Saleh, 2006) and PTT (Saleh and Sen,

1982, 1983) in many published articles for a number of models including the

simple regression model, the multivariate simple regression model and the Cox

proportional hazard model. However, there is no study found in the literature

that uses rank tests to propose the PTT in the parallelism model, multiple

linear regression model and multivariate multiple model.

Some robustness properties such as the level and power influence function

and breakdown point of a test are not studied in this thesis. The robustness

properties of the proposed tests are not studied analytically in this thesis. How-

ever, the robustness properties of the proposed tests are investigated on data

simulated using the Monte Carlo method. In the simulation, the sensitivity of

the tests to aberrant observations are investigated by comparing the size and

power of the tests derived using different score functions and under different

distributions of the simulated data.

2.4.3 Tests using M-estimation Methodology

This section discusses three robust tests in the M-estimation methodology,

namely the robust score type M-test (Sen, 1982), the robust likelihood ratio

test (Schrader and Hettmansperger, 1980) and the robust Wald type test for

the location model of equation (2.3.4). See Heritier and Ronchetti (1994) for

an account of these tests for the multivariate model.

The asymptotic distribution of Wald and score tests are found to be the same
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as the classical counterpart but the asymptotic distribution for the likelihood

ratio test has more complicated asymptotic distribution. The Wald and score

type tests are asymptotically equivalent under both the null hypothesis and

the alternative (c.f. Heritier and Ronchetti, 1994). Sen (1982) claims that

the M-test based on score function is simpler in computation and as efficient

as the likelihood ratio test proposed by Schrader and Hettmansperger (1980).

The score type test has better global stability than the Wald type M-test for

contamination of null data. For local alternatives in the one lay-out, the power

breakdown function of an M-test depends on the choice of the score function

(c.f. He et al., 1990).

The Score Type M-test

Recall the aforementioned location model of equation (2.3.3). Consider the null

hypothesis, H0 : θ = θ0 against HA : θ = θ1, θ1 > (< or 6=) θ0 for testing the

location parameter at the specified value θ0.

If distribution function F is symmetric and specified, the classical likelihood

ratio test (LRT) would be useful for testing H0. The LRT is optimal when

the assumed model holds but it is non-robust even to small departures from

assumed F (Jurečková and Sen, 1996, p.408).

Suppose we can identify the least favourable distribution, F0, where F0 ∈
{F0} in such a neighborhood, with respect to the two hypotheses. A robust test

is obtained by constructing the usual LRT statistic corresponding to the least

favourable distribution function, F0. Huber (1965) claims that this robust test

has a maximin power property.

In the same spirit, another robust test statistic, Ln is obtained by con-

structing the usual (Rao) efficient score statistics corresponding to the least

favourable distribution, F0, thus

Ln =
n∑

i=1

(
∂

∂θ

)
log f0(Xi, θ)|θ0
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with density function, f0, corresponding to F0.

Replacing Ln by an M-statistic, Mn, we obtain

Mn =
n∑

i=1

ψ(Xi − θ0),

where ψ is the score function. This statistic resembles the Rao efficient score

statistic.

Asymptotically

n−1/2(Mn/σψ)
d→ N(0, 1)

under H0 with σ2
ψ =

∫
ψ2(x)dF (x) (Jurečková and Sen, 1996, p.410). The test

statistic is given by

Tn = n−1/2(Mn/σ̂n) with σ̂2
n = n−1

∑
ψ2(Xi − θ̂n),

where θ̂n is the M-estimator of θ. Under H0 : θ = θ0, Tn is asymptotically

normal. For a one-sided alternative hypothesis, H1 : θ > θ0, the (asymptotic)

critical level is denoted by τα (0 < α < 1). The main justification of this test

statistic Tn is the choice of a suitable robust ψ. Now consider a sequence of

local alternative Hn : θ = θ0 + n−1/2λ for some λ ∈ <. Using Theorem 5.3.2 of

Jurečková and Sen (1996), the asymptotic power function of the test is given

by

β(λ) = 1− Φ(τα − γλ/σψ)

(c.f. Jurečková and Sen, 1996, p.410), where γ is as defined in equation (2.3.8)

and λ ∈ <. Here, Φ(·) is the cdf of a normal distribution. Hence, an optimal ψ

relates to the maximization of γ/σψ. Note, the asymptotic variance of
√

n(θ̂n−
θ) is σ2

ψ/γ2.

As in Huber (1965), we may look for a particular score function ψ0 : < → <
such that

sup
F∈F0

σ2
ψ/γ2

is a minimum at ψ = ψ0. We obtain an asymptotically maximin power M-test

of the score type with ψ0 in F0. For example, ψ0 is the Huber function (given
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in equation (2.3.9)) provided that F0 is the family of contaminated normal

distributions.

The LRT

Let

Zn =
n∑

i=1

[ρ(Xi − θ0)− ρ(Xi − θ̂n)],

where θ̂n is the M-estimator of θ. Zn is analogous to the classical LR type

statistic. Under H0, 2γ(Zn/σ2
ψ) → χ2

1 (chi-squared distribution function with 1

degree of freedom). The test statistic is Z?
n = 2γ̂n{Zn/σ̂n}, where γ̂n is an esti-

mated value of γ. Z?
n has asymptotically a noncentral chi-squared distribution

function with 1 d.f. and noncentrality parameter, ∆? = γ2λ2σ−2
ψ . Note, for the

Tn, only the estimate of σ2
ψ is required while for the Z?

n, both estimates of σ2
ψ

and γ are required. The LR type statistics for the linear model were proposed

by Schrader and McKean (1977) and Schrader and Hettmansperger (1980).

The Wald Test

Another robust test resembles the classical Wald test, the term based on Wald

(1943). Under the assumed regularity conditions, we obtain the asymptotic

distribution of the M-estimator as has been given in equation (2.3.10). Thus,

the robust Wald test statistic is

Wn = n(θ̂n − θ0)
′[σ̂2

n/γ
2
n]−1(θ̂n − θ0)

and Wn → χ2
1 under H0. Jurečková and Sen (1996, p.419) and Carroll and

Ruppert (1988, p.214) discussed this test in their text books.

In this thesis, the score type M-test is chosen because it is simpler in com-

putation and it is as efficient as the LRT and Wald tests.

Note, the asymptotic properties of the M-statistics by Jurečková (1977, The-

orem 4.1) and Jurečková and Sen (1996, p.221) are used to derive the asymptotic
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distribution of the test statistics under the local alternative hypotheses in this

thesis. The contiguity probability measures concept (discussed in the next two

Sections) is applied to derive the asymptotic distributions of the test statistics

under the sequence of a local alternative hypothesis.

In the next Section, review on the literature of the PTT is given. The studies

of the PTT are categorized under the parametric tests and non-parametric tests

counterparts. Most of the parametric PTTs assume normal distribution for the

underlying distribution of the error variables. Nonparametric PTTs based on

rank statistics were also proposed and their performances were investigated by

few authors.
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2.5 The UT, RT and PTT

Although there is a large number of published articles investigating the prop-

erties of the PTE (see Section 2.2), only a limited number of studies found in

the literature investigate the PTT.

There are few articles found in the literature that use pre-testing in the

analysis of variance framework for some special parametric models (Bechhofer,

1951, Bozivich et al., 1956, Paull, 1950, among others). The pooling procedure

for the hypothesis testing using analysis of variance techniques was considered

by Bozivich et al. (1956) and Mead et al. (1975). Let V1, V2, V3 be the doubt-

ful error mean square, the error mean square and the treatment mean square

respectively, with the corresponding degrees of freedom, n1, n2, n3 and expec-

tations σ2
1, σ

2
2, σ

2
3. There are three possible cases depending on the equality of

σ2
1 and σ2

2 when the primary interest is to test H?
0 : σ2

3 = σ2
2,

• Case I: When there is no specification or suspicion that σ2
1 = σ2

2, the test

statistic is F1 = V3/V2 (i.e. comparing V3 with V2).

• Case II: If σ2
1 = σ2

2, the test statistic is F2 = V3/V where V = n1V1+n2V2

n1+n2
.

Here, V1 and V2 are pooled then V3 is compared with V to obtain F2.

• Case III: If σ2
1 = σ2

2 is uncertain, then a pre-test of H ′
0 : σ2

1 = σ2
2 with test

statistic F3 = V2/V1 is performed first following the ultimate test on H?
0 .

If H ′
0 is accepted that is F3 < Fα,n1,n2 , F2 is used to test H?

0 otherwise F1

is used. Here, Fα,n1,n2 is the upper 100α% critical point of a central F

distribution with n1 and n2 degrees of freedom.

Bozivich et al. (1956) studied the pooling problem for hypothesis testing using

analysis of variance for a random model case, while a fixed model case is later

studied by Mead et al. (1975). For the two studies of the fixed and random

models, the error variables are assumed to follow the normal distribution, so

these models are parametric models. In their studies, the size and power of
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the tests were derived and the choice of significance level for the pre-test was

recommended.

Ohtani and his colleges also proposed the PTT for the parametric mod-

els. Ohtani and Toyoda (1985) considered the problem of testing the linear

hypothesis of regression coefficients after pre-testing the disturbance variance.

The problem of testing the equality of regression coefficients after pre-testing

the equality of disturbance variances in two linear regression models is later

considered by Toyoda and Ohtani (1986). Ohtani (1988) and Ohtani and Giles

(1993) extended the ideas related to these parametric problems in their articles.

The PTT has also been proposed and investigated by Tamura (1965) for one

and two samples of the nonparametric problems. To propose the PTT, the sign

test was used for the final test while the Wilcoxon rank test was used for the

pre-test on the uncertain NSPI. The performance (size and power) of the PTT

was investigated for small and large sample sizes. The size and power of the

PTT were plotted against the preassigned significance level. As the sample size

increases, the size of the PTT tends to the value of the preassigned significance

level while the power of the test tends to unity.

Consider the simple linear regression in equation (2.2.1) with normal error

variables. In Saleh and Sen (1982), when primarily interest is to test H†
0 : θ = 0,

the UT, RT and PTT are respectively given by

• AUT
n =

√
n(X̄−β̃c̄)

s?
n

√
1+nc̄2

when β is unspecified. H†
0 is rejected if AUT

n > tn−2,α2 .

• ART
n =

√
nX̄
sn

when β = 0. H†
0 is rejected if ART

n > tn−1,α1 .

• The PTT is a choice of the UT or RT which depends on the acceptance

or rejection of H
(1)
0 : β = 0. If H

(1)
0 with test statistic APT

n =
√

Qnβ̃
s?
n

is

rejected (i.e. APT
n > tn−2,α3), the AUT

n is used to test H†
0, else ART

n is used.

Here tm,α is the upper 100α% critical point of the Student’s t distribution

function with m degrees of freedom, X̄ = 1
n

∑n
i=1 Xi, s2

n =
∑n

i=1(Xi−X̄)2

n−1
, β̃ =

∑n
i=1 Xi(ci−c̄n)

Qn
, s?

n
2 =

∑n
i=1(Xi−X̄−β̃(ci−c̄n))2

n−2
, c̄n = 1

n

∑n
i=1 ci, Qn =

∑n
i=1(ci − c̄n)2.
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In the same spirit, the study on the performance of the UT, RT and PTT

has been extended to the parallelism model by Lambert et al. (1985b). Instead

of assuming normal error variables, tests have been formulated based on the LS

estimators which do not rely on the assumption that the observations follow a

specified probability distribution. In their paper, the testing on the equality

of intercepts is the primary interest and it may depend on the equality of the

slopes. However, the LS estimators for the regression coefficients are identical

to the maximum likelihood (ML) estimators when the distribution of the error

terms is normal. It is suspected that the statistical tests based on LS estimators

also deliver the same properties as the tests based on ML estimators, that is,

these tests are powerful only if normality holds.

The UT, RT and PTT proposed using the nonparametric rank tests were

studied by Saleh and Sen (1982) for the simple regression model. Note, the

robust R-estimates are derived from the rank tests (Huber, 1981, p.281). In

the paper, the primary interest is to test the significance of the intercept pa-

rameter (testing intercept at 0) that obviously depends on the choices of the

slope parameter. However, the study of significance testing on the intercept

parameter is less realistic compared to the problem of testing any arbitrary val-

ues (including 0) on the intercept and slope. The effect of the pre-test (on the

slope) on the size and power of the final test (on the intercept) was investigated

in Saleh and Sen (1982) paper. In the findings, the PTT is preferable to the

RT for the consideration of asymptotic size, though the UT remains as the best

choice. For the consideration of asymptotic power, the PTT is preferable to

the UT. However, there are some limited discussions of the investigation into

the power of the PTT discussed in the paper. Although the analytical analysis

is important and was discussed in the paper, the graphical representation was

not given, probably due to the limitation in the computation of the bivariate

normal integral at the time the paper was published.

Saleh and Sen (1983) also proposed the UT, RT and PTT using nonpara-
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metric rank tests for the problem of testing the significance of the intercept

vector when there is an uncertain NSPI on the slope vector of the multivariate

simple regression model. The effect of the pre-test on the performance of the

final test was studied in the paper and the asymptotic size and power of the

UT, RT and PTT were derived. The paper does not provide any computational

comparisons (table or graph) of the power function for the three tests to support

the analytical results discussed. In order to compute the size and power of the

PTT, a bivariate noncentral chi-square distribution is required. The nonex-

istence tools to compute the probability integral of the bivariate noncentral

chi-square distribution may be the reason for not pursuing the computational

or graphical comparisons. Moreover, in the analytical part, the authors claimed

that in terms of the asymptotic power, the PTT may have larger power than

that of the UT without providing proof. The statement given was not strongly

supported, and furthermore it does not mean that the PTT always has larger

power than that of the UT. More discussions on the power comparisons are

provided in Chapter 4 of this thesis.

To my knowledge, no study on the performance (size and power) of the UT,

RT and PTT for tests formulated using the robust M-estimation methodology

can be found in the literature.

2.6 Contiguity

An important concept that dominates the asymptotic theory of statistics is the

contiguity of probability measures (c.f. Jurečková and Sen, 1996, p.61). Conti-

guity arguments are a technique to obtain the limit distribution of a sequence

of statistics under the alternative hypothesis from a limiting distribution under

the null hypothesis (van der Vaart, 1998, p.85). A comprehensive account of

this concept and its impact on asymptotic is given in Hájek et al. (1999).

Definition Let {pv} be the sequence of simple hypothesis densities and {qv}
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be the sequence of simple alternative hypothesis. A sequence {pv, qv} is defined

on measure spaces (Xv, Av), v ≥ 1. If for any sequence of events {Av}, Av ∈ Av,

Pv(Av) → 0 implies Qv(Av) → 0 (2.6.13)

holds as v → ∞, we say the densities {qv} are contiguous to the densities

{pv}, where {Qv} and {Pv} are sequences of simple hypothesis probabilities

corresponding respectively to {qv} and {pv}.

Contiguity implies that any sequence of random variables converging to zero in

Pv-probability converges to zero in Qv-probability, v → ∞. Generally, we are

interested in the asymptotic distribution of statistics {Tv(X)}. Then, conver-

gence of {Tv(X)} → 0 under {Pv} implies {Tv(X)} → 0 under {Qv} if {Qv}
is contiguous to {Pv} (c.f. Saleh, 2006, p.44). The Le Cam’s first, second and

third lemmas are provided in the Appendix A.2.

The concept of contiguity is more popular in R-estimation (rank statistic)

than in M-estimation. However, Sen (1982) uses the contiguity of probabil-

ity measures under sequence of alternative hypothesis to those under the null

hypothesis to find the asymptotic distribution of test statistics under the alter-

native hypothesis. For many years, contiguity probability measures have been

used to obtain the asymptotic theory of the PTE (see Saleh, 2006, p.201) that

is based on rank tests.
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2.7 Bivariate Noncentral Chi-square Distribu-

tion

The bivariate noncentral chi-square distribution is involved in the power func-

tion of the proposed tests for some studies in the pre-testing area (Saleh and

Sen, 1983, Lambert et al., 1985a). However, the computational illustrations for

the size and power of the tests were not given in these studies presumably due

to the difficulties to compute the complicated form of the distribution of the

bivariate noncentral chi-square found in the literature.

There have been a number of proposals and investigations into compound

distributions that are derived by compounding several probability distributions

in the literature (Dubey, 1970, Hutchinson, 1981, Khan, 2000, Gerstenkorn,

2004). Most of the papers are based on developing theoretical ideas about

the proposed distribution rather than dealing with the computational aspect.

Although there is a suggestion of deriving the bivariate noncentral chi-square

distribution by compounding the Poisson probabilities with the bivariate cen-

tral chi-square distributions in Kotz et al. (2000, p.475), the density function of

this bivariate noncentral chi-square distribution is not provided in their com-

prehensive text.

More or less, the idea of constructing the compound distribution seems

parallel to the idea of generating a distribution function from a mixture of dis-

tributions. The distribution of the noncentral bivariate chi-square as a mixture

of bivariate central chi-square distribution with Poisson probabilities has been

proposed by Marshall and Olkin (1990). For various reasons, however their

proposed bivariate noncentral chi-square distribution is not practical for com-

putation. By choosing an appropriate central bivariate chi-square distribution

to be compounded with the Poisson probabilities, a different density function of

the noncentral bivariate chi-square distribution is defined in Yunus and Khan

(2009). The proposed distribution is more meaningful than the previous one,
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from a computational point of view.

There is a small number of proposed bivariate noncentral chi-square distri-

butions in the literature. Some work in this area is theoretical and provides no

computational illustration of the distribution. For example, Royen (1995) pro-

posed a distribution which is too complicated for computation. A theoretical

paper on bivariate noncentral chi distribution was also proposed by Krishnan

(1967) but it is only possible under some strict restrictions. Kocherlakota and

Kocherlakota (1999) approximated the distribution of the bivariate noncentral

chi-square by using some transformations on the variables of the bivariate cen-

tral chi-square distribution. Dharmawansa and McKay (2009) derived the joint

density of the noncentral bivariate and trivariate chi-square distribution cor-

responding to the diagonal elements of a complex noncentral Wishart matrix.

However, in some cases, we may not have our variables in Wishart matrix form

together with its distribution parameters that are required in the computa-

tion of the density function of their proposed bivariate noncentral chi-square

distribution.

In this thesis, the following bivariate noncentral chi-square distribution sug-

gested by Yunus and Khan (2009) is used: For the random variables (Y1, Y2)

the density of a bivariate noncentral chi-square distribution is defined as

φ?(y1, y2) =
∞∑

j=0

∞∑

λ1=0

∞∑

λ2=0

fw(y1, y2, ρ
2)

e−θ1/2(θ1/2)λ1

λ1!

e−θ2/2(θ2/2)λ2

λ2!
, (2.7.14)

where

fw(w1, w2, ρ
2) = (1− ρ2)

m
2

∞∑
j=0

Γ(m
2

+ j)ρ2j(w1w2)
m
2

+j−1e
− w1+w2

2(1−ρ2)

Γ(m
2
)j!

[
2

m
2

+jΓ(m
2

+ j)(1− ρ2)
m
2

+j
]2 (2.7.15)

is the density of the bivariate central chi-square distribution (Krishnaiah et al.,

1963) with m/2 + j degree of freedom, θ1 and θ2 are the noncentrality param-

eters, ρ2 is the correlation coefficient between (Z1j, Z2j), j = 1, . . . ,m with

Zij ∼ N(0, 1), i = 1, 2 and Wi =
∑m

j=1 Z2
ij, i = 1, 2 is the chi-square random

variable.
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2.8 Notation

The notations used for one Chapter should not be referred to in the other

Chapters.
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3.1 Introduction

In the study of energy usage in a production plant, the relationship between

electricity consumption and production output can be modeled by a simple

regression model (see Kent, 2008) with electricity consumption as the response

and production output as the independent explanatory variables. Obviously

the electricity consumption will increase as the production level goes up. The

level of electricity consumption when no effective production is taking place

is known as the base load. The base load is related to the electricity used in

lighting, heating, cooling, office equipment, machine repairs and maintenance.

Since the base load is unrelated to the production output, reduction in the base

load is profitable to the manufacturer (Kent, 2008).

Consider a simple regression model of n observable random variables, Xi, i =

1, . . . , n,

Xi = θ + βci + ei, (3.1.1)

where the errors ei’s are from an unspecified symmetric and continuous dis-

tribution function, Fi, i = 1, . . . , n, the ci’s are known real constants of the

explanatory variable and θ and β are the unknown intercept and slope param-

eters respectively.

The management of the production plant may wish to test whether the base

load is equal to a specified value while they are not sure about the value of the

slope parameter. In this situation, three different scenarios associated with

the value of the slope are considered: the slope would either be (i) completely

unspecified, or (ii) specific fixed constant, or (iii) uncertain, but suspected to be

a fixed quantity from previous knowledge or expert assessment. For the three

possible choices of the slope, the three statistical tests are appropriate, namely

the (i) unrestricted test (UT), (ii) restricted test (RT) and (iii) pre-test test

(PTT) respectively.

Without loss of generosity, we consider the significance testing of the inter-
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cept parameter under various conditions on the slope parameter. Testing the

intercept of a simple regression model depends on the knowledge of the slope.

To simplify,

(i) for the UT, denote φUT
n as the test function for testing H

(1)
0 : θ = 0 against

H
(1)
A : θ > 0 when β is unspecified,

(ii) for the RT, denote φRT
n as the test function for testing H

(1)
0 : θ = 0 against

H
(1)
A : θ > 0 when β is 0 (specified) and

(iii) for the PTT, denote φPTT
n as the test function for testing H

(1)
0 : θ = 0

against H
(1)
A : θ > 0 following a pre-test (PT) on the slope. As for the PT,

let φPT
n be the test function for testing H

(2)
0 : β = 0 against H

(2)
A : β > 0,

essential for the PTT on θ. Thus, the PTT is a choice between the UT

and the RT. If the null hypothesis H
(2)
0 is rejected in the pre-test (PT),

then the UT is used, otherwise the RT is used.

The rest of the chapter is organized as follows. The method of M-estimation is

presented in Section 3.2. In Section 3.3, the UT, RT and PTT are defined. The

asymptotic distributions of the proposed test statistics are derived in Section

3.4. In Section 3.5, the asymptotic power functions of the tests are provided.

The analytical comparisons of the power functions of the UT, RT and PTT are

given in Section 3.6 and comparisons of the power function of the UT, RT and

PTT through simulation examples are provided in Section 3.7. The first seven

Sections of this Chapter are devoted to testing the significance of the intercept

and slope.

In Section 3.8, the UT, RT and PTT for testing the intercept at any arbi-

trary value (including zero) are proposed. Similarly, the asymptotic distribu-

tions of the test statistics and their power functions are derived. The analytical

and graphical comparisons of the UT, RT and PTT are provided in the same

Section. In Section 3.9, the use of the UT, RT and PT is demonstrated on a
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real data set. Discussion and conclusions are presented in the final Section of

this Chapter.

3.2 The M-estimation

Given an absolutely continuous function ρ : < → <, M-estimator of θ and β is

defined as the values of θ and β that minimize the objective function

n∑
i=1

ρ

(
Xi − θ − βci

Sn

)
. (3.2.1)

Here Sn is an appropriate scale statistic for some functional S = S(F ) > 0. If

F is N(0, σ2), Sn = MAD/0.6745 is an estimate of S = σ, where MAD is the

mean absolute deviation (Wilcox, 2005, p.78, Montgomery et al., 2001, p.387).

The M-estimator of θ and β can also be defined as the solution of the system

of equations,

∑n
i=1 ψθ(Xi) =

∑n
i=1 ψ

(
Xi−θ−βci

Sn

)
= 0,

∑n
i=1 ψβ(Xi) =

∑n
i=1 ciψ

(
Xi−θ−βci

Sn

)
= 0,

(3.2.2)

where ψ(·) is known as the score function. If ρ is differentiable with partial

derivatives ψθ = ∂ρ/∂θ and ψβ = ∂ρ/∂β, then the M-estimators that minimize

the function in (3.2.1) are the solutions to the system (3.2.2). By contrast, the

M-estimators obtained from solving system (3.2.2) may not minimize equation

(3.2.1) (c.f Carroll and Ruppert, 1988, p.210). The system of equations (3.2.2)

may have more roots, while only one of them leads to a global minimum of

(3.2.1).

Consider that

(a) ψ is nondecreasing and skew symmetric that is ψ(−x) = −ψ(x),

(b) the error, ei has distribution F which is continuous and symmetric about

0.
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The distribution F has finite Fisher information,

I(f) =

∫ ∞

−∞
{f ′(x)/f(x)}2dF (x), (3.2.3)

where f ′(x) = (d/dx)f(x) = (d2/dx2)F (x). Assume that

(i) finite constants c̄ and C?(> 0) exist such that

lim
n→∞ c̄n = c̄ and lim

n→∞
n−1C?

n
2 = C?2, (3.2.4)

where c̄n = n−1
∑n

i=1 ci and C?
n
2 =

∑n
i=1 c2

i − nc̄2
n both exist.

(ii) the ci’s are all bounded, so that by (i),

max
1≤i≤n

(ci − c̄n)2/C?
n
2 → 0, as n →∞. (3.2.5)

We may write (3.1.1) as

X = Cn


 θ

β


 + e, (3.2.6)

where X = (X1 . . . Xn)′ and

C ′
n =


 1 1 · · · 1

c1 c2 · · · cn


 .

Note,

lim
n→∞

1

n
C ′

nCn = lim
n→∞

1

n


 n

∑n
i=1 ci

∑n
i=1 ci

∑n
i=1 c2

i


 =


 1 c̄

c̄ C?2 + c̄2


 = C ′C.

Some articles found in the literature, for example Goodall (1983) investi-

gated how to choose a ψ-function for good resistant and robustness of efficiency.

It was found that the influence function (IF ) of the M-estimator was propor-

tional to the ψ-function (Huber, 1981, p.45) or in other words the IF and ψ

have the same shape. The influence function was introduced by Hampel (1968,

1974), indicating the effect on an estimate of adding or deleting an observa-

tion in large sample. The mathematical definition is given in many text books
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including Hoaglin et al. (1983, p.354), Wilcox (2005, p.25) and Huber (1981,

p.13). Adapting Corollary 2 of Goodall (1983, p.354) that is used for a location

model with a fixed scale to a simple regression model together with assumptions

(a) and (b) given above, we find

IF (X; F ; S) =
ψ

(
X−θ−βc

S

)

γ
, (3.2.7)

where

γ = E

[
ψ′

(
X − θ − βc

S

)]

=
1

S

∫ ∞

−∞
ψ′

(
X − θ − βc

S

)
dF (X − θ − βc).

(3.2.8)

Note, for a large sample size, we drop “i” in Xi and “n” in Sn.

A bounded, skew symmetric and continuous ψ-function are among the

criteria for choosing a robust M-estimator (see Goodall, 1983, p.365). The

ψ-function of the ML (maximum likelihood) method, ψML(Ui) = Ui, where

Ui = Xi−θ−βci

Sn
is a straight unbounded line, as illustrated in Figure 3.1, so that

the MLE is sensitive to any observations and in particular, is adversely affected

by outliers. The ψ-function of Huber’s method is denoted by ψH(Ui) = Ui if

|Ui| ≤ k1, otherwise it is k1 sign(Ui), where k1 is the tuning constant that fine-

tunes the robustness of Huber’s method. The ψH(Ui) is a bounded function

(see Figure 3.1), so outliers do not adversely affect the parameter estimation.

Note, γ is a positive constant in equation (3.2.7), which means the size but

not the shape of the influence function depends on the underlying distribution.

Note, if the ML ψ-function is used, then γ = 1/S. If the Huber ψ-function is

used, then γ = F (k1)/S − F (−k1)/S, when |U | < k1, or 0 when |U | > k1.

For a large sample, assume

E

[
ψ

(
X − θ − βc

S

)]
=

∫ ∞

−∞
ψ

(
X − θ − βc

S

)
dF (X − θ − βc) = 0. (3.2.9)
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To achieve a zero mean of the ψ(·) function, we may need assumptions (a) and

(b). Then, let

σ2
0 =

∫
ψ2

(
X − θ − βc

S

)
dF (X − θ − βc), (3.2.10)

which means σ2
0 is the second moment of ψ(·) or σ2

0 = E
[
ψ2

(
X−θ−βc

S

)]
. Obvi-

ously for the ψML, σ2
0 =

∫ (
X−θ−βc

S

)2
dF (X − θ − βc).

In a large sample, another important property of an estimator is its asymp-

totic variance. For the M-estimation, under appropriate regularity conditions

(see Huber, 1964, Lemma 4 or Huber, 1981, equation (6.3)), there is a special

link between the asymptotic covariance and the IF which is given by

AC(X; F ) =
E

[
ψ2

(
X−θ−βc

S

)]
{
E

[
ψ′

(
X−θ−βc

S

)]}2 [C ′C]
−1

=

∫ ∞

−∞
IF (X; F )2dF (X − θ − βc) [C ′C]

−1

=
σ2

0

γ2
[C ′C]

−1
. (3.2.11)

The MLE is an unbiased estimator of θ and β when F is N(0, σ2). If the ψML

is used,

ACML =

∫ ∞

−∞
(X − θ − βc)2dF (X − θ − βc) = σ2 [C ′C]

−1
. (3.2.12)

For any real numbers a and b, consider the following statistics,

Mn1(a, b) =
n∑

i=1

ψ

(
Xi − a− bci

Sn

)
, Mn2(a, b) =

n∑
i=1

ciψ

(
Xi − a− bci

Sn

)
.

Let θ̃ be the constrained M-estimator of θ when β = 0, that is θ̃ is the solution of

Mn1(a, 0) = 0 with respect to a. Similarly, let β̃ be the constrained M-estimator

of β when θ = 0, that is β̃ is the solution of Mn2(0, b) = 0 with respect to b. In

other words,

Mn1(θ̃, 0) = 0 (3.2.13)

Mn2(0, β̃) = 0. (3.2.14)
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ψML
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(a) Maximum Likelihood ψ-function

   

   

ψH

U||

−k k

(b) Huber ψ-function

Figure 3.1: Graphs of ψ-functions

For a nondecreasing monotone ψ : < → < function, Mn1(a, 0) is nonincreasing

in a and Mn2(0, b) is nonincreasing in b (c.f. Jurečková and Sen, 1981, p.85).

Thus, it may be convenient to write

θ̃ = [sup{a : Mn1(a, 0) > 0} + inf{a : Mn1(a, 0) < 0}]/2 (3.2.15)

and

β̃ = [sup{b : Mn2(0, b) > 0}︸ ︷︷ ︸
b1

+ inf{b : Mn2(0, b) < 0}︸ ︷︷ ︸
b2

]/2. (3.2.16)

Any value b1 < b < b2 can serve as the estimate of Mn2(0, b). Figure 3.2(a) ex-

hibits the interpretation of b1 and b2. In Figures 3.2(b)-(d), statistic Mn2(0, b) is

plotted with respect to b for three different ψ-functions. For the nondecreasing

(monotone) ML and Huber ψ-functions (see Figures 3.2(b) and 3.2(c)), statistic

Mn2(0, b) is nonincreasing in b. The non monotone Tukey ψ-function is given

by ψT (Ui) = (Ui/k2)[1 − (Ui/k2)
2]2 if Ui/k2 ≤ 1 otherwise it is 0. Here, k2 is

the tuning constant for the Tukey ψ-function. The statistic Mn2(0, b) is non

monotone in b for the Tukey ψ-function (see Figure 3.2(d)).
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∑
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∑

ψT (0, b)

Figure 3.2: Graphs of Mn2(0, b) functions
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Since Sn is an estimate of S, following Jurečková and Sen (1996, p.217), we

write

n
1
2 (Sn − S) = Op(1). (3.2.17)

If S is known or if we consider the nonstudentized M-estimator, we may omit

this condition.

In this thesis, the asymptotic results of Sen (1982) and Jurečková and Sen

(1996, p.221) (see equations B.1.3, B.1.4 and B.1.5 in Appendix B.1) are used to

derive the distributions of the proposed tests. For simplicity, we omit condition

(3.2.17) and let Sn = S in equation (5.5.29) of Jurečková and Sen (1996, p.221).

Sen (1982) shows that the asymptotic distribution of

n−
1
2 Mn2(θ̃, 0)

d→ N(0, σ2
0C

?2) (3.2.18)

under H
(2)
0 : β = 0 when the nonstudentized M-estimator is considered. The

consistency of S
(3)
n

2
= n−1

∑n
i=1 ψ2

(
Xi−θ̃

Sn

)
as an estimator of σ2

0 follows from

Jurečková and Sen (1981). Hence, a test statistic An = Mn2(θ̃, 0)[C?
n S

(3)
n ]−1 is

proposed by Sen (1982). The advantage of this test statistic (score-type M-test)

is that it does not require the computation of the unrestricted M-estimates or

the estimation of functional γ.

In the same way, it is easy to show that the asymptotic distribution of

n−
1
2 Mn1(0, β̃)

d→ N(0, σ2
0C

?2/{C?2 + c̄2}) (3.2.19)

under H
(1)
0 : θ = 0. By the same token, the consistency of S

(1)
n

2
= n−1

∑n
i=1 ψ2

(
Xi−β̃ci

Sn

)
as an estimator of σ2

0 follows.

3.3 The UT, RT and PTT

3.3.1 The Unrestricted Test (UT)

If β is unspecified, the designated test function is φUT
n with the null hypothesis

H
(1)
0 : θ = 0 against the alternative hypothesis H

(1)
A : θ > 0. The testing for
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θ involves the elimination of the nuisance parameter β. We consider the test

statistic TUT
n = Mn1(0, β̃), where β̃ is a constrained M-estimator defined in

equation (3.2.16). It follows from equation (3.2.19) that under H
(1)
0 ,

TUT
n /

√
C

(1)
n S

(1)
n

2 d→ N(0, 1) (3.3.1)

as n → ∞, with C
(1)
n = n − n2c̄2

n/
∑

c2
i = nC?

n
2/(C?

n
2 + nc̄2

n). We choose

α1 (0 < α1 < 1) such that for large n,

P [TUT
n > `UT

n,α1
|H(1)

0 : θ = 0] = α1, (3.3.2)

where `UT
n,α1

is the critical value of TUT
n at the α1 level of significance. Let ταi

be

the upper 100αith percentile and Φ(·) be the cumulative distribution function

of the standard normal distribution. Then

Φ(ταi
) = 1− αi, for 0 < αi < 1, i = 1, 2, 3. (3.3.3)

Using (3.3.1), (3.3.2) and (3.3.3),

1− α1 = P [TUT
n ≤ `UT

n,α1
] = P




n−1/2TUT
n√

1
n
S

(1)
n

2 nC?
n

2

C?
n

2+nc̄2n

≤ n−1/2`UT
n,α1√

1
n
S

(1)
n

2 nC?
n

2

C?
n

2+nc̄2n




p→ P


 n−1/2TUT

n√
σ2

0
C?2

C?2+c̄2

≤ n−1/2`UT
n,α2√

σ2
0

C?2

C?2+c̄2


 = Φ


 n−1/2`UT

n,α1√
σ2

0
C?2

C?2+c̄2


 .

(3.3.4)

We observe that as n →∞,

n−1/2`UT
n,α1

/

√
S

(1)
n

2
C

(1)
n /n

p→ τα1 = n−1/2`UT
n,α1

/

√
σ2

0C
?2/(C?2 + c̄2) (say).

(3.3.5)

So, for the test function φUT
n = I(TUT

n > `UT
n,α1

), the power function of the UT

becomes ΠUT
n (θ) = E(φUT

n |θ) = P (TUT
n > `UT

n,α1
|θ), where I(A) stands for the

indicator function of the set A. It takes value 1 if A occurs, otherwise it is 0.
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3.3.2 The Restricted Test (RT)

If β = 0, the designated test function is φRT
n for testing the null hypothesis

H
(1)
0 : θ = 0 against the alternative hypothesis H

(1)
A : θ > 0. The proposed test

statistic is TRT
n = Mn1(0, 0). Note that for large n, under H0 : θ = 0, β = 0,

n−
1
2 TRT

n /

√
S

(2)
n

2 d→ N(0, 1), (3.3.6)

where S
(2)
n

2
= n−1

∑
ψ2(Xi/Sn). For a large sample size, we find

P [TRT
n > `RT

n,α2
|H0 : θ = 0, β = 0] = α2, (3.3.7)

where `RT
n,α2

is the critical value of TRT
n at the α2 level of significance. Using

equations (3.3.3), (3.3.6) and (3.3.7), we obtain

1− α2 = P [TRT
n ≤ `RT

n,α2
] = P

[
n−1/2TRT

n /

√
S

(2)
n

2 ≤ n−1/2`RT
n,α2

/

√
S

(2)
n

2
]

p→ P
[
n−1/2TRT

n /
√

σ2
0 ≤ n−1/2`RT

n,α2
/
√

σ2
0

]
= Φ(n−1/2`RT

n,α2
/σ0).

Thus as n →∞ we have

n−1/2`RT
n,α2

/

√
S

(2)
n

2 p→ τα2 = n−1/2`RT
n,α2

/
√

σ2
0 (say). (3.3.8)

Then, for the test function φRT
n = I(TRT

n > `RT
n,α2

), the power of the RT becomes

ΠRT
n (θ) = E(φRT

n |θ) = P (TRT
n > `RT

n,α2
|θ).

3.3.3 The Pre-test (PT)

For the pre-test on the slope, the test function, φPT
n is designed to test the null

hypothesis H
(2)
0 : β = 0 against the alternative hypothesis H

(2)
A : β > 0. The

proposed test statistic is T PT
n = Mn2(θ̃, 0), where θ̃ is a constrained M-estimator

(given in equation (3.2.15)). Under H
(2)
0 , it follows from equation (3.2.18) that

T PT
n /

√
C

(3)
n S

(3)
n

2 d→ N(0, 1) (3.3.9)

as n →∞, with C
(3)
n =

∑
c2
i − nc̄2

n = C?
n
2.



3.3. THE UT, RT AND PTT 55

The consistency of S
(1)
n

2
, S

(2)
n

2
and S

(3)
n

2
as estimators of σ2

0 follows from the

law of large numbers (c.f. Jurečková and Sen, 1981).

Similarly, as n →∞,

P [T PT
n > `PT

n,α3
|H(2)

0 : β = 0] = α3. (3.3.10)

In the same manner, using (3.3.3), (3.3.9) and (3.3.10), we find that as

n →∞,

n−1/2`PT
n,α3

/

√
S

(3)
n

2
C?

n
2/n

p→ τα3 = n−1/2`PT
n,α3

/

√
σ2

0C
?2 (say), (3.3.11)

where `PT
n,α3

is the critical value of T PT
n at the α3 level of significance.

3.3.4 The Pre-test Test (PTT)

Now, we are in a position to formulate a test function φPTT
n to test H

(1)
0 : θ = 0

following a pre-test on β. We write

φPTT
n = I

[
(T PT

n ≤ `PT
n,α3

, TRT
n > `RT

n,α2
) or (T PT

n > `PT
n,α3

, TUT
n > `UT

n,α1
)
]

(3.3.12)

as the test function for testing H
(1)
0 : θ = 0 after a pre-test on β. The function

enables us to define the power of the test φPTT
n , that is given by

ΠPTT
n (θ) = E(φPTT

n |θ)
= P [T PT

n ≤ `PT
n,α3

, TRT
n > `RT

n,α2
|θ] + P [T PT

n > `PT
n,α3

, TUT
n > `UT

n,α1
|θ].
(3.3.13)

In general, the power function of the PTT depends on α1, α2, α3, θ, n as well as

β. Note, the size of the PTT is a special case of the power function of the PTT

when θ = 0. Since the nuisance parameter β is unknown, but, suspected to be

close to 0, it is of interest to study the dependence of both αPTT
n and ΠPTT

n (θ)

on β (close to 0).
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3.4 Asymptotic Distributions under Local Al-

ternatives

The contiguity concept is utilized to derive the asymptotic distributions of

statistics n−
1
2 [ TRT

n , T PT
n ] and n−

1
2 [ TUT

n , T PT
n ] under Kn (defined in Theorem

3.4.1). The concept of contiguity is more popular in R-estimation (rank statis-

tic) than in M-estimation. However, Sen (1982) used the contiguity of proba-

bility measures under Hn : β = n−
1
2 λ to those under H ′

0 : β = 0 to find the

asymptotic distribution of n−
1
2 [Mn1(θ, 0),Mn2(θ, 0)] under Hn.

