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Abstract 

Intelligent transportation systems (ITSs) play a very important role in people’s lives in many 

respects. One of the most important ITS applications is for automatic number plate recognition 

systems. Over the years, many algorithms have been developed for detecting licence plates 

(LPs) from vehicle images or from a sequence of images in a video. Many existing ITSs work 

only under good conditions or normal environments.  

It is still challenging to find effective techniques to identify LPs under difficult 

conditions, such as low/high contrast, bad illumination,  foggy, dusty, or distorted by high 

speed or bad weather. New techniques are needed to improve the performance of existing 

detection systems.  

In this thesis, novel methods are developed for licence plate detection (LPD) systems 

to extract key features, and classify the LP region from complicated vehicle images based on 

preprocessing methods and machine learning algorithms with several types of texture 

descriptors.  

In order to identify LPs from complicated vehicles images, four LPD methods were 

developed in this research. The first, is a three-level local binary pattern operator based on an 

ensemble of Adaboost cascades classifiers (3L-LBP_Adaboost) detection method. The second 

method, introduces a new texture descriptor based on a multi-level preprocessing stage with 

extended local binary pattern descriptor using an extreme learning machine classifier 

(MLELBP_ELM). The third, develops learning-based preprocessing methods using a local 

binary pattern and a median filter  histogram of the oriented gradient with support vector 

machine classifier (LBP_MHOG_SVM) for detecting complicated LPs. Finally, for identifying 

distorted  LPs using hybrid features, median robust extended local binary pattern and speeded-

up robust with an extreme learning machine classifier (MRELBP_SURF_ELM). The 

experimental results show that both of the LBP_MHOG_SVM and MRELBP_SURF_ELM 

algorithms perform very well in LP detection accuracy rate compared with 3L-LBP_Adaboost 

and MLELBP_ELM algorithms. Also, the false positive rate (FPR) for both methods is better 

than those algorithms. The MLELBP_ELM and MRELBP_SURF_ELM methods carry out 

significant classification of different types of LP key features. The 3L-LBP_Adaboost 

approach takes much less execution time and produces high FPR compared to the three other 

methods. But it was a good technique for selecting suitable preprocessing and extraction 

methods, for detecting LPs from low quality vehicle images. 
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The experimental results proved the efficiency of the proposed approaches for detecting 

difficult regions of the LP inside a vehicle image with a high accuracy rate and low detection 

time. Whereas the overall performance evaluation for the 3L-LBP_Adaboost method in terms 

of detection, precision, and F-measure rates is 98.56%, 95.9%, and 97.19%, respectively, with 

an FPR of 5.6%. The average detection time per vehicle image was  2.001miliseconds. 

In the MLELBP_ELM method,  detection accuracy and FPR were improved by 0.54% 

and 0.56%, respectively, compared with the 3L-LBP_Adaboost approach. The classification 

and detection rates are 99.78% and 99.10%, respectively, with an FPR of 5%. The average 

execution time per vehicle image was 2.4530miliseconds. 

The LBP_MHOG_SVM method yielded an excellent improvement compared with 

existing proposed methods, a 4% improvement for the FPR, and 1.50% for detection accuracy. 

The detection rate is 99.62%, with an FPR of 1.675%. The average of the processing time per 

vehicle image was 2.2187miliseconds. 

Finally, the accuracy and detection rates are 97.92% and 99.71, respectively, with the 

FPR of 2.24% for the MRELBP_SURF_ELM method. The average of the execution time for 

the whole detection system per vehicle image was 2.108 milliseconds. This method was 

superior in the performance and execution time over the existing proposed methods in this 

research.  

The findings suggest that the outcomes of this study can improve the performances of 

existing LPD systems. They can assist in law enforcement with an ITS system. Also, it can be 

effectively used to detect LPs in real-time applications under difficult conditions. 
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CHAPTER 1 

INTRODUCTION 

 

These days, intelligent transportation systems (ITSs) play an important role in different aspects 

of our daily life. Normally, these systems include two parts: the intelligent infrastructure system 

and the automatic number plate recognition system (ANPR) (Anagnostopoulos et al. 2006; 

Anagnostopoulos 2014). Using surveillance applications is necessary to observe and examine 

road traffic for law enforcement activities (Castello et al. 1999; Duan et al. 2004b; Sarfraz et 

al. 2013). In 1978, the first successful ANPR system was used in the UK to detect stolen cars.  

ANPRs have several names reflecting different purposes, like licence plate recognition (LPR), 

car plate recognition (CPR), licence plate reader (LPR), mobile licence plate reader (MLPR), 

and vehicle recognition identification (VRI). Some applications are: security systems (Sheldon 

2013), highway road tolling systems (Song & Sarker 2014; Panahi & Gholampour 2017), 

parking management systems, enforcing move over laws for emergency vehicles (Roberts & 

Casanova 2012), traffic control (Dehghan et al. 2017), traffic management systems (He et al. 

2017), and so on. Nowadays, the key requirements for a good ANPR system are high accuracy 

and better execution speed for any application (Angelova et al. 2015). All the ARPR 

applications still have difficulties for detecting licence plates (LPs) from vehicle images, or a 

sequence of images in a video, under difficult conditions.  These difficulties impact on the main 

system stages, such as, extraction and detection.  Therefore, the ARPR software should be able 

to deal with the following: 

 Poor resolution/ low-quality camera, sometimes this problem appears due to either short 

or long distance between the vehicle and the camera, which results in having low/bad image 

quality. The system accuracy often depends on camera qualities, like type, resolution, shutter 

speed, light, and the installation method.  

 Blurry vehicle images caused by the high-speed vehicle movement. 

1 
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 The location and tilt the LP may be found in the different places of an image with different 

angles and conditions. 

 Different sizes, languages, and fonts some countries do not allow to the use of different 

types of fonts, this could help to reduce some difficulties. 

 Occlusion problems due to dirt during an image capture or inaccurate distance between the 

vehicle and the camera. 

 Color problems due to different color between the vehicle body and the LP area. 

 Distortion problems some characters in the LP, and the plate itself have screws and frames 

with a dirty background. 

 Environmental problems poor illumination or lighting conditions because of weather, such 

as raining, snowing, and so on.  

 Low/high contrast problem due to the vehicle headlights, and the different lighting 

resources during an image capture. 

  However, some of these problems could be corrected through the software.  A robust 

licence plate detection (LPD) system is required to effectively work under all difficult 

conditions. Hence, developing new LP detection methods to solve those problems is a very 

important topic to improve the existing LPD systems.  This thesis focus on the detection of LPs 

from vehicle images under complicated conditions, such as low/high contrast and poor lighting 

condition, dusk, fog, dirt, and distortion problems. This study proposes four algorithms for 

identification LPs from complicated and low quality vehicles images. These methods can 

identify and detect the LP and provide reliable and accurate detection results that will be useful 

to improve the performance of existing LPD systems in terms of accuracy rates and execution 

time. Finally, the outcomes of this study will help to enhance the quality of the life through 

using the ITSs with high quality and security. 

 

1.1 Overview and Motivation of the Study 

An LPD system has become a very important tool for many surveillance applications over the 

past decades (Kamat & Ganesan 1995; Kasaei et al. 2010; Angelova et al. 2015; Azam & 

Gavrilova 2017; Arafat et al. 2019). For detecting complicated LP problems, the preprocessing 

and feature extraction techniques should be selected and developed carefully. Selecting good 

software components plays an important role in  the quality of the detection system. In 

particular, evaluation of a system performance is a very popular tool to determine LP problems 
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and test possible solutions to improve system weaknesses. In this study, an LPD system 

includes four stages: images acquisition, preprocessing, extraction, and detection. In chapter 2, 

a detailed description of those stages is provided. The two main key requirements of the LPD 

system are accuracy and runtime (Angelova et al. 2015). Recently, increased attention has been 

paid to efficient strategies to improve existing systems as an important topic in the field of 

machine learning. The main challenge is how to detect LPs from complicated vehicle images 

as fast, and with as high an accuracy as possible. Therefore, several detection methods were 

reported which identify different kinds of LP problems (Asif et al. 2016; Azam & Islam 2016; 

Boonsim & Prakoonwit 2016; Chen et al. 2017; Panahi & Gholampour 2017; Wang et al. 2018; 

Al-Shemarry et al. 2019).   The detection of LPs under complicated conditions is still far from 

being achieved. A considerable amount of research is still needed. Therefore, in this thesis, the 

aim is to develop efficient and accurate methods to identify the LP area from distorted vehicle 

images. 

 

1.2 Research Problems 

The existing ANPR systems are far from satisfactory in detecting the LPs under difficult 

conditions. Therefore, developing new novel methods to detect LPs from complicated vehicle 

images is the main goal of this thesis. The performance of the developed approaches has been 

evaluated using several assessment tools. They are mainly object detection methods, such as 

detection and object localization metrics, and the receiver operating characteristic (ROC) 

curve. These measurement tools are used to check the detection system’s ability and 

performance at identifying objects (Bashir & Porikli 2006; Kasturi et al. 2009). This study used 

very challenging and complicated data, compared with the existing databases used by other 

studies (Azam & Islam 2016; Azam & Gavrilova 2017; Liu et al. 2017; Panahi & Gholampour 

2017; Silva & Jung 2018). Using supervised learning algorithms requires more images to 

produce accurate results. Therefore, the English LP database (EnglishLPDatabase-2001 ; 

MedialabLPRdatabase-2007) is extended to increase the number of vehicle images by adding 

many changes using an image photo editor application. Efficient preprocessing methods and 

powerful descriptors that are suitable to enhance the low-quality images have been used. This 

study focuses on answering the question : 

How to enhance the performance of an LPD system under different conditions by 

developing advanced classification techniques?  
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This question leads to the following sub-questions:  

a. What are the best preprocessing and extraction methods for the complicated LP 

detection?  

b. How to enhance the performance of an LPD system through the developed methods?  

The main objectives are:  

1. To develop new methods for the LP detection, that will result in a good detection results 

(performance, accuracy, and processing speed) under difficult conditions;  

2. To improve the working of existing ANPR systems and reduce the efforts required to 

efficiently detect unacceptable activities under complicated conditions in transport 

systems.  

Based on the experimental results, the developed methods can achieve good system 

performance through identifying different types of LP problems from low-quality vehicles 

images, such as low/high contrast, bad illumination,  foggy, dusty, and distortion. Also, they 

can be applied to different types of car LP databases. As there are no constraints in the proposed 

methods as to object shape, color, edge, and so on, due to the use of supervised learning 

techniques. 

 

1.3 Contributions of the Thesis 

In this thesis, four techniques are developed for detecting LPs from low-quality vehicles images 

with difficult conditions. Different types of LPs were detected successfully with high system 

performance. To investigate the performance of those proposed methods, they were compared 

with recently reported algorithms with different and/or the same databases. The following 

contributions have been made to answer the research questions and achieve the objectives: 

1. Effective methods were developed for detecting LPs under complicated conditions, such 

as low/high contrast, bad illumination,  foggy, dusty, and distorted by high speed and bad 

weather. They improved the detection system performance with less execution time and 

low false positive rate.  

2. The developed methods were improved by presenting new preprocessing and extraction 

techniques that can improve the classification accuracy.  
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3. Investigating which method is better to achieve the main requirements of an LPD system 

under difficult conditions like distorted vehicle images, low/high contrast, and bad 

illumination. 

The proposed methods have been implemented in Matlab R2018a. The database that is 

used in this study is the English LP (EnglishLPDatabase-2001 ; MedialabLPRdatabase-2007). 

It is a very popular database that is used by many researchers for detecting distorted vehicle 

images. Also, it contains three types of LP resolutions, which made this research very challenge 

and interesting. Moreover, each algorithm was evaluated using detection and object 

localization metrics. Those metrics are the false positive (FP), true positive (TP), false negative 

(FN), true negative (TN), recall rate (RR) or detection rate (DR), accuracy rate (AR), precision 

rate (PR) or positive prediction rate (PPR), and F-measure rate. The receiver operating 

characteristic (ROC) curve was used to evaluate the classification accuracy for the proposed 

algorithms. The ROC curve depends on four parameters which are the true positive rate (TPR) 

or RR, false positive rate (FPR), positive predictive value (PPV) or PR, and negative predictive 

value (NPV). A brief discussion about these contributions is provided below. 

 

1.3.1 Identifying low quality licence plates from three-level local binary pattern features 

based on ensemble of AdaBoost cascade classifiers 

This method employed an ensemble of AdaBoost cascade classifiers with a three-level local 

binary pattern (3L-LBP) operator for detecting LPs from vehicle images having low/high 

lighting and contrast conditions, fog, dusk and distorted. It includes two phases: testing and 

training. The same preprocessing and extraction techniques were applied for both phases. The 

images in the database include different types of noise with the texts referring to the false 

positive regions, such as dust, surface textures, distortion, and dirt. This noise increases the 

unwanted feature intensities in an image. For de-noising, a two-dimensional Gaussian filter 

and a contrast limited adaptive histogram equalization (CLAHE) method were used to filter 

out the noise and contrast problems. The enhancement steps could help to reduce the change 

in illumination and feature dimensions. The LBP is an effective operator for the illumination 

conditions. It can solve the occlusion and rotated LP problems. Therefore, it was used in this 

study as a powerful operator to extract features from three preprocessing levels. The first level 

is the extraction of LBP features from the grayscale image. The second one is extraction of 

LBP features from a Gaussian filtered image. The final level is the extraction of LBP features 



Chapter 1           Introduction                                                                                                  n 

 

P a g e  6 | 254 

 

6 

from the CLAHE image.  After that, the AdaBoost algorithm was used to train and classify the 

extracted LP features to produce strong cascade classifiers that consists of a large number of 

the weak classifiers or LBP features. An ensemble of cascade classifiers was used as detectors 

or trained models to detect LP objects. From the experiments in Chapter 3, it can be observed 

that the proposed method works very well compared with other existing methods. It produced 

a good detection accuracy with less execution time and good false positive rate (FPR), 98.56%, 

0.780miliseconds, 5.6%, respectively. The preprocessing methods and adding LP images with 

different illumination conditions to the training dataset could help to reduce the FPR and 

increase system performance. The content of this chapter was published by Expert Systems 

with Applications, 92, 216–235. 

  

1.3.2 Developing a texture descriptor to detect complicated licence plates based on an 

extreme learning machine classifier  

This method provided many improvements to the method introduced in Section 1.3.1 above. 

An efficient texture descriptor was developed to make the detection system more robust with 

less processing time and a good detection rate. A multi-level extended local binary patterns 

(MLELBP) descriptor with a Gaussian filter and CLAHE method were used to extract different 

features from complicated LP images. Each LP produced four LP images from four 

preprocessing levels that were applied on the extended local binary (ELBP) descriptors. 

Therefore, the number of training LP images was increased. Several relevant features were 

extracted from those images. The English car LP database was extended by making many 

changes in the original database to reflect different difficult conditions. It helped to improve 

the performance of the detection system. The ELM classifier was used to train the extracted LP 

features and produced a strong features vector as a detector. The proposed method was tested 

on unseen data (distorted vehicle images).  The experimental results were compared with 

existing LPD algorithms with the same database. The method has outperformed other 

algorithms in terms of classification, detection accuracies, and good detection time, 99.78%, 

99.10%, and 0.735miliseconds, respectively. Moreover, many of the existing algorithms have 

only the testing phase (preprocessing stage) under some assumptions. This algorithm works 

without any assumptions, due to using two phases of testing and training. It could be used 

efficiently with real-time applications.  However, it needs some further improvements to reduce 

the FPR and the time of the extraction stage using good preprocessing methods. The detail of 

this method is given in Chapter 4. The content of this chapter was published in IEEE 
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Transactions on Intelligent Transportation Systems, Digital Object Identifier 

10.1109/TITS.2019.289799, 1524-9050 © 2019 IEEE. 

 

1.3.3 Developing learning-based preprocessing methods for detecting complicated 

vehicle licence plates 

A precise LPD system with a low FPR is very crucial to increase the efficiency and safety of 

any transportation system. This study developed an efficient preprocessing method to detect 

LPs from low-quality vehicles images. It contributed to improvements in the MLELPB_ELM 

method introduced in Section 1.3.2. It includes the combination of preprocessing methods, such 

as an enhancement cumulative histogram equalization (ECHE) and CLAHE. Those techniques 

were used for filtering unwanted LP regions or FP values and they reduced the dimensions of 

the features. The quality of normal vehicles images were kept during the enhancement stage. 

After that, the LBP and the histogram of the oriented gradient (HOG) were used as powerful 

descriptors for very sensitive and difficult conditions. They were used to extract the key 

features from three types of licence plate resolutions in the database. The same preprocessing 

and extraction techniques were used for both the training and testing phases. Then, the key 

extracted LP features were used as the inputs to feed the support vector machine (SVM) and 

ELM classifiers to build the trained models. A mean-shift algorithm was used with the detector 

to reduce redundant bounding boxes as well as FP values.  For the performance assessment, 

detection metrics, object localization, and the ROC curve were used to evaluate this work. The 

experiments, compared the proposed method with the newest existing approaches. It achieved 

excellent results, in terms of detection accuracy, processing time, and FPR, 99.62%, 

0.2408miliseconds, and 1.675%, respectively. The detail of this method was given in Chapter 

5. The content of this chapter was published to IEEE Access  journal. 

 

1.3.4 Distorted vehicle licence plates detection using hybrid features and an extreme 

learning machine classifier 

To make the LPD system more robust with high detection accuracy and less execution time, a 

new detection method was developed to add slight improvements in MHOG_LBP_SVM 

method introduce in section 1.3.3. The detection of LPs is similar to finding the ROIs that may 

contain the LP or non-LP. In this method, the preprocessing techniques of the 

MHOG_LBP_SVM method were developed to produce a new improvement technique, 



Chapter 1           Introduction                                                                                                  n 

 

P a g e  8 | 254 

 

8 

enhancement contrast-limited adaptive-cumulative histogram equalization (ECLACHE). It 

was used to improve the distorted test images. Then, a new median robust ELBP (MRELBP) 

descriptor was used to extract different and difficult LP features from the improved images. 

This descriptor was developed recently by Liu et al. (2016) based on a median filter to make 

more improvements on the original ELBP descriptor. Also, a speeded-up robust feature 

(SURF) descriptor was used with the MRELBP descriptor to increase the extraction accuracy 

for more complicated LPs feature.  Then, the ELM classifier with a mean-shift algorithm was 

used to classify the extracted MRELBP_SURF features to build strong LP detector. The 

performance of the MRELBP_SURF_ELM method can be observed in Chapter 6. The 

proposed method reduced both the range of the unwanted regions of the LP and the extraction 

time. The detection metrics using the confusion matrix and the ROC curve were used to 

evaluate the work. The experimental results show that the overall classification accuracy of the 

proposed algorithm is about 100% for all complicated LP conditions. The performance of the 

LPD system was very satisfactory, with good processing time and FPR, 99.71%, 

0.323miliseconds, and 2.24%, respectively. The content of this chapter has been submitted to 

the journal. 

 

1.3.5 Investigating which detection method is better to achieve the main requirements 

for detecting complicated vehicle licence plates 

This thesis investigated which developed method has the best performance for LPD systems. 

This research compared the performances of four proposed methods, 3L-LBP_Adaboost, 

MLELBP_ELM, MHOG_LBP_SVM, and MRELBP_SURF_ELM, on two English car LP 

databases. The evaluations of the experimental results concluded that the last two methods, 

MHOG_LBP_SVM, and MRELBP_SURF_ELM were the best methods for detecting LPs 

from low-quality vehicle images. Those methods could be used for real-time applications. In 

this thesis, each proposed method presented a new idea to improve the performance of the LPD 

system by determining the drawbacks that face the detection system and implementing the 

solutions to fix it. The 3L-LBP_Adaboost method determined the best preprocessing and 

extraction techniques that should be selected to make LPD systems work very well under 

difficult conditions. After that, a new extraction and detection method, MLELBP_ELM, was 

developed to improve the weaknesses of the 3L-LBP_Adaboost method.  This method achieved 

good detection results, but increased the extraction time. Moreover, the FPR was slightly 

improved, compared with that by 3L-LBP_Adboost method. This thesis developed new 



                                                                                                        Chapter 1        Introduction      

 

 

P a g e  9 | 254 

 

9 

methods to detect LPs in low quality and complicated vehicle images. These four approaches 

contribute to successful detection system performance. They can be used to improve the work 

of existing ANPR systems under difficult conditions. Hence they reduce the human effort to 

police activities in transport systems. 

 

1.4 Structure of the Thesis 

This thesis consists of seven chapters structured as follows: 

Chapter 2 provides an overview of the ANPR system background. This chapter 

introduces briefly ANPR system applications and purposes, their components, phases, and 

concepts of classification, including its methods and the structure. 

Chapter 3 introduces a new LP detection method based on extracted features from 

three preprocessing levels of the local binary pattern descriptor (3L-LBP). An ensemble of 

Adaboost cascade classifiers was used for detecting regions of the interest (ROI) for LPs. The 

results were compared with the results reported from the existing LP detection methods. This 

method can help improve the LPD systems for work under difficult conditions. 

Chapter 4 presents a new extraction technique based on the multi-level preprocessing 

extended local binary patterns (MLELBP). The extreme learning machine (ELM) was 

employed for the classification task.  The experimental results were compared with the results 

of the 3L-LBP_Adaboost method and the results of the existing LPs detection methods. This 

extraction method could help to improve the classification accuracy for the LPD system and 

produce a good detection rate under complicated conditions. 

Chapter 5 focuses on developing an efficient preprocessing method for reducing the 

false positive rate (FPR) and increasing the accuracy rate for the LPD system. It includes the 

combination of an enhancement cumulative histogram equalization and a contrast-limited 

adaptive histogram equalization (ECHE_CLAHE) techniques. For extracting LP features, the 

combination of the local binary pattern and median filter histogram of the oriented gradient 

(LBP_MHOG) have been used. The support vector machine (SVM) classifier was used to train 

the extracted LPs features. This chapter investigates the performance of these techniques for 

improving the quality of the LPD system. It also investigates how much more efficient the 

SVM is in classifying the complicated features due to preprocessing techniques and good 
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descriptors. The results were compared with the results of the 3L-LBP_Adaboost, 

MLELBP_ELM methods, and the results reported from the newest existing LP detection 

methods. 

Chapter 6 presents the modified version of the ECHE_CLAHE techniques. It includes 

the enhancement contrast-limited adaptive-cumulative histogram equalization (ECLACHE) 

technique.  In addition, another combination of strong descriptors, the median robust extended 

local binary and the speeded up a robust feature (MRELBP_SURF) was used for extracting 

complicated LPs features. The ELM classifier was used to learn features and build the trained 

models, or detectors, to detect LP. This chapter investigates how the performance of the LPD 

system was improved by using this method. 

Chapter 7 provides a summary and the findings of this research presented in this thesis. 

This chapter also discusses the ideas for future work. 

Appendices A-D provide the simulation codes for the proposed approaches, which are 

presented in Chapters 3, 4, 5 and 6. 
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CHAPTER 2 

OVERVIEW OF AN LPD SYSTEM AND ITS COMPONENTS  

 

The goal of this thesis is to develop methods that are capable of detecting LPs from complicated 

vehicle images under difficult conditions. In order understand the detection system 

components, this chapter provides an overview of an LPD system structure. General concepts 

about detection system stages or components are discussed in Section 2.1. Section 2.2 

introduces a core idea about the classification techniques of an LPD system. Section 2.3 

overviews LPD system techniques that are currently used in each system stage. Section 2.4 

provides brief details about LP detection methods used in each stage. Section 2.5 discusses 

different detection methods reported in the literature about LP identification. Finally, a brief 

summary of the detection system and its components and classification techniques for this 

thesis is given at the end of this chapter. 

 

2.1  The background knowledge associated with LPD systems 

The ANPR was firstly invented in 1976 in the UK at the Police Scientific Development Branch. 

The prototype of the systems worked in 1979, and the contracts were awarded to produce the 

industrial systems like the computer recognition systems (CRS) in the Wokingham, UK. Many 

early trial detection systems were deployed on the Dartford tunnel and the first arrest operation 

in 1981 was made through the detection of a stolen car (News 2005).  However, ANPR systems 

did not become widely used until they became cheaper and easier to use during the 1990s. In 

the early 2000s, the collection of the ANPR data for future use to solve crime was reported 

(Taylor 2005). The first documented case in which an ANPR system was used to help to solve 

a murder occurred in 2005, in the Bradford, UK, where the ANPR system played an important 

role in locating the killers of Sharon Beshenivsky (News 2005). The next subsection describes 

system stages or components. 

2 
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2.1.1    Detection system components 

The software aspect for ANPR system runs on the standard hardware desktop computer and 

could be linked to the other applications with the same databases.  It uses a series of image 

enhancement techniques to improve and normalize the input image with the number of an LP.  

Then, it uses many extraction and classification algorithms to extract and detect LP 

information.  Generally, the ANPR systems are deployed in two basic ways.  The first way 

allows for the entire detection process of LPs to be implemented in real time. The second way 

transmits all images captured by the system camera from many lanes to a remote computer 

location. Then, it implements the detection process with the delay in the time depending on the 

speed of processing methods used. There are four primary stages that the LPD system required 

for identifying an LP, which are listed below. 

 

2.1.1.1    Vehicle images acquisition 

The first stage is the vehicle image acquisition using a camera. The accuracy of any detection 

system depends on the quality of the camera, such as type, resolution, light, shutter speed, and 

the installation method. Sometimes many problems appear due to the short or long distance 

between the vehicle and camera which results in low/bad quality images. 

 

2.1.1.2    Preprocessing stage 

Once the vehicle image is captured, then further processing is carried out. It needs to improve 

the texture pattern by reducing the noise information in an LP background to enhance the 

processing speed for the extraction and detection stages. This stage has many steps applied to 

a vehicle image, such as resizing of the resolution, removal of the noise, and the conversion of 

the color from RGB to grayscale level or to the binary format (black and white) using several 

preprocessing techniques. Subsection 2.3.1 presents more details about those techniques. 

 

2.1.1.3    Extraction stage 

After the preprocessing stage, regions of interest (ROIs) are extracted from a vehicle image. 

This stage also influences the accuracy of the LP detection system. The vehicle image is 

cropped to the middle and the extraction methods are applied on every pixel of the rest vehicle 

image. This will reduce the processing time for the extraction stage, especially if those methods 

use unsupervised learning algorithms. But, the LP can exist anywhere in an image. Therefore, 

the extraction stage of the LP depends on some features, such as boundary, edges, color, 
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background as well as the texture features. These features can be used to identify the LP region 

using many extraction methods. In addition, two or more extraction techniques can be 

combined to extract further features. The detailed description of extraction techniques was 

given in Section 2.3.2. 

 

2.1.1.4    Classification and detection stage 

The third stage is to detect the LP area from the extracted features using many supervised 

learning algorithms. This stage depends on the quality of preprocessing and extraction methods 

to obtain the LP areas (Hongliang & Changping 2004a; Yousef et al. 2015). The relevant 

extracted features of the LP are classified by using classifiers to produce trained models. The 

detectors could detect different types of complicated LP features. There are many studies using 

unsupervised learning algorithms or preprocessing methods to detect two or more LP 

difficulties. This leads to increase the processing time for the detection system (Silapachote et 

al. 2005; Lee et al. 2013; Patel et al. 2013). The output result of this stage as a decision function 

to detect LP regions from vehicle image; whether it is LP or non-LP. Moreover, the aim of 

using supervised learning algorithms on this stage is to obtain high system performance with 

less execution time for the testing phase. 

 

2.1.1.5    Segmentation and recognition stage 

The final stage is to recognize the extracted characters from detected LP area. This stage uses 

many segmentation and recognition methods like the template matching techniques or 

classifiers, such as neural networks and fuzzy classifiers. In this stage, the LP number converts 

into machine-encoded text. Here optical character recognition (OCR) is used to recognize the 

plate numbers from the LP image. 

  Figure 2.1 shows the structure of the LPD system stages. The performance of the 

detection system relies on the robustness and reliability of each individual stage. This research 

focused only on the important stage of the LPD system, detection stage for detecting LPs from 

complicated vehicles images. Hence, the segmentation and recognition stages were not 

considered in this thesis.  

The main objective of this study is to develop LP detection methods that yield better 

performance for detecting LPs from vehicle images having different difficult conditions, such 

as low/high contrast, dusk, fogy, distorted and so on (see Figure 2.2). 
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2.2 Applications of LPD systems 

The ANPR systems have become a very important tool in many surveilling applications over 

the past few decades. They are often used as a surveillance technique to identify LPs of vehicle 

images. There are several ANPR system  applications, such as security systems (Sheldon 

2013), highway road tolling systems (Song & Sarker 2014; Panahi & Gholampour 2017), 

 
Figure 2.1. Stages involved in licence plate detection (LPD) system. 

 

 
Low/high contrast 

   
Background clutter 

   
Illumination and View point variation 

    
Distortion 

   
 

Figure 2.2. Examples of difficult conditions for licence plate detection. 
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parking management systems, enforcing moveover laws for emergency vehicles (Roberts & 

Casanova 2012), traffic control (Dehghan et al. 2017), traffic management systems (He et al. 

2017), and so on (see Figure 2.3). 

The existing applications often work under some standard conditions, such as low/high 

lighting, rain, and limited day/night lighting. It is still very challenging to identify LPs from 

complicated vehicle images because of environmental effects. 

 

2.3     Overview of an LPD system classification 

Classification techniques play an important role in the field of machine learning. As an LP 

contains many extracted data for analysis purposes, such as the classification. Therefore, it is 

very important to extract useful features from an LP image, and then use those features for the 

classification. The following subsections provide a detailed description of the LP classification 

methods in this research. 

 

2.3.1 The classification concept 

The classification task occurs throughout our daily life. It is a very essential means to make a 

decision, based on the available information. In the field of machine learning, the classification 

task denotes an algorithmic procedure. It works to assign one of a number of categories as input 

data (Brunelli 2009; Duda et al. 2012). The input data refer to instances and categories refer to 

classes. For example, the LP instance includes two classes or categories an LP or non-LP. This 

instance described by a vector of features which includes all known instance characteristics. 

      Parking Guidance System     Access Control to Residential   Traffic Law Enforcement    

         
      Motorway Road Tolling       Parking and Secure Access           Road Signs Systems    

    
     

Figure 2.3  Examples of ANPR system applications. 
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The main goal from the classification task is to assign the class labels for the extracted 

features among a set of data for a specific problem. The term classifier refers to a mathematical 

decision function which is implemented using the classification algorithm that maps the input 

data to it. The classifier is able to learn and identify the class of a features vector from training 

datasets. The training sets are included feature vectors with class labels. 

The difficult LP has a large amount of different data, or values which describe relevant 

information of the LP area. These values, named “features”, which are aggregated into a vector, 

the “features vector”  (Makinacı 2005). Thus, the extracted feature process can be defined as a 

transformation operation to transform one or many LP features into a features vector. This 

operation helps to describe LP patterns and reduce the dimension of representation of those 

patterns. The LP classification means to classify different features of LPs and based on those 

features will be decided which class the LP belongs to. The output of the classification task is 

a decision function to present an LP or non-LP. 

 

2.3.2 Types of classification techniques 

There are two main types of machine learning algorithms: supervised and unsupervised (see 

Figure 2.4). In supervised learning, the observations of a group of data are related with the class 

labels (Zhu & Goldberg 2009; Duda et al. 2012). In unsupervised learning, the observations of 

a group or set of data are unlabelled or assigned to the known classes (Barlow 1989). The next 

subsection provides more details about those types of classification. 

 

 

 

 

 

 

 

2.3.2.1    Supervised classification learning algorithms 

Supervised classification is one of the algorithms associated with machine learning that deals 

with a set of data that have some information about the dataset. This type of classification, the 

 
Figure 2.4: Types of classification learning algorithms 
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class labels information are given during the training dataset to train the classifier and produce 

the classification model (Brunelli 2009; Duda et al. 2012). The supervised approach proposes 

that a set from the training data have a set of relevant labelled instances which refer to correct 

output (Mohri et al. 2018).  

In the supervised classification, given a set of the training examples N of the pairs 

form {(x1, y1), …, (xn, yn) },where xi is a set of features or the feature vector and yi is the class 

label of the i-th example. The learning algorithm seeks about the function g: X→Y, where X is 

the space of the input data and Y is the space of the output. For example, the spam filtering 

problem, the xi refers to an email and yi refers to either “spam” or “non-spam”. Moreover, the 

class labels usually represent as an integer numbers y. Therefore, in the supervised 

classification learning, the aim found the transformation between the input feature space x and 

the output class label space y. If the output of class label has a known number of elements, such 

as 1, 2,......, L  then the problem was  considered as classification task. In the case of classifying 

the LP problem, the classes labels are divided into two categories, such as the LP and non-LP 

which are represented as y = {-1, +1} or y = {0, 1}. Figure 2.5 shows the structure of a 

supervised learning technique. 

There are many supervised classification learning algorithms, such as the support vector 

machine (SVM) (Cortes & Vapnik 1995), extreme learning machine (ELM) (Huang et al. 

2004), Adaboost algorithms (Freund & Schapire 1995), linear discriminant analysis (LDA) 

(Fukunaga 2013), decision trees (Quinlan 1986), neural networks (NN) (Haykin 1994), logistic 

regression (Hosmer Jr et al. 2013), kernel estimation (Gasser & Müller 1979), linear regression 

(Seber & Lee 2012), Bayesian network classifier (Friedman et al. 1997), a fuzzy K-nearest-

neighbor (kNN) (Keller et al. 1985),  etc. 

 
Figure 2.5: The structure of a supervised learning classification algorithm 
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A database is usually divided into two sets, the training dataset and the testing dataset, 

in a typical supervised learning procedure.  Using the training dataset, the classifier is 

constructed. After that, the performance of the trained classifier is evaluated by using the 

testing dataset. This evaluation process sometimes repeats for the different parameters of the 

constructed classifier. Therefore, the parameters of the classifier should be optimized in order 

to be ready for assigning the class labels to the features with unseen class labels.  The main 

goal from the learning procedure is to maximize the testing accuracy on the testing dataset.  

This study used the supervised learning algorithms to classify LPs regions to produce 

the trained models. During experiments, the English cars plate database is divided into two 

groups of data, which are the training and testing datasets as shown in Figure 2.6. The training 

dataset is used to train the classifier and build the trained model to detect an LP area, while the 

testing dataset is used for evaluating the performance of the trained model. 

 

 

2.3.2.2    Unsupervised learning classification algorithms 

The unsupervised learning classification is the second approach of machine learning 

algorithms, that involves grouping of the unlabeled input data into classes to determine hidden 

patterns. This procedure assumes the training data have not been labeled and try to find the 

inherent patterns in the data to determine the correct output value for a new instance data 

(Brunelli 2009; Duda et al. 2012). In this type of learning, the class label information is not 

 
Figure 2.6: Dividing the vehicles images database into two groups: training and testing 

datasets. 
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provided even for a small number of data. Figure 2.7 shows the structure of an unsupervised 

learning technique. 

The common examples of unsupervised learning algorithms, K-means clustering 

(Hartigan & Wong 1979), principal component analysis (PCA) (Jolliffe 2011), hierarchical 

clustering (Johnson 1967), kernel principal component analysis (Kernel PCA) (Schölkopf et 

al. 1997), independent component analysis (ICA) (Hyvärinen & Oja 2000), hidden Markov 

models (Rabiner & Juang 1986), categorical mixture model (Oberski 2016), and so on.   

Combination of the two classification learning procedures (supervised and 

unsupervised)  has been recently explored (Chapelle et al. 2009), is a semi-supervised learning 

procedure, which is used a combination of the small set of labeled data and a large set of 

unlabeled data. 

 

2.3.3 Structure of a LPD classification 

 A classification process includes two stages: feature extraction and classification. The 

extraction for the most important LP features values is done at the extraction stage. The 

classification stage requires a classifier to determine the correct class of the LP area based on 

the extracted features. The concept of an LPD classification is provided in Figure 2.8. From 

this figure, it can be seen that appropriate LPs features were extracted from the LPs features 

space. At the LP features space, the LP features are divided into two classes, the LP and non-

LP.  

  In this thesis, five extraction methods were used to extract complicated LP features 

under difficult conditions. Three levels local binary pattern, multi-levels preprocessing 

extended local binary pattern, median robust extended local binary pattern,  median filter 

histogram of the oriented gradient, and the speeded-up robust feature extraction. While the 

 
Figure 2.7: The structure of a unsupervised learning classification algorithm 
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supervised learning algorithms are Adaboost, extreme learning machine, and support vector 

machine was used to perform the classification stage to classify and train the extracted LP 

features. 

 

2.4   Overview of processing stages in licence plate detection methods 

In this section the basic processing stages for developing a ANPR system are described. 

2.4.1 Image preprocessing stage 

Researchers have proposed different detection methods for the image preprocessing stage. 

While others have used this stage for both system phases: testing and training. Initially, the 

vehicle image is captured using a high-quality camera. After that, the preprocessing is applied 

to the captured image to improve the image and reduce unwanted features or noise. In the next 

step, the improved image is converted from a color RGB image to the grayscale image 

depending on a threshold value (Kaur & Kaur 2014). An image preprocessing stage includes 

the following methods. 

 

2.4.1.1 Image conversion  

The converting of a color RGB image to a grayscale one is a very important step for ANPR 

system stages.  Sharma et al. (2014) used a wavelet transform, Gaussian filter, and then 

preserved the high-frequency component. Al-Shemarry et al. (2018) and Al-Shemarry et al. 

(2019) converted a color image into a grayscale one and used the preprocessing filter methods 

to filter out unwanted features or false positive values. 

 

2.4.1.2 Binary processing  

The next step is to convert a grayscale image to a binary representation. Samra and Khalefah 

(2013) suggested using a dynamic adaptive threshold method to avoid the illumination 

variation present in the vehicle image. There are many methods to convert a grayscale image 

 
Figure 2.8: The process of the licence plate classification. 
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into binary, such as the Otsu algorithm, which is faster than the Sauvola and Niblack 

algorithms. Both methods are based on a thresholding value of an image and provided good 

results for the poorly illuminated images (Puloria & Mahajan 2015).  

 

2.4.1.3 Noise removal  

There is still some noise remaining in the grayscale image. Therefore, different filtering 

techniques are applied to remove this noise. The filters that are widely used in ANPR systems 

are Gaussian and median (Prabhakar et al. 2014; Karwal & Girdhar 2015; Azam & Islam 2016; 

Al-Shemarry et al. 2019). Kaur and Kaur (2014) suggested that the noise can be removed by 

using an iterative bilateral filter in the transport systems. Some researchers proposed blurring 

the image to filter out the noise (Beibut et al. 2014; Al-Shemarry et al. 2018).  

The steps above are not fixed. Karwal and Girdhar (2015) proposed different steps to 

remove noise. The first step is to convert the captured image to grayscale. The second step is 

to apply a median filter to filter out the noise. The final step is to apply the Otsu method. Beibut 

et al. (2014) only used the Otsu algorithm for image binarization. Moreover, Kaur and Kaur 

(2014) in the image preprocessing stage implemented some different steps.  After converting a 

color image RGB to a grayscale, they applied an iterative bilateral filter to remove the noise. 

Then the contrast of the image was enhanced using the contrast adaptive histogram equalization 

(CAHE) method (Sharma & Kaur 2011; Al-Shemarry et al. 2018, 2019). Selecting appropriate 

methods for the preprocessing stage is a very important process for LPD systems to obtain 

robust detection results in less time. 

 

2.4.2 Extraction methods for LPD systems 

In this stage, the LP regions from the image are being extracted out after the enhancement at 

the preprocessing stage. The LP extraction stage influences the accuracy of an LPD system. 