Theorem 3.4.1 Let {Kn} be a sequence of local alternative hypotheses, where

Kn : (θ, β) = (n−
1
2 λ1, n

− 1
2 λ2), (3.4.1)

with λ1 =
√

nθ ≥ 0, λ2 =
√

nβ ≥ 0 are fixed real numbers. Under {Kn}, for

large sample,

(i)

n−1/2


 TRT

n

T PT
n


 d→ N2





 γ(λ1 + λ2c̄)

γλ2C
?2


 , σ2

0


 1 0

0 C?2





 , (3.4.2)

(ii)

n−1/2


 TUT

n

T PT
n


 d→ N2







γλ1C?2

C?2+c̄2

γλ2C
?2


 , σ2

0




C?2

C?2+c̄2
− c̄C?2

C?2+c̄2

− c̄C?2

C?2+c̄2
C?2





 .

(3.4.3)

Proof of part (i) of Theorem 3.4.1: Following Jurečková and Sen (1996,

p.259), let {Pn} and {Qn} denote the probability distributions with the den-

sities pn =
∏n

i=1 f(Xi) and qn =
∏n

i=1 f(Xi − n−
1
2 λ1 − n−

1
2 λ2ci) of the null

hypothesis H0 and the alternative hypothesis Kn, respectively. Note that under

(3.1.1), (3.2.4), (3.2.5) and (3.4.1), the contiguity of the sequence of probabil-

ity measures under {Kn} to those under H0 follows from Le Cam’s first and



3.4. ASYMPTOTIC DISTRIBUTIONS UNDER LOCAL ALTERNATIVES57

second lemmas (Hájek et al., 1999, Ch.7). We are interested in the asymptotic

distribution of the joint statistics
[
n−

1
2 TRT

n , n−
1
2 T PT

n

]
. Here, convergence of[

n−
1
2 TRT

n , n−
1
2 T PT

n

]
+ Υ → [0, 0] under H0 implies

[
n−

1
2 TRT

n , n−
1
2 T PT

n

]
+ Υ →

[0, 0] under {Kn} since the probability measures under {Kn} are contiguous to

those under H0 (c.f. Saleh, 2006, p.44). Here, Υ is a known vector.

Under H0 : θ = 0, β = 0, with relation to (B.1.4) and (B.1.5),

n−1/2Mn2(θ̃, 0) = n−1/2Mn2(0, 0)− n
1
2 γθ̃c̄ + op(1) and (3.4.4)

n−1/2Mn1(θ̃, 0) = n−1/2Mn1(0, 0)− n
1
2 γθ̃ + op(1). (3.4.5)

Recalling definition (3.2.15), the equation (3.4.5) reduces to

n−1/2Mn1(0, 0) = n
1
2 γθ̃ + op(1), (3.4.6)

and hence the equation (3.4.4) becomes

n−1/2Mn2(θ̃, 0) = n−1/2Mn2(0, 0)− n−1/2Mn1(0, 0)c̄ + op(1). (3.4.7)

Therefore, under H0, we find


 n−1/2Mn1(0, 0)

n−1/2Mn2(θ̃, 0)


−


 1 0

−c̄ 1





 n−1/2Mn1(0, 0)

n−1/2Mn2(0, 0)


 p→


 0

0


 . (3.4.8)

Now utilizing the contiguity of probability measures under {Kn} to those under

H0, the equation (3.4.8) implies that [n−1/2Mn1(0, 0), n−1/2Mn2(θ̃, 0)]′ under

{Kn} is asymptotically equivalent to the random vector


 1 0

−c̄ 1





 n−

1
2 Mn1(0, 0)

n−
1
2 Mn2(0, 0)




under H0. But the asymptotic distribution of the above random vector under

{Kn} is the same as


 1 0

−c̄ 1





 n−

1
2 Mn1(−n−

1
2 λ1,−n−

1
2 λ2)

n−
1
2 Mn2(−n−

1
2 λ1,−n−

1
2 λ2)
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under H0 due to the fact that the distribution of Mn1(a, b) under θ = a, β = b

is the same as that of Mn1(θ − a, β − b) under θ = 0, β = 0, and similar to

Mn2(0, 0) (c.f. Saleh, 2006, p.332)

Note that under H0 : θ = 0, β = 0, with relation to (B.1.4) and (B.1.5),

n−
1
2 Mn1(−n−

1
2 λ1,−n−

1
2 λ2) = n−

1
2 Mn1(0, 0)− γ(λ1 + λ2c̄) + op(1) and

n−
1
2 Mn2(−n−

1
2 λ1,−n−

1
2 λ2) = n−

1
2 Mn2(0, 0)− γ{λ1c̄ + λ2(C

?2 + c̄2)}+ op(1).

Hence, under H0, n−
1
2 [Mn1(−n−

1
2 λ1,−n−

1
2 λ2),Mn2(−n−

1
2 λ1,−n−

1
2 λ2)]

′

d→ N2





 γ(λ1 + λ2c̄)

γ{λ1c̄ + λ2(C
?2 + c̄2)}


 , σ2

0


 1 c̄

c̄ C?2 + c̄2





 (3.4.9)

by equation (B.1.3).

Thus, the distribution of n−
1
2 [TRT

n , T PT
n ]′ = n−

1
2 [Mn1(0, 0), Mn2(θ̃, 0)]′ under

{Kn} is bivariate normal with mean vector


 1 0

−c̄ 1





 γ(λ1 + λ2c̄)

γ{λ1c̄ + λ2(C
?2 + c̄2)}


 =


 γ(λ1 + λ2c̄)

γλ2C
?2




and covariance matrix

 1 0

−c̄ 1


 σ2

0


 1 c̄

c̄ C?2 + c̄2





 1 0

−c̄ 1



′

= σ2
0


 1 0

0 C?2


 . (3.4.10)

Since the two statistics n−
1
2 TRT

n and n−
1
2 T PT

n are uncorrelated, asymptotically,

they are independently distributed normal variables.

Proof of part (ii) of Theorem 3.4.1: Under H0 : θ = 0, β = 0, using equa-

tions (3.2.16), (3.4.7), (B.1.4) and (B.1.5), as n →∞,


 n−

1
2 Mn1(0, β̃)

n−
1
2 Mn2(θ̃, 0)


−


 1 − c̄

C?2+c̄2

−c̄ 1





 n−

1
2 Mn1(0, 0)

n−
1
2 Mn2(0, 0)


 p→


 0

0


 . (3.4.11)

Now by using the contiguity of probability measures under {Kn} to those un-

der H0, the equation (3.4.11) implies that [n−
1
2 Mn1(0, β̃), n−

1
2 Mn2(θ̃, 0)]′ under
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{Kn} is asymptotically equivalent to the random vector


 1 − c̄

C?2+c̄2

−c̄ 1





 n−

1
2 Mn1(0, 0)

n−
1
2 Mn2(0, 0)


 .

But the asymptotic distribution of the above random vector under {Kn} is the

same as 
 1 − c̄

C?2+c̄2

−c̄ 1





 n−

1
2 Mn1(−n−

1
2 λ1,−n−

1
2 λ2)

n−
1
2 Mn2(−n−

1
2 λ1,−n−

1
2 λ2)




under H0. Then it follows that by equation (3.4.9), n−
1
2 [TUT

n , T PT
n ]′ = n−

1
2 [Mn1

(0, β̃), Mn2(θ̃, 0)]′ is bivariate normal with mean vector


 1 − c̄

C?2+c̄2

−c̄ 1





 γ(λ1 + λ2c̄)

γ{λ1c̄ + λ2(C
?2 + c̄2)}


 =


 γλ1C

?2/(C?2 + c̄2)

γλ2C
?2




and covariance matrix

 1 − c̄

C?2+c̄2

−c̄ 1


 σ2

0


 1 c̄

c̄ C?2 + c̄2





 1 − c̄

C?2+c̄2

−c̄ 1



′

= σ2
0


 C?2/(C?2 + c̄2) −c̄ C?2/(C?2 + c̄2)

−c̄ C?2/(C?2 + c̄2) C?2


 . (3.4.12)

Clearly, the two test statistics n−
1
2 TUT

n and n−
1
2 T PT

n are not independent, but

rather correlated.

3.5 Local Asymptotic Power Functions

In this Section, the asymptotic power functions of the UT, RT and PTT are

derived by using the results obtained in the previous Sections of this Chapter.

Under {Kn}, the asymptotic power function for the PTT is given by

ΠPTT
n (λ1, λ2) = E(φPTT

n |Kn)

= P [T PT
n ≤ `PT

n,α3
, TRT

n ≥ `RT
n,α2

|Kn] +

P [T PT
n ≥ `PT

n,α3
, TUT

n ≥ `UT
n,α1

|Kn]. (3.5.1)
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Note that

P [T PT
n ≤ `PT

n,α3
, TRT

n > `RT
n,α2

|Kn]

= P


n−

1
2 T PT

n − γλ2C
?2

√
S

(3)
n

2
C?

n
2/n

≤ n−
1
2 `PT

n,α3
− γλ2C

?2

√
S

(3)
n

2
C?

n
2/n

,

n−
1
2 TRT

n − γ(λ1 + λ2c̄)√
S

(2)
n

2
>

n−
1
2 `RT

n,α2
− γ(λ1 + λ2c̄)√
S

(2)
n

2




p→ P

[
n−

1
2 T PT

n − γλ2C
?2

√
σ2

0C
?2

≤ n−
1
2 `PT

n,α3
− γλ2C

?2

√
σ2

0C
?2

,

n−
1
2 TRT

n − γ(λ1 + λ2c̄)√
σ2

0

>
n−

1
2 `RT

n,α2
− γ(λ1 + λ2c̄)√

σ2
0

]
, (3.5.2)

as n → ∞ because the limit of S
(2)
n

2
and S

(3)
n

2
are σ2

0 and C?
n
2/n

p→ C? as

n →∞.

From equations (3.3.3), (3.3.8) and (3.3.11) and (3.4.2), the probability

statement in (3.5.2) becomes

Φ(τα3 − γλ2C
?/σ0)[1− Φ(τα2 − γ(λ1 + λ2c̄)/σ0)].

Note that TRT
n and T PT

n are independent by equation (3.4.2).

Define d(q1, q2 : ρ) to be the bivariate normal probability integral for random

variables x and y,

d(q1, q2; ρ) =
1

2π(1− ρ2)1/2

∫ ∞

q1

∫ ∞

q2

exp

{−(x2 + y2 − 2ρxy)

2(1− ρ2)

}
dxdy, (3.5.3)

where q1, q2 are real numbers and −1 < ρ < 1.

Since S
(1)
n

2
and S

(3)
n

2
both converge to σ2

0, and C
(1)
n /n

p→ C?2/(C?2 + c̄2) as
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n →∞, we observe that

P [T PT
n > `PT

n,α3
, TUT

n > `UT
n,α1

|Kn]

= P


n−

1
2 T PT

n − γλ2C
?2

√
S

(3)
n

2
C?

n
2/n

>
n−

1
2 `PT

n,α3
− γλ2C

?2

√
S

(3)
n

2
C?

n
2/n

,

n−
1
2 TUT

n − γλ1C
?2/(C?2 + c̄2)√

S
(1)
n

2
C

(1)
n /n

>
n−

1
2 `UT

n,α1
− γλ1C

?2/(C?2 + c̄2)√
S

(1)
n

2
C

(1)
n /n




p→ P

[
n−

1
2 T PT

n − γλ2C
?2

√
σ2

0C
?2

>
n−

1
2 `PT

n,α3
− γλ2C

?2

√
σ2

0C
?2

,

n−
1
2 TUT

n − γλ1C
?2/(C?2 + c̄2)√

σ2
0C

?2/(C?2 + c̄2)
>

n−
1
2 `UT

n,α1
− γλ1C

?2/(C?2 + c̄2)√
σ2

0C
?2/(C?2 + c̄2)

]

(3.5.4)

as n →∞. Further, we write equation (3.5.4) as

d(τα3 − γλ2C
?/σ0, τα1 − γλ1

√
C?2/(C?2 + c̄2)/σ0;−c̄/

√
C?2 + c̄2 )

by using equations (3.3.5), (3.3.11), (3.4.3) and (3.5.3). Note that TUT
n and

T PT
n are not independent because of (3.4.3).

Hence, the asymptotic power function for the PTT becomes

ΠPTT
n (λ1, λ2) = E(φPTT

n |Kn) → ΠPTT (λ1, λ2)

= Φ(τα3 − γλ2C
?/σ0)[1− Φ(τα2 − γ(λ1 + λ2c̄)/σ0)] +

d(τα3 − γλ2C
?/σ0, τα1 − γλ1

√
C?2/(C?2 + c̄2)/σ0;−c̄/

√
C?2 + c̄2 ).

(3.5.5)

Similarly, the asymptotic power function for the RT is given by

ΠRT
n (λ1, λ2) = E(φRT

n |Kn) = P [TRT
n > `RT

n,α2
|Kn]

= P


n−

1
2 TRT

n − γ(λ1 + λ2c̄)√
S

(2)
n

2
>

n−
1
2 `RT

n,α2
− γ(λ1 + λ2c̄)√
S

(2)
n

2




p→ P

[
n−

1
2 TRT

n − γ(λ1 + λ2c̄)√
σ2

0

>
n−

1
2 `RT

n,α2
− γ(λ1 + λ2c̄)√

σ2
0

]

(3.5.6)
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since S
(2)
n

2 p→ σ2
0. Combining equations (3.3.3) and (3.3.8), the asymptotic

power function for the RT becomes

ΠRT (λ1, λ2) = 1− Φ(τα2 − γ(λ1 + λ2c̄)/σ0). (3.5.7)

Finally, the asymptotic power function for the UT is obtained as

ΠUT
n (λ1, λ2) = E(φUT

n |Kn) = P [TUT
n > `UT

n,α1
|Kn]

= P


n−

1
2 TUT

n − γλ1C
?2/(C?2 + c̄2)√

S
(1)
n

2
C

(1)
n /n

>
n−

1
2 `UT

n,α1
− γλ1C

?2/(C?2 + c̄2)√
S

(1)
n

2
C

(1)
n /n




p→ P

[
n−

1
2 TUT

n − γλ1C
?2/(C?2 + c̄2)√

σ2
0C

?2/(C?2 + c̄2)
>

n−
1
2 `UT

n,α1
− γλ1C

?2/(C?2 + c̄2)√
σ2

0C
?2/(C?2 + c̄2)

]

(3.5.8)

since S
(1)
n

2 p→ σ2
0. Further, the asymptotic power function for the UT is written

as

ΠUT (λ1, λ2) = 1− Φ(τα1 − γλ1

√
C?2/(C?2 + c̄2) /σ0) (3.5.9)

using equations (3.3.3) and (3.3.5).

3.6 Analytical Comparison

This Section provides an analytic comparison of the asymptotic power functions

of the UT, RT and PTT.

If we consider c̄ = 0 in equation (3.5.5),

ΠPTT (λ1, λ2) = Φ(τα3 − γλ2C
?/σ0)[1− Φ(τα2 − γλ1/σ0)] +

[1− Φ(τα3 − γλ2C
?/σ0)][1− Φ(τα1 − γλ1/σ0)]. (3.6.1)

Letting α1 = α2 = α and from equations (3.5.7), (3.5.9) and (3.6.1), we observe

that the power functions for the UT, RT and PTT are the same, i.e.

ΠUT (λ1, λ2) = ΠRT (λ1, λ2) = ΠPTT (λ1, λ2)

= 1− Φ(τα − γ(λ1 + λ2c̄)/σ0). (3.6.2)
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From equations (3.5.5) and (3.5.7),

ΠRT (λ1, λ2)− ΠPTT (λ1, λ2)

= 1− Φ(τα2 − γ(λ1 + λ2c̄)/σ0)

− Φ(τα3 − γλ2C
?/σ0)[1− Φ(τα2 − γ(λ1 + λ2c̄)/σ0)]

− d(τα3 − γλ2C
?/σ0, τα1 − γλ1

√
C?2/(C?2 + c̄2)/σ0;−c̄/

√
C?2 + c̄2 )

= d(τα3 − γλ2C
?/σ0, τα2 − γ(λ1 + λ2c̄)/σ0; 0)

−d(τα3 − γλ2C
?/σ0, τα1 − γλ1

√
C?2/(C?2 + c̄2)/σ0;−c̄/

√
C?2 + c̄2 ).

(3.6.3)

Letting α1 = α2 = α, c̄ > 0, λ2 > 0 and λ1 + λ2c̄ > λ1

√
C?2/(C?2 + c̄2),

Result (i): ΠRT (λ1, λ2) > ΠPTT (λ1, λ2) from equation (3.6.3) and

Result (ii): ΠRT (λ1, λ2) > ΠUT (λ1, λ2) from equations (3.5.7) and (3.5.9).

On the contrary, taking α1 = α2 = α, c̄ < 0, λ2 > 0 and λ1 + λ2c̄ <

λ1

√
C?2/(C?2 + c̄2),

Result (iii): ΠRT (λ1, λ2) < ΠPTT (λ1, λ2) from equation (3.6.3) and

Result (iv): ΠRT (λ1, λ2) < ΠUT (λ1, λ2) from equations (3.5.7) and (3.5.9).

From equations (3.5.7) and (3.5.9), when λ1 = λ2 = 0 and α1 = α2 = α, we

find ΠRT = ΠUT = α. Failure to satisfy the conditions does not mean Result

(i) and Result (iii) could not be obtained. However if λ1 = 0, these conditions

are always met. Hence, under H
(1)
0 : θ = 0, αRT > αPTT and αRT > αUT = α

when c̄ > 0 and λ2 > 0. Letting α1 = α2 = α, we write

ΠUT (λ1, λ2)− ΠPTT (λ1, λ2) = A + B,

where A = [1−Φ(τα−γλ1

√
C?2/(C?2 + c̄2)/σ0)]− [1−Φ(τα−γ(λ1 +λ2c̄)/σ0)]

and B = d(τα3 − γλ2C
?/σ0, τα − γ(λ1 + λ2c̄)/σ0; 0) − d(τα3 − γλ2C

?/σ0, τα −
γλ1

√
C?2/(C?2 + c̄2)/ σ0; −c̄/

√
C?2 + c̄2 ).
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For c̄ > 0, then λ1+λ2c̄ ≥ λ1

√
C?2/(C?2 + c̄2) and τα−γλ1

√
C?2/(C?2 + c̄2)

≥ τα − γ(λ1 + λ2c̄)/σ0. Thus, A = [1 − Φ2] − [1 − Φ1] ≤ 0 because Φ1 ≤ Φ2

where Φ1 = Φ(τα − γ(λ1 + λ2c̄)/σ0) and Φ2 = Φ(τα − γλ1

√
C?2/(C?2 + c̄2)).

We observe three cases

ΠUT (λ1, λ2)− ΠPTT (λ1, λ2)
<
=
>

0 if B
<
=
>
|A|,

In a special case, λ1 = 0 = λ2, A = 0 and B > 0, thus, ΠUT (0, 0) > ΠPTT (0, 0).

When c̄ > 0 and λ2 > 0, the asymptotic size of the RT is larger than

both UT and PTT. For c̄ > 0 and λ1 = 0, the size of the PTT may also be

smaller than that of UT (when λ2 is small). Similarly, for c̄ < 0, αRT < α and

αRT < αPTT while αPTT is closer to α.

Refer to equation (3.5.5), as α3 → 0 and τα3 − γλ2C
?/σ0 → ∞, Φ(τα3 −

γλ2C
?/σ0) → 1 and d(τα3 − γλ2C

?/σ0, τα1 − γλ1

√
C?2/(C?2 + c̄2)/σ0; −c̄/√

C?2 + c̄2) → 0 because one of the lower limits is approaching infinity. Thus,

we observe that

ΠPTT (λ1, λ2) → 1− Φ(τα2 − γ(λ1 + λ2c̄)/σ0) = ΠRT (λ1, λ2) as α3 → 0.(3.6.4)

Whereas as α3 → 1 and τα3 − γλ2C
?/σ0 → −∞, Φ(τα3 − γλ2C

?/σ0) → 0 and

d(τα3 − γλ2C
?/σ0, τα1 − γλ1

√
C?2/(C?2 + c̄2)/σ0 ;−c̄/

√
C?2 + c̄2)

→ 1− Φ(τα1 − γλ1

√
C?2/(C?2 + c̄2)/σ0)

because one of the lower limits is approaching negative infinity. Thus, we

observe that

ΠPTT (λ1, λ2) → 1− Φ(τα1 − γλ1

√
C?2/(C?2 + c̄2)/σ0) = ΠUT (λ1, λ2) (3.6.5)

as α3 → 1.

Now fix the values of λ1 and λ2 and let α1 = α2 = α3 = α. For any γv/σ0v <

γw/σ0w, then

(v) ΠUT (γv, σ0v) < ΠUT (γw, σ0w), (vi) ΠRT (γv, σ0v) < ΠRT (γw, σ0w),
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(vii) Let V = Φ(τα − γvλ2C
?/σ0v)[1 − Φ(τα − γv(λ1 + λ2c̄)/σ0v)] and W =

Φ(τα − γwλ2C
?/σ0w)[1− Φ(τα − γw(λ1 + λ2c̄)/σ0w)], we obtain

ΠPTT (γv, σ0v) < ΠPTT (γw, σ0w) if V < W

ΠPTT (γv, σ0v) > ΠPTT (γw, σ0w) if W < V.

Huber (1964) showed that an estimator generated from the Huber ψ-function is

minimaximally robust (i.e. minimax asymptotic bias and minimax asymptotic

variance) for a contaminated normal distribution (c.f. Jurečková and Picek,

2006, p.50). Huber (1965) then proposed a robust probability ratio test by using

the concept of maximin power of a test. Given any contaminated normal data,

the Huber ψ-function that maximizes γ/σ0 yields an asymptotically maximin

power M-test (c.f. Jurečková and Sen, 1996, p.409-410). From results (v) and

(vi), the power of the UT and RT is maximum when γ/σ0 attains its maximum.

However, the PTT may not enjoy this maximin power property under certain

circumstances (see result (vii)).

The analytical results in this Section are accompanied by an illustrative

example in investigating the comparison of the power of the tests discussed in

the next Section. The behavior of the power functions corresponding to the

probabilities of Type I and Type II errors is also studied. The study of the

relationship between the level of significance for the PTT and the nominal size

of the PT, as well as the nominal sizes of the UT and RT, is explored.
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3.7 Numerical Examples and Simulation Stud-

ies

In this Section, numerical examples and results from a simulation study are

used to investigate some of the properties of the proposed tests.

The Monte Carlo technique is used in this study to simulate various situa-

tions. The sample size considered is n = 100 and the model is of the form

Xi = 2 + 3ci + ei, i = 1, 2, ..., n. (3.7.6)

Samples are classified into two cases and data in each case are generated as

follows:

Case 1: No contaminant

Generate ei ∼ N(0, 1) for i = 1, 2, ..., n.

Case 2: 10 % Contaminant

(i) Generate ei ∼ N(0, 1) for i = 1, . . . , 0.9(n).

(ii) Generate ei ∼ U(3, 5), U(−5,−3) with 50% for each, i = 0.9(n+1), . . . , n.

Then ci, i = 1, . . . , n are generated and we consider three cases of ci:

(a) ci = 0, 1 with 50% for each, i = 1, 2, ..., n. So, c̄ > 0.

(b) ci = −1, 0 with 50% for each, i = 1, 2, ..., n. So, c̄ < 0.

(c) ci = −1, 1 with 50% for each, i = 1, 2, ..., n. So, c̄ = 0.

The ei and ci are then used to calculate Xi in equation (3.7.6). Then, the

unrestricted M-estimates for θ and β denoted respectively by θ̂ and β̂ are com-

puted using R-codes. These estimates are then used to compute the residual,

ri = Xi− θ̂− β̂ci which is required for the computation of σ̂0 and γ̂. Finally, the

power functions of the UT, RT and PTT for the data set are obtained using

equations (3.5.5), (3.5.7) and (3.5.9). The simulation is run 3000 times. The
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average values of the power functions for 3000 data sets are plotted. The R-

package (mvtnorm) is used to evaluate the bivariate normal probability integral

for the power function of the PTT.

The estimate of σ0 is obtained using,

σ̂2
0 = n−1

n∑
i=1

ψ2

(
Xi − θ̂ − β̂ci

Sn

)
(3.7.7)

with Sn = MAD/0.6745. For the estimation of γ, an R-estimate from the

Wilcoxon sign rank statistics is used. The estimate of γ is the value of t such

that S(V1, . . . , Vn, t) =
∑n

i=1 sign(Vi−t)an(R+
ni

(t)) = 0, where R+
ni

(t) is the rank

of Vi − t and an(k) = k/(n + 1), k = 1, . . . , n.

In this simulation, we consider two types of ψ-functions in the M-estimation,

namely:

(i) The ψ-function for the maximum likelihood (ML) estimation, ψML(Ui) =

Ui with derivative ψ′ML(Ui) = 1 for any Ui.

(ii) The Huber ψ-function ψH(·), defined by equation (A.1.1). Three values

of tuning constant for the Huber ψ-function are selected, namely k =

1.04, 1.28 and 1.64. The value of k = 1.28 is the 90th quantile of a

standard normal distribution, so there is a 0.8 probability that a randomly

sampled observation will have a value between −k and k (see Wilcox,

2005, p.76) while k = 1.04 (and 1.64) means there is 0.7 (and 0.90)

probability that a randomly sample observation will have a value in the

range of (−1.04, 1.04) (and (−1.64, 1.64)). When the Huber ψ-function is

used, the estimate for σ2
0 is taken to be

∑
ψ2

H(Ui)/n. For the estimation

of γ, let Vi = ψ′H(Ui)/Sn, where ψ′H(Ui) is just the derivative of the Huber

ψ-function.
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3.7.1 Power Comparison of Huber M-test and ML-based

test

In this Section, the power functions of the tests obtained using the ML ψ-

function are compared to those of the Huber ψ-function for both the uncon-

taminated and contaminated responses (see Case 1 and Case 2). The minimax

property of the Huber function is observed and the role of the tuning constant

of the Huber function is studied in this section. In practice, often the normality

assumptions are not met due to the presence of contaminants in the collected

data. It is suspected that the power functions of the tests using the ML method

are sensitive to departures from normality.

The comparison of the Huber M-test and the ML-based test is carried out

for the UT, RT and PTT and is represented through graphs in this Section.

Figure 3.3 shows the power curves of the tests against λ2 (=
√

nβ) at two

values of λ1 (=
√

nθ) for both ML and Huber methods in the uncontaminated

and contaminated cases. Here, λ1 = 0 is chosen to study the asymptotic sizes

of the tests and we desire the size of a particular test to be small so that the

probability of a Type I error is small. Since we also expect to get a small value

of probability of a Type II error, the power of the test at λ1 = 2 is considered.

An acceptable power function of the test is the one that has smaller values

when the null hypothesis is true and larger values when λ1 differs much from

θ = 0. The power curves of the UT, RT and PTT are plotted in separate graphs

in Figure 3.3 for the selected value of λ1.

The role of tuning constant of the Huber ψ-function as a key parameter that

control the efficiency and robustness of the procedure is studied (see Figure 3.3).

Figure 3.3 displays the power curves obtained using the Huber ψ-function for

three different values of tuning constant when there is 10% contamination in

the data. The asymptotic size and power obtained using the ML ψ-function

for the contaminated and uncontaminated data are also displayed in the same
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(a) Size of the UT for λ1=0, c > 0
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(b) Power of the UT for λ1=2, c > 0
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(c) Size of the RT for λ1=0, c > 0
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(d) Power of the RT for λ1=2, c > 0
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(e) Size of the PTT for λ1=0, c > 0
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(f) Power of the PTT for λ1=2, c > 0

Figure 3.3: Graphs of power functions as a function of λ2 for selected values of

λ1 and α1 = α2 = α3 = α = 0.05.
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graphs.

Under the normality assumption, we know that the MLE of θ and β are

unbiased estimators. The power function of ML-based test inherits the same

good property. The ML-based test becomes the most powerful test when the

normality assumptions are met. However, this normality assumption may not

be satisfied in practical situations. Studies show that the ML estimator is non-

robust when there are departures from the model assumptions or when outliers

or contaminants occur in the data. Figure 3.3(a) depicts that the size of the

ML-based UT is constant regardless of the value of λ2 for both contaminated

and uncontaminated responses cases. However, the ML-based UT for the con-

taminated normal data has smaller power than that of the uncontaminated

data (see Figure 3.3(b)). Figures 3.3(c)-3.3(f) show that the power curves of

the RT and PTT obtained using the ML ψ-function for the contaminated data

is far from those of the uncontaminated data. The large distance between

the two curves suggests that the ML-based test is not robust when there is

contamination in the data.

On the other hand, there is a tuning constant that fine-tunes the robustness

of the Huber ψ-function based procedure. The power curves obtained using

the Huber ψ-function, with appropriate selection of tuning constant, are closer

to the power curves obtained using the ML ψ-function for the uncontaminated

data. In the presence of contamination, the power curves obtained using the

Huber ψ-function with tuning constant k = 1.28 is closer to that of the un-

contaminated ML procedure (see Figures 3.3(b)-3.3(f)). This small distance

between two curves means that even if there is 10% contamination in the data,

the Huber procedure with tuning constant k = 1.28 is not affected by these

contaminants. Thus the power curves obtained using the Huber ψ-function

with k = 1.28 represents the majority of the data and the procedure is robust

against some departures from the model assumptions.

Obviously for a contaminated case, the power of the Huber M-test for the
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UT and RT is at least as large or larger than those of the ML-based tests for

any λ2 (see Figures 3.3(b) and 3.3(d)). The Huber M-test for the UT and RT

enjoys the minimax property for any values of λ1 and λ2. For a range of values

of λ1 and λ2, the Huber M-test for the PTT also has larger power compared

to the ML-based PTT for the contaminated normal data (see Figure 3.3(f)).

However, for some λ1 and λ2, it has less power. For a smaller value of λ2,

(λ2 < 3.2) the Huber M-test for the PTT has higher power than that of the

ML-based test, but for larger values of λ2, the power of the Huber M-test for

the PTT may be found to be smaller than the power of the ML-based PTT

when λ1 is smaller.
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3.7.2 Power Comparison of UT, RT and PTT

The asymptotic power functions of the UT, RT and PTT are compared in this

Section and are supported by the analytical results given in Section 3.6 for the

three cases ((a), (b) and (c)) of ci.

In Figure 3.4, the power functions for the UT, RT and PTT are plotted

against λ2 at two values of λ1. The first set of regressors (when c̄ > 0) is used

to plot Figures 3.4(a) and 3.4(d). As λ2 grows larger, ΠRT (0, λ2) approaches

1. Hence, the RT is not a valid test because it does not satisfy the asymptotic

level constraint. The ΠPTT (0, λ2), after an initial increase, drops and converges

to the nominal size α = 0.05 as λ2 grows larger. Thus, the asymptotic size

(with very small λ1) of the PTT is close to α for small λ2 and large λ2, while

for moderate values of λ2 it is somehow larger than α but less than that of

ΠRT (0, λ2). The ΠUT (0, λ2) is constant and does not depend on λ2. The same

pattern occurs in Figure 3.4(d) but the power functions are always significantly

larger than α, in this case larger than 0.4. If one only considers the size of the

test, the PTT is preferred to the RT, though the UT remains the best choice.

Although the RT has the largest power among the tests, it is not a valid test.

Thus, in terms of power, the PTT is preferred to the UT.

It is impossible to obtain a test that uniformly minimizes the size and maxi-

mizes the power at the same time. We are looking for a test that is a compromise

between minimizing the size and maximizing the power (small probabilities of

Type I and Type II errors). The RT is the worst choice for its largest size that

reaches 1 as λ2 grows larger, so it is not a valid test. On the contrary, the

UT is the best choice for its smallest size but the worst choice for its smallest

power. Both RT and UT uniformly minimize or maximize the size and power

at the same time. The PTT has larger power than the UT for small and mod-

erate values of λ2 and it has significantly smaller size than that of the RT for

moderate and large λ2. Therefore, if our objective is to obtain a test that has

better probabilities for both Type I and Type II errors, the PTT is suggested
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as the best option. The PTT is a compromise between minimizing the size and

maximizing the power between the RT and UT.

The cases for c̄ = 0 and c̄ < 0 are also considered in this Section, though

c̄ > 0 is more important than the other two because it is more realistic. Setting

c̄ = 0 in Figures 3.4(b) and 3.4(e) implies all power functions remain the same

regardless of the value of λ2 and these constant power functions increase as λ1

increases. Figures 3.4(c) and 3.4(f) illustrate the case when c̄ < 0. The graphs

show that ΠRT < ΠPTT for any λ2 and ΠPTT ≤ ΠUT for any λ2 > λ0, where λ0

is a small positive real number. The probability of a Type I error for all test

functions is fairly small. The size and power of the RT is decreasing to 0 as λ2

grows larger (see Figures 3.4(c) and 3.4(f)) suggests the RT as the best choice

for size but the worst choice for power. Since ΠPTT (2, λ2) ≥ ΠRT (2, λ2) for all

λ2, the PTT is preferred over the RT . Also, ΠPTT (2, λ2) ≥ ΠUT (2, λ2) except

for some moderate values of λ2, but the difference is relatively small. From the

examination of all the graphs in Figure 3.4, the PTT is suggested as the best

choice when both probabilities of Type I and Type II errors are considered.

The relation between power functions and λ1 is shown in Figure 3.5. All

power functions are approaching 1 as λ1 grows larger, regardless of the value

of λ2. This is because the probability of rejecting H
(1)
0 : θ = 0 increases as λ1

increases. When c̄ > 0, the PTT is preferable than the UT for having smaller

probability of a Type II error for all values of λ1 while the RT is not a valid

test for having a size that reaches 1 as λ2 increases. When c̄ < 0, the PTT is

preferable for its comparatively smaller probability of a Type II error than the

other two tests. When c̄ = 0, all tests have the same probability of a Type II

error regardless of the value of λ1 (refer to the equation (3.6.2) for analytical

results).
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(a) Size of the test for λ1=0, c > 0
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(d) Power of the test for λ1=2, c > 0
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(b) Size of the test for λ1=0, c = 0
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(e) Power of the test for λ1=2, c = 0
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(c) Size of the test for λ1=0, c < 0
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(f) Power of the test for λ1=2, c < 0

Figure 3.4: Graphs of power functions as a function of λ2 for selected values of

λ1 and α1 = α2 = α3 = α = 0.05. Power functions using Huber score function

with k = 1.28 in the presence of 10% contamination.
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(a) Power of the test for λ2=0, c > 0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ1

po
w

er
 o

f t
he

 te
st

ΠUT

ΠRT

ΠPTT

(d) Power of the test for λ2=2, c > 0
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(b) Power of the test for λ2=0, c = 0
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(e) Power of the test for λ2=2, c = 0
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(c) Power of the test for λ2=0, c < 0
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(f) Power of the test for λ2=2, c < 0

Figure 3.5: Graphs of power functions as a function of λ1 for selected values of

λ2 and α1 = α2 = α3 = α = 0.05. Power functions using Huber score function

with k = 1.28 in the presence of 10% contamination.
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Figure 3.6: Graphs of power function ΠPTT (λ1, λ2) for nominal sizes α3 = 0.005,

0.05 and 0.1. The c̄ > 0 and α2 = α1 = α = 0.05 for all graphs.

3.7.3 Investigation on the PTT

This Section investigates the relationship between the power function of the

PTT with its arguments, namely slope and nominal sizes α1, α2 and α3 respec-

tively.

Figure 3.6 illustrates the behavior of the power function of the PTT at three

different values of the nominal size of the PT (α3) that is 0.005, 0.05 and 0.1.

The graphs show that a PTT with a smaller nominal size (significance level)

has a greater power than that of a larger nominal size. The smaller nominal

size however increases the probability of a Type I error as λ2 moves away from

zero. This is illustrated in Figure 3.6(b), ΠPTT (λ1, 2) at α3 = 0.005, 0.05 and

0.1, starting at different values before growing larger and converging to 1.

We usually assign a small nominal size (significance level) to the test, so

the test will have a small probability of a Type I error. In the investigation,

we concentrate on small nominal sizes, α1, α2 and α3 with a view to achieve a

small probability of a Type I error for the PTT. First, the relationship between

the size of the PTT, that is, αPTT = ΠPTT (0, λ2) and the nominal size of the
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PT, α3 is studied. Figure 3.7 shows the graphs of ΠPTT (0, λ2) against α3 for

different values of λ2 with α1 = α2 = 0.05 and c̄ > 0. For smaller values of

λ2, as α3 increases, the size of the PTT decreases and reaches its minimum at

the value of α3 = α′3 (say), before growing larger and converging to α = 0.05.

Let the value of α3 be α′′3 when the size of the PTT is 0.05, while the value

of α′′3 increases as λ2 increases. As we consider larger values of λ2, the size of

the PTT decreases dramatically, then slowly converges (appears as flat in the

graph) to α at some positive value α′′′3 .

From Figure 3.7, we observe that for smaller values of λ2 (≤ 0.6), the size

of the PTT is reasonably small when the nominal size α3 is small. However, for

larger values of λ2 (≥ 1), the size of the PTT is small when the nominal size

α3 is large and it is large when α3 is small.

Equations (3.6.4) and (3.6.5) show that the size and power of the PTT is

approaching the size and power of the RT as the nominal size α3 is closer to 0,

but is approaching the size and power of the UT as the nominal size α3 is closer

to 1. From equation (3.6.4), setting the nominal size of the PT, α3 = 0 implies

the size and power of the PTT is entirely contributed by the size and power of

the RT with none from the UT. The contribution of the size and power of the

UT to the size and power of the PTT is not substantial when the nominal size

α3 is small.

Figure 3.8 shows the graphs of αPTT = ΠPTT (0, λ2) for 0 ≤ α3 ≤ 1 at

selected values of λ2, α1 and α2 when c̄ > 0. From the graphs, the decrease in

the contribution of the size of the RT reduces the size of the PTT as α3 differs

from zero. By contrast, setting the nominal size α3 = 1 causes the size of the

PTT to be totally contributed by the size of the UT (see equation (3.6.5)). The

contribution of the size of the RT is not significant when the nominal size α3 is

large. As the value of α3 differs from 1, a lesser contribution from the size of

the UT imposes a smaller size of the PTT. The size of the PTT decreases from

both ends and the minimum of the size of the PTT is achieved at a particular
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value of α3 (see Figure 3.8).

Further, analysis is carried out to investigate the dependence of the size of

the PTT to the changes in the nominal sizes α1, α2 and α3. From observation

of Figures 3.8(a)-3.8(f), there is an increase in the percentage of αPTT in [0,0.1]

for α3 in [0,0.2] when set at a smaller nominal size of α2 for a larger value of

λ2. For example, there is 47.62% of ΠPTT (0, 1) in [0,0.10] for α3 in [0,0.2] at a

nominal size of α2 = 0.05 (see Figure 3.8(a)) but there is 100% of ΠPTT (0, 1)

when α2 = 0.03 (see Figure 3.8(b)).

For some moderate values of λ2, there is an increment in the percentage

of ΠPTT (0, λ2) when we choose a smaller nominal size of α2. However, only a

small increment is observed for a larger value of λ2. For example, there is no

ΠPTT (0, 3) in [0,0.10] for α3 in [0,0.2] when we set the nominal size α2 = 0.05

(see Figure 3.8(a)) but there is only 4.76% of ΠPTT (0, 3) when α2 = 0.03 (see

Figure 3.8(b)). The small increment suggests setting a much smaller value of

nominal size α2 maybe necessary to achieve a small size of PTT with a small

nominal size of PT α3 for moderate values of the slope. However, this rule fails

for a large value of λ2.

We wish to have a small size of the PTT by setting small nominal sizes of

α1, α2 and α3. Figure 3.8 shows that this could not be achieved when λ2 is large

and α3 is very small (close to zero) even if we set a very small value of α2. For

instance, there is less than 100% (i.e. 80.95%) of ΠPTT (0, 6) in [0,0.10] as α3

in [0,0.2] (see Figures 3.8(a) and 3.8(b)) for both nominal sizes α2 = 0.03 and

α2 = 0.05. The percentage does not reach 100% eventhough 0 < α2 < 0.03 is

chosen.

Since the size of the PTT behaves like the size of the RT when the nominal

size α3 is small, the null hypothesis H
(1)
0 : θ = 0 is rejected more often for a

small nominal size of α3 when λ2 is large because the nominal size α2 is smaller

than the actual size of the RT. The null hypothesis H
(1)
0 : θ = 0 should not

be rejected if the true value of θ = 0. In this case however, the possibility of
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Figure 3.7: Graphs of size of the PTT αPTT = ΠPTT (0, λ2) as α3 and λ2

increasing when c̄ > 0 and α1 = α2 = 0.05 for all graphs.



80 CHAPTER 3. SIMPLE REGRESSION MODEL

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α3

λ1 = 0 α1 = 0.05 α2 = 0.05

(a)

λ2 = 0
λ2 = 0.5
λ2 = 1
λ2 = 3
λ2 = 6

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α3

λ1 = 0 α1 = 0.05 α2 = 0.03

(b)

λ2 = 0
λ2 = 0.5
λ2 = 1
λ2 = 3
λ2 = 6

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α3

λ1 = 0 α1 = 0.05 α2 = 0.01

(c)

λ2 = 0
λ2 = 0.5
λ2 = 1
λ2 = 3
λ2 = 6

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α3

λ1 = 0 α1 = 0.03 α2 = 0.05

(d)

λ2 = 0
λ2 = 0.5
λ2 = 1
λ2 = 3
λ2 = 6

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α3

λ1 = 0 α1 = 0.01 α2 = 0.05

(e)

λ2 = 0
λ2 = 0.5
λ2 = 1
λ2 = 3
λ2 = 6

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α3

λ1 = 0 α1 = 0.03 α2 = 0.03

(f)

λ2 = 0
λ2 = 0.5
λ2 = 1
λ2 = 3
λ2 = 6

Figure 3.8: Graphs of the size of the PTT for increasing α3, selected at different

values of nominal sizes of α1 and α2 with c̄ > 0. The intersection with the

vertical line represents the minimum.
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rejection is large when λ2 differs much from 0 because β = 0 is assumed in the

test statistic TRT
n . This is the reason why a very small nominal size of the PT

α3 (close to zero) implies a very large size of the PTT when λ2 is large.

Table 3.1 shows the size of the PTT as a function of the nominal size of

the PT (α3) for selected values of λ2 and α2 with α1 = 0.05 and c̄ > 0. The

values of α1, α2 and α3 for the size of the PTT near point 0.05 when λ2 = 0.5

and 1, and near point 0.10 with λ2 = 3 and 6 are given in the table. The table

enables us to observe the changes in the values of the nominal size of the PT

(α3) as the nominal size α2 changes and the significance level of the PTT is

around the same value. We wish to have a small nominal size of the PT α3 that

allows us to get a 5 or 10% significance level of the PTT. Within the table, this

is achieved by selecting a smaller nominal size of α2 for moderate and small

values of λ2. When λ2 = 3 (moderate value), selecting nominal size α2 as small

as 0.01, we have as much as 8% of the nominal size of the PT α3 to get below

a 10% significance level of the PTT (see Table 3.1, row:1, col:7-9). In column

1-3 of the table, for λ2 = 0.5 (small), an approximately 5% level of significance

of the PTT is obtained by setting a nominal size of α2 = 0.05 and a nominal

size of the PT α3 = 0.3 or by setting both nominal sizes of α2 and α3 equal to

0.03 but the latter with smaller nominal sizes of α2 and α3 is more preferable.

For a larger value of the slope, as the nominal size α3 is closer to 0, the size of

the PTT is growing too large. When λ2 = 6 (large), to obtain at most a 10%

of significance level of the PTT, the least nominal size for the PT α3 that we

should set is 5% (see Table 3.1, row:3, col:10-12) when the nominal size α2 is

set from 0.05 to 0.10.
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Table 3.1: Size of the PTT (αPTT ) as a function of nominal size of the PT, (α3)

at selected values of α2 and λ2 with α1 = 0.05.

λ2 = 0.5 λ2 = 1 λ2 = 3 λ2 = 6

α2 α3 αPTT α2 α3 αPTT α2 α3 αPTT α2 α3 αPTT

0.03 0.03 0.0498 0.01 0.00 0.0355 0.01 0.08 0.0994 0.03 0.04 0.0983

0.02 0.0507 0.01 0.0343 0.07 0.1052 0.03 0.1145

0.04 0.19 0.0499 0.02 0.00 0.0623 0.02 0.15 0.0987 0.04 0.05 0.0891

0.18 0.0508 0.01 0.0605 0.14 0.1029 0.04 0.1002

0.05 0.31 0.0497 0.03 0.00 0.0870 0.03 0.20 0.0965 0.05 0.05 0.0901

0.30 0.0507 0.01 0.0839 0.19 0.1005 0.04 0.1014

0.06 0.34 0.0508 0.04 0.02 0.1026 0.04 0.22 0.1007 0.06 0.04 0.1024

0.04 0.0499 0.03 0.0999 0.23 0.0972 0.05 0.0909

0.07 0.48 0.0491 0.05 0.11 0.0993 0.05 0.25 0.0987 0.10 0.05 0.0093

0.47 0.0500 0.10 0.1015 0.24 0.1021 0.04 0.1045

The αPTT is the actual achievable significance level and α3 is the nominal PT signif-

icance level.
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3.8 Testing Intercept and Slope at Any Value

Consider the simple regression model in Section 3.1; we want to test the in-

tercept parameter θ, at a fixed value, under various conditions on the slope

parameter β. Again, we have three conditions on the slope,

(i) Unspecified β : Denote the unrestricted test (UT) by the test function

φ?
n

UT for testing H?
0

(1) : θ = θ0 against H?
A

(1) : θ > θ0 when β is unspeci-

fied;

(ii) Specified β : Denote the restricted test (RT) by the test function φ?
n

RT

for testing H?
0

(1) : θ = θ0 against H?
A

(1) : θ > θ0 when β = β0 (fixed and

specified); and

(iii) Uncertain suspected β : Denote the pre-test test (PTT) by the test

function φ?
n

PTT for testing H?
0

(1) : θ = θ0 against H?
A

(1) : θ > θ0 (when it

is suspected that β = β0, but not sure) following a pre-test on the slope,

H?
0

(2) : β = β0 against H?
A

(2) : β > β0. The last test on β, H?
0

(2) : β = β0,

with the test function φ?
n

PT , is a pre-test (PT) essential for the PTT on

θ.

Hence, significance testing on the intercept and slope, considered in Sections

3.1-3.7, is a special case of testing any arbitrary values discussed in this Section.

Let β̌ be the constrained M-estimator of β when θ = θ0, that is, β̌ is the

solution of Mn2(θ0, b) = 0 and it may be conveniently expressed as

β̌ = [sup{b : Mn2(θ0, b) > 0} + inf{b : Mn2(θ0, b) < 0}]/2. (3.8.1)

Similarly, let θ̌ be the constrained M-estimator of θ when β = β0, that is, θ̌ is

the solution of Mn1(a, β0) = 0 and is conveniently be expressed as

θ̌ = [sup{a : Mn1(a, β0) > 0} + inf{a : Mn1(a, β0) < 0}]/2. (3.8.2)
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3.8.1 Asymptotic Distributions of Test Statistics

Theorem 3.8.1 Given the results in (i)-(iii) in Appendix B.1, as n →∞,

(a) under H?
0

(2) : β = β0,

n−
1
2 Mn2(θ̌, β0)

d→ N(0, σ2
0C

?2), (3.8.3)

(b) under H?
0

(1) : θ = θ0,

n−
1
2 Mn1(θ0, β̌)

d→ N(0, σ2
0C

?2/{C?2 + c̄2}), (3.8.4)

(c) under H?
0 : θ = θ0, β = β0,

n−
1
2




Mn1(θ0, β0)

Mn2(θ0, β0)




d→ N2







0

0


 , σ2

0




1 c̄

c̄ C?2 + c̄2





 , (3.8.5)

where N2(· , · ) represents a bivariate normal distribution with appropriate pa-

rameters and σ2
0 =

∫∞
−∞ ψ2(x/S)dF (x).

The proof of this Theorem is written in Appendix B.1. These three asymptotic

distributions results of Theorem (3.8.1) are useful to construct UT, RT and

PTT in the next Section.

3.8.2 The Proposed Tests

3.8.2.1 The Unrestricted Test (UT)

If β is unspecified, let φ?
n

UT denote the test function to test H?
0

(1) : θ = θ0

against H?
A

(1) : θ > θ0. We consider the test statistic T ?
n

UT = Mn1(θ0, β̌), where

β̌ is a constrained M-estimate defined in equation (3.8.1). Under H?
0

(1), it

follows from equation (3.8.4) that

n−
1
2 T ?

n
UT /

√
C

(1)
n S?

n
(1)2/n = n−

1
2 Mn1(θ0, β̌)/

√
C

(1)
n S?

n
(1)2/n

d→ N(0, 1) (3.8.6)

as n →∞, with C
(1)
n = nC?

n
2/(C?

n
2 + nc̄2

n) and S?
n
(1)2 = n−1

∑
ψ2

(
xi−θ0−β̌ci

Sn

)
.
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3.8.2.2 The Restricted Test (RT)

If β = β0, let φ?
n

RT be the test function for testing H?
0

(1) : θ = θ0 against

H?
A

(1) : θ > θ0. The proposed test statistic is T ?
n

RT = Mn1(θ0, β0). Note that for

large n, it follows from equation (3.8.5) that

n−
1
2 T ?

n
RT /

√
S?

n
(2)2 = n−

1
2 Mn1(θ0, β0)/

√
S?

n
(2)2 d→ N(0, 1) (3.8.7)

under H?
0 : θ = θ0, β = β0, where S?

n
(2)2 = n−1

∑
ψ2

(
xi−θ0−β0ci

Sn

)
.

3.8.2.3 The Pre-test (PT)

For the pre-test (PT) on the slope, let φ?
n

PT be the test function to test H?
0

(2) :

β = β0 against H?
A

(2) : β > β0. The proposed test statistic is T ?
n

PT = Mn2(θ̌, β0),

where θ̌ is the constrained M-estimate defined in equation (3.8.2). It follows

from equation (3.8.3) that under H?
0

(2), as n →∞,

n−
1
2 T ?

n
PT /

√
C

(3)
n S?

n
(3)2/n = n−

1
2 Mn2(θ̌, β0)/

√
C

(3)
n S?

n
(3)2/n

d→ N(0, 1),(3.8.8)

where C
(3)
n =

∑
c2
i − nc̄2

n = C?
n
2 and S?

n
(3)2 = n−1

∑
ψ2

(
xi−θ̌−β0ci

Sn

)
. The con-

sistency of S?
n
(1)2, S?

n
(2)2 and S?

n
(3)2 as estimators of σ2

0 may follow from the law

of large numbers (Jurečková and Sen, 1981).

3.8.2.4 The Pre-test Test (PTT)

Now, let φ?
n

PTT be the test function to test H?
0

(1) : θ = θ0 against H?
A

(1) : θ > θ0

following a pre-test on β. We write the test function for the PTT as

φ?
n

PTT = I
[
(T ?

n
PT ≤ ιPT

n,α3
, T ?

n
RT > ιRT

n,α2
) or (T ?

n
PT > ιPT

n,α3
, T ?

n
UT > ιUT

n,α1
)
]
,

(3.8.9)

where ιhn,αj
is the critical value of T ?

n
h at the αj, j = 1, 2, 3 level of significance

and h is any of the UT, RT and PT. Then we define the power of the test from

the test function φ?
n

PTT .
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3.8.3 Properties of Tests under Local Alternatives

The contiguity concept is utilized to find the asymptotic joint distributions of

statistics n−
1
2 [ T ?

n
RT , T ?

n
PT ] and n−

1
2 [ T ?

n
UT , T ?

n
PT ] under K?

n given below.

Theorem 3.8.2 Let {K?
n} be a sequence of alternative hypotheses, where

K?
n : (θ, β) = (θ0 + n−

1
2 λ1, β0 + n−

1
2 λ2), (3.8.10)

with λ1 =
√

n(θ − θ0) and λ2 =
√

n(β − β0) being fixed real numbers. Under

{K?
n}, for large sample,

(i) n−1/2




T ?
n

UT

T ?
n

PT




d→ N2







γλ1C?2

C?2+c̄2

γλ2C
?2


 , σ2

0




C?2

C?2+c̄2
− c̄C?2

C?2+c̄2

− c̄C?2

C?2+c̄2
C?2





 ,

(3.8.11)

(ii) n−1/2




T ?
n

RT

T ?
n

PT




d→ N2







γ(λ1 + λ2c̄)

γλ2C
?2


 , σ2

0




1 0

0 C?2





 .

(3.8.12)

See Appendix B.1 for the proof of Theorem 3.8.2.

The joint distribution of n−
1
2 [T ?

n
RT , T ?

n
PT ] and n−

1
2 [T ?

n
UT , T ?

n
PT ] under K?

n

is the same as the joint distribution of n−
1
2 [Tn

RT , Tn
PT ] and n−

1
2 [Tn

UT , Tn
PT ]

under Kn. Thus, the asymptotic power functions for φ?
n

UT , φ?
n

RT and φ?
n

PTT

are obtained in the same manner as those of φUT
n , φRT

n and φPTT
n (defined in

Section 3.5).
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We find the asymptotic power functions for the UT, RT and PTT under

{K?
n} are respectively

Π?UT (λ1, λ2) = 1− Φ(τα1 − γλ1

√
C?2/(C?2 + c̄2) /σ0) and (3.8.13)

Π?RT (λ1, λ2) = 1− Φ(τα2 − γ(λ1 + λ2c̄)/σ0). (3.8.14)

Π?PTT (λ1, λ2) = Φ(τα3 − γλ2C
?/σ0)[1− Φ(τα2 − γ(λ1 + λ2c̄)/σ0)] +

d(τα3 − γλ2C
?/σ0, τα1 − γλ1

√
C?2/(C?2 + c̄2)/σ0; ρ),

(3.8.15)

where ρ = −c̄/
√

C?2 + c̄2. Note that the asymptotic power functions, Π?UT (λ1,

λ2), Π?RT (λ1, λ2) and Π?PTT (λ1, λ2) are respectively equal to the asymptotic

power functions, ΠUT (λ1, λ2), ΠRT (λ1, λ2) and ΠPTT (λ1, λ2) when θ0 = 0 and

β0 = 0. This makes sense because testing the significance of θ and β is a special

case of testing θ and β at any arbitrary values.

3.8.4 Analytical Comparison

This Section provides an analytical comparison of asymptotic relative efficiency

for power functions of the UT, RT and PTT. Define the relative efficiency for

T1 with respect to T2 as

RE(Π?T1 : Π?T2) = Π?T1 ÷ Π?T2 , (3.8.1)

where T1 and T2 are any of the UT, RT and PTT.

In the same manner as in Section (3.6), we arrive at the following results:

For c̄ > 0, α1 = α2 = α and λ2 ≥ 0, it is easy to show that λ1 + λ2c̄ ≥
λ1

√
C?2/(C?2 + c̄2). Thus,

(a) Π?RT (λ1, λ2) ≥ Π?PTT (λ1, λ2), (b) Π?RT (λ1, λ2) ≥ Π?UT (λ1, λ2),

and
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(c) Π?UT (λ1, λ2)− Π?PTT (λ1, λ2)
<
=
>

0 if B? <
=
>
|A?|, where

A? = Φ(τα − γ(λ1 + λ2c̄)/σ0)− Φ(τα − γλ1

√
C?2/(C?2 + c̄2)/σ0) and

B? = d(τα3 − γλ2C
?/σ0, τα − γ(λ1 + λ2c̄)/σ0; 0)−

d(τα3 − γλ2C
?/σ0, τα − γλ1

√
C?2/(C?2 + c̄2)/σ0;−c̄/ρ).

Thus, it is straightforward to see that

(d) RE(Π?PTT : Π?RT ) ≤ 1, (e) RE(Π?UT : Π?RT ) ≤ 1,

(f) RE(Π?UT : Π?RT )
>
=
<

RE(Π?PTT : Π?RT ) if B? <
=
>
|A?|,

(g) RE(Π?PTT : Π?UT ) ≤ RE(Π?RT : Π?UT ) and

(h) RE(Π?PTT : Π?UT )
>
=
<

1 if B? <
=
>
|A?|.

3.8.5 Computational Comparison

The comparison of asymptotic relative efficiency in the presence of contamina-

tions for power functions of the UT, RT and PTT is discussed in this Section.

The simulated data generated using the Monte Carlo method given in Section

3.7 is used.

In Section 3.8.3, when λ1 = 0, then αUT = Π?UT (θ = θ0) is the size of the

test. The same applies to the RT and PTT test functions. We define relative

efficiency with respect to size as a ratio of size of two tests. As for λ1 other

than 0, a ratio of the power of two tests is the relative efficiency of one test

relative to the other.

Note that λ1 is a function of θ− θ0 while λ2 is a function of β−β0. Since we

are concerned about testing H?
0

(1) : θ = θ0, the relative efficiency with respect

to the UT and RT is plotted against λ1 in Figure 3.9 in the presence of 10%

contaminations in the responses using the Huber ψ-function with k = 1.28. As

λ1 grows larger, it is suspected that the probability of rejecting H?
0

(1) when it
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Figure 3.9: Graphs of relative efficiency functions in terms of the power of the

tests as a function of λ1 for selected values of λ2, α1 = α2 = α3 = α = 0.05 and

c̄ > 0. RE(T1 : T2) represents RE(Π?T1 : Π?T2) where T1 and T2 are any of the

UT, RT and PTT.



90 CHAPTER 3. SIMPLE REGRESSION MODEL

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ2

re
la

tiv
e 

ef
fic

ie
nc

y

(a) For  λ1 = 1

RE(UT : RT)
RE(RT : RT)
RE(PTT : RT)

0 2 4 6 8 10

0
2

4
6

8
10

λ2

re
la

tiv
e 

ef
fic

ie
nc

y

(b) For  λ1 = 1

λ2

RE(UT : UT)
RE(RT : UT)
RE(PTT : UT)

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ2

re
la

tiv
e 

ef
fic

ie
nc

y

(c) For  λ1 = 3
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Figure 3.10: Graphs of relative efficiency functions in terms of the power of the

tests as a function of λ2 for selected values of λ1, α1 = α2 = α3 = α = 0.05 and

c̄ > 0. RE(T1 : T2) represents RE(Π?T1 : Π?T2) where T1 and T2 are any of the

UT, RT and PTT.
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Figure 3.11: Graphs of relative efficiency functions in terms of the size of the

tests as a function of λ2, α1 = α2 = α3 = α = 0.05 and c̄ > 0. RE(T1 : T2)

represents RE(Π?T1 : Π?T2) where T1 and T2 are any of the UT, RT and PTT.

is true (probability of a Type I error) grows large and the probability of failing

to reject H?
0

(1) when it is false (probability of a Type II error) decreases for all

tests. In Figure 3.9, the efficiency of the UT, RT and PTT are almost the same

for large λ1. For smaller λ1, the RT is the most efficient in terms of the power

because the relative efficiency of the UT and the PTT with respect to the RT

is at most 1 (see (d) and (e) of Section 3.8.4). We also find in Figure 3.9 that

the PTT is more efficient in terms of the power than the UT when λ1 is small.

Although the PTT has the smallest power when λ1 and λ2 are very close to 0

(see Figure 3.9, when λ2 = 0), the difference between the true intercept and

the suspected value is very small.

The relative efficiency with respect to the UT and RT is plotted against λ2

in Figure 3.10 and Figure 3.11 because the three tests are defined according to

the knowledge about β. The relative efficiency in terms of the power for the

UT and PTT is almost the same when λ2 is large, while the RT always has the

largest power (see Figure 3.10). It is also observed that for small λ2, the PTT

is more efficient in terms of the power than the UT.
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The relative efficiency for the size of the tests is plotted in Figure 3.11. For

small λ2, the UT is more efficient in terms of the size than the PTT while the

RT has the largest size regardless of the values of λ1 or λ2 and this is supported

by the analytical results in (a) and (b) of Section 3.8.4. Both UT and PTT

have almost the same efficiency when λ2 is large. The PTT has the smallest

relative efficiency in terms of the size when λ1 and λ2 are very close to 0 (see

Figure 3.11).

3.9 Application to Data

This example relates to the study of the relationship between the distance by

road and the linear distance. Twenty different pairs of points of the values

of the two variables in Sheffield is reported by Gilchrist (1984) (c.f Abraham

and Ledolter, 2006, p.63). To check the robustness of the test, one data point

(5.0, 6.5) is changed to (5.0, 46.5) to create the modified data set. The one

sided t-test is applied to the original and modified data sets and the summary

statistics are presented in Table 3.2. The scatter plot and the fitted regression

lines for the original and modified data sets are given in Figure 3.12. For both

original and modified data sets, the slope is significantly different from zero.

For the original data set, the intercept is not significantly different from zero.

However, the intercept is significantly different from zero for the modified data

set.

In this Section, the main objective is to test the significance of the intercept

parameter when it is suspected that the slope parameter may be zero. The

summary statistics for the UT, RT and PT on the intercept are given in Table

3.3 for the original data. The intercept is not significantly different from zero

from the UT whereas the intercept is significantly different from zero under the

RT. The PT (on the slope) indicates a significant linear relationship between

the two variables. Obviously the RT (on the intercept) is not an appropriate
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Figure 3.12: Graphs of the fitted regression line for the original and modified

data

Table 3.2: Summary statistics of a one sided t-test on the distance data.

Original data Modified data

coefficient t-statistic p-value coefficient t-statistic p-value

Intercept 0.379 0.282 0.3905 9.400 1.922 0.0355

Slope 1.209 16.665 0.0000 0.834 3.009 0.0040

test because the hypothesis of suspected zero slope is rejected. In the analysis,

the intercept is significantly different from zero when using the RT. The UT

is more appropriate than the RT since the UT does not depend on the prior

information. In general, if the prior information is available, the uncertainty in

the value of the slope is removed using the PT before testing on the intercept.

The sensitivity of a robust test using the Huber ψ-function to an aberrant

observation is studied by introducing a modification in one of the data points.

For the modified data, the original data point (5.0, 6.5) is replaced by a new
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Table 3.3: Summary statistics of a one sided test for the UT, RT and PT using

the ML ψ-function on the original data.

UT RT PT

Null hypothesis H?
0 : θ = 0 H?

0 : θ = 0 H
(1)
0 : β = 0

Model under null Xi = βci + ei Xi = ei Xi = θ + ei

Coefficient β̃ = 1.289 None θ̃ = 20.855

z-statistic T UT
n√

C
(1)
n S

(1)
n

2
= 0.2967 T RT

n√
S

(2)
n

2
= 4.0795 T PT

n√
C

(3)
n S

(3)
n

2
= 2.19× 1016

p-value 0.3834 2.26× 10−5 0

Table 3.4: Summary statistics of a one sided test for the UT, RT and PTT

using the ML and Huber ψ-functions on the modified data.

(a) ML ψ-function

UT RT PT

Null hypothesis H?
0 : θ = 0 H?

0 : θ = 0 H
(1)
0 : β = 0

Model under null X ′
i = βci + ei X ′

i = ei X ′
i = θ + ei

Coefficient β̃ = 1.321 None θ̃ = 22.855

z-statistic T UT
n√

C
(1)
n S

(1)
n

2
= 1.8452 T RT

n√
S

(2)
n

2
= 4.0764 T PT

n√
C

(3)
n S

(3)
n

2
= 1.16× 1016

p-value 0.0325 2.28× 10−5 0

(b) Huber ψ-function

UT RT PT

Null hypothesis H?
0 : θ = 0 H?

0 : θ = 0 H
(1)
0 : β = 0

Model under null X ′
i = βci + ei X ′

i = ei X ′
i = θ + ei

Coefficient β̃ = 1.289 None θ̃ = 22.208

z-statistic T UT
n√

C
(1)
n S

(1)
n

2
= 0.9394 T RT

n√
S

(2)
n

2
= 4.4335 T PT

n√
C

(3)
n S

(3)
n

2
= 3.17× 1016

p-value 0.1738 4.64× 10−6 7.61 ×10−4
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(arbitrary) data point (5.0, 46.5). This replacement causes a significant change

in the values of the coefficients and the outcomes of the t-test. The summary

statistics for the UT, RT and PT using both the ML and Huber ψ-functions for

the modified data are displayed in Table 3.4. It is found that the UT using the

Huber ψ-function is not much affected by the aberrant point, compared to that

of the ML ψ- function. From the UT based on ML ψ- function, the intercept is

significantly different from zero. However, it is not significantly different from

zero under the UT that is based on the Huber ψ-function. The outcomes for

the other two tests for the modified data are not much different from those of

the original data.

3.10 Discussion and Conclusion

The UT, RT and PTT, defined using the M-test for testing the intercept θ

under three different scenarios of the slope β, are provided in this Chapter. The

asymptotic power functions of the tests are derived by using the results from

the asymptotic sampling distribution of the test statistics. Under a sequence of

local alternative hypotheses, the sampling distributions when the sample size

is large for the UT, RT and PT follow a normal distribution with appropriate

mean and variance. However, that of the PTT is a bivariate normal distribution.

There is a correlation between the UT and PT but there is no such correlation

between the RT and PT.

In the estimation regime, it is well known that the RE has the smallest

MSE if distance parameter (a function of β − β0) is 0 or close to 0, but its

MSE is unbounded for larger values of the distance parameter. The UE has

a constant MSE that does not depend on the distance parameter. The PTE

has a smaller MSE than that of the RE for moderate and larger values of the

distance parameter. The PTE has a smaller MSE than that of the UE if the

value of the distance parameter is close or equal to 0. In the testing context,
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the power functions of the UT, RT and PTT demonstrate a similar behavior

as the MSE of the UE, RE and PTE.

For a set of realistic values of the regressor, with a mean value larger than

0, the size of the RT is small when β = β0 or λ2 is close to 0, but the size grows

large and converges to 1 for larger values of λ2. Hence, the RT does not satisfy

the asymptotic level constraint. Therefore it is not a valid test. The UT has

a constant size regardless of the value of λ2. The PTT has a smaller size than

that of the RT when λ2 is 0 and very close to 0, and significantly smaller than

that of the RT for moderate and large values of λ2. The PTT has a smaller

size than the UT when λ2 is 0 or very close to 0.

Usually, the power of a test is used to make comparisons between different

statistical tests of the same hypothesis while the level of significance α is set

as the size of the test. However, in this study, the (actual) size of the RT is

growing larger and differs from the nominal significance level α as λ2 grows

larger. The size of a test also depends on the hypothesis we wish to test. If the

significance of the intercept and slope is tested using the RT in a study, the

size of the RT is equal to the level of significance α. However, in this study, we

wish to test the significance of the intercept for the ultimate test using the UT,

RT and PTT. Since the UT, RT and PTT are defined based on the knowledge

of the slope, the performance of the three tests varies with respect to the value

of λ2. Testing the significance of the intercept causes the actual size of the RT

differs from its level of significance α as λ2 grows large. Since the UT does not

depend on the slope parameter, its size is equal to the level of significance α.

The PTT is a choice between the UT and the RT, so, its size also differs from

the level of significance α. However, the difference between the actual size and

the nominal size for the PTT is far less than that of the RT as λ2 grows larger.

Again for a set of realistic values of the regressor, with a mean larger than 0,

although the RT is the best choice for having the largest power, the RT is not a

valid test because its size is too large and does not satisfy the asymptotic level
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constraint. The size of the UT is constant regardless of the value of λ2. The UT

is the best choice for having the smallest size but the worst choice for having

the lowest power. The PTT has smaller size than the RT for moderate and

larger values of λ2 and has larger power than the UT for smaller and moderate

values of λ2. Therefore, the power function of the PTT is found to behave

similar to the MSE of the PTE, in the sense that although it is not uniformly

the best statistical test with the smallest size and the largest power, it does

protect from the risk of too large size and power being too small. Thus, the

power function of the PTT is a compromise between that of the UT and RT. In

the face of uncertainty on the value of the slope, if the objective of a researcher

is to minimize the size and maximize the power of the test, the PTT is the best

choice.

The analysis is further developed by investigating the relationship between

the power function of the PTT and its arguments, namely the slope and the

nominal sizes, of the UT, RT and PT. The chosen values of the nominal sizes

that are set before testing affect the actual size of the PTT.

In order to get small probability of a Type I error for the PTT, our investi-

gations concentrate on small nominal sizes of the UT, RT and PT with a view

to achieving small (actual) significance level of the PTT. The study revealed

that for small and moderate values of slope, the smaller the nominal size of the

RT, the smaller the size of the PTT when other nominal sizes are kept fixed

and small. For moderate and large values of the slope, a large size of the PTT

is observed when nominal size of PT is set close to 0. The size of the PTT

behaves much like that of the RT when the nominal size of PT is small, but it

behaves more like that of the UT when the nominal size of the PT is large.

The power of the PTT is larger for moderate values of λ2 than for smaller

and larger values of λ2. It is shown analytically that the power of the PTT

approaches the power of the RT when the nominal size of PT is closer to 0 but

approaches the power of the UT when the nominal size of the PT is closer to
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1. In practical applications, the size of the PT should be small (ideally close to

0), and in such cases the power of the PTT is close to that of the RT (which is

much higher than that of the UT).

To avoid the larger size of the RT, practitioners are recommended to use

the PTT as it achieves smaller size (than the RT) and higher power (than the

UT) when the value of λ2 is small or moderate. Even for large values of λ2 the

PTT has at least as much power as the UT.



Chapter 4

Multivariate Simple Regression

Model

99
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4.1 Introduction

The multivariate simple regression model is a generalisation of the commonly

used simple regression model. In a multivariate simple regression model, there

is a set of response variables corresponding to a non-zero single value of the

explanatory variable. For example, in the study of energy usage in a production

plant, let the usage of solar, electrical and gas energies be the level of responses

corresponding to the level of production output. The level of each response

variable, when no effective production is taking place, is known as the base

load. The base load is related to the energy used in lighting, heating, cooling,

office equipment, machine repairs and maintenance. Since the base load is

unrelated to the production output, reduction in the base load is profitable to

the manufacturer (Kent, 2008). Obviously the usage of energy will increase as

the production level goes up. Then, the production level is the explanatory

variable that affects the usage of different types of energy. Thus, the usage of

energy can be modeled by the multivariate simple regression model.

Consider the multivariate simple regression model,

X i = θ + βci + ei, i = 1, . . . , n, (4.1.1)

where X i = (Xi1, . . . , Xip)
′ is the p dimensional response vector, ci is a non-zero

scalar value of the explanatory variable, θ = (θ1, . . . , θp)
′ and β = (β1, . . . , βp)

′

are unknown intercept and slope vectors, and ei = (ei1, . . . , eip)
′ is the p di-

mensional vector of errors. Assume that each element of ei, i = 1, . . . , n is not

independent but e1, . . . , en are mutually independent with distribution F.

The management of the production plant may wish to test that the base

load is equal to a specified vector (θ0) while they are not sure about the values

of the slope parameters. In this situation, they face the following three different

scenarios. The management may consider the value of the slope vector either

to be (i) completely unspecified, or (ii) specified to a fixed quantity, or (iii)

uncertain, but suspected to be a given value from previous knowledge or expert
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assessment. Three statistical tests are proposed, namely, the unrestricted test

(UT), the restricted test (RT) and the pre-test test (PTT) appropriate to the

above three possible choices of the slope vector respectively. Thus, the UT is

to test H
(1)
0 : θ = θ0 against H

(1)
A : θ > θ0 when β is unspecified, the RT is to

test H
(1)
0 : θ = θ0 against H

(1)
A : θ > θ0 when β = β0 (or specified and fixed)

and the PTT is to test H
(1)
0 : θ = θ0 against H

(1)
A : θ > θ0 after pre-testing

H
(3)
0 : β = β0 against H

(3)
A : β > β0 (to remove the uncertainty). The PTT is

a choice between the UT and the RT. If the null hypothesis H
(3)
0 is rejected in

the pre-test (PT), then the UT is used, otherwise the RT is used.

4.2 The M-estimation

Let Fp be the class of all p-variate absolutely continuous distribution functions

which are diagonally symmetric about 0 and have a finite Fisher information

matrix,

I = ((Ijk)), Ijk =

∫ ∞

−∞

∫ ∞

−∞

f ′[j](x)

f[j](x)

f ′[k](y)

f[k](y)
dF[jk](x, y), for j, k = 1, . . . , p,

where F[j](x) and F[jk](x, y) are one and two-dimensional marginals of F and

f[j](x) and f ′[j](x) are the first two derivatives of F[j](x). For every n(≥ 1), define

c̄n = n−1

n∑
i=1

ci and C?
n
2 =

n∑
i=1

c2
i − nc̄2

n. (4.2.1)

Also assume that constants c̄ and C?2 exist such that c̄ = limn→∞ c̄n, C?2 =

limn→∞ n−1 C?
n
2 and ci’s are bounded so that

max
1≤i≤n

(ci − c̄n)2/C?
n
2 → 0 as n →∞. (4.2.2)

Let ρ : < → < be an absolutely continuous function. Thus, the M-estimators

of θj and βj are defined as the values of θj and βj that minimize the objective

function
n∑

i=1

ρ

(
Xij − θj − βjci

Sn

)
, j = 1, 2, . . . , p. (4.2.3)
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Here, Sn is an appropriate scale statistic for some functional S = S(F ) > 0.

If F is N(0, σ2), Sn = MAD/0.6745 is an estimate of S = σ, where MAD

is the mean absolute deviation (Wilcox, 2005, p.78, Montgomery et al., 2001,

p.387). The M-estimators based on the componentwise estimating equations

for the multivariate model (see Koenker and Portnoy, 1990) are considered in

this Chapter. However, the assumption of strong correlation between elements

of ei is questionable because the M-estimates obtained using the method of

componentwise equations are more appropriate when there is small dependence

between the equations (i.e. weak correlation among the elements of ei) (c.f.

Koenker and Portnoy, 1990).

If ψ = ρ′ is continuous, then the M-estimators of θj and βj are the solutions

of the system of equations (Carroll and Ruppert, 1988, p.210),

n∑
i=1

ψ

(
Xij − θj − βjci

Sn

)
= 0 and

n∑
i=1

ciψ

(
Xij − θj − βjci

Sn

)
= 0. (4.2.4)

Let ψ : < → < be a nondecreasing and skew symmetric score function. For any

real numbers aj and bj, consider

Mn1(a, b) =
[
Mn11(a1, b1), . . . , Mn1p(ap, bp)

]′
and

Mn2(a, b) =
[
Mn21(a1, b1), . . . , Mn2p(ap, bp)

]′
,

where Mn1j(aj, bj) =
∑n

i=1 ψ
(

Xij−aj−bjci

Sn

)
and Mn2j (aj, bj) =

∑n
i=1 ciψ (

Xij−aj−bjci

Sn

)
with a = (a1, . . . , ap)

′ and b = (b1, . . . , bp)
′.

Let β̃ be the constrained M-estimator of β when θ = θ0, where θ0 =

(θ01 , . . . , θ0p)
′ is a vector of fixed real numbers, that is, β̃ is the solution of

Mn2(θ0, t2) = 0, and it may be conveniently expressed as

β̃ = [sup{t2 : Mn2(θ0, t2) > 0} + inf{t2 : Mn2(θ0, t2) < 0}]/2. (4.2.5)

Similarly, let θ̃ be the constrained M-estimator of θ when β = β0, where

β0 = (β01 , . . . , β0p)
′ is a vector of fixed real numbers, that is, θ̃ is the solution

of Mn1(t1, β0) = 0 and may conveniently be expressed as

θ̃ = [sup{t1 : Mn1(t1,β0) > 0} + inf{t1 : Mn1(t1,β0) < 0}]/2. (4.2.6)
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The constrained M-estimators of intercept and slope parameters are defined

by Sen (1982) to test the significance of the slope parameter of the simple

regression model. Further note that

∫
ψ(x/S)dF[j](x) = 0, 1 ≤ j ≤ p. (4.2.7)

Denote

Λ = ((λjk)), where λjk =

∫ ∞

−∞

∫ ∞

−∞
ψ(x/S)ψ(y/S)dF[jk](x, y), (4.2.8)

j, k = 1, . . . , p and define

∆(1) = ((δ
(1)
jk )), ∆(2) = ((δ

(2)
jk )) and ∆(3) = ((δ

(3)
jk )), where (4.2.9)

δ
(1)
jk =

1

n

n∑
i=1

ψ

(
xij − θ0j

− β̃jci

Sn

)
ψ

(
xik − θ0k

− β̃kci

Sn

)
, (4.2.10)

δ
(2)
jk =

1

n

n∑
i=1

ψ

(
xij − θ0j

− β0j
ci

Sn

)
ψ

(
xik − θ0k

− β0k
ci

Sn

)
and (4.2.11)

δ
(3)
jk =

1

n

n∑
i=1

ψ

(
xij − θ̃j − β0j

ci

Sn

)
ψ

(
xik − θ̃k − β0k

ci

Sn

)
. (4.2.12)

Also, define

T = ((τjk)), with τjk = λjk/(γjγk) (4.2.13)

and

γj =
1

S

∫ ∞

−∞
ψ′(x/S)dF[j](x).

The asymptotic distributions of statistics given in the following Theorem are

useful to derive the UT, RT and PTT in the next Section.

Theorem 4.2.1 Given the asymptotic properties results (i) and (ii) in Ap-
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pendix B.2, as n →∞,

(i) under H
(1)
0 : θ = θ0, n−

1
2

Mn1(θ0, β̃)
d→ Np(0,ΛC?2/(C?2 + c̄2)), (4.2.14)

(ii) under H
(2)
0 : θ = θ0,β = β0,

n−
1
2




Mn1(θ0,β0)

Mn2(θ0,β0)




d→ N2p







0

0


 ,




1 c̄

c̄ C?2 + c̄2


⊗Λ


 ,

(4.2.15)

(iii) under H
(3)
0 : β = β0, n−

1
2 Mn2(θ̃,β0)

d→ Np(0,ΛC?2), (4.2.16)

where Np(· , · ) represents a p-variate normal distribution with appropriate pa-

rameters. Here, A⊗B denotes the Kronecker product between matrices A and

B.