The input data to this stage is a vehicle image and the output is a part of the vehicle image that 

contains the potential LP region. The LP can exist anywhere inside the vehicle image, and it 

can be distinguished by its features. The LP color is one of the features since some countries 

have certain colors for their LPs. A rectangular shape of the LP boundary is another type of 

features that are used to extract the LP. Also, the color change between the LP characters and 

the LP background, which is known as the texture, is used to extract the LP region from vehicle 

images. The combination of two or more features can be identified as the LP. In the following 

subsections, the existing LP extraction methods are categorized depending on the type of 

features used. 
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2.4.2.1 Licence plate extraction using boundary/ edge information 

Because of the shape of an LP is normally rectangular with known window size, it can be 

extracted through finding all the possible rectangles in a car image. Edge detection techniques 

are commonly and widely used to find these rectangles (Wang & Lee 2003; Hongliang & 

Changping 2004b; Zheng et al. 2005; Faradji et al. 2007). Many methods, Sarfraz et al. (2003), 

Zheng et al. (2005), Kanayama et al. (1991), Kamat and Ganesan (1995), and Sanyuan et al. 

(2004) used the Sobel filter to detect the LP edges. Due to the color transition between the LP 

and the vehicle body, the boundary of the LP is represented using edge characteristics. The LP 

edges have two horizontal and vertical lines when performing horizontal and vertical edges 

detection. Then, getting a complete rectangle when performing both edges at the same time. 

Al-Ghaili et al. (2008) proposed a new vertical edge extraction method. It showed that it is 

faster than the Sobel filter by about seven to nine times. The block-based with high edge 

magnitudes is identified as the possible LP areas. Since the block processing does not depend 

on the edges of the LP boundary, it can be applied to an input image with an unclear LP 

boundary (Lee et al. 2004). A boundary-based extraction uses the Hough transform (HT) 

(Kamat & Ganesan 1995; Duan et al. 2004a). It detected the straight lines in the vehicle image 

to locate the LP. It has the advantage of detecting the straight lines in an image with up to 30° 

inclination. Boundary line based methods also use the HT combined with a contouring 

algorithm (Duan et al. 2005).  Kim and Chien (2001) used the generalized symmetry transform 

(GST) to extract the LP features.  after getting the edge features the car image scanned in 

selective directions for detecting LP corners. Then, the GST used to detect a similarity between 

those corners and to form LP regions. 

 

2.4.2.2 Licence plate extraction using global features 

The connected component analysis (CCA) technique is important for a binary image processing 

(Matas & Zimmermann 2005; Qin et al. 2006; Wu et al. 2007; Anagnostopoulos et al. 2008). 

It scanned a binary image and labeled image pixels into components depending on pixels 

connectivity.  The spatial measurements like area and the aspect ratio (M×N) are commonly 

used for LP extraction (Bellas et al. 2006). Chacon and Zimmerman (2003) applied a contour 

detection method on the binary image to identify the connected objects which are chosen to be 

the LP candidates due to having the same geometrical features. This method failed to detect LP 

in the case of the poor quality images because of the distorted contours. Miyamoto et al. (1991) 
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used the 2-D cross-correlation method to find the LP. This method with a pre-stored LP 

template is performed over the entire vehicle image to locate the most likely LP area. 

 Extracting LPs using correlation with the template is independent of the LP position in 

an image. 

 

2.4.2.3 Licence plate extraction using texture features 

This type of extraction method depends on characters present in the LP area. It results in 

significant changes for the greyscale level between the characters color and LP background 

color.  Many texture extraction techniques are used by researchers (Yang & Ma 2005; 

Muhammad & Altun 2016b; Azam & Gavrilova 2017; Tsai et al. 2017; Al-Shemarry et al. 

2018, 2019). Muhammad and Altun (2016b) employed the genetic algorithm (GA) method to 

perform the LP detection by repeatedly selecting extracted points of the HOG descriptor within 

the car image randomly. Then, it evaluated the LP regions at these points. Finally, it selected 

the regions of the LP which give the best similarity score. Tsai et al. (2017) used the modified 

histograms of oriented gradients (MHOGs) to extract the principal direction for each pixel in 

an image. Then, they determined the principal direction of each sample and its component cells.  

Al-Shemarry et al. (2018) extracted LPs feature from a three preprocessing levels using 

filtering methods with a powerful texture descriptor, local binary patterns (LBP). This method 

succeeded to extract different and difficult features from the distorted LP image (see chapter 

3). Also, Al-Shemarry et al. (2019) used a new texture extraction method, MLELBP, to extract 

complicated features for LPs. This method used the new texture descriptor with preprocessing 

techniques to extract multi feature from three types of ELBP descriptors (see chapter 4).  Deb 

et al. (2009) proposed an LP detection method based on using a sliding window and the 

histogram technique. Image transformations tools are also widely used in the LP extraction 

methods, such as the Gabor filter which is one of the main tools for the texture analysis (Caner 

et al. 2008). It has the advantage to analyze the texture in unlimited scales and orientations. 

Parisi et al. (1998) used the discrete Fourier transform (DFT) to detect the horizontal position 

in a row-wise fashion and the vertical position in a column-wise fashion of the LP.   

The texture features make the classifier very invariant to the color, brightness, and size 

changes. Therefore, all the methods that are based on the texture features have the ability to 

detect the LP even if its the background and boundary are very deformed. Due to the many 

advantages of texture descriptors, this research focused on using this type of extraction method 

to achieve its objectives. 
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2.4.2.4 License plate extraction using color features 

Since some countries have specific LP colors, this work requires the extraction of LPs by 

identifying their colors inside the car image. The simple and easy idea is that the combination 

of the LP colors and characters is unique. This combination appears almost only in the LP 

regions (Shi et al. 2005). According to a specific format of Chinese LPs, Shi et al. (2005) 

proposed that all the input pixels in an image are classified by using the hue, lightness, and 

saturation (HLS) model color into 13 categories. Lee et al. (1994) converted the RGB image 

color into the HLS, then used a neural network to classify the color feature of each pixel. The 

neural network outputs were green, red, and white colors for Korean LPs. The same LP color 

is projected horizontally and vertically to identify the highest color density of the LP regions. 

Pan and Li (2010) employed a fast mean-shift method to deal with the illumination variation 

problems related to the color based method.  Wang et al. (2008) employed the hue, saturation, 

and value (HSV) color features space to extract the LP features. Wan et al. (2011) proposed a 

new method to localize the LP using the color barycenters hexagon model which is only slightly 

sensitive to the brightness conditions. 

Extracting the LP using color features has the ability to detect the deformed and inclined 

plates. However, also it has several difficulties, especially for different illumination conditions. 

 

2.4.2.5 License plate extraction using character features 

There are many LP extraction methods proposed that are based on locating characters 

positioned inside the image. The existence of the character is examined using those methods. 

Then,  the regions of characters are extracted as LP regions if the character is found. After that,  

the corresponding LP region is detected. Hontani and Koga (2001) extracted characters using 

the scale space analysis tool. It extracted the large size of blob type figures, which consists of 

the smaller line-type figures as the LP character candidates. The character regions are 

recognized through the difference between the character background and its region and the 

width of the characters. Then the LP is extracted by finding the distance of the inter-character 

space in the plate region (Cho et al. 2011). Yongchun and Jing (2012) introduced a method to 

find and extract all the characters that look like LP regions in a car image, instead of using the 

LP features directly.  

These extraction methods using characters from the binary car image to define the LP 

region are time-consuming due to processing all the binary objects which look like an LP 
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object. Moreover, these methods produce many false positive values when there is other text 

inside the image. 

 

2.4.2.6 License plate extraction combining two or more features 

Many methods used a combination concept as an effective way to extract two or more features 

for  LPs regions. In this case, the extraction methods called hybrid extraction methods (Le & 

Li 2006). The color and edges features were combined in Xu et al. (2004) and Wang et al. 

(2010) methods. Wu et al. (2009) applied the hue and lightness sub-band (HLS)  feature of the 

2-D discrete wavelet transform (DWT) to significantly highlight the vertical edges of the LP.  

The most probable candidate was selected by edge density verification and an aspect ratio 

constraint.  Al-Shemarry and Li (2019b) used the combination of  MHOG and LBP features to 

extract a multi LP features from complicated vehicle images (see Chapter 5). Also, Al-

Shemarry and Li (2019c) introduce robust extraction method using the MRELBP descriptor 

combined with SURF features to extract LPs regions from the vehicle image under distorted 

conditions (see chapter 6). Mao et al. (2010) proposed a new extraction method using the 

wavelet analysis and improved HLS color to extract LPs regions. 

 

2.4.3 LP classification and detection stage  

In the detection stage, the LP area is being detected from the vehicle image using a classifier, 

detector, or trained model. There are different kinds of the classifiers that are used to classify 

extracted LP features, such as SVM, ELM, Adaboost, neural networks (NNs), convolutional 

neural network (CNN)  and so on. Recently, deep neural networks (DNNs) (Masood et al. 

2017) and CNN (Li & Shen 2016; Liu et al. 2018) were used to learn the key features of LPs. 

They showed a good detection accuracy. However, the learning mechanism for DNNs in 

difficult conditions, such as image rotation and scaling, cannot have robustness guaranteed 

unless the training dataset covers all the various LP conditions. The SVM classifier is widely 

used for LPD (Yuan & Cheu 2003; Ho et al. 2009; Sun & Watada 2015).  Al-Shemarry et al. 

(2019) used the SVM with a mean-shift algorithm to train the combination of the MHOG and 

LBP features to detect the LP area for complicated vehicles images (see chapter 5). Also, many 

multiclass identification algorithms are used, such as NNs (Park et al. 1999; Yuan & Cheu 

2003; Porikli & Kocak 2006) and the AdaBoost cascade classifier (Ho et al. 2009; Chen et al. 

2015; Al-Shemarry et al. 2018). A cascade classifiers had shown good performance with other 

methods in terms of the detection process speed (see chapter 3). However, these algorithms are 



 Chapter 2        Overview of an LPD System and Its Components                                          n 

 

P a g e  26 | 254 

 

26 

not very robust if they are used without efficient enhancement techniques that should be applied 

to both system data phases: the training and testing. CNN is also used to learn features with 

ELM (Ding et al. 2017). This method yielded competitive results with less execution time 

compared with the DNN methods. Also, the ELM was used to detect LP regions with the HOG 

and by means of the maximally stable external region (Gou et al. 2014). The ELM classifier 

was used to classify a MLELBP features to detect complicated LPs (Al-Shemarry et al. 2019) 

(see chapter 4). Moreover, an ensemble of the ELM classifiers also was used to classify the 

combination of MRELBP and SURF features (see chapter 6). There are also many ensemble 

classifiers proposed to detect different LPs conditions (Zhao et al. 2010). 

 

2.5   Existing  methods of the LPD system 

Over the last decade, many studies in the area of ANPR systems were conducted (Du et al. 

2013). Some of the proposed detection systems depend on the color and language, some are 

sensitive to the illumination and complex background, while some are restricted to good 

weather conditions (Azam & Islam 2016). In addition, the camera distance and  angle 

restrictions make detection systems less robust (Anagnostopoulos et al. 2008). According to 

the Azam and Islam (2016), detecting the LP area in hazardous conditions is not an insignificant 

task, especially when the complex background of the LP produces a number of the false 

positive values. However, this method proposed using different LPs parameters for different 

conditions. Recent studies between 2014 and 2016 used a fixed threshold value  to maximize 

the method accuracy based on filtering criteria, such as edge density, counting intensity 

transition, color, and height and width (Samra & Khalefah 2013; Baharlou et al. 2015; Davis 

et al. 2015; Yousef et al. 2015). The car images used to evaluate detection systems typically 

had simple complexity in the background (Gerber & Chung 2016; Muhammad & Altun 2016a).  

Overall, most of the existing LPD methods did not consider filtering techniques 

comprehensively. Kusakunniran et al. (2014) used the SVM as the machine learning tool which 

was applied directly to the LP images without extracting any discriminative LP features. This 

makes the LPD system very sensitive to geometric transformation and noise. It reduces the 

detection accuracy and increases the training time. Baohua et al. (2010) proposed finding an 

LP location based on histogram equalization. This method addressed noise caused by light 

conditions. The histogram equalization technique works well when the LP image is affected by 

one noise source (e.g. light condition) but not with the different sources. Al-Ghaili et al. (2012) 

proposed a car LP detection method based on the vertical edge by using the Sobel gradient 

information. This method claims that it works very well with low contrast images conditions 
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captured using web cameras, but it may not be robust with complex backgrounds. Yu et al. 

(2015) introduced a method to find the LP location based on the wavelet transform with 

empirical mode decomposition (EMD) analysis tool. This method used the histogram 

equalization to improve the edge details of texts inside the image. However, it depended on 

heavily on the horizontal and vertical information of the LP characters.  Panahi and 

Gholampour (2017) proposed a method for high-speed applications under dirty LP conditions. 

It used a specific device to capture vehicle images on the highway at night.  Most of LP 

detection methods use one of the simple enhancement techniques like the histogram 

equalization for improving the information of the input images. This confirms that the 

enhancement step is very important for LP  detection. Weng et al. (2015) presented a multi-

spectral fusion algorithm for the degraded video frame text enhancement. It explored the RGB 

color information with statistical features to find the right combination for different feature 

bands. However, this method focused on non-uniform illumination effects but not with effects 

caused by other sources. 

From studies listed in the literature, many LP extraction and detection methods have been 

developed. But there are still some limitations that must be considered. These limitations could 

be overcome using some further enhancement techniques. The work in this thesis aims to 

introduce methods to overcome these difficulties. These proposed methods enhance the 

existing LPD systems based on powerful preprocessing and extraction methods that are 

selected carefully to detect LPs from complicated vehicles images. 

 

2.6   Chapter summary 

An overview of the LPD system was provided in this chapter. Also, it presented the necessary 

background information about the steps of detecting the LP from vehicle images. Firstly, this 

chapter outlined of LPD system invention and development. Then, it discussed the system 

components and the fundamentals of the LPD system stages.  The classification concept was 

discussed and the current methods reviewed in each stage of the LPD system. It identified and 

justified the methods that are used in this thesis to detect the LP from distorted vehicles images. 

Also, it reviewed the recent detection and classification methods for LPs.  

From the literature, it can be concluded that there are still many limitations in the 

existing LP detection methods. Hence new detection algorithms are required to increase the 

reliability and accuracy in different ITS applications. 
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In the next chapters 3, 4, 5, and 6, new detection methods are developed to detect 

complicated LPs from low-quality vehicle images. Those methods could help to improve the 

work of existing ANPR systems under complicated conditions. 
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CHAPTER 3 

ENSEMBLE OF ADABOOST CASCADES OF 3L-LBPS 

CLASSIFIERS FOR LICENCE PLATES DETECTION WITH 

LOW QUALITY IMAGES 

 

 
3.1    Introduction 

The content of this chapter is an exact copy of the published paper in the journal of Expert 

Systems with Applications by Al-Shemarry et al., (2018) ‘Ensemble of Adaboost cascades of 

3L-LBPs classifiers for license plates detection with low quality images’, vol. 92, pp. 216-35. 

The development of detection methods for ITS systems is essential in the field of 

machine vision. Many researchers work on finding reliable techniques to increase the 

performance of LPD systems under critical conditions. This chapter presents a new LP 

detection method for complicated vehicles images. It includes extracting features from three 

preprocessing levels of a local binary pattern descriptor using an ensemble of Adaboost cascade 

classifiers (3L-LBP_Adaboost).  The aim of this study is to determine an optimal detection 

scheme with preprocessing methods to extract the ROI features of the LP object under various 

complicated conditions like low/high lighting and contrast, dusk, dirt, and foggy. This method 

was implemented on the English cars database (EnglishLPDatabase-2001 ; 

MedialabLPRdatabase-2007) for evaluation purposes and also it was compared with recently 

existing methods using the same database. The reason for selecting this database was that it 

contains a number of vehicles images that have different conditions which made it a strong, 

good database for testing different LPs difficulties (see Appendix E). The proposed method 

yields a high detection rate and a good processing time, compared with the state-of the art 

3 
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approaches. Furthermore, the proposed method may improve the performance of existing LPD 

systems in detecting LPs under difficult conditions. 

Appendix A provides the simulation Matlab code for the proposed LPD method. 
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a b s t r a c t 

Due to the plate formats and multiform outdoor illumination conditions during the image acquisition 

phase, it is challenging to find effective license plate detection (LPD) method. This paper aims to develop 

a new detection method for identifying vehicle license plates under low quality images using image pro- 

cessing techniques. In this research, a robust method using a large number of AdaBoost cascades with 

three levels pre-processing local binary patterns classifiers (3L-LBPs) are used to detect license plates 

(LPs) regions. The method achieves a very high accuracy for detecting LP number from one vehicle image. 

The proposed method was tested and trained with the images from 630 and 400 vehicles, respectively. 

The images involve many difficult conditions, such as low/high contrast, dusk, dirt, fogy, and distortion 

problems. The experimental results demonstrate very satisfactory performance for LP detection in term 

of speed and accuracy, and were better than the most of the existing methods. The processing time for 

the whole testing LPD system was about 1.63 seconds to 2 seconds. The overall probability detection, 

precision, and f-measurement are 98.56%, 95.9% and 97.19%, respectively; with false positive rate 5.6%. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nowadays, intelligent transportation systems (ITSs) play a very 

important role in our daily life in many aspects. An ITS normally 

consist of two parts: a smart infrastructure system and an auto- 

matic number plate recognition system (ANPR) ( Anagnostopoulos, 

2014; Anagnostopoulos, Anagnostopoulos, Loumos, & Kayafas, 

2006 ). It is necessary to examine and observe the road traffic 

to avoid unacceptable behaviors using surveillance applications 

( Castello, Coelho, Del Ninno, Ottaviani, & Zanini, 1999; Chakraborty 

& Parekh, 2015; Duan, Duc, & Du, 2004; Sarfraz et al., 2013 ). The 

first successful ANPR was recorded in 1978 for the detection of 

stolen cars in UK. Such an ANPR system is also named as opti- 

cal character recognition (OCR), automatic license plate recognition 

(ALPR), or car plate recognition (CPR). An ANPR system has many 

different applications for a variety of purposes, such as for highway 

road tolling systems, security systems, parking management sys- 

tems, and so on ( Azad & Ahmadzadeh, 2014; Baharlou, Hemayat, 

Saberkari, & Yaghoobi, 2015; Dehshibi & Allahverdi, 2012 ). Cur- 

rently, the ANPR still has big problems which are described below. 

Therefore, many researchers in the field of machine vision have 
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Shemarry), Yan.Li@usq.edu.au (Y. Li), Shahab.Abdulla@usq.edu.au (S. Abdulla). 

tried to find modern and reliable methods to build an ITS. The 

main objective of an ANPR system is to identify a vehicle license 

plate from images or a sequence of images in a video. Those im- 

ages are often captured from high quality cameras installed on the 

street lights, road traffic signs, high buildings or motorway over- 

pass ( Azam & Islam, 2016; Valera & Velastin, 2005 ; D. Zheng, Zhao, 

& Wang, 2005 ). LPD means extracting LP number from captured 

image which is the one of the most important stage of ALPR sys- 

tem (D. Zheng, Zhao, & Wang, 2005 ). The ANPR system involves 

four stages as shown in Fig. 1 . The first one is the vehicle image ac- 

quisition using a camera. The accuracy of an ANPR system depends 

on the parameters of a camera, such as type, resolution, light, shut- 

ter speed, and the installation method. The capture vehicle image 

needs pre-processing stage to reduce the noise on LP background 

information and enhance the processing speed for detection and 

recognition stages. The key requirements for a high quality ANPR 

are high accuracy and processing speed for real-time application 

( Angelova, Krizhevsky, Vanhoucke, Ogale, & Ferguson, 2015 ). The 

second stage is to detect the LP area from acquired images. The LP 

detection stage depends on the quality of the images and the type 

of processing methods used to obtain the LPs images ( Hongliang 

& Changping, 2004; Yousef, Al-Tabanjah, Hudaib, & Ikrai, 2015 ). In 

this stage, the LP region extracts from vehicle image as a region 

of interested and eliminates the unwanted background features by 

using many pre-processing algorithms and learning algorithms for 
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Fig. 1. ANPR system stages. 

different f eatures of LP, such as edge information, texture features 

and color features. The aims of using learning algorithm for this 

stage to obtain high performance in terms of the detection rate 

and processing time for testing phase. Moreover, the trained model 

from those algorithms can detect multi features values for different 

problems of LPs unlike the pre-processing algorithms ( Lee, Han, 

& Ko, 2013; Patel, Shah, & Patel, 2013; Silapachote, Karuppiah, & 

Hanson, 2005 ). The third stage is to segment the LP area and ex- 

tract the characters by using many techniques, such as projecting 

color information, labeling, or matching positions with templates. 

The final stage is to recognize the LP extracted characters by using 

template matching or using classifiers, such as boosting, extreme 

learning machine, neural networks and fuzzy classifiers ( Baharlou 

et al., 2015; Chakraborty & Parekh, 2015; Han, Lee, Lim, & Chung, 

2015 ). This stage needs many Samples of characters as inputs for 

training in advance. Then, the input image of segment characters 

is compared with the trained data to produce the output results. 

There are many surveys have been conducted by many authors 

( Atiwadkar, Mahajan, Lande, & Patil, 2015; Bhardwaj & Mahajan, 

2015; Du, Ibrahim, Shehata, & Badawy, 2013; Panchal, Patel, & Pan- 

chal, 2016; Patel et al., 2013 ; M. Sarker, Mostafa, Yoon, Lee, & Park, 

2013 ) related on ALPR system problems which are affected on de- 

tection and recognition stages: 

i Low resolution problems related with camera quality and the 

distance between vehicle and camera. 

ii Plate problems such as blurry, location, sizes, special symbols 

and fonts, occlusion, tilted, blurry LP backgrounds, distortions, 

and screws. 

iii Environmental problems, such as lighting, rainy day, snow. 

iv Illumination problems, such as vehicle headlights, and different 

lighting sources during image capturing. 

In the past and recently time, many effort s have been done 

to develop a robust LPD system, but they missed most of LPs is- 

sues which make the LPD systems very limited for detecting LP 

level. Therefore, an efficient LP detection method is still needed 

to make a robust LPD system. In this paper, we focus only on 

the LP detection area from a vehicle image, so we not consider 

the segmentation and recognition stages of an ANPR system. The 

main objective of this study is to develop a LPD method that 

yields better performance for vehicles images having different dif- 

ficult conditions, such as low/high contrast, dusk, fogy, and dis- 

torted. It employed a large number of AdaBoost cascades classi- 

fiers with three-levels LBPs (3L-LBP) features to detect the ROI area 

for LP from vehicles images. The paper is organized as follows: 

The first section introduces the ANPR system. The second section 

provides an overview of the related work about ANPR systems. 

Section 3 presents the proposed method. The experimental results 

are reported in Section 4 . Finally, this study is concluded with 

some useful recommendations and suggestions for the future work. 

2. Related work 

Over the years, there are many algorithms being developed 

to extract LP features from one image or a sequence of images 

(video). Those features are used as the input to various classifiers 

such as cascade classifier, neural networks and fuzzy logic classi- 

fiers ( Du et al., 2013 ). Different features, such as Haar-like feature, 

LBP features, ROI features, color features, boundary features, edge 

features and texture feature ( Anagnostopoulos, Anagnostopoulos, 

Psoroulas, Loumos, & Kayafas, 2008; Azad, Davami, Jeo, & Shayegh, 

2014; He, Zhang, Jia, Wu, & Hintz, 2007; Jia, Zhang, & He, 2007; 

Zheng, Zhao, Gu, & Hu, 2012 ), are used either separately or com- 

bined together to detect the LP region from images. In this pa- 

per the proposed method uses ensemble of AdaBoost cascades of 

3L-LBPs classifiers for extracting ROI features from the LP area. 

It is usually one AdaBoost cascade being employed to detect the 

LP area. Throughout our literature review, many methods for the 

LP detection have been developed for real time LPDs ( Gao & Lee, 

2015; Li & Shen, 2016; Lienhart & Maydt, 2002; Porikli & Kocak, 

2006;Sarker & Song, 2014; Song & Sarker, 2014 ). A brief overview 

about those existing methods is discussed below. 

A strong classifier reported by Viola and Jones (2004) was 

trained using an AdaBoost algorithm and Haar-like features. It per- 

formed well for face detection. The study used “integral image”

to calculate Haar-like features and used the AdaBoost algorithm 

to reduce the Haar-like features, and trained one cascaded clas- 

sifier. The cascade classifier involved several stages to discard un- 

wanted regions (non-face) from the image and saved the interested 

regions (face) for future processing. The accuracy rate by that al- 

gorithm was 96%. Ho, Lim, and Tay (2009) used two stages meth- 

ods to extract the LP features. Several LP regions were identified 

in the first stage using a gentle AdaBoost classifier. In the second 

stage, the false positive rate was filtered using a support vector 

machine (SVM) classifier based on a scale-invariant feature trans- 

form (SIFT). The accuracy rate for the LP detection was 92%. A prin- 

cipal visual word (PVW) technique was developed by Zhou, Li, Lu, 

and Tian (2012) to locate the LP by local feature matching to- 

gether with the PVW. The accuracy rate for the LP detection was 

84.8%. Lim and Tay (2010) designed a character based method, 

maximally stable extremely regions (MSER) method to detect char- 
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Fig. 2. (a) and (b). The framework of the proposed LPD system using the ensemble of AdaBoost cascades of the 3L-LBP classifiers for training and testing. 

acters inside images and trained the SIFT-based unigram classi- 

fier using a core vector machine learning method to filter out the 

false alarms. The accuracy rate for the LP detection was 90.47%. 

Nguyen and Nguyen (2012) introduced an efficient algorithm for 

the real-time LP detection from images captured in real scenar- 

ios using a boosting technique for training an LP detector. A lo- 

cal binary patterns (LBPs) classifier was employed with traditional 

Haar features for discriminating LP image patches and also used a 

new mechanism to evaluate and improve the system performance 

through reducing false positive errors. The accuracy rate for the 

LPD was 85.2%. Wang, Sang, Wang, and Kuang (2013) used an Ad- 

aBoost classifier to detect LPs. A morphology based method was 

used to reduce some false positive rate and to identify LP regions. 

Then, the trained SVM classifier was used to verify the possible 

LP regions and to remove the non-candidate LP regions. The ac- 

curacy rate for the LPD was 88.28%. T. He, Yao, Zhang, Hou, and 

Han (2014) proposed a method to locate the regions of interest 

for multi-scale LPs in different inclination directions. This method 

used a blob technique with a filtering affine distortion method to 

detect the ROI area. The accuracy rate for the LP detection was 

94.7%. Azam and Islam (2016) presented an effective LPD method 

to detect the LP area in an image under rainy conditions. A fre- 

quency domain mask was used to remove rain drops from the im- 

age. For handling indoor contrast, blurry, and night conditions, a 

new contrast improvement technique with a statistical binariza- 

tion method was used. A random transform based on a tilt cor- 

rection approach was applied to correct the tilted LP. The over- 

all accuracy rate for the LPD was 94%. M. D. A. Asif, Tariq, Baig, 

and Ahmad (2014) introduced the YDbDr colour space to identify 

the blue regions, whereas a simple colour detection method used 

to identify yellow LP regions. The Otsu method used to gain bi- 

nary image and the connected component analysis used to obtain 

on LP regions. The accuracy rate was 93.86%. Chen, Han, Ho, and 

Fan (2015) extracted the LP using a feature-salience theory with 

rectangle shape, texture, and colour features. The accuracy rate was 

97.3%. Lee, Song, Ku, Jeon, Han, and Ko (2010) used local struc- 

ture patterns that were calculated from the modified census trans- 

form (MCT) to extract the LP from vehicle images. The accuracy 

rate was 88.9% for the LP detection. He et al. (2007) also used 

an AdaBoost algorithm based on the both global statistical and lo- 

cal Haar features for LP detection. The accuracy rate for LPD was 

96.4%. Hasan (2013) used canny edge, horizontal and Vertical edge 
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methods to detect LP regions with three stages Artificial Neural 

Network (ANN) to extracted features from LP regions. The accuracy 

rate for LPD was 92.7%. Panahi and Gholampour (2017) used ver- 

tical sobel edge operator and hough transform to identify LP area, 

and connected component algorithm (CCA) with two level SVM to 

extract LP features. The accuracy rate for LPD was 97%. Wafy and 

Madbouly (2016) used semi-symmetric corner points, morphologi- 

cal feature, and linear discriminated analysis (LDA) methods to ex- 

tracted features from LP area. The accuracy rate for LPD was 98%. 

There was no attempt to use the ensemble of AdaBoost cas- 

cades with multi levels pre-processing features extraction method, 

such as LBPs, Haar-like, and histogram of oriented gradients (HOG) 

classifiers to detect many difficult features of LP problems. The 

main contributions of this study, that many researchers used one 

level strong cascade classifier (sliding window) to detect ROI fea- 

tures for specific problems of the LP. This work uses multiple 

cascades classifiers with multi levels pre-processing stage to de- 

tect different features values under difficult conditions, such as 

low/high contrast, dusk, dirt, fogy, and distortion using an Ad- 

aBoost algorithm with 3L-LBP classifier. We used the best enhance- 

ment methods for pre-processing stage, such as two dimension 

Gaussian filter (2D-Gaussian) with standard deviation σ = 0.25 and 

contrast-limited adaptive histogram equalization(CLAHE) method 

with standard deviation σ = 1 for training and testing images. The 

LBPs classifier is employed for improving the accuracy rate be- 

cause it has a discriminative power for extracting the ROIs from 

the LP area with a low processing time. The proposed method for 

the LPD is adaptive for different LP styles, colors, and languages. It 

can be used to enhance the performance of any existing ANPR sys- 

tem with different datasets. The next section provides more details 

about the proposed LPD method. 

3. The proposed method 

The proposed method involves two phases: the image pre- 

processing phase and the LP detection phase. The first phase aims 

to reduce the processing time through enhancing vehicle’s images 

processes while preparing for the detection phase. To detect the 

ROIs area for the LP under different conditions, a large number of 

AdaBoost cascades of 3L-LBP classifiers are employed. The number 

of cascades classifiers depends on the LP variation problems. Each 

cascade classifier has different features values in order to solve 

one LP problem. The number of strong classifiers is obtained from 

the training phase. The proposed framework of the LPD system for 

training and testing phases is shown in Figs. 2 (a) and 2(b). 

3.1. Image pre-processing phase 

This study uses a grayscale image by converting a color input 

image (24 bit) into a grayscale image (8 bit) as follows: 

G ( I, J ) = 0 . 3 × R ( I, J ) + 0 . 59 × G ( I, J ) + 0 . 11 × B ( I, J ) (1) 

where I and J are any pixel inside a grayscale image, G is a 

grayscale image and (R, G, B) are three color channels of red, green 

and blue for color images. 

There are different resolutions involved in vehicles images, with 

large resolutions often require more processing time. Therefore, the 

grayscale images are resized to a desired size for the output image. 

To reduce the computational time, the images of sizes 1280 × 960, 

1024 × 768 and 640 × 480 as shown in Fig. 3 were resized into a 

400 × 300 resolutions. 

The histogram for the grayscale image has 256 bins by default. 

It is a chart which presents the distribution of the grayscale im- 

age intensities. The (imhist) function in Matlab produces a his- 

togram plot by defining ( X) equally spaced bins, each bin repre- 

senting a range of features values. After that, calculating the num- 

ber of pixels ( Y ) within each range which represents the features 

Fig. 3. Resized the different resolutions of original vehicles images with histograms 

(For histogram: X axis = the range of features values in each bin, Y axis = no. of 

features values appearance in each range of bins). (a) Resized vehicle image from 

640 × 480 into 400 × 300 resolution; (b) Resized vehicle image from 1024 × 768 into 

400 × 300 resolutions; (c) Resized vehicle image from 1280 × 960 into 400 × 300 

resolutions. 

values appearance in each range of bins. Moreover, the informa- 

tion in a histogram can be used to choose an appropriate enhance- 

ment method to reduce the range of intensity features values. The 

proposed method uses texture features instead of color features 

to detect the LPs because the color features are very sensitive to 

the illumination conditions and noise ( Azad et al., 2014 ). The LPD 
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Fig. 4a. Example of vehicles images with dirt, and dust problems after applying Gaussian filter and CLAHE enhancement method to a grayscale image and their histograms 

(For histogram: X axis = the range of features values in each bin, Y axis = no. of features values appearance in each range of bins). 

method employed an intensity transition on a vehicle image based 

on the 3L-LBP extracted features as initial localization for the LP. 

The intensity in the LP region is very high because various texts 

are included in the vehicle images. There are also various noises 

with the texts referring to non-LP regions, such as surface textures, 

dust, distortion, and small dirt ( Fig. 4a , 4b ). The noise conditions 

increase the unnecessary features intensities in an image. For de- 

noising, a two dimension Gaussian filter with standard deviation 

σ = 0.25 ( Lalimi, Ghofrani, & McLernon, 2013; Nixon & Aguado, 

2012; Parker, 2010; Yogamangalam & Karthikeyan, 2013 ) has been 

used for this purpose. The Gaussian filter is defined as: 

G ( x , y ) = 

1 

2 πσ 2 
e 

−
x 2 + y 2 

2 σ 2 (2) 

Some vehicles images are suffered from low illumination and 

weather conditions, such as low/high contrast (indoor/ night-light 

conditions) ( Fig. 4c , 4f ) and fogy ( Fig. 4d , 4e , 4f ). A contrast- 

limited adaptive histogram equalization (CLAHE) method with 

some improvement and standard deviation σ = 1 is applied on the 

grayscale filtered image to enhance the contrast condition. It is a 

common image enhancement method and widely used for image 

processing ( Azam & Islam, 2016; Kaur & Kaur, 2014; Moustafa & 

Jaradat, 2015 ). The same pre-processing techniques are applied to 

positive and negative samples for the LPs at the training phase. 

The enhancement steps of resizing, filtering, and contrasting 

images help in reducing changing day light effect and improv- 

ing the contrast between the original image and enhanced image 

( Asif et al., 2014 ). The pre-processing stage has clearly effects to 

reduce the unnecessary features from images, so the histograms 

demonstrate their effects in each step (see Figs 0.4 steps (i, ii)). 

There a wide different between step (i) and step (ii) related to a 

high reduction on features bins range and space. The next section 

presents more details about the LPD method. 

3.2. The LP detection method 

3.2.1. 3L-LBP detectors for features extraction 

There is no one detection method works for all types of 

images problems by using unsupervised learning algorithms 

( Silapachote et al., 2005 ). Therefore, the features extraction meth- 

ods should be selected carefully to detect different types of prob- 

lems. Some image problems, such as scale, rotation, and contrast 

should be considered for the detectors because each detector is 
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Fig. 4b. Example of vehicles images with distortion and dusk or low light problems after applying Gaussian filter and CLAHE enhancement method to a grayscale image and 

their histograms (For histogram: X axis = the range of features values in each bin, Y axis = no. of features values appearance in each range of bins). 

designed for a specific kind of features. The proposed method uses 

supervised learning algorithms to employ a three levels of LBPs op- 

erator to extract different features for several reasons ( Cvetkovi ́c, 

Rajkovi ́c, & Nikoli ́c, 2016; Hussein, Porikli, & Davis, 2009; Krig, 

2014; Lee et al., 2013; Li & Shen, 2016; Nguyen & Nguyen, 2012; 

Shan & Gritti, 2008 ). The first level is extracted LBPs features from 

LP grayscale image, the second one extracted LBPs features from 

filtered LP image, and the third level extracted LBPs features from 

contrasted LP image (see Fig. 5 ). Moreover, when the levels of LPs 

images changed in pre-processing stage, the significant features for 

different problems can be captured. Therefore, we utilize a maxi- 

mum pooling strategy that selects the maximum values from the 

corresponding bins of 3L-LBPs histogram features concatenation at 

different scales of LP image. The AdaBoost algorithm compares a 

test vehicle image features with trained models features for LP and 

labels the LP test image features using the class that the training 

image with the highest similarity belongs to. 

The LBP is an effective operator for various illumination condi- 

tions and can solve the occlusion and scale invariance problems. 

Ojala, Pietikäinen, and Harwood (1996) presented the first LBP op- 

erator by dividing an image into cells or regions and labeling the 

pixels for each region using a 3 × 3 thresholding neighborhood. The 

method involves comparing the center value with 8 neighbors and 

transferring the results to a binary number with weighted values 

as shown in Fig. 6 . The output of the LBP operator can be pre- 

sented in decimal form: 

BP ( x center , y center ) = 

7 ∑ 

n =0 

s ( i n − i center ) 2 

n (4) 

where n is the number of neighbors for the central pixel value 

(center), i center , i n is the gray pixel value for center and the sur- 

rounding pixel values , and s(x) is equal to 1 if x ≥ 0, and 0 other- 

wise. 

s ( x ) = 

{
1 x ≥ 0 

0 x < 0 

(5) 

The pattern 11110 0 01 is called uniform-patterns because it con- 

tains more than two transitions with a single label of a LBP oper- 

ator, which are produced much less uniform-patterns without los- 

ing too much information. The most of the texture information are 

contained in the uniform-patterns, which are caused by the local 

primitives like corners and edges from the images. After labeling 
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Fig. 4c. Example of vehicles images with night-light contrast problem after applying Gaussian filter and CLAHE enhancement method to a grayscale image with their 

histograms (For histogram: X axis = the range of features values in each bin, Y axis = no. of features values appearance in each range of bins). 

each region image with the LBP operator, the histograms of the la- 

beled image regions R 1, R 2 ,…, R M 

can be presented as: 

H i, j = 

∑ 

x,y 
I ( f i ( x, y ) = i ) I ( ( x, y ) ε R j ) 

i = 0 , . . . , L − 1 , j = 0 , . . . , M − 1 

(6) 

where L is the number of different labels that are produced by the 

LBP operators, and M is the number of the LP regions. 

This study uses two types of LP training samples, with 50 × 260 

and 115 × 80 resolutions and being resized into 35 × 160 and 

70 × 48, respectively which is the same size of LP testing images 

after resized it. The LPs training images are subdivided into 16 × 5 

and 21 × 12 pixels to produce 80 and 252 cells, respectively, as 

shown in Fig. 7 . The size of each cell is 3 × 3 pixels and the num- 

ber of bins is 59. Therefore, the cascades classifiers have different 

LBP features range, but with the same number of the LBPs features. 

In this work, the training LP features are generated from 5 and 10 

stages, respectively. 

The quantized LBP weak classifier for every region in each level 

is aggregated into maximum pooling features histogram. The ex- 

tracted features histograms perform as inputs to AdaBoost algo- 

rithm to produce the final LP detector. The LBP operator already re- 

moves the non-ROI or any noise from the training images ( Jia et al., 

2007 ). This is useful to reduce unnecessary features and the pro- 

cessing time for the training phase. 

3.2.2. AdaBoost learning algorithm for the LP detection 

Freund and Shapire in 1995 proposed an adaptive boosting (Ad- 

aBoost) algorithm to solve the difficulties in the Boosting method. 

The algorithm generates a strong classifier from a large number 

of weak learner classifiers to make the performance of a detection 

system better than randomly guessing ( Freund & Schapire, 1995; 

Freund, Schapire, & Abe, 1999 ). The AdaBoost successfully provided 

good and accurate results in computer vision ( Lienhart & Maydt, 

2002 ). A weak learner or classifier that has the lowest error selects 

in each iteration stage. Then, the weak classifier works to increase 

the rate of the weighted error for misclassified training samples 

and decrease the rate of the weighted error for the classified train- 

ing samples. This study uses the AdaBoost to train a large number 

of weak classifiers, and each weak classifier is designed to select a 

single LBP features histogram for best separating the positive and 

negative LPs samples. The basic AdaBoost learning algorithm works 

as follows: 
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Fig. 4d. Example of vehicles images with dusk or low light problem after applying the Gaussian filter and CLAHE enhancement method to a grayscale image with their 

histograms (For histogram: X axis = the range of features values in each bin, Y axis = no. of features values appearance in each range of bins). 