The proof of Theorem 4.2.1 is given in Appendix B.2.

4.3 The UT, RT and PTT

This Section provides the statistical tests for the UT, RT and PT. These tests

are defined using the score function in the M-estimation methodology. The test

function of the PTT is proposed in this Section. The asymptotic distributions

used to derive the UT, RT and PT are given in Theorem 4.2.1.

4.3.1 The Unrestricted Test (UT)

Let φUT
n be the test function of H

(1)
0 : θ = θ0 against H

(1)
A : θ > θ0 when β is

unspecified. The proposed test statistic is

LUT
n = n−1Mn1(θ0, β̃)

′
∆(1)−1

Mn1(θ0, β̃)/(C?
n
2/(C?

n
2 + nc̄2

n)),
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where β̃ is the constrained M-estimator defined by equation (4.2.5). It follows

from equation (4.2.14) that for large n, LUT
n

d→ χ2
p (chi-square distribution with

p degrees of freedom) under H
(1)
0 .

Let `UT
n,α1

be the critical value of LUT
n at the α1 level of significance. So, for

the test function φUT
n = I(LUT

n > `UT
n,α1

), the power function of the UT becomes

ΠUT
n (θ) = E(φUT

n |θ) = P (LUT
n > `UT

n,α1
|θ), where I(A) is an indicator function

of the set A. It takes value 1 if A occurs, otherwise it is 0.

4.3.2 The Restricted Test (RT)

Let φRT
n be the test function of H

(1)
0 : θ = θ0 against H

(1)
A : θ > θ0 when

β = β0, the proposed test statistic is

LRT
n = n−1Mn1(θ0,β0)

′∆(2)−1
Mn1(θ0,β0).

Note that for large n, it follows from equation (4.2.15) that LRT
n is χ2

p under

H
(2)
0 . Again, let `RT

n,α2
be the critical value of LRT

n at the α2 level of significance.

Thus, for the test function φRT
n = I(LRT

n > `RT
n,α2

), the power function of the RT

becomes ΠRT
n (θ) = E(φRT

n |θ) = P (LRT
n > `RT

n,α2
|θ).

4.3.3 The Pre-test (PT)

For the pre-test on the slope vector, the test function of H
(3)
0 : β = β0 against

H
(3)
A : β > β0 is φPT

n . The proposed test statistic is

LPT
n = n−1Mn2(θ̃,β0)

′
∆(3)−1

Mn2(θ̃,β0)/(C
?
n
2/n),

where θ̃ is the constrained M-estimator as defined in equation (4.2.6). Under

H
(3)
0 , as n →∞, it follows from equation (4.2.16) that LPT

n
d→ χ2

p.
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4.3.4 The Pre-test Test (PTT)

Let φPTT
n be the test function for testing H

(1)
0 against H

(1)
A following a pre-test

on β. Since the PTT is a choice between the RT and the UT, define,

φPTT
n = I[(LPT

n < `PT
n,α3

, LRT
n > `RT

n,α2
) or (LPT

n > `PT
n,α3

, LUT
n > `UT

n,α1
)], (4.3.1)

where `PT
n,α3

is the critical value of LPT
n at the α3 level of significance. The power

function of the PTT is given by

ΠPTT
n (θ) = E(φPTT

n |θ) (4.3.2)

and the size of the PTT is obtained by substituting θ = θ0 in equation (4.3.2).

4.4 Asymptotic Distributions under Local Al-

ternatives

Theorem 4.4.1 Let {Kn} be a sequence of local alternative hypotheses, where

Kn : (θ, β) = (θ0 + n−
1
2 %1,β0 + n−

1
2 %2), (4.4.1)

with %1 = n
1
2 (θ− θ0) > 0 and %2 = n

1
2 (β − β0) > 0. Here, %1 = (%11 , . . . , %1p)

′

and %2 = (%21 , . . . , %2p)
′ are vectors of fixed real numbers. Under {Kn}, for

large sample,

(i) n−
1
2




Mn1(θ0,β0)

Mn2(θ̃, β0)




d→ N2p







γ(%1 + %2c̄)

γ%2C
?2


 ,




1 0

0 C?2


⊗Λ


 ,

(4.4.2)
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(ii) n−
1
2




Mn1(θ0, β̃)

Mn2(θ̃,β0)




d→ N2p







γ%1C?2

C?2+c̄2

γ%2C
?2


 ,




C?2

C?2+c̄2
− c̄C?2

C?2+c̄2

− c̄C?2

C?2+c̄2
C?2


⊗Λ


 , (4.4.3)

where γ = diag(γ1 . . . γp).

The proof of Theorem 4.4.1 is given in Appendix B.2.

Theorem 4.4.2 Under {Kn}, asymptotically (LRT
n , LPT

n ) are independently dis-

tributed as bivariate noncentral chi-square with p degrees of freedom and (LUT
n ,

LPT
n ) are distributed as correlated bivariate noncentral chi-square with p degrees

of freedom and noncentrality parameters,

θUT = (%′1T
−1%1)(C

?2/(C?2 + c̄2)), (4.4.4)

θRT = (%1 + c̄%2)
′T−1(%1 + c̄%2), (4.4.5)

θPT = (%′2T
−1%2)C

?2, (4.4.6)

where T is defined in equation (4.2.13).

Proof The proof of this theorem is directly obtained using Theorem 4.4.1 and

Theorem 1.4.1 of Muirhead (1982, p.26).

4.5 Asymptotic Performance of the Tests

Using results in Section 4.4, under {Kn}, the asymptotic power functions for

the UT, RT and PT which are denoted by Πh(%1,%2), h = UT, RT, PT, are
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defined as

Πh(%1,%2) = lim
n→∞

Πh
n(%1,%2) = lim

n→∞
P (Lh

n > `h
n,αν

|Kn) = 1−Gp(χ
2
p,αν

; θh),

(4.5.1)

where Gp(χ
2
p,αν

, θh) is the cdf of a noncentral chi-square distribution with p

degrees of freedom and noncentrality parameter θh. The level of significance,

αν , ν = 1, 2, 3 is chosen together with the critical values `h
n,αν

for the UT,

RT and PT. Here, χ2
p,α is the upper 100α% critical value of a central chi-

square distribution and `UT
n,α1

→ χ2
p,α1

under H
(1)
0 , `RT

n,α2
→ χ2

p,α2
under H

(2)
0 and

`PT
n,α3

→ χ2
p,α3

under H
(3)
0 .

Obviously the power function of the UT, RT and PTT which relies on the

noncentrality parameters θUT , θRT and θPT , depends on the sample size n.

The noncentrality parameters are a function of %1, %2 and T , which depend

on the sample size n (see equations (4.4.4), (4.4.5) and (4.4.6)). Both %1 and

%2 are decreasing as n increases (see equation (4.4.1)). However, T depends

on the set of random variables, Xi, i = 1, . . . , n (see equation (4.2.13)). A

set of observations with a larger sample size does not imply its estimate of

T always smaller (or always larger) than that of a set of observations with a

smaller sample size. Thus, the power function of the UT, RT and PTT is not

monotone increasing or monotone decreasing as n increases when arguments

%1, %2 and αi, i = 1, 2, 3 are fixed. For example, ΠRT increases as %2 increases

when the other arguments, including the sample size n, are fixed. However,

due to the randomness of observations, θRT does not increase monotonely (or

decrease monotonely) as the sample size n increases, when the other arguments

are fixed. Thus, there is no explicit relationship between the sample size and

the power function of the UT, RT or the PTT.

For a large n (fixed), since θRT ≥ θUT when c̄ ≥ 0 or %2 = 0, this means the

asymptotic power function of the RT is greater than that of the UT if α1 = α2.

We conclude that the asymptotic size of the RT is larger than that of the UT
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but the asymptotic power of the UT is smaller than that of the RT. For testing

H
(1)
0 following a pre-test on β, using equation (4.3.1) and Theorem 4.4.2, the

asymptotic power function for the PTT under {Kn} is given as

ΠPTT (%1,%2)

= lim
n→∞

P (LPT
n ≤ `PT

n,α3
, LRT

n > `RT
n,α2

|Kn) +

lim
n→∞

P (LPT
n > `PT

n,α3
, LUT

n > `UT
n,α1

|Kn)

= Gp(χ
2
p,α3

; θPT ){1−Gp(χ
2
p,α2

; θRT )}+

∫

χ2
p,α1

∫

χ2
p,α3

φ̃(w1, w2)dw1dw2,

(4.5.2)

where φ̃(·) is the density function of the bivariate noncentral chi-square distri-

bution with p degrees of freedom, noncentrality parameters, θUT and θPT and

correlation coefficient, ρ = −c̄/
√

C?2 + c̄2. It is observed that Gp(χ
2
p,α3

; θPT ) is

decreasing as θPT increases and 1−Gp(χ
2
p,α2

; θRT ) is increasing as θRT increases.

The probability integral in (4.5.2) is given by

∫

χ2
p,α1

∫

χ2
p,α3

φ̃(w1, w2)dw1dw2

=
∞∑

j=0

∞∑

k=0

∞∑
κ1=0

∞∑
κ2=0

(1− ρ2)p Γ(p
2

+ j)

Γ(p
2
)j!

Γ(p
2

+ k)

Γ(p
2
)k!

ρ2(j+k)

×
[
1− γ?

(
p

2
+ j + κ1,

χ2
p,α1

2(1− ρ2)

)][
1− γ?

(
p

2
+ k + κ2,

χ2
p,α3

2(1− ρ2)

)]

×e−θUT /2(θUT /2)κ1

κ1!

e−θPT /2(θPT /2)κ2

κ2!
. (4.5.3)

Here, γ?(v, d) =
∫ d

0
xv−1e−x/Γ(v)dx is the incomplete gamma function. For

details on the evaluation of the bivariate integral, see Yunus and Khan (2009).

The density function of the bivariate noncentral chi-square distribution given

above is a mixture of the bivariate central chi-square distribution (see Gunst

and Webster, 1973, Wright and Kennedy, 2002) with the probabilities from the

Poisson distribution.
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Then, write the equation (4.5.3) as
∫ ∞

χ2
p,α1

∫ ∞

χ2
p,α3

φ̃(w1, w2)dw1dw2 = [1−Hp(χ
2
p,α1

; θUT )][1−Hp(χ
2
p,α3

; θPT )],(4.5.4)

with Hp(χ
2
p,α1

; θUT ) =
∑∞

j=0

∑∞
κ1=0

(1−ρ2)
p
2 Γ( p

2
+j)ρ2j

Γ( p
2
)j!

γ?
(

p
2

+ j + κ1,
χ2

p,α1

2(1−ρ2)

)
e−

θUT

2

(
θUT

2

)κ1

/κ1! and Hp(χ
2
p,α3

; θPT ) =
∑∞

k=0

∑∞
κ2=0

(1−ρ2)
p
2 Γ( p

2
+k)ρ2k

Γ( p
2
)k!

γ?
(

p
2

+ k + κ2,

χ2
p,α3

2(1−ρ2)

)
e−

θPT

2

(
θPT

2

)κ2

/κ2!. Note, Hp(χ
2
p,α1

; θUT ) ≥ Gp(χ
2
p,α1

; θUT ) and Hp(

χ2
p,α3

; θPT ) ≥ Gp(χ
2
p,α3

; θPT ). Equality is achieved when ρ = 0, or when %1 = 0

and %2 = 0.

Consider all cases when c̄ > 0 and ρ 6= 0. Using equation (4.5.4), we rewrite

equation (4.5.2) as

ΠPTT (%1, %2) ≤ ΠRT (%1, %2)[1− ΠPT (%1, %2)] + ΠUT (%1,%2)Π
PT (%1,%2).

(4.5.5)

Equality in equation (4.5.5) is achieved when both %1 and %2 are 0.

Obviously ΠPTT (%1,%2) ≤ ΠRT (%1,%2)−ΠPT (%1,%2)v2 for 0 ≤ v2 < 1, and

it follows that ΠPTT (%1,%2) ≤ ΠRT (%1,%2) for any %1 and %2. Equality holds

when both %1 and %2 are 0.

Wright and Kennedy (2002) computed the cumulative distribution function

(cdf) for the bivariate central chi-square distribution. In their paper, as the

correlation coefficient ρ gets larger the cdf grows larger too. In the same manner,

the cdf for the bivariate noncentral chi-square distribution increases as the

correlation coefficient increases (c.f. Yunus and Khan, 2009).

Rewrite equation (4.5.3) as
∫ ∞

χ2
p,α1

∫ ∞

χ2
p,α3

φ̃(w1, w2)dw1dw2

= 1−Hp(χ
2
p,α1

; θUT )−Hp(χ
2
p,α3

; θPT ) +

∫ χ2
p,α1

0

∫ χ2
p,α3

0

φ̃(w1, w2)dw1dw2.

(4.5.6)

When %2 is not large but not 0 and %1 is sufficiently large, the first term

on the right hand side of the equation (4.5.2) becomes G(χ2
p,α3

; θPT ) because



4.5. ASYMPTOTIC PERFORMANCE OF THE TESTS 111

θRT is sufficiently large. The second and fourth terms on the right hand

side of the equation (4.5.6) becomes 0 because θUT is large. Also, note that

Hp(χ
2
p,α3

; θPT ) > Gp(χ
2
p,α3

; θPT ). So, ΠPTT < ΠUT = 1 for sufficiently large %1

and not so large %2 (6= 0).

When %2 = 0 and %1 is sufficiently large, the first term on the right

hand side of the equation (4.5.2) becomes 1 − α3 because θRT is large. Both

Hp(χ
2
p,α1

; θUT ) and
∫ χ2

p,α1
0

∫ χ2
p,α3

0 φ̃(w1, w2)dw1dw2 of the equation (4.5.6) become

0 while Hp(χ
2
p,α3

; θPT ) becomes 1− α3. So, ΠPTT = ΠUT = 1 when %1 is suffi-

ciently large and %2 = 0.

In the same manner, we observe results given in (c)-(e) below

(a) When %2 ( 6= 0) is not large and %1 is sufficiently large, then, ΠPTT <

ΠUT = 1.

(b) When %2 = 0 and %1 is sufficiently large, then, ΠPTT = ΠUT = 1.

(c) When %1 (6= 0) is not large but %2 is sufficiently large, then, ΠPTT <

ΠUT = 1.

(d) Let α1 = α. When %1 = 0 and %2 is sufficiently large, then, ΠPTT =

ΠUT = α.

(e) Let α1 = α2 = α3 = α. When both %1 and %2 are 0, then ΠPTT = ΠUT =

α.

In this Section, the tests are analytically compared using the size and power

of the tests. The relative efficiency of the power functions could also be used to

compare the relative performances of the tests. Because the ultimate conclu-

sions using the relative efficiency would be the same as those using the power

function, we do not pursue this any further in this Chapter.
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4.6 Simulation Study

In this Section, the size and power of the UT, RT and PTT are computed using

equations (4.5.1) and (4.5.2). Obviously the size of the test is obtained when

%1 = 0 (or θ = θ0) and %2 any values in equations (4.5.1) and (4.5.2). The

nominal sizes of the UT, RT and PT are respectively α1, α2 and α3. Here, we

let α1 = α2 = α3 = α = 0.05. Obviously ΠUT (0,0) = α1, ΠRT (0,0) = α2 and

ΠPT (0,0) = α3 when both %1 and %2 are 0 in equation (4.5.1). The power of

the test is obtained using equations (4.5.1) and (4.5.2) by letting %1 > 0 (or

θ > θ0) and %2 any values. The noncentrality parameters, θUT , θRT and θPT

(see equations (4.4.4), (4.4.5) and (4.4.6)) are computed to get the size and

power of the tests. The noncentrality parameters are a function of T , %1, %2

and ci. The regressor values, ci, i = 1, 2, . . . , n are 0 and 1 with 50% for each.

In the simulation, let p = 2 in the multivariate simple regression model be given

by equation (4.1.1). The error term, ei, i = 1, 2, . . . , n of size n is generated

randomly from distributions: (i) normal with mean 0 and variance 1, N(0, 1),

(ii) 10% wild: First, ei is generated from the normal distribution with mean

0 and variance 1, then choose randomly 10% of the generated ei and multiply

them by a scalar 10, and (iii) Cauchy distribution with location 0 and scale 1.

Here, take n = 10, 15, 50 and 60.

Since T is in an integral form that depends on the distribution of the ob-

servations, for simulation purposes, it is estimated using

T̂ =




λ̂11

γ̂1γ̂1

λ̂12

γ̂1γ̂2

λ̂21

γ̂2γ̂1

λ̂22

γ̂2γ̂2


 ,

where γ̂j = 1
n

∑n
i=1 ψ′(eij) and λ̂jk = 1

n

∑n
i=1 ψ(eij)ψ(eik), j, k = 1, 2.

Consider three types of ψ-functions: (a) Least-square (LS), ψLS(u) = u for

any u ∈ <, (b) Huber, ψH(u) = u if |u| ≤ k1, k1 sgn(u) if |u| > k1, (c) Tukey

bi-square, ψTB(u) = u(k2
2 − u2)2 if |u| ≤ k2, otherwise 0. Let k1 = 1.345 and

k2 = 4.685. For the computation of the size and power of the PTT, a program
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(a) Size of the UT when a=0, n=60, p=2
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(d) Size of the test when a=0, p=2 with normal errors

UT, LS, n=16
UT, LS, n=60
RT, LS, n=16
RT, LS, n=60
PTT, LS, n=16
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(b) Size of the RT when a=0, n=60, p=2

LS, normal
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(e) Size of the test when a=0, p=2 with normal errors

UT, LS, n=50
UT, LS, n=10
RT, LS, n=50
RT, LS, n=10
PTT, LS, n=50
PTT, LS, n=10
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(c) Size of the PTT when a=0, n=60, p=2

LS, normal
Huber, normal
Tukey, normal
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(f) Size of the test when a=0, p=2 with 10% wild errors

UT, Huber, n=50
UT, Huber, n=10
RT, Huber, n=50
RT, Huber, n=10
PTT, Huber, n=50
PTT, Huber, n=10

Figure 4.1: Graphs of size of the tests as a function of b for selected values of

a.
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(a) Power of the UT when a=2, n=60, p=2
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(b) Power of the PTT when a=2, n=60, p=2
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(c) Power of the test when a=2, n=60, p=2 with normal errors

UT, LS
PTT, LS

UT, Huber
PTT, Huber
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(d) Power of the test when a=2, n=60, p=2 with 10% wild errors

UT, LS
PTT, LS

UT, Huber
PTT, Huber

Figure 4.2: Graphs of power of the tests as a function of b for selected values

of a.
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is written in R to compute the bivariate integral of the noncentral chi-square

distribution. The simulation is run 100 times to get 100 simulated sets of values

of error terms. The average of the power function of the 100 simulated data

sets is computed.

Since the UT, RT and PTT are defined based on knowledge of the slope

vector, the size and power of the UT, RT and PTT are plotted with respect to

b for selected a. Here, (b, b) = (%21 , %22), where 1√
n
%21 = β1 − β01 and 1√

n
%22 =

β2−β02 , while (a, a) = (%11 , %12), where 1√
n
%11 = θ1−θ01 and 1√

n
%12 = θ2−θ02 . So,

b is actually a function of the difference between the true slope and its suspected

value while a is a function of the difference between the true intercept and its

suspected value. As b increases, the size of the RT increases and reaches 1 (see

Figure 4.1(b)) while the size and power of the UT are constant (see Figures

4.1(a) and 4.2(a)) regardless of the values of b. It is depicted from Figures

4.1(c) and 4.2(b) that the size and power of the PTT increases to a peak (less

than 1) and then decreases as b increases for selected small a.

The robustness properties of the M-test are investigated computationally

through simulation in this Section. The performance of a test depends on the

ψ-function and the distribution of the simulated errors. The size of the UT

remains constant at nominal size, α = 0.05 as b grows larger for all considered

ψ-functions and distributions of the simulated errors (see Figure 4.1(a)). The

(actual) size of the RT is significantly different from the nominal size as b grows

larger. It reaches 1 as b grows larger (see Figure 4.1(b)). Therefore, the RT

is not a valid test because it does not meet the asymptotic level constraint.

Although the size of the PTT is different from the nominal size, it does not

reach 1 for any b (see Figure 4.1(c)). Figures 4.1(d), 4.1(e) and 4.1(f) show that

the size of the RT (or PTT) with a larger sample size n is not always larger or

always smaller than that of with a smaller sample size n.

Since the RT is not a valid test, it is not compared for the power of the

test. Only the power of the test for the UT and PTT are compared and are
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plotted in Figure 4.2. Figures 4.2(c) and 4.2(d) show that the UT has constant

smallest power when the values of b < q, where q is some positive value. Also,

the PTT has larger power than that of the UT when b < q. However, the PTT

has lower power than that of the UT when b > q. For example, we find that the

PTT has at least as much power as the UT when b < 4 = q (or, equivalently,

when β0−β0j
< 4/

√
60) and a = 2 (or, equivalently, θ−θ0j

= 2/
√

60, j = 1, 2)

(see Figure 4.2(c)). Although the prior information on the slope vector may be

uncertain, there is a high possibility that the true values are not too far from

the suspected values. Therefore, the study on the behaviour of the three tests

when b < q is more realistic.

Figure 4.2(a) depicts that the power of the UT for the normal simulated

errors is higher than that of the non-normal simulated errors. For normal

simulated errors, the PTT based on the LS ψ-function has larger power than

that of the PTT using the Huber and Tukey ψ-functions when b < q (see Figure

4.2(b)). By contrast, the PTT using the Huber and Tukey ψ-functions have

larger power than that of using the LS ψ-function when the simulated errors

are nonnormal. Also, the UT using the redecending Tukey ψ-function performs

better in term of the power than that of the Huber (Figure 4.2(a)). The power

of the tests using the Huber and Tukey ψ-functions are not much affected by the

assumed distribution on the simulated errors compared to that of the LS (see

Figures 4.2(c) and 4.2(d)). The power of the tests using the LS ψ-function is

easily affected by the assumed distribution on the data and these tests perform

best under normal model assumptions.

Note, a test is said to be robust if the power of the test is not significantly

affected by any departure from the model assumption (see Burt and Barber,

1996, p.332) and when the nominal and actual sizes are not significantly differ-

ent under slight model failure (c.f. Carolan and Rayner, 2000). Based on the

results from the simulation studies, this definition allows us to conclude that

the UT using the Huber or Tukey ψ-functions is more robust compared to that
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of the LS.

4.7 Discussion and Conclusion

The sampling distributions of the UT, RT and PT follow a univariate noncentral

chi-square distribution under the alternative hypothesis when the sample size is

large. However, that of the PTT is a bivariate noncentral chi-square distribution

as there is a correlation between the UT and PT. Note that there is no such

correlation between the RT and PT. To evaluate the power function of the

PTT, new R codes are used for the computation of the distribution function of

the bivariate noncentral chi-square distribution.

The power of the M-tests using the Huber and Tukey ψ-functions (score

functions) are not significantly affected by slight departures from model as-

sumptions. The test based on LS depends heavily on the model assumption

and it is not robust if the normality assumption is not satisfied.

The size of the RT reaches 1 as b (a function of the difference between the

true and suspected values of the slope vector) increases, so it is not a valid

test because it does not satisfy the level constraint. Although the UT has the

smallest constant size, it has the smallest power as well, except for very large

values of b, that is when b > q, where q is some positive number. So, the UT

fails to achieve the highest power and lowest size simultaneously. The PTT has

a smaller size than the RT and its size does not reach 1 as b increases. It also has

higher power than the UT, except for b > q. Therefore if the prior information

is not far away from the true value, that is, b is near 0 (small or moderate) the

PTT has a smaller size than the RT and higher power than the UT. Hence it

is a better compromise between the two extremes. It is reasonable to expect b

should not be too far away from 0 since the prior information is coming from

previous experience or expert knowledge, and thus the PTT demonstrates a

reasonable domination over the other two tests in a more realistic situation.
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5.1 Introduction

A researcher may model independent data sets from two random samples for

two separate groups of respondents. Often, the researcher may wish to know

whether the regression lines for the two groups are parallel (i.e. the slopes of

the two regression lines are equal) or whether the lines have the same intercept

on vertical-axis. An interesting situation would be if the researcher decides to

test the equality of the intercepts when the equality of slopes is suspected, but

he/she is not sure. Data for this problem can be represented by two simple

linear regression equations.

A set of p (> 1) simple regression models is known as the parallelism model.

Consider a set of p simple regression models

Xjnj
= θj1nj

+ βjcj + εj, j = 1, . . . , p, (5.1.1)

where Xjnj
= (Xj1 , . . . , Xjnj

)′ is a vector of nj observable response random

variables, 1nj
= (1, 1, . . . , 1)′ is an nj-tuple of 1’s, cj = (cj1 , . . . , cjnj

)′ is a

vector of nj independent variables, θj and βj are unknown intercept and slope

parameters respectively and εj = (εj1 , . . . , εjnj
)′ is a vector of errors, εji

, j =

1, . . . , p, i = 1, . . . , nj. Assume that {εji
} = {Xji

− θj − βjcji
} are mutually

independent and identically distributed with cumulative distribution function

(cdf) Fji
such that

Fji
= F (Xji

− θj − βjcji
) (5.1.2)

and F is an unknown continuous distribution function.

The researcher may wish to test the intercept vector θ = (θ1, . . . , θp)
′ while it

is not sure if the p-slope parameters are equal. In this situation, three different

scenarios associated with the value of the slopes are considered: the value of

the slopes would either be (i) completely unspecified, (ii) equal at an arbitrary

constant, β0, or (iii) suspected to be equal at an arbitrary constant, β0. The

unrestricted test (UT), the restricted test (RT) and the pre-test test (PTT) are
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defined respectively for the three scenarios of the slope parameters. Thus, the

UT is for testing H
(1)
0 : θ = θ0 against H

(1)
A : θ > θ0 when β = (β1, . . . , βp)

′

is unspecified, the RT is for testing H
(1)
0 : θ = θ0 against H

(1)
A : θ > θ0 when

β = β01p (fixed vector) and the PTT is for testing H
(1)
0 : θ = θ0 against

H
(1)
A : θ > θ0 after pre-testing H?

0 : β = β01p against H?
A : β > β01p (to remove

the uncertainty). The PTT is a choice between the UT and the RT. If the null

hypothesis H?
0 is rejected in the pre-test (PT), then the UT is used, otherwise

the RT is used.

5.2 The M-estimation

Given an absolutely continuous function ρ : < → <, the M-estimator of θj and

βj is defined as the values of θj and βj that minimize the objective function

nj∑
i=1

ρ

(
Xji

− θj − βjcji

Sn

)
. (5.2.1)

Here Sn is an appropriate scale statistic for some functional S = S(F ) > 0. If

ψ = ρ′, then the M-estimator of θj and βj are the solutions for the system of

equations,

nj∑
i=1

ψ

(
Xji

− θj − βjcji

Sn

)
= 0,

nj∑
i=1

cji
ψ

(
Xji

− θj − βjcji

Sn

)
= 0. (5.2.2)

Let n = n1 + . . . + np, Λn = Diag
(

n1

n
, . . . , np

n

)
and

lim
n→∞

n−1

nj∑
i=1

cji
= λj c̄j (|c̄j| < ∞), lim

n→∞
n−1C?

nj

2 = λjC
?
j
2,

where

C?
nj

2 =

nj∑
i=1

c2
ji
− nj c̄

2
nj

and c̄nj
= n−1

j

nj∑
i=1

cji
.

Also,

lim
n→∞

nj

n
= λj (0 < λj < 1),
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meaning,

lim
n→∞

Λn = Λ0 = Diag(λ1, . . . , λp).

Assume F is symmetrically distributed about 0, so

∫ ∞

−∞
ψ(z/S)dF (z) = 0 and σ2

0 =

∫ ∞

−∞
ψ2(z/S)dF (z). (5.2.3)

Let

γ =

∫ ∞

−∞

1

S
ψ′(z/S)dF (z). (5.2.4)

Further assume that σ0 and γ are both positive and finite quantities. Let

ψ : < → < be the nondecreasing and skew symmetric score function. For any

real numbers aj and bj, consider statistics

Mn1(a, b) = (M (1)
n1

(a1, b1), . . . ,M
(p)
n1

(ap, bp))
′ and

Mn2(a, b) = (M (1)
n2

(a1, b1), . . . ,M
(p)
n2

(ap, bp))
′,

where M
(j)
n1 (aj, bj) =

∑nj

i=1 ψ
(

Xji
−aj−bjcji

Sn

)
and M

(j)
n2 (aj, bj) =

∑nj

i=1 cji
ψ (

Xji
−aj−bjcji

Sn

)
, with a = (a1, . . . , ap)

′ and b = (b1, . . . , bp)
′ being vectors of real

numbers.

Let β̃ be the constrained M-estimator of β when θ = θ0, where θ0 =

(θ01 , . . . , θ0p)
′ is a vector of fixed real numbers, that is, β̃ is the solution of

Mn2(θ0, b) = 0 and it may conveniently be expressed as

β̃ = [sup{b : Mn2(θ0, b) > 0} + inf{b : Mn2(θ0, b) < 0}]/2. (5.2.5)

Similarly, let θ̃ be the constrained M-estimator of θ when β = β01p (β0 is a fixed

number), that is, θ̃ is the solution of Mn1(a, β01p) = 0 and can conveniently

be expressed as

θ̃ = [sup{a : Mn1(a, β01p) > 0} + inf{a : Mn1(a, β01p) < 0}]/2. (5.2.6)

The below theorem is used to derive the statistical tests proposed in the

next Section.
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Theorem 5.2.1 Given the asymptotic properties results (i) and (ii) in Ap-

pendix B.3, as n →∞,

(i) under H
(1)
0 : θ = θ0, n−

1
2 Mn1(θ0, β̃)

d→ Np(0, σ2
0Λ

?
0),

(5.2.7)

(ii) under H
(2)
0 : θ = θ0,β = β01p,

n−
1
2




Mn1(θ0, β01p)

Mn2(θ0, β01p)




d→ N2p







0

0


 , σ2

0




Λ0 Λ12

Λ21 Λ2





 ,

(5.2.8)

(iii) under H?
0 : β = β01p, n−

1
2 Mn2(θ̃, β01p)

d→ Np(0, σ2
0Λ

?
2),

(5.2.9)

where Np(· , · ) represents a p-variate normal distribution with appropriate pa-

rameters. Here, Λ0 = Diag(λ1, . . . , λp), Λ12 = Diag(λ1c̄1, . . . , λpc̄p), Λ21 = Λ12,

Λ?
0 = Λ0− Λ12Λ

−1
2 Λ21 = Diag(λ1C

?
1
2/(C?

1
2 + c̄2

1), . . . , λpC
?
p
2/(C?

p
2 + c̄2

p)) and

Λ2 = Diag(λ1(C
?
1
2 + c̄2

1), . . . , λp(C
?
p
2 + c̄2

p)), Λ?
2 = Λ2 −Λ12Λ

−1
0 Λ21 = Diag

(λ1C
?
1
2, . . . , λpC

?
p
2).

The proof of Theorem 5.2.1 is given in Appendix B.3.
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5.3 The UT, RT and PTT

5.3.1 The Unrestricted Test (UT)

If β is unspecified, φUT
n is the test function of H

(1)
0 : θ = θ0 against H

(1)
A : θ >

θ0. We consider the test statistic

TUT
n = n−1Mn1(θ0, β̃)′Λ?

0
−1Mn1(θ0, β̃)

S
(1)
n

2 ,

where β̃ (given in equation (5.2.5)) is a constrained M-estimator of β under

H
(1)
0 and S

(1)
n

2
= 1

n

∑p
j=1

∑nj

i=1 ψ2
(

Xji
−θ0j−β̃jcji

Sn

)
. It follows from (5.2.7) that

TUT
n is χ2

p (chi-square distribution with p degrees of freedom).

Let `UT
n,α1

be the critical value of TUT
n at the α1 level of significance. So, for

the test function φUT
n = I(TUT

n > `UT
n,α1

), the power function of the UT becomes

ΠUT
n (θ) = E(φUT

n |θ) = P (TUT
n > `UT

n,α1
|θ), where I(A) is an indicator function

of the set A. It takes value 1 if A occurs, otherwise it is 0.

5.3.2 The Restricted Test (RT)

If β = β01p, the test function for testing H
(1)
0 : θ = θ0 against H

(1)
A : θ > θ0 is

φRT
n . The proposed test statistic is

TRT
n = n−1Mn1(θ0, β01p)

′Λ0
−1Mn1(θ0, β01p)

S
(2)
n

2 ,

where S
(2)
n

2
= 1

n

∑p
j=1

∑nj

i=1 ψ2
(

Xji
−θ0j−β0cji

Sn

)
. It follows from equation (5.2.8)

that for large n, TRT
n is χ2

p under H
(2)
0 : θ = θ0,β = β01p. Again, let `RT

n,α2
be the

critical value of TRT
n at the α2 level of significance. Thus, for the test function

φRT
n = I(TRT

n > `RT
n,α2

), the power function of the RT becomes ΠRT
n (θ) =

E(φRT
n |θ) = P (TRT

n > `RT
n,α2

|θ).
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5.3.3 The Pre-test (PT)

For the pre-test on the slope, the test function of H?
0 : β = β01p against

H?
A : β > β01p is φPT

n . The proposed test statistic is

T PT
n = n−1Mn2(θ̃, β01p)

′Λ?
2
−1Mn2(θ̃, β01p)

S
(3)
n

2 ,

where θ̃ (given in equation (5.2.6)) is a constrained M-estimator of θ and S
(3)
n

2
=

1
n

∑p
j=1

∑nj

i=1 ψ2
(

Xji
−θ̃j−β0cji

Sn

)
. It follows from equation (5.2.9) that as n →∞,

T PT
n

d→ χ2
p under H?

0 .

5.3.4 The Pre-test Test (PTT)

We are now in the position to formulate φPTT
n for testing H

(1)
0 following a pre-

test on β. Since the PTT is a choice between the RT and the UT, define,

φPTT
n = I[(T PT

n < `PT
n,α3

, TRT
n > `RT

n,α2
) or (T PT

n > `PT
n,α3

, TUT
n > `RT

n,α1
)], (5.3.1)

where `PT
n,α3

is the critical value of T PT
n at the α3 level of significance. The power

function of the PTT is given by

ΠPTT
n (θ) = E(φPTT

n |θ) (5.3.2)

and the size of the PTT is obtained by substituting θ = θ0 in equation (5.3.2).

5.4 Asymptotic Distributions under Local Al-

ternatives

In this Section, the asymptotic distributions of the UT, RT, PT and PTT are

derived under a sequence of local alternative hypotheses, {K?
n} (see below).

These distributions are essential to obtain the power functions of the UT, RT
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and PTT. To derive the power function of the PTT, the joint distributions of
[
TUT

n , T PT
n

]
and

[
TRT

n , T PT
n

]
are required.

Theorem 5.4.1 Let {K?
n} be a sequence of alternative hypotheses, where

K?
n : (θ,β) = (θ0 + n−

1
2 δ1, β01p + n−

1
2 δ2), (5.4.1)

with δ1 = n
1
2 (θ−θ0) > 0 and δ2 = n

1
2 (β−β01p) > 0. Here, δ1 = (δ11 , . . . , δ1p)

′,

δ2 = (δ21 , . . . , δ2p)
′ are vectors of fixed real numbers. Under {K?

n}, for large

sample,

(i)




n−
1
2 Mn1(θ0, β01p)

n−
1
2 Mn2(θ̃, β01p)




d→ N2p







γ(Λ0δ1 + Λ12δ2)

γΛ?
2δ2


 , σ2

0




Λ0 0

0 Λ?
2





 , (5.4.2)

(ii)




n−
1
2 Mn1(θ0, β̃)

n−
1
2 Mn2(θ̃, β01p)




d→ N2p







γΛ?
0δ1

γΛ?
2δ2


 , σ2

0




Λ?
0 Λ?

12

Λ?
12 Λ?

2





 , (5.4.3)

where Λ?
12 = −Λ12 + Λ12Λ

−1
2 Λ21Λ

−1
0 Λ21 = Diag (−λ1c̄

2
1C

?
1
2/(C?

1
2 + c̄2

1), . . . ,

−λpc̄
2
pC

?
p
2/ (C?

p
2 + c̄2

p)).

See Appendix B.3 for the proof of Theorem 5.4.1.

Theorem 5.4.2 Under {K?
n}, asymptotically (TRT

n , T PT
n ) are independently dis-

tributed as a bivariate non-central chi-square distribution with p degrees of free-

dom (d.f.) and (TUT
n , T PT

n ) are distributed as a correlated bivariate non-central
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chi-square distribution with p d.f. and non-centrality parameters,

θUT = (γΛ?
0δ1)

′Λ?
0
−1 (γΛ?

0δ1) /σ2
0, (5.4.4)

θRT = [γ(Λ0δ1 + Λ12δ2)]
′Λ0

−1 [γ(Λ0δ1 + Λ12δ2)] /σ
2
0, (5.4.5)

θPT = (γΛ?
2δ2)

′Λ?
2
−1 (γΛ?

2δ2) /σ2
0. (5.4.6)

Proof The proof of this theorem is directly obtained using Theorem 5.4.1 and

Theorem 1.4.1 of Muirhead (1982).

5.5 Asymptotic Properties for UT, RT and PTT

Using the results in Section 5.4, under {K?
n}, the asymptotic power functions

for the UT, RT and PT which are denoted by Πh(δ1, δ2) for h any of the UT, RT

and PT, are defined as

Πh(δ1, δ2) = lim
n→∞

Πh
n(δ1, δ2) = lim

n→∞
P (T h

n > `h
n,αν

|K?
n) = 1−Gp(χ

2
p,αν

; θh),

(5.5.1)

where Gp(χ
2
p,αν

, θh) is the cdf of the non-central chi-square distribution with p

degrees of freedom and non-centrality parameter θh. The level of significance,

αν , where ν = 1, 2, 3, is chosen together with the critical values `h
n,αν

for the

UT, RT and PT. Here, χ2
p,α is the upper 100α% critical value of a central chi-

square distribution and `UT
n,α1

→ χ2
p,α1

under H
(1)
0 , `RT

n,α2
→ χ2

p,α2
under H

(2)
0 and

`PT
n,α3

→ χ2
p,α3

under H?
0 .

For testing H
(1)
0 following a pre-test on β, using equation (5.3.1) and the

results in Section 5.4, the asymptotic power function for the PTT under {K?
n}
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is given as

ΠPTT (δ1, δ2)

= lim
n→∞

P (T PT
n ≤ `PT

n,α3
, TRT

n > `RT
n,α2

|K?
n) +

lim
n→∞

P (T PT
n > `PT

n,α3
, TUT

n > `UT
n,α1

|K?
n)

= Gp(χ
2
p,α3

; θPT ){1−Gp(χ
2
p,α2

; θRT )}+

∫

χ2
p,α1

∫

χ2
p,α3

φ̃(w1, w2)dw1dw2,

(5.5.2)

where φ̃(·) is the density function of a bivariate non-central chi-square distri-

bution with p degrees of freedom, non-centrality parameters θUT and θPT , and

correlation coefficient −1 < ρ < 1. The probability integral in (5.5.2) is given

by

∫

χ2
p,α1

∫

χ2
p,α3

φ̃(w1, w2)dw1dw2

=
∞∑

j=0

∞∑

k=0

∞∑
κ1=0

∞∑
κ2=0

(1− ρ2)p Γ(p
2

+ j)

Γ(p
2
)j!

Γ(p
2

+ k)

Γ(p
2
)k!