Provided the training dataset of ( X 1 , Y 1 ),…, ( X n ,Y n ), where y i = 0 

for negative examples (X) , 1 for positive samples (X); n the num- 

ber of training samples, and i the number of the output for training 

samples, and given weights of W 1 ,i = 

1 
2 m 

+ 

1 
2 l 

for y i = 0, 1 negative 

and positive samples, respectively, where m is the number of the 

negative samples and l is the number of positive samples. For each 

iteration t normalizes the samples weights, W t,i = 

W t,i ∑ n 
j=1 W t, j 

, where 

w t is a probability distribution of samples. The trained classifier 

( h j ) for each feature (j) is limited to use a single feature. To evalu- 

ate the weighted error for each feature (j), 

W t , ε j = 

∑ 

i 

W i 

∣∣h j ( x i ) − y i 
∣∣ (7) 

Then select the classifier h t with the lowest error εt . To update 

the feature weights, 

W t,i = W t,i + 1 , (8) 

where i = w t,i β
1 −e i 
t , e i = 0 if sample x i is correctly classified, e i = 1 

otherwise, and βt = 

εt 
1 −εt 

. 

Finally, to produce a final strong classifier (Y(x) ): 

Y (x ) = 

{
1 

0 

T ∑ 

t=1 

αt h t ( x ) ≥ 1 

2 

T ∑ 

t=1 

αt , (9) 

where αt = log 1 
βt 

. 

The learning algorithm works to re-train the samples with new 

weights, instead of re-sampling them. This means to start with reg- 

ular weights on the training examples for ( T) rounds or iterations, 

and to evaluate the weighted error for each LBP feature and pick 

the best one. After that, we update the feature weights by giving 

more weights for the LBP feature that is incorrectly classified and 

less weight for others. In the final step, this algorithm produces 

one strong cascade classifier for each level pre-processing LP which 

consists of the combination of the weak weighted classifiers with 

the weights depending on the error they have. The final ensemble 

of strong cascades classifiers for 3L-LBPs is used as trained models 

for the LP detection. Each strong classifier has a number of weak 

classifiers, which represents the LBPs features. The final step of the 

proposed algorithm can be represented as follows: 

Y i ( x ) = 

{
1 

0 

T ∑ 

t=1 

αt h t ( x ) ≥ 1 

2 

T ∑ 

t=1 

αt (10) 

where i = 1…..n is the number of strong cascades classifiers that 

are associated to the LP problems and each problem is related to 

one LBP histogram features. 
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Fig. 4e. Example of vehicles images with dusk or low light and fog problems after applying the Gaussian filter and CLAHE enhancement method to a grayscale image with 

their histograms (For histogram: X axis = the range of features values in each bin, Y axis = no. of features values appearance in each range of bins). 
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Fig. 4f. Example of vehicle image with low light and fog problems after applying the Gaussian filter and CLAHE enhancement method to a grayscale image with their 

histograms (For histogram: X axis = the range of features values in each bin, Y axis = no. of features values appearance in each range of bins). 

Fig. 5. The framework of 3L-LBP extraction features from LP vehicle image. 

3.2.3. Cascade structure of boosted classifiers 

A cascade structure is mainly developed for having high testing 

detection speed. The cascade classifier consists of a sequence of 

ensemble weak classifiers with binary nodes of features H 1 , H 2 ,…, 

H n , which are trained using a learning algorithm such as AdaBoost 

algorithm ( Wu & Rehg, 2012 ). As a result of the rarity of inter- 

est objects, the most background areas in the tested image are 

filtered out using a cascade classifier. Only the objects of inter- 

est, which are found in a few areas of the tested image, can be 

detected quickly ( Nguyen & Nguyen, 2012; Wu & Rehg, 2012 ). In 

the proposed method the training cascades classifiers with the 3L- 

LBPs filter out different types of scenes where they are identified 

definitely as non-LP areas, such as road surface, vehicle surface or 

highly textural areas. For example, the cascade classifiers for ter- 

rain can quickly reject a terrain area. The cascade classifiers for a 

vehicle surface can quickly reject a surface area. The hard and fi- 

nal complicated ensemble for the textural regions is used only for 

the remaining regions. For difficult types of vehicle images, this 

method is successful for detecting the LP regions using a large 

number of cascades classifiers with the strong LBP classifiers, and 

filtering out non-LPs regions in order to reduce the false positive 

rate. Let us assume the errors produced by the weak classifiers are 
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Fig. 6. Example of the extraction process for the LBP operator. 

independent of each other for the image conditions. The final cas- 

cade has 20 weak classifiers and those classifiers have a high de- 

tection rate for the LP d i = 99.9% and the false positive rate f i = 50% 

for all i . The cascade classifier is capable of detecting 
∏ 20 

i =1 d i = 98% 

for the LP with a false positive rate of 
∏ 20 

i =1 f i = 10 −6 . The algo- 

rithm for the cascade classifier structure is shown in Fig. 8 . 

The negative training samples are used to limit the number 

for training the weak classifiers. When those classifiers are trained 

with T iterations, the current ensemble of the cascades are applied 

to a large set of the negative vehicle image areas to find out the 

difficult examples that are incorrectly classified by all the existing 

weak classifiers in each cascade. For each round or iteration T + 1 

for training weak classifiers, these negative examples are added. 

The bootstrapping database for the negative examples does not 

need to be stored because it can be obtained by using the current 

cascade classifier on the images that do not have any objects of 

interest. The flow chart of the training strong cascades classifiers 

using AdaBoost algorithm is shown in Fig. 9 . 

In the training phase the number of the negative training sam- 

ples must be larger than the positive training samples. The boot- 

strapping operation is implemented only on the negative training 

samples rather than the positive training samples. The bootstrap- 

ping process in each round is applied to the whole negative sam- 

ples to randomly select the small part of the negative samples in 

order to obtain a small sub-window of all the samples in the train- 

ing stage ( Ma, Tan, & Yang, 2008 ). The second stage has the same 

number of the samples that came from the original or previous 

stage. In every round for the training phase each weak classifier 

gets a single LBP feature and adds it to the ensemble of the cas- 

cade classifiers. The stages in each cascade are built by the train- 

ing classifiers using the AdaBoost learning algorithm. In our cas- 

cades structure each cascade has different stages, with each stage 

has different features, which is an important reason for the com- 

bination of the classifiers. Therefore, increasing the number of cas- 

cades in the training phase leads to the increase of the number 

of features. This means the important information do not get lost 

and can be used to solve difficult problems, such as deformable 

features ( Hussein et al., 2009; Wu & Rehg, 2012 ). In Table 1 , we 

explain how this work differs from ( He et al., 2007; Nguyen & 

Nguyen, 2012; Wang et al., 2013 ) studies which are a very closed 

from this study. 

4. Experimental results 

4.1. Dataset 

All the experiments were designed and conducted using a stan- 

dard PC with 2.40 GHz Intel Core i5-4210 U and 4GB RAM, and us- 

ing Matlab language version R2016a. This study uses various ve- 

hicles images captured by OLYMPUS C-2040ZOOM digital camera 

under different environmental conditions (cloudy weather, sunny 

day, night lighting, dusk). The database contains 530 vehicles im- 

ages for different types of vehicles, such as trucks, passenger cars, 

and buses. This database is publicly available ( EnglishLPDatabase ) 

and with 640 × 480 resolutions. Each image contains a single li- 

cense plate with the 640 × 480 resolution. The proposed method 

is also applied to another database that contains 300 images cap- 

tured by an IR camera under different illumination, and each image 

has a single plate and/or multi-license plates with 1280 × 960 and 

1024 × 768 resolutions ( MedialabLPRdatabase ). The online photo 

editor application used to increase the car English dataset through 

making difficult changes on the original dataset to evaluate the 

proposed method performance. The total number of the images in 

the database is 1030, which are divided into two groups with the 

testing phase contains 630 vehicle images as shown in Fig. 10 , and 

the training phase contains 400 LPs images which are also used in 

testing phase. 

In the training phase, the large numbers of the positive samples 

are required to capture the LP variations. For example, the train- 

ing dataset contains the images of the rotated LPs in order to de- 

tect the various types of LPs rotated with different angles, such as 

45 °, ± 18 °, 12 ° and 6 °. Those images can be detected using rotating 

LBP features detectors as shown in Fig. 11 . 

With the training datasets above, it is observed that the LPD 

system works very well because it can detect LPs in the images 

with a low false alarm rate. While it cannot detect LPs with a low 

light and dark condition, there are two ways to solve the problems. 

The first one is the image pre-processing stage and another one 

is to enhance the training datasets. To enable the LPD system to 

detect the LPs in low light conditions, LPs images with different 

illuminations are added to the training dataset. Examples of the 

images are shown in Fig. 12 . 

Fig. 7. LPs images are subdivided into 16 × 5 and 21 × 12 sub- regions. 
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Fig. 8. The algorithm of a cascade classifier structure ( Wu, Brubaker, Mullin, & Rehg, 2008 ). 

Fig. 9. The flowchart of learning cascades AdaBoost structure for the LPD. 

Table 1 

The differences between Nguyen and Nguyen (2012); Wang et al. (2013) , He et al. (2007) methods, and the proposed method. 

Ref. Methods Difference 

Nguyen and Nguyen (2012) Boosting + two combined 

features(LBP + Haar-like) 

to produce one strong 

cascade classifier) 

Used the original learning algorithm which selected features based on random guessing that led 

to many irrelevant features selected. It caused high false positive rate and low accuracy results 

under good conditions, such as fixed resolutions, good illumination conditions. 

Wang et al. (2013) Adaboost + Morphology- 

based method + SVM 

classifier 

Used an advance boosting method that selected features based on the best weighted feature 

values (best weak classifier) to reduce the dimensionality of the features space and provided 

good results depending on the classifier used. It took more computational time because it 

used the SVM classifier to extract features from the LP area and produced one strong cascade 

classifier. It also used the Morphology based method to reduce some false positive rate. The 

detection accuracy of the method was low. 

He et al. (2007) AdaBoost + global 

statistical + local Haar 

features. 

Time consuming using AdaBoost with global statistical features to identify edges for the ROI 

features in order to reduce the space of extracted features by using local Haar features. Not 

consider weather and illumination conditions. 

-The cascade classifiers for this algorithm worked only in invariant conditions, such as colour, 

brightness, size, and position of LP. 

Proposed Ensemble of AdaBoost 

cascades of LBP 

classifiers. 

The better techniques were used in terms of accuracy and processing time for training, 

extracting, and selecting features from LP vehicles images under low/high contrast, fog, 

rotation, and the deformation problems. The 3L-LBP is used to extract multi-level 

pre-processing features to detect difficult and complicated regions for LP area. The LBP was 

used by ( He et al., 2007; Hussein et al., 2009; Krig, 2014; Li & Shen, 2016; Shan & Gritti, 2008 ) 

due to: it has a discriminative power to extract the best relevant features and not need more 

time for extracting. Also this classifier can reduce the false positive rate without using any 

other methods. We selected the advance version of boosting learning named AdaBoost for 

training and selection features and obtained good accurate results ( Freund & Schapire, 1995; 

Freund et al., 1999 ). 

The training dataset for the negative samples contains 600 non- 

LPs images that were collected from vehicles images with the 

background having road, building, tree, and ground as shown in 

Fig. 13 . 

In this study, we made the number of negative samples more 

than the number of positive samples in order to reduce the error 

rate for the LP detection stage. The training images were processed 

to the same size of the LPs patterns for the testing images. 

4.2. Detection results 

Some results by the proposed method based on the vehicles im- 

ages in the dataset are shown in Fig. 14 . It can be noticed that 

all the LPs were detected although there were bad features ap- 

peared with different LP variations conditions. The detailed infor- 

mation for the LPs on all the datasets with detection or recall rate 

are shown in Table 2 . In Table 2 the low detection results are ap- 
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Fig. 10. Some examples from the testing vehicles images in the dataset. (a) Some vehicles images from original dataset. (b) Some vehicles images with difficult changes 

using online photo editor application. 

Fig. 11. Some examples of LPs images from the training dataset with rotation. 

peared at the dusk time compared with the daytime or night-time. 

The reason is that the lighting conditions is very poor during the 

dusk time; therefore, making LP hard to identify. 

Moreover, some false positive (FP) are noticed when several ob- 

jects in the vehicle images as shown in Fig. 15 , look like a LP (such 

as commercial signs and vehicle logo), are detected with a low 

trust value. 

4.3. Processing time 

The detection rate also can be referred as the accuracy rate of 

the proposed method is 98.53%. The processing time is an impor- 

tant indicator of system performance. The proposed 3L-LBP classi- 

fier does not need more processing time and achieves a very good 

accuracy compared with other existing classifiers. Therefore, the 

average of processing time per one vehicle image for the whole 

system stages pre-processing, extraction and detection was 1.82 s 

which is between 1.63 and 2 seconds as shown in Table 2 and 

Fig. 16 . In Table 2 , the complicated vehicles images for dusk time, 

fogy daytime, and distortion need more processing time to detect 

the difficult LP features. Some vehicles images have high false pos- 

itive rate 7% at sunny daytime because they have more logos and 

commercial signs on them which have clearly vision at this time 

on vehicle mage. However, the proposed method can solve some 

of the errors in the pre-processing phase. Form Table 4 the re- 

ported time is much better compared with other existing method 

to solve many difficult problems. The efficiency and the accuracy of 
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Fig. 12. Some examples of LPs images with different illumination conditions are added to the training datasets. 

Fig. 13. Some examples of the negative images in the training dataset. 

Table 2 

The description of dataset and the performance results. 

Condition No. of vehicle image True LP False LP False Positive Rate Detection Rate Average Processing Time(s) 

Dusk time 226 210 16 4.5% 97.6% 2.00 

night-time(low/high contrast) 135 130 5 4.3% 98.7% 1.63 

Sunny daytime 294 294 0 7% 100% 1.65 

Fogy daytime 210 202 8 6.5% 98.8% 1.85 

Distortion 165 156 9 5.6% 98.2% 1.98 

Total 1030 992 38 5.6% 98.56% 1.82 

the proposed method make the LP detection reliable and possible 

for large-scale or real-time applications. 

4.4. The performance evaluation 

This study follows the popular evaluation measurements for ob- 

jects detection in natural scene, such as precision, recall and F- 

measure, and the processing time ( Bashir & Porikli, 2006; Kaur 

& Kaur, 2014; Li & Shen, 2016 ). These measurements consider the 

true positive (TP) detection rate from the number of the positives 

as the ground truth that is related to the number of the FP rate 

( Jia et al., 2007 ). Those measurements can be defined as follows: 

P osit i v e predict ion or P recision rate ( P R ) = 

T P 

T P + F P 
(11) 

Detection or Recall rate ( RR ) = 

T P 

T P + F N 

(12) 

F − measure ( F m ) = 2 ∗
(

RR ∗ P R 

RR + P R 

)
(13) 

where (Fm) is the trade-off harmonic mean between the recall 

and precision rates; FN is a false negative rate which means the 

number of images in the ground truth at least has one object, 

but the system confirms that there are no objects inside the 

images. 

The FP rate is 5.6% using the ensemble of AdaBoost cascades 

with 3L-LBP classifiers and 7.5% using one AdaBoost cascade of 

Table 3 

Comparisons of the LPD results by different methods, the proposed cascades LBPs 

classifiers produced the best detection rate, both with the highest recall and f- 

measure rates. 

Ref. FP Precision (%) Recall (%) F-measure (%) 

Azam and Islam (2016) 6.3% NR 98.15% NR 

Ho et al. (2009) NR 90.18% 92.07% 91.10% 

Zhou et al. (2012) 4.5% 95.50% 84.80% 89.83% 

Lim and Tay (2010) ≈13% 83.73% 90.47% 86.97% 

Wang et al. (2013) NR 81.68% 88.28% 84.84% 

He et al. (2014) 19.6% 92.7% 94.7% 93.68% 

Asif et al. (2016) 6.5% 87.15 93.86% 90.38% 

Proposed ( 1 ) One 

cascades with LBP 

classifiers 

7.5% 93.6% 89.3% 91.4% 

Proposed ( 2 ) Ensemble 

of cascades with 

3L-LBP classifiers 

5.6% 95.9% 98.56% 97.19% 

NR: Not Reported. 

LBP classifiers with a detection rates of 98.56% and 89.3%, respec- 

tively. The comparison results of the performance evaluation of this 

work with some reported methods in the related work are shown 

in Table 3 . It achieved a recall rate of 98.56%, which are 4.67% 

higher than M. R. Asif, Chun, Hussain, and Fareed (2016) method 

and 0.38% than Azam and Islam (2016) method. The F-measure 

of the proposed method is 97.19%, which is also the best, with 

6.42% higher than the method by Asif et al method. The FP rate 

is a little bit than Asif et al. which is 0.7%. Also, the proposed 

method achieved 4.1% and 3.12% for the recall rate and F-measure, 

respectively, higher than He et al. (2014) method with 19.6% FP 
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Fig. 14. Successful vehicles images detection results using our proposed LPD method with different views point (a, h, k, l), dirt and low light (f, h, i), fog and dusk (a, g, e, i, 

l), low/high contrast (b, f, j, m) and distortion(b, c, f, j) problems. 

rate which is very high 14% compared with the proposed method. 

Wang et al. (2013) achieved an 88.28% and 84.84% recall rate and 

F-measure, respectively, which is less than the proposed method 

with 10.52% and 12.04% for recall rate and F-measure, respec- 

tively. Moreover, the proposed method achieved 6.7%, which is 

higher than Ho et al. (2009) method for recall rate and 5.7% for 

F-measure rate. Lim and Tay (2010) achieved a 90.47% and 86.97% 

recall rate and F-measure, respectively, which is less than the pro- 

posed method with 8.09% and 10.22% for recall rate and F-measure, 

respectively, with 7.4% FP rate. Zhou et al. (2012) achieved 84.80% 

and 89.83% recall rate and F-measure, respectively, which is less 

than the proposed method with 13.76% and 7.36% for recall rate 

and F-measure, respectively, with FP rate 4.5% which is only 1.1% 

higher than proposed method under complicated vehicles images. 

Finally, the proposed method gained 95.9%, 98.56%, and 97.19%, re- 

spectively, for precision, detection, and F-measure rates using the 

ensemble of AdaBoost cascades of 3L-LBPs classifiers. While the 

results of one AdaBoost cascade yields 93.6%, 89.3% and 91.4%, 

respectively. Based on the performance evaluation measurements 

which are described above, the proposed method outperforms all 

the existing methods in terms of recall rate, F-measure, and FP rate 

for LP detection. 
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Fig. 15. Examples of detect LP with false positive value. 

Fig. 16. Average of the processing times for all the tested images. 

4.5. Comparison with existing methods 

The proposed method is compared using the same dataset that 

was used by ( Azam & Islam, 2016; Hasan, 2013; Panahi & Gho- 

lampour, 2017; Wafy & Madbouly, 2016 ) studies and other dif- 

ferent datasets in ( Asif et al., 2016; He et al., 2014; Ho et al., 

2009; Lee et al., 2013; Lim & Tay, 2010; Zhou et al., 2012 ) under 

less difficult conditions. The presented LPD method by Azam and 

Islam (2016) shows good performance over few of the previous 

state-of-the-art techniques as mentioned in the literature. Also, 

the detection time 0.45 s which is less than the proposed method 

0.33 s with a little bit detection rate 0.41%. But, it only consid- 

ers easy tilted LP under good conditions and low difficult con- 

trast night conditions using many unsupervised learning meth- 

ods with 325 English car image database using MATLAB 7.12. 

Hasan (2013) method has detection rate 92.7% which is less than 

the proposed method 5.86% under good conditions also by using 

many unsupervised learning methods for detection stage with 69 

English car images using MATLAB 7.1. It does not consider the tilted 

LP, noise and low/high contrast image environment. Panahi and 

Gholampour (2017) also show good performance method, the de- 

tection rate is a little bit less 1.56% than the proposed method 

with the same hardware platform 2.40 GHz Intel Core i5 and 4GB 

RAM. It only considers medium quality plates not solve the tilted 

LP, noise, fogy, and high contrast image environment. They used 

many unsupervised learning methods with 500 English car image 

dataset using C + + without reported the detection time. The de- 

tection method presented by Wafy and Madbouly (2016) shows 

good detection rate 98% which is a little bit less than the proposed 

method 0.56% and 0.22 s detection time. They only consider easy 

and good conditions using unsupervised time consuming methods 

with 405 English car database using Open CV&C + + , the detection 

time not reported. However, the dataset used in this study was 

more complicated compared with existing studies. So, we com- 

pared it with other different datasets for existing methods and the 

experimental results are summarized in Table 4 . The reason for 

selecting different datasets, such as Malaysia, Chinese, Korea, and 

Caltech cars LPs to see the main difference between the proposed 

method and those existing methods in term of performance be- 

cause of our algorithm targets to detect LP from a large amount 

of very distorted and complicated images. The detection time on 

Ho et al. (2009), Zhou et al. (2012) , and Lee et al. (2010) meth- 

ods is much higher than the others and our method due to apply- 

ing the time consuming methods to detect and extract LP regions 

as well as the detection rate. The detection rate of the proposed 

LPD method is 98.56% with 1030 good and complicated vehicles 

images under difficult conditions, and the average running time 

for the whole LPD system is only 2 s. The memory complexity of 

those methods is O (N × M); where N and M is the dimension of 

the input tested image. The average of memory usage for the pro- 

posed LPD is not a big implementation issue nowadays compared 

with existing methods. From the Table 4 , we can see that the per- 

formance of the proposed LPD method is better than the others 

methods. In the large scale and the real-time implementation, this 

proposed method will show a good performance with high per- 

formed hardware platform involved, for example, high quality cap- 

turing device, high processing device, and faster network connec- 

tion. 

In summary, the proposed LPD method successfully detects LP 

area in the difficult conditions, and performs better than the four 

existing LPD methods with the same datasets. 
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Table 4 

Comparison results between the proposed methods with other existing methods. 

Ref. Methods LP Format Dataset Platform Detection Detection time(s) 

size rate 

Azam and Islam (2016) Frequency domain mask, 

contrast improvement 

technique, statistical 

binarization, Radon 

transform, and entropy 

vector. 

English car 325 MATLAB 7.12, Intel Core 

2 Duo CPU T6600, 

2.2 GHz, 2 GB RAM 

98.15% 0.450s 

Wafy and Madbouly (2016) semi-symmetric corner 

points, morphological 

feature, linear 

discriminated analysis 

(LDA) 

English car 405 Intel Pentium 4, 3 GHz 

CPU, 2 MB cache, 2 

GB RAM, Open 

CV&C + + 

98% 1s 

Panahi and Gholampour (2017) vertical Sobel edge 

operator and Hough 

transform, 

ConnectedComponent 

Algorithm, 2L-SVM 

English car 500 Intel core i5 2.2 

GHzCPU, 4 GB RAM, 

C + + 

97% NR 

Hasan (2013) Canny edge, Horizontal 

and Vertical edge, 

three stages Artificial 

Neural Network (ANN) 

English car 69 MATLAB 7.1 92.7% NR 

Ho et al. (2009) AdaBoost + (SIFT + SVM) Malaysia car 79 NR 92.07% 5s 

Zhou et al. (2012) Principal Visual Word 

(PVW) 

Chinese car 410 MATLAB, 4GB RAM, 

2.53-GHz 

84.8% D(1.06 s) + E(6.13 s) 

Lim and Tay (2010) MSER + Heuristic + CVM Caltech Car 126 OpenCV 90.47% NR 

He et al. (2014) Blob for candidate 

detection, filtering 

affine distortion, 

saliency detection, 

post-processing 

Chinese car 200 NR 94.7% NR 

Asif et al. (2016) YDbDr color space + Otsu 

method 

Chinese car 1511(300R) MATLAB 2013b,a 

Pentium® Dual-Core, 

3.06 GHz, 2 GB RAM 

93.86% 0.33s 

Lee et al. (2013) local structure 

patterns + MCT + color 

based 

method + position 

based method 

Korea car Video MATLAB 88.9% 3.293s 

Proposed(1) One cascade with LBP 

classifiers 

English car 1030 2.40 GHz Intel Core 

i5-4210 U and 4GB 

RAM 

89.3% D(1.325 s) + E(2.43 s) + P(0.10 s) 

Proposed(2) Ensemble of cascades 

with 3L-LBP classifiers 

English car 1030 2.40 GHz Intel Core 

i5-4210 U and 4GB 

RAM 

98.56% D(0.78 s) + E(1.12 s) + P(0.10 s) 

E: Extraction time, D: detection time, P: pre-processing time, NR: Not Reported, R: rejected LP. 

5. Conclusion 

In this paper, we proposed a new LPD which includes two 

phases. At each phase, we used better approaches capable of han- 

dling different difficult conditions. The aims of this study to learn 

the ensemble of cascades for 3L-LBPs classifiers due to its discrim- 

inative power using AdaBoost learning algorithm. The strong cas- 

cade classifier contains a large number of weak classifiers with 

different types of 3L-LBPs features values to detect different LP 

regions. The proposed method is implemented and tested on 

1030 vehicles images having different difficult conditions, such as 

low/high contrast, fogy, tilted LP, and distortion. The overall perfor- 

mance evaluation for detection, precision and F-measure rates are 

98.56%, 95.9%, and 97.19%, respectively, with FP rate 5.6%. We also 

compared the experimental results against existing LPD methods 

which are presented in the literature. We find that the proposed 

LPD method outperforms many existing LPD methods which have 

the same and different datasets in terms of detection probability 

and running time under difficult condition. The average of process- 

ing time per one vehicle image was 1.82 seconds for whole LPD 

system. Moreover, the proposed method works without any limi- 

tations due to using two phases testing and learning reverse other 

existing methods which use only testing phase with pre-processing 

stage under some limitations. In the training phase, we extracted 

LP features using three level LBPs classifiers, the first one from LP 

grayscale image, the second from filtered LP image, the third from 

enhancement LP image in order to detect all difficult features val- 

ues from LP area. Due to many vehicle images in the dataset have 

many commercial signs and logos which are lead to increase the FP 

rate unwanted features values and take more processing time, in 

the future work, we intend to improve the proposed LPD to solve 

these problems and work on the whole ANPR system for real time 

applications through complete the recognition stage. In addition, 

the overall processing time of a detection system can be reduced 

through high speed hardware and software. Also, we can add more 

difficult issues like weather condition to increase the performance 

of the LPD method. Finally, the experimental results on selected 

dataset demonstrated that the proposed method has a good per- 

formance compared with other existing methods, and can be im- 

plemented efficiently for real-time applications. 
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CHAPTER 4 

AN EFFICIENT TEXTURE DESCRIPTOR FOR THE 

DETECTION OF LICENSE PLATES FROM VEHICLE 

IMAGES IN DIFFICULT CONDITIONS 

 

 

4.1    Introduction  

The content of this chapter is an exact copy of the published paper in the journal of IEEE 

Transactions on Intelligent Transportation Systems by Al-Shemarry et al., (2019) ‘An Efficient 

Texture Descriptor for the Detection of License Plates from Vehicle Images in Difficult 

Conditions’. 

In Chapter 3, the developed method, 3L-LBP_Adaboost, achieved a good detection 

accuracy with a acceptable time for detecting LPs from low-quality vehicles images. During 

the experiments, there are many objects that look like LPs inside vehicle images, such as 

commercial signals plates and logos, which increased the false positive rate (FPR) and took 

more processing time. But this method was a good schema to search for further performance 

improvements in LPD systems.  

This chapter proposes an efficient extraction method, based on preprocessing methods, to 

improve an extended local binary pattern (ELBP) descriptor during the extraction stage. A 

Gaussian filter and a contrast-limited adaptive histogram equalization (CLAHE) enhancement 

method are used to build the enhancement texture descriptor, multi-level extended local binary 

pattern (MLELBP).  

It extracted multiple complicated features, through an increased size of the training dataset 

during the preprocessing stage, by introducing some noisy data into training set using a 

Gaussian filter and a CLAHE method. The English car database was extended using an online 

4 
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photo editor application to make different changes to the original database and to increase the 

number of vehicle images in the database in order to improve the accuracy of the LPD system. 

The extracted key features are then used as inputs to the extreme learning machine classifier 

(ELM) for multiclass identification under difficult conditions. This chapter discusses the 

performance of the MLELBP_ELM algorithm for the LP extraction and classification stages 

and compares it with the 3L-LBP_Adaboost algorithm. Also, the performance of this method 

was compared with other existing approaches reported in the literature. The MLELBP_ELM 

method helps to improve the LPD system through achieving a high detection rate with a fast 

computational speed for difficult vehicle images. 

 Appendix B provides a Matlab code for the proposed LPD method. 
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An Efficient Texture Descriptor for the Detection
of License Plates From Vehicle Images

in Difficult Conditions
Meeras Salman Al-Shemarry , Yan Li , and Shahab Abdulla

Abstract— This paper aims to identify the license plates
under difficult image conditions, such as low/high contrast,
foggy, distorted, and dusty conditions. This paper proposes an
efficient descriptor, multi-level extended local binary pattern,
for the license plates (LPs) detection system. A pre-processing
Gaussian filter with contrast-limited adaptive histogram equaliza-
tion enhancement method is applied with the proposed descriptor
to capture all the representative features. The corresponding bins
histogram features for a license plate image at each different level
are calculated. The extracted features are used as the input to
an extreme learning machine classifier for multiclass vehicle LPs
identification. The dataset with English cars LPs is extended
using an online photo editor to make changes on the original
dataset to improve the accuracy of the LPs detection system.
The experimental results show that the proposed method has a
high detection accuracy with an extremely high computational
efficiency in both training and detection processes compared
to the most popular detection methods. The detection rate is
99.10% with a false positive rate of 5% under difficult images.
The average training and detection time per vehicle image is
4.25 and 0.735 s, respectively.

Index Terms— Extreme learning machine, local binary pattern,
extended local binary pattern, license plate detection.

I. INTRODUCTION

THE automatic license plate recognition (ALPR) is a
well-known topic in the field of intelligent transportation

systems (ITS). It is a surveillance technique to detect and
recognize vehicle license plates (LPs) for many security and
service purposes. For example, for observing and examining
the roads traffic to prevent unacceptable behaviors, highway
tolling systems, security systems, and parking management
systems [1]–[4]. The core part of an ANPR system is to
identify a vehicle LP from an image or a sequence of images
in a video. One of the most important factors in a license
plate detection (LPD) system is feature extraction. For easy
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Fig. 1. Examples of the difficult conditions for license plates.

recognizing, LPs are always designed in specific shapes and
colors. It is often problematic to extract features of license
plates with difficult conditions, such as lighting variations, dirt,
dusk, viewpoint variations, and distortions, as shown in Fig. 1.
Some descriptors like the texture features operators and local
binary patterns (LBPs) are effective for various illumination
conditions. They can partly solve the occlusion and scale
invariance problems [5].

There are a large number of LBP variants proposed by
researchers to improve its robustness and distinctiveness. For
example, the completed local binary patterns (CLBPs) [6],
extended local binary patterns (ELBPs) [7], and completed
local derivative patterns (CLDPs) [8]. Those LBP descriptors
are robust to gray-scale and rotation variations. To improve
efficiency, Guo et al. [8] proposed a scale-selective local
binary pattern (SSLBP) that firstly extracted scale-sensitive
local features and then applied a global operator to achieve the
scale-invariance. In [8], the scale-invariant feature extraction
scheme achieved a good texture classification performance, but
it was a high-dimensional descriptor.

Various studies revealed that ensembles of multiple clas-
sifiers [9]–[12] were able to produce better performance
than a single classifier. However, those ensemble based
methods faced an issue of imbalance between the number
of positive and negative training samples due to under-
lying mechanism of binary classification. Those methods
are likely to reach a local optimum or an over-fitting
solution. Recently, deep neural networks (DNNs) [13] and
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convolutional neural networks (CNNs) [14], [15] have been
used as an automatic way to learn the key features in LPs.
The DNN algorithms can combine the feature extraction
and classification into one unified neural network framework.
They have shown a higher detection accuracy. However,
the features learning mechanism in DNNs cannot guarantee
robustness in difficult image conditions, for example, rotation
and scaling, unless the training samples can cover various
observation conditions. Furthermore, their computational costs
during both training and detection processes are expensive.
With a high speed of vehicles, not only the accuracy but
also the computational speed are the key factors for real-time
applications. In this paper, a multi-level extended local binary
patterns (ML-ELBP) descriptor uses a Gaussian filter [16]
and contrast-limited adaptive histogram equalization (CLAHE)
enhancement method [17] to extract different features from
license plate images. After extracting the key features, the
extreme learning machine (ELM) classifier [18] is used for
multiclass identification. The proposed method can achieve a
high detection accuracy with a fast computational speed. The
major contributions of this work are:

1) Proposed an efficient new descriptor, the ML-ELBP,
to extract key LP features from vehicle images with
difficult conditions like lighting, foggy, rotations, blurry,
darkness, and complex backgrounds.

2) Introduced two phases of an LPD system development:
testing and training using ELM classifier as a good
trainer.

3) Achieved a high detection accuracy with an extremely
high computational efficiency in both training and detec-
tion processes compared to the most popular detection
methods.

4) Increased the size of the training dataset during the
pre-processing stage by introducing some noisy data
into training set using a Gaussian filter and a CLAHE
method.

5) Extended the English cars dataset using an online photo
editor to make changes on the original dataset to improve
the accuracy of the LPD system.

The rest of the paper is organized as follows. Section II
reviews the related work on the LPD. Section III intro-
duces the framework of this proposed method. Section IV
presents details about the extraction of ML-ELBP features and
ELM-based classification. Section V shows the experimental
results. Finally, the conclusion with future works for this study
are provided in Section VI.

II. RELATED WORK

Many studies on developing LPDs have been reported
both recently and in the past [9], [13], [15], [19]–[23].
An LPD system consists of three stages: 1) image pre-
processing; 2) feature extraction; and 3) classification. The
image preprocessing stage is important to improve features’
robustness and detection accuracy. Thus, various preprocess-
ing methods have been proposed [24]–[27]. With illumina-
tion changes and low/high contrast variations, some methods
normalize the input images in a different color space, for

example, RGB color space [28]–[30] or gray space [31], [32].
Other methods convert input images from the RGB color space
into the HSV color space [33], [34].

Transformations like translation, rotation, and scaling, can
been made on training images to improve robustness in feature
extraction and detection [35], [36]. Those transformed images
can represent various observation conditions. An accurate LPD
system is important for security and management purposes.
Some researchers used those features that are sensitive to
light changes to represent LPs. For example, descriptors
based on global and local features [37], [38], local binary
patterns (LBPs) [39], histogram of oriented gradients (HOG)
[40], [41], scale-invariant feature transform (SIFT) [19], [42],
and Gabor features [43], [44] have been used.

As an LBP descriptor on each cell is normalized over several
of its neighbors, it includes more discriminative neighboring
information than other descriptors. The features based on gray
level statistics [45] are used to describe the textures in LPs and
have shown good discrimination results. Various combinations
of several different descriptors were also proposed for LPD
in an attempt to complement each other [37], [39], [40], [43].
However, it would lead to high feature dimensions. A num-
ber of techniques [46], [47] have been designed to reduce
dimensionality. Recently, several methods were reported to
quantify local features using coding techniques. They then
concatenated those coded features into a global features repre-
sentation over the whole image using pooling techniques, and
spatial pyramid matching [48], [49]. An one-to-all strategy
with a binary support vector machine (SVM) as the base
classifier [3], [19], [50] is widely used for LPD. Other
multiclass identification techniques are also used, such as
neural networks (NNs) [3], [51], [52] and AdaBoost cascade
classifier [19], [53]. A cascade classifier has shown a com-
parable performance with other popular methods in terms of
the computational speed of the detection process. However, the
detection accuracy for the cascade classifier is not very high if
it does not use some efficient enhancement techniques for the
training and testing datasets. Deep neural networks (DNNs)
based methods have a large number of tuning parameters.
Meanwhile, due to the multi hidden-layer structure, its com-
putational cost is very high. In [54], a method using CNN
to learn features and using an ELM as the classifier was
reported. That method obtained competitive results with less
computation time compared with those DNN methods. In
another study, the ELM was used for LPD with HOG and
the means of maximally stable external region [55]. Several
ensemble classifiers were also proposed [9], [56] to detect
various problems.

In this paper we propose a new descriptor, ML-ELBP, for
features extraction and use an ensemble of ELMs as the
classifier. We increase the size of the training dataset by using
better enhancement preprocessing methods through three level
processing steps. The Gaussian filter and CLAHE method are
used to introduce extra noise into the training set to avoid
the overfitting problem. We extend the English cars plates’
dataset to improve the detection accuracy of the LPD system.
The proposed method is robust to different LP styles, colors,
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Fig. 2. Framework of the proposed LPD method. (a) Testing Phase and
(b) Training Phase.

and languages. It can be used to enhance the performance of
any existing ANPR systems with different datasets.

III. THE PROPOSED METHOD

The proposed method involves two phases: the image pre-
processing phase and the LP detection phase. The first phase is
to enhance vehicle images for better performance while prepar-
ing for the detection phase. The second phase includes two
stages: 1) feature extraction stage; and 2) ELM classification
stage.

In the feature extraction stage, the ML-ELBP descriptor
is employed to extract features from a given input image
through three level pre-processing processes. The details of
this descriptor is described in Section IV. The second stage
applies an ELM classifier composed of a single hidden layer
feedforward network (SLFN) to train the ML-ELBP features.
An ensemble of strong features vectors are obtained as the
trained models.

The training phase uses the ELM algorithm to estimate the
connection weights in the SLFN for all training samples. The
proposed framework of the LPD system for training and testing
phases are shown in Figs. 2(a) and 2(b).

This study converts a color input image into a grayscale
image by formula (1):

Gray(i, j)=0.3 × R(i, j)+0.59 × G(i, j)+0.11×B(i, j) (1)

where i and j are any pixel inside a grayscale image. R (i, j),
G(i, j) and B(i, j) are three channels of Red, Green, and Blue,
respectively, for color images.

Large resolutions need more processing time. The vehicles
images are resized from 640 × 480 to 320 × 240 as shown in
Fig. 3. The proposed method uses texture features instead of
color features to detect the LPs because the color features are
very sensitive to the illumination conditions and noise [57].

Fig. 3. Examples of the resized original vehicle images from 640×480 into
320 ×240 resolutions with histograms (X axis = the range of features values
in each bin; Y axis = the numbers of features values appeared in each range
of bins).

The LPD method employs an intensity transition on a vehicle
image based on the extracted three level ELBP features as an
initial localization for the LP.

The intensity in the LP region may be very high because
various texts are included in the vehicle image. There are
various noise mixed with the text referring to non-LP regions,
such as surface textures, dust, distortion, and small amounts
of dirt. Noise incurs unnecessary features in an image. Image
enhancement methods are used to reduce noise and improve
the lighting conditions. Some LPs may not be recognized if the
vehicle images contain too much mixed noise and too distorted
(too dirty and dark etc).

IV. THE PROPOSED ML-ELBP DESCRIPTOR

The LBP [58] is one of the most popular texture descriptors
in the field of the computer vision and image analysis. It has
many advantages, such as invariance to illumination condi-
tions, low computational cost, and ease of implementation
[47]. A large number of LBP variants [6]–[8], [46], [47], [59]
have been proposed to improve its discriminative power,
robustness, and applicability. However, they are not so effec-
tive for processing images with difficult conditions.