ρ2(j+k)

×
[
1− γ?

(
p

2
+ j + κ1,

χ2
p,α1

2(1− ρ2)

)][
1− γ?

(
p

2
+ k + κ2,

χ2
p,α3

2(1− ρ2)

)]

×e−θUT /2(θUT /2)κ1

κ1!

e−θPT /2(θPT /2)κ2

κ2!
. (5.5.3)

Here, γ?(v, d) =
∫ d

0
xv−1e−x/Γ(v)dx is the incomplete gamma function. Take

ρ2 =
∑p

j=1
1
p
ρ2

j , the mean correlation, where ρj = −cj/
√

C?
j
2 + c̄2

j is the correla-

tion coefficient between
(
M

(j)
n1 (θ0j

, β̃j),M
(j)
n2 (θ̃j, β0)

)
. For details on the evalua-

tion of the bivariate integral, see Yunus and Khan (2009). The density function

of the bivariate noncentral chi-square distribution given above, is a mixture of

the bivariate central chi-square distribution of two central chi-square random

variables, (see Gunst and Webster, 1973, Wright and Kennedy, 2002) with the

probabilities from the Poisson distribution.
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Then, write the equation (5.5.3) as

∫ ∞

χ2
p,α1

∫ ∞

χ2
p,α3

φ̃(w1, w2)dw1dw2

= 1−Hp(χ
2
p,α1

; θUT )−Hp(χ
2
p,α3

; θPT ) +

∫ χ2
p,α1

0

∫ χ2
p,α3

0

φ̃(w1, w2)dw1dw2,

(5.5.4)

with Hp(χ
2
p,α1

; θUT ) =
∑∞

j=0

∑∞
κ1=0

(1−ρ2)
p
2 Γ( p

2
+j)ρ2j

Γ( p
2
)j!

γ?
(

p
2

+ j + κ1,
χ2

p,α1

2(1−ρ2)

)
e−

θUT

2

(
θUT

2

)κ1

/κ1! and Hp(χ
2
p,α3

; θPT ) =
∑∞

k=0

∑∞
κ2=0

(1−ρ2)
p
2 Γ( p

2
+k)ρ2k

Γ( p
2
)k!

γ?
(

p
2

+ k + κ2,

χ2
p,α3

2(1−ρ2)

)
e−

θPT

2

(
θPT

2

)κ2

κ2!
. Note, Hp(χ

2
p,α1

; θUT ) ≥ Gp(χ
2
p,α1

; θUT ) and Hp(χ
2
p,α3

; θPT )

≥ Gp(χ
2
p,α3

; θPT ). Equality is achieved when ρ = 0, or when δ1 = 0 and δ2 = 0.

Consider all cases when c̄j > 0 and ρ 6= 0. Using equation 5.5.4, we write

equation (5.5.2) as

ΠPTT (δ1, δ2) ≤ ΠRT (δ1, δ2)[1− ΠPT (δ1, δ2)] + ΠUT (δ1, δ2)Π
PT (δ1, δ2).

(5.5.5)

Equality in equation (5.5.5) is achieved when both δ1 and δ2 are 0.

Wright and Kennedy (2002) computed the cumulative distribution function

(cdf) for the bivariate central chi-square distribution. In their paper, as the

correlation coefficient ρ gets larger the cdf grows larger too. In the same manner,

the cdf for the bivariate noncentral chi-square distribution increases as the

correlation coefficient increases (c.f. Yunus and Khan, 2009). Rewrite equation

(5.5.3) as

∫ ∞

χ2
p,α1

∫ ∞

χ2
p,α3

φ̃(w1, w2)dw1dw2

= 1−Hp(χ
2
p,α1

; θUT )−Hp(χ
2
p,α3

; θPT ) +

∫ χ2
p,α1

0

∫ χ2
p,α3

0

φ̃(w1, w2)dw1dw2.

(5.5.6)

From equations (5.5.1)-(5.5.6), we observe the followings:
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(i) ΠRT ≥ ΠUT , since θRT ≥ θUT when c̄j ≥ 0 or δ2 = 0 and α1 = α2. We

conclude that the asymptotic size of the RT is larger than that of the UT

but the asymptotic power of the UT is smaller than that of the RT.

(ii) Obviously from equation (5.5.5), ΠPTT (δ1, δ2)≤ ΠRT (δ1, δ2)−ΠPT (δ1, δ2)

v2 for 0 ≤ v2 < 1, and it follows that ΠPTT (δ1, δ2) ≤ ΠRT (δ1, δ2) for any

δ1 and δ2. Equality holds when both δ1 and δ2 are 0.

(iii) When δ2 is not large but not 0 and δ1 is sufficiently large, the first term on

the right hand side of the equation (5.5.2) becomes G(χ2
p,α3

; θPT ) because

θRT is sufficiently large. The second and fourth terms on the right hand

side of the equation (5.5.4) becomes 0 because θUT is large. Also, note

that Hp(χ
2
p,α3

; θPT ) > Gp(χ
2
p,α3

; θPT ). So, ΠPTT < ΠUT = 1 for sufficiently

large δ1 and not so large δ2 (6= 0). Thus, when δ2 (6= 0) is not large and

δ1 is sufficiently large, then, ΠPTT < ΠUT = 1.

(iv) When δ2 = 0 and δ1 is sufficiently large, the first term on the right hand

side of the equation (5.5.2) becomes 1 − α3 because θRT is large. Both

Hp(χ
2
p,α1

; θUT ) and
∫ χ2

p,α1
0

∫ χ2
p,α3

0 φ̃(w1, w2)dw1dw2 of the equation (5.5.4)

become 0 while Hp(χ
2
p,α3

; θPT ) becomes 1 − α3. So, ΠPTT = ΠUT = 1

when δ1 is sufficiently large and δ2 = 0. Thus, when δ2 = 0 and δ1 is

sufficiently large, then, ΠPTT = ΠUT = 1.

(v) When δ1 (6= 0) is not large but δ2 is sufficiently large, then, ΠPTT <

ΠUT = 1.

(vi) Let α1 = α. When δ1 = 0 and δ2 is sufficiently large, then, ΠPTT =

ΠUT = α.

(vii) Let α1 = α2 = α3 = α. When both δ1 and δ2 are 0, then ΠPTT = ΠUT =

α.
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5.6 Illustrative Example

Consider two simple linear regression lines,

X1n1
= θ11n1 + β1c1 + ε1, and

X2n2
= θ21n2 + β2c2 + ε2. (5.6.1)

The power functions given in equations (5.5.1) and (5.5.2) are computed for

their graphical view. For p = 2, the non-centrality parameters for the UT, RT

and PT are respectively

θUT =


 ξ11λ1

C?
1
2

C?
1
2+c̄21

ξ12λ2
C?

2
2

C?
2
2+c̄22



′ 

 λ1
C?

1
2

C?
1
2+c̄21

0

0 λ2
C?

2
2

C?
2
2+c̄22



−1 

 ξ11λ1
C?

1
2

C?
1
2+c̄21

ξ12λ2
C?

2
2

C?
2
2+c̄22


 ,

θRT =


 ξ11λ1 + ξ21λ1c̄1

ξ12λ2 + ξ22λ2c̄1



′ 

 λ1 0

0 λ2



−1 

 ξ11λ1 + ξ21λ1c̄1

ξ12λ2 + ξ22λ2c̄1


 and

θPT =


 ξ21λ1C

?
1
2

ξ22λ2C
?
2
2



′ 

 λ1C
?
1
2 0

0 λ2C
?
2
2



−1 

 ξ21λ1C
?
1
2

ξ22λ2C
?
2
2


 ,

where ξkl
= δkl

γ/σ0 for k, l = 1, 2 and δ1l
=
√

n(θl−θ0l
) and δ2l

=
√

n(βl−β0l
).

A special case of the two sample problem (Saleh, 2006, p.67) is considered

with nj = nj1 + nj2 for j = 1, 2, nj1/nj → 1 − P , cj1 = . . . = cjn1
= 0

and cjn1+1 = . . . = cjn = 1. So c̄j = 1 − P and C?
j
2 = P (1 − P ). In this

example, let P = 0.5 and α1 = α2 = α3 = α = 0.05. Also, let n1, n2 = 50 so

n = n1 + n2 = 100. As a results, the correlation coefficient ρj, j = 1, 2 for both

regression lines are the same since c̄2
1 = c̄2

2 = c̄2 for both samples, (Xn1 , c1) and

(Xn2 , c2), of the two regression lines. Note, in plotting the power functions for

the PTT, a bivariate non-central chi-square distribution is used.

Let ξ11 = ξ12 = a and ξ21 = ξ22 = b. Figure 5.1 shows the power of the test

against b at selected values of ξ11 and ξ12 . A test with a higher size and lower

power is a test which makes a small probability of Type I and Type II errors.

In Figure 5.1, except for small b, the UT has the smallest size and the PTT has
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Figure 5.1: Graphs of power functions as a function of b (= ξ21 = ξ22) for

selected values of ξ11 and ξ12 with c̄ > 0 and α1 = α2 = α3 = α = 0.05. Here,

ξkl
= δkl

γ/σ0, k, l = 1, 2.
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Figure 5.2: Graphs of power functions as a function of a (= ξ12 = ξ12) for

selected values of ξ21 and ξ22 with c̄ > 0 and α1 = α2 = α3 = α = 0.05. Here,

ξkl
= δkl

γ/σ0, k, l = 1, 2.



5.7. DISCUSSION AND CONCLUSION 133

a smaller size than that of the RT. The RT has the largest power as b grows.

The PTT has higher power than that of the UT except for large b.

In Figure 5.2, the power of the UT, RT and PTT is plotted against a at

selected values of ξ21 and ξ22 . As a grows large, the power of all tests grows

large too. Although the power of the UT and RT is increasing to 1 as a is

increasing, the power of the PTT is increasing to a value that is less than 1.

The analytical findings in the previous Section support these graphical results.

5.7 Discussion and Conclusion

The sampling distributions of the UT, RT and PT follow a univariate noncentral

chi-square distribution under the alternative hypothesis when the sample size is

large. However, that of the PTT is a bivariate noncentral chi-square distribution

as there is a correlation between the UT and PT. Note that there is no such

correlation between the RT and PT.

The size of the RT reaches 1 as b (a function of the difference between the

true and suspected values of the slopes) increases. This means the RT does not

satisfy the asymptotic level constraint, so it is not a valid test. The UT has

the smallest constant size; however, it has the smallest power as well, except

for very large values of b, that is, when b > q, where q is some positive number.

Thus, the UT fails to achieve the highest power and lowest size simultaneously.

The PTT has a smaller size than the RT and its size does not reach 1 as b

increases. It also has higher power than the UT, except for b > q.

Therefore, if the prior information is not far away from the true value, that

is, b is near 0 (small or moderate), the PTT has a smaller size than the RT

and more power than the UT. So, the PTT is a better compromise between

the two extremes. Since the prior information comes from previous experience

or expert assessment, it is reasonable to expect b should not be too far from 0,

although it may not be 0, and hence the PTT achieves a reasonable dominance
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over the other two tests in a more realistic situation.



Chapter 6

Multiple Linear Regression

Model

135
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6.1 Introduction

Let Xi, i = 1, . . . , n, be n observable response variables of a multiple regression

model,

Xi = β′ci + ei, (6.1.1)

where β′ = (β1, β2, . . . , βp) is a p-dimensional row vector of unknown regression

parameters, c′i = (c1i, . . . , cpi) is a p-dimensional row vector of known real

constants of the independent variables, ei is the error term which is identically

and independently distributed symmetric about 0 with a distribution function,

Fi, i = 1, . . . , n. The vector of p-regression parameters can be expressed as

β′ = (β′1, β′2), where β′1 is a sub-vector of order r and β′2 is a sub-vector of

dimension s such that r + s = p. Similarly, partition c′i as (c′i1, c′i2) with

c′i1 = (c1i, . . . , cri) and c′i2 = (c(r+1)i, . . . , cpi).

Consider testing the significance of the sub-vector β1 under three conditions

on the values of the sub-vector β2: (i) unspecified (ii) specified and fixed (iii)

uncertain. For case (i), we want to test H
(1)
0 : β1 = 0 against H

(1)
A : β1 > 0

with test function, φUT
n . This test is called the unrestricted test (UT). For case

(ii), the test for testing H
(1)
0 : β1 = 0 against H

(1)
A : β1 > 0 with test function

φRT
n is called the restricted test (RT). For case (iii), testing H

(2)
0 : β2 = 0 is

recommended to remove the uncertainty of the suspicious values of β2 = 0

before testing the significance of β1. The testing on H
(2)
0 : β2 = 0 against

H
(2)
A : β2 > 0 with test function φPT

n is known as a pre-test (PT). If the null

hypothesis of this pre-test is rejected, the UT is used to test H
(1)
0 , otherwise

the RT is used. The ultimate test for testing H
(1)
0 following a pre-test on H

(2)
0

is defined as the pre-test test (PTT) and the test function is denoted by φPTT
n .
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6.2 The M-estimation

Given an absolutely continuous function ρ : < → <, M-estimator of β is defined

as the solution of minimizing the objective function

n∑
i=1

ρ

(
Xi − β′ci

Sn

)
(6.2.1)

with respect to β ∈ <p. Here Sn is an appropriate scale statistic for some

functional S = S(F ) > 0. If ψ = ρ′, then the M-estimator of β is the solution

of the system of equations,

n∑
i=1

ciψ

(
Xi − β′ci

Sn

)
= 0. (6.2.2)

For any r and s dimensional column vectors, t1 and t2 (r, s ∈ <), consider the

statistics below

Mn1(t1, t2) =
n∑

i=1

ci1ψ

(
Xi − t′1ci1 − t′2ci2

Sn

)
, (6.2.3)

Mn2(t1, t2) =
n∑

i=1

ci2ψ

(
Xi − t′1ci1 − t′2ci2

Sn

)
. (6.2.4)

For a nondecreasing ψ : < → <, let β̃2 be the constrained M-estimator of β2

when β1 = 0, that is, β̃2 is the solution of Mn2(0, t2) = 0 and it may be

conveniently expressed as

β̃2 = [sup{t2 : Mn2(0, t2) > 0} + inf{t2 : Mn2(0, t2) < 0}]/2 (6.2.5)

(c.f. Sen, 1982). Note that for the nondecreasing ψ-function, Mn2(0, t2) is

decreasing as t2 is increasing (Jurečková and Sen, 1996, p.85). Similarly, let β̃1

be the constrained M-estimator of β1 when β2 = 0, that is, β̃1 is the solution

of Mn1(t1,0) = 0 and may conveniently be expressed as

β̃1 = [sup{t1 : Mn1(t1,0) > 0} + inf{t1 : Mn1(t1,0) < 0}]/2. (6.2.6)

Let

σ2
0 =

∫ ∞

−∞
ψ2

(
X − β′c

S

)
dF (X − β′c). (6.2.7)



138 CHAPTER 6. MULTIPLE LINEAR REGRESSION MODEL

Here σ2
0 is the second moment of ψ(·) while the first moment is zero by assuming

F is symmetrically distributed at 0 and ψ is a skew symmetric function.

Theorem 6.2.1 Given the asymptotic properties of Mn1(·, ·) and Mn2(·, ·) in

equations (B.4.1), (B.4.2) and (B.4.3) in the Appendix B.4, asymptotically,

(i) n−
1
2 Mn1(0, β̃2)

d→ Nr(0, σ2
0Q

?
1) under H

(1)
0 : β1 = 0, (6.2.8)

(ii) n−
1
2 Mn2(β̃1,0)

d→ Ns(0, σ2
0Q

?
2) under H

(2)
0 : β2 = 0, (6.2.9)

where Q?
1 = Q11 −Q12Q

−1
22 Q21 and Q?

2 = Q22 −Q21Q
−1
11 Q12. Here, Nr(· , · )

represents an r-variate normal distribution with appropriate parameters. Take

Q11 = limn→∞ 1
n
Qn11

= limn→∞ 1
n

∑n
i=1 ci1c

′
i1, Q12 = limn→∞ 1

n
Qn12

= limn→∞

1
n

∑n
i=1 ci1c

′
i2, Q21 = limn→∞ 1

n
Qn21

= limn→∞ 1
n

∑n
i=1 ci2c

′
i1 and Q22 = limn→∞

1
n
Qn22

= limn→∞ 1
n

∑n
i=1 ci2c

′
i2. Assume that |Q11| 6= 0, |Q22| 6= 0, |Q?

1| 6= 0

and |Q?
2| 6= 0.

See Appendix B.4 for the proof of Theorem 6.2.1.

6.3 The UT, RT and PTT

6.3.1 The Unrestricted Test (UT)

If β2 is unspecified, φUT
n is the test function of H

(1)
0 : β1 = 0 against H

(1)
A :

β1 > 0. Under H
(1)
0 , Xi = β′2ci2 + ei. We consider test statistic

LUT
n =

Mn1(0, β̃2)
′
Q?

n1

−1Mn1(0, β̃2)

S
(1)
n

2 ,
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where β̃2 (given in equation (6.2.5)) is a constrained M-estimator of β2 un-

der H
(1)
0 . It follows from equation (6.2.8) that LUT

n is χ2
r (chi-square dis-

tribution with r degrees of freedom) under H
(1)
0 as n → ∞, with Q?

n1
=

Qn11
−Qn12

Q−1
n22

Qn21
and S

(1)
n

2
= n−1

∑
ψ2

(
Xi− ˜β

′
2ci2

Sn

)
.

Let `UT
n,α1

be the critical value of LUT
n at the α1 level of significance. So,

for the test function φUT
n = I(LUT

n > `UT
n,α1

), the power function of the UT be-

comes Π̃UT
n (β1) = E(φUT

n |β1) = P (LUT
n > `UT

n,α1
|β1), where I(A) is an indicator

function of the set A. It takes value 1 if A occurs, otherwise it is 0.

6.3.2 The Restricted Test (RT)

If β2 = 0, φRT
n is the test function for testing H

(1)
0 : β1 = 0 against H

(1)
A : β1 >

0. The proposed test statistic is

LRT
n =

Mn1(0,0)′Qn11

−1Mn1(0,0)

S
(2)
n

2 ,

where S
(2)
n

2
= n−1

∑
ψ2

(
Xi

Sn

)
. It follows from equation (B.4.3) that for large

n, LRT
n

d→ χ2
r under H0 : β1 = 0,β2 = 0, Again, let `RT

n,α2
be the critical

value of LRT
n at the α2 level of significance. So, for the test function φRT

n =

I(LRT
n > `RT

n,α2
), the power function of the RT becomes Π̃RT

n (β1) = E(φRT
n |β1) =

P (LRT
n > `RT

n,α2
|β1).

6.3.3 The Pre-test (PT)

For the pre-test on the slope, φPT
n is the test function for testing H

(2)
0 : β2 = 0

against H
(2)
A : β2 > 0. Under H

(2)
0 , Xi = β′1ci1 + ei. The proposed test statistic

is

LPT
n =

Mn2(β̃1,0)
′
Q?

n2

−1Mn2(β̃1,0)

S
(3)
n

2 ,

where β̃1 (given in equation (6.2.6)) is a constrained M-estimator of β1. It

follows from equation (6.2.9) that LPT
n

d→ χ2
s under H

(2)
0 , where Q?

n2
= Qn22

−
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Qn21
Q−1

n11
Qn12

and S
(3)
n

2
= n−1

∑
ψ2

(
Xi− ˜β

′
1ci1

Sn

)
.

6.3.4 The Pre-test Test (PTT)

Let φPTT
n be the test function for testing H

(1)
0 following a pre-test on β. Since

the PTT is a choice between the RT and UT, define,

φPTT
n = I[(LPT

n < `PT
n,α3

, LRT
n > `RT

n,α2
) or (LPT

n > `PT
n,α3

, LUT
n > `UT

n,α1
)], (6.3.1)

where `PT
n,α3

is the critical value of LPT
n at the α3 level of significance. The power

function of the PTT is given by

Π̃PTT
n (β1) = E(φPTT

n |β1) (6.3.2)

and the size of the PTT is obtained by substituting β1 = 0 in equation (6.3.2).

6.4 Asymptotic Distributions of UT, RT, PT

and PTT

In this Section, the asymptotic distributions of the UT, RT, PT and PTT are

derived under local alternative hypotheses, {Kn} (see below). These distribu-

tions are essential to obtain the power functions of the UT, RT and PTT. To

derive the power function of the PTT, we require to find the joint distributions

of
[
LUT

n , LPT
n

]
and

[
LRT

n , LPT
n

]
.

Theorem 6.4.1 Let {Kn} be a sequence of local alternative hypotheses, where

Kn : (β1, β2) = (n−
1
2 λ1, n

− 1
2 λ2), (6.4.1)

with λ1 = n
1
2 β1 > 0 and λ2 = n

1
2 β2 > 0 are (fixed) real numbers. Under
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{Kn}, asymptotically,

(i)




n−
1
2 Mn1(0,0)

n−
1
2 Mn2(β̃1,0)




d→ Np







γ(Q11λ1 + Q12λ2)

γQ?
2λ2


 , σ2

0




Q11 0

0 Q?
2





 ,(6.4.2)

(ii)




n−
1
2 Mn1(0, β̃2)

n−
1
2 Mn2(β̃1,0)




d→ Np







γQ?
1λ1

γQ?
2λ2


 , σ2

0




Q?
1 Q?

12

Q?
21 Q?

2





 , (6.4.3)

where Q?
12 = Q12Q

−1
22 Q21Q

−1
11 Q12 − Q12, Q?

21 = Q21Q
−1
11 Q12Q

−1
22 Q21 − Q21

and γ = 1
S

∫∞
−∞ ψ′

(
X−β′c

S

)
dF (X − β′c).

The proof of Theorem 6.4.1 is given in Appendix B.4.

Theorem 6.4.2 Under {Kn}, asymptotically (LRT
n , LPT

n ) are independently dis-

tributed as bivariate noncentral chi-square distribution with (r, s) degrees of

freedom (d.f.) and (LUT
n , LPT

n ) are distributed as correlated bivariate noncentral

chi-square distribution with (r, s) d.f. and noncentrality parameters,

θUT =
γ2

σ2
0

(λ′1Q
?
1λ1), (6.4.4)

θRT =
γ2

σ2
0

(λ′1Q11λ1 + λ′1Q12λ2 + λ′2Q21λ1 + λ′2Q21Q
−1
11 Q12λ2), (6.4.5)

θPT =
γ2

σ2
0

(λ′2Q
?
2λ2). (6.4.6)

Proof The proof of this theorem is directly obtained using Theorem 6.4.1 and

Theorem 1.4.1 of Muirhead (1982).
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6.5 Asymptotic Properties for UT, RT and PTT

Using results of Section 6.4, under {Kn}, the asymptotic power function for the

UT is

Π̃UT (λ1, λ2) = lim
n→∞

Π̃UT
n (λ1,λ2) = lim

n→∞
P (LUT

n > `UT
n,α1

|Kn)

= 1−Gr(χ
2
r,α1

; θUT ), (6.5.1)

the asymptotic power function for the RT is

Π̃RT (λ1,λ2) = lim
n→∞

Π̃RT
n (λ1, λ2) = lim

n→∞
P (LRT

n > `RT
n,α2

|Kn)

= 1−Gr(χ
2
r,α2

; θRT ), (6.5.2)

and the asymptotic power function for the PT is

Π̃PT (λ1,λ2) = lim
n→∞

Π̃PT
n (λ1, λ2) = lim

n→∞
P (LPT

n > `PT
n,α3

|Kn)

= 1−Gs(χ
2
s,α3

; θPT ), (6.5.3)

where Gk(χ
2
k,αν

; θh) is the cumulative density function of the noncentral chi-

square distribution with k degrees of freedom (d.f.) and the noncentrality

parameter θh in which h is any of the UT, RT and PTT. The level of significance,

αν , ν = 1, 2, 3 is chosen together with the critical values `h
n,αν

for the UT,

RT and PT. Here, χ2
k,α is the upper 100α% critical value of a central chi-

square distribution and `UT
n,α1

→ χ2
r,α1

under H
(1)
0 , `RT

n,α2
→ χ2

r,α2
under H0 and

`PT
n,α3

→ χ2
s,α3

under H
(2)
0 .

For a large n (fixed), when θRT ≥ θUT , we observe from equations (6.5.1)

and (6.5.2) that the asymptotic size of the RT is larger than that of the UT

but the asymptotic power of the UT is smaller than that of the RT.

For testing H
(1)
0 following a pre-test on β2, using equation (6.3.1) and the

results of Section 6.4, the asymptotic power function for the PTT under {Kn}
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is given by

Π̃PTT (λ1, λ2)

= lim
n→∞

P (LPT
n ≤ `PT

n,α3
, LRT

n > `RT
n,α2

|Kn)

+ lim
n→∞

P (LPT
n > `PT

n,α3
, LUT

n > `UT
n,α1

|Kn)

= Gs(χ
2
s,α3

; θPT ){1−Gr(χ
2
r,α2

; θRT )}+

∫ ∞

χ2
r,α1

∫ ∞

χ2
s,α3

φ̃(w1, w2)dw1dw2,

(6.5.4)

where φ̃(·) is the density function of a bivariate noncentral chi-square distri-

bution. It is observed that Gs(χ
2
s,α3

; θPT ) is decreasing as the value of θPT is

increasing and 1−Gr(χ
2
r,α2

; θRT ) is increasing as the value of θRT is increasing.

Let

γ?(v, d) =

∫ d

0

xv−1e−x/Γ(v)dx

be the incomplete gamma function.

The probability integral in (6.5.4) is given by

∫ ∞

χ2
r,α1

∫ ∞

χ2
s,α3

φ̃(w1, w2)dw1dw2

=
∞∑

j=0

∞∑

k=0

∞∑

δ1=0

∞∑

δ2=0

(1− ρ2)(r+s)/2 Γ( r
2

+ j)

Γ( r
2
)j!

Γ( s
2

+ k)

Γ( s
2
)k!

ρ2(j+k)

×
[
1− γ?

(
r

2
+ j + δ1,

χ2
r,α1

2(1− ρ2)

)][
1− γ?

(
s

2
+ k + δ2,

χ2
s,α3

2(1− ρ2)

)]

×e−θUT /2(θUT /2)δ1

δ1!

e−θPT /2(θPT /2)δ2

δ2!
, (6.5.5)

with (r, s) degrees of freedom, noncentrality parameters, θUT and θPT and cor-

relation coefficient, −1 < ρ < 1. For details on the evaluation of the bivariate

integral, see Yunus and Khan (2009). The density function of the bivariate non-

central chi-square distribution given above is a mixture of the bivariate central

chi-square distribution of two central chi-square random variables with different

degrees of freedom (see Gunst and Webster, 1973, Wright and Kennedy, 2002),

with the probabilities from the Poisson distribution. Let ρ2 =
∑p

j=1
1
p
ρ2

j be
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the mean correlation, where ρj is the correlation coefficient for any two differ-

ent elements of the augmented vector
[

n−
1
2 Mn1(0, β̃2), n

− 1
2 Mn2(β̃1,0)

]
in

equation (6.4.3).

Write the second term on the right hand side of the equation (6.5.4) as

∫ ∞

χ2
r,α1

∫ ∞

χ2
s,α3

φ̃(w1, w2)dw1dw2 = [1−Hr(χ
2
r,α1

; θUT )][1−Hs(χ
2
s,α3

; θPT )],

(6.5.6)

with Hr(χ
2
r,α1

; θUT ) =
∑∞

j=0

∑∞
δ1=0

(1−ρ2)
r
2 Γ( r

2
+j)ρ2j

Γ( r
2
)j!

γ?
(

r
2

+ j + δ1,
χ2

r,α1

2(1−ρ2)

)
e−

θUT

2

(
θUT

2

)δ1
/δ1! and Hs(χ

2
s,α3

; θPT ) =
∑∞

k=0

∑∞
δ2=0

(1−ρ2)
s
2 Γ( s

2
+k)ρ2k

Γ( s
2
)k!

γ?
(

s
2

+ k + δ2,

χ2
s,α3

2(1−ρ2)

)
e−

θPT

2

(
θPT

2

)δ2

δ2!
. Note, Hr(χ

2
r,α1

; θUT ) ≥ Gr(χ
2
r,α1

; θUT ) and Hs(χ
2
s,α3

; θPT )

≥ Gs(χ
2
s,α3

; θPT ). Equality is archived when ρ = 0, or when λ1 = 0 and λ2 = 0.

Consider all the cases when θRT ≥ θUT and ρ 6= 0. So, using equation

(6.5.6), we write equation (6.5.4) as

Π̃PTT (λ1, λ2) ≤ Π̃RT (λ1,λ2)[1− Π̃PT (λ1, λ2)] + Π̃UT (λ1,λ2)Π̃
PT (λ1,λ2).

(6.5.7)

Equality in equation (6.5.7) is achieved when both λ1 and λ2 are 0. It is obvious

that Π̃PTT (λ1,λ2) ≤ Π̃RT (λ1,λ2)−Π̃PT (λ1,λ2)v2 for 0 ≤ v2 < 1, and it follows

that Π̃PTT (λ1,λ2) ≤ Π̃RT (λ1, λ2) for any λ1 and λ2. Equality holds when both

λ1 and λ2 are 0.

Rewrite equation (6.5.5) as

∫ ∞

χ2
r,α1

∫ ∞

χ2
s,α3

φ̃(w1, w2)dw1dw2

= 1−Hr(χ
2
r,α1

; θUT )−Hs(χ
2
s,α3

; θPT ) +

∫ χ2
r,α1

0

∫ χ2
s,α3

0

φ̃(w1, w2)dw1dw2.

(6.5.8)

When λ2 is not large but not 0 and λ1 is sufficiently large, the first term

on the right hand side of the equation (6.5.4) becomes G(χ2
s,α3

; θPT ) because

θRT is sufficiently large. The second and fourth terms on the right hand
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side of the equation (6.5.8) becomes 0 because θUT is large. Also, note that

Hs(χ
2
s,α3

; θPT ) > Gs(χ
2
s,α3

; θPT ). So, Π̃PTT < Π̃UT = 1 for sufficiently large λ1

and not so large λ2 (6= 0).

Let α1 = α2 = α3 = α. When λ2 = 0 and λ1 is sufficiently large, the first

term on the right hand side of the equation (6.5.4) becomes 1− α because θRT

is large. Both Hr(χ
2
r,α; θUT ) and

∫ χ2
r,α

0

∫ χ2
s,α

0
φ̃(w1, w2)dw1dw2 of the equation

(6.5.8) become 0 while Hs(χ
2
r,α; θPT ) becomes 1 − α. So, Π̃PTT = Π̃UT = 1

when λ1 is sufficiently large and λ2 = 0.

In the same manner, we observe results given in (c)-(e) below

(a) When λ2 (6= 0) is not large and λ1 is sufficiently large, then, Π̃PTT <

Π̃UT = 1.

(b) When λ2 = 0 and λ1 is sufficiently large, then, Π̃PTT = Π̃UT = 1.

(c) When λ1 (6= 0) is not large but λ2 is sufficiently large, then, Π̃PTT <

Π̃UT = 1.

(d) When λ1 = 0 and λ2 is sufficiently large, then, Π̃PTT = Π̃UT = α.

(e) When both λ1 and λ2 are 0, then Π̃PTT = Π̃UT = α.

This confirms that the asymptotic size of the PTT is larger than that of the

UT but less than that of the RT. For small and moderate values of λ1 and λ2,

the asymptotic power of the PTT is larger than that of the UT but less than

that of the RT. But for large λ1 or λ2, the asymptotic power of the PTT may

be smaller than that of the UT as well as the RT.

6.6 Illustrative Example

For this illustrative example, we consider samples of size 100 from the multiple

linear regression model in equation (6.1.1) with p = 3, r = 1 and s = 2. The
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random errors, ei’s (i = 1, 2, . . . , 100) are generated from the standard normal

distribution using a code in R. Then, set βν = 1 for ν = 1, 2, 3. Let c1i = 1

while c2i and c3i are 0 or 1 with 50% for each. In practice, often the normality

assumption is not met due to the presence of contaminants in the collected data.

In this example, to create contaminated observations, we randomly choose to

replace m(< n) of the n responses with some additive contamination, such

that the contaminated responses X ′
i is X ′

i = β1 + β2c2i + β3c3i + di with di

are generated from uniform distribution, U [−5,−3.5] and U [3.5, 5] with 50%

for each. Only 10% contamination in the data is considered for simulation.

For the contaminated data, the power functions of the UT, RT and PTT are

calculated by equations (6.5.1), (6.5.2) and (6.5.4) using the Huber ψ-function,

ψH(Ui) = −k if Ui < −k, Ui if |Ui| ≤ k, k if Ui > k, where Ui =

(Xi − β1 − β2c2i − β3c3i)/Sn with Sn = MAD/0.6745 and MAD is known

as the mean absolute deviation. As suggested in many reference books (e.g.

Wilcox, 2005, p.76), the value of k = 1.28 is chosen because k = 1.28 is the

90th quantile of a standard normal distribution, so there is a 0.8 probability

that a randomly sampled observation will have a value between −k and k.

The estimate for σ2
0 is taken to be

∑
ψ2

H(Ui)/n. For the estimation of γ, an

R-estimate from the Wilcoxon sign rank statistic is used. The estimate of γ

is the value of t such that S(V1, . . . , Vn, t) =
∑n

i=1 sign(Vi − t)an(R+
ni

(t)) = 0,

where R+
ni

(t) is the rank of Vi − t and an(k) = k/(n + 1), k = 1, . . . , n. Here,

Vi = ψ′H(Ui)/Sn where ψ′H(Ui) is just the derivative of the Huber ψ-function.

Let λ1 = [λ1] and λ2 = [λ2, λ3]
′. Here, we set αν = 0.05 for ν = 1, 2, 3 and

consider all the cases when θRT ≥ θUT . In Figure 6.1, the power of the UT, RT

and PTT are plotted against λ1 for the selected values of [λ2, λ3]. As λ1 grows

large, power of all tests grow large too. Although the power of the UT and

RT are increasing to 1 as λ1 is increasing, the power of the PTT is increasing

to a value that is less than 1. The analytical findings in the previous Section

supports these graphical results.
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Figure 6.1: Graphs of power of the tests as a function of λ1 for selected values

of λ2 and α1 = α2 = α3 = α = 0.05.
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Figure 6.2: Graphs of power of the tests as a function of λ2 for selected values

of λ1 and α1 = α2 = α3 = α = 0.05.
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Since the UT, RT and PTT are defined based on the knowledge of β2 =

[β2, β3]
′, the size and power of each test are plotted against b such that λ2 =

[b, b]′ in Figure 6.2. Figure 6.2 depicts that the RT has the largest power but

also the largest size as b grows larger. By contrast, the UT has the constant

smallest size regardless of the value of b but the constant smallest power when

b < q, where q is some positive value. From the observations, the PTT is a

compromise in minimizing the size and maximizing the power when b < q.

This is because it has a smaller size than the RT but larger power than the UT.

However, the PTT has the lowest power compared to the other tests when b > q.

Although the prior information on the β2 vector may be uncertain, there is a

high possibility that the true values are not too far from the suspected values.

Therefore, the study on the behaviour of the three tests when b < q is more

realistic.

6.7 The Comparison of the Gaussian and Chi-

square Tests

Consider the simple regression model given in equation (3.1.1) of Chapter 3.

Recall the test statistics TUT
n , TRT

n and T PTT
n in Section 3.3 of Chapter 3, that

are asymptotically normal with a given mean and variance. In this Section,

define all of the tests derived in Chapter 3 as the Gaussian tests. The power

functions for these tests are plotted in Figures 3.4 and 3.5 of Chapter 3.

We know the simple regression model of equation (3.1.1) is a special case

of the multiple linear regression model of equation (6.1.1). Now, consider

the test statistics, LUT
n , LRT

n and LPTT
n in Section 6.3 of this Chapter af-

ter letting p = 2, s = 1, r = 1, β1 = θ, β2 = β, c1i = 1 and c2i = ci

in equation (6.1.1). We find LUT
n = n−1Mn1(0, β̃)2/

(
σ2
0C?2

C?2+c̄2

)
d→ χ2

1 under

H
(1)
0 : θ = 0, LRT

n = n−1Mn1(0, 0)2/σ2
0

d→ χ2
1 under H0 : θ = 0, β = 0 and
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LPT
n = n−1Mn2(θ̃, 0)2/

(
σ2

0C
?2

) d→ χ2
1 under H

(2)
0 : β = 0. We then call these

tests the chi-square tests.

Considering the simple regression model, the aim is to compare the perfor-

mance of the Gaussian test and the chi-square test for the PTT. The power

functions for the UT, RT and PTT from the Gaussian test are given in equations

(3.5.5), (3.5.7) and (3.5.9) of Chapter 3. The power functions for the chi-square

tests are given in equations (6.5.1), (6.5.2) and (6.5.4) with s, r = 1. The non-

centrality parameters θUT = (γ/σ0)
2λ2

1

[
C?2/(C?2 + c̄2)

]
, θRT = (γ/σ0)

2(λ1 +

λ2c̄)
2 and θPT = (γ/σ0)

2(λ2C
?)2 are obtained using equations (6.4.4), (6.4.5)

and (6.4.6) of this Chapter and equation (3.2.4) of Chapter 3. Again, the

density function of the bivariate noncentral chi-square distribution φ̃(·), as a

mixture of the bivariate central chi-square distribution (see Gunst and Web-

ster, 1973, Wright and Kennedy, 2002), with the probabilities from the Poisson

distribution, proposed by Yunus and Khan (2009) is used.

We use the same simulated data as in Section 3.7.2 of Chapter 3 to plot

the power of the UT, RT and PTT for the chi-square test in Figures 6.3 and

6.4. From Figures 3.4(d) and 6.4(c), it is observed that the power functions of

the UT, RT and PTT for both Gaussian and chi-square tests are not behaving

in the same manner though both tests are derived from the same statistics.

Figure 6.4(c) depicts that the power of the PTT from the chi-square test is

lower than that of the UT when λ2 > 4. However, the power of the PTT using

the Gaussian test is at least as much as that of the UT when λ2 is large (see

Figure 3.4(d)). We also find that the power of the PTT using the chi-square

test does not reach 1 as λ1 increases, and it is lower than those of the UT and

RT (see Figure 6.3(c)) when λ2 = 2 and λ1 is large. However, in Figure 3.5(d),

the power of the UT, RT and PTT for the Gaussian test approaches 1 as λ1

increases.

Let α1 = α2 = α3 = α, we rewrite the bivariate integral given by equation
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Figure 6.3: Graphs of power functions as a function of λ1 for selected values of

λ2, α1 = α2 = α3 = α = 0.05 and c̄ > 0. The power of the PTT in (a), (c) and

(e) are obtained using the bivariate noncentral chi-square while (b), (d) and (f)

are their approximation using the Steyn-Roux method.
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Figure 6.4: Graphs of power functions as a function of λ2 for selected values of

λ1, α1 = α2 = α3 = α = 0.05 and c̄ > 0. The power of the PTT in (a), (c) and

(e) are obtained using the bivariate noncentral chi-square while (b), (d) and (f)

are their approximation using the Steyn-Roux method.
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(6.5.6) as

∫ ∞

χ2
1,α

∫ ∞

χ2
1,α

φ̃(w1, w2)dw1dw2 = 1−H1(χ
2
1,α; θUT )−H1(χ

2
1,α; θPT )

+H1(χ
2
1,α; θUT )H1(χ

2
1,α; θPT ), (6.7.1)

where H1(·, ·) is as defined in Section 6.5. Consider a sufficiently small λ2 (6=
0) and a sufficiently large λ1, such that Π̃UT = Π̃RT = 1. The 2nd and 4th

terms on the right hand side of the equation (6.7.1) become 0 because θUT and

θRT are large. The remaining terms of the equation (6.7.1) are smaller than

1−G(χ2
1,α, θPT ) = Π̃PT , where G(χ2

1,α, θPT ) is the cdf of the noncentral bivariate

chi-square with 1 d.f. and noncentrality parameter θPT . The first term on the

right of the equation (6.5.4) becomes 1− Π̃PT because θRT is sufficiently large.

Thus, we find that Π̃PTT < 1 when λ2 (6= 0) is small and λ1 is large. This

analytical result means it is not impossible that the power of the PTT is less

than 1, that is, it is less than the power of the UT and the RT, when λ1 is

sufficiently large and λ2 is small but not 0. This analytical result supports the

graphical view of the power function for the PTT from the chi-square test as

shown in Figures 6.3(c) and 6.4(c).

Kocherlakota and Kocherlakota (1999) suggested an approximation for the

bivariate noncentral chi-square distribution using the bivariate central chi-

square distribution. An approximation of the bivariate noncentral chi-square

distribution by the central chi-square distribution using some transformations

on the random variables, correlation coefficient and degree of freedom, is also

considered in this Section. Note, we can write part (ii) of Theorem 6.4.1 as

Z = n−
1
2




Mn1 (0,β̃)

σ0

√
C?2

C?2+c̄2

Mn2 (θ̃,0)

σ0

√
C?2


 d→ N2







γλ1

σ0

√
C?2

C?2+c̄2

γλ2

σ0

√
C?2


 ,


 1 ρ

ρ 1





 , (6.7.2)

where ρ = − c̄√
C?2+c̄2

. Then, ZZ ′ ∼ W2(d.f. = 1, Σ, Ω) (Wishart distribution)

with parameters Σ =


 1 ρ

ρ 1


 , and Ω = Σ−1M ′M, where M =


 µ1

µ2


 =
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γλ1

σ0

√
C?2

C?2+c̄2

γλ2

σ0

√
C?2


 .

Note, the diagonal of ZZ ′ are LUT
n and LPT

n . We find that LUT
n and LPT

n

have the noncentral bivariate chi-square distribution with correlation coefficient

ρ, degree of freedom 1 and noncentrality parameters θUT = µ2
1 and θPT = µ2

2.

Steyn and Roux (1972) proposed an approximation for the noncentral Wishart

distribution by a central Wishart distribution. Kocherlakota and Kocherlakota

(1999) used the idea by Steyn and Roux (1972) for the approximation of

the noncentral bivariate chi-square distribution. Following Kocherlakota and

Kocherlakota (1999), the random variables for the noncentral bivariate chi-

square, (LUT
n , LPT

n ) are approximately distributed as the bivariate central chi-

square distribution with transformed variables,

LUT
n

1 + µ2
1

and
LPT

n

1 + µ2
2

,

degree of freedom 1 and correlation coefficient,

ρ?2 =
(ρ + µ1µ2)

2

(1 + µ2
1)(1 + µ2

2)
.

We find that the power of the PTT, computed directly using the bivariate

noncentral chi-square distribution and using the approximation by the Steyn-

Roux method, is behaving quite similar (see Figures 6.3 and 6.4). It is observed

that the power of the PTT is also less than that of the UT and RT for sufficiently

large λ1 and small λ2 (or small λ1 and large λ2) using the approximation by

the Steyn-Roux method.

6.8 Discussion and Conclusion

In this Chapter, the asymptotic sampling distributions of the UT, RT and PT

follow a univariate noncentral chi-square distribution under the local alternative

hypothesis when the sample size is large. However, the sampling distribution of

the PTT is a bivariate noncentral chi-square distribution as there is a correlation
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between the UT and PT. Note that there is no such correlation between the

RT and PT. The new R code is used for the computation of the distribution

function of the bivariate noncentral chi-square distribution (Yunus and Khan,

2009) to evaluate the power function of the PTT .

The RT has the largest power among the three tests, but it also has the

largest size. So, it is not a valid test because it does not satisfy the asymptotic

level constraint. On the other hand the UT has the smallest size, but it has the

smallest power as well except when λ1 = n
1
2 β1 or λ2 = n

1
2 β2 is large. So, both

UT and RT fail to achieve the highest power and lowest size simultaneously.

The PTT has a smaller size than the RT. It also has higher power than the UT,

except for the very large values of λ1 or λ2. Therefore if the prior information

is not far away from the true value, that is, λ2 is near 0 (small or moderate) the

PTT has a smaller size than the RT and higher power than the UT. Hence it is

a better compromise between the two extremes. Since the prior information is

coming from previous experience or expert knowledge, it is reasonable to expect

λ2 should not be too far away from 0, although it may not be 0, and hence the

PTT demonstrates a reasonable domination over the other two tests in more a

realistic situation.
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7.1 Discussion and Conclusion

Under a sequence of local alternative hypotheses, the sampling distributions for

the UT, RT and PT of a simple regression model when the sample size is large,

follow a normal distribution with appropriate mean and variance as discussed

in Chapter 3. However, that of the PTT is a bivariate normal distribution.

There is a correlation between the UT and PT, but there is no such correlation

between the RT and PT.

The size of the test is the probability of rejecting the null hypothesis when

it is true. For all cases where a mean of regressor of the simple regression model

is larger than 0, the probability of rejecting the null hypothesis H0 : θ = θ0,

when it is true for all UT, RT and PTT, increases and tends to unity as the

suspected intercept θ0 moves away from the true intercept θ. The size of the

RT increases and tends to unity as the suspected value of the slope β0 moves

away from the true slope β. Hence, the RT is not a valid test because it does

not satisfy the asymptotic size constraint especially when λ2 =
√

n|β − β0| is

large. For the UT, the probability of rejecting H0 when it is true is constant

regardless of the distance between the true slope and its suspected value. The

PTT has a significantly smaller size of the test than the RT for moderate and

large λ2. Thus, the PTT is better in terms of size than the RT, though the UT

remains as the most preferable.

The power of the test is the probability of rejecting the null hypothesis when

it is false. The PTT has a larger probability of rejecting H0 : θ = θ0 when it is

false than that of the UT for smaller and moderate λ2. Although the RT has

the largest power of the other two tests, it does not satisfy the asymptotic level

constraint.

Therefore, the power function of the PTT is found to behave similar to

the MSE of the PTE, in the sense that although it is not uniformly the best

statistical test with the smallest size and the largest power, it does protect from
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the risk of size being too large and power being too small. Thus, the power

function of the PTT is a compromise between that of the UT and RT. In the

face of uncertainty on the value of the slope, if the objective of a researcher is

to minimize the size and maximize the power of the test, the PTT is therefore

the best choice.

The performance (size and power) of the PTT depends on its arguments,

namely the slope (via λ2) and the nominal sizes (preassigned significance level)

of the UT, RT and PT. The values of the nominal sizes for the UT, RT and

PT are set before testing is carried out, and they affect the actual size of the

PTT. In order to get a small probability of a Type I error for the PTT, the

investigations concentrate on small nominal sizes of the UT, RT and PT with

a view to achieving small (actual) size of the PTT.

This study revealed that for small and moderate values of λ2, the smaller

the nominal size of the RT, the smaller the (actual) size of the PTT, when other

nominal sizes are kept fixed and small. For moderate and large values of λ2, a

large size of the PTT is observed when the nominal size of the PT is set close

to 0. The performance of the PTT improves when a larger value of nominal

size of the PT is selected. However, setting the nominal size of the PT as a

large value means the probability of a Type I error is large for the PT (testing

on the slope). The size of the PTT behaves much like that of the RT when the

nominal size of the PT is small, but it behaves more like that of the UT when

the nominal size of the PT is large.

The power of the PTT is larger for moderate values of λ2 than for smaller

and larger values of λ2. It is shown analytically that the power of the PTT

approaches the power of the RT when the nominal size of the PT is closer to

0, but that it approaches the power of the UT when the nominal size of the

PT is closer to 1. In practical applications, the size of the PT should be small

(ideally close to 0), and in such cases the power of the PTT is close to that of

the RT (which is much higher than that of the UT).
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To avoid the larger size of the RT, practitioners are recommended to use

the PTT as it achieves a smaller size (than the RT) and higher power (than

the UT) when the distance between the slope and its suspected value is small

or moderate. Even for large values of the distance between the slope and its

suspected value, the PTT has at least as much power as the UT and has at

least as small a size as the RT.

For the multivariate simple regression model, multiple linear regression

model and parallelism model, the sampling distributions of the UT, RT and

PT follow a univariate noncentral chi-square distribution under the alternative

hypothesis when the sample size is large. However, that of the PTT is a bi-

variate noncentral chi-square distribution as there is a correlation between the

UT and PT. Note that there is no such correlation between the RT and PT.

New R codes are written for the computation of the distribution function of the

bivariate noncentral chi-square distribution proposed, as by Yunus and Khan

(2009), to evaluate the power function of the PTT.

For the multivariate simple regression model, the size of the RT reaches 1

as b (a function of the difference between the true and suspected values of the

slope vector) increases, so the RT is not a valid test as it does not satisfy the

asymptotic level constraint. Although the UT has the smallest constant size,

it has the smallest power as well, except for very large values of b, that is when

b > q, where q is some positive number. So, the UT fails to achieve the highest

power and lowest size simultaneously. The PTT has a smaller size than the RT

and its size does not reach 1 for any b. It also has higher power than the UT,

except for b > q. Therefore if the prior information is not far away from the

true value, that is, b is near 0 (small or moderate), the PTT has a smaller size

than the RT and higher power than the UT. Hence it is a better compromise

between the two extremes. Since the NSPI comes from previous experience or

expert knowledge, it is reasonable to expect b should not be too far away from

0, although it may not be 0, and hence the PTT demonstrates a reasonable



7.1. DISCUSSION AND CONCLUSION 161

domination over the other two tests in a more realistic situation.

The power of the UT, RT and PTT for the multiple linear regression and

parallelism models demonstrates similar behavior as those of the multivariate

simple regression model. The PTT shows a reasonable domination over the

other two tests asymptotically when the suspected NSPI value of the param-

eter interest is not too far away from its true value (that is under the null

hypothesis). Similar to that of the multivariate simple regression model, the

PTTs for the multiple linear regression and parallelism models also have lower

power than those of the UTs when the suspected NSPI value is far away from

that under the null hypothesis. Since the NSPI comes from previous experience

or expert knowledge, it is reasonable to expect the suspected NSPI value is not

too far away from that under the null hypothesis.

The bivariate noncentral chi-square distribution is involved in the formula

of the power function of the PTT for the multivariate simple regression model,

multiple linear regression model and parallelism model. The PTTs for these

regression models do not show the same behavior when it comes to the power

of the test as that of the simple regression model. The power of the PTT

for the simple regression model tends to unity, whereas those of the other

regression models do not reach 1 as the intercept (or intercept vector) moves

away from its suspected value. Also, as the slope (or slope vector) moves away

from its suspected value, the PTT has at least as much power as the UT for

the simple regression model, whereas it is lower than that of the UT for the

other regression models. In Section 6.7, we find that the power of the PTT

computed, using an approximation to the noncentral chi-square (Kocherlakota

and Kocherlakota, 1999) approach, also behaves in the same manner as if we

were to use the proposed noncentral bivariate chi-square distribution by Yunus

and Khan (2009).

The UT, RT and PTT are proposed using the score function in the robust M-

estimation methodology. The robustness of the UT, RT and PTT based M-tests
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is investigated on data simulated using the Monte Carlo method. The simulated

data is generated for both normal and contaminated normal responses. The

power of the UT, RT and PTT using the Huber and Tukey ψ functions (score

functions) is not significantly affected by slight departures from the assumed

normal model. The UT, RT and PTT based on the LS method depend heavily

on the model assumptions and they are not robust if the normality assumption

is not satisfied. The Huber M-test for the UT and RT enjoys the maximin

power (or minimax property) of a test which is formerly suggested by Huber

(1965) for any values of λ1 =
√

n|θ−θ0| and λ2. However, the Huber M-test for

the PTT does not enjoy the minimax property for some λ1 and λ2 (see result

(vii) of Section 3.6).

7.2 Limitations and Future Directions

This thesis considers a one sided hypothesis, H0 : θ = θ0 against H0 : θ > θ0.

This means, if the null hypothesis is rejected, then the true intercept is larger

than its suspected value. For this one-sided alternative, it would not be the

case that the true intercept is less than its suspected value if the null hypothesis

is rejected. Nonetheless, it is recommended to propose a PTT for a two sided

test. However, it is suspected that a more complicated form of power function

for the PTT may be derived if a two-sided alternative is considered.

The complicated formula of the power function of the PTT limits the studies

on the minimax property of a test. In this thesis, the robustness property of

the PTT is investigated through computational analysis. The Monte-Carlo

method is used and the simulated data is generated for both contaminated and

uncontaminated cases. In spite of the graphical view, the theoretical analysis

for the robustness property of the PTT is not thoroughly discussed due to the

complexity form of the power function of the PTT, especially the PTT that

involves the bivariate noncentral chi-square distribution in the formula of its
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power function.

The M-estimators based on the componentwise estimating equations for the

multivariate simple regression model are considered in this thesis. However, the

assumption of a strong correlation between elements of error vector ei is ques-

tionable because the M-estimates, obtained using the method of componentwise

equations, are more appropriate when there is small dependence between the

elements of ei. The PTT for a general multivariate model which is not defined

in a componentwise way is recommended for future work.

In this thesis, the study of the behavior of the power functions of the UT, RT

and PTT only requires the stated regularity conditions to guarantee the con-

sistency of the M-estimators. The entire asymptotic theory is directly adapted

from Jurečková and Sen (1996) without any updating of the regularity condi-

tions for the existence of a consistent M-estimator during the past 14 years.

Since the idea was to use the existing asymptotic theory of the M-estimation

method in the pre-testing framework, the updated regularity conditions were

not essential for this study. However, the PTT may be proposed under weaker

and updated regularity conditions in the future.

The PTT should be proposed for the other robust methodologies such as the

GM-estimator, LM-estimator and S-estimator methodologies. Most probably

however, this suggestion is difficult to attain due to the complicated form of

the sampling distribution of the tests of these robust methodologies.
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Appendix A

A.1 Regularity Conditions

(Jurečková and Sen, 1996, p.217) The ψ function is decomposed into the sum

ψ = ψa + ψc + ψs,

where ψa is an absolutely continuous function with an absolutely continuous

derivative, ψc is a continuous, piecewise linear function that is constant in a

neighbourhood of ±∞, and ψs is a nondecreasing step function. The following

conditions imposed on (3.2.1):

M1. Sn(X) is a regression-invariant and scale-equivariant, Sn > 0 a.s. and

n
1
2 (Sn − S) = Op(1)

for some functional S = S(F ) > 0.

M2. The function h(t) =
∫

ρ((z− t)/S)dF (z) has a unique minimum at t = 0.

M3. For some δ > 0 and η > 1,

∫ ∞

−∞

{
|z| sup

|u|≤δ

sup
|v|≤δ

|ψ′′a
(

e−v(z + u)

S

)
|
}η

dF (z) < ∞

and ∫ ∞

−∞

{
|z|2 sup

|u|≤δ

|ψ′′a
(

e−v(z + u)

S

)
|
}η

dF (z) < ∞,

where the derivative of ψa(·) are taken with respect to z.

M4. ψc is a continuous, piecewise linear function with knots at −∞ = µ0 <

µ1, . . . , µk < µk+1 = ∞, that is constant in a neighborhood of ±∞.

Further we assume that dF (z)
dz

is bounded in neighborhoods of Sµi
, i =

0, 1, . . . , k + 1.
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M5. ψs(z) = λv, qv < z ≤ qv+1, v = 1, . . . , m, where −∞ = q0 < q1 <

. . . < qm+1 = ∞ and −∞ < λ0 < λ1 < . . . < λm < ∞. We assume that

the first and second derivative of F (z) are bounded in neighborhoods of

Sqi
, i = 0, . . . , m + 1.

The class of ψa covers the ML score function ψML(Ui) = Ui, where Ui = Xi−θ−βci

Sn

while the class of ψc covers the Huber score function

ψH(Ui) =





Ui |Ui| ≤ k,

k sign(Ui) |Ui| > k,
(A.1.1)

where k is known as the tuning constant and it is chosen to achieve desired

efficiencies.

A.2 Le Cam’s Lemma

Le Cam’s first lemma (see Hájek et al., 1999, p.251)

For any likelihood ratio statistic Lv(xv),

Lv(xv) =





qv(xv)/pv(xv), if pv(xv) > 0,

1, if pv(xv) = qv(xv) = 0,

∞, if 0 = pv(xv) < qv(xv),

where xv denotes the typical point of the space Xv, v ≥ 1, we find {Qv} is

contiguous to {Pv} if

log Lv(X)
D→ N

(
−1

2
σ2, σ2

)
(under {Pv}),

with σ2 > 0.

Le Cam’s second lemma (see Hájek et al., 1999, p.253)

Assume that

lim
v→∞

max
1≤i≤Nv

Pv

(∣∣∣∣
gvi(Xi)

fvi(Xi)
− 1

∣∣∣∣
)

= 0 (A.2.2)

and statistics

Wv = 2
Nv∑
i=1

{√
gvi(Xi)/fvi(Xi)− 1

}
(A.2.3)
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are asymptotically normal (−1
4
σ2, σ2) under Pv, with pv(xv) =

∏Nv

i=1 fvi(xi),

qv(xv) =
∏Nv

i=1 gvi(xi) and xv = (x1, . . . , xNv). Then, statistics log Lv satisfy

lim
v→∞

Pv

(
| log Lv −Wv +

1

4
σ2| > ε

)
= 0, ε > 0, (A.2.4)

and are asymptotically normal (−1
2
σ2, σ2) under Pv.

Le Cam’s third lemma (see Hájek et al., 1999, p.257)

If 
 Tv

log Lv


 D→ N2





 µ1

µ2


 ,


 σ11 σ12

σ21 σ22





 (under {Pv}),

where Tv is a statistic with µ2 = −1
2
σ22, then

Tv
D→ N(µ1 + σ12, σ11) (under {Qv}).

The Le Cam’s second lemma (Hájek et al., 1999, p.253) gives conditions when

log Lv
D→ N(−1

2
σ2, σ2).
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Appendix B

Proof of Theorems

B.1 Simple Regression Model

Interested readers are referred to papers by Jurečková (1977), Sen (1982) and

Jurečková and Sen (1996, p.221) for the following asymptotic properties. For

simplicity, we omit condition (3.2.17) and let Sn = S in equation (5.5.29) of

Jurečková and Sen (1996, p.221),

(i) Under H?
0

(2) : β = β0, for every positive K, as n →∞, in probability

sup{n− 1
2 |Mn1{(θ, β0) + (t1, t2)} −Mn1(θ, β0) + nγ(t1 + t2c̄)| :

|t1|, |t2| ≤ n−
1
2 K} p→ 0, (B.1.1)

sup{n− 1
2 |Mn2{(θ, β0) + (t1, t2)} −Mn2(θ, β0) +

nγ{t1c̄ + t2(C
?2 + c̄2)}| : |t1|, |t2| ≤ n−

1
2 K} p→ 0. (B.1.2)

(ii) Under H0 : θ = 0, β = 0, as n grows large,

n−
1
2


 Mn1(0, 0)

Mn2(0, 0)


 d→ N2





 0

0


 , σ2

0


 1 c̄

c̄ C?2 + c̄2





 , (B.1.3)

where N2(· , · ) represents a bivariate normal distribution with appropri-

ate parameters.

(iii) Under H0 : θ = 0, β = 0,

sup{n− 1
2 |Mn1(a, b)−Mn1(0, 0) + nγ(a + bc̄)| :

|a|, |b| ≤ n−
1
2 K} p→ 0, (B.1.4)
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sup{n− 1
2 |Mn2(a, b)−Mn2(0, 0) + nγ{ac̄ + b(C?2 + c̄2)}| :

|a| ≤ n−
1
2 K, |b| ≤ n−

1
2 K} p→ 0 (B.1.5)

as n → ∞, and K is a positive constant. The above convergence is

in probability, meaning the sequences of random variables converge in

probability to a fix value (0).

Proof of part (a) of Theorem 3.8.1: Under H?
0

(2) : β = β0, we obtain

n−
1
2 Mn2(θ̌, β0) = n−

1
2 Mn2(θ, β0)− c̄n−

1
2 Mn1(θ, β0) + op(1). (B.1.6)

by equations (3.8.2), (B.1.1) and (B.1.2).

Further, the distribution of n−
1
2 Mn2(θ̌, β0) under H?

0
(2) : β = β0 is the same

as the distribution of n−
1
2 Mn2(0, 0) − n−

1
2 c̄Mn1(0, 0) under H0 : θ = 0, β = 0

using equation (B.1.6) and due to the fact that the distribution of Mn1(a, b)

under θ = a, β = b is the same as that of Mn1(θ − a, β − b) when θ = 0, β = 0,

and similar to Mn2(0, 0) (c.f. Saleh, 2006, p.332).

Therefore, by utilizing equation (B.1.3), we find

n−
1
2 Mn2(θ̌, β0)

d→ N(0, σ2
0C

?2).

under H?
0

(2) : β = β0 as n →∞.

The proof of parts (b) and (c) is similarly obtained.

Proof of part (ii) of Theorem 3.8.2: Note that under (3.1.1), (3.2.4), (3.2.5)

and (3.8.10), the contiguity of the sequence of probability measures under {K?
n}

to those under H?
0 follows from Le Cam’s first and second lemmas (Hájek et al.,

1999, Ch.7). We are interested in the asymptotic joint distribution of the joint

statistics
[
n−

1
2 T ?

n
RT , n−

1
2 T ?

n
PT

]
. Here, convergence of

[
n−

1
2 T ?

n
RT , n−

1
2 T ?

n
PT

]

+Υ → [0, 0] under H?
0 implies

[
n−

1
2 T ?

n
RT , n−

1
2 T ?

n
PT

]
+ Υ → [0, 0] under {K?

n}
since the probability measures under {K?

n} are contiguous to those under H?
0

(c.f. Saleh, 2006, p.44). Here, Υ is a known vector.

From Jurečková (1977), under H?
0 : θ = θ0, β = β0 for every positive K, as

n →∞,

sup{n− 1
2 |Mn1{(θ0, β0) + (t1, t2)} −Mn1(θ0, β0) + nγ(t1 + t2c̄)| :

|t1|, |t2| ≤ n−
1
2 K} p→ 0, (B.1.7)
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sup{n− 1
2 |Mn2{(θ0, β0) + (t1, t2)} −Mn2(θ0, β0) +

nγ{t1c̄ + t2(C
?2 + c̄2)}| : |t1|, |t2| ≤ n−

1
2 K} p→ 0. (B.1.8)

Under H?
0 : θ = θ0, β = β0, with relation to (B.1.7) and (B.1.8)

n−
1
2 Mn1(θ̌, β0) = n−

1
2 Mn1(θ0, β0)− n1/2γ(θ̌ − θ0) + op(1) and (B.1.9)

n−
1
2 Mn2(θ̌, β0) = n−

1
2 Mn2(θ0, β0)− n1/2γ(θ̌ − θ0)c̄ + op(1). (B.1.10)

Recalling definition (3.8.2), the equation (B.1.9) reduces to

n−
1
2 Mn1(θ0, β0) = n1/2γ(θ̌ − θ0) + op(1), (B.1.11)

and hence the equation (B.1.10) becomes

n−
1
2 Mn2(θ̌, β0) = n−

1
2 Mn2(θ0, β0)− n−

1
2 c̄Mn1(θ0, β0) + op(1). (B.1.12)

Therefore, under H?
0 , we find


 n−

1
2 Mn1(θ0, β0)

n−
1
2 Mn2(θ̌, β0)


−


 n−

1
2 Mn1(θ0, β0)

n−
1
2 Mn2(θ0, β0)− n−

1
2 c̄Mn1(θ0, β0)


 (B.1.13)

=


 n−

1
2 Mn1(θ0, β0)

n−
1
2 Mn2(θ̌, β0)


−


 1 0

−c̄ 1





 n−

1
2 Mn1(θ0, β0)

n−
1
2 Mn2(θ0, β0)


 p→


 0

0


(B.1.14)

from equations (B.1.7) and (B.1.12). Now utilizing the contiguity of probability

measures under {K?
n} to those under H?

0 , the equation (B.1.14) implies that

[
n−

1
2 Mn1(θ0, β0) n−

1
2 Mn2(θ̌, β0)

]′
,

which under {K?
n} is asymptotically equivalent to the random vector


 1 0

−c̄ 1





 n−

1
2 Mn1(θ0, β0)

n−
1
2 Mn2(θ0, β0)




under H?
0 . But the asymptotic distribution of the above random vector under

{K?
n} is the same as


 1 0

−c̄ 1





 n−

1
2 Mn1(θ0 − n−

1
2 δ1, β0 − n−

1
2 δ2)

n−
1
2 Mn2(θ0 − n−

1
2 δ1, β0 − n−

1
2 δ2)
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under H?
0 due to the fact that the distribution of Mn1(a, b) under θ = a, β = b

is the same as that of Mn1(θ − a, β − b) under θ = 0, β = 0, and similar to

Mn2(0, 0) (c.f. Saleh, 2006, p.332).

Note that under H?
0 : θ = θ0, β = β0, from (B.1.7) and (B.1.8),


 n−

1
2 Mn1(θ0 − n−

1
2 δ1, β0 − n−

1
2 δ2)

n−
1
2 Mn2(θ0 − n−

1
2 δ1, β0 − n−

1
2 δ2)


−


 n−

1
2 Mn1(θ0, β0)

n−
1
2 Mn2(θ0, β0)




−

 γ(δ1 + δ2c̄)

γ{δ1c̄ + δ2(C
?2 + c̄2)}


 p→


 0

0


 .

(B.1.15)

Hence, by equation (3.8.5), under H?
0 ,


 n−

1
2 Mn1(θ0 − n−

1
2 δ1, β0 − n−

1
2 δ2)

n−
1
2 Mn2(θ0 − n−

1
2 δ1, β0 − n−

1
2 δ2)


 d→

N2





 γ(δ1 + δ2c̄)

γ{δ1c̄ + δ2(C
?2 + c̄2)}


 , σ2

0


 1 c̄

c̄ C?2 + c̄2





 . (B.1.16)

Thus, as n →∞, the distribution of

[
n−

1
2 T ?

n
RT n−

1
2 T ?

n
PT

]′
=

[
n−

1
2 Mn1(θ0, β0) n−

1
2 Mn2(θ̌, β0)

]′

under {K?
n} is bivariate normal with mean vector


 1 0

−c̄ 1





 γ(δ1 + δ2c̄)

γ{δ1c̄ + δ2(C
?2 + c̄2)}


 =


 γ(δ1 + δ2c̄)

γδ2C
?2




and covariance matrix


 1 0

−c̄ 1


 σ2

0


 1 c̄

c̄ C?2 + c̄2





 1 0

−c̄ 1



′

= σ2
0


 1 0

0 C?2


 .

Since the two statistics n−
1
2 T ?

n
RT and n−

1
2 T ?

n
PT are uncorrelated, asymptoti-

cally, they are independently distributed normal variables.

Proof of part (i) of Theorem 3.8.2: Under H?
0 : θ = θ0, β = β0, using
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equations (3.8.1), (B.1.7), (B.1.8) and (B.1.12), we find
 n−

1
2 Mn1(θ0, β̌)

n−
1
2 Mn2(θ̌, β0)


−


 n−

1
2 Mn1(θ0, β0)− n−

1
2 c̄

(C?2+c̄2)
Mn2(θ0, β0)

n−
1
2 Mn2(θ0, β0)− n−

1
2 c̄Mn1(θ0, β0)




=


 n−

1
2 Mn1(θ0, β̌)

n−
1
2 Mn2(θ̌, β0)


−


 1 − c̄

(C?2+c̄2)

−c̄ 1





 n−

1
2 Mn1(θ0, β0)

n−
1
2 Mn2(θ0, β0)


 p→


 0

0


 .

(B.1.17)

Now by using the contiguity of probability measures under {K?
n} to those under

H?
0 , the equation (B.1.17) implies that

[
n−

1
2 Mn1(θ0, β̌) n−

1
2 Mn2(θ̌, β0)

]′

under {K?
n} is asymptotically equivalent to the random vector

 1 −c̄/(C?2 + c̄2)

−c̄ 1





 n−

1
2 Mn1(θ0, β0)

n−
1
2 Mn2(θ0, β0)


 .

But the asymptotic distribution of the above random vector under {K?
n} is the

same as 
 1 −c̄/(C?2 + c̄2)

−c̄ 1





 n−

1
2 Mn1(θ0 − n−

1
2 δ1, β0 − n−

1
2 δ2)

n−
1
2 Mn2(θ0 − n−

1
2 δ1, β0 − n−

1
2 δ2)




under H?
0 due to the fact that the distribution of Mn1(a, b) under θ = a, β = b

is the same as that of Mn1(θ − a, β − b) under θ = 0, β = 0 and similar to

Mn2(0, 0) (c.f. Saleh, 2006, p.332).

Then it follows that by equation (B.1.16), as n grows large, the distribution

of [
n−

1
2 T ?

n
UT n−

1
2 T ?

n
PT

]′
=

[
n−

1
2 Mn1(θ0, β̌) n−

1
2 Mn2(θ̌, β0)

]′

is bivariate normal with mean vector
 1 −c̄/(C?2 + c̄2)

−c̄ 1





 γ(δ1 + δ2c̄)

γ{δ1c̄ + δ2(C
?2 + c̄2)}


 =


 γδ1C

?2/(C?2 + c̄2)

γδ2C
?2




and covariance matrix
 1 −c̄/(C?2 + c̄2)

−c̄ 1


 σ2

0


 1 c̄

c̄ C?2 + c̄2





 1 −c̄/(C?2 + c̄2)

−c̄ 1



′

= σ2
0


 C?2/(C?2 + c̄2) −c̄ C?2/(C?2 + c̄2)

−c̄ C?2/(C?2 + c̄2) C?2


 .
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Clearly, the two test statistics n−
1
2 T ?

n
UT and n−

1
2 T ?

n
PT are not independent, but

rather correlated.

B.2 Multivariate Simple Regression Model

The following asymptotic results of Jurečková (1977), Sen (1982) and Jurečková

and Sen (1996, p.221) are used in deriving the distribution of the proposed

tests. For simplicity, we assume S is known or consider the nonstudentized

M-estimator, so we omit condition M1 of Jurečková and Sen (1996, p.217) and

let Sn = S in equation (5.5.29) of Jurečková and Sen (1996, p.221). Thus,

(i) Under θj = aj, βj = bj and as n grows large,

sup
{

n−
1
2 |Mn1j{(aj, bj) + (t1j

, t2j
)} −Mn1j(aj, bj)+

nγj(t1j
+ t2j

c̄)| : |t1j
| ≤ n−

1
2 K1, |t2j

| ≤ n−
1
2 K2

}
p→ 0, (B.2.1)

sup
{

n−
1
2 |Mn2j{(aj, bj) + (t1j

, t2j
)} −Mn2j(aj, bj) + nγj

(t1j
c̄ + t2j

(C?2 + c̄2))| : |t1j
| ≤ n−

1
2 K1, |t2j

| ≤ n−
1
2 K2

}
p→ 0, (B.2.2)

where K1, K2 are positive constants.

(ii) Under θ = 0,β = 0, as n grows large,

n−
1
2


 Mn1(0,0)

Mn2(0,0)


 d→ N2p





 0

0


 ,


 1 c̄

c̄ C?2 + c̄2


⊗Λ


 ,

(B.2.3)

where N2p(· , · ) represents a 2p-variate normal distribution with appropriate

parameters.

Proof of part (iii) of Theorem 4.2.1: By equations (4.2.6), (B.2.1) and (B.2.2),

under H
(3)
0 we obtain

n−
1
2 Mn2(θ̃,β0) = n−

1
2 Mn2(θ,β0)− n−

1
2 c̄Mn1(θ,β0) + op(1). (B.2.4)

Further, the distribution of n−
1
2 Mn2(θ̃, β0) under H

(3)
0 is the same as the distri-

bution of n−
1
2 Mn2(0,0)−n−

1
2 c̄Mn1(0,0) under H0 : θ = 0,β = 0 using equa-

tion (B.2.4) and the fact that the distribution of Mn1(a, b) under θ = a, β = b



B.2. MULTIVARIATE SIMPLE REGRESSION MODEL 189

is the same as that of Mn1(θ − a, β − b) when θ = 0, β = 0, and similar to

Mn2(0, 0) (c.f. Saleh, 2006, p.332).

Therefore, utilizing equation (B.2.3), under H
(3)
0 : β = β0 as n → ∞, the

proof of part (iii) of Theorem 4.2.1 is completed.

Proof of part(i) of Theorem 4.4.1: Under H
(2)
0 : θ = θ0, β = β0, with

relation to (B.2.1) and (B.2.2),

n−
1
2 Mn1(θ̃,β0) = n−

1
2 Mn1(θ0,β0)− n

1
2 γ(θ̃ − θ0) + op(1), (B.2.5)

and

n−
1
2 Mn2(θ̃, β0) = n−

1
2 Mn2(θ0,β0)− n

1
2 c̄γ(θ̃ − θ0) + op(1). (B.2.6)

The equation (B.2.5) is then reduced to

n−
1
2 Mn1(θ0,β0) = n

1
2 γ(θ̃ − θ0) + op(1) (B.2.7)

by definition (4.2.6). Substituting equation (B.2.7) in equation (B.2.6) yields

 n−

1
2 Mn1(θ0,β0)

n−
1
2 Mn2(θ̃, β0)


−


 n−

1
2 Mn1(θ0, β0)

n−
1
2 Mn2(θ0,β0)− n−

1
2 c̄Mn1(θ0,β0)




=


 n−

1
2 Mn1(θ0,β0)

n−
1
2 Mn2(θ̃, β0)


−


 Ip 0

−c̄Ip Ip





 n−

1
2 Mn1(θ0, β0)

n−
1
2 Mn2(θ0, β0)




p→

 0

0


 . (B.2.8)

Now utilizing the contiguity of probability measures under {Kn} to those un-

der H
(2)
0 , the equation (B.2.8) implies that under {Kn} [n−

1
2 , Mn1(θ0, β0),

n−
1
2 Mn2(θ̃, β0)]

′ is asymptotically equivalent to the random vector

 Ip 0

−c̄Ip Ip





 n−

1
2 Mn1(θ0,β0)

n−
1
2 Mn2(θ0,β0)




under H
(2)
0 . But the asymptotic distribution of the above random vector under

{Kn} is the same as

 Ip 0

−c̄Ip Ip





 n−

1
2 Mn1(θ0 − n−

1
2 %1,β0 − n−

1
2 %2)

n−
1
2 Mn2(θ0 − n−

1
2 %1,β0 − n−

1
2 %2)
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under H
(2)
0 due to the fact that the distribution of Mn1(a, b) under θ = a, β = b

is the same as that of Mn1(θ − a, β − b) under θ = 0, β = 0, and similar to

Mn2(0, 0) (c.f. Saleh, 2006, p.332).

Note that under H
(2)
0 , by equations (B.2.1), (B.2.2) and part (ii) of Theorem

4.2.1,

 n−

1
2 Mn1(θ0 − n−

1
2 %1,β0 − n−

1
2 %2)

n−
1
2 Mn2(θ0 − n−

1
2 %1,β0 − n−

1
2 %2)


 d→

N2p





 γ(%1 + %2c̄)

γ{%1c̄ + %2(C
?2 + c̄2)}


 ,


 1 c̄

c̄ C?2 + c̄2


⊗Λ


 . (B.2.9)

Thus, the distribution of [n−
1
2 Mn1(θ0,β0), n

− 1
2 Mn2(θ̃,β0)]

′ under {Kn} is a

2p-variate normal with mean vector

 Ip 0

−c̄Ip Ip





 γ(%1 + %2c̄)

γ{%1c̄ + %2(C
?2 + c̄2)}


 =


 γ(%1 + %2c̄)

γ%2C
?2




and covariance matrix
 Ip 0

−c̄Ip Ip





 1 c̄

c̄ C?2 + c̄2


⊗Λ


 Ip 0

−c̄Ip Ip



′

=


 1 0

0 C?2


⊗Λ.

(B.2.10)

Since the two statistics n−
1
2 Mn1(θ0, β0) and n−

1
2 Mn2(θ̃,β0) are uncorrelated,

asymptotically, they are independently distributed normal variables.

Proof of part(ii) of Theorem 4.4.1: Under H
(2)
0 : θ = θ0,β = β0, by equa-

tions (4.2.5), (4.2.6), (B.2.1) and (B.2.2), as n →∞,

 n−

1
2 Mn1(θ0, β̃)

n−
1
2 Mn2(θ̃,β0)


−


 Ip

−c̄
C?2+c̄2

Ip

−c̄Ip Ip





 n−

1
2 Mn1(θ0,β0)

n−
1
2 Mn2(θ0,β0)




p→

 0

0


 . (B.2.11)

Now using the contiguity of probability measures under {Kn} to those under

H
(2)
0 , the equation (B.2.11) implies that [n−

1
2 Mn1(θ0, β̃), n−

1
2 Mn2(θ̃, β0)]

′ un-

der {Kn} is asymptotically equivalent to the random vector

 Ip − c̄

C?2+c̄2
Ip

−c̄Ip Ip





 n−

1
2 Mn1(θ0,β0)

n−
1
2 Mn2(θ0,β0)
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under H
(2)
0 . But the asymptotic distribution of the above random vector under

{Kn} is the same as

 Ip

−c̄
C?2+c̄2

Ip

−c̄Ip Ip





 n−

1
2 Mn1(θ0 − n−

1
2 %1,β0 − n−

1
2 %2)

n−
1
2 Mn2(θ0 − n−

1
2 %1,β0 − n−

1
2 %2)




under H
(2)
0 .

The proof then follows from equations (B.2.3) and (B.2.9). Clearly, the two

test statistics n−
1
2 Mn1(θ0, β̃) and n−

1
2 Mn2(θ̃,β0) are not independent, but

rather correlated.

B.3 Parallelism Model

The following asymptotic results of Jurečková (1977), Sen (1982)and Jurečková

and Sen (1996, p.221) are used in deriving the distribution of the proposed

tests. For simplicity, we assume S is known or consider the nonstudentized

M-estimator, so we omit condition M1 of Jurečková and Sen (1996, p.217) and

let Sn = S in equation (5.5.29) of Jurečková and Sen (1996, p.221). Thus,

(i) Under θj = aj, βj = bj and as n grows large,

sup{n− 1
2 |M (j)

n1
{(aj, bj) + (t1j

, t2j
)} −M (j)

n1
(aj, bj) +

λjnγ(t1j
+ t2j

c̄j)| : |t1j
| ≤ n−

1
2 K, |t2j

| ≤ n−
1
2 K} p→ 0, (B.3.1)

sup{n− 1
2 |M (j)

n2
{(aj, bj) + (t1j

, t2j
)} −M (j)

n2
(aj, bj) + λjnγ

(t1j
c̄j + t2j

(C?
j
2 + c̄2

j))| : |t1j
| ≤ n−

1
2 K, |t2j

| ≤ n−
1
2 K} p→ 0. (B.3.2)

(ii) Under θ = 0, β = 0, as n grows large,

n−
1
2


 Mn1(0,0)

Mn2(0,0)


 d→ N2p





 0

0


 , σ2

0


 Λ0 Λ12

Λ21 Λ22





 , (B.3.3)

where N2p(· , · ) represents a 2p-variate normal distribution with appro-

priate parameters and K ∈ <.