In this paper we propose a new descriptor, ML-ELBP, based
on combining a CLAHE method and a Gaussian filter for
vehicle LP image feature extraction. It can extract repre-
sentative texture features from distorted images and images
under difficult conditions. The proposed descriptor is shown
in Fig. 4. It has a similar structure as the scale space ELBP
(SSELBP) descriptor proposed by Hu et al. [46], but with dif-
ferent preprocessing methods. Next we will briefly introduce
the concept behind the ELBP [7], [46], [47] before explaining
the block diagram of the proposed descriptor.

A. Review of the ELBP

Whereas the LBP encodes only the relationship between the
central point and its neighbours, ELBP was initially designed
to encode distinctive spatial relationships in a local region.
It contains more spatial information. The ELBP [7] consists
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Fig. 4. The block diagram of the proposed ML-ELBP descriptor.

Fig. 5. The block diagram of the ELBP descriptor.

of three LBP-like descriptors: the intensity value of the central
pixel (ELBP_CI), the intensity values of its neighboring pixels
in radial directions with radius R (ELBP_NI), and the intensity
difference values of the central pixel with its neighboring
pixels in radial directions (ELBP_RD). The ELBP framework
is shown in Fig. 5. The central pixel xC with the intensity
value gC are given to encode the intensity value of xC . The
ELBP_CI descriptor compares the gC value with the mean of

the neighboring pixels, denoted, βP,R = 1
P

P−1∑
N=0

gP,R,N, which

is defined as

ELBP_CI (xC) = L (gC − β), L(x) =
{

1, if x ≥ 0

0, if x < 0.
(2)

The ELBP_CI descriptor generates an one-bit binary pattern
in an image for each pixel. In addition to ELBP_CI, the ELBP
involves the ELBP_NI descriptor to extract features from the
intensities of the neighboring pixels P . The P neighbors
of the central pixel value are distributed on the circle with
the radius R and have the intensities values denoted as
gP,R,N=0,1,...,P−1. By comparing the neighboring pixels with
their average value denoted as βP,R , the ELBP_NI descriptor
encodes the intensity values as follows:

ELBP_NIP,R(xC) =
∑P−1

N=0
L(gP,R,N − βP,R) 2N (3)

The ELBP_NI generates a P-bit binary pattern in each
comparison which has been transferred into a decimal value.
The third descriptor involved in the ELBP is the ELBP_RD
descriptor, which encodes the intensity differences of the
pixels on two circles with the radius R and R-1 along the radial

Fig. 6. Pixel relations in radial directions.

directions (see Fig. 6). It is similar to ELBP_NI descriptor,
it generates a P-bit binary pattern and converts to the decimal
value, the ELBP_RD defined as

ELBP_RDP,R−1,R(xC)=
∑P−1

N=0
L (gP,R,N − gP,R−1,N ) 2N

(4)

Liu et al. [7] found that the ELBPriu2
r,p led to a good texture

classification performance. The operators of ELBP_NI and
ELBP_RD can produce 2N different binary patterns. We
further apply rotation-invariant and uniform mappings on
ELBP_NI and ELBP_RD to remove the rotation effect, and,
to reduce the pattern dimension. The updated operators are
denoted as ELBP_NIriu2

P,R and ELBP_RDriu2
P,R . Where the super-

scripts, “ri” and “u2”, represent the rotation-invariant and
uniform mappings, respectively.

B. Multi-Level Pre-Processing

A new descriptor uses multi-level pre-processing steps
through applying a Gaussian filter and the CLAHE method.
Firstly, we convert an LP image into a grayscale image, and
resize it from 50 ×260 to 25×100 resolution. Then, we build
a multi-level pre-processing features space to grayscale image
(Y) as follows:

Li =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y, i = 0,

CLAHE(σ ) × G(σ ), i = 1,

CLAHE(σ ), i = 2,

G(σ ) i = N

(5)

where Li is the level of pre-processing steps, i = 1, 2, . . . , N ,
and N is the total number of the levels. In this paper,
N = 4. G(σ ) is the Gaussian filter with the standard deviation
σ = 0.25. CLAHE(σ ) defines as a contrast-limited adap-
tive histogram equalization method with a standard deviation
σ = 0.01 (see Fig.7).

As a new image is produced in each pre-processing step, one
LP image is related to four images now. Therefore, the training
LP images database has been expended. Various representative
features can be captured from those images. The same pre-
processing steps are applied to the testing images, but just
with the first step L1. After that, we normalize each LP image
(Y) to ensure that it has zero mean and unit variance.

C. ML-ELBP Features Extraction

The ELBP descriptor depends only on one or two local
neighboring circles. It is not sufficiently robust to classify
texture images with scale variations. To solve this problem,
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Fig. 7. The multi-level preprocessing steps are applied on a training image.

we use more neighboring circles for the ELBP descriptor
with the Gaussian filter and CLAHE enhancement methods.
The training images are increased as the result of multi-
level image pre-processing. The next stage is to extract
strong weighted features using the ELBP descriptor with multi
neighboring pixels and different radius. As shown in Fig. 6,
with different (P, R) choices, the output group of ELBPs
are denoted as ELBP (Pi, Ri), i = 1, 2, . . . , N . Where N
is determined based on the size and the complexity of the
LPs images. To combine patterns in ELBP (Pi , Ri ), the joint
histogram brings the first concatenating patterns, after that
it calculates the corresponding histogram. The combination
scheme can be considered as the conversion from a joint multi-
dimensional histogram to one dimensional histogram. Based
on Hu et al. [46] the joint histogram of ELBP_CI, ELBP_NIriu2

r,p
and ELBP_RDriu2

r,p are denoted as HELBP_CI/NI/RDriu2
Pi ,Ri

. The joint

histograms of ELBP (Pi , Ri ) are calculated and the ML- ELBP
features are obtained and denoted HELBP_CI/NI/RDriu2

L(i)
, where

L(i) = ∑N
i=1 (Pi , Ri ).

The descriptor, firstly, divides an LP image into 16 cells
(2 × 8), then labels pixel P for each cell based on different
thresholding neighborhood circles and radius ((P = 8, R = 1),
(P = 12, R = 2.5) and (P = 16, R = 4)). The different
descriptors, ELBP_CI, ELBP_NI, and ELBP_RD, are used
in this paper to capture key features for the images with
difficult conditions (like distorted, dark, rotations, and dirty
images). The feature extraction involves to compare the center
pixels values with different neighbor’s circles and transfer the
decimal results to binary results with weighted values.

D. Maximum Pooling

The maximum pooling strategy is utilized for selecting the
maximum values from the corresponding bins of the multi-
level ELBP histogram features at different scales of an LP
image. For each level Li , the same (Pi , Ri ) set is used to
calculate the corresponding level of ELBP histogram features,
denoted as H Li

ELBP_CI/NI/RDriu2
L(i)

. The significant features of LPs

images at different levels can be captured by a parameter pair
in the (Pi , Ri ) set based on the multiple choices of (Pi , Ri )

Fig. 8. Architecture of the SLFN.

in the ML-ELBP. When the levels of LPs images change, the
remaining key features can be captured by the next pair of
histogram features. Their mathematical expression is shown
as follows:

HELBP_CI/NI /RDL(i) = max
i=1,2,...,N

(H Li

ELBP_CI/NI /RDriu2
L(i)

) (6)

Next an ELM classifier [18] is applied to distinguish the
extracted ML-ELBP histogram features, and to build the
trained models.

E. ELM Classifier

The ELM is a machine learning algorithm with a single
hidden layer feedforward network (SLFN) [18]. It is with high
efficient and easy to implement. It normally contains three
layers: input layer, hidden layer and output layer [60], [61].
The architecture of an ELM is shown in Fig. 8, containing N
input neurons, L hidden neurons and M output neurons. For
N different input data {xi}, i = 1, 2, . . . , N , the output H(x)
of the hidden layer can be expressed as shown in formula (7).

H (xi,) = Â(wx + b) (7)

where Â(x) represents the hidden layer activation function of
the ELM, w is the weight matrix between the hidden layer and
the input layer, and b is the bias of the hidden neurons.

The output of the neurons in the output layer can be
expressed as in formula (8).

H (xi )β = Y T
i , i = 1, 2, . . . , N (8)

The default activation function, sigmoid function for the hid-
den neurons in the ELM is applied in this study. Y represents
the training data target matrix. Formula (8) can be abbreviated
as:

H (xi,)β = Y (9)

where

H (xi,)

=

⎡
⎢⎢⎢⎣

Â (w1, b1, x1) Â (w2, b2, x2) . . . Â (wL, bL, x1)

Â (w1, b1, x2) Â (w2, b2, x2) . . . Â (wL, bL, x2)
...

...

Â (w1, b1, xN ) Â (w2, b2, xN ) . . . Â (wL , bL, xN )

⎤
⎥⎥⎥⎦

N×L
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and

β =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

βT
1

βT
2

.

.

.

βT
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

L×m

, Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT
1

yT
2

.

.

.

yT
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×m

(10)

The input weights w and bias b are randomly assigned in the
ELM algorithm. The speed of the ELM is significantly faster
than other training algorithms. For multiclass classification,
the ELM aims at minimizing the training error and the norm
of the output weights, which results in a less computational
time for training the SLFN [62]. Thus, in ELM the following
parameters are minimized:

Min. err. =
{∥∥Hβ − Y‖2

‖β‖ (11)

In the implementation, the minimal norm least square
method is used in this study. Therefore, only the training
error is minimized and the solution is unique. The input layer
is connected to the input feature vector x, (i.e., ML-ELBP)
for the LP image. The dimension number of x is denoted
as D. The connection between the input and hidden layers is
actually a function of feature mapping from a D space to an
L-dimensional space. Given an input feature x , its mapped
feature vector can be denoted as:

V(x) = [Â(w1, b1, x1), . . . , Â(wL, bL , xN )]. (12)

For the output layer, the number of the output nodes M is
equal to the number of ML-ELBP features for three levels.
The output weight between the ith hidden node and the jth
output node is denoted as βi, j , where j = 1, . . . , M . The
value of an output node j can be calculated as:

Fj (x) =
∑L

i=1
βi, j × Â (wL , bL , xN ) (13)

β is the weighting vector between output and hidden layers.
Thus, for the input sample xi , its output vector at the hidden

layer can be written as

F(x) = [ f1(x), . . . , fM (x)] = V (x)β (14)

Tamura and Tateishi [63] and Huang [64] pointed out that
a SLFN with N sigmoid hidden nodes could learn exactly
N distinctive ways. In this paper, the number of the hidden
nodes is 550 for getting the optimal detection results with the
extracted ML-ELBP features. It is set based on the detection
performance with the testing data set. The cell size is 9 × 9
for different thresholding neighborhood circles (8, 12, and 16)
and the average dimension of the feature vectors is 710.

V. EXPERIMENTAL RESULTS

A. Database

In this study, various vehicles images captured by digi-
tal cameras under different environmental conditions (cloudy
weather, rainy day, night lighting, dusk) are used. The database

Fig. 9. Examples of testing vehicles images in the database. (a) Vehicles
images from the original database. (b) Vehicles images with difficult changes
using the online photo editor.

Fig. 10. Some examples of LPs training images with rotations.

Fig. 11. Some examples for difficult training LPs images.

contains different types of 471 vehicles images, such as
trucks, passenger cars, and buses. This database is publicly
available [65]. An online photo editor [66] is used to increase
the vehicle images in the English license plates database. The
photo editor makes various complex changes on the original
images (see Fig. 9), and the resultant images are included in
the database. The final total number of vehicles images used
in this study is 1500. It contains rotated images in order to
detect various types of the rotated LPs with different angles,
such as 45◦, 30◦, 20◦, 15◦, and 5◦ as shown in Fig. 10.
To enable the LPD system to detect the LPs from low quality
images, the LPs images with different illumination conditions
are added to the training dataset. The final LPs images in
the database are divided into two groups: the testing group
containing 1000 vehicle images and the training group having
500 LPs images (see Fig. 11). Both original and changed
vehicles images are used in the testing set. The experimental
results showed that the detection accuracy was not noticeably
increased when more images were put in the training set.
This demonstrated that all the key characteristics have been
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TABLE I

THE CLASSIFICATION RESULTS BY LBP, ELBP, SSELBP, AND THE PROPOSED ML-ELBP DESCRIPTORS
WITH THE ELM CLASSIFIER ON ENGLISH PLATES CARS DATABASE, WHERE THE

TRAINING IS DONE WITH FIVE ROTATION ANGLES

captured from the 500 original LP images and their three level
pre-processing images in the training data.

B. Features Extraction and Classification

As this study focuses on features extraction rather than
classification, the ELM classifier has been used as a trainer to
distinguish the extracted histogram features for the LP regions.
In the proposed method, to build the multi-level processing,
we use a Gaussian filter with the standard deviation σ = 0.25,
and CLAHE (σ ) with the standard deviation σ = 0.01,
and set the pre-processing step to three. For all the levels,
we extract ML-ELBP features using the same set (Pi , Ri ),
i = 1, . . . , N , where N is determined based on the size
and the complexity of LPs images. We set i depending on
the use of different neighborhood circles i = 1, 2, . . . , 8;
i = 1, 2, . . . , 12; or i = 1, 2, . . . , 16 with R = 1; 2.5; 4,
respectively. The LPs features from the images with different
angles and descriptors are classified using the ELM.

For comparison, in addition to our proposed ML-ELBP,
other descriptors, LBP, ELBP, and SSELBP, along with the
ELM classifier are also applied to the same vehicle LP images.
All the experimental results are listed in Table I. It is noticed
that the best classification accuracy is from the ML-ELBP
descriptor with radius of (1; 2.5; 4). Through our experiments
and as reported in [7], the performance of the ELBP increases
when the neighborhood size is 11 ×11. The best performance
is achieved by ELBPriu2

((8,1)+(16,2)+(24,5)) for all the training
images and with different angles. The classification accuracy
is 97.89% when the features dimension is 1300. In general,
the LBP had the worst performance among the descriptors. The
central pixel also provides useful discriminative information.
Neglecting the central pixel would clearly result in information
lost, which is consistent with the conclusion reported by
Guo et al. [6] and Varma and Zissermam [67]. Thus it is
better to explicitly include the information from the central
pixel in ELBP based descriptors. Better results by the SSELBP
descriptor at the neighborhood size of 9 × 9 are obtained.
Combining SSELBPriu2

((8, 1)+(12, 1.5)+(16, 2)) can achieve an accu-

rate result of 98.41%, for the five angles at 45◦, 30◦, 20◦,
15◦, and 5◦. With all the training images and different angles
the classification accuracy is 98.76%. The features dimension
is 1010. The SSELBP performs better than the ELBP and
LBP descriptors. However, the proposed ML-ELBP descriptor
produces the best classification results for the five angles at
45◦, 30◦, 20◦, 15◦ , and 5◦. It combines all the features of
the M-ELBPriu2

((8, 1)+(12, 2.5)+(16, 4)) and can capture all important
textures information in an LP area. The average classification
accuracy for the five LP angles is 99.16%. The classification
accuracy for all datasets with different angles and resolutions
is 99.78%. The features dimension is 710 for a 9 × 9 cell
size. Also, it was observed that the good results obtained by
using different neighboring pixels with different radius values.
We acknowledge that different neighboring analysis increase
the histogram features dimension. However the dimensionality
of 710 for three resolutions is not a significant problem in
relation to our proposed descriptor. Finally, the ML-ELBP
produces robust classification results compared with the ELBP
and SSELBP descriptors.

The ELM constructs several models in the hidden layer from
the extracted features. Each training image is split into 16 cells
with 8×2 subsamples. The 16 cells histograms are merged into
one model histogram for the ML-ELBP descriptor. Moreover,
from one designated training image, each training sample has
three other physically different samples generated by the three
preprocessing levels. After that, the classifier produces binary
values or predicted value of “0” for non-LP and “1” for LP. It
can become a detector based on the predicted value from the
classifier. It is trained with different rotation invariant textures
for the LP with five angles (45◦, 30, 20◦, 15◦ and 5◦) and
different neighborhood circles with radius selection P and
R. We set the number of angles depending on the vehicle
images dataset which contains only those angles. The number
of overlaps depends on the locations from the LP region, with
an average of 2∼6 bounding boxes. Therefore, the trained
model detects different numbers of LP regions per vehicle
image.
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TABLE II

THE AVERAGE CLASSIFICATION RESULTS FOR ALL THE TRAINING
DATASET WITH DIFFERENT RESOLUTIONS BY LBP, ELBP, SSELBP,

AND THE PROPOSED ML-ELBP DESCRIPTORS

This study used one single classifier for all the rotated
images. During the experiments, firstly five classifiers were
used to train all the LP images rotated with angles of 45◦, 30◦,
20◦, 15◦, and 5◦, separately. Then, five trained models were
built and computed with results. After that, one classifier was
trained for all the rotated images and the results were obtained.
We observed that the results from both cases were very similar.
One single classifier, therefore, was finally used for efficiency.
There were two trained models: one was the normal LP, and
another one was for the rotated images with difficult problems.
Each trained model included two classes (LP vs non-LP).
In this work, we tried to increase the number of pre-processing
levels to reduce features dimensions. But this did not help
improve the accuracy for classification process. All the training
and testing images were conducted under different conditions
like low/high lighting, dirt, rotation, foggy, and distortion.

Due to the illuminant varied, some LP samples included sig-
nificant large grayscale distortions. Therefore, the English cars
database is more challenging than other databases which were
used in the previous studies [22]. Table II presents the average
classification results for our proposed descriptor, compared
with other existing state-of-the-art descriptors [5], [7], [8].

C. Impact of the Number of the Hidden Neurons

In the experiments, the only parameter to be determined for
the ELM is the number of the hidden neurons with ‘sigmoid’
activation function. Fig. 12 shows the detection rates with dif-
ferent numbers of neurons for the English plates cars database.
With a small number of the hidden neurons, the detection rate
is very low. The detection rate keeps improving as the number
of the neurons increases from 100 to 550. Adding more hidden
neurons does not help to further boost the performance beyond
550. Thus 550 neurons in the hidden layer was set for the ELM
in the experiments. We also tested other activation functions,
such as ‘sin’and ‘hardlim’. We found that the sigmoid function
gave better results. The whole process can finish in one
time period without iterations with a minimum training error.
We can notice from Fig. 12 that the performance of the ELM
is very stable for the large number of the hidden neurons.
Also, the performance tends to become worse, when it has
too few or many nodes generated randomly [68]. However,

Fig. 12. Detection rate and the number of the hidden neurons in the ELM
with different LBP based descriptors.

TABLE III

THE COMPARISONS OF THE LP DETECTION PERFORMANCES

BY DIFFERENT METHODS

the ELM with the ML-ELBP can achieve a good detection rate
at 99.10% with 550 hidden nodes, which is slightly higher
than the SSELBP with 650 nodes and with a detection rate
of 98.76%. It can also be observed that the ELM with the
LBP achieves a low detection rate of 94.55% with 900 nodes
compared to the ELBP that achieved 97.89% detection rate
with 800 hidden nodes. The proposed method outperforms
all the existing LBP based descriptors along with the ELM
in terms of the detection rate. It appears to be suitable in
real-time applications that, need fast prediction results and
response capability.

D. LP Detection Performance

The detection accuracies for the English car plates’ dataset
are shown in Table III. In this study, using different descriptors
to produce more advanced features brings the detection rate to
nearly 100%. For the real world scenario database, using those
features helps improve the detection rate significantly and pro-
duce good results. To evaluate the performance of the proposed
method, common measurement, such as detection or recall
rate (RR), precision rate (PR), and F-measure rate (FR) are
used in this paper. These measurements consider the true pos-
itive (TP) detection rate from the number of the positives as the
ground truth that is related to the number of the false positive
(FP) rate [32]. Those measurements can be defined as follows:

Positive prediction or Precision rate (PR) = T P

T P + F P
(15)

Detection or Recall rate (RR) = T P

T P + F N
(16)

F-measure (Fm) = 2∗
(

RR ∗ P R

RR+ P R

)
(17)
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TABLE IV

COMPARISON RESULTS FOR THE PROPOSED LPD METHOD AND OTHER
METHODS. THE PROPOSED METHOD PRODUCED THE BEST

DETECTION RATE WITH THE LOWEST FP RATE

where (Fm) is the trade-off between RR and PR; FN is the
false negative rate, which is equal to the number of vehicles
images in the ground truth that have LP, but the output of
LPD system shows that there is no LP inside those images.

Along with the ELM classifier, the ML-ELBP outperforms
other LBP descriptors. It takes less than one second to
process 640 × 480 images under difficult lighting conditions.
From Table III we can observe that the proposed ML-ELBP
descriptor produces the best recall and F-measure rates com-
pared with the LBP, ELBP, and SSELBP descriptors. The
ELBP descriptor achieves 98.6% precision rate which is 0.4%
higher than the ML-ELBP descriptor. The comparison results
of the performance evaluation with some existing methods
are shown in Table IV. The proposed method in this study
achieves a recall rate of 99.10%, which is higher than the
results by Asif, et al. [69] and Azam and Islam [22]. The F-
measure of the proposed method is 98.65%, which is also
the best compared with the method used by Asif et al.
The FP rate is less than those by Asif et al. and Azam
and Islam. Al-Shemarry et al. [56] introduced an efficient
detection method that achieved a 98.56% and 97.19% for
recall rate and f-measure, respectively, with 5.6% FP rate.
The proposed method in this paper has a slightly higher recall
and F-measure rate, respectively, and with a slightly lower FP
rate than those reported in [56]. This work obtained a 98.2%,
99.10%, and 98.65% for precision, detection, and F-measure
rate, respectively, with an FP rate of 5%. The results are much
better than those by He et al. [70] and Ho et al. [19].

Based on the above performance evaluation measurements,
the proposed method outperforms all the existing methods
in terms of precision, recall, F-measure, and FP rates for
LP detection. The ELM is significantly faster than other
classification methods, which makes the proposed method
more feasible for large-scale real-time applications.

E. Detection Results

Some detection results of the proposed method based on the
vehicles images in the database are shown in Fig. 13. It can be
noticed that all the LPs were detected although some unwanted
features appeared with different LP variations conditions. The
reason is that the lighting conditions are very poor with dusk.
Therefore, these conditions are making the LP hard to identify.
Moreover, some false positives were noticed when several
objects that look like a LP (such as commercial signs and

Fig. 13. Examples of successful vehicles images detection results using the
proposed method for the cars images with dirt and low light (b), (e), (j), (k);
with different views point (a), (b), (d), (l); with fog and dusk (e), (f), (j); with
distortion (c), (f), (i) and with low/high contrast (d), (g), (h), (i) problems.

vehicle logo) in the vehicle images are detected with a low
trust value.

F. Computational Cost

The computational costs for the LP detection using the
ELM with different LBP descriptors for the training and
testing phases are shown in Table V. The reported time is
the averaged time for both phases. All the experiments were
conducted using a computer with 3.4 GHz Intel Core i7-4770,
16GB RAM, using MATLAB, R2017b version. The process-
ing time is an important indicator of a system performance.
The proposed descriptor does not need much processing time
and achieves a very good accuracy compared with other
existing descriptors. The average of detection time per one
vehicle image is 0.735s. The vehicles images under dusty,
foggy, night-time and distortion conditions normally need
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TABLE V

THE AVERAGE COMPUTATIONAL TIME FOR THE TRAINING AND TESTING
PHASES. THE TRAINING TIME IS IN SECONDS (S) AND

TESTING TIME IS IN MILLISECONDS (MS)

more processing time to detect the complicated LP features.
Some vehicle images include other logos and commercial
signs on them, which are easily mixed up as the LP area.
The proposed method is robust and can capture the significant
LP features during the pre-processing phase. It produces a low
FP rate. From Table V the computation time for the ML-ELBP
descriptor with the ELM is much shorter, compared with other
existing descriptors to solve many difficult problems.

VI. CONCLUSION

This study proposed a new ML-ELBP descriptor to extract
different LP features from a multi-level preprocessing stage
by a Gaussian filter and the CLAHE method using an ELBP
descriptor. We increased the number of training vehicle images
through the pre-processing stage. The English car plate data-
base was extended using an online photo editor to make
different changes on the original vehicle images to reflect
various difficult conditions. It helped improve the accuracy
of the LPD system. The ELM classifier was used to classify
and learn the ML-ELBP features in order to produce an
ensemble of strong features vectors or trained network models
as a detector to detect different LPs. This work used a
feature vector of 710 dimensions to represent the LP regions,
which was trained using a SLFN with 550 hidden nodes.
The output neurons depend on the number of LP classes
in the training dataset. The proposed method was tested on
further distorted images (unseen data) taken under difficult
conditions, such as low/high contrast, foggy, and rotated LPs.
The overall performance evaluation for the detection, precision
and F-measure rate is 99.10%, 98.2%, and 98.86%, respec-
tively, with an FP rate of 5%. The experimental results of the
proposed method were also compared with several existing
LPD methods that used the same database. It outperformed
those methods in terms of the detection rate and efficiency.
The average detection time per vehicle image was 0.735s.
Many existing methods used only the testing phase with the
pre-processing stage under some assumptions. This proposed
method works well without assumptions due to the use of two
separate phases of testing and learning.

The experimental results demonstrated that the proposed
method could be used efficiently for real-time applications.
In the future, we intend to improve the proposed LPD to
further reduce the false positive, and to better adopt weather
conditions. At the same time, the overall processing time of the
detection system will be reduced through high speed hardware
and software selections.
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CHAPTER 5 

DEVELOPING LEARNING-BASED PREPROCESSING 

METHODS FOR DETECTING COMPLICATED LICENCE 

PLATES 

 

 

 

5.1    Introduction  

The content of this chapter is an exact copy of the published paper in the journal of IEEE Access 

by Al-Shemarry, M.S. and Li, Y, (2020) ‘Developing Learning-Based Preprocessing Methods 

for Detecting Complicated Vehicle Licence Plates’. 

 In Chapter 4, the MLELBP_ELM method succeeded to solve some weakness that faced 

the detection system in chapter 3, such as increased the detection accuracy, reduced the 

execution time, and a slightly improved FPR. 

 This chapter focuses on the preprocessing techniques that use a combination of 

powerful descriptors for distorted images. At the preprocessing stage the method now consists 

of a Gaussian filter, an enhanced version of the cumulative histogram equalization (ECHE), 

and a contrast-limited adaptive histogram equalization (CLAHE) techniques. These 

enhancement techniques are very useful to filter out the unwanted LP regions, to reduce feature 

dimensions and save the processing time at extraction stage. At the extraction stage, the 

combination of powerful descriptors, a median-filter histogram of oriented gradient (MHOG), 

and LBP descriptors are used for extracting complicated feature values. The extracted features 

use as inputs to the support vector machine (SVM) classifier to construct the detector that 

identifies the LP area. The SVM detector successfully removed the redundant bounding boxes, 

or unwanted sliding windows, which lead to increased FPR, by using the mean-shift algorithm. 

The proposed method was tested on a very challenging database published in Chapter 4. The 

5 
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performance of the SVM detector was evaluated with the ELM detector through a 5-fold cross-

validation procedure and using the receiver operating characteristic (ROC) curve. Also, the 

proposed approach was evaluated using several performance measurement metrics for object 

detection systems. The outcomes were compared with the recently reported algorithms in 

Chapters 3 and 4, and with other existing detection algorithms. From the experimental results, 

the proposed method outperformed other existing methods with the same database in terms of 

the FPR, detection accuracy rate, and time processing. 

 The Matlab code of this method is provided in Appendix C.  
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ABSTRACT A licence plate detection (LPD) system is an important tool in several roadway traffic 

applications. This study aims to develop an advanced detection system that works well in complicated 

scenarios. It proposes a robust preprocessing enhancement method for accurately detecting the licence plates 

from difficult vehicle images.  The proposed method includes the combination of a Gaussian filter, an 

enhancement cumulative histogram equalization method, and a contrast-limited adaptive histogram 

equalization technique. The local binary pattern and median filter with histogram of oriented gradient 

descriptors are used as powerful tools to extract key features from three types of licence plate resolutions. 

The extracted features are used as input to support vector machine classifier.  Processing methods, such as a 

position-based method are used with the detector to reduce unwanted bounding boxes, as well as false positive 

values. Four databases consisting of 2050 vehicle images under different conditions are used. Various 

detection metrics, object localization, and the receiver operating characteristic (ROC) curve are used to 

evaluate the performance of the proposed method. The experimental results on vehicles databases in several 

languages, including English, Chinese, and Arabic number plates, show that the proposed method has 

achieved significant performance improvements. It outperforms the state-of-the-art approaches in terms of 

both the detection rate and the processing time. The detection rate when trained with 1520 LP images is 

99.62% with a false positive rate of 1.675% for complicated images. The average detection time per vehicle 

image is 0.2408 milliseconds. 

INDEX TERMS Histogram of oriented gradient, Licence plate detection, Local binary patterns, Support 

vector machine. 

I. INTRODUCTION 

Automatic number plate recognition (ANPR) systems have 

become a very important tool in many surveilling 

applications over the past few decades. They are often used 

as a surveillance technique to identify licence plates of 

vehicles and are very useful for security systems, highway 

road tolling systems, traffic sign systems, tracking, and 

parking management systems [1-5]. The existing systems 

often work under some standard conditions, such as low-high 

lighting, rain, and limited day-night lighting. It is still very 

challenging to identify licence plates (LPs) from complicated 

vehicle images because of environmental effects. 

A robust licence plate detection (LPD) system is desirable 

to effectively work under all sorts of difficult conditions, 

such as night, dusk, rain, fog or snow; with images that are 

blurred, rotated, low-high lighting, distorted, with complex 

backgrounds and different colors. A number of examples for 

problematic licence plate (LP) images are shown in Fig. 1.  

Some examples for ANPR applications are shown in Fig. 

2. As an LPD system is rather difficult, the feature extraction 

techniques for doing this task should be developed carefully 

to extract and classify relevant features from regions of 

  

 
 
FIGURE 1. Examples for complicated images of an LP included in 
the databases. 
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interest. Several extraction methods are widely used 

individually or combined together for the LP detection, such 

as local binary patterns (LBPs) [6], global and local features 

[7], Haar-like features [8], scale invariant feature transform 

(SIFT) [9], histogram of oriented gradient (HOG) [10], and 

so on.   

The robustness and distinctiveness of the LBP descriptor 

is usually used to capture the important information that is 

sensitive to the illumination and rotation conditions [11]. But 

especially with distorted images, the descriptor needs to be 

further improved to focus on important information. Since 

the HOG focuses more on the edge information of an image, 

it is used widely to detect objects inside an image [10]. 

Therefore, the HOG features have been used with LBPs to 

obtain good extraction results. The main contributions of this 

study are: 

1) Developing a new pre-processing method that includes 

the combination of a Gaussian filter, the enhancement 

cumulative histogram equalization (ECHE) method, and 

contrast-limited adaptive histogram equalization 

(CLAHE) technique to filter out unwanted LP regions to 

improve the accuracy of the detection system. 

2) Improving the work of the HOG descriptor by using a 

median filter and combined it with the LBP descriptor 

to produce a powerful feature extraction method for 

complicated image environments, such as low/high 

contrast, fogginess, blurriness, rotated LPs, and dark, or 

complex backgrounds. 

3) Increasing the classification accuracy by applying a 

support vector machine (SVM) and extreme learning 

machine (ELM) as an effective classifier, separately, 

with a new updated descriptor MHOG and LBP 

descriptor.  

4) Removing redundant bounding boxes, which increase 

the false positive rate, using processing methods, such 

as a position-based method (mean-shift) with detectors. 

5) Evaluating the proposed method using several 

performance measurement metrics and comparing its 

performance with the newest existing LPD methods. 

 

    This paper is organized as follows: Section II reviews the 

related research work. Section III introduces the proposed 

method, the details about the HOG and LBP descriptors, and 

the SVM and ELM classifiers. Section IV presents the 

databases. Section V shows the experimental results. Section 

VI presents the comparison with other existing methods.  

Finally, Section VII describes the conclusions and future 

work. 

 
II. RELEVANT WORK 

The main goal of developing an LPD system is to identify 

the licence plate number from the regions of interest (ROIs) 

in vehicle images. Many LPD methods in the literature were 

proposed. Although the LPD systems have been studied for 

many years, it is still very challenging to detect LPs from low 

quality images. Some methods developed depended on a 

specific color or language, or were limited to fine weather 

conditions, while others were sensitive to the lighting and 

complex backgrounds [12-14]. In addition, the angle of 

camera and the distance constraint make an LPD system less 

robust [15]. The detection of LPs in hazardous conditions is 

not easy, especially with complex backgrounds, which often 

produces a number of non-LP regions. For example, the 

proposed method by Azam and Islam [16] was not robust for 

angle invariant nor with distance. The texture-based methods 

are widely used by many researchers due to the significant 

texture change in the pixels greyscale level. The support 

vector machine (SVM) classifier is one of the supervised 

machine learning algorithms that is commonly used for 

classification and regression [17]. It can be seen as a type of 

single layer forward neural network (SLFN), called a support 

vector network [18]. The output be very good using a SVM 

if it is used to detect objects with good pre-processing and 

extraction techniques. The method by  Kusakunniran, et al. 

[19] used a SVM as the machine learning tool, and fed the 

candidate license plate (CLP) images as the input to the SVM 

during the training and testing phases. In that study, the SVM 

was applied directly to the input images without any 

discriminative features being extracted. It made the detection 

system very sensitive to noise and geometric transformation. 

As a result, the detection accuracy was reduced to 80% and 

the training time was increased. Recently, deep neural 

networks (DNNs) [20] and convolutional neural networks 

(CNNs) [21] have been used as an automatic means to learn 

the key features in LPs. The DNN algorithms can combine 

the feature extraction and classification into one unified 

neural network framework. They have shown a higher 

detection accuracy. However, the features learning 

mechanism in DNNs cannot guarantee robustness in difficult 

image conditions, for example, rotation and scaling, unless 

the training samples can cover various observation 

conditions. Furthermore, their computational costs during 

both training and detection processes are expensive due to 

Parking Guidance System           Access Control to Residential    

                
 Traffic Law Enforcement                Motorway Road Tolling        

      
Parking and Secure Access                 Road Signs Systems    

     
 
FIGURE 2. Examples of ANPR applications. 
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the multi-hidden-layer structure. In [22], a method using a 

CNN to learn features and an ELM as the classifier was 

reported. That method obtained competitive results with less 

computation time compared with those with DNN methods.  

However, the performances of those methods were 

compromised with the real conditions of a complex 

background and changing outdoor light conditions. 

Therefore, using a combination of textures features with 

good pre-processing methods to detect the LPs from 

complicated images can result in a better system 

performance. With the high speed of vehicles, not only the 

accuracy but also the computational speed are the key factors 

for real-time applications. 

This paper proposes an efficient framework for improving 

the performance of an LPD system. It includes a pre-

processing method, containing a Gaussian filter, 

enhancement cumulative histogram equalization (ECHE) 

and contrast-limited adaptive histogram equalization 

(CLAHE) methods. This combination works well for all 

conditions, and is suitable for different LP colors, styles, and 

languages. It can be applied to enhance any existing ANPR 

system with different databases. After the pre-processing 

stage, this study employs two powerful descriptors, HOG 

and LBP [23, 24]. A median filter was used with HOG 

(MHOG), descriptor to reduce noise during the extraction 

stage. The MHOG and LBP descriptors are used to extract 

several significant features from LP images. Finally, the 

SVM is used to build the trained model to detect the LP 

regions and also an ELM classifier was used for evaluation 

purposes. An English car database which was reported by Al-

Shemarry et al. [25] was used in this study. This database 

contains many complicated vehicle images with different 

conditions, including low/high lighting, dusk, dirt, fog, and 

distorted images.  

 
III. PROPOSED METHODOLOGIES 

The structural diagram of the proposed LPD methodology is 

illustrated in Fig.3. It consists of two stages: training and 

testing. The training stage employs SVM and ELM learning 

algorithms, separately. Both training and testing phases use 

the same pre-processing and extraction methods. At the pre-

processing stage, the ECHE and CLAHE techniques are 

applied to enhance the problematic part of vehicles images, 

while keeping the quality of the normal images during the 

enhancement process. Through the feature extraction stage, 

this study carefully selects the effective descriptors, MHOG 

and LBP, which are suitable for difficult conditions such as 

under low/high contrast, dirt, dusk, fog, and distortion 

problems. Finally, the detection stage uses a SVM and an 

ELM classifier, separately, as trained models to detect the LP 

region from the tested input vehicle image. The output results 

are saved for the recognition stage to obtain a complete 

ANPR system. The details about the proposed method are 

presented in the next sections. 

 
A. ENHANCEMENT STAGE FOR VEHICLE IMAGES 

The proposed framework uses the texture and gray level 

features to detect the LP regions instead of color features 

 
FIGURE 3.  The structural diagram of the proposed LPD method for both testing and training phases.  
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which are very sensitive to the illumination and noise 

problems. The main purpose of this study is to detect the LP 

numbers under complicated conditions, for example under 

different illumination. Most previous studies converted the 

color images into grayscale ones for RGB reduction [26]. 

According to Saravanan [27] a color image IMRGB (i, j) has 

M × N dimensions. Where M is the height or the number of 

rows and N is the width or the number of columns in the 

image, and 0 ≤ i ≤ (M-1) and 0 ≤ j ≤ (N-1).  IMRGB (i, j) 

was converted to a grayscale image, Gray (i, j), by  Eq. (1) 

[27] : 

 

Gray (i, j) = 0.2989 × R (i, j) + 0.5870 × G (i, j) + 0.1140 
× B (i, j)                                                       (1) 
 

where R(i, j), G(i, j), and B(i, j) are the three channels of 

colors, red, green and blue, respectively. 

 

A large image resolution needs more time processing. In 

this study, an English car database has a consistent resolution 

of 640×480 pixels. In this study, a sliding window (M×N) 

will be used to scan an image from M×N resolution instead 

of scanning the whole image. The sliding window will be 

started to detect LP regions from M = 200 and N = 30. This 

process leads to reduce the processing time and obtain better 

detection results. As shown in Fig. 4, the LPs in the training 

dataset have three resolutions, 100×25, 200×50, and 300×75 

pixels. 

Referring to non-LP regions, there are various sources of 

noise along with the text in a vehicle image, such as surface 

textures, distortion, dusk, low/high lighting, and dirt. Those 

noises increase the bounding boxes during the detection 

stage.  

In this study, we propose an enhancement pre-processing 

algorithm to reduce noise and improve the lighting  

conditions for complicated images without affecting on the 

quality of the images in normal conditions. The steps of the 

ECHE combined with the CLAHE algorithm are as follows: 

 

1) Apply a Gaussian filter with the standard deviation  

σ= 0.25,  

2) Apply the cumulative histogram equalization 

(CHE) method, 
 

𝑃𝑥(𝑖) = 𝑃(𝑥 = 𝑖) = 𝑛𝑖 𝑛⁄  , 0 ≤ 𝑖 < 𝐿        (2) 
 

where L is the total number of grayscale levels in an 

image which is typically 256 and n is the image 

pixels.  𝑃𝑥(𝑖) is the image's histogram of the pixel 

value i, which is normalized to [0, 1].   

 

3) Calculate the histogram of the cumulative 

distribution function (CDF), which is also an image 

accumulated normalized histogram and defined as 

  

            𝐶𝐷𝐹𝑥(𝑖) = ∑ 𝑃𝑥(𝑗)𝑖
𝑗=0                    (3) 

4) Calculate the new values of the histogram through 

the general histogram equalization formula,  

 

𝐶𝐷𝐹𝑦(𝑖) = 𝑖𝐶                              (4) 

 

where C is a constant in the range of [0-L] , which 

is also needs  a linearized CDF across the new value 

range y. 

5) Apply the contrast-limited adaptive histogram 

equalization (CLAHE) method with the standard 

deviation σ= 0.02, and  

6) Build a new enhanced image by replacing each gray 

value in the image with the new gray values. 