Proof of part (iii) of Thereom 5.2.1: By equations (5.2.6), (B.3.1) and (B.3.2),

under H?
0 : β = β01p, we obtain

n−
1
2 Mn2(θ̃, β01p) = n−

1
2 Mn2(θ, β01p)− n−

1
2Λ−1

0 Λ12Mn1(θ, β01p) + op(1).

(B.3.4)
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Further, the distribution of n−
1
2 Mn2(θ̃, β01p) under H?

0 : β = β01p is the same

as the distribution of n−
1
2 Mn2(0,0) − n−

1
2Λ−1

0 Λ12Mn1(0,0) under H0 : θ =

0, β = 0 using equation (B.3.4) and the fact that the distribution of Mn1(a, b)

under θ = a, β = b is the same as that of Mn1(θ − a, β − b) when θ = 0, β = 0,

and similar to Mn2(0, 0) (c.f. Saleh, 2006, p.332).

Therefore, utilizing (B.3.3), under H?
0 : β = β01p, as n →∞, we obtain the

result in part (iii). The proof of parts (i) and (ii) of Theorem (5.2.1) is similarly

obtained.

Proof of part (i) of Theorem 5.4.1: Under H
(2)
0 : θ = θ0, β = β01p, with

relation to (B.3.1) and (B.3.2),

n−
1
2 Mn1(θ̃, β01p) = n−

1
2 Mn1(θ0, β01p)− n

1
2 γΛ0(θ̃ − θ0) + op(1) (B.3.5)

and

n−
1
2 Mn2(θ̃, β01p) = n−

1
2 Mn2(θ0, β01p)− n

1
2 γΛ12(θ̃ − θ) + op(1). (B.3.6)

But, the equation (B.3.5) reduces to

n−
1
2 Mn1(θ0, β01p) = n

1
2 γΛ0(θ̃ − θ0) + op(1) (B.3.7)

by equation (5.2.6). Therefore, under H
(2)
0 , we obtain


 n−

1
2 Mn1(θ0, β01p)

n−
1
2 Mn2(θ̃, β01p)


−


 n−

1
2 Mn1(θ0, β01p)

n−
1
2 Mn2(θ0, β01p)− n

1
2Λ−1

0 Λ12Mn1(θ0, β01p)




=


 n−

1
2 Mn1(θ0, β01p)

n−
1
2 Mn2(θ̃, β01p)


−


 Ip 0

−Λ−1
0 Λ12 Ip





 n−

1
2 Mn1(θ0, β01p)

n−
1
2 Mn2(θ0, β01p)




p→

 0

0


 . (B.3.8)

Now utilizing the contiguity of probability measures (see Hájek et al., 1999,

Ch.7) under {K?
n} to those under H

(2)
0 , the equation (B.3.8) implies that

[n−
1
2 M ′

n1
(θ0, β01p), n

− 1
2 M ′

n2
(θ̃, β01p)]

′
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under {K?
n} is asymptotically equivalent to the random vector


 Ip 0

−Λ−1
0 Λ12 Ip





 n−

1
2 Mn1(θ0, β01p)

n−
1
2 Mn2(θ0, β01p)




under H
(2)
0 . But the asymptotic distribution of the above random vector under

{K?
n} is the same as


 Ip 0

−Λ−1
0 Λ12 Ip





 n−

1
2 Mn1(θ0 − n−

1
2 δ1, β01p − n−

1
2 δ2)

n−
1
2 Mn2(θ0 − n−

1
2 δ1, β01p − n−

1
2 δ2)




under H
(2)
0 due to the fact that the distribution of Mn1(a, b) under θ = a, β = b

is the same as that of Mn1(θ − a, β − b) under θ = 0, β = 0, and similar to

Mn2(0, 0) (c.f. Saleh, 2006, p.332).

Note that under H
(2)
0 , with relation to (B.3.1) and (B.3.2),


 n−

1
2 Mn1(θ0 − n−

1
2 δ1, β01p − n−

1
2 δ2)

n−
1
2 Mn2(θ0 − n−

1
2 δ1, β01p − n−

1
2 δ2)


 =


 n−

1
2 Mn1(θ0, β01p)

n−
1
2 Mn2(θ0, β01p)




+


 γ(Λ0δ1 + Λ12δ2)

γ(Λ12δ1 + Λ22δ2)


 +


 op(1)

op(1)


 .

Hence, by equation (5.2.8), under H
(2)
0 ,


 n−

1
2 Mn1(θ0 − n−

1
2 δ1, β01p − n−

1
2 δ2)

n−
1
2 Mn2(θ0 − n−

1
2 δ1, β01p − n−

1
2 δ2)


 d→ N2p





 γ(Λ0δ1 + Λ12δ2)

γ(Λ12δ1 + Λ22δ2)


 , σ2

0


 Λ0 Λ12

Λ21 Λ22





 .(B.3.9)

Thus, as n →∞, the distribution of

[n−
1
2 M ′

n1
(θ0, β01p), n

− 1
2 M ′

n2
(θ̃, β01p)]

′

under {K?
n} is multivariate normal with mean vector


 Ip 0

−Λ−1
0 Λ12 Ip





 γ(Λ0δ1 + Λ12δ2)

γ(Λ12δ1 + Λ22δ2)


 =


 γ(Λ0δ1 + Λ12δ2)

γ(Λ22 −Λ21Λ
−1
0 Λ21)δ2
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and covariance matrix

 Ip 0

−Λ−1
0 Λ12 Ip


 σ2

0


 Λ0 Λ12

Λ21 Λ22





 Ip 0

−Λ−1
0 Λ12 Ip



′

= σ2
0


 Λ0 0

0 Λ?
2


 .

Since the two statistics n−
1
2 Mn1(θ0, β01p) and n−

1
2 Mn2(θ̃, β01p) are uncorre-

lated, asymptotically, they are independently distributed normal vectors.

Proof of part (ii) of Theorem 5.4.1: Under H
(2)
0 : θ = θ0 β = β01p, using

equations (5.2.5), (B.3.1), (B.3.2) and (B.3.8), we find


 n−

1
2 Mn1(θ0, β̃)

n−
1
2 Mn2(θ̃, β01p)


−


 n−

1
2 Mn1(θ0, β01p)− n

1
2Λ12Λ

−1
22 Mn2(θ0, β01p)

n−
1
2 Mn2(θ0, β01p)− n

1
2Λ21Λ

−1
0 Mn1(θ0, β01p)




=


 n−

1
2 Mn1(θ0, β̃)

n−
1
2 Mn2(θ̃, β01p)


 +


 −Ip Λ12Λ

−1
22

Λ21Λ
−1
11 −Ip





 n−

1
2 Mn1(θ0, β01p)

n−
1
2 Mn2(θ0, β01p)




p→

 0

0


 .

Now utilizing the contiguity of probability measures under {K?
n} to those under

H
(2)
0 , the above equation implies that

[n−
1
2 M ′

n1
(θ0, β̃), n−

1
2 M ′

n2
(θ̃, β01p)]

′

under {K?
n} is asymptotically equivalent to the random vector


 Ip −Λ12Λ

−1
22

−Λ21Λ
−1
11 Ip





 n−

1
2 Mn1(θ0, β01p)

n−
1
2 Mn2(θ0, β01p)




under H
(2)
0 . But the asymptotic distribution of the above random vector under

{K?
n} is the same as


 Ip −Λ12Λ

−1
22

−Λ21Λ
−1
11 Ip





 n−

1
2 Mn1(θ0 − n−

1
2 δ1, β01p − n−

1
2 δ2)

n−
1
2 Mn2(θ0 − n−

1
2 δ1, β01p − n−

1
2 δ2)




under H
(2)
0 . Thus, the proof follows using equation (B.3.9). We find the two

statistics are not independent, but rather correlated.
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B.4 Multiple Linear Regression Model

The following asymptotic results of Jurečková (1977), Sen (1982) and Jurečková

and Sen (1996, p.221) are used in deriving the distribution of the proposed

tests. For simplicity, we assume S is known or consider the nonstudentized

M-estimator, so we omit condition M1 of Jurečková and Sen (1996, p.217) and

let Sn = S in equation (5.5.29) of Jurečková and Sen (1996, p.221). Thus,

• Under β1 = a,β2 = b where a and b are r and s dimensional column

vectors of any real numbers, as n grows large,

sup{n− 1
2 |Mn1{(a, b) + (t1, t2)} −Mn1(a, b) + nγ(Q11t1 + Q12t2)| :

|t1| ≤ n−
1
2 K, |t2| ≤ n−

1
2 K} p→ 0, (B.4.1)

sup{n− 1
2 |Mn2{(a, b) + (t1, t2)} −Mn2(a, b) + nγ(Q21t1 + Q22t2)| :

|t1| ≤ n−
1
2 K, |t2| ≤ n−

1
2 K} p→ 0. (B.4.2)

• Under β1 = 0,β2 = 0, as n grows large,

n−
1
2


 Mn1(0,0)

Mn2(0,0)


 d→ Np





 0

0


 , σ2

0


 Q11 Q12

Q21 Q22





 , (B.4.3)

where Np(· , · ) represents a p-variate normal distribution with appropri-

ate parameters and K ∈ <.

Proof of part (i) of Theorem 6.2.1: By equations (B.4.1) and (B.4.2), we

find

n−
1
2 Mn1(0, β̃2) = n−

1
2 Mn1(0,β2)− n

1
2 γQ12(β̃2 − β2) + op(1) (B.4.4)

and

n−
1
2 Mn2(0, β̃2) = n−

1
2 Mn2(0,β2)− n

1
2 γQ22(β̃2 − β2) + op(1) (B.4.5)

under H
(1)
0 . Then, we obtain

n−
1
2 Mn1(0, β̃2) = n−

1
2 Mn1(0,β2)− n−

1
2 Q12Q

−1
22 Mn2(0,β2) + op(1) (B.4.6)

by equations (6.2.5), (B.4.4) and (B.4.5) after some simple algebra.

Further, the distribution of n−
1
2 Mn1(0, β̃2) under H

(1)
0 is the same as the

distribution of n−
1
2 Mn1(0,0)−n−

1
2 Q12Q

−1
22 Mn2(0,0) under H0 : β1 = 0, β2 =
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0 using equation (B.4.6) and the fact that the distribution of Mn1(a, b) under

θ = a, β = b is the same as that of Mn1(θ − a, β − b) when θ = 0, β = 0, and

similar to Mn2(0, 0) (c.f. Saleh, 2006, p.332).

Therefore, utilizing equation (B.4.3), under H
(1)
0 : β1 = 0 as n → ∞, the

proof of part (i) of Theorem 6.2.1 is completed.

The proof for part (ii) of Theorem 6.2.1 is obtained in the same way as in

part (i).

Proof of part (i) of Theorem 6.4.1 Under H0 : β1 = 0, β2 = 0, with

relation to (B.4.1) and (B.4.2),


 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(β̃1,0)


−


 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(0,0)


 +


 0

n
1
2 γQ21β̃1


 p→


 0

0


 . (B.4.7)

Note also that under H0,

n−
1
2 Mn1(β̃1,0) = n−

1
2 Mn1(0,0)− n

1
2 γQ11β̃1 + op(1) (B.4.8)

and definition (6.2.6) reduce equation (B.4.8) to

n−
1
2 Q21Q

−1
11 Mn1(0,0) = n

1
2 γQ21β̃1 + op(1). (B.4.9)

Therefore, under H0, the equation (B.4.7) becomes


 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(β̃1,0)


−


 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(0,0)− n

1
2 Q21Q

−1
11 Mn1(0,0)




=


 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(β̃1,0)


−


 Ir 0

−Q21Q
−1
11 Is





 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(0,0)




p→

 0

0


 . (B.4.10)

Now utilizing the contiguity of probability measures (see Hájek et al., 1999,

Ch.7) under {Kn} to those under H0, the equation (B.4.10) implies that

[
n−

1
2 M ′

n1
(0,0) n−

1
2 M ′

n2
(β̃1,0)

]′
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under {Kn} is asymptotically equivalent to the random vector


 Ir 0

−Q21Q
−1
11 Is





 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(0,0)




under H0. But the asymptotic distribution of the above random vector under

{Kn} is the same as


 Ir 0

−Q21Q
−1
11 Is





 n−

1
2 Mn1(−n−

1
2 λ1,−n−

1
2 λ2)

n−
1
2 Mn2(−n−

1
2 λ1,−n−

1
2 λ2)




under H0 due to the fact that the distribution of Mn1(a, b) under θ = a, β = b

is the same as that of Mn1(θ − a, β − b) under θ = 0, β = 0, and similar to

Mn2(0, 0) (c.f. Saleh, 2006, p.332).

Note that under H0, with relation to (B.4.1) and (B.4.2),


 n−

1
2 Mn1(n

− 1
2 λ1, n

− 1
2 λ2)

n−
1
2 Mn2(n

− 1
2 λ1, n

− 1
2 λ2)


 =


 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(0,0)




+


 γ(Q11λ1 + Q12λ2)

γ(Q21λ1 + Q22λ2)


 +


 op

op


 .

Hence, by equation (B.4.3), under H0,


 n−

1
2 Mn1(n

− 1
2 λ1, n

− 1
2 λ2)

n−
1
2 Mn2(n

− 1
2 λ1, n

− 1
2 λ2)


 d→ Np





 γ(Q11λ1 + Q12λ2)

γ(Q21λ1 + Q22λ2)


 , σ2

0


 Q11 Q12

Q21 Q22





 . (B.4.11)

Thus, as n →∞, the distribution of

[
n−

1
2 M ′

n1
(0,0) n−

1
2 M ′

n2
(β̃1,0)

]′

under {Kn} is p-variate normal with mean vector


 Ir 0

−Q21Q
−1
11 Is





 γ(Q11λ1 + Q12λ2)

γ(Q21λ1 + Q22λ2)


 =


 γ(Q11λ1 + Q12λ2)

γ(Q22 −Q21Q
−1
11 Q12)λ2
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and covariance matrix

 Ir 0

−Q21Q
−1
11 Is


 σ2

0


 Q11 Q12

Q21 Q22





 Ir 0

−Q21Q
−1
11 Is



′

= σ2
0


 Q11 0

0 Q?
2


 .

Since the two statistics n−
1
2 Mn1(0,0) and n−

1
2 Mn2(β̃1,0) are uncorrelated,

asymptotically, they are independently distributed normal vectors.

Proof of part (ii) of Theorem 6.4.1: Under H0 : β1 = 0, β2 = 0, using

equations (B.4.1), (B.4.2), (6.2.5) and (B.4.9),


 n−

1
2 M ′

n1
(0, β̃2)

n−
1
2 M ′

n2
(β̃1,0)


−


 Ir −Q12Q

−1
22

−Q21Q
−1
11 Is





 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(0,0)




p→

 0

0


 . (B.4.12)

Now utilizing the contiguity of probability measures under {Kn} to those under

H0, the equation (B.4.12) implies that

[
n−

1
2 M ′

n1
(0, β̃2) n−

1
2 M ′

n2
(β̃1,0)

]′

under {Kn} is asymptotically equivalent to the random vector


 Ir −Q12Q

−1
22

−Q21Q
−1
11 Is





 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(0,0)




under H0. But the asymptotic distribution of the above random vector under

{Kn} is the same as


 Ir −Q12Q

−1
22

−Q21Q
−1
11 Is





 n−

1
2 Mn1(−n−

1
2 λ1,−n−

1
2 λ2)

n−
1
2 Mn2(−n−

1
2 λ1,−n−

1
2 λ2)




under H0. Then, equation (6.4.3) follows from equation (B.4.11) after some

algebra. Since n−
1
2 Mn1(0, β̃2) and n−

1
2 Mn2(β̃1,0) are not independent, but

rather correlated.
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Appendix C

R codes

C.1 Simple Regression Model

Listing C.1: Code for the power functions of the tests for the simple regression
model

#f2z i s an R−code that l i s t down the power f unc t i on s o f the
+UT, RT and PTT. These power f unc t i on s w i l l be p l o t t ed
+aga in s t lambda2 .
f 2 z <−f unc t i on ( alpha3 , lambda1 , alpha1 , alpha2 , bar . c , rho ,
+gamma, sigma0 . sq , C. s t a r . sq ) {

a <−rep (NA,20 )
f o r ( j in 0 : 20 ) {
a [ j +1] <− j ∗0 .5
}

lambda2 <− a
m <−l ength ( lambda2 )
p i . s t <− 0
p i . 1 <− 0
p i . 2 <− 0
f o r ( i in 1 :m) {

pi . one <− 1 − pnorm(qnorm(1−alpha1 ) − gamma∗( lambda1 +
+lambda2 [ i ]∗ bar . c ) / sq r t ( sigma0 . sq ) ) #RT

pi . two <− 1 − pnorm(qnorm(1−alpha2 ) −gamma∗ lambda1∗ s q r t (C
+ . s t a r . sq / ( (C. s t a r . sq + bar . c ˆ2)∗ sigma0 . sq ) ) )#UT

p2<−pnorm(qnorm(1−alpha3 )−gamma∗ lambda2 [ i ]∗ s q r t (C. s t a r . sq
+/sigma0 . sq ) )#1−PT

p3 <− pmvnorm(mean = rep (0 , 2 ) , sigma =matrix ( c (1 , rho , rho
+ , 1 ) , nco l=2) , lower = c (qnorm(1−alpha2 )−gamma∗ lambda2 [ i
+ ]∗ s q r t (C. s t a r . sq / sigma0 . sq ) , qnorm(1−alpha3 )−gamma∗

201
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+lambda1∗ s q r t (C. s t a r . sq / ( (C. s t a r . sq + bar . c ˆ2)∗ sigma0 . sq
+) ) ) , upper = rep ( Inf , 2) )

p1<−pi . one #RT
pi . s t a r <− p1∗p2+p3
pi . s t <− append ( p i . st , p i . s t a r )
p i . 1 <− append ( p i . 1 , p i . one )#RT
pi . 2 <− append ( p i . 2 , p i . two )
}

l i s t (m=m, lambda2=lambda2 , p i . s t=pi . st , p i .1= pi . 1 , p i .2= pi . 2 )
}
#s r s i s an R−code that g ive the rank s t a t i s t i c s . I t i s used
+to es t imate gamma in the t h e s i s .
s r s<−f unc t i on ( tee ,U)
sum( s i gn (U−t e e ) ∗ rank ( abs (U−t e e ) ) /( l ength (U)+1) )
gen . pow . sim<−f unc t i on (m, rn , lambda1 , n , a ){
i n t r <−rep (1 , n)
alpha <− 0 .05
p i . ptth1<−array (NA, c ( rn ,m) ) #power fn Huber c=1.04 with
+contaminant

p i . uth1<−array (NA, c ( rn ,m) )
p i . rth1<−array (NA, c ( rn ,m) )
p i . ptth3<−array (NA, c ( rn ,m) ) #power fn Huber c=1.64 with
+contaminant

p i . uth3<−array (NA, c ( rn ,m) )
p i . rth3<−array (NA, c ( rn ,m) )
p i . pttc1<−array (NA, c ( rn ,m) ) #power fn LS with no contaminant
p i . utc1<−array (NA, c ( rn ,m) )
p i . rtc1<−array (NA, c ( rn ,m) )
p i . ptth2<−array (NA, c ( rn ,m) ) #power fn Huber c=1.28 with
+contaminant

p i . uth2<−array (NA, c ( rn ,m) )
p i . rth2<−array (NA, c ( rn ,m) )
p i . pttc2<−array (NA, c ( rn ,m) ) #power fn LS with contaminant
p i . utc2<−array (NA, c ( rn ,m) )
p i . rtc2<−array (NA, c ( rn ,m) )
f o r ( i in 1 : rn ) {

e r r o r <−rnorm (n , 0 , 1 )# The 0% contaminat ion data
c i <− sample ( a , n , r ep l a c e=F)
bar . c <− mean( c i ) #bar . c i s p o s i t i v e here
C. s t a r . sq <− (sum( c i ˆ2)−n∗( bar . c ) ˆ2) /n
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rho <− − bar . c / sq r t (C. s t a r . sq + bar . c ˆ2)
Xi <− 2+ 3∗ c i + e r r o r #l e t theta=2 and beta=3.
l sq<− l s f i t ( c i , Xi ) #LS
#mady<−mad( e r r o r ) # median ( abs ( e r r o r − median ( e r r o r ) ) )
+/0.6745
r e s . l s <− l s q $ r e s # = Xi−l s q $ c o e f [1]− l s q $ c o e f [ 2 ] ∗ c i
mady<−mad( r e s . l s )
std . r e s . l s <−r e s . l s /mady
sigma0 . sq <− sum( std . r e s . l s ˆ2) /n #that ’ s the formula eq
+ .7

pal1 <− f 2 z ( alpha , lambda1 , alpha , alpha , bar . c , rho ,1/
+mady , sigma0 . sq , C. s t a r . sq )

p i . pt tc1 [ i ,]<− pa l1$p i . s t [ 2 : (m+1) ]
lambda2 <−pal1$lambda2 [ 1 :m]
p i . r t c1 [ i , ] <−pa l1$p i . 1 [ 2 : (m+1) ]
p i . utc1 [ i ,]<− pa l1$p i . 2 [ 2 : (m+1) ]
m <−pal1$m
# The 10% contamination data
e r r o r . con<−e r r o r
chose . obs <− sample ( c ( 1 : n ) , (10/100) ∗n) # chose
+obse rva t i on s .

e . out1 <− c ( r un i f (5 , min=3.5 , max=5) , r un i f (5 , min=−5, max
+=−3.5) )

e . out<−sample ( e . out1 , r ep l a c e=F)
e r r o r . con [ chose . obs ] <− e . out
Xi . con<−2+3∗c i+e r r o r . con #the contaminated response
l s q . con<− l s f i t ( c i , Xi . con ) #LS
r e s . l s <− l s q . con$res # (= Xi−l s q $ c o e f [1]− l s q $ c o e f [ 2 ] ∗ c i )
mady<−mad( r e s . l s )
std . r e s . l s <−r e s . l s /mady
sigma0 . sq <− sum( std . r e s . l s ˆ2) /n #that ’ s the formula eq
+ .7

pal1 <− f 2 z ( alpha , lambda1 , alpha , alpha , bar . c , rho ,1/
+mady , sigma0 . sq , C. s t a r . sq )

p i . pt tc2 [ i ,]<− pa l1$p i . s t [ 2 : (m+1) ]
p i . r t c2 [ i , ] <−pa l1$p i . 1 [ 2 : (m+1) ]
p i . utc2 [ i ,]<− pa l1$p i . 2 [ 2 : (m+1) ]

tune . c<−1.04 # Huber c =1.04 , qnorm (0 . 8 5 )
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hr . con<−rlm ( matrix ( c ( in t r , c i ) , nco l=2) ,Xi . con , k=tune . c ) #
+de f au l t tuning constant i s 1 . 3 4 5 .

mady<−mad( hr . con$res )
std . r e s . hr<−hr . con$res /mady
p s i . res<−ps i . huber ( std . r e s . hr , k = tune . c , de r i v = 0)∗ std
+ . r e s . hr

ps ipr ime . res<−ps i . huber ( std . r e s . hr , k = tune . c , de r i v =
+1)# 0 or 1

sigma0 . sq <− mean( p s i . r e s ˆ2) #sigma0 . sq=sum ps i ( r e s /Sn)
ur<−un i root ( s r s , c (−10 ,10) , t o l =0.0001 ,U=ps ipr ime . r e s /mady)
+ #U=psi ’ / Sn

gamma<−ur$root
pal1 <− f 2 z ( alpha , lambda1 , alpha , alpha , bar . c , rho , gamma
+ , sigma0 . sq , C. s t a r . sq )

p i . ptth1 [ i ,]<− pa l1$p i . s t [ 2 : (m+1) ]
p i . r th1 [ i , ] <−pa l1$p i . 1 [ 2 : (m+1) ]
p i . uth1 [ i ,]<− pa l1$p i . 2 [ 2 : (m+1) ]

tune . c<−1.28 #Huber c=1.28 qnorm (0 . 9 0 )
hr . con<−rlm ( matrix ( c ( in t r , c i ) , nco l=2) ,Xi . con , k=tune . c )
mady<−mad( hr . con$res )
std . r e s . hr<−hr . con$res /mady
p s i . res<−ps i . huber ( std . r e s . hr , k = tune . c , de r i v = 0)∗ std
+ . r e s . hr

ps ipr ime . res<−ps i . huber ( std . r e s . hr , k = tune . c , de r i v =
+1)

sigma0 . sq <− mean( p s i . r e s ˆ2)
ur<−un i root ( s r s , c (−10 ,10) , t o l =0.0001 ,U=ps ipr ime . r e s /mady)
gamma<−ur$root
pal1 <− f 2 z ( alpha , lambda1 , alpha , alpha , bar . c , rho , gamma,
+ sigma0 . sq , C. s t a r . sq )

p i . ptth2 [ i ,]<− pa l1$p i . s t [ 2 : (m+1) ]
p i . r th2 [ i , ] <−pa l1$p i . 1 [ 2 : (m+1) ]
p i . uth2 [ i ,]<− pa l1$p i . 2 [ 2 : (m+1) ]

tune . c<−1.64 # Huber c =1.64 , qnorm (0 . 9 5 )
hr . con<−rlm ( matrix ( c ( in t r , c i ) , nco l=2) ,Xi . con , k=tune . c )
mady<−mad( hr . con$res )
std . r e s . hr<−hr . con$res /mady
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p s i . res<−p s i . huber ( std . r e s . hr , k = tune . c , de r i v = 0)∗ std
+ . r e s . hr

ps ipr ime . res<−p s i . huber ( std . r e s . hr , k = tune . c , de r i v =
+1)

sigma0 . sq <− mean( p s i . r e s ˆ2)
ur<−un i root ( s r s , c (−10 ,10) , t o l =0.0001 ,U=ps ipr ime . r e s /mady)
gamma<−ur$root
pal1 <− f 2 z ( alpha , lambda1 , alpha , alpha , bar . c , rho , gamma,
+ sigma0 . sq , C. s t a r . sq )

p i . ptth3 [ i ,]<− pa l1$p i . s t [ 2 : (m+1) ]
p i . r th3 [ i , ] <−pa l1$p i . 1 [ 2 : (m+1) ]
p i . uth3 [ i ,]<− pa l1$p i . 2 [ 2 : (m+1) ]
}

pi . pttH1<−colMeans ( p i . ptth1 )
p i . rtH1 <−colMeans ( p i . r th1 )
p i . utH1<−colMeans ( p i . uth1 )
p i . pttC1<−colMeans ( p i . pttc1 )
p i . rtC1<−colMeans ( p i . r t c1 )
p i . utC1<−colMeans ( p i . utc1 )
p i . pttC2<−colMeans ( p i . pttc2 )
p i . rtC2<−colMeans ( p i . r t c2 )
p i . utC2<−colMeans ( p i . utc2 )
p i . pttH3<−colMeans ( p i . ptth3 )
p i . rtH3<−colMeans ( p i . rth3 )
p i . utH3<−colMeans ( p i . uth3 )
p i . pttH2<−colMeans ( p i . ptth2 )
p i . rtH2<−colMeans ( p i . rth2 )
p i . utH2<−colMeans ( p i . uth2 )
l i s t ( p i . pttH1=pi . pttH1 , p i . rtH1=pi . rtH1 , p i . utH1=pi . utH1 ,
p i . pttH2=pi . pttH2 , p i . rtH2=pi . rtH2 , p i . utH2=pi . utH2 ,
p i . pttH3=pi . pttH3 , p i . rtH3=pi . rtH3 , p i . utH3=pi . utH3 ,
p i . pttC1=pi . pttC1 , p i . rtC1=pi . rtC1 , p i . utC1=pi . utC1 ,
p i . pttC2=pi . pttC2 , p i . rtC2=pi . rtC2 , p i . utC2=pi . utC2 , lambda2=
+lambda2 )
}
l i b r a r y (mvtnorm )
n<−100 #number o f obse rvat i on
m<−21
l i b r a r y (MASS)
lambda1 <− 2



206 APPENDIX C. R CODES

rn<−3000 #number o f s imu la t i on to run
a<−c ( rep (−1 ,n/2) , rep (0 , n/2) )
f i t 3 <−gen . pow . sim (m, rn , lambda1 , n , a )
#graphs f o r Fig 3 .3 ( a ) and (b)
lambda2<−f i t3$ lambda2
p lo t ( lambda2 , f i t 3 $ p i . utC1 [ 1 :m] , ylab=”s i z e o f the UT” , xlab =
+” ” , xlim = c (0 , 10) , yl im = c (0 , 1) , cex . lab = 1 . 4 , pch=4,
+co l=”red ” , type=”n”)

mtext ( exp r e s s i on ( lambda [ 2 ] ) , s i d e =1, l i n e = 3 , at = 5 , cex
+=1.5)
po in t s ( lambda2 , f i t 3 $ p i . utH1 [ 1 :m] , c o l =1,pch=22)
po in t s ( lambda2 , f i t 3 $ p i . utH2 [ 1 :m] , c o l =2,pch=4, lwd=2)
po in t s ( lambda2 , f i t 3 $ p i . utH3 [ 1 :m] , c o l =3,pch=15)
l i n e s ( lambda2 , f i t 3 $ p i . utH1 [ 1 :m] , l t y =1, lwd=2, c o l =1)
l i n e s ( lambda2 , f i t 3 $ p i . utH2 [ 1 :m] , l t y =1, lwd=2, c o l =2)
l i n e s ( lambda2 , f i t 3 $ p i . utH3 [ 1 :m] , l t y =1, lwd=2, c o l =3)
l i n e s ( lambda2 , f i t 3 $ p i . utC1 [ 1 :m] , l t y =1, lwd=2, c o l =4)
l i n e s ( lambda2 , f i t 3 $ p i . utC2 [ 1 :m] , l t y =2, lwd=2, c o l =6)
legend (0 , 1 . 0001 , cex =1.10 , c (”MLE, uncontaminated ” ,
”MLE, contaminated ” ,
”Huber , contaminated , k=1.04 ” ,
”Huber , contaminated , k=1.28 ” ,”Huber , contaminated , k=1.64
+ ”) ,
c o l = c (4 , 6 , 1 , 2 , 3 ) , t ex t . c o l= ” black ” ,
l t y = c (1 , 2 , 1 , 1 , 1 ) , lwd=c (2 , 2 , 2 ) , pch = c (−1 ,−1 ,22 ,4 ,15) ,
+merge = TRUE, bg=’white ’ )

#red 2 , b lue 4 , green 3 , b lack 1
t i t l e ( exp r e s s i on (” ( a ) S i z e o f the UT f o r ”∗ lambda [1 ]∗”=0 , ”∗
+bar ( c )>0) , cex . main=1.5)

#t i t l e ( exp r e s s i on (” ( b) Power o f the UT f o r ”∗ lambda [1 ]∗”=2 ,
+”∗bar ( c )>0) , cex . main=1.5)

#save in 3000 r f 1 a . eps

C.2 Bivariate Noncentral Chi-square Distribu-

tion

Listing C.2: R Code for the pdf of the bivariate noncentral chi-square distribu-
tion

nbcsq . den<−f unc t i on ( rho , theta1 , theta2 , d1 , d2 ,m){
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# rho i s c o r r e l a t i o n c o e f f i c i e n t
# theta1 \& theta2 are nonc en t r a l i t y parameters
# d1 \& d2 are c r i t i c a l va lue s
# m i s degree o f freedom
ml<−80 # take the sum up to 80 f o r j
mt1<−80 # take the sum up to 80 f o r lambda1 \& lambda2 .
B<−array (NA, ml+1)
gl <−((1−rho ˆ2) ˆ ( (m) /2) ) ∗gamma( (m/2)+c ( 0 : ml ) ) ∗( rho ˆ(2∗ c ( 0 : ml ) )
+) /( f a c t o r i a l ( c ( 0 : ml ) ) ∗gamma(m/2) )
f o r ( k in 0 : ml ) {

pCj<−(dgamma(d1/((1− rho ˆ2) ∗2) ,m/2+c ( 0 : mt1)+k) /(2∗(1− rho
+ˆ2) ) ) ∗ ( ( theta1 /2) ˆc ( 0 : mt1) ) ∗exp(− theta1 /2) / f a c t o r i a l ( c
+ ( 0 : mt1) )

pDj<−(dgamma(d2/((1− rho ˆ2) ∗2) ,m/2+c ( 0 : mt1)+k) /(2∗(1− rho
+ˆ2) ) ) ∗ ( ( theta2 /2) ˆc ( 0 : mt1) ) ∗exp(− theta2 /2) / f a c t o r i a l ( c
+ ( 0 : mt1) )

#Note , r ep l a c e dgamma with pgamma g iv e s the cd f
A<−matrix ( c ( pCj∗ s q r t ( g l [ k+1]) ) , nco l=1)
D<−matrix ( c ( pDj∗ s q r t ( g l [ k+1]) ) , nco l=1)
B[ k+1]<−sum(A%∗%t (D) )
}

prob <−sum(B)
l i s t ( prob=prob )
}

Listing C.3: R Code for the plot of pdf of the bivariate noncentral chi-square
distribution

gen . pdf <−f unc t i on ( theta1 , theta2 , rho ,m, p){
# theta1 and theta2 are nonc en t r a l i t y parameters
# rho i s c o r r e l a t i o n c o e f f i c i e n t
# m i s degree o f freedom
# p i s max value on the axis , e . g 100 w i l l p l o t pdf f o r range
+ 0 to 100

dd1<−c ( 0 : p ) # 3D ax i s range
fp<−array (NA, c (p , p) )
f o r ( j in 1 : p ) {

d2<−dd1 [ j ]
f o r ( i in 1 : p ) {
d1<−dd1 [ i ]
f1<−nbcsq . den ( rho , theta1 , theta2 , d1 , d2 ,m)
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fp [ i , j ]<− f1$prob
}

}
p . val<−c ( fp )
l i s t ( pdf . va l=p . va l )
}

p1<−100 #range o f x and y axes are from 0 to 100
dd1<−c ( 0 : p)
d3<−array (NA, c (p , p) )
f o r ( i in 1 : p ) {

d3 [ i ,]<−c ( rep ( dd1 [ i ] , p ) )
d4 [ , i ]<−c ( rep ( dd1 [ i ] , p ) )
}

ax i s . y<−c ( d3 ) #th i s g i v e s va lue s from 0 : p−1 i s repeated p
+times .
ax i s . x<−c ( d4 )
#th i s g i v e s p repeated 0 , repeated 1 , . . . , p repeated p−1
f1<−gen . pdf ( 10 , 30 , 0 . 25 , 3 , p1 )
ax i s . z <−f 1$pd f . va l
l i b r a r y ( l a t t i c e )
wireframe ( ax i s . z˜ ax i s . y∗ ax i s . x , s c a l e s = l i s t ( arrows=FALSE) ,
+xlab=expr e s s i on (y [ 1 ] ) , y lab=expr e s s i on (y [ 2 ] ) , z lab=”pdf ” ,
+shade = TRUE, aspect = c (61/87 , 0 . 4 ) , l i g h t . source = c
+(10 ,0 , 10 ) ,main=expr e s s i on ( theta [ 1 ] ∗ paste (”=10 , ”) ∗ theta [ 2 ] ∗
+paste (”=30 , ”) ∗ rho∗ paste (” =0.25 , ”) ∗m∗ paste (” =3”) ) )

Listing C.4: R Code for cdf of the noncentral bivariate chi-square distribution

nbcsq . d i s t . c2<−f unc t i on ( rho , theta1 , theta2 , d1 , d2 ,m, n){
ml<−80 #ju s t l e t ml1 = ml2 = ml
mt1<−80
gl <−((1−rho ˆ2) ˆ ( (m) /2) ) ∗gamma( (m/2)+c ( 0 : ml ) ) ∗( rho ˆ(2∗ c ( 0 : ml ) )
+) /( f a c t o r i a l ( c ( 0 : ml ) ) ∗gamma(m/2) )

g2<−((1−rho ˆ2) ˆ ( ( n) /2) ) ∗gamma( ( n/2)+c ( 0 : ml ) ) ∗( rho ˆ(2∗ c ( 0 : ml ) )
+) /( f a c t o r i a l ( c ( 0 : ml ) ) ∗gamma(n/2) )

sAj<−rep (NA, ( ml+1) )
f o r ( l in 0 : ml ) {

pCj<−(pgamma(d1/((1− rho ˆ2) ∗2) ,m/2+c ( 0 : mt1)+l ) ) ∗ ( ( theta1
+/2) ˆc ( 0 : mt1) ) ∗exp(− theta1 /2) / f a c t o r i a l ( c ( 0 : mt1) )

Aj<−matrix ( c ( pCj∗ g l [ l +1]) , nco l=1)
sAj [ l+1]<−sum(Aj )
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}
sumA<−sum( sAj )
sDk<−rep (NA, ( ml+1) )
f o r ( l in 0 : ml ) {

pDk<−(pgamma(d2/((1− rho ˆ2) ∗2) ,n/2+c ( 0 : mt1)+l ) ) ∗ ( ( theta2
+/2) ˆc ( 0 : mt1) ) ∗exp(− theta2 /2) / f a c t o r i a l ( c ( 0 : mt1) )

Dk<−matrix ( c (pDk∗g2 [ l +1]) , nco l=1)
sDk [ l+1]<−sum(Dk)
}

sumD<−sum(sDk)
prob<−sumA∗sumD
l i s t ( prob=prob )
}

nhaf<−f unc t i on ( rho , theta1 , d1 ,m){
ml <−80
mt1<−80
B<−array (NA, ml+1)
gl <−((1−rho ˆ2) ˆ ( (m) /2) ) ∗gamma( (m/2)+c ( 0 : ml ) ) ∗( rho ˆ(2∗ c ( 0 : ml ) )
+) /( f a c t o r i a l ( c ( 0 : ml ) ) ∗gamma(m/2) )
f o r ( l in 0 : ml ) {

pCj<−(pgamma(d1/((1− rho ˆ2) ∗2) ,m/2+c ( 0 : mt1)+l ) ) ∗ ( ( theta1
+/2) ˆc ( 0 : mt1) ) ∗exp(− theta1 /2) / f a c t o r i a l ( c ( 0 : mt1) )

A<−matrix ( c ( pCj∗ g l [ l +1]) , nco l=1)
B[ l+1]<−sum(A)
}

prob <−sum(B)
l i s t ( prob=prob )
}

C.3 Multivariate Simple Regression Model

Listing C.5: Code for the power functions of the tests for multivariate simple
regression model

pow . fn<−f unc t i on ( ps i1 , ps i2 , p s i 1 . pr , p s i 2 . pr , d1 , la , a1 , b1 , rho ){
# psi1 , p s i 1 . pr i s s co r e fn and i t s d e r i v a t i v e e r r o r
# d1 i s the c r i t i c a l va lue
# la i s the number o f
# a1 i s ( a , a ) in Fig 1 o f Chap 4
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# b1 i s (b , b)
# rho the c o r r e l a t i o n co e f
p<−2 # Only f o r mu l t i v a r i a t e s imple model with p=2
de l ta11 <− (1/n) ∗sum( ps i 1 ∗ ps i 1 )
de l ta12 <− (1/n) ∗sum( ps i 1 ∗ ps i 2 )
de l ta21 <− (1/n) ∗sum( ps i 2 ∗ ps i 1 )
de l ta22 <− (1/n) ∗sum( ps i 2 ∗ ps i 2 )
gamma1<−(1/n) ∗sum( ps i 1 . pr )
gamma2<−(1/n) ∗sum( ps i 2 . pr )
TTT<−matrix ( c ( de l ta11 /(gamma1∗gamma1) , de l ta21 /(gamma2∗gamma1)
+ , de l ta12 /(gamma1∗gamma2) , de l ta22 /(gamma2∗gamma2) ) , nco l =2,
+byrow=T)