The performance differences between the CHE, CLAHE, 

and the proposed pre-processing methods (ECHE+CLAHE) 

can be observed on Figs.5 (a), (b), and (c), respectively. 

From Figs. 5(a), (b), and (c), note that the proposed pre-

processing method reduced the range of feature dimensions. 

Some results applied on testing vehicle images by the 

algorithm are shown in Fig. 6.  

                      640 × 480 pixels                            640 × 480 pixels                                      640 × 480 pixels 

   
                                                  

                                                  100× 25 pixels    200 × 50 pixels          300 × 75 pixels 

     
 
FIGURE 4.  The different resolution for LP in the training dataset. 
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The grayscale image histogram has 256 bins by default. It 

represents the distribution function of image intensities. The 

imhist function in Matlab shows the histogram plot (X, Y), 

where X is the spaced bins, and each bin represents the range 

of feature values, Y is the number of pixels within each range. 

From the Fig. 6, we can observe the results by the 

enhancement method for different types of both, clear and 

complicated vehicle images. Using the histogram 

information helps decrease the value ranges of the unwanted 

features. The next subsection presents more details about the 

strong descriptors used in this study.  

 
B.  THE HOG AND LBP DESCRIPTORS  

This study uses two powerful descriptors, HOG and LBP, to 

extract key features from complicated LP images. They are 

used in this work for many reasons as described in this paper. 

                     Original image                             CHE method                                  CLAHE method                       (ECHE+CLAHE) method 

              

   
                                                                           (a)                                           (b)                                             (c) 
FIGURE 5. The output of unenhanced image (left) compared to three preprocessing enhancement (a), (b), (c) to the right, (a) is the CHE method, (b) 
is the CLAHE method, and (c) is the proposed preprocessing method (ECHE+CLAHE) (X axis = the range of features’ values in each bin, Y axis = 
the number of features’ values appearing in each bin range). 

 

 

 

 

 

 
FIGURE 6. The output with the histogram for the testing complicated vehicle images in the dataset. The histogram displays how the enhancement 
algorithm works (X axis = the range of features values in each bin, Y axis = the number of feature values appeared in each bin range). 
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The description about the extraction descriptors is given in 

this section.  

 

1) The HOG descriptor 

The HOG descriptor is one of the common imaging 

descriptors in the area of the computer vision [28]. It delivers 

good results in different computer vision applications, such 

as face detection [29], vehicle detection [30], and text 

extraction [31]. In addition, it is not sensitive to lighting 

changes and small offsets. It can effectively describe the 

edge features of an object. Therefore, it provides a rough 

estimation of the object appearance and shape. The steps for 

the extraction of the HOG features were as follows: 

 

a. Used the median filter with HOG and assumed that the 

input to the MHOG descriptor is a window G from the 

enhancement LP grayscale image. The first step for 

MHOG is to divide G into non-overlapping blocks of 8 

× 2 pixels. Each block is divided into small regions or 

called cells (8 × 8 pixels). The cells are combined into 

adjacent blocks of 2 × 2 cells, and we concatenate those 

four cells histogram into one block features. The 

horizontal and vertical gradients are obtained for each 

pixel inside the cell. The simplest technique to do that 

is by using the 1D Sobel operators ([-1, 0, 1] and [-1, 

0, 1] T) [32]: 

 

Gx (x, y) = G (x+1, y) – G (x-1, y)    (5) 

Gy (x, y) = G (x, y+1) – G (x, y-1)   (6) 

 

where Gx (x, y) is the horizontal gradient, and Gy (x, y) 

is the vertical gradient. x and y are the row and column 

indexes, respectively.  

b. After that, the gradient is transformed into the polar 

coordinates of x and y directions with the angle set to 

between 0 and 180 degrees.  The gradient magnitude µ 

and the direction of pixel θ are calculated according to 

Eqs. (7) and (8). 

µ(x, y) =√Gx
2+Gy

2                                        (7) 

θ (x, y) = 
180

π
(tan2

-1(Gx, Gy) mod π )           (8) 

 

where tan2
-1 is the inverse tangent for the quadrant, 

which produces values between −π and π. 

c. The MHOG histogram in each cell is computed, and all 

the values are joined into 9 bins, meaning the cell is 

divided into nine gradient directions from 0° to 180° 

orientations. In this way, we can gain different gradient 

orientations due to different contrasts among images. 

Therefore, the block gradient histogram should be 

normalized. The block normalization technique is a 

mid-solution for changes in illumination conditions. 

The cell histograms need to be normalized to reduce 

the contrast changes between the images for the same 

object. The normalization process can be done on the 

histogram vector by using L1-norm or L2-norm. The 

L1-norm provides lower reliability than L2-norm [28]. 

This study uses the L1-norm for the normalization of 

the MHOG features vector.  

d. Finally, we collect the MHOG for all overlapping 

blocks features in the detection window, and combine 

them into a final MHOG features vector for 

classification. The steps of generating the MHOG 

descriptor from an LP image are shown in Fig. 7. The 

extracted features’ histograms are used as the input to 

the SVM and ELM classifiers, separately, to build the 

final LP detector. 

 

2) The LBP descriptor 

The second powerful descriptor used in this study is the LBP. 

It is employed to extract different features for several reasons 

[24]. The LBP is effective for different illumination 

 
FIGURE 7. Steps of generating the MHOG descriptor for a LP image patch. 
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conditions and can solve the scale invariance and occlusion 

problems. The first LBP descriptor was presented by Ojala 

et al. [24] . The study divided the trained image into cells and 

labelled the pixels in each cell using a 3 × 3 window, then 

selected the center pixel value of the cell as a threshold. The 

center pixel value was then compared with the gray values 

from neighboring 8 pixel cells. If it was smaller than the 

neighbouring pixel value, the location of the pixel was 

marked by 1, otherwise 0. Therefore, the 8 neighboring 

values in the 3×3 window could produce 8 binary numbers. 

The 8 binary numbers are usually converted to the decimal 

numbers which are the LBP code.  In total there were 256 

grayscale values. The LBP values of the window for the 

central pixel are utilized to reflect the texture information in 

the region (see Fig. 8). The LBP code value of the center 

pixel is calculated by Eq. (9): 

 

LBP(xc,yc
)= ∑ f(p

n
-p

c
)2ni-1

n=0                (9) 

where p
c
 is the brightness value of the center pixel 

value (xc,yc
), p

n
 is the brightness value of the n point in the 

i neighbouring domain.  f(x) function is defined as: 

f(x)= {
1,  x≥0

0,  x<0
}      (10) 

For example, the pattern of 11001111 includes more than 

two transitions. Therefore, it is called uniform patterns. The 

single LBP descriptor can produce much fewer uniform 

patterns without loss of useful features. After the LBP 

operator labelled image, f
l
 (x, y) has been obtained. The 

histogram of the LBP can be defined as: 

Hi= ∑ I{f
l
(x, y)=i}, i=0, …, n-1,x, y        (11) 

in which n is the number of labels that are produced by the 

LBP descriptor, and I{f(x)} is 1 if f(x) is true and 0 if f(x) is 

false. 

The features from each LBP region are concatenated into 

a maximum pooling features histogram vector. The steps for 

generating the LBP descriptor from an LP image are shown 

in Fig. 8. Finally, the extracted features histograms are used 

as the input to the SVM or ELM classifier to build the final 

trained LP detector. The LBPs are useful to remove the 

unwanted regions or noise from images [33]. 

 
C. FEATURE SELECTION USING SVM AND ELM 

CLASSIFIERS 

Despite most of the learning algorithms being able to do the 

same job, their performance is heavily dependent on the pre-

processing and extraction methods used. In this research, a 

deep learning classifier, such as a CNN, was also used. But 

it did not yield good classification results, especially with the 

HOG descriptor. A CNN classifier normally requires a fixed-

resolution for input images [34], while there are three 

resolutions included in our training dataset. Thus it is not 

easy to conclude which learning algorithm is better than 

others. In this study, two popular classifiers were used, SVM 

and ELM, to evaluate the performance of the proposed 

method. All the extracted features using the MHOG and LBP 

procedures are fed to the classifiers separately, and build an 

ensemble of strong LP detectors to detect different LP 

features. To make the trained model computationally 

efficient in terms of the processing time and accuracy, most 

discriminative features should be extracted, and redundant 

information and noise are removed. This paper applies a 

SVM or ELM classifier to train and classify the extracted 

features. The descriptions of the classifiers are given in this 

section. 

 

1) Support Vector Machine (SVM)  

The SVM is one of the supervised machine learning 

algorithms, that is commonly used for classification and 

regression [17].  It can be seen as a type of artificial 

intelligence network, called a support vector network [18]. 

The main objectives of a binary SVM is to separate the 

 
 
FIGURE 8. Steps of generating the LBP descriptor for LP images. 
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margins in the feature space of the two different classes 𝛼𝑖 , 

positive and negative (see Fig. 9).  

In general, linear functions are utilized as a separating 

hyperplane in the feature space 𝑥𝑁 . It is used in pattern 

recognition and object detection for the generalized linear 

classifier. Then, it gives a decision surface maximized by 

employing an optimization approach. A kernel function K 

(𝑥𝑁 , x), such as linear, nonlinear, gaussian kernel, sigmoid, 

polynomial, radial basis function etc., is used to achieve 

better classification performance. When using a kernel 

function K, the scalar output y
N 

α
N 

, can be implicitly 

calculated in the kernel feature space N with a threshold bias 

value b. Refer to the references in [17] for more details about 

the SVM classifier.  
  

2) Extreme Learning Machine (ELM) 

Although the neural network and support vector machine are 

widely used [35, 36] , those types of algorithms have a low 

learning speed for a reasonable classification accuracy [37]. 

The ELM is a single hidden-layer feedforward neural 

network (SLFN), initially proposed by Huang et al [38].  It 

can be viewed as a variant of a random vector functional-link 

(RVFL) network classifier [39] without direct links and bias 

terms. It ignores the need for tuning parameters in the 

training phase and hence minimizes the training time 

compared to the traditional neural networks. The ELM 

workflow is illustrated in Fig. 10, where the network input 

(IW) vector obtained from the input extracted features of the 

HOG and LBP multiplied by the input weight IW matrix.  

The IW and the hidden-layer bias b values are randomly 

assigned, while the output weights OW are analytically 

calculated. After that, the results are added to the bias vector 

b to create the input to the “sigmoid” activation function and 

produce a good output layer.  The b value as the threshold 

helps the input layer to decide the activation of neurons and 

increases the flexibility of the training model. Without bias, 

the neurons do not pass to the other network layers. Finally, 

the output of the “sigmoid” function is multiplied with the 

network output weight OW matrix to produce the final results 

ym or decision function. Refer to reference [40] for more 

details about the ELM classifier. 

 
 

D. THE OVERLAPPING AND REDUNDANT BOUNDING 
BOXES 

In this study, a sliding window is applied to scan vehicle 

images. The MHOG and LBP features are extracted at each 

stage of the sliding window. After that, the trained classifiers, 

SVM or ELM, are applied to detect the LPs. If the classifier 

detects the LP, the bounding box records the region of 

interest. When the scan process is completed on the whole 

testing image, many bounding boxes are detected around the 

LP region in the vehicle image. Therefore, a suppression 

technique is applied in order to remove the overlapping and 

redundant bounding boxes from the detection area. Fig. 11 

shows an example of the overlapping bounding boxes 

problem with both classifiers, SVM and ELM. 

As shown in Figs. 11 (a) and (b), the vehicle image has six 

and 15 overlapping bounding boxes with SVM and ELM, 

respectively.  This is an open problem, no matter which 

detection method is used, whenever the LP area was 

correctly detected.  Here all those redundant boxes refer to 

the same LP, a technique to suppress the smaller bounding 

boxes and keep the larger bounding boxes is required, as 

shown in Figs. 12 (a) and (b). 

There are many ways to solve the overlapping bounding 

boxes problem. A position-based method, or mean-shift, is a 

generalized as the way to detect an object by searching the 

candidate objects which have the highest similarity with the 

detected one [41] . In this study, the proposed method applies 

the mean-shift algorithm to reduce the similar candidate 

objects or overlapping bounding boxes for LPs. It is used to 

capture multiple regions in the space of the bounding boxes 

by utilizing the coordinates of the redundant boxes, (x, y), as 

well as the current scale of the tested image (logarithm). A 

mean-shift tracking technique is used to track the detected 

LP in a vehicle image.  The process of the mean-shift method 

is shown in Fig. 13.  

 

 
FIGURE 9. The workflow of the support vector machine network.                                       

 
FIGURE 10. Extreme learning machine workflow. 
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This method starts with searching around the overlapping 

windows of the LP region. The windows have the same x 

coordinate as the LP frame. Then, the average of y 

coordinates which have different positions to the start point 

x is calculated and removed. The results from using this 

algorithm are very satisfactory, with low false positive 

values and higher accuracy rates. Also, this algorithm relies 

on the effective classifier of the SVM or ELM that is selected 

to produce good results. Refer to reference [41] for more 

details about the mean-shift algorithm.  

 

 

IV. DATABASE     

The proposed method is tested on two groups of databases: 

1) An English car database including 510 vehicle images 

under different conditions [42].  2) An extended English car 

database by Al-Shemarry et al. [25] covering 1540 vehicle 

images under complicated conditions, such as too dark, 

blurry, distortion, and low/high contrast environments (see 

Fig. 14). The second database is an extension of the first 

English car database as Al-Shemarry et al. [25] changed the 

lighting, blurry, distortion conditions using online photo 

editor application to make it more challenging [43]. From the 

two databases, 530 vehicle images were randomly selected 

for the testing and 1520 were used for the training LPs 

dataset. The total number of vehicle images is 2050. In 

addition, this method is also applied to different vehicle 

images with Arabic or Chinese language on the licence 

plates. The vehicle images are downloaded from the Internet 

and resized into 480 ×640 resolution and are used to evaluate 

the performance of the LPD system as shown in Fig. 15. 

 The extended database also includes the rotated images with 

different LP angles, such as 45˚, 30˚, 20°, 15°, and 5˚. 

Moreover, the training dataset contains various illumination 

                                                SVM _MHOG_LBP                                                             ELM_MHOG_LBP  

    
                                                           (a)                                                                                           (b) 
FIGURE 11. (a) The output of the proposed method using the SVM without the mean-shift algorithm; (b) The output of the proposed method using 

the ELM without the mean-shift algorithm.  

 
 

FIGURE 13. Steps of the mean-shift algorithm. 

 

                                        SVM_MHOG_LBP+ mean-shift                                  ELM_MHOG_LBP + mean-shift 

 

     
                                                                (a)                                                                                (b) 
FIGURE 12. (a) The output of the proposed method using the SVM with mean-shift algorithm, (b) The output of the proposed method using the ELM 

with mean-shift algorithm. 
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conditions with three LPs resolutions of 100×25, 200×50, 

and 300×75 to enable the LPD system to capture LPs from 

complicated or low-quality images. Fig. 16 shows some of 

the training LPs images under difficult and simple 

conditions. The experimental results showed that all the key 

characteristics have been captured from the 1520 training 

images. 

 
V. EXPERIMENTS AND RESULTS 

All the experiments by the proposed method are 

implemented on a computer with 3.4 GHz Intel Core i7-

    
(a) 

    
(b) 

FIGURE 15. (a) Examples of Arabic vehicles images; (b) Examples of Chinese vehicles images. 

 

 
(a) 

 
(b) 

FIGURE 14. (a) Examples of vehicles images in the original English vehicles database with simple conditions; (b) Examples from the extended 
English vehicles database after photo editing. 

 

     

     

     

    n

    
 
FIGURE 16. Examples of LPs training images under simple and complicated conditions. 
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4770, 16GB of RAM using MATLAB, version R2017b.  In 

this section, the descriptions of MHOG and LBP features 

analysis and features selection processes by SVM and ELM 

classifiers are firstly presented. Secondly, the performance 

evaluation of the proposed method is evaluated using the 

detection and object localization metrics. Thirdly, the 

performance comparison using the receive operating 

characteristic (ROC) curve between the SVM_MHOG_LBP 

and ELM_MHOG_LBP is provided. Finally, the detection 

accuracy and time efficiency of the proposed method are 

compared with the newest detection methods that also used 

the same database [25, 44, 45] as the one used in this study.  

 
A. FEATURE ANALYSIS AND SELECTION 

Feature analysis is a very important step for any 

classification problems. This study combines the MHOG and 

LBP features into a features vector. The SVM and ELM 

classifiers are used separately, to detect LPs from vehicle 

images. With the MHOG features, each bin includes the 

feature magnitude for 8×8 cells for a specific direction. High 

feature values indicate the most discriminative bin. The 

complete MHOG operator contains the magnitude values in 

all 180 directions. Therefore, it is a high value around the 20, 

60, 100, 140, and 180 degrees. For the LBP descriptor each 

bin contains features values for 3×3 cells. The extracted 

features for the three LP resolutions of 100×25, 200×50, and 

300×75 using the MHOG and LBP descriptors are shown in 

Fig. 17. 

The dimensions of the extracted feature values for the 

three resolutions above are 1517, 1784, and 1582, 

respectively. The linear SVM and the kernel ELM classifiers 

were applied to select strong subset feature values. The 

information about features selection for both classifiers are 

displayed in Table 1.   

In this study, the linear kernel function for the SVM was 

used for learning the classes of LPs and non-LPs. The SVM 

classifier was tested with 5-fold cross validation for three 

dimensions features values as well as three LPs resolutions 

of 313, 547, and 348, respectively. From Table 1 the training 

dataset includes three detectors or training models with 

different dimension features values. Each SVM trained 

model with 5-fold cross validation contains five ensemble 

classes for LPs features. The weighting values for three SVM 

training models are 6.591, 5.605, and 6.321, respectively, 

with different bias values. The bias is a special parameter in 

the SVM. The classifier without this value would always go 

to the origin. Also, the SVM does not give the separating 

hyperplane for the maximum features margin without the 

bias term. The ELM was tested with 550 input hidden 

neurons, and the input neurons for the three LP resolutions 

are 640, 851, and 1202, respectively. The ELM classifier 

produced three training models for the three LP resolutions 

with a training accuracy rate of 100%. 

 

B. PERFORMANCE EVALUATION 

The proposed method is evaluated using detection and object 

localization metrics.  

 

1) Detection Metrics for LPD 

Several assessment measures are used to check the 

performance of the proposed detection system. The 

assessment metrics include the number of objects that are 

correctly detected, falsely detected, or miss-undetected by 

the system [46]. Also, the detection based metrics are used 

to evaluate the system under test (SUT) performance. For 

those metrics, all the objects are validated to see if there is a 

matching between SUT and the ground truth (GT). The 

detection metrics used in this study to evaluate the LPD 

system are as follows: 

 

TABLE 1. The dimension of training models using SVM and ELM 
classifiers. 
 

Method TM1 

(100×25) 

TM2 

(200×50) 

TM3 

(300×75) 

Average  

TA  

SVM_MHOG_LBP features features features 99.786% 

Class 1  62 110 71 

Class 2 64 111 71 

Class 3  61 105 66 

Class 4 62 112 72 

Class 5 64 109 68 

Total features 313  547 348 

ELM_MHOG_LBP 640 851 1202 100% 

TM: Trained Model; TA: Training Accuracy 

 
(a)                                                                (b)                                                            (c) 

FIGURE 17. (a) The output of the extracted MHOG_LBP features for an LP with 100×25 resolution; (b) The output of the extracted MHOG_LBP features 
for an LP with 200×50 resolution; (c) The output of the extracted MHOG_LBP features for an LP with 300×75 resolution (For histogram: X axis = the 

range of features values in each bin, Y axis = the features values appearance in each bin range). 
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- FP (false positive): means that the LP is detected by 

the SUT, but it is not in the GT. 

- FN (false negative): indicates that the LP exists in the 

GT, but it is not detected by the SUT. 

- TP (true positive or correct detection): means that the 

LP exists in both the GT and the SUT. 

- TN (true negative): indicates that the LP does not exist 

in the GT and by the SUT. 

We added in the car English car database 50 vehicle images 

without the LP that means the TN which refers to the vehicle 

image without the LP object inside it. This is a very 

important step to validate the detection system performance.  
  

TABLE 2. The detection results for the proposed method using the 
SVM and ELM classifiers. 
 

Method No. of Testing Images = 530, TN= 50 Images 

FP TP FN TN DR AR 

SVM_LBP 15 483 47 40 91.13% 89.40% 

SVM_MHOG 25 478 52 44 91.57% 87.14% 

SVM_MHOG_LBP 9 528 2 48 99.62% 98.12% 

ELM_LBP 14 480 50 42 90.56% 89.07% 

ELM_MHOG 21 473 57 39 89.24% 86.77% 

ELM_MHOG_LBP 13 515 15 43 97.16% 95.22% 

AR: Accuracy Rate 

    
                           (a)                                            (b)                                                    (c)                                                   (d) 

     
 (e)                                       (f)                                           (g)                                             (h) 

     
  (i)                                           (j)                                           (k)                                            (l) 

    
                             (m)                                          (n)                                                 (o)                                                 (p) 

     

                             (q)                                            (r)                                                 (s)                                                 (t) 
 
 

 
 

FIGURE 18. Examples of the successful detection results by the proposed method for complicated cars images with low light and dirt (a), (b), (d), 
(e), (q); with various views points (c), (h), (i), (k), (l), (o); with dusk and fog (a), (e), (f), (i), (m); with distortion (d), (e), (k), (p), (n), with different color 

(h), (r), (s), (t), and with low/high contrast (f), (l), (m), (o), (p), (r) problems. 
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The detection and accuracy rates can be calculated as 

follows: 

             Detection rate (DR) = TP/ (TP+ FN)         (12) 

Accuracy = (TP+TN)/ (TP+TN+FP+FN)    (13) 

 

The DR is the proportion of the true positive result that is 

truly predicted as a positive result by the detector, while the 

accuracy rate is the proportion of the true results for both 

positive and negative LP objects in the GT. The detection 

results are shown in Table 2.  

    From Table 2, it is noticeable that the combination of the 

extracted features from both the MHOG and LBP improves 

the detection results. The SVM_MHOG_LBP method 

outperforms other methods in terms of the detection 

accuracy rates. Some examples of the detection results for 

the proposed method are shown in Fig.18.  

   It was observed that all LPs were detected with very low 

FPs values, and fewer redundant bounding boxes appeared 

under difficult conditions. Also, some FPs were noticed 

when some objects in the vehicle image looked like an LP 

(for example, commercial signs and the vehicle logos). 

 

2) Object Localization Metrics 

The recall (RR) or detection rate (DR),  precision (PR), and 

F-measure (F-m) rates [47] at a matching confidence of δ ≥ 

0.5 are used to evaluate the LP localization performance.  

Those metrics are defined as follows: 

 

RR = TP/ (TP + FN) when δ ≥ 0.5          (14) 

PR = TP/ (TP + FP) when δ ≥ 0.5            (15) 

F-m = 2(PR ×RR)/ (PR + RR)                  (16) 

 

PR is the proportion of the actual negative objects that the 

detection system predicted correctly as negatives [47]. The 

matching confidence assumption δ is defined as follows: 

 

δ = {Bb ∩ GT/Bb ∪ GT, GT ⊆ Bb}               (17) 

 

where Bb denotes the predicted area of the LP bounding box. 

The detection performance is analyzed with the confidence δ 

≥ 0.5. It means that Bb encloses to the related GT while the 

area of the former is twice of the latter. If δ is too big, the 

predicted Bb would be much larger than the GT, which does 

not make any sense to the LP detection ratio. The confidence 

value determines directly from the strong classifier. Table 3 

shows the object localization metrics of the proposed 

method.  

We can observe from Table 3 that the results of object 

localization metrics for SVM_MHOG_LBP are better than 

other methods’ results. 

 
C. THE RECEIVE OPERATING CHARACTERISTIC 
(ROC) CURVE 

This study uses a combined features vector extracted by the 

HOG and LBP, and employs a SVM or an ELM classifier to 

detect the LPs from complicated vehicle images. The 

efficiency of the proposed method is evaluated using the 

receiver operating characteristic (ROC) curve. The ROC 

curve is a useful tool for organizing the work of the 

classifiers and displaying their quality of the performance 

[48].  It is known as a performance metric for comparing and 

evaluating algorithms [48, 49].  The ROC curve depends on 

four parameters, true positive rate (TPR) or RR rate (see Eq. 

9), false positive rate (FPR), positive predictive value (PPV) 

or PR rate (see Eq. (15)), and negative predictive value 

(NPV). Those parameters are defined as follows: 

FPR = FP/ (FP+TP)               (18) 

NPV= TN/ (TN+FN)               (19) 

 

The ROC results from the SVM and ELM classifiers are 

reported in Figs. 19, 20, and Table 4.  

The ROC curve for the SVM with MHOG_LBP features 

is better than that for the ELM with MHOG_LBP. The TPR 

and FPR from the SVM_MHOG_LBP are improved by 

2.46% and 0.787%, respectively, in comparison to those by 

the ELM_MHOG_LBP. The area under curve (AUC) values 

are between 0 and 1.  

The high value of the AUC is a better measure for 

evaluating the performance of the proposed method than the 

accuracy rate [49]. The AUC for the SVM_MHOG_LBP is 

better than the ELM_MHOG_LBP of 99.99% and 99.20%, 

respectively. 

TABLE 3. The performance results by the proposed LPD system. 
 

Method  RR PR F-m 

SVM_LBP  91.13% 96.98% 93.96% 

SVM_MHOG  91.57% 95.02% 93.26% 

SVM_MHOG_LBP  99.62% 98.32% 98.96% 

ELM_LBP  90.56% 97.16% 93.74% 

ELM_MHOG  89.24% 95.74% 92.66% 

ELM_MHOG_LBP  97.16% 97.53% 97.34% 

 

 
FIGURE 19. The ROC curve for the MHOG_LBP features 

classification using the ELM. 
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D. RUN TIME 

The runtime is a key indicator of a system performance. 

Table 5 shows the average running time per vehicle image 

for the total and the three stages of preprocessing, extraction 

and detection by the proposed LPD system. The 

implementation time for the SVM_MHOG_LBP was much 

shorter than that for the ELM_MHOG_LBP method under 

both ordinary and complicated conditions. The proposed 

method makes the LPD system reliable for real-time 

applications through removing the unwanted bounding 

boxes and decreasing the running time.  

 
VI. COMPARISON WITH EXISTING METHODS 

In this section, the proposed method is compared with the 

state-of-the-art license plate detection methods that used the 

same database of English car plates [25, 44, 45, 50]. The 

performances are compared using the measures of the RR 

and PR rates as well as the F-m rate.   Azam and Gavrilova 

[45] reported a genetic algorithm depending on the HOG 

features with a mixture of binary classifiers to classify LP 

and non-LP images. To improve the classification 

performance, the genetic algorithm was applied to select the 

best features subset. The method used a mixture of binary 

classifiers of k-nearest neighbor, SVM, decision tree, and 

linear discriminant analysis. It achieved some good results 

under different conditions, but it required a high-contrast 

preprocessing method to improve images. This leads to 

increase the false positive rate. Raghunandan, et al. [44] 

proposed a mathematical model using a Riesz fractional 

operator to enhance the details of LP edges’ information. 

That method worked well as long as there was a clear LP 

shape in the image. It was not robust for distorted images and 

it was time-consuming with a low RR rate. Yousif, et al. [50] 

presented a novel methods based on genetic algorithm (GA) 

to identify LPs under limited conditions.  Henry, et al. [51] 

designed a deep ALPR system to identify multinational LPs. 

Their proposed system included three steps: LP detection, LP 

recognition, and multinational layout LP detection. It 

achieved good results under good conditions but it was not 

robust or perform satisfactorily for complicated vehicle 

images. Also, Al-Shemarry, et al. [25] produced a new and 

efficient descriptor, with multi-level extended local binary 

patterns (MLELBP) to extract difficult features’ using three 

neighbouring feature dimensions under complicated 

conditions. The input image was resized to make the 

proposed method work without any limitations related to 

standard vehicle image resolution and save the processing 

time. The ELM was used to build the trained model and 

obtain good detection results. In this method, the multi-levels 

preprocessing in the extraction stage leads to getting high 

feature dimensions which causes increases in the false 

positive rate. In addition, the resizing image process is not 

always successful especially with distorted images that could 

lead to loss of important feature values. Therefore this study 

proposed a new enhancement preprocessing method and 

used the mean-shift technique with a detector to reduce false 

positive values and decrease the processing time. The 

performance results of the proposed detection method and 

latest detection methods are reported in Table 6.  Note from 

Table 6 that the proposed method achieved the best detection 

results compared with the existing methods in terms of RR, 

PR, and F-m rates. 

 

 
FIGURE 20. The ROC curve for the MHOG_LBP features 

classification using the SVM. 

TABLE 4. The performance results from SVM and ELM classifiers 
with the MHOG_LBP features, using ROC curve parameters. 
 

Method SVM_HOG_LBP ELM_HOG_LBP 

AUC  99.99% 99.20% 

FPR 1.67% 2.46% 

TPR 99.62% 97.16% 

PPV 98.32% 97.53% 

NPV 96% 74.17% 

CA 99.78% 96.92% 

CA: Classification Accuracy 

 

 

TABLE 5. The average run time for the proposed method for each 
stage in the SVM_MHOG_LBP and ELM_MHOG_LBP schemes. 
 

Stages Proposed method 

SVM_MHOG_LBP ELM_MHOG_LBP 

Pre-processing 0.0519ms 0.0519ms 

Extraction 1.7260ms 1.7260ms 

Detection  0.4408ms 1.0089ms 

Total test time 2.2187ms 2.7868ms 

Training Time 201.835ms 116.087ms 

 

TABLE 6. Comparisons of the proposed method with the existing 
state-of-the-art methods in terms of the RR, PR, and F-m rates. 

 

Method RR PR F-m 

Azam and Gavrilova [45] 91.3% NR NR 

Raghunandan et al. [44] 79.4% 84.6% 81.9% 

Al-Shemarry et al. [25] 99.10% 98.2% 98.65% 

Yousif, et al. [50] 85.43% 97.86% 91.22% 

Henry, et al. [51] 99.76% 98.85% 99.30% 

Proposed 

SVM_MHOG_LBP 

99.62% 98.32% 98.96% 

NR: Not Reported 
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VII. CONCLUSIONS AND FUTURE WORK 

This study proposed a new preprocessing method to improve 

the LPD system performance for complicated vehicle images 

by a Gaussian filter and the ECHE with the CLAHE 

algorithm. The MHOG and LBP descriptors were used to 

extract the representative LP features. The English car 

plates’ database, Al-Shemarry et al. database, Arabic and 

Chinese vehicles images databases were used to evaluate the 

system performance under more difficult and complicated 

image conditions. The SVM and ELM classifiers were used 

to classify the extracted features, separately, for comparison 

purposes. An ensemble of strong detectors or trained models 

for three types of LP resolutions, 100×25, 200×50 and 

300×75, were developed. From the experimental results, the 

SVM with the combined MHOG and LBP descriptors 

outperformed the ELM and the other methods with a single 

descriptor in terms of the detection accuracy rate. The 

proposed method was tested using different databases with 

simple and complicated conditions, such as fogy, low/high 

contrast, distorted and rotated LPs. It yielded excellent 

results. The detection and accuracy rates are 99.62% and 

98.12%, respectively. The overall performance evaluation 

for the object localization metrics of the recall, precision, and 

F-measure rates are 99.62%, 98.32%, and 98.96%, 

respectively, with an FPR of 1.675%. Also, the ROC curve 

was used to compare and evaluate the results of the proposed 

method. The classification results of the ROC curve were 

very good for the SVM and ELM methods at 99.78% and 

96.92%, respectively. The proposed method was also 

compared with the existing LP detection methods that used 

the same English car database. It showed that the proposed 

method performed better than those by other methods in 

terms of the efficiency and detection rate. The average 

runtime for the detection stage per vehicle image was 

0.2408ms. The experimental results demonstrated that the 

proposed technique could be applied efficiently for real-time 

applications. We plan, in future work, to enhance the 

proposed detection method through using high-quality 

hardware and software components for reducing the overall 

detection time of the LPD system, that currently is 2.2187ms 

in total. 
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CHAPTER 6 

DISTORTED VEHICLE LICENCE PLATE DETECTION 

USING HYBRID FEATURES DESCRIPTOR AND EXTREME 

LEARNING MACHINE CLASSIFIER 

 

 
  

6.1    Introduction 

The content of this chapter is an exact copy of a submitted paper to the journal (2020) for 

publication ‘Distorted vehicle licence plates detection using hybrid feature descriptors’, 

(submitted). 

The detection of LPs is similar to find the regions of interest (ROIs) that may contain 

the LP (true positive value) or non-LP (false positive value).  

In Chapter 5, an efficient preprocessing method was introduced for the purpose of 

reducing the FPR and execution time for identifying LPs from complicated vehicle images. It 

was showed a large improvement in reducing the FPR and system runtime. 

This chapter makes a further enhancement to modify the previous version of the 

preprocessing method in Chapter 5 and increase the system detection accuracy while reduce 

the testing time and keeping the previous improvement for in FPR. It applies the enhancement 

contrast-limited adaptive-cumulative histogram equalization (ECLACHE) technique. At the 

extraction stage, a combination of a median robust extend local binary pattern (MRELBP) and 

speeded up robust feature (SURF) descriptors as used. Those descriptors have the same 

powerful advantages that were described for previously descriptors in Chapters 3, 4, and 5. 

They extracted LP features under distorted conditions. The ELM with a mean-shift algorithm 

was used to train the extracted features and built a strong detector. 

6 
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There is no one detection method working to solve all types of images problems and 

satisfy all system requirements. This method succeeded in achieving good detection accuracy 

results with a large improvement for system runtime. But the FPR was slightly increased 

compared with the method in Chapter 5 due to large improvements in preprocessing methods. 

The proposed method outperforms other reported methods in Chapters 3, 4, 5, in terms of the 

detection accuracy and execution time. 

The Matlab code of this method is provided in Appendix D. 
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Abstract 

Intelligent transportation systems (ITSs) play a very important role in people’s lives in many respects. One of the 

most important ITS applications is A licence plate detection system (LPD).  In this paper, a new LPD framework is 

proposed. It includes a novel technique for the preprocessing, extraction, and detection stages to detect LPs from 

distorted vehicle images. An efficient preprocessing method is developed in this study which proposes an enhanced 

contrast-limited adaptive histogram equalization technique for filtering the unwanted LP regions. At the extraction 

stage, strong hybrid features of a median robust extended local binary pattern and speeded-up robust feature 

descriptor are applied to extract complicated features from LPs. Those hybrid features can enhance the useful 

information, and thus the detection system performance under difficult scenarios.  In the detection stage, the trained 

model of an extreme learning machine classifier, with a mean-shift algorithm, is used as a detector to make a 

decision for output results. The performance of the proposed method was compared in terms of true-positive and 

false-positive rates with other classifiers and existing detection methods. The experiments on an English car plates 

database show that the proposed method made significant improvements in accuracy and runtime speed for the LPD 

system under difficult scenarios.  

 

Keywords 

Transportation systems; Licence plate detection (LPD); Hybrid features; Extreme learning machine (ELM); 

Confusion matrix; Receiver operating characteristic curve (ROC). 

 

1. Introduction 

There is rapid growth in automatic systems development including the licence plate detection (LPD) system 

that helps to automatically identify the license plate (LP) of vehicles as quickly as possible. It is a difficult 

challenging to identify LPs from images complicated due to environmental effects. Therefore, a good LPD system 

is required to effectively work under difficult scenarios, for example, low/high lighting, night, or with blurred, 

foggy, rotated, dusty, distorted, and with complex backgrounds, etc. For an LP to be identified, the test image is 

passed through three stages as shown in Fig. 1.  
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In the first stage, the quality of a captured image is improved using some preprocessing methods. There are 

many enhancement techniques to do that, like filtering, contrast enhancement, histogram equalization, binarization, 

and so on.  In the second stage, the region of the interest (ROI) is extracted by using various extraction descriptors. 

These extracted regions may or may not be the true LP regions. This stage is called the extraction stage for LPs. In 

the third stage, the extracted regions are used as inputs for a good classifier in order to build a strong detector, or a 

trained model, for LP localization. This stage is called as LP detection. The performance of the detection system 

relies on the robustness and reliability of each individual stage. This paper focuses only on the detection stage for 

detecting LPs from distorted vehicle images. Therefore, the segmentation and recognition stages were not 

considered in this work. In this stage, the number from the LP converts into machine-encoded text. Then, the optical 

character recognition (OCR) is used to recognize the plate numbers from the LP image. Many methods have been 

proposed in the past years to detect LPs. They can be categorized as color-based (Ashtari, Nordin, & Fathy, 2014; 

Shi, Zhao, & Shen, 2005), edge-based (Ascar Davix, Oshin, & Shamili, 2016; Azad, Azad, & Shayegh, 2014; Ha 

& Shakeri, 2016; J. Wang, Bacic, & Yan, 2018), character-based (Li & Wang, 2016; Soora & Deshpande, 2016), 

texture features-based (Al-Shemarry, Li, & Abdulla, 2018, 2019), and  filter-based (Tadic, Popovic, & Odry, 2016; 

L. Zhang, Shi, Xia, & Mao, 2013) methods. But the task of identifying an LP properly is still a very challenging 

task. The preprocessing stage plays an important role in enhancing and building up detection system performance.  

Descriptors, like local binary pattern (LBP), works well for different illumination conditions. It can partly solve 

scale invariance problems (Ojala, Pietikäinen, & Harwood, 1996). Many researchers proposed a large number of 

LBP variant descriptors to improve the weakness of LBP operators and achieved good classification performance 

(El Khadiri, Kas, El Merabet, Ruichek, & Touahni, 2018). For example, the extended local binary pattern (ELBP) 

 

Fig. 1.   Stages involved in the licence plate detection (LPD) system. 
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(Liu, Zhao, Long, Kuang, & Fieguth, 2012), the completed local binary pattern (CLBP) (Guo, Zhang, & Zhang, 

2010), multi-level extended local binary pattern (Al-Shemarry et al., 2019), completed local derivative patterns 

(CLDPs) (Hu, Long, & AlRegib, 2016), scale-selective local binary pattern (SSLBP) (Guo, Wang, Zhou, & You, 

2016), and median robust extend local binary pattern (MRELBP) (Liu, Fieguth, Pietikäinen, & Lao, 2015). The 

speeded up robust feature descriptor (SURF) is better than other features for object detection inside an image 

(Arróspide & Salgado, 2014; Bauer, Sünderhauf, & Protzel, 2007; Bay, Tuytelaars, & Van Gool, 2006a). It is 

usually used to capture the important information which is sensitive to illumination and rotation conditions (Hanbay, 

Alpaslan, Talu, & Hanbay, 2016; Khan, McCane, & Wyvill, 2011; Z. Luo, Chen, Takiguchi, & Ariki, 2015; 

Panchal, Panchal, & Shah, 2013; Pang, Li, Yuan, & Pan, 2012; Rajesh, Kaushik, & Jangra, 2016). For illumination 

problems, the SURF descriptor has a discriminative power to extract contrast lighting features with or without 

rotation problems (Bay et al., 2006a; Pang et al., 2012). One method is often not sufficient to solve several problems 

for a robust system.  Recent studies showed that combining multiple descriptors enables good extraction compared 

with using a single descriptor for multiple problems (Y. Chen, Zhao, Lv, & Zhang, 2018; Kim, Song, Kim, & Park, 

2019; Lalimi, Ghofrani, & McLernon, 2013; Y. Wang, Zhang, Fang, & Guo, 2009; H. Zhang, Jia, He, & Wu, 2006). 

In supervised learning, the extraction features are trained by the classifier to produce trained models and these 

models learn to discriminate different LP problems. Classifiers used for detection of LPs include ELM (G.-B. 

Huang, Zhu, & Siew, 2006), Adaboost (Hastie, Rosset, Zhu, & Zou, 2009), SVM (Gunn, 1998) and CNN (Xie, 

Ahmad, Jin, Liu, & Zhang, 2018).  The purpose of this work is to develop an LPD framework for complicated 

vehicle images. It includes a new enhanced preprocessing method, the enhancement contrast-limited adaptive-

cumulative histogram equalization (ECLACHE), the combination of the MRELBP and SURF descriptors, and an 

extreme learning machine (ELM) classifier with a mean-shift algorithm to reduce a false-positive rate and improve 

the classification accuracy.  

The main contributions of this work are as follows:   

i. Updating our previous work (Al-Shemarry et al., 2018), the pre-processing method to improve the 

performance of the LPD system by filtering unwanted LP regions. The new method is an enhancement 

contrast-limited adaptive-cumulative histogram equalization (ECLACHE). 

ii. Utilizing hybrid features, MRELBP and SURF, as extraction methods. Based on previous studies in the 

literature those methods very strong and suitable descriptors to extract several features under different 

environments like low/high contrast, blurry, foggy, rotated LPs, complex backgrounds, dark, and so on.  

iii. Applying a mean-shift algorithm with ELM classifier to reduce the false-positive values and improve the 

classification accuracy. 

iv. Using complicated and much challenged English car databases (Al-Shemarry et al., 2019; 

EnglishLPDatabase-2001) in this work. 

v. Evaluating the proposed object detection method using very important factors for performance measurement 

metrics. 
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vi. Comparing the performance of the proposed method with new existing detection methods. 

This paper is organized as follows: Section 2 introduces the framework of the LPD system. Section 3 shows 

system database. Section 4 presents the experimental results. Section 5 displays the comparison with other existing 

methods. Finally, in section 6 the conclusion and future work are discussed. 

 

2. The proposed method 

In this research, the proposed LPD system for vehicle images under difficult environmental conditions is 

presented. The framework of the proposed method is depicted in Fig. 2. It is consists of three main stages: 

preprocessing, extraction and detection. For the preprocessing stage, a good enhancement method, the ECLACHE, 

is developed. It overcomes all difficulties related to high/low lighting, dusk, blurry, and foggy conditions. At the 

second stage, the features are extracted from the enhanced image using a combination of the two powerful 

descriptors, MRELBP and SURF. These descriptors were carefully selected for being suitable for difficult 

conditions. Finally, the ELM classifier is used to build the trained model from the extracted MRELBP and SURF 

features. The LPD system consists of two phases of training and testing. The same methods in the preprocessing 

and extraction stages are used in both phases. The detected LP images are cropped and stored for the recognition 

stage to obtain a complete licence number plate recognition system. The detail of the proposed framework is 

described in the following sections. 

 

2.1 The preprocessing stage 

 The detection of an LP is related to find the ROI that may be LP or non-LP.  In this system, the texture and 

gray scale features are used to reduce the feature dimension and the processing time for the next stage. The input 

image format of “.jpg” is converted to “.png” in order to save the quality of the image instead of resizing.  Then, it 

converts to the grayscale image of GIMG (Saravanan, 2010) by Eq. (1). 

GIMG {X} = 0.2989 × R {X} + 0.5870 × G {X} + 0.1140 × B {X}         (1) 

 
Fig.  2.   The framework for the proposed LPD system 
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where R {X}, G{X}, and B {X} are the red, green, and blue channels of colors, respectively, and X refer to the image 

pixels.  

 There are different sources of noise in a distorted vehicle image, leading to false-positive detections, like 

surface textures, low/high lighting, distortion, dirt, and dust. Therefore, the enhancement preprocessing algorithm, 

ECLACHE, is used to reduce the noise and enhance the lighting conditions. The steps of the ECLACHE algorithm 

are shown in Fig. 3. 

   The first step is applied the cumulative histogram equalization (CHE) method to the grayscale image, GIMG 

{X}, and let ni is the number of pixels occurrences on gray-level i. The probability of an occurrence pixel of level i in 

the GIMG {X} image is 

𝑃𝑥(𝑖) = 𝑃(𝑥 = 𝑖) = 𝑛𝑖 𝑛⁄  , 0 ≤ 𝑖 < 𝐿        (2) 

where L is the total number of grayscale levels in an image which is typically 256 and n is the image pixels.  𝑃𝑥(𝑖) is 

the image's histogram of the pixel value i, which is normalized to [0, 1].  The second step is calculated the cumulative 

distribution function (CDF) for CHE method, which is also an image accumulated normalized histogram and 

defined as  

𝐶𝐷𝐹𝑥(𝑖) = ∑ 𝑃𝑥(𝑗)𝑖
𝑗=0                                    (3) 

The third step is  created a transformation form, Y = T(x) to produce a new image {Y}, with a new values of the flat 

histogram, which is also need  a linearized CDF across the new value range and defined as 

𝐶𝐷𝐹𝑦(𝑖) = 𝑖𝐶                                               (4) 

where C is some constant in the range [0-L].  Notable that T maps the new values back into the original range, since 

it used a normalized histogram of {X}.  A more detailed is provided by Pizer et al. (1987). Fourth step is applied the 

contrast limiting adaptive histogram equalization (CLAHE) method  on the new image {Y}, and repeated the 2nd  

and 3rd  steps in order to produce a new enhanced image that contains the new grayscale values. 

 The performance of the proposed preprocessing method, ECLACHE, can be observed from Fig. 4. From Fig. 

4, it can be noticed the difference between the improved method by Al-Shemarry et al (2019) and ECLACHE 

method. Also, the range of the feature dimensions is reduced by this method giving a good image quality. Moreover, 

 

Fig. 3.   The steps for the new enhanced method, ECLACHE. 
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the histogram information helps to display the difference between the original image and the enhanced image 

through decreasing the range of the unwanted features.  

                 Original vehicle image    

 
(a) 

           Improved image by Al-Shemarry et al. (2018)     

 
(b) 

      Improved image using ECLACHE      

 
(c) 

Fig. 4.   (a) The original licence plate image; (b) The output for the preprocessing enhancement method by Al-

Shemarry et al (2019); (c) The output for the ECLACHE method with the histogram. The histogram shows how 

the ECLACHE method works (X axis is the range of the feature values in each bin; Y axis is the number of 

feature values appearing in each bin range).  
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2.2 The features extraction stage 

 This research uses the combination of MRELBP and SURF descriptors to extract the key features from low-

quality vehicles images. There are many reasons for us to use those descriptors as described in the introduction. 

 

2.2.1 The speeded-up robust feature (SURF) descriptor 

The scale invariant feature transform (SIFT) descriptor is the most widely used, but it has a high 

computational cost. In 2006, Bay et al. (2006a) developed a SURF variant descriptor of the SIFT. This section 

presents a brief summary of the SURF construction process, strong interest point localization and interest point 

descriptor computation. 

 
2.2.1.1 Interest point localization 

The SURF descriptor is depended on the Hessian matrix. Given an image I a point x= [x, y], the Hessian 

matrix H (x, σ) of the point x at the scale σ is defined as 

𝐻(𝑥, 𝜎) = [
𝐶𝐺𝑥𝑥 𝐶𝐺𝑥𝑦

𝐶𝐺𝑥𝑦 𝐶𝐺𝑦𝑦
] ,      (5) 

where 𝐶𝐺𝑥𝑥(x, σ) is the convolution of the Gaussian order derivative 
𝜕

𝜕𝑥
2  𝑔(𝜎) for the image I in the point x, and 

similarly for 𝐶𝐺𝑥𝑦(x, σ) and 𝐶𝐺𝑦𝑦(x, σ). In the contrast to the SIFT descriptor, which approximates laplacian of 

Gaussian with the difference of Gaussians, the SURF approximates second derivatives Gaussian order with box 

filters. An example of the lowest scale analysed by this filters in Fig. 5. Image I convolutions with box filters were 

computed rapidly using the integral image (Viola & Jones, 2001).  

 

The scale and location of interest points are selected based on the determinant of the Hessian matrix. Interest 

points are localized in the scale and image I space through applying the non-maximum suppression in the 3×3×3 

neighbourhood. For more details, see the reference by Bay, Tuytelaars, and Van Gool (2006b).  

 

 

Fig. 5. Left: the Gaussian second order derivative in the xy-direction. Right: 

the corresponding box filter approximation. 
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2.2.1.2 Interest point descriptor  

The first step of the SURF descriptor is constructed circulars regions around the strong detected interest points 

to assign a unique orientation and gain invariance to the image rotation. The orientation is calculated by using the 

Haar wavelet response in both directions, x and y. It can be computed through the integral image quickly, similar to 

the second derivatives Gaussian order with box filters.  The dominant orientation in the interest point’s information 

is estimated and included. The next step is extracted the square regions around interest points and divided into 4×4 

sub-regions. In each sub-region, the Haar wavelet response is computed at horizontal d(x) and vertical d(y) 

directions. Each sub-region is represented on four-dimensional descriptor that contains the sum of absolute values 

of the d(x) and the d(y), which is summarized in Eq. 5 (Bay et al., 2006a). 

V= ( ∑ 𝑑(𝑥) , ∑ 𝑑(𝑦) , ∑|𝑑(𝑥)| , ∑|𝑑(𝑦)|)   (6) 

The result of the SURF descriptor for all 4×4 sub-regions is about 64 features dimension. Through the 

experimental the main advantage of the SURF descriptor is good and fast extraction process. It is claimed that, the 

SURF descriptor is invariant to the scale and rotation of the object inside an image (Han, Virupakshappa, & Oruklu, 

2015). The input value for the SURF descriptor is an enhanced image and the output is strong key points or features 

from the regions of interest. As shown in Fig. 6 (a) the dimension of the extracted feature values for the SURF 

descriptor and Fig. 6 (b) the location of the strongest key points in the regions of interest for the feature extraction 

process.  

 
Fig. 6. The SURF descriptor output: (a) The dimension of the extracted features values for the SURF 

descriptors; (b) the location of the strongest key points in the regions of interest for the feature extraction 

process.    
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2.2.2 Median robust extend local binary pattern (MRELBP) 

 The texture LBP descriptors, produced good performance texture classification results, however there are still 

some significant drawbacks if they are used alone without improvement methods. The drawback of the ELBP (Liu 

et al., 2012) descriptor is that it is very vulnerable to the image noise. The first strategy is to replace the individual 

pixel gray-scale values for the sample points with the simple filter responses. The MRELBP (Liu et al., 2016) 

descriptor is simple conceptually, high-quality, and a computationally effective approach, based on the combination 

of a median filter with multi-feature resolution support. This descriptor offers the gray-scale invariance, noise 

robustness, rotation invariance, and powerful discrimination. It was compared against many other LBP descriptors 

(Liu et al., 2016) and produced good extraction results. The ELBP is modified by replacing the individual pixel 

intensities with filter responses φ, as shown in the Fig. 6. The image is normalized to zero mean and unit variance, 

using standard encoding scheme (riu2). If the center pixel value is 𝑋𝐶  and the patch filter φ, the MRELBP_CI, 

MRELBP_NI and MRELBP_RD descriptors are defined as  

 1) MRELBP of the center pixel:  

MRELBP_CI (𝑋𝐶) = S (φ (𝑋𝐶,𝑤 ) − µ𝑤)                             (7) 

The result from applying the filter φ to 𝑋𝐶,𝑤 is that the local patch of the size w×w (neighbouring feature space) 

centered on the center pixel 𝑋𝐶 , and µ𝑤 denoting the mean of the φ (𝑋𝐶,𝑤 ) over the whole normalized image.   

2) MRELBP of the neighbors’ pixels: 
 

MRELBP_𝑁𝐼𝑟,   𝑝
𝑟𝑖𝑢2

 
(𝑋𝐶 ) = ∑ 𝑆(

𝑝−1
𝑛=0 𝜑 (𝑋𝑟,𝑝,𝑤𝑟,𝑛)  −  µ𝑟,𝑝,𝑤𝑟)2𝑛               (8) 

µ𝑟,𝑝,𝑤𝑟 = 
1

𝑝
 ∑ 𝜑 (𝑋𝑟,𝑝,𝑤𝑟,𝑛)

𝑝−1
𝑛=0                                                                  (9) 

where 𝑋𝑟,𝑝,𝑤𝑟,𝑛  refers to the neighbouring features space or the patch size of the wr × wr which is centered on the 

 𝑋𝑟,𝑝,𝑛. 

3) MRELBP of the radial difference: 

MRELBP_𝑅𝐷𝑟,   𝑟−1,   𝑝,   𝑤𝑟,   𝑤𝑟−1
𝑟𝑖𝑢2

 
(𝑋𝐶 ) = ∑ 𝑆(

𝑝−1
𝑛=0 𝜑 (𝑋𝑟,𝑝,𝑤𝑟,𝑛)  − 𝜑 (𝑋𝑟−1,𝑝,𝑤𝑟−1,𝑛))2𝑛       (10) 

where 𝑋𝑟,𝑝,𝑤𝑟,𝑛  and 𝑋𝑟−1,𝑝,𝑤𝑟−1,𝑛  refer to the centered patches at the neighboring pixels 𝑋𝑟,𝑝,𝑛 and  𝑋𝑟−1,𝑝,𝑛 , 

respectively. The formula {𝑋𝑟,𝑝,𝑛}𝑛
𝑝

  denotes the circular of the neighbors pixels for the center pixel Xc at radius r. 

 

Referring to Fig. 7, this study used multi-feature space, MRELBP (r, p, w) descriptors to extract difficult 

features from complicated enhanced images. The MRELBP used the median filter remove the noise or unwanted 

regions from the vehicle image. The results are four local binary pattern images. Liu et al. (2015) fixed the number 

of neighbour pixels at 8 on each MRELBP  descriptor to reduce the dimension of the extracted features and obtain 

good extraction results. The main parameters for MRELBP descriptor are the sampling radius r, the size of the 

center patch wc×wc, and the sizes of the neighboring patches wr×wr. Choosing (r, p) as (2,8)+(4,8)+(6,8)+(8,8) 

gave very good results.  Also, each LBP image has a joint histogram, which refers to the strong extracted features. 

The four joint histograms merge together to produce the concatenation histogram for all the MRELBP descriptors. 
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2.3 Detection stage 

  The ELM classifier (G.-B. Huang et al., 2006; G. Huang, Huang, Song, & You, 2015) was used at the 

detection stage. The speed of the ELM is significantly faster than other training algorithms. It can be viewed as a 

variant of a random vector functional-link (RVFL) network classifier (Pao & Takefuji, 1992; Scardapane, Wang, 

Panella, & Uncini, 2015) without direct links and bias terms. It is widely used as a strong classifier for the pattern 

classification task. As shown in the Fig. 8 the combination of the extracted features (n), or input neurons, feeds the  

ELM. For optimal LP detection results, in this paper, the number of hidden neurons (L) is 1000 which is set 

depending on the detection performance with the testing data set. The default activation function for the hidden 

neurons in the ELM that is applied in this work is a ‘sigmoid’ function. Also, other activation functions, such as 

‘sin’ and ‘hardlim’ are tested, but the experiments found that the sigmoid function gave better results.  The ELM 

starts to train extracted features, MRELBP_SURF with hidden nodes to obtain output neurons (m). After that, the 

 
Fig. 7.   The overview of the MRELBP descriptor.  For illustrating the work of the MRELBP an example features 

scheme is given with their neighbouring features space. Each circle represents a neighbors’ pixels over the center 

pixel point which are computed to replace the gray value of the central point based on the LBP formula. 
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strong detector was built as a decision function to detect the LP regions from the vehicle image. For more detail 

about ELM using the references above. 

3. Database for experiment 

In order to evaluate the performance of the proposed method, we used the same database that presented by 

Al-Shemarry et al. (2019) and (EnglishLPDatabase-2001).  An English car database that contains 2050 images, 

with various scenes, and size of 640×480. Some of these images are captured by an OLYMPUS C-2040ZOOM 

digital camera under different environmental conditions (EnglishLPDatabase-2001), such as cloudy weather, night 

 

Fig. 8.   Architecture of the ELM. 

 

 

 

 
Fig. 9.  Some examples of complicated scenes for each vehicle image in the database. 
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lighting, sunny day, and dusk. The remaining vehicle images one from Al-Shemarry et al. (2019) under blurry, 

low/high contrast environments, and distortion conditions. We divided the database into datasets, 1700 for training 

and 350 for testing. A very important aspect of this database is that the LP inside vehicle image has different sizes, 

25×100, 50×200, and 75×300. This makes the work is very challenging and the result more reliable.  In addition, 

each vehicle image in this database has various complicated scenes, in order to capture all LP difficulties (see Fig. 

9). Some samples of the training and testing data sets are shown in Figs. 10 and 11.  

The experimental results showed that all the key characteristics have been captured from the 1700 training 

images in the data set. 

 

4. Experimental results 

This section presents experimental results of the proposed work. The data is trained and tested on the 

following platform: Desktop and laptop computer with 3.4 GHz Intel Core i7-4770, 16GB of RAM using MATLAB 

programming language, version R2018a.  The performance of the ELM classifier is evaluated using the confusion 

matrix and receive operating characteristic (ROC) curve.  

  

 
(a) 

 
(b) 

  
(c) 

Fig. 11.   Some examples of real training LPs in the dataset: (a) LPs with 25×100 size; (b) LPs 

with 50×200 size; (c) LPs with 75×300 size. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 10.   Some examples of testing images in the dataset: (a) Vehicle images with LPs 25×100 

in size; (b) Vehicle images with LPs 50×200 in size; (c) Vehicle images with LPs 75×300 in 

size. 
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4.1 Extraction and classification results 

This work focuses on the preprocessing and the features extraction methods rather than the classification 

methods.  The ELM classifier is used to classify the MRELBP and SURF features of the LP regions. The MRELBP 

descriptor used a median filter with four circular neighbourhood or the features space which contain different radius 

r and window size w × w with the same number of neighbouring pixels p. For all the circulars, we extract the 

MRELBP features using the set of (P i, Ri), i = 1,..., N, where the value of N is identified based on the LP image 

size and its complexity.  We set i depending on the use of different neighborhood circles for four MRELBP 

descriptors,  i = 0, 1, 2,...,7 means 8 pixels neighbours with R = 2;4;6;8, respectively, and different windows size 

w = 3×3; 5×5; 7×7; 9×9 respectively, (see Figure 7 ).  From our experimental results, it is noticed that the combining 

of the four MRELBP descriptors can achieve good extraction results. The SURF descriptor extracted features from 

the LP images with 60 strong points as shown in Fig. 6. The combination of MRELBP and SURF was used as input 

to the ELM classifier to build a strong detector. This detector produces a binary predicted value of “1” for the LP 

and “0” for non-LP. The number of the overlapping bounding boxes depends on the location of the LP regions, with 

an average of ∼2 is very good due to use the mean-shift algorithm with the ELM detector. The elapsed time for 

training phase with 1700 LP images is 74.501691ms. The classification results are shown in Table 1. 

 

4.2 Performances of the ELM classifier 

In the machine learning field, confusion matrix and ROC curve are good measurement techniques to 

compare the performance of supervised learning algorithms (Bashir & Porikli, 2006; Godil, Bostelman, 

Shackleford, Hong, & Shneier, 2014; Slaby, 2007) .  

 

Table1 

The average of the classification results for the proposed method descriptors. 

Method IS SP WS FD CA 

ELM_SURF 25×100 

50×200 

75×300 

60 4×4 341 95.58% 

ELM_MRELBP (((8,   2))+

 (8,   4) +

  (8,   6)+

(8,  8))

Riu2
 25×100 

50×200 

75×300 

- 3×3 

5×5 

7×7 

9×9 

223 

256 

252 

250 

93.89% 

95.06% 

96.98% 

98.30% 

ELM_SURF_𝐌𝐑𝐄𝐋𝐁𝐏 ((8,   2) + (𝟖, 4)

+(𝟖, 6)+(8, 8))

Riu2
 25×100 

50×200 

75×300 

 All WS 920 100.00% 

CA: Classification Accuracy; FD: Feature Dimension; IS: Image Size; SP: Strong Points; 

WS: Window Size. 
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4.2.1 The confusion matrix 

Many detection systems used the confusion matrix to evaluate the system performance under test (SUT) 

(Kasturi et al., 2009). Using the confusion matrix, all objects are validated to show if there is any matching between 

the SUT and ground truth (GT). The parameters for this matrix as follows:  

 The false positive (FP) where the LP is detected by the system, but it is not in the GT.  

 The false negative (FN) where the LP exists in the GT, but the detection system fails to identify it. 

 The true positive (TP) means the LP is correctly detected by system and it exists in the GT. 

 The true negative (TN) where the LP is not detected by the system and it does not exist in the GT. 

 From the confusion matrix parameters the accuracy rate (AR) and the detection rate (DR) are calculated as follows:  

DR = TP/ (TP+ FN)                             (11) 

AR = (TP+TN)/ (TP+TN+FP+FN)      (12) 

The DR is the proportion of the TP results that are truly predicted as positive results by the detection system. While 

the AR rate is the proportion of the both TP and TN results for the LP objects in the GT. The detection results based 

on the confusion matrix are shown in Table 2.   

 From the Table 2, it is notable that the combination of MRELBP and SURF descriptors with the ELM 

classifier improves the detection results. The average of the runtime for the whole detection system per vehicle 

image was 2.108 seconds. Examples of system detection results are shown in the Fig. 12. The database that was 

presented by Al-Shemarry et al. (2019) was very challenge database, each image has several news with different 

conditions. It was observed that all detection results have very low FPs values due to use the mean-shift algorithm 

with ELM detector. Also, the main reason for increased FP values was when some objects inside a vehicle image 

were similar to the LP, such as texts or commercial logos. 

 

4.2.2 The receiver operating characteristic (ROC) curves of the classifier 

This study uses a ROC curve as a useful tool to evaluate the classifier performance quality (Slaby, 2007).  The 

graphical plot of the ROC curve depends on the true positive rate (TPR) or detection rate against of the false positive 

rate (FPR). They are defined as follows:  

TPR= TP/ (TP+ FN)                                     (13) 

FPR = FP/ (FP+TP)                                       (14) 

Table 2 

The detection results for the proposed method using the ELM classifier. 

Method No. of Testing Images = 350, TN= 30 Images 

FP TP FN TN DR AR 

ELM_SURF 18 315 35 23 90.14% 86.44% 

ELM_MRELBP 11 336 14 27 96.32% 93.55% 

Proposed 

ELM_SURF_MRELBP 

8 349 ~2 30 99.71% 97.92% 
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The TPR and FPR results from the confusion matrix for the both phases testing and training using the ELM classifier 

as shown in the Fig. 13.  The results are very satisfactory and the TPR and FPR for testing and training are 99.71%, 

2.24%, 100%, and 1%, respectively, for complicated images. Also, the high value of the area under ROC curve 

(AUC) is a good measure of classifier performance (Godil et al., 2014).  From Figure. 13 the AUC for the ELM 

classifier is very close to 1 is about 99.89% for testing phase.  Thus, the performance of the ELM is quite 

satisfactory. 

 

 
The cropped enhancement results for LP 

                                                      
 

 
The cropped enhancement results for LP 

                                                      
 

 
The cropped enhancement results for LP 

                                              
 

Fig. 12.   Successful detection examples for complicated vehicle images with cropped LP images results under 

low/high light, various viewpoints, with dusk and fog, with distortion, and with low/high contrast problems. 
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4.3 Comparison with other classifiers 

This section illustrates two issues. The first one is the classification accuracy of the LPD system using 

MRELBP, SURF features, and hybrid features (MRELBP_SURF) for the ELM classifier. The second is the 

comparative analysis of the proposed LPD system with other machine classifiers, such as SVM, Adaboost, and 

CNN. We also tried to use the CNN algorithm as classifier and detector, but experiments showed that this algorithm 

does not detect objects inside an image. The CNN works very well for the recognition task. This means after the 

LP object is detected at the detection stage, we can use the CNN to recognize the LP as text. Table 3 shows the 

classification accuracy of the LPD system with MRELBP, SURF, and hybrid features, respectively. The 

classification accuracy based on MRELBP_SURF with the ELM classifier is outperformed.  

From the Table 3 it is evident that using the hybrid feature descriptors the classification accuracy for all the 

classifiers has been increased significantly and the ELM outperforms than SVM and Adaboost classifiers. Fig. 14 

(a), (b), and (c) represents the ROC curves for the classification accuracy of the proposed system with other 

classifiers. 

 
Fig. 13.   The ROC curve of the ELM Classifier for training 

and testing phases. 

 

Table 3 

The average of the classification results for the proposed method with other classifiers. 

Classifier Classification Accuracy Classifier Parameters 

 MRELBP SURF MRELBP_SURF  

ELM 96.0714% 89.2143% 100.0000% Sigmoid activation function with 1000 

hidden neurons. 

SVM 95.8571% 91.9286% 99.5000% Linear function with 5- fold cross validation 

model.  

Ensembles (Adaboost) 97.7143% 86.5000% 98.2143% Cascade classifier technique with 10 

training iteration stages.   
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5. Comparison with other methods  

In this section, the proposed framework is compared with the latest LP detection methods that used the 

same database (Al-Shemarry et al., 2018, 2019; Azam & Gavrilova, 2017; Azam & Islam, 2016; Hasan, 2013; 

Panahi & Gholampour, 2017; Raghunandan et al., 2017; Silva & Jung, 2018; Wafy & Madbouly, 2016). Also, this 

method was compared with other methods that have different databases (Anagnostopoulos, Anagnostopoulos, 

Loumos, & Kayafas, 2006; M. D. A. Asif, Tariq, Baig, & Ahmad, 2014; M. R. Asif, Chun, Hussain, & Fareed, 

2016; Y.-N. Chen, Han, Ho, & Fan, 2015; Z.-X. Chen, Liu, Chang, & Wang, 2009; Deb, Chae, & Jo, 2009; Deb & 

Jo, 2009; Duan, Duc, & Du, 2004; He, Yao, Zhang, Hou, & Han, 2014; Lee, Han, & Ko, 2013; Lee et al., 2010; 

Lim & Tay, 2010; Y. Luo, Li, Huang, & Han, 2018). The performance of the proposed method and those methods 

is evaluated using the parameters for ROC curve, the TPR and FPR rates with system runtime. Table 4 shows the 

performance of the proposed method with some typical methods. Al-Shemarry et al. (2018) proposed detection 

method for low-quality vehicle images.  The method extracted the features using a three preprocessing levels for 

local binary pattern (3L-LBP) with the AdaBoost algorithm. At the preprocessing stage, a contrast-limited adaptive 

 
                                                 (a)                                                                         (b) 

 
                                                                                    (c)                                                             

Fig. 14. The ROC curves of the proposed system with other classifiers: (a) The ROC curve for ELM 

classification; (b) The ROC curve for SVM classification; (c) The ROC curve for ensembles (Adaboost) 

classification; 
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histogram equalization method with a high standard derivation was used, which is led to increase the FPR. Azam 

and Gavrilova (2017) reported a genetic algorithm (GA) depending on the HOG features with a mixture of binary 

classifiers to classify LP and non-LP images. To improve the classification performance, the genetic algorithm was 

applied to select the best features subset. It achieved good results under different conditions, but it required a high-

contrast preprocessing method to improve images.  Hence the FPR increased. Raghunandan et al. (2017) proposed 

a mathematical model using a Riesz fractional operator to enhance the details of LP edges’ information. That method 

worked well as long as it had a clear LP shape in an image. It was not robust for distorted images and it was time-

consuming with a low TPR rate.  Also, Al-Shemarry et al. (2019) produced a new descriptor, with multi-level 

extended local binary patterns (MLELBP) to extract multiple LP features under complicated conditions. The input 

image was resized to save the processing time. The ELM was used to build the trained model and obtain good 

detection results. In this method, resizing the image is not always good, especially with distorted images. It lead to 

the loss of important feature values and tends to reduce the TPR.  Azam and Islam (2016) showed good performance 

techniques using several unsupervised learning methods for each LP problem. However, those techniques leads to 

increased FPR and are not robust if there is another LP problem that needs to be considered. Hasan (2013) had a 

TPR less than the proposed method by 7.01% under good conditions. Also, this method used many unsupervised 

learning methods for detection stage. It does not consider tilted LPs, low/high contrast, and noise problems. Panahi 

and Gholampour (2017) used an unsupervised learning method to consider the images affected by illumination, 

weather, and vehicle movement effects. However, the vehicle images are captured using specific devices, which 

make LPs easy to detect and recognize. Wafy and Madbouly (2016) shows a good TPR which is a little bit less than 

the proposed method 1.71% and 0.677ms detection time. The method using unsupervised time consuming methods 

and the TPR time was not reported. Silva and Jung (2018) used deep learning algorithms as good classification 

methods that are currently used. They just considered tilted LPs with simple conditions. The TPR and FPR are less 

and higher than the proposed method by 6.19%, respectively. However, the database used in this study (Al-

Shemarry et al., 2019) was more complicated compared with existing studies which are used the original English 

car plates database. This work also compared with other existing methods that used different databases. The reason 

for selecting different databases, such as Chinese, Korea, Caltech cars and so on, was to compare the performance 

of our algorithm detecting LPs from a large amount of very distorted and complicated vehicle images. The detection 

time of Lee et al. (2010) method is much higher than the others due to applying time-consuming methods to detect 

and extract LP regions. It had a high FPR and low TPR.  Anagnostopoulos et al. (2006) depended on thresholding 

and binarization; they required high-contrast images for achieving good results, which led to increased FPR. The 

memory complexity of those methods is O (N×M); where N and M is the dimension of the input tested image. 

Nowadays, the average of memory usage for the proposed detection method is not as big an implementation issue 

as existing works. From the Table 4, we can see that the proposed method has a very competitive TPR (detection 

accuracy) and with less system runtime. This method keeps a good balance between TPR and FPR and is more 

suitable for a real time automatic licence plate detection system.  
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 Table 4 

Performance comparisons of the proposed method with others in terms of the TPR, FPR, and runtime. 

Ref. Method  DS Image condition FPR TPR DT(ms) PF 

Al-Shemarry et al. 

(2018) 

3L-LBP descriptor with 

AdaBoost algorithm 

1030 Illumination, weather 

effect, low/high lighting 

effect, dirty 

5.56% 98.56% 0.78ms English  

Azam and 

Gavrilova (2017) 

HOG features with a mixture 

of binary classifiers and GA 

540 Texts images background  NR 91.31% NR English  

Raghunandan et 

al. (2017) 

Riesz fractional operator 114 Complex background, 

different weather 

conditions,  night light 

7.01% 79.4% NR English  

Hasan (2013) Canny edge, Horizontal and 

Vertical edge, three stages 

Artificial Neural Network 

(ANN) 

69 Simple conditions NR 92.7% NR English 

Azam and Islam 

(2016) 

Frequency domain mask, 

contrast improvement 

technique, statistical 

binarization, Radon 

transform, and entropy 

vector. 

325 Simple  tilted LP and low 

difficult contrast night 

conditions 

6.3% 98.15% 0.450ms English  

Wafy and 

Madbouly (2016) 

Semi-symmetric corner 

points, morphological 

feature, linear discriminated 

analysis (LDA) 

405 Simple  conditions NR 98% 1.00ms English  

Panahi and 

Gholampour 

(2017) 

Vertical Sobel edge operator 

and Hough transform, 

ConnectedComponent 

Algorithm, 2L-SVM 

500 Medium quality plates, 

dirty LPs. 

NR 97% NR English  

Al-Shemarry et al. 

(2019) 

MLELBP_ELM 1500 640×480, various 

complicated scenes 

5% 99.10% 0.735ms English  

Silva and Jung 

(2018) 

Convolutional Neural 

Network 

196 Unconstrained capture 

scenarios, 

5% 93.52% NR English  

        

Asif et al. (2016) YDbDr color space + Otsu 

method 

1511 Simple   conditions and 

background is either 

yellow or white LPs 

background with black 

characters. 

6.5% 93.86% 0.33ms Chinese  

Lee et al. (2010) Local structure patterns, the 

modified census transform 

580 720×486 ,various weather 

conditions 

18% 88.9% 3.293ms Korea  

Lim and Tay 

(2010) 

MSER + Heuristic + CVM 126  ~13% 90.47% NR Caltech  

Chen et al. (2018) Rectangle shape, texture and 

color features 

1176 640×480, various scenes 4.6 97.3% 0.220ms Chinese  

He et al. (2014) Blob for candidate detection, 

filtering affine distortion, 

saliency detection, post-

processing 

200 Multi-scale LPs under 

different inclination 

directions 

19.6% 94.7% NR Chinese  

Anagnostopoulos 

et al. (2006) 

Sliding concentric windows  

with thresholding and 

binarization 

1334 Different scene and 

illumination 

9% 96.5% 0.111ms Greek  

Duan et al. (2004) Hough Transform and 

contour 

algorithm 

805 800×600, different 

rotation and 

lighting conditions 

1.6% 98.8% 0.650ms Vietnamese  

Luo et al. (2018) Single shot multi-box 

Detector, corner points, 

character contours based on 

multi-level thresholding and 

binarization. 

1200 800×800, various scenes, 

illumination and view 

angles 

27% 96.5% 0.370ms Taiwanese  

Proposed 

 

ELM_MRELBP_SURF 2050 Simple and distorted 

conditions 

2.24% 99.71% 0.323ms English  

DS: Database Size; DT: Detection Time; NR: Not Reported; PF: Plate Format 
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6. Conclusion and future work 

This study illustrates a new detection approach which is invariant to high/low contrast and lighting, rotation, 

blur, fog, and distortion under difficult conditions due to the use of a robust preprocessing method and strong hybrid-

feature descriptors, MRELBP and SURF. A precise LPD system with low FPR is very crucial to contribute more 

efficiency and safety for transportation systems. In the experiments, this method achieved significant classification 

and detection results.  The confusion matrix and the ROC curve, show that the overall classification accuracy of the 

ELM classifier is 99.95% and the AUC is close to the 1 for all LPs problems. The accuracy and TPR are 97.92% 

and 99.71, respectively, with the FPR of 2.24%. The average of the runtime for the whole detection system per 

vehicle image was 2.108 milliseconds. Also, the ROC curve was used to compare and evaluate the results of the 

proposed method with other classifiers. The classification results of the ROC curve were very good for the ELM 

classifier at 100.0000%. The proposed method was also compared with the existing LP detection methods that used 

either the same database, or a different database. It showed that the proposed method performed better than other 

methods in terms of the TPR and FPR. This method can improve the work of existing ANPR systems under 

complicated conditions. In addition, it can be applied to different types of LP data sets, such as Australian LPs and 

Arabic LPs.  Moreover, due to using supervised learning techniques, there is no limitation in our method that relates 

to objects shape, color, and edge and so on. In future work, for further improvement of the proposed LPD system, 

we want to take account of more challenges, such as snow, rain conditions and difficult tilted LPs. We are also 

planning to recognize the LP number under difficult conditions.  Therefore, the future target is introducing deep 

learning for the recognition stage. Also, the proposed system could be applied efficiently to real-time applications. 
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CHAPTER 7 

 CONCLUSIONS AND FUTURE WORK 

 

7.1     Summary and Conclusions of the Thesis 

An LPD system is an important application for our daily life to contribute more efficiency and 

safety in ITSs. It has great potential in helping to monitor road traffic for law enforcement 

activities. The detection of an LP number from low-quality vehicles images is the main 

improvement in performance needed for existing detection systems.  Many researchers have 

developed various methods for enhancing ITSs. Identification of various conditions of LPs is 

a complicated issue, requiring the collection of large data sets. Finding representative multi-

features from a large data set plays an important role in identifying LPs. In this thesis, the 

performance of the proposed LPD system was improved through three main ways: 

1. Developing effective methods for detecting LPs under complicated conditions, such as 

low/high contrast, bad illumination,  foggy, dusty, and distorted by high speed and bad 

weather. They improved the detection system performance with less execution time and 

good false positive rate. 

2. Improving the developed methods by presenting new preprocessing and extraction 

techniques that can improve the classification accuracy.  

3. Investigating which method is better to achieve the main requirements of an LPD system 

under difficult conditions like distorted vehicle images, low/high contrast, and bad 

illumination. 

To achieve these objectives and answer research questions, four methods were developed, 

based on different types of texture descriptors: a local binary patterns (LBPs), extended local 

binary pattern (ELBP) based preprocessing methods, a median robust extended local binary 

pattern (MRELBP),  a median filter histogram of oriented gradient (MHOG), and the speeded-

7 
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up a robust feature (SURF) with three supervised learning algorithms,  Adaboost, extreme 

learning machine (ELM), and support vector machine (SVM),  were developed in this research. 

In the following subsections, a summary of those proposed methods is provided. 

 

7.1.1    A three-level features extraction based on LBP descriptor using Adaboost learning 

algorithm  

This method includes two phases: testing and training. At each phase, the same preprocessing 

and extraction methods were used to capture different types of complicated LPs features (see 

Chapter 3). Al-Shemarry et al. (2018) applied the concept of an ensemble of cascade Adaboost 

classifiers to learn the extracted features of the LP due to its discriminative power. The strong 

cascade classifier contains a large number of weak classifiers to classify three-level extracted 

LBP (3L-LBP) features which include a LBP grayscale features, a LBP filtered features, and a 

contrast LBP features.  In this study, the texture descriptor LBP is selected to extract key 

features from low-quality images due to its advantages. To test the effectiveness of this method, 

it was implemented with 1030 vehicles images, each having 640×480 resolution with difficult 

conditions, such as low/high contrast, foggy, tilted LP, and distortions. From the experimental 

results, the overall performance evaluation for detection, precision, and F-measure rates are 

98.56%, 95.9%, and 97.19%, respectively, with an FPR of 5.6%.  This method was compared 

against existing LPD methods presented in the literature. It outperforms those methods that 

used the same databases, in terms of detection accuracy and execution time under difficult 

conditions. The average detection time for the whole system per vehicle image was 2.001ms.  

Moreover, the proposed method works without any limitations due to the use of testing and 

learning phases with a texture descriptor.  Many vehicle images in the database include 

commercial signs and logos which lead to increased FP values and take more processing time. 

 

7.1.2    A multi-preprocessing extraction level using ELBP descriptor based on an ELM 

classifier  

A new extraction technique was developed using multi-preprocessing levels based on ELBP 

descriptor, MLELBP, to extract different LP features. The preprocessing steps use a Gaussian 

filter and CLAHE method to improve LP images and capture more complicated features. Those 

steps improved the classification performance for the LPD system (see Chapter 4). This work 

successfully reduced the extracted features dimension as well as FP values. The extracted 

features provide the input data to an ELM classifier to make a decision about the LP regions, 
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if it is LP or non-LP. At the evaluation stage, this method was tested on further distorted images 

(unseen data) taken under difficult conditions, such as low/high contrast, foggy, and rotated 

LPs. The MLELBP_ELM method has three main advantages compared to the 3L-

LBP_Adaboost method. The first one is that increasing the size of the training dataset through 

the preprocessing stage in order to capture more key features from the LP region. The second 

increases the size of a testing dataset through using an online photo editor application to reflect 

various difficult conditions for vehicle images. The third is that the detection accuracy and FPR 

were improved by 0.54% and 0.56%, respectively.  The classification and detection rates are 

99.78% and 99.10%, respectively, with an FPR of 5%. The average execution time for the 

whole detection system per vehicle image was 2.4530ms. This method was compared with 

several existing LPD methods that used the same database. The experimental results showed 

that the MLELBP_ELM method can produce better results than the 3L-LBP_Adaboost 

method. The findings indicate that this method is superior in the classification performance 

over most existing methods under complicated conditions. It can help provide more useful 

information about complicated LP images to improve an LPD system’s performance. 