#So , a l l ncp use the same es t imate o f T which depends on the
+d i s t r i b u t i o n o f data .

pow . ut<−array (NA, c ( l a ) )
pow . rt<−array (NA, c ( l a ) )
pow . ptt<−array (NA, c ( l a ) )
f o r ( i in 1 : l a ) {

thetaUT<−t ( matrix ( rep ( a1 , 2 ) , nco l=1) )%∗%so l v e (TTT)%∗%
+matrix ( rep ( a1 , 2 ) , nco l=1)∗(C. s t a r . sq /(C. s t a r . sq+bar . c∗
+bar . c ) )

thetaRT<−t ( matrix ( rep ( a1 , 2 )+rep ( bar . c∗b1 [ i ] , 2 ) , nco l=1) )
+%∗%so l v e (TTT)%∗%matrix ( rep ( a1 , 2 )+rep ( bar . c∗b1 [ i ] , 2 ) ,
+nco l=1)

thetaPT<−t ( matrix ( rep ( b1 [ i ] , p ) , nco l=1) )%∗%so l v e (TTT)%∗%
+matrix ( rep ( b1 [ i ] , p ) , nco l=1)∗C. s t a r . sq

pow . ut [ i ] <− 1 − pch i sq (d1 , p , thetaUT )
pow . r t [ i ] <− 1 − pch i sq (d1 , p , thetaRT )
p1 <− pch i sq (d1 , p , thetaPT )
f . d i s<−nbcsq . d i s t . c2 ( rho , c ( thetaUT ) , c ( thetaPT ) , d1 , d1 , p , p )
a c f <− nhaf ( rho , c ( thetaPT ) ,d1 , p)
bc f <− nhaf ( rho , c ( thetaUT ) ,d1 , p)
pow . ptt [ i ]<− p1∗pow . r t [ i ]+1+ f . dis$prob−acf$prob−bcf$prob
}

l i s t ( p i . ut=pow . ut , p i . r t=pow . rt , p i . ptt=pow . ptt )
}

gen . power . smvt<−f unc t i on ( a1 , b1 , sm , d1 , rho , n , e r r o r 1 . rand , e r r o r 2
+ . rand ) {

#a1 i s ( a , a ) , b1=(b , b)
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#n i s number o f ob s e rva t i on s
#e r r o r 1 . rand i s e r r o r s o f s i z e n f o r every s imu la t i on (sm)
la<−l ength ( b1 )
p<−2
p i . ut . l s <−array (NA, c ( la , sm) ) #power fn o f UT with LS p s i fn
p i . r t . l s <−array (NA, c ( la , sm) ) # power fn o f RT with LS p s i fn
p i . ptt . l s <−array (NA, c ( la , sm) ) # power fn o f PTT with LS p s i
+fn

p i . ut . h<−array (NA, c ( la , sm) ) #.. with Huber p s i fn
p i . r t . h<−array (NA, c ( la , sm) ) #.. with Huber p s i fn
p i . ptt . h<−array (NA, c ( la , sm) ) #.. with Huber p s i fn
p i . ut . t<−array (NA, c ( la , sm) ) #.. with Tukey p s i fn
p i . r t . t<−array (NA, c ( la , sm) ) #.. with Tukey p s i fn
p i . ptt . t<−array (NA, c ( la , sm) ) #.. with Tukey p s i fn
f o r ( j in 1 : sm) {

er ror1<−e r r o r 1 . rand [ , j ]
e r ror2<−e r r o r 2 . rand [ , j ]
ps i1<−e r r o r 1 #LS ps i f unc t i on
ps i2<−e r r o r 2
ps i 1 . pr<−rep (1 , n) #de r i v a t i v e o f LS p s i f unc t i on
ps i 2 . pr<−rep (1 , n)
f1<−pow . fn ( ps i1 , ps i2 , p s i 1 . pr , p s i 2 . pr , d1 , la , a1 , b1 , rho )
p i . ut . l s [ , j ]<− f 1 $p i . ut
p i . r t . l s [ , j ]<− f 1 $p i . r t
p i . ptt . l s [ , j ]<− f 1 $p i . ptt
ps i1<−p s i . huber ( er ror1 , de r i v =0)∗ e r r o r 1 #Huber p s i
+ func t i on

ps i2<−p s i . huber ( er ror2 , de r i v =0)∗ e r r o r 2
ps i 1 . pr<−p s i . huber ( er ror1 , de r i v = 1) #de r i v a t i v e o f
+Huber p s i fn
ps i 2 . pr<−p s i . huber ( er ror2 , k = 1 .345 , de r i v = 1)
f1<−pow . fn ( ps i1 , ps i2 , p s i 1 . pr , p s i 2 . pr , d1 , la , a1 , b1 , rho )
p i . ut . h [ , j ]<− f 1 $p i . ut
p i . r t . h [ , j ]<− f 1 $p i . r t
p i . ptt . h [ , j ]<− f 1 $p i . ptt
ps i1<−p s i . b i square ( er ror1 , de r i v = 0)∗ e r r o r 1 #Tukey p s i
+fn

ps i2<−p s i . b i square ( er ror2 , de r i v = 0)∗ e r r o r 2
ps i 1 . pr<−p s i . b i square ( er ror1 , de r i v = 1) #de r i v a t i v e o f
+Tukey p s i f n



212 APPENDIX C. R CODES

ps i 2 . pr<−ps i . b i square ( er ror2 , de r i v = 1)
f1<−pow . fn ( ps i1 , ps i2 , p s i 1 . pr , p s i 2 . pr , d1 , la , a1 , b1 , rho )
p i . ut . t [ , j ]<− f 1 $p i . ut
p i . r t . t [ , j ]<− f 1 $p i . r t
p i . ptt . t [ , j ]<− f 1 $p i . ptt
}

pi . ut . tm<−rowMeans ( p i . ut . t , na . rm = FALSE, dims = 1)
p i . r t . tm<−rowMeans ( p i . r t . t , na . rm = FALSE, dims = 1)
p i . ptt . tm<−rowMeans ( p i . ptt . t , na . rm = FALSE, dims = 1)
p i . ut .hm<−rowMeans ( p i . ut . h , na . rm = FALSE, dims = 1)
p i . r t .hm<−rowMeans ( p i . r t . h , na . rm = FALSE, dims = 1)
p i . ptt .hm<−rowMeans ( p i . ptt . h , na . rm = FALSE, dims = 1)
p i . ut . lsm<−rowMeans ( p i . ut . l s , na . rm = FALSE, dims = 1)
p i . r t . lsm<−rowMeans ( p i . r t . l s , na . rm = FALSE, dims = 1)
p i . ptt . lsm<−rowMeans ( p i . ptt . l s , na . rm = FALSE, dims = 1)
l i s t ( p i . ut . tm=pi . ut . tm , p i . r t . tm=pi . r t . tm , p i . ptt . tm=pi . ptt . tm
+ , p i . ut .hm=pi . ut .hm, p i . r t .hm=pi . r t .hm, p i . ptt .hm=pi . ptt .hm,
+pi . ut . lsm=pi . ut . lsm , p i . r t . lsm=pi . r t . lsm , p i . ptt . lsm=pi . ptt .
+lsm )
}

n<−60 #number o f obse rvat ions , i =1 , . . , n
p<−2 # dimens iona l o f the mu l t i v a r i a t e s imple i s 2 . j =1 ,2.
a <−c ( rep ( 0 , ( n/2) ) , rep (1 , ( n/2) ) ) # ju s t to generate c i
c i <− sample ( a , n , r ep l a c e=F) #independent v a r i a b l e s
bar . c <− mean( c i ) #bar . c i s p o s i t i v e here
C. s t a r . sq <− (sum( c i ˆ2)−n∗( bar . c ) ˆ2) /n
rho <− − bar . c / sq r t (C. s t a r . sq + bar . c ˆ2) #c o r r e l a t i o n co e f
alpha <−0.05
d1<−qch i sq (1−alpha , p , 0 ) #c r i t i c a l va lue
a1<−2 # a in Figure
b1<−c ( 0 : 2 8 ) ∗0 .5 #b in Figure
sm<−100 # the number o f s imu la t i on
l i b r a r y (MASS)
e r r o r 1 . rand<−array (NA, c (n , sm) )
e r r o r 2 . rand<−array (NA, c (n , sm) )
# c r e a t i n g Normal d i s t r i b u t i o n e r r o r terms
f o r ( j in 1 : sm) {

e r r o r 1 . rand [ , j ]<−rnorm (n , 0 ,1)
e r r o r 2 . rand [ , j ]<−rnorm (n , 0 ,1)
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}
f2<−gen . power . smvt ( a1 , b1 , sm , d1 , rho , n , e r r o r 1 . rand , e r r o r 2 . rand
+)

pi . ut . tn<−f 2 $p i . ut . tm # Normal data , Tukey , UT
pi . r t . tn<−f 2 $p i . r t . tm
pi . ptt . tn<−f 2 $p i . ptt . tm
pi . ut . hn<−f 2 $p i . ut .hm
pi . r t . hn<−f 2 $p i . r t .hm
pi . ptt . hn<−f 2 $p i . ptt .hm
pi . ut . l sn<−f 2 $p i . ut . lsm
pi . r t . l sn<−f 2 $p i . r t . lsm
pi . ptt . l sn<−f 2 $p i . ptt . lsm
# cr ea t i n g 10\% wild e r r o r terms
e r r o r 1 . wild<−array (NA, c (n , sm) )
e r r o r 2 . wild<−array (NA, c (n , sm) )

f o r ( j in 1 : sm) {
er ror1<−e r r o r 1 . rand [ , j ]
chose . obs <− sample ( c ( 1 : n ) , (10/100) ∗n) #10\% w i l l be
+wi ld

e . out1 <− 10∗ e r r o r 1 [ chose . obs ]
e . out<−sample ( e . out1 , r ep l a c e=T)
e r r o r 1 [ chose . obs ] <− e . out1
error2<−e r r o r 2 . rand [ , j ]
chose . obs <− sample ( c ( 1 : n ) , (10/100) ∗n) #sample ( c ( 1 : n ) ,
+1)

e . out1 <− 10∗ e r r o r 2 [ chose . obs ] #c ( rnorm (1 , 0 , 100) )
e . out<−sample ( e . out1 , r ep l a c e=T)
e r r o r 2 [ chose . obs ] <− e . out1
e r r o r 1 . wi ld [ , j ]<− e r r o r 1
e r r o r 2 . wi ld [ , j ]<− e r r o r 2
}

f2<−gen . power . smvt ( a1 , b1 , sm , d1 , rho , n , e r r o r 1 . wild , e r r o r 2 . wi ld
+)

p i . ut . tt<−f 2 $p i . ut . tm #Wild 10%, Tukey , UT
pi . r t . tt<−f 2 $p i . r t . tm
pi . ptt . tt<−f 2 $p i . ptt . tm
pi . ut . ht<−f 2 $p i . ut .hm
pi . r t . ht<−f 2 $p i . r t .hm
pi . ptt . ht<−f 2 $p i . ptt .hm
pi . ut . l s t <−f 2 $p i . ut . lsm
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pi . r t . l s t <−f 2 $p i . r t . lsm
pi . ptt . l s t <−f 2 $p i . ptt . lsm
e r r o r 1 . cau<−array (NA, c (n , sm) )
e r r o r 2 . cau<−array (NA, c (n , sm) )
f o r ( j in 1 : sm) {

e r r o r 1 . cau [ , j ]<−rcauchy (n , l o c a t i o n = 0 , s c a l e = 1)
e r r o r 2 . cau [ , j ]<−rcauchy (n , l o c a t i o n = 0 , s c a l e = 1)
}

f2<−gen . power . smvt ( a1 , b1 , sm , d1 , rho , n , e r r o r 1 . cau , e r r o r 2 . cau )
p i . ut . tc<−f 2 $p i . ut . tm #Cauchy , Tukey , UT
pi . r t . tc<−f 2 $p i . r t . tm
pi . ptt . tc<−f 2 $p i . ptt . tm
pi . ut . hc<−f 2 $p i . ut .hm
pi . r t . hc<−f 2 $p i . r t .hm
pi . ptt . hc<−f 2 $p i . ptt .hm
pi . ut . l s c <−f 2 $p i . ut . lsm
pi . r t . l s c <−f 2 $p i . r t . lsm
pi . ptt . l s c <−f 2 $p i . ptt . lsm
p lo t (b1 , p i . ptt . l sn , ylab=”Power o f the t e s t ” , xlab =
+expr e s s i on (b) , xl im = c (0 , 12) , yl im = c (0 , 1 ) , lwd=2, cex =
+1 , pch=4, c o l=”red ” , cex . lab =1.3 ,mgp=c ( 2 . 5 , 1 , 0) , type=”n”)
t i t l e ( exp r e s s i on ( paste (” ( c ) Power o f the t e s t when a=2, ”)∗n∗
+paste (”=60 , ”) ∗p∗ paste (”=2”)∗ paste (” with normal e r r o r s ”) ) ,
+cex . main=1.5)
l i n e s (b1 , p i . ut . l sn , l t y =2, lwd=2, c o l =2)
po in t s (b1 , p i . ut . l sn , cex=1, lwd=2, c o l =2)
l i n e s (b1 , p i . ptt . l sn , l t y =1, lwd=2, c o l =2)
l i n e s (b1 , p i . ut . hn , l t y =3, lwd=2, c o l =1)
l i n e s (b1 , p i . ptt . hn , l t y =2, lwd=2, c o l =1)
po in t s (b1 , p i . ptt . hn , pch=4, lwd=2, c o l =1)
legend (” top r i gh t ” , nco l =2, cex =0.95 , c (”UT, LS” , ”PTT, LS” ,
+”UT, Huber ” ,”PTT, Huber ”) ,
c o l = c (2 , 2 , 1 , 1 ) , t ex t . c o l= ” black ” ,
l t y = c (2 , 1 , 3 , 2 ) , lwd=c (2 , 2 , 2 , 2 ) ,
pch = c (1 , −1, −1 ,4) , merge = TRUE, bg=’white ’ )

C.4 Parallelism Model

Listing C.6: Code for the power functions of the tests for parallelism model
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f 1 . par<−f unc t i on ( thetaUT , thetaRT , thetaPT , alpha , p , rho ,m){
pi .1<−array (NA,m)
pi .2<−array (NA,m)
pi . st<−array (NA,m)
f o r ( i in 1 :m) {

pi . 1 [ i ] <− 1 − pch i sq ( qch i sq (1−alpha , p , 0 ) ,p , thetaUT [ i ] )
p i . 2 [ i ] <− 1 − pch i sq ( qch i sq (1−alpha , p , 0 ) ,p , thetaRT [ i ] )
p1 <− pchi sq ( qch i sq (1−alpha , p , 0 ) ,p , thetaPT [ i ] )
p2<−pi . 2 [ i ]
d1<−qch i sq (1−alpha , p , 0 )
f . d i s<−nbcsq . d i s t . c2 ( rho , c ( thetaUT [ i ] ) , c ( thetaPT [ i ] ) , d1 ,
+d1 , p , p)
a c f <− nhaf ( rho , c ( thetaPT [ i ] ) , d1 , 1 )
bc f <− nhaf ( rho , c ( thetaUT [ i ] ) , d1 , 1 )
p i . s t [ i ]<− p1∗p2+1+f . dis$prob−acf$prob−bcf$prob
}

l i s t ( p i . s t=pi . st , p i .1= pi . 1 , p i .2= pi . 2 )
}
rn<−1
n1<−50
n2<−50
n<−100
alpha<− 0 .05
m<−29
p<−1
rho<− −0.8164966
bar . c<−0.5
C. s t a r . sq <−0.125
jack1 <−0
jack2 <−0
b<−c ( 0 : 2 8 ) ∗0 .5
j i l l 1 <−b
j i l l 2 <−b
mat2 . ut<−diag ( c ( ( ( n1/n) ∗C. s t a r . sq ) /(C. s t a r . sq + bar . c ˆ2) , ( (
+n2/n) ∗C. s t a r . sq ) /(C. s t a r . sq + bar . c ˆ2) ) , 2 , 2 )

mat2 . rt<−diag ( c ( ( n1/n) , ( n2/n) ) , 2 , 2 )
mat2 . pt<−diag ( c ( ( n1/n) ∗C. s t a r . sq , ( n2/n) ∗C. s t a r . sq ) , 2 , 2 )
ad1<−(jack1 ∗( n1/n) ∗C. s t a r . sq ) /(C. s t a r . sq + bar . c ˆ2)
ad2<−(jack2 ∗( n2/n) ∗C. s t a r . sq ) /(C. s t a r . sq + bar . c ˆ2)
ggl1 <−(n1/n) ∗ jack1
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gc l1 <−(n1/n) ∗bar . c
ggl2 <−(n2/n) ∗ jack2
gc l2 <−(n2/n) ∗bar . c
gs l1 <−(n1/n) ∗C. s t a r . sq
gs l2 <−(n2/n) ∗C. s t a r . sq
thetaUT<−array (NA, c (29 , rn ) )
thetaRT<−array (NA, c (29 , rn ) )
thetaPT<−array (NA, c (29 , rn ) )
f o r ( i in 1 : 29 ) {
mat1 . ut<−matrix ( c ( ad1 , ad2 ) , nrow=1, nco l =2,byrow=T)

thetaUT [ i , ] <−mat1 . ut%∗%so l v e (mat2 . ut )%∗%t (mat1 . ut )
mat1 . rt<−matrix ( c ( gg l1+gc l 1 ∗ j i l l 1 [ i ] , gg l2+gc l 2 ∗ j i l l 2 [ i ] ) ,
+nrow=1, nco l =2,byrow=T)

thetaRT [ i , ] <− mat1 . r t%∗%so l v e (mat2 . r t )%∗%t (mat1 . r t )
mat1 . pt <−matrix ( c ( g s l 1 ∗ j i l l 1 [ i ] , g s l 2 ∗ j i l l 2 [ i ] ) , nrow=1,
+nco l =2,byrow=T)

thetaPT [ i , ] <− mat1 . pt%∗%so l v e (mat2 . pt )%∗%t (mat1 . pt )
}

pi . ptt<−array (NA, c ( rn ,m) )
p i . ut<−array (NA, c ( rn ,m) )
p i . rt<−array (NA, c ( rn ,m) )
f o r ( i in 1 : rn ) {

pal1<−f 1 . par ( thetaUT [ , i ] , thetaRT [ , i ] , thetaPT [ , i ] , alpha , p ,
+rho ,m)

p i . ptt [ i ,]<− pa l1$p i . s t
p i . ut [ i , ] <−pa l1$p i . 1
p i . r t [ i ,]<− pa l1$p i . 2
}

pi . pttc<−rbind ( p i . ptt , p i . ptt )
p i . utc<−rbind ( p i . ut , p i . ut )
p i . r tc<−rbind ( p i . rt , p i . r t )
p i . Ptt<−rep (NA,29 )
p i . Rt<−rep (NA,29 )
p i . Ut<−rep (NA,29 )
f o r ( j in 1 : 29 ) {

pi . Ptt [ j ]<−mean( p i . ptt [ , j ] )
p i . Rt [ j ]<−mean( p i . r t [ , j ] )
p i . Ut [ j ]<−mean( p i . ut [ , j ] )
}

b<− j i l l 2
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p lo t (b , p i . Ptt , ylab=”S i z e o f the t e s t ” , xlab = ”b” , xlim = c
+(0 , 13 . 5 ) , yl im = c (0 , 1) , lwd=2, cex = 1 , pch=4, c o l=”red ” ,
+cex . lab =1.8 ,mgp=c ( 2 . 5 , 1 , 0) )
t i t l e ( exp r e s s i on ( paste (” S i z e o f the t e s t when a=0, ”)∗ alpha ∗
+paste (”=0.05”) ) , cex . main=2)
l i n e s (b , p i . Ut , l t y =2, lwd=2, c o l =1)
l i n e s (b , p i . Rt , l t y =1, lwd=2, c o l=”blue ”)
l i n e s (b , p i . Ptt , l t y =1, lwd=2, c o l=”red ”)
legend (” t o p l e f t ” , cex =1.5 , c ( exp r e s s i on (UT) , exp r e s s i on (RT) ,
+expr e s s i on (PTT) ) , c o l = c (1 , 4 , 2 ) , t ex t . c o l= ” black ” ,
l t y = c (2 , 1 , 1) , lwd=c (2 , 2 , 2 ) , pch = c (−1 , −1, 4) , merge =
+TRUE, bg=’white ’ )

C.5 Multiple Linear Regression Model

Listing C.7: Code of power functions of the tests for the multiple linear regres-
sion

mulp3d<−f unc t i on (a , b , p . rho , sigma0 . sq ,gamm,Q11 ,Q12 ,Q21 ,Q22 , Q1s
+ , Q2s , Q12s , Q21s , alpha1 , alpha2 , alpha3 , d1 , d2 ){

la<−l ength ( a )
p i . 1 <−array (NA, l a )
p i . 2 <−array (NA, l a )
p i . stn0<−array (NA, l a )
p i . stn<−array (NA, l a )
thetaUT<−array (NA, l a )
thetaPT<−array (NA, l a )
thetaRT<−array (NA, l a )
Bb <−matrix ( rep (b , 2 ) , nco l=1)
f o r ( i in 1 : l a ) {
Aa <−matrix ( rep ( a [ i ] , 1 ) , nco l=1)
#choose up to l a so that ncp f o r UT <50 and choose a up to 10
+ only .

thetaUT [ i ] <− (gammˆ2/ sigma0 . sq ) ∗( t (Aa)%∗%Q1s%∗%Aa)
thetaRT [ i ] <− (gammˆ2/ sigma0 . sq ) ∗( t (Aa)%∗%Q11%∗%Aa + t (Aa)%∗%
+Q12%∗%Bb + t (Bb)%∗%Q21%∗%Aa+t (Bb)%∗%Q21%∗%so l v e (Q11)%∗%Q12
+%∗%Bb)

thetaPT [ i ] <− (gammˆ2/ sigma0 . sq ) ∗( t (Bb)%∗%Q2s%∗%Bb)
pi . 1 [ i ] <− 1 − pch i sq ( qch i sq (1−alpha1 , 1 , 0 ) ,1 , thetaUT [ i ] )
p i . 2 [ i ] <− 1 − pch i sq ( qch i sq (1−alpha2 , 1 , 0 ) ,1 , thetaRT [ i ] )
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p1 <− pchi sq ( qch i sq (1−alpha3 , 2 , 0 ) ,2 , thetaPT [ i ] )
p2 <− 1−pch i sq ( qch i sq (1−alpha2 , 1 , 0 ) ,1 , thetaRT [ i ] )
f . d i s<−nbcsq . d i s t . c2 (p . rho , c ( thetaUT [ i ] ) , c ( thetaPT [ i ] ) , d1 , d2
+ , 1 , 2 )
a c f <− nhaf (p . rho , c ( thetaPT [ i ] ) , d2 , 2 )
bc f <− nhaf (p . rho , c ( thetaUT [ i ] ) , d1 , 1 )
p i . s tn [ i ]<− p1∗p2+1+f . dis$prob−acf$prob−bcf$prob
}
pi . 1
p i . 2
p i . s tn
l i s t ( p i .1= pi . 1 , p i .2= pi . 2 , p i . s tn=pi . stn , thetaRT=thetaRT ,
+thetaUT=thetaUT , thetaPT=thetaPT )
}
#Star t Here
l i b r a r y (MASS)
n<−100
e r r o r <−rnorm (n , 0 ,1)
c1<−rep (1 , n)
c2<−rnorm (n , 0 , 2 )#choose 1 , power fn do not approach 1 as a
+goes l a r g e r .

c3<−rnorm (n , 0 , 2 )
a<−c ( rep (0 , n/2) , rep (1 , n/2) )
c2 <− sample ( a , n , r ep l a c e=F)
c3 <− sample ( a , n , r ep l a c e=F)
X <− 1+c2+c3+e r r o r
c 1 i <−matrix ( c ( c1 ) , nco l=1)
c 2 i <−matrix ( c ( c2 , c3 ) , nco l =2,byrow=F) #an n by 2 dime
Q11<−(t ( c 1 i )%∗%c1 i ) /n
Q22<−(t ( c 2 i )%∗%c2 i ) /n
Q12<−(t ( c 1 i )%∗%c2 i ) /n
Q21<−(t ( c 2 i )%∗%c1 i ) /n
Q<−matrix ( c ( c (Q11) , c (Q12) , c (Q21 [ 1 , ] ) , c (Q22 [ 1 , ] ) , c (Q21 [ 2 , ] ) , c (
+Q22 [ 2 , ] ) ) , byrow=T, nco l=3)

Q1s<−Q11−Q12%∗%so l v e (Q22)%∗%Q21
Q2s<−Q22−Q21%∗%so l v e (Q11)%∗%Q12
Q12s<−Q12%∗%so l v e (Q22)%∗%Q21%∗%so l v e (Q11)%∗%Q12−Q12
Q21s<−Q21%∗%so l v e (Q11)%∗%Q12%∗%so l v e (Q22)%∗%Q21−Q21
A<−matrix ( c ( c (Q1s ) , c (Q12s ) , c (Q21s [ 1 , ] ) , c (Q2s [ 1 , ] ) , c (Q21s [ 2 , ] )
+ , c (Q2s [ 2 , ] ) ) , byrow=T, nco l=3)
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rho<−array (NA, c (3 , 3 ) )
f o r ( i in 1 : 2 ) {

f o r ( j in ( i +1) : 3 ) {
rho [ i , j ]<−A[ i , j ] / ( s q r t (A[ i , i ] ) ∗ s q r t (A[ j , j ] ) ) }}

p . rho<−s q r t (sum( rho [1 ,2 ]ˆ2+ rho [1 ,3 ]ˆ2+ rho [ 2 , 3 ] ˆ 2 ) /3)

b<−0 #l e t ’ s choose b=0 ,1 ,2 ,4
a<−c ( 0 : 4 0 ) ∗0 .25
alpha1 <−0.05
alpha2 <−0.05
alpha3 <−0.05
d1<−qch i sq (1−alpha1 , 1 , 0 ) #r=1
d2<−qch i sq (1−alpha3 , 2 , 0 ) #s=2
c i<−cbind ( c1 , c2 , c3 )
e r r o r . con<−e r r o r
chose . obs <− sample ( c ( 1 : n ) , (10/100) ∗n) # I am goin to chose
+obse rva t i on s to be changed .

#e . out1 <− c ( rnorm ((10/100) ∗(n/2) , 0 , 10) , rnorm ((10/100) ∗(n
+/2) , 0 ,10) )

e . out1 <− c ( r un i f (5 , min=3.5 , max=5) , r un i f (5 , min=−5, max
+=−3.5) )

#e . out1 <− c ( r un i f ( (10/100) ∗(n/2) , min=−2.5 , max=−1.5) , r un i f
+((10/100) ∗(n/2) , min=1.5 , max=2.5) )

#e . out1 <− c ( r un i f ( (10/100) ∗(n/2) , min=−15, max=−10) , r un i f
+((10/100) ∗(n/2) , min=10, max=15) )

e . out<−sample ( e . out1 , r ep l a c e=F) #r ep l c e f a l s e so , every o f e .
+ou1 w i l l be in e . out .
e r r o r . con [ chose . obs ] <− e . out
Xi . con<−c1+c2+c3+e r r o r . con #the contaminated response

tune . c<−1.28 #qnorm ( 0 . 9 )
hr . con<−rlm ( c i , Xi . con , k=tune . c ) #the tuning constant that
+they use i s 1 . 3 4 5 .

hr . con$coe f
mady<−mad( hr . con$res )#how come t h i s i s f o r g o t t en . .
r e s . hr<−(Xi . con−hr . con$coe f [ 1 ] ∗ c1−hr . con$coe f [ 2 ] ∗ c2−hr .
+con$coe f [ 3 ] ∗ c3 ) /mady

res<−r e s . hr
z e r o s <− rep (0 , n)
ps ipr ime . r e s <− rep (1 , n)
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p s i . r e s <− r e s
band . out <− abs ( r e s ) > tune . c
p s i . r e s [ band . out ] <− ( tune . c∗ s i gn ( r e s ) ) [ band . out ]
ps ipr ime . r e s [ band . out]<− z e ro s [ band . out ]
gamma <− mean( ps ipr ime . r e s )
sigma0 . sq <− mean( p s i . r e s ˆ2)
s r s<−f unc t i on ( tee ,U)
sum( s i gn (U−t e e ) ∗ rank ( abs (U−t e e ) ) /( l ength (U)+1) )
ur<−un i root ( s r s , c (−10 ,10) , t o l =0.0001 ,U=ps ipr ime . r e s /mady) #
+ps ipr ime . r e s i s e i t h e r 0 or 1 .

gamma<−ur$root
#the power f unc t i on s
pm<−mulp3d (a , b , p . rho , sigma0 . sq , gamma,Q11 ,Q12 ,Q21 ,Q22 , Q1s , Q2s ,
+Q12s , Q21s , alpha1 , alpha2 , alpha3 , d1 , d2 )

p i . ptthc2<−pm$pi . s tn
p i . rthc2<−pm$pi . 2
p i . uthc2<−pm$pi . 1

#To p lo t Figure 6 . 1 ( a ) .
p l o t ( a , p i . rthc2 , ylab=”power o f the t e s t ” , xlab = expr e s s i on (
+lambda [ 1 ] ) , xl im = c (0 , 10) , yl im = c (0 , 1) , cex . lab =1.4 , c o l
+=1, type=”n”)
t i t l e ( exp r e s s i on (” ( a ) Power o f the t e s t f o r ”∗ lambda
+ [2 ]∗”= [0 , 0 ] ” ˆT) , cex . main=1.7)
l i n e s ( a , p i . rthc2 , l t y =1, lwd=2, c o l =4)
l i n e s ( a , p i . uthc2 , l t y =2, lwd=2, c o l =1)
l i n e s ( a , p i . ptthc2 , l t y =1, lwd=2, c o l =2)
po in t s ( a , p i . ptthc2 , pch=16, lwd=1, c o l =2)
legend (” bottomright ” , cex =1.4 , c ( exp r e s s i on ( PiˆUT) ,
+expr e s s i on ( PiˆRT) , exp r e s s i on ( PiˆPTT) ) , , c o l = c (1 , 4 , 2 ) ,
+text . c o l= ” black ” ,

l t y = c (2 , 1 , 1 ) , lwd=c (2 , 2 , 2 ) , pch = c (−1 , −1, 16) ,
+merge = TRUE, bg=’white ’ )

Listing C.8: Code of power functions of the tests - comparing chi-square and
normal tests.

mulp1<−f unc t i on (a , b , p . rho , sigma0 . sq , gamma,Q11 ,Q12 ,Q21 ,Q22 , Q1s
+ , Q2s , Q12s , Q21s , alpha1 , alpha2 , alpha3 , d1 , d2 ){

la<−l ength ( a )
p i . 1 <−array (NA, l a )
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pi . 2 <−array (NA, l a )
p i . bnc<−array (NA, l a )
p i . stnr<−array (NA, l a )
thetaUT<−array (NA, l a )
thetaPT<−array (NA, l a )
thetaRT<−array (NA, l a )
p<−1
Bb <−matrix ( rep (b , 1 ) , nco l=1)
f o r ( i in 1 : l a ) {

Aa <−matrix ( rep ( a [ i ] , 1 ) , nco l=1)
#choose up to l a so that ncp f o r UT <50 and choose a up
+to 10 only .

thetaUT [ i ] <− (gammaˆ2/ sigma0 . sq ) ∗( t (Aa)%∗%Q1s%∗%Aa)
thetaRT [ i ] <− (gammaˆ2/ sigma0 . sq ) ∗( t (Aa)%∗%Q11%∗%Aa + t (
+Aa)%∗%Q12%∗%Bb + t (Bb)%∗%Q21%∗%Aa+t (Bb)%∗%Q21%∗%so l v e (
+Q11)%∗%Q12%∗%Bb)

thetaPT [ i ] <− (gammaˆ2/ sigma0 . sq ) ∗( t (Bb)%∗%Q2s%∗%Bb)
pi . 1 [ i ] <− 1 − pch i sq ( qch i sq (1−alpha1 , p , 0 ) ,p , thetaUT [ i ] )
p i . 2 [ i ] <− 1 − pch i sq ( qch i sq (1−alpha2 , p , 0 ) ,p , thetaRT [ i ] )
p1 <− pchi sq ( qch i sq (1−alpha3 , p , 0 ) ,p , thetaPT [ i ] )
p2 <− 1−pch i sq ( qch i sq (1−alpha2 , p , 0 ) ,p , thetaRT [ i ] )
f . d i s<−nbcsq . d i s t . c2 (p . rho , c ( thetaUT [ i ] ) , c ( thetaPT [ i ] ) , d1
+ , d2 , p , p)
a c f <− nhaf (p . rho , c ( thetaPT [ i ] ) , d2 , p )
bc f <− nhaf (p . rho , c ( thetaUT [ i ] ) , d1 , p )
p i . bnc [ i ]<− p1∗p2+1+f . dis$prob−acf$prob−bcf$prob #The
+proposed bncs

mu1<−s q r t ( thetaUT [ i ] )
mu2<−s q r t ( thetaPT [ i ] )

#steux roux approximation
b1<−d1/(mu1ˆ2+1)
b2<−d2/(mu2ˆ2+1)
rho . stsq <−((p . rho + mu1∗mu2) ˆ2) /((1+mu1ˆ2)∗(1+mu2ˆ2) )
f1<−nbcsq . d i s t . c2 ( s q r t ( rho . s t s q ) , 0 , 0 , b1 , b2 , p , p) #with no
+ncp

f2<−nhaf ( s q r t ( rho . s t s q ) ,0 , b1 , p)#with no ncp
f3<−nhaf ( s q r t ( rho . s t s q ) ,0 , b2 , p)#with no ncp
pi . s tn r [ i ]<− p1∗p2+1+f1$prob−f2$prob−f3$prob #SteynRoux
+Approximation
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}
l i s t ( p i .1= pi . 1 , p i .2= pi . 2 , p i . s tn r=pi . stnr , p i . bnc=pi . bnc ,
+thetaRT=thetaRT , thetaUT=thetaUT , thetaPT=thetaPT )
}

l i b r a r y (MASS)
n<−100
a<−c ( rep (0 , n/2) , rep (1 , n/2) )
e r r o r <−rnorm (n , 0 ,1)
c1<−rep (1 , n)
c2 <− sample ( a , n , r ep l a c e=F)
X <− 2+3∗c2+e r r o r
c 1 i <−matrix ( c ( c1 ) , nco l=1)
c 2 i <−matrix ( c ( c2 ) , nco l =1,byrow=F) #an n by 2 dime
Q11<−(t ( c 1 i )%∗%c1 i ) /n
Q22<−(t ( c 2 i )%∗%c2 i ) /n
Q12<−(t ( c 1 i )%∗%c2 i ) /n
Q21<−(t ( c 2 i )%∗%c1 i ) /n
Q<−matrix ( c (Q11 ,Q12 ,Q21 , Q22) , byrow=T, nco l=2)
Q1s<−Q11−Q12%∗%so l v e (Q22)%∗%Q21
Q2s<−Q22−Q21%∗%so l v e (Q11)%∗%Q12
Q12s<−Q12%∗%so l v e (Q22)%∗%Q21%∗%so l v e (Q11)%∗%Q12−Q12
Q21s<−Q21%∗%so l v e (Q11)%∗%Q12%∗%so l v e (Q22)%∗%Q21−Q21
A<−matrix ( c (Q1s , Q12s , Q21s , Q2s ) , byrow=T, nco l=2)
rho<−array (NA, c (2 , 2 ) )
f o r ( i in 1 : 1 ) {

f o r ( j in ( i +1) : 2 ) {
rho [ i , j ]<−A[ i , j ] / ( s q r t (A[ i , i ] ) ∗ s q r t (A[ j , j ] ) )
}

}
p . rho<−rho [ 1 , 2 ]
p<−1
b<−6 #l e t ’ s choose a=0 ,1 ,2 ,4
a<−c ( 0 : 4 0 ) ∗0 .25
alpha1 <−0.05
alpha2 <−0.05
alpha3 <−0.05
d1<−qch i sq (1−alpha1 , p , 0 )
d2<−qch i sq (1−alpha3 , p , 0 )
c i<−cbind ( c1 , c2 )
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e r r o r . con<−e r r o r
chose . obs <− sample ( c ( 1 : n ) , (10/100) ∗n)
e . out1 <− c ( r un i f (5 , min=3.5 , max=5) , r un i f (5 , min=−5, max
+=−3.5) )

e . out<−sample ( e . out1 , r ep l a c e=F)
e r r o r . con [ chose . obs ] <− e . out
Xi . con<−c1+c2+e r r o r . con #the contaminated response
tune . c<−1.28 # qnorm ( 0 . 9 )
hr . con<−rlm ( c i , Xi . con , k=tune . c ) #de f au l t tuning constant i s
+1 . 3 4 5 .

mady<−mad( hr . con$res )
std . r e s . hr<−hr . con$res /mady
p s i . res<−ps i . huber ( std . r e s . hr , k = tune . c , de r i v = 0)∗ std . r e s
+ . hr

ps ipr ime . res<−ps i . huber ( std . r e s . hr , k = tune . c , de r i v = 1)
sigma0 . sq <− mean( p s i . r e s ˆ2)
s r s<−f unc t i on ( tee ,U)
sum( s i gn (U−t e e ) ∗ rank ( abs (U−t e e ) ) /( l ength (U)+1) )
ur<−un i root ( s r s , c (−10 ,10) , t o l =0.0001 ,U=ps ipr ime . r e s /mady)
gamma<−ur$root

#Figure 6 . 3 ( e )
pm<−mulp1 (a , b , p . rho , sigma0 . sq , gamma,Q11 ,Q12 ,Q21 ,Q22 , Q1s , Q2s ,
+Q12s , Q21s , alpha1 , alpha2 , alpha3 , d1 , d2 )

p i . ptthc2<−pm$pi . bnc
p i . rthc2<−pm$pi . 2
p i . uthc2<−pm$pi . 1

p l o t ( a , p i . rthc2 , ylab=”power o f the t e s t ” , cex . lab =1.3 , xlab =
+ expre s s i on ( lambda [ 1 ] ) , xl im = c (0 , 10) , yl im = c (0 , 1) , c o l
+=1, type=”n”)
t i t l e ( exp r e s s i on (” ( e ) Power o f the t e s t f o r ”∗ lambda [2 ]∗”=6”)
+ , cex . main=1.5)
l i n e s ( a , p i . rthc2 , l t y =1, lwd=2, c o l =4)
l i n e s ( a , p i . uthc2 , l t y =2, lwd=2, c o l =1)
l i n e s ( a , p i . ptthc2 , l t y =1, lwd=2, c o l =2)
po in t s ( a , p i . ptthc2 , pch=4, lwd=2, c o l =2, cex =0.6)
legend (” bottomright ” , cex =1.3 , c ( exp r e s s i on ( PiˆUT) ,
+expr e s s i on ( PiˆRT) , exp r e s s i on ( PiˆPTT) ) , , c o l = c (1 , 4 , 2 ) ,
+text . c o l= ” black ” , l t y = c (2 , 1 , 1 ) , lwd=c (2 , 2 , 2 , 2 , 2 ) , pch = c
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+(−1 , −1, 4) , merge = TRUE, bg=’white ’ )
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