 

7.1.3    The LBP_MHOG descriptors based on the SVM classifier 

In this section, a new preprocessing technique was proposed for improving vehicle images as 

well as reducing the extraction time. It included the combination of a Gaussian filter and the 

ECHE technique with the CLAHE algorithm. The MHOG and LBP descriptors were used to 

extract more difficult representative LP features. Then, the SVM was used to classify the 

extracted features. The LBP_MHOG_SVM method was introduced to improve an LPD system 

performance (see Chapter 5). This method tested on an English car LP database, which has 

three types of LP resolutions, 25×100, 50×200, and 75×300.  Therefore, an ensemble of strong 

detectors or trained models as developed. The performance of this method was evaluated 

through the 5-fold cross-validation procedure. The LBP_HOG_SVM method was compared in 

terms of the FPR and running time with the 3L-LBP_Adaboos and MLELBP_ELM methods. 

It yielded an excellent improvement over existing methods, a 4% improvement for the FPR 

and 1.50% for accuracy with execution time. Also, this method was compared with other 

newest existing methods in the literature for the same database using the detection and object 

localization metrics. The ROC curve also was used to compare and evaluate the results of the 

proposed method with the ELM classifier. The overall performance evaluation for the object 

localization metrics of the detection or recall rate is 99.62%, with an FPR of 1.675%. The 
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average of the runtime for the whole detection system per vehicle image was 2.2187ms. The 

experimental results demonstrated that the proposed technique could be applied efficiently for 

real-time applications. Also, this method can help improve the work of existing ANPR systems 

under complicated conditions. 

 

7.1.4    The MRELBP_SURF features based on an ELM classifier 

In order to achieve a good system performance, a new detection approach was developed for 

detecting distorted LP images. The modified preprocessing version, ECLACHE, of the 

ECHE_CLAHE method was used in this work. Also, a recently developed texture descriptor, 

MRELBP with SURF, was used to extract complicated features. Then, the extracted LP 

features were used as input to the ELM classifier to produce a strong detector (see Chapter 6). 

Through the experiments, the ELM classifier works very well with different types of texture 

descriptors.  Using the previous method (MHOG_LBP_SVM), the ELM takes more time to 

classify HOG features. From the confusion matrix and the ROC curve, there is evidence that 

the overall classification accuracy of the ELM classifier is 99.95% and the AUC are close to 1 

for all complicated LPs images. The accuracy and detection rates are 97.92% and 99.71, 

respectively, with the FPR of 2.24%. The average runtime for the whole detection system per 

vehicle image was 2.108 seconds. Furthermore, the MRELBP_SURF_ELM based approach 

can correctly identify the discriminative LP regions correctly and efficiently. The method was 

superior in the performance and execution time over the most existing algorithms as well as 

other proposed methods in this research. 

Taken together, it can be concluded that the research presented in this thesis has found 

new robust successful methods for reliable detection of LPs from low-quality vehicles images 

under difficult conditions. These techniques can improve the performance of the existing 

ANPR systems under complicated conditions. The outcomes will contribute to increasing the 

quality of transport systems with better efficiency and safety. 

 

7.2    Future work 

The approaches presented in this thesis provide good performance in the LP detection under 

difficult conditions. The future work will investigate the possibility of using those methods to 

improve ANPR applications. To facilitate the further development of this work, a few key areas 

below have been explored. 
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Concerning the 3L-LBP_Adaboost and MLELBP_ELM algorithms, they can be 

improved to further reduce the false positive rate and extraction time using the preprocessing 

techniques for both phases of testing and training. In regards to the dimensionality reduction 

for the extracted features, a Gaussian filter, median filter, CLAHE, ECHE, and ECLACHE 

techniques have been used.  

One future improvement could be to eliminate those LP objects that look like the LP 

and have the same characteristics as LP regions, such as texts or commercial signs and logo 

objects. This step would decrease the processing time as well as the memory required to process 

the LP detection task.  

In addition, using a combination of several supervised machine learning algorithms 

instead of a single one is very efficient. This is a preferable solution for capturing more 

information about the LP area and increase the detection system accuracy. Also, in the 

detection stage using an ensemble of the classifiers could improve the classification accuracy 

and the efficiency of the trained models compared with using a single classifier. 

The study in this thesis has shown that selecting supervised machine learning 

algorithms to identify and classify the extracted features for the complicated LP is an extremely 

challenging task.  The quality of detection results depends on how the extraction and 

classification algorithms are selected and developed. The detection algorithms are mostly 

evaluated using multiple criteria, such as recall (detection) rate or true positive rate, false 

positive rate, precision rate, f-measure rate, the accuracy rate, and the receiver operating 

characteristic curve. 

Those methods can be applied to different types of LP datasets, such as Australian car 

LPs, Arabic car LPs, and so on. More generally the proposed methods could be used by other 

fields that are related to objects detection subjects. Due to using supervised learning techniques, 

there is no limitation in those methods which are associated with objects shape, color, and edge 

and so on. 

Further study is required to take account of other challenges and to enhance this work 

for dealing with other difficult conditions, such as licence plates with difficult tilt, rain, and 

snow in images.  The detected LPs are normally stored as images in the memory and used by 

transportation systems to complete their tasks. This needs more storage devices, therefore, the 
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LP recognition stage is required. This stage works to recognize the LP number as a text. This 

is a very easy task to do using deep learning algorithms and template matching techniques with 

optical character recognition (OCR). 

This thesis studied offline detection methods, but it is desirable for this work to be 

applied to real online LPD systems to see the impact of this research. This will require more 

work. Therefore, all of the proposed methods need to be employed for online detection. This 

would be a significant achievement in the field of transport systems for work under difficult 

conditions. 
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Matlab simulation code for Chapter 3  

Ensemble of Adaboost cascades of 3L-LBPs classifiers for license 

plates detection with low quality images  

 

 

The simulation codes to detect LPs from low quality vehicle images are presented. The 

experiment results were obtained using Matlab programming language version R2018a. 

A 
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--------------------------------Adaboost classifier 

function [L,hits] = ADABOOST_te(adaboost_model,te_func_handle,test_set,. 

                                true_labels) 

hypothesis_n = length(adaboost_model.weights); 

sample_n = size(test_set,1); 

class_n = length(unique(true_labels)); 

temp_L = zeros(sample_n,class_n,hypothesis_n);      % likelihoods for each weak classifier 

 % for each weak classifier, likelihoods of test samples are collected 

for i=1:hypothesis_n 

    [temp_L(:,:,i),hits,error_rate] = te_func_handle(adaboost_model.parameters{i},... 

                                                     test_set,ones(sample_n,1),true_labels); 

    temp_L(:,:,i) = temp_L(:,:,i)*adaboost_model.weights(i); 

end 

 L = sum(temp_L,3); 

hits = sum(likelihood2class(L)==true_labels); 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function adaboost_model = ADABOOST_tr(tr_func_handle, te_func_handle, train_set, 

labels, no_of_hypothesis) 

adaboost_model = struct('weights',zeros(1,no_of_hypothesis),... 

                        'parameters',[]); %cell(1,no_of_hypothesis)); 

 sample_n = size(train_set,1); 

samples_weight = ones(sample_n,1)/sample_n; 

 for turn=1:no_of_hypothesis 

    adaboost_model.parameters{turn} = tr_func_handle(train_set,samples_weight,labels); 

    [L,hits,error_rate] = te_func_handle(adaboost_model.parameters{turn},... 

                                         train_set,samples_weight,labels); 

    if(error_rate==1) 

        error_rate=1-eps; 

    elseif(error_rate==0) 

        error_rate=eps; 

    end 

     % The weight of the turn-th weak classifier 

    adaboost_model.weights(turn) = log10((1-error_rate)/error_rate); 

    C=likelihood2class(L); 

    t_labeled=(C==labels);  % true labeled samples 

     % Importance of the true classified samples is decreased for the next weak classifier 

    samples_weight(t_labeled) = samples_weight(t_labeled)*... 

                    ((error_rate)/(1-error_rate));               

     % Normalization 

    samples_weight = samples_weight/sum(samples_weight); 

end 

 % Normalization 

adaboost_model.weights=adaboost_model.weights/sum(adaboost_model.weights); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

--------------------------------LBP descriptor 

function BasicLBP = ComputeRotationInvariance(RotateIndex, NeighborPoints, 

tempLBPpre, tempLBPcur, tempLBPpos, tempLBPpreC, tempLBPposC, binCount, 

BasicLBP) 
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minLBP = BasicLBP; 

if RotateIndex == 1 

    for p = 1 : NeighborPoints - 1 

        tempLBPpreT = bitor(bitshift(tempLBPpre, -1 * p), bitshift(bitand(tempLBPpre, 

(uint8(2^p) - 1)), (NeighborPoints - p))); 

        tempLBPcurT = bitor(bitshift(tempLBPcur, -1 * p), bitshift(bitand(tempLBPcur, 

(uint8(2^p) - 1)), (NeighborPoints - p))); 

        tempLBPposT = bitor(bitshift(tempLBPpos, -1 * p), bitshift(bitand(tempLBPpos, 

(uint8(2^p) - 1)), (NeighborPoints - p))); 

          temp = (tempLBPpreC + bitshift(double(tempLBPpreT), 1)) + 

bitshift(double(tempLBPcurT), (NeighborPoints + 1)) + bitshift(double(tempLBPposT), 

(NeighborPoints * 2 + 1)) + tempLBPposC * 2 ^ (binCount - 1); 

            if temp < minLBP 

            minLBP = temp; 

        end 

    end 

    BasicLBP = minLBP; 

else 

     

    tempLBPpreT = RotLBP(tempLBPpre, NeighborPoints); 

    tempLBPcurT = RotLBP(tempLBPcur, NeighborPoints); 

    tempLBPposT = RotLBP(tempLBPpos, NeighborPoints); 

    temp = tempLBPpreC + bitshift(double(tempLBPpreT), 1) + 

bitshift(double(tempLBPcurT), (NeighborPoints + 1)) + bitshift(double(tempLBPposT), 

(NeighborPoints * 2 + 1)) + tempLBPposC * 2 ^ (binCount - 1); 

     BasicLBP = temp; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function LBP= efficientLBP(inImg, varargin)  

%% efficientLBP 

% The function implements LBP (Local Binary Pattern analysis). 

%% Deafult params 

isRotInv=false; 

isChanWiseRot=false; 

filtR=generateRadialFilterLBP(8, 1); 

 %% Get user inputs overriding default values 

funcParamsNames={'filtR', 'isRotInv', 'isChanWiseRot'}; 

assignUserInputs(funcParamsNames, varargin(Y. Han & 10.1109/EIT.2015.7293386)); 

 if ischar(inImg) && exist(inImg, 'file')==2 % In case of file name input- read graphical file 

    inImg=imread(inImg); 

end 

 nClrChans=size(inImg, 3); 

 inImgType=class(inImg); 

calcClass='single'; 

isCalcClassInput=strcmpi(inImgType, calcClass); 

if ~isCalcClassInput 

    inImg=cast(inImg, calcClass); 

end 

imgSize=size(inImg); 

 nNeigh=size(filtR, 3); 
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 if nNeigh<=8 

    outClass='uint8'; 

elseif nNeigh>8 && nNeigh<=16 

    outClass='uint16'; 

elseif nNeigh>16 && nNeigh<=32 

    outClass='uint32'; 

elseif nNeigh>32 && nNeigh<=64 

    outClass='uint64'; 

else 

    outClass=calcClass; 

end 

if isRotInv 

    nRotLBP=nNeigh; 

    nPixelsSingleChan=imgSize(1)*imgSize(2); 

    iSingleChan=reshape( 1:nPixelsSingleChan, imgSize(1), imgSize(2) ); 

else 

    nRotLBP=1; 

end 

 nEps=-3; 

weigthVec=reshape(2.^( (1:nNeigh) -1), 1, 1, nNeigh); 

weigthMat=repmat( weigthVec, imgSize([1, 2]) ); 

binaryWord=zeros(imgSize(1), imgSize(2), nNeigh, calcClass); 

LBP=zeros(imgSize, outClass); 

possibleLBP=zeros(imgSize(1), imgSize(2), nRotLBP); 

for iChan=1:nClrChans   

    % Initiate neighbours relation filter and LBP's matrix 

    for iFiltElem=1:nNeigh 

        % Rotate filter- to compare center to next neigbour 

        filtNeight=filtR(:, :, iFiltElem); 

                % calculate relevant LBP elements via filtering 

        binaryWord(:, :, iFiltElem)=cast( ... 

            roundnS(filter2( filtNeight, inImg(:, :, iChan), 'same' ), nEps) >= 0,... 

            calcClass ); 

        % Without rounding sometimes inaqulity happens in some pixels 

        % compared to pixelwiseLBP 

    end % for iFiltElem=1:nNeigh 

     for iRot=1:nRotLBP 

        % find all relevant LBP candidates 

        possibleLBP(:, :, iRot)=sum(binaryWord.*weigthMat, 3); 

        if iRot < nRotLBP 

            binaryWord=circshift(binaryWord, [0, 0, 1]); % shift binaryWord elements 

        end 

    end 

        if isRotInv 

        if iChan==1 || isChanWiseRot 

            % Find minimal LBP, and the rotation applied to first color channel 

            [minColroInvLBP, iMin]=min(possibleLBP, [], 3); 

                        % calculte 3D matrix index 

            iCircShiftMinLBP=iSingleChan+(iMin-1)*nPixelsSingleChan; 

        else 
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            % the above rotation of the first channel, holds to rest of the channels 

            minColroInvLBP=possibleLBP(iCircShiftMinLBP); 

        end % if iChan==1 || isChanWiseRot 

    else 

        minColroInvLBP=possibleLBP; 

    end % if isRotInv 

     

    if strcmpi(outClass, calcClass) 

        LBP(:, :, iChan)=minColroInvLBP; 

    else 

        LBP(:, :, iChan)=cast(minColroInvLBP, outClass); 

    end 

end % for iChan=1:nClrChans 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [ Boxes ] = funcSol3( Im, ~ ) 

  Im = imgaussfilt(Im,0.25); 

Im = adapthisteq(Im,'clipLimit',0.25,'Distribution','rayleigh'); 

 I= Im; 

 [~, mserConnComp] = detectMSERFeatures(I, ... 

    'RegionAreaRange',[140 9000],'ThresholdDelta',3); 

mserStats = regionprops(mserConnComp, 'BoundingBox', 'Eccentricity', ... 

    'Solidity', 'Extent', 'Euler', 'Image'); 

% Compute the aspect ratio using bounding box data. 

bbox = vertcat(mserStats.BoundingBox); 

w = bbox(:,3); 

h = bbox(:,4); 

aspectRatio = w./h; 

% Threshold the data to determine which regions to remove. These thresholds 

% may need to be tuned for other images. 

filterIdx = aspectRatio' > 3; 

filterIdx = filterIdx | [mserStats.Eccentricity] > .990 ; 

filterIdx = filterIdx | [mserStats.Solidity] < .3; 

filterIdx = filterIdx | [mserStats.Extent] < 0.2 | [mserStats.Extent] > 0.9; 

filterIdx = filterIdx | [mserStats.EulerNumber] < -4; 

% Remove OR Filter out regions 

mserStats(filterIdx) = []; 

regionImage = mserStats(6).Image; 

regionImage = padarray(regionImage, [1 1]); 

 % Compute the stroke width image. 

distanceImage = bwdist(~regionImage); 

skeletonImage = bwmorph(regionImage, 'thin', inf); 

strokeWidthValues = distanceImage(skeletonImage); 

strokeWidthMetric = std(strokeWidthValues)/mean(strokeWidthValues); 

 % Threshold the stroke width variation metric 

strokeWidthThreshold = 0.4; 

strokeWidthFilterIdx = strokeWidthMetric > strokeWidthThreshold; 

 % Process the remaining regions 

for j = 1:numel(mserStats) 

     regionImage = mserStats(j).Image; 

    regionImage = padarray(regionImage, [1 1], 0); 
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     distanceImage = bwdist(~regionImage); 

    skeletonImage = bwmorph(regionImage, 'thin', inf); 

     strokeWidthValues = distanceImage(skeletonImage); 

     strokeWidthMetric = std(strokeWidthValues)/mean(strokeWidthValues); 

     strokeWidthFilterIdx(j) = strokeWidthMetric > strokeWidthThreshold; 

 end 

mserStats(strokeWidthFilterIdx) = []; 

bboxes = vertcat(mserStats.BoundingBox); 

if isempty(bboxes) 

    Boxes = []; 

    return 

end 

 xmin = bboxes(:,1); 

ymin = bboxes(:,2); 

xmax = xmin + bboxes(:,3) - 1; 

ymax = ymin + bboxes(:,4) - 1; 

 % Expand the bounding boxes by a small amount. 

expansionAmount = 0.02; 

xmin = (1-expansionAmount*7) * xmin; 

ymin = (1-expansionAmount) * ymin; 

xmax = (1+expansionAmount*4) * xmax; 

ymax = (1+expansionAmount) * ymax; 

 % Clip the bounding boxes to be within the image bounds 

xmin = max(xmin, 1); 

ymin = max(ymin, 1); 

xmax = min(xmax, size(I,2)); 

ymax = min(ymax, size(I,1)); 

 % Show the expanded bounding boxes 

expandedBBoxes = [xmin ymin xmax-xmin+1 ymax-ymin+1]; 

% Compute the overlap ratio 

overlapRatio = bboxOverlapRatio(expandedBBoxes, expandedBBoxes); 

 % Set the overlap ratio between a bounding box and itself to zero to 

% simplify the graph representation. 

n = size(overlapRatio,1); 

overlapRatio(1:n+1:n^2) = 0; 

 % Create the graph 

g = graph(overlapRatio); 

 % Find the connected text regions within the graph 

componentIndices = conncomp(g); 

 % Merge the boxes based on the minimum and maximum dimensions. 

xmin = accumarray(componentIndices', xmin, [], @min); 

ymin = accumarray(componentIndices', ymin, [], @min); 

xmax = accumarray(componentIndices', xmax, [], @max); 

ymax = accumarray(componentIndices', ymax, [], @max); 

 % Compose the merged bounding boxes using the [x y width height] format. 

Boxes = [xmin ymin xmax-xmin+1 ymax-ymin+1]; 

  % Remove bounding boxes that only contain one text region 

numRegionsInGroup = histcounts(componentIndices); 

Boxes(numRegionsInGroup == 1, :) = []; 

 end 
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 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function Boxes = funcSol5( Im,l ) 

 l=l+1; 

[y,x]=size(Im); 

Im2 = imadjust( Im,[0.1;0.5] ); 

BW = edge(Im2,'Sobel'); 

 reg = regionprops(BW,'Area','Centroid','BoundingBox'); 

 reg([reg.Area]<100)=[]; 

regBad = []; 

for i = 1:length(reg) 

    % filter some boxes 

    if reg(i).BoundingBox(4) < 15 

        regBad = [regBad,i]; 

    elseif reg(i).BoundingBox(3) < 10 

        regBad = [regBad,i]; 

    elseif reg(i).BoundingBox(3) < 70 && reg(i).BoundingBox(4) < 70 

        regBad = [regBad,i]; 

    elseif reg(i).BoundingBox(3) < 70 && reg(i).BoundingBox(4) > 70 

        regBad = [regBad,i]; 

    elseif reg(i).BoundingBox(3) > 150 && reg(i).BoundingBox(4) > 150 

        regBad = [regBad,i]; 

    elseif reg(i).BoundingBox(4) < 20 && reg(i).BoundingBox(3) > 80 

        regBad = [regBad,i]; 

    elseif reg(i).BoundingBox(3) > 300 

        regBad = [regBad,i]; 

    elseif reg(i).BoundingBox(4) > 100 

        regBad = [regBad,i]; 

    end 

    %remove regions that are at the top 

    if reg(i).BoundingBox(1) < 50 ||  reg(i).BoundingBox(1) > x - 50   

        regBad = [regBad,i]; 

    elseif reg(i).BoundingBox(2) < 150  

        regBad = [regBad,i]; 

    end 

end 

reg(unique(regBad))=[]; 

%if multiple candidates - leave with max corners 

iMax=[]; 

for i = 1:length(reg) 

    corners = detectFASTFeatures(imcrop(Im,(reg(i).BoundingBox))); 

    iMax(i) = length(corners); 

end 

[~,chosen]=max(iMax); 

 if ~isempty(chosen) 

    Boxes = reg(chosen).BoundingBox; 

else 

    %just to avoid error 

    Boxes = [1,1,1,1]; 

end 

 end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [radInterpFilt]=generateRadialFilterLBP(p, r) 

%% Default params 

if nargin<2 

    r=1; 

    if nargin<1 

        p=8; 

    end 

end 

 %% verify params leget values 

r=max(1, r);    % radius below 1 is illegal 

p=round(p);     % non integer number of neighbours sound oucward 

p=max(1, p);    % number of neighbours below 1 is illegal 

%% find elements angles, aranged counter clocwise starting from "X axis" 

% See http://www.ee.oulu.fi/mvg/files/pdf/pdf_6.pdf for illustration 

theta=linspace(0, 2*pi, p+1)+pi/2;    

theta=theta(1:end-1);           % remove obsolite last element (0=2*pi) 

 %% Find relevant coordinates 

[rowsFilt, colsFilt] = pol2cart(theta, repmat(r, size(theta) )); % convert to cartesian 

nEps=-3; 

rowsFilt=roundnS(rowsFilt, nEps); 

colsFilt=roundnS(colsFilt, nEps); 

 % Matrix indexes should be integers 

rowsFloor=floor(rowsFilt); 

rowsCeil=ceil(rowsFilt); 

 colsFloor=floor(colsFilt); 

colsCeil=ceil(colsFilt); 

 rowsDistFloor=1-abs( rowsFloor-rowsFilt ); 

rowsDistCeil=1-abs( rowsCeil-rowsFilt ); 

colsDistFloor=1-abs( colsFloor-colsFilt ); 

colsDistCeil=1-abs( colsCeil-colsFilt ); 

 %Find minimal filter dimentions, based on indexes 

filtDims=[ceil( max(rowsFilt) )-floor( min(rowsFilt) ),... 

ceil( max(colsFilt) )-floor( min(colsFilt) ) ]; 

filtDims=filtDims+mod(filtDims+1, 2); % verify filter dimentions are odd 

 filtCenter=(filtDims+1)/2; 

 %% Convert cotersian coordinates to matrix elements coordinates via simple shift 

rowsFloor=rowsFloor+filtCenter(1); 

rowsCeil=rowsCeil+filtCenter(1); 

colsFloor=colsFloor+filtCenter(2); 

colsCeil=colsCeil+filtCenter(2); 

  

%% Generate the filter- each 2D slice for filter element   

radInterpFilt=zeros( [filtDims,  p], 'single'); % initate filter with zeros 

for iP=1:p 

    radInterpFilt( rowsFloor(iP), colsFloor(iP), iP )=... 

        radInterpFilt( rowsFloor(iP), colsFloor(iP), iP )+rowsDistFloor(iP)+colsDistFloor(iP); 

    radInterpFilt( rowsFloor(iP), colsCeil(iP), iP )=... 

    radInterpFilt( rowsFloor(iP), colsCeil(iP), iP )+rowsDistFloor(iP)+colsDistCeil(iP); 

   radInterpFilt( rowsCeil(iP), colsFloor(iP), iP )=... 
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   radInterpFilt( rowsCeil(iP), colsFloor(iP), iP )+rowsDistCeil(iP)+colsDistFloor(iP); 

       radInterpFilt( rowsCeil(iP), colsCeil(iP), iP )=... 

        radInterpFilt( rowsCeil(iP), colsCeil(iP), iP )+rowsDistCeil(iP)+colsDistCeil(iP); 

        radInterpFilt( :, :, iP )=radInterpFilt( :, :, iP )/sum(sum(radInterpFilt( :, :, iP ))); 

end 

radInterpFilt( filtCenter(1), filtCenter(2), : )=... 

radInterpFilt( filtCenter(1), filtCenter(2), : )-1;  

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function Histogram = LBPTOP(VolData, FxRadius, FyRadius, TInterval, NeighborPoints, 

TimeLength, BorderLength, bBilinearInterpolation, Bincount, Code) 

[height width Length] = size(VolData); 

 XYNeighborPoints = NeighborPoints(1); 

XTNeighborPoints = NeighborPoints(2); 

YTNeighborPoints = NeighborPoints(3); 

 if (Bincount == 0) 

    % normal code 

    nDim = 2^(YTNeighborPoints); 

    Histogram = zeros(3, nDim); 

else 

    % uniform code 

    Histogram = zeros(3, Bincount); % Bincount = 59; 

end 

 if (bBilinearInterpolation == 0) 

        for i = TimeLength + 1 : Length - TimeLength 

                for yc = BorderLength + 1 : height - BorderLength 

                        for xc = BorderLength + 1 : width - BorderLength 

                             CenterVal = VolData(yc, xc, i); 

                %% In XY plane 

                BasicLBP = 0; 

                FeaBin = 0; 

                     for p = 0 : XYNeighborPoints - 1 

                    X = floor(xc + FxRadius * cos((2 * pi * p) / XYNeighborPoints) + 0.5); 

                    Y = floor(yc - FyRadius * sin((2 * pi * p) / XYNeighborPoints) + 0.5); 

                     CurrentVal = VolData(Y, X, i); 

                    if CurrentVal >= CenterVal 

                        BasicLBP = BasicLBP + 2 ^ FeaBin; 

                    end 

                    FeaBin = FeaBin + 1; 

                end 

                %% if Bincount is "0", it means basic LBP-TOP will be 

                %% computed and uniform patterns does not work in this case 

                %%. Otherwide it should be the number of the uniform 

                %%patterns, then "Code" keeps the lookup-table of the basic 

                %%LBP and uniform LBP 

                if Bincount == 0 

                    Histogram(1, BasicLBP + 1) = Histogram(1, BasicLBP + 1) + 1; 

                else 

                    Histogram(1, Code(BasicLBP + 1, 2) + 1) = Histogram(1, Code(BasicLBP + 1, 

2) + 1) + 1; 

                end 
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                %% In XT plane 

                BasicLBP = 0; 

                FeaBin = 0; 

                for p = 0 : XTNeighborPoints - 1 

                    X = floor(xc + FxRadius * cos((2 * pi * p) / XTNeighborPoints) + 0.5); 

                    Z = floor(i + TInterval * sin((2 * pi * p) / XTNeighborPoints) + 0.5); 

                        CurrentVal = VolData(yc, X, Z); 

                       if CurrentVal >= CenterVal 

                        BasicLBP = BasicLBP + 2 ^ FeaBin; 

                    end 

                    FeaBin = FeaBin + 1; 

                end 

                 %% if Bincount is "0", it means basic LBP-TOP will be 

                %% computed and uniform patterns does not work in this case 

                %%. Otherwide it should be the number of the uniform 

                %%patterns, then "Code" keeps the lookup-table of the basic 

                %%LBP and uniform LBP 

                if Bincount == 0 

                    Histogram(2, BasicLBP + 1) = Histogram(2, BasicLBP + 1) + 1; 

                else % uniform patterns 

                    Histogram(2, Code(BasicLBP + 1, 2) + 1) = Histogram(2, Code(BasicLBP + 1, 

2) + 1) + 1; 

                end 

                  BasicLBP = 0; 

                FeaBin = 0; 

                for p = 0 : YTNeighborPoints - 1 

                    Y = floor(yc - FyRadius * sin((2 * pi * p) / YTNeighborPoints) + 0.5); 

                    Z = floor(i + TInterval * cos((2 * pi * p) / YTNeighborPoints) + 0.5); 

                        CurrentVal = VolData(Y, xc, Z); 

                      if CurrentVal >= CenterVal 

                        BasicLBP = BasicLBP + 2 ^ FeaBin; 

                    end 

                    FeaBin = FeaBin + 1; 

                end 

                %% if Bincount is "0", it means basic LBP-TOP will be 

                %% computed and uniform patterns does not work in this case 

                %%. Otherwide it should be the number of the uniform 

                %%patterns, then "Code" keeps the lookup-table of the basic 

                %%LBP and uniform LBP 

                if Bincount == 0 

                    Histogram(3, BasicLBP + 1) = Histogram(3, BasicLBP + 1) + 1; 

                else 

                    Histogram(3, Code(BasicLBP + 1, 2) + 1) = Histogram(3, Code(BasicLBP + 1, 

2) + 1) + 1; 

                end 

                end 

        end 

    end 

else % bilinear interpolation 

    for i = TimeLength + 1 : Length - TimeLength 
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                for yc = BorderLength + 1 : height - BorderLength 

               for xc = BorderLength + 1 : width - BorderLength 

                CenterVal = VolData(yc, xc, i); 

                %% In XY plane 

                BasicLBP = 0; 

                FeaBin = 0; 

                for p = 0 : XYNeighborPoints - 1 

                       % bilinear interpolation 

                    x1 = single(xc + FxRadius * cos((2 * pi * p) /                   

XYNeighborPoints));%%"float" are called "single" in Matlab 

                    y1 = single(yc - FyRadius * sin((2 * pi * p) / XYNeighborPoints)); 

                     u = x1 - floor(x1); 

                    v = y1 - floor(y1); 

                    ltx = floor(x1); 

                    lty = floor(y1); 

                    lbx = floor(x1); 

                    lby = ceil(y1); 

                    rtx = ceil(x1); 

                    rty = floor(y1); 

                    rbx = ceil(x1); 

                    rby = ceil(y1); 

                    % the values of neighbors that do not fall exactly on 

                    % pixels are estimated by bilinear interpolation of 

                    % four corner points near to it. 

                    CurrentVal = floor(VolData(lty, ltx, i) * (1 - u) * (1 - v) + VolData(lby, lbx, i) * 

(1 - u) * v + VolData(rty, rtx, i) * u * (1 - v) + VolData(rby, rbx, i) * u * v); 

                        if CurrentVal >= CenterVal 

                        BasicLBP = BasicLBP + 2 ^ FeaBin; 

                    end 

                    FeaBin = FeaBin + 1; 

                end 

                %% if Bincount is "0", it means basic LBP-TOP will be 

                %% computed and uniform patterns does not work in this case 

                %%. Otherwide it should be the number of the uniform 

                %%patterns, then "Code" keeps the lookup-table of the basic 

                %%LBP and uniform LBP 

                if Bincount == 0 

                    Histogram(1, BasicLBP + 1) = Histogram(1, BasicLBP + 1) + 1; 

                else 

                    Histogram(1, Code(BasicLBP + 1, 2) + 1) = Histogram(1, Code(BasicLBP + 1, 

2) + 1) + 1; 

                end 

              %% In XT plane 

                BasicLBP = 0; 

                FeaBin = 0; 

                for p = 0 : XTNeighborPoints - 1 

                    % bilinear interpolation 

                    x1 = single(xc + FxRadius * cos((2 * pi * p) / XTNeighborPoints)); 

                    z1 = single(i + TInterval * sin((2 * pi * p) / XTNeighborPoints)); 

                     u = x1 - floor(x1); 
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                    v = z1 - floor(z1); 

                    ltx = floor(x1); 

                    lty = floor(z1); 

                    lbx = floor(x1); 

                    lby = ceil(z1); 

                    rtx = ceil(x1); 

                    rty = floor(z1); 

                    rbx = ceil(x1); 

                    rby = ceil(z1); 

                    % the values of neighbors that do not fall exactly on 

                    % pixels are estimated by bilinear interpolation of 

                    % four corner points near to it. 

                    CurrentVal = floor(VolData(yc, ltx, lty) * (1 - u) * (1 - v) + VolData(yc, lbx, lby) 

* (1 - u) * v + VolData(yc, rtx, rty) * u * (1 - v) + VolData(yc, rbx, rby) * u * v); 

                       if CurrentVal >= CenterVal 

                        BasicLBP = BasicLBP + 2 ^ FeaBin; 

                    end 

                    FeaBin = FeaBin + 1; 

                end 

                %% if Bincount is "0", it means basic LBP-TOP will be 

                %% computed and uniform patterns does not work in this case 

                %%. Otherwide it should be the number of the uniform 

                %%patterns, then "Code" keeps the lookup-table of the basic 

                %%LBP and uniform LBP 

                if Bincount == 0 

                    Histogram(2, BasicLBP + 1) = Histogram(2, BasicLBP + 1) + 1; 

                else 

                    Histogram(2, Code(BasicLBP + 1, 2) + 1) = Histogram(2, Code(BasicLBP + 1, 

2) + 1) + 1; 

                end 

              %% In YT plane 

                BasicLBP = 0; 

                FeaBin = 0; 

                for p = 0 : YTNeighborPoints - 1 

                    % bilinear interpolation 

                    y1 = single(yc - FyRadius * sin((2 * pi * p) / YTNeighborPoints)); 

                    z1 = single(i + TInterval * cos((2 * pi * p) / YTNeighborPoints)); 

                    u = y1 - floor(y1); 

                    v = z1 - floor(z1); 

                    ltx = floor(y1); 

                    lty = floor(z1); 

                    lbx = floor(y1); 

                    lby = ceil(z1); 

                    rtx = ceil(y1); 

                    rty = floor(z1); 

                    rbx = ceil(y1); 

                    rby = ceil(z1); 

                    % the values of neighbors that do not fall exactly on 

                    % pixels are estimated by bilinear interpolation of 

                    % four corner points near to it. 
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                    CurrentVal = floor(VolData(ltx, xc, lty) * (1 - u) * (1 - v) +      VolData(lbx, xc, 

lby) * (1 - u) * v + VolData(rtx, xc, rty) * u * (1 - v) + VolData(rbx, xc, rby) * u * v); 

                    if CurrentVal >= CenterVal 

                        BasicLBP = BasicLBP + 2 ^ FeaBin; 

                    end 

                    FeaBin = FeaBin + 1; 

                end 

                %% if Bincount is "0", it means basic LBP-TOP will be 

                %% computed and uniform patterns does not work in this case 

                %%. Otherwide it should be the number of the uniform 

                %%patterns, then "Code" keeps the lookup-table of the basic 

                %%LBP and uniform LBP 

                if Bincount == 0 

                    Histogram(3, BasicLBP + 1) = Histogram(3, BasicLBP + 1) + 1; 

                else 

                    Histogram(3, Code(BasicLBP + 1, 2) + 1) = Histogram(3, Code(BasicLBP + 1, 

2) + 1) + 1; 

                end 

            end %%  

        end %% 

    end %% 

end 

%% normalization 

for j = 1 : 3 

    Histogram(j, :) = Histogram(j, :)./sum(Histogram(j, :)); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function classes = likelihood2class(likelihoods) 

[sample_n,class_n] = size(likelihoods); 

maxs = (likelihoods==repmat(max(likelihoods,[],2),[1,class_n])); 

 classes=zeros(sample_n,1); 

for i=1:sample_n 

    classes(i) = find(maxs(i,:),1); 

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function LBP= pixelwiseLBP(inImg, varargin) % isRotInv, isChanWiseRot, filtR 

%% Deafult params 

isRotInv=false; 

isChanWiseRot=false; 

filtR=generateRadialFilterLBP(8, 1); 

%% Get user inputs overriding default values 

funcParamsNames={'filtR', 'isRotInv', 'isChanWiseRot'}; 

assignUserInputs(funcParamsNames, varargin(Y. Han & 10.1109/EIT.2015.7293386)); 

if ischar(inImg) && exist(inImg, 'file')==2 % In case of file name input- read graphical file 

    inImg=imread(inImg); 

end 

 nClrChans=size(inImg, 3); 

 inImgType=class(inImg); 

calcClass='single'; 



 Appendix A        Matlab Simulation Code for Chapter 3                                                        t                                                                                                                                 

r                                                 

P a g e  135 | 254 

 

135 

 isCalcClassInput=strcmpi(inImgType, calcClass); 

if ~isCalcClassInput 

    inImg=cast(inImg, calcClass); 

end 

imgSize=size(inImg); 

filtDims=size(filtR); 

nNeigh=filtDims(3); 

if nNeigh<=8 

    outClass='uint8'; 

elseif nNeigh>8 && nNeigh<=16 

    outClass='uint16'; 

elseif nNeigh>16 && nNeigh<=32 

    outClass='uint32'; 

elseif nNeigh>32 && nNeigh<=64 

    outClass='uint64'; 

else 

    outClass=calcClass; 

end 

 LBP=zeros(imgSize, outClass); 

nEps=-3; 

weigthVec=reshape(2.^( (1:nNeigh) -1), 1, nNeigh); 

%% Primitive pixelwise solution 

filtDimsR=floor(filtDims([1, 2])/2); % Filter Radius 

% update index values, so it will be from 1 to N-1, where N is number of pixels in 

% support area, including the central pixel 

 % Padding image with zeroes, to deal with the edges 

chanImgPad=zeros(imgSize(1)+2*filtDimsR(1), imgSize(2)+2*filtDimsR(2), calcClass); 

padImgSize=size(chanImgPad); 

currChanLBP=zeros(padImgSize, outClass); 

if isRotInv 

    if verLessThan('matlab', '7.14') % due to some issue with circshift and non dounle inputs 

        iCircShiftMinLBP=zeros(padImgSize, 'double'); 

    else 

        iCircShiftMinLBP=zeros(padImgSize, 'int8'); % outClass % Limits number fo color 

channels to 127 

    end 

end 

hWaitbar=waitbar(0, 'Calculating LBP in pixel-wise manner',... 

    'Name', 'pixel-wise LBP!'); 

hTicPixelwiseLBP=tic; 

is2dFilter = filtDims(1)>1 && filtDims(2)>1; 

for iChan=1:nClrChans 

    chanImgPad(( 1+filtDimsR(1) ):( end-filtDimsR(1) ),... 

        ( 1+filtDimsR(2) ): (end-filtDimsR(2) ))=inImg(:, :, iChan); 

    nRows=padImgSize(1)-2*filtDimsR(1); 

    for iRow=( filtDimsR(1)+1 ):( padImgSize(1)-filtDimsR(1) ) 

        for iCol=( filtDimsR(2)+1 ):( padImgSize(2)-filtDimsR(2) ) 

            subImg=chanImgPad(iRow+( -filtDimsR(1):filtDimsR(1) ),... 

                iCol+( -filtDimsR(2):filtDimsR(2) )); 

            % find differences between current pixel, and it's neighours 
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            diffVec=sum( bsxfun(@times, filtR, subImg) ); 

            if is2dFilter 

                diffVec = sum(diffVec); 

            end 

            diffVec=roundnS(diffVec, nEps); 

            binaryWord=( diffVec(:)>=0 ); 

            if isRotInv 

                if iChan==1 || isChanWiseRot % go through all posible binary 

                    % word combination, finding minimal LBP 

                    [minLBP, iCircShiftMinLBP(iRow, iCol)]=... 

                        sortNeighbours(binaryWord, weigthVec); 

                else % if iChan==1 || isChanWiseRot 

                    [minLBP, ~]=sortNeighbours( binaryWord, weigthVec,... 

                        iCircShiftMinLBP(iRow, iCol) ); 

                end % if iChan==1 || isChanWiseRot 

            else 

                minLBP=weigthVec*binaryWord; 

            end % if isRotInv 

            currChanLBP(iRow, iCol)=cast( minLBP,  outClass);   % convert to decimal. 

        end % for iCol=(1+filtDimsR(2)):(imgSize(2)-filtDimsR(2)) 

           % Present waitbar- a bar with progress, time passed and time remaining 

        waitbarTimeRemaining(hWaitbar, hTicPixelwiseLBP,... 

            (( iRow-filtDimsR(1) )+nRows*(iChan-1))/(nClrChans*nRows)); 

    end % for iRow=(1+filtDimsR(1)):(imgSize(1)-filtDimsR(1)) 

        % crop the margins resulting from zero padding 

    LBP(:, :, iChan)=currChanLBP(( filtDimsR(1)+1 ):( end-filtDimsR(1) ),... 

        ( filtDimsR(2)+1 ):( end-filtDimsR(2) )); 

    if iChan==nClrChans 

        close(hWaitbar); % close the waitbar 

    end 

end % for iChan=1:nClrChans 

function [minLBP, iCircShift]=sortNeighbours( origBinWord, weigthVec, iShift) 

 nElems=numel(origBinWord); 

if size(origBinWord, 1)~=nElems 

    origBinWord=origBinWord(:); 

end 

if size(weigthVec, 2)~=nElems 

    weigthVec=reshape(weigthVec, 1, nElems); 

end 

if nargin < 3 || isempty(iShift) 

    % initial values- current LBP, zero shift 

    iCircShift=0; 

    minLBP=weigthVec*origBinWord; 

    % go through all posible binary word combination, finding minimal LBP 

    nShifts=numel(origBinWord)-1; 

        for iCurrShift=1:nShifts 

        origBinWord=circshift(origBinWord, 1); 

        currLBP=weigthVec*origBinWord; 

        if currLBP < minLBP 

            minLBP=currLBP; 
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            iCircShift=iCurrShift; 

        end % if currLBP < minLBP 

    end % for iCurrShift=iShift 

else 

    iCircShift=iShift(1); 

    minLBP=weigthVec*circshift(origBinWord, iCircShift); 

end % if nargin < 3 || isempty(iShift) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function Histogram = RIVLBP(VolData, TInterval, FRadius, NeighborPoints, BorderLength, 

TimeLength, RotateIndex, bBilinearInterpolation) 

% This function is to compute the Basic VLBP and two kinds of rotation invariant VLBP 

features for a video sequence 

 [height width Length] = size(VolData); 

binCount = (NeighborPoints + 1) * 2 + NeighborPoints; 

nDim = 2 ^ binCount; 

Histogram = zeros(nDim, 1); 

 if bBilinearInterpolation == 0 

      for i = TimeLength + 1 : Length - TimeLength 

               for yc = BorderLength + 1 :  height - BorderLength 

                    for xc = BorderLength + 1 : width - BorderLength 

                               CenterVal = VolData(yc, xc, i); 

                BasicLBP = 0; 

                FeaBin = 0; 

                                %% In previous frame 

                CurrentVal = VolData(yc, xc, i - TInterval); 

                 

                if CurrentVal >= CenterVal 

                    BasicLBP = BasicLBP + 2 ^ FeaBin; 

                end 

                tempLBPpreC = BasicLBP; 

                FeaBin = FeaBin + 1; 

                                tempLBPpre = 0; 

                for p = 0 : NeighborPoints - 1 

                    X = floor(xc + FRadius * cos((2 * pi * p) / NeighborPoints) + 0.5); 

                    Y = floor(yc - FRadius * sin((2 * pi * p) / NeighborPoints) + 0.5); 

                                        CurrentVal = VolData(Y, X, i - TInterval); 

                                        if CurrentVal >= CenterVal 

                        BasicLBP = BasicLBP + 2 ^ FeaBin; 

                        tempLBPpre = tempLBPpre + 2 ^ p; 

                    end 

                    FeaBin = FeaBin + 1; 

                end 

                                %% In current frame 

                tempLBPcur = 0; 

                for p = 0 : NeighborPoints - 1 

                    X = floor(xc + FRadius * cos((2 * pi * p) / NeighborPoints) + 0.5); 

                    Y = floor(yc - FRadius * sin((2 * pi * p) / NeighborPoints) + 0.5); 

                    CurrentVal = VolData(Y, X, i); 

                    if CurrentVal >= CenterVal 

                        BasicLBP = BasicLBP + 2 ^ FeaBin; 
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                        tempLBPcur = tempLBPcur + 2 ^ p; 

                    end 

                    FeaBin = FeaBin + 1; 

                end 

                                %% In post frame 

                tempLBPpos = 0; 

                for p = 0 : NeighborPoints - 1 

                    X = floor(xc + FRadius * cos((2 * pi * p) / NeighborPoints) + 0.5); 

                    Y = floor(yc - FRadius * sin((2 * pi * p) / NeighborPoints) + 0.5); 

                                        CurrentVal = VolData(Y, X, i + TInterval); 

                                        if CurrentVal >= CenterVal 

                        BasicLBP = BasicLBP + 2 ^ FeaBin; 

                        tempLBPpos = tempLBPpos + 2 ^ p; 

                    end 

                    FeaBin = FeaBin + 1; 

                end 

                                tempLBPposC = 0; 

                 

                CurrentVal = VolData(yc, xc, i + TInterval); 

                 

                if CurrentVal >= CenterVal 

                    BasicLBP = BasicLBP + 2 ^ FeaBin; 

                    tempLBPposC = 1; 

                end 

                %% Rotation invariance (if RotateIndex = 1/2) 

                if (RotateIndex == 1)||(RotateIndex == 2) 

                    % if RotateIndex == 0, basic VLBP is computed 

                    % else for rotation invariance code 

                    BasicLBP = ComputeRotationInvariance(RotateIndex, NeighborPoints, 

tempLBPpre, tempLBPcur, tempLBPpos, tempLBPpreC, tempLBPposC, binCount, 

BasicLBP); 

                end 

                % the index under matlab start from 1 in the vector and matrix 

                Histogram(BasicLBP + 1) = Histogram(BasicLBP + 1) + 1; 

            end 

        end 

    end 

else 

    for i = TimeLength + 1: Length - TimeLength 

        for yc = BorderLength + 1 :  height - BorderLength 

            for xc = BorderLength + 1 : width - BorderLength 

                CenterVal = VolData(yc, xc, i); 

                BasicLBP = 0; 

                FeaBin = 0; 

                %% In previous frame 

                CurrentVal = VolData(yc, xc, i - TInterval); 

                if CurrentVal >= CenterVal 

                    BasicLBP = BasicLBP + 2 ^ FeaBin; 

                end 

                tempLBPpreC = BasicLBP; 
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                FeaBin = FeaBin + 1; 

                tempLBPpre = 0; 

                for p = 0 : NeighborPoints - 1 

                    % bilinear interpolation 

                    x1 = single(xc + FRadius * cos((2 * pi * p)/NeighborPoints)); 

                    y1 = single(yc - FRadius * sin((2 * pi * p)/NeighborPoints)); 

                     u = x1 - floor(x1); 

                    v = y1 - floor(y1); 

                    ltx = (floor(x1)); 

                    lty = (floor(y1)); 

                    lbx = (floor(x1)); 

                    lby = (ceil(y1)); 

                    rtx = (ceil(x1)); 

                    rty = (floor(y1)); 

                    rbx = (ceil(x1)); 

                    rby = (ceil(y1)); 

                    % values of neighbors that do not fall exactly on 

                    % pixels are estimated by bilinear interpolation of 

                    % four corner points near to it 

                    CurrentVal = floor(VolData(lty, ltx, i - TInterval) * (1 - u) * (1 - v) + 

VolData(lby, lbx, i - TInterval) * (1 - u) * v + VolData(rty, rtx, i - TInterval) * u * (1 - v) + 

VolData(rby, rbx, i - TInterval) * u * v); 

                        if CurrentVal >= CenterVal 

                        BasicLBP = BasicLBP + 2 ^ FeaBin; 

                        tempLBPpre = tempLBPpre + 2 ^ p; 

                    end 

                    FeaBin = FeaBin + 1; 

                end 

                  %% In current frame 

                tempLBPcur = 0; 

                for p = 0 : NeighborPoints - 1 

                    % bilinear interpolation 

                    x1 = single(xc + FRadius * cos((2 * pi * p)/NeighborPoints)); 

                    y1 = single(yc - FRadius * sin((2 * pi * p)/NeighborPoints)); 

                    u = x1 - floor(x1); 

                    v = y1 - floor(y1); 

                    ltx = (floor(x1)); 

                    lty = (floor(y1)); 

                    lbx = (floor(x1)); 

                    lby = (ceil(y1)); 

                    rtx = (ceil(x1)); 

                    rty = (floor(y1)); 

                    rbx = (ceil(x1)); 

                    rby = (ceil(y1)); 

                    % values of neighbors that do not fall exactly on 

                    % pixels are estimated by bilinear interpolation of 

                    % four corner points near to it 

                    CurrentVal = floor(VolData(lty, ltx, i) * (1 - u) * (1 - v) + VolData(lby, lbx, i) * 

(1 - u) * v + VolData(rty, rtx, i) * u * (1 - v) + VolData(rby, rbx, i) * u * v); 

                    if CurrentVal >= CenterVal 
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                        BasicLBP = BasicLBP + 2 ^ FeaBin; 

                        tempLBPcur = tempLBPcur + 2 ^ p; 

                    end 

                    FeaBin = FeaBin + 1; 

                end 

                %% In post frame 

                tempLBPpos = 0; 

                 for p = 0 : NeighborPoints - 1 

                    % bilinear interpolation 

                    x1 = single(xc + FRadius * cos((2 * pi * p)/NeighborPoints)); 

                    y1 = single(yc - FRadius * sin((2 * pi * p)/NeighborPoints)); 

                    u = x1 - floor(x1); 

                    v = y1 - floor(y1); 

                    ltx = (floor(x1)); 

                    lty = (floor(y1)); 

                    lbx = (floor(x1)); 

                    lby = (ceil(y1)); 

                    rtx = (ceil(x1)); 

                    rty = (floor(y1)); 

                    rbx = (ceil(x1)); 

                    rby = (ceil(y1)); 

                    % values of neighbors that do not fall exactly on 

                    % pixels are estimated by bilinear interpolation of 

                    % four corner points near to it 

                    CurrentVal = floor(VolData(lty, ltx, i + TInterval) * (1 - u) * (1 - v) + 

VolData(lby, lbx, i + TInterval) * (1 - u) * v + VolData(rty, rtx, i + TInterval) * u * (1 - v) + 

VolData(rby, rbx, i + TInterval) * u * v); 

                    if CurrentVal >= CenterVal 

                        BasicLBP = BasicLBP + 2 ^ FeaBin; 

                        tempLBPpos = tempLBPpos + 2 ^ p; 

                    end 

                    FeaBin  = FeaBin + 1; 

                end 

                tempLBPposC = 0; 

                CurrentVal = VolData(yc, xc, i + TInterval); 

                if (CurrentVal >= CenterVal) 

                    BasicLBP = BasicLBP + 2 ^ FeaBin; 

                    tempLBPposC = 1; 

                end 

                %% rotation invariance (if RotateIndex = 1/2) 

                if (RotateIndex == 1) || (RotateIndex == 2) 

                    %for roataion invariance code 

                    BasicLBP = ComputeRotationInvariance(RotateIndex, NeighborPoints, 

tempLBPpre, tempLBPcur, tempLBPpos, tempLBPpreC, tempLBPposC, binCount, 

BasicLBP); 

                end 

                % the index under matlab start from 1 in the vector and 

                % matrix 

                Histogram(BasicLBP + 1) = Histogram(BasicLBP + 1) + 1; 

            end 
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        end 

    end 

end 

%% Normalization 

Total = 0; 

for i = 1 : nDim 

    Total = Total + Histogram(i); 

end 

Histogram = Histogram./Total; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function minLBP = RotLBP(LBPCode, NeighborPoints) 

%% For a basic LBP code, this function is to get its rotation invariance 

%  corresponding code 

 minLBP = LBPCode; 

for p = 1 : NeighborPoints - 1 

    tempCode = bitor(bitshift(LBPCode, -1 * p), bitshift(bitand(LBPCode, (uint8(2 ^ p) - 1)), 

(NeighborPoints - p))); 

    if tempCode < minLBP 

        minLBP = tempCode; 

    end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function outData=roundnS(inData, nEps) 

quantVal=10^nEps; 

outData=round(inData/quantVal)*quantVal; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear; 

 % DEMONSTRATION OF ADABOOST_tr and ADABOOST_te 

% Using adaboost with linear threshold classifier  

% for a two class classification problem. 

% Bug Reporting: Please contact the author for bug reporting and comments. 

 tic 

%% Read all images from location 

ImgFolder = '040603'; 

dirLoc = ['baza_slika/',ImgFolder,'/']; 

 imagefiles = dir([dirLoc, '*.jpg']);       

nfiles = length(imagefiles);    % files found 

 for ii=1:nfiles 

   currentfilename = imagefiles(ii).name; 

   currentimage = imread([dirLoc,currentfilename]); 

   images(Rabiner & Juang) = currentimage; 

end 

    %% if cropped folder exists - delete it. If not create. 

toSave = ['baza_slika/',ImgFolder,'_cropped']; 

if exist(toSave)==7 

    rmdir (toSave, 's'); 

end 

mkdir(toSave); 

 %% run one by one 

 k=0; 
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 l=0; 

for ii=1:nfiles 

    Im = rgb2gray(images(Rabiner & Juang)); 

    Im = adapthisteq(Im,'clipLimit',0.01,'Distribution','rayleigh'); 

        %L2:Gaussian filtering image 

   Im = imgaussfilt(Im,0.01); 

    %L3:Constract image 

     

   % Im=imhistmatch(Im,Im); 

   edgeThreshold = 0.10; 

amount = 0.05; 

Im = localcontrast(Im, edgeThreshold, amount); 

 %get candidate bounding boxes 

    boxes = funcSol3(Im,k); 

    k=k+1; 

    chosen=1; 

    iMax=[]; 

    %***********************LBP***************** 

            %if there is more than one box output 

    if size(boxes,1)>1 

        for i = 1:size(boxes,1) 

            corners = detectFASTFeatures(imcrop(Im,(boxes(i,:)))); 

            iMax(i) = length(corners); 

        end 

        [~,chosen]=max(iMax); 

    end 

        %if there are no boxes - choose alternative method 

    if size(boxes,1) == 0 || length(detectFASTFeatures(imcrop(Im,(boxes(chosen,:)))))<50 

        k=k-1; 

        boxes = funcSol5(Im,l); 

         l=l+1; 

        chosen=1; 

           end 

  ITextRegion = insertShape(images(Rabiner & Juang), 'Rectangle', 

boxes(chosen,:),'Color','green','LineWidth',2); 

  imshow(ITextRegion); 

   pause(1) 

      % cropped LP images and saved it for recogntion stage 

       imwrite(imcrop(images(Rabiner & 

Juang),(boxes(chosen,:))),[toSave,'/',imagefiles(ii).name(1:end-4),'_cropped.jpg']) 

end 

%************************************************* 

 cd ('C:\Users\U1069157\Desktop\LP-DETECTION\Tr-PositiveLP\'); % please replace "..." 

by your images path 

a = dir('*.jpg'); % directory of images, ".jpg" can be changed, for example, ".bmp" if you use 

for i = 1 : length(a) 

    ImgName = getfield(a, {i}, 'name'); 

    Imgdat = imread(ImgName); 

    if size(Imgdat, 3) == 4 % if color images, convert it to gray 

        Imgdat = rgb2gray(Imgdat); 
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    end 

    [height width] = size(Imgdat); 

    if i == 1 

        VolData = zeros(height, width, length(a)); 

    end 

   % VolData(:, :, i) = Imgdat; 

end 

RotateIndex = 1; 

 % parameter set 

% 1. the radii parameter in space and Time axis; They could be 1, 2 or 3 or 4 

FRadius = 1;  

TInterval = 2; 

 % 2. the number of the neighboring points; It can be 2 and 4. 

NeighborPoints = 4; 

 TimeLength = 2; 

BorderLength = 1; 

bBilinearInterpolation = 1; 

fHistogram = RIVLBP(VolData, TInterval, FRadius, NeighborPoints, BorderLength, 

TimeLength, RotateIndex, bBilinearInterpolation); 

FxRadius = 1;  

FyRadius = 1; 

TInterval = 2; 

 TimeLength = 2; 

BorderLength = 1; 

 bBilinearInterpolation = 1;  % 0: not / 1: bilinear interpolation 

Bincount = 59; %59 / 0 

NeighborPoints = [8 8 8]; % XY, XT, and YT planes, respectively 

if Bincount == 0 

    Code = 0; 

    nDim = 2 ^ (NeighborPoints(1));  %dimensionality of basic LBP 

else 

    % uniform patterns for neighboring points with 8 

    U8File = importdata('UniformLBP8.txt'); 

    BinNum = U8File(1, 1); 

    Code = U8File(2 : end, :); 

    nDim = Bincount; %dimensionality of uniform patterns 

    clear U8File; 

end 

% call LBPTOP 

Histogram = LBPTOP(VolData, FxRadius, FyRadius, TInterval, NeighborPoints, 

TimeLength, BorderLength, bBilinearInterpolation, Bincount, Code); 

%****************************************************** 

% Creating the training and testing sets 

tr_n = 200; 

te_n = 200; 

weak_learner_n = 20; 

tr_set = abs(rand(tr_n,2))*100; 

te_set = abs(rand(te_n,2))*100; 

 tr_labels = (tr_set(:,1)-tr_set(:,2) > 0) + 1; 

te_labels = (te_set(:,1)-te_set(:,2) > 0) + 1; 
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 % Displaying the training and testing sets 

 % Training and testing error rates 

tr_error = zeros(1,weak_learner_n); 

te_error = zeros(1,weak_learner_n); 

 for i=1:weak_learner_n 

    adaboost_model = ADABOOST_tr(@threshold_tr,@threshold_te,tr_set,tr_labels,i); 

    [L_tr,hits_tr] = ADABOOST_te(adaboost_model,@threshold_te,tr_set,tr_labels); 

    tr_error(i) = (tr_n-hits_tr)/tr_n; 

    [L_te,hits_te] = ADABOOST_te(adaboost_model,@threshold_te,te_set,te_labels); 

    te_error(i) = (te_n-hits_te)/te_n; 

end 

fprintf('The total No. of vechiles images is: '); 

disp(ii); 

fprintf('The Number of vheciles images detect by system(TP) is: '); 

disp(k); 

 fprintf('The Number of vheciles images not detect by system (FN) is: '); 

disp(ii-k); 

y= toc; 

fprintf('The Processing Time per detected image is: %0f\n ', round(y/ii)); 

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% read images 

clc 

clear all 

cd ('C:\Users\meeras\Desktop\codes\lbp\LBP_Matlab\Tr-PositiveLP\'); % please replace "..." 

by your images path 

a = dir('*.jpg'); % directory of images, ".jpg" can be changed, for example, ".bmp" if you use 

for i = 1 : length(a) 

    ImgName = getfield(a, {i}, 'name'); 

    Imgdat = imread(ImgName); 

    if size(Imgdat, 3) == 3 % if color images, convert it to gray 

        Imgdat = rgb2gray(Imgdat); 

    end 

    [height width] = size(Imgdat); 

    if i == 1 

        VolData = zeros(height, width, length(a)); 

    end 

    VolData(:, :, i) = Imgdat; 

end 

cd .. 

 RotateIndex = 1; 

 % parameter set 

% 1. the radii parameter in space and Time axis; They could be 1, 2 or 3 or 4 

FRadius = 1;  

TInterval = 2; 

 % 2. the number of the neighboring points; It can be 2 and 4. 

NeighborPoints = 4; 

 % 3. "TimeLength" and "BorderLength" are the parameters for bordering parts in time and 

% space which would not be computed for features. Usually they are same to TInterval and 

% the bigger one of "FRadius"; 

TimeLength = 2; 



 Appendix A        Matlab Simulation Code for Chapter 3                                                        t                                                                                                                                 

r                                                 

P a g e  145 | 254 

 

145 

BorderLength = 1; 

% 4. "bBilinearInterpolation" : if use bilinear interpolation for computing a 

% neighbor point in a circle: 1 (yes), 0 (not) 

bBilinearInterpolation = 1; 

 % call VLBP 

fHistogram = RIVLBP(VolData, TInterval, FRadius, NeighborPoints, BorderLength, 

TimeLength, RotateIndex, bBilinearInterpolation); 

%% LBP-TOP 

% parameter set 

 % 1. "FxRadius", "FyRadius" and "TInterval" are the radii parameter along X, Y and T axis; 

They can be 1, 2, 3 and 4. "1" and "3" are recommended. 

%  Pay attention to "TInterval". "TInterval * 2 + 1" should be smaller than the length of the 

input sequence "Length".  

% For example, if one sequence includes seven frames, and you set TInterval 

% to three, only the pixels in the frame 4 would be considered as central 

% pixel and computed to get the LBP-TOP feature. 

FxRadius = 1;  

FyRadius = 1; 

TInterval = 2; 

 % 2. "TimeLength" and "BoderLength" are the parameters for bodering parts in time and 

space which would not 

% be computed for features. Usually they are same to TInterval and the 

% bigger one of "FxRadius" and "FyRadius"; 

TimeLength = 2; 

BorderLength = 1; 

  

% 3. "bBilinearInterpolation" : if use bilinear interpolation for computing a 

% neighbor point in a circle: 1 (yes), 0 (not) 

bBilinearInterpolation = 1;  % 0: not / 1: bilinear interpolation 

%% 59 is only for neighboring points with 8. If won't compute uniform 

%% patterns, please set it to 0, then basic LBP will be computed 

Bincount = 59; %59 / 0 

NeighborPoints = [8 8 8]; % XY, XT, and YT planes, respectively 

if Bincount == 0 

    Code = 0; 

    nDim = 2 ^ (NeighborPoints(1));  %dimensionality of basic LBP 

else 

    % uniform patterns for neighboring points with 8 

    U8File = importdata('UniformLBP8.txt'); 

    BinNum = U8File(1, 1); 

    Code = U8File(2 : end, :); 

    nDim = Bincount; %dimensionality of uniform patterns 

    clear U8File; 

end 

% call LBPTOP 

Histogram = LBPTOP(VolData, FxRadius, FyRadius, TInterval, NeighborPoints, 

TimeLength, BorderLength, bBilinearInterpolation, Bincount, Code); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

function [L,hits,error_rate] = threshold_te(model,test_set,sample_weights,true_labels) 
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% TESTING THRESHOLD CLASSIFIER 

feat = test_set(:,model.dim); 

if(strcmp(model.pos_neg,'pos')) 

    ind = (feat>model.min_error_thr)+1; 

else 

    ind = (feat<model.min_error_thr)+1; 

end 

 hits = sum(ind==true_labels); 

error_rate = sum(sample_weights(ind~=true_labels)); 

 L = zeros(length(feat),2); 

L(ind==1,1) = 1; 

L(ind==2,2) = 1; 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function model = adaboostBin(X, t, M) 

% Adaboost for binary classification (weak learner: kmeans) 

% Input: 

%   X: d x n data matrix 

%   t: 1 x n label (0/1) 

% Output: 

%   model: trained model structure 

% Written by Mo Chen (sth4nth@gmail.com). 

t = t+1; 

k = 2; 

[d,n] = size(X); 

w = ones(1,n)/n; 

%M = 100; 

Alpha = zeros(1,M); 

Theta = zeros(d,k,M); 

T = sparse(1:n,t,1,n,k,n);  % transform label into indicator matrix 

for m = 1:M 

    % weak learner 

    E = spdiags(w',0,n,n)*T; 

    E = E*spdiags(1./sum(E,1)',0,k,k); 

    c = X*E; 

    [~,y] = min(sqdist(c,X),[],1); 

    Theta(:,:,m) = c; 

    % adaboost 

    I = y~=t; 

    e = dot(w,I); 

    alpha = log((1-e)/e); 

    w = w.*exp(alpha*I); 

    w = w/sum(w); 

    Alpha(m) = alpha; 

end 

model.alpha = Alpha; 

model.theta = Theta; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function t = adaboostBinPred(model, X) 

% Prediction of binary Adaboost 
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% input: 

%   model: trained model structure 

%   X: d x n data matrix 

% output: 

%   t: 1 x n prediction  

Alpha = model.alpha; 

Theta = model.theta; 

M = size(Alpha,2); 

t = zeros(1,size(X,2)); 

for m = 1:M 

    c = Theta(:,:,m); 

    [~,y] = min(sqdist(c,X),[],1); 

    y(y==1) = -1; 

    y(y==2) = 1; 

    t = t+Alpha(m)*y; 

end 

t = sign(t); 

t(t==-1) = 0; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function blocks = cirInterpSingleRadius(img) 

 global lbpPoints; 

global lbpRadius; 

 [imgH,imgW] = size(img); 

 imgNewH = imgH - 2*lbpRadius; 

imgNewW = imgW - 2*lbpRadius; 

 % the interpolated img 

blocks = zeros(lbpPoints,imgNewH*imgNewW); 

 radius = lbpRadius; 

neighbors = lbpPoints; 

spoints = zeros(neighbors,2); 

 % Determine the dimensions of the input img. 

[ysize,xsize] = size(img); 

 % Angle step 

angleStep = 2 * pi / neighbors; 

for i = 1 : neighbors 

    spoints(i,1) = -radius * sin((i-1)*angleStep); 

    spoints(i,2) = radius * cos((i-1)*angleStep); 

end 

 miny = min(spoints(:,1)); 

maxy = max(spoints(:,1)); 

minx = min(spoints(:,2)); 

maxx = max(spoints(:,2)); 

 % Block size, each LBP code is computed within angleStep block of size bsizey*bsizex 

bsizey = ceil(max(maxy,0)) - floor(min(miny,0))+1; 

bsizex = ceil(max(maxx,0)) - floor(min(minx,0))+1; 

 % Coordinates of origin (0,0) in the block 

origy = 1 - floor(min(miny,0)); 

origx = 1 - floor(min(minx,0)); 

 % Minimum allowed size for the input img depends 

% on the radius of the used LBP operator. 



                                                           Appendix A         Matlab Simulation Code for Chapter 3   

P a g e  148 | 254 

 

148 

if(xsize < bsizex || ysize < bsizey) 

    error('Too small input img. Should be at least (2*radius+1) x (2*radius+1)'); 

end 

 % Calculate dx and dy; 

dx = xsize - bsizex; 

dy = ysize - bsizey; 

 % Compute the LBP code img 

for i = 1 : neighbors 

    y = spoints(i,1) + origy; 

    x = spoints(i,2) + origx; 

    % Calculate floors, ceils and rounds for the x and y. 

    fy = floor(y); 

    cy = ceil(y); 

    ry = round(y); 

        fx = floor(x); 

    cx = ceil(x); 

    rx = round(x); 

        % Check if interpolation is needed. 

    if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6) 

        % Interpolation is not needed, use original datatypes 

        imgNew = img(ry:ry+dy,rx:rx+dx); 

        blocks(i,:) = imgNew(:)'; 

    else 

        % Interpolation needed, use double type images 

        ty = y - fy; 

        tx = x - fx; 

                % Calculate the interpolation weights. 

        w1 = (1 - tx) * (1 - ty); 

        w2 =      tx  * (1 - ty); 

        w3 = (1 - tx) *      ty ; 

        w4 =      tx  *      ty ; 

        % Compute interpolated pixel values 

        imgNew = w1*img(fy:fy+dy,fx:fx+dx) + w2*img(fy:fy+dy,cx:cx+dx) + ... 

            w3*img(cy:cy+dy,fx:fx+dx) + w4*img(cy:cy+dy,cx:cx+dx); 

        blocks(i,:) = imgNew(:)'; 

    end 

end % loop neighbors 

 end % end of the function 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function blocks = cirInterpSingleRadiusNew(img,lbpPoints,lbpRadius) 

 [imgH,imgW] = size(img); 

 imgNewH = imgH - 2*lbpRadius; 

imgNewW = imgW - 2*lbpRadius; 

 % the interpolated img 

blocks = zeros(lbpPoints,imgNewH*imgNewW); 

 radius = lbpRadius; 

neighbors = lbpPoints; 

spoints = zeros(neighbors,2); 

 % Determine the dimensions of the input img. 

[ysize,xsize] = size(img); 
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 % Angle step 

angleStep = 2 * pi / neighbors; 

for i = 1 : neighbors 

    spoints(i,1) = -radius * sin((i-1)*angleStep); 

    spoints(i,2) = radius * cos((i-1)*angleStep); 

end 

 miny = min(spoints(:,1)); 

maxy = max(spoints(:,1)); 

minx = min(spoints(:,2)); 

maxx = max(spoints(:,2)); 

 % Block size, each LBP code is computed within angleStep block of size bsizey*bsizex 

bsizey = ceil(max(maxy,0)) - floor(min(miny,0))+1; 

bsizex = ceil(max(maxx,0)) - floor(min(minx,0))+1; 

 % Coordinates of origin (0,0) in the block 

origy = 1 - floor(min(miny,0)); 

origx = 1 - floor(min(minx,0)); 

 % Minimum allowed size for the input img depends 

% on the radius of the used LBP operator. 

if(xsize < bsizex || ysize < bsizey) 

    error('Too small input img. Should be at least (2*radius+1) x (2*radius+1)'); 

end 

 % Calculate dx and dy; 

dx = xsize - bsizex; 

dy = ysize - bsizey; 

 % Compute the LBP code img 

for i = 1 : neighbors 

    y = spoints(i,1) + origy; 

    x = spoints(i,2) + origx; 

    % Calculate floors, ceils and rounds for the x and y. 

    fy = floor(y); 

    cy = ceil(y); 

    ry = round(y); 

        fx = floor(x); 

    cx = ceil(x); 

    rx = round(x); 

        % Check if interpolation is needed. 

    if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6) 

        % Interpolation is not needed, use original datatypes 

        imgNew = img(ry:ry+dy,rx:rx+dx); 

        blocks(i,:) = imgNew(:)'; 

    else 

        % Interpolation needed, use double type images 

        ty = y - fy; 

        tx = x - fx; 

                % Calculate the interpolation weights. 

        w1 = (1 - tx) * (1 - ty); 

        w2 =      tx  * (1 - ty); 

        w3 = (1 - tx) *      ty ; 

        w4 =      tx  *      ty ; 

        % Compute interpolated pixel values 
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        imgNew = w1*img(fy:fy+dy,fx:fx+dx) + w2*img(fy:fy+dy,cx:cx+dx) + ... 

            w3*img(cy:cy+dy,fx:fx+dx) + w4*img(cy:cy+dy,cx:cx+dx); 

        blocks(i,:) = imgNew(:)'; 

    end 

end % loop neighbors 

 end % end of the function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function mapping = get_mapping(samples) 

 numAllLBPs = 2^samples; 

table = 0 : numAllLBPs-1; 

newMax = samples + 2; % number of patterns in the resulting LBP code 

  

for i = 0:2^samples - 1 

    j = bitset(bitshift(i,1),1,bitget(i,samples)); % rotate left 

    numt = sum(bitget(bitxor(i,j),1:samples)); 

    if numt <= 2 

        table(i+1) = sum(bitget(i,1:samples)); 

    else 

        table(i+1) = samples+1; 

    end 

end 

  

mapping.table = table; 

mapping.samples = samples; 

mapping.num = newMax; 

 end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

--------------------------------Training Stage 

global nump1 %number of positive samples 1 

global nump2 %number of positive samples 2 

global nump3 %number of positive samples 3 

global numn  %number of negative samples  

global path1_1 

global path2_1 

global path3_1 

global path4_1 

tic 

%% preprocessing of train images 

path1 = 'train/rect';   %rectangle training lps 

path2 = 'train/slope';  %slope rectangle training lps 

path3 = 'train/square'; %square training lps 

path4 = 'train/nonlp';  %trainging nonlps 

  

path1_1 = 'realtrain/rect/';   %rectangle training lps 

path2_1 = 'realtrain/slope/';  %slope rectangle training lps 

path3_1 = 'realtrain/square/'; %square training lps 

path4_1 = 'realtrain/nonlp/';  %trainging nonlps 

  

%preprocessed training lps will be saved in 'realtrain' directory 

if ~isdir('realtrain') 
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    mkdir('realtrain');          

    mkdir('realtrain/rect'); 

    mkdir('realtrain/slope'); 

    mkdir('realtrain/square'); 

    mkdir('realtrain/nonlp') 

end 

 %image files in directories 

files1 = dir(fullfile(path1,'*.jpg'));     

files2 = dir(fullfile(path2,'*.jpg')); 

files3 = dir(fullfile(path3,'*.jpg')); 

files4 = dir(fullfile(path4,'*.jpg')); 

 %number of positive and negative trainging samples 

nump1 = numel(files1); %number of rectangle training lps = positive 1 

nump2 = numel(files2); %number of slope training lps = positive 2 

nump3 = numel(files3); %number of square training lps = positive 3 

numn = numel(files4);  %number of nonlps = negative 

 %preprocessing of rectangle training lps 

for samples = 1 : nump1 

    file = fullfile(path1, files1(samples).name);     

    X = imread(file); 

    X = imresize(X, 0.5); 

     

    M = imgaussfilt(X,0.25);     

    M = rgb2gray(M); 

    [m n] = size(M); 

    p = 20; 

    q = 80; 

        if p >= m && q >= n 

        M_pad = padarray(M, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p < m && q >= n 

        m = p; 

        M_pad = imresize(M, [m, n]); 

        M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p >= m && q < n 

        n = q; 

        M_pad = imresize(M, [m, n]); 

        M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p < m && q < n 

        M_pad = imresize(M, [p, q]); 

    end     

        M = M_pad; 

       numofpixels=size(M,1)*size(M,2); 

    Y=uint8(zeros(size(M,1),size(M,2))); 

    cnts=zeros(256,1); 

    probf=zeros(256,1); 

    prbc=zeros(256,1); 

    cum=zeros(256,1); 
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    fin_lc=zeros(256,1); 

        for i=1:size(M,1) 

        for j=1:size(M,2) 

            value=M(i,j); 

            cnts(value+1)=cnts(value+1)+1; 

            probf(value+1)=cnts(value+1)/numofpixels; 

        end 

    end 

    sum=0; 

    n=255; 

        for i=1:size(probf) 

       sum=sum+cnts(i); 

       cum(i)=sum; 

       prbc(i)=cum(i)/numofpixels; 

       fin_lc(i)=round(prbc(i)*n); 

    end 

        for i=1:size(M,1) 

           for j=1:size(M,2) 

               Y(i,j)=fin_lc(M(i,j)+1); 

           end 

    end 

    Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');     

      imwrite(Y, strcat(path1_1, num2str(samples), '.jpg')); 

end 

 %preprocessing of slope rectangle training lps 

for samples = 1 : nump2 

    file = fullfile(path2, files2(samples).name);     

    X = imread(file); 

    X = imresize(X, 0.5); 

        M = imgaussfilt(X,0.25);    

    M = rgb2gray(M); 

        [m n] = size(M); 

    p = 25; 

    q = 70; 

        if p >= m && q >= n 

        M_pad = padarray(M, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p < m && q >= n 

        m = p; 

        M_pad = imresize(M, [m, n]); 

        M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p >= m && q < n 

        n = q; 

        M_pad = imresize(M, [m, n]); 

        M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p < m && q < n 

        M_pad = imresize(M, [p, q]); 

    end     
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    M = M_pad; 

    numofpixels=size(M,1)*size(M,2); 

    Y=uint8(zeros(size(M,1),size(M,2))); 

    cnts=zeros(256,1); 

    probf=zeros(256,1); 

    prbc=zeros(256,1); 

    cum=zeros(256,1); 

    fin_lc=zeros(256,1); 

        for i=1:size(M,1) 

        for j=1:size(M,2) 

            value=M(i,j); 

            cnts(value+1)=cnts(value+1)+1; 

            probf(value+1)=cnts(value+1)/numofpixels; 

        end 

    end 

   sum=0; 

    n=255; 

        for i=1:size(probf) 

       sum=sum+cnts(i); 

       cum(i)=sum; 

       prbc(i)=cum(i)/numofpixels; 

       fin_lc(i)=round(prbc(i)*n); 

    end 

        for i=1:size(M,1) 

           for j=1:size(M,2) 

               Y(i,j)=fin_lc(M(i,j)+1); 

           end 

    end 

    Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');     

     imwrite(Y, strcat(path2_1, num2str(samples), '.jpg')); 

end 

 %preprocessing of square training lps 

for samples = 1 : nump3 

    file = fullfile(path3, files3(samples).name);     

    X = imread(file); 

    X = imresize(X, 0.5); 

        M = imgaussfilt(X,0.25);   

    M = rgb2gray(M); 

      [m n] = size(M); 

    p = 32; 

    q = 45; 

        if p >= m && q >= n 

        M_pad = padarray(M, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p < m && q >= n 

        m = p; 

        M_pad = imresize(M, [m, n]); 

        M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p >= m && q < n 
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        n = q; 

        M_pad = imresize(M, [m, n]); 

        M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p < m && q < n 

        M_pad = imresize(M, [p, q]); 

    end     

        M = M_pad; 

     numofpixels=size(M,1)*size(M,2); 

    Y=uint8(zeros(size(M,1),size(M,2))); 

    cnts=zeros(256,1); 

    probf=zeros(256,1); 

    prbc=zeros(256,1); 

    cum=zeros(256,1); 

    fin_lc=zeros(256,1); 

        for i=1:size(M,1) 

        for j=1:size(M,2) 

            value=M(i,j); 

            cnts(value+1)=cnts(value+1)+1; 

            probf(value+1)=cnts(value+1)/numofpixels; 

        end 

    end 

        sum=0; 

    n=255; 

        for i=1:size(probf) 

       sum=sum+cnts(i); 

       cum(i)=sum; 

       prbc(i)=cum(i)/numofpixels; 

       fin_lc(i)=round(prbc(i)*n); 

    end 

        for i=1:size(M,1) 

           for j=1:size(M,2) 

               Y(i,j)=fin_lc(M(i,j)+1); 

           end 

    end 

    Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');     

        imwrite(Y, strcat(path3_1, num2str(samples), '.jpg')); 

end 

 %preprocessing of training nonlps 

for samples = 1 : numn 

    file = fullfile(path4, files4(samples).name);     

    X = imread(file); 

    X = imresize(X, 0.5); 

     M = imgaussfilt(X,0.25);     

    M = rgb2gray(M);    

        numofpixels=size(M,1)*size(M,2); 

    Y=uint8(zeros(size(M,1),size(M,2))); 

    cnts=zeros(256,1); 

    probf=zeros(256,1); 

    prbc=zeros(256,1); 
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    cum=zeros(256,1); 

    fin_lc=zeros(256,1); 

        for i=1:size(M,1) 

        for j=1:size(M,2) 

            value=M(i,j); 

            cnts(value+1)=cnts(value+1)+1; 

            probf(value+1)=cnts(value+1)/numofpixels; 

        end 

    end 

        sum=0; 

    n=255; 

        for i=1:size(probf) 

       sum=sum+cnts(i); 

       cum(i)=sum; 

       prbc(i)=cum(i)/numofpixels; 

       fin_lc(i)=round(prbc(i)*n); 

    end 

        for i=1:size(M,1) 

           for j=1:size(M,2) 

               Y(i,j)=fin_lc(M(i,j)+1); 

           end 

    end 

    Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');     

    imwrite(Y, strcat(path4_1, num2str(samples), '.jpg')); 

end 

toc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

--------------------------------Testing stage 

global Y1 

tic 

%import trained model 

model1 = load('model1.mat'); 

model2 = load('model2.mat'); 

model3 = load('model3.mat'); 

 if ~isdir('result') 

    mkdir('result');   

end 

if ~isdir('detected') 

       mkdir('detected');   

       rmdir('detected');  

end 

if ~isdir('detected') 

       mkdir('detected');   

end 

%% testing 

files = dir(fullfile('test','*.jpg'));   

for id = 1 : numel(files) 

    file = fullfile('test/', files(id).name);  

      %preprocessing 

    X=imread(file); 
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    M = imgaussfilt(X,0.25); 

    M = imresize(M,[240, 320]); 

    M=rgb2gray(M); 

    numofpixels=size(M,1)*size(M,2); 

    Y=uint8(zeros(size(M,1),size(M,2))); 

    cnts=zeros(256,1); 

    probf=zeros(256,1); 

    prbc=zeros(256,1); 

    cum=zeros(256,1); 

    fin_lc=zeros(256,1); 

     for i=1:size(M,1) 

        for j=1:size(M,2) 

            value=M(i,j); 

            cnts(value+1)=cnts(value+1)+1; 

            probf(value+1)=cnts(value+1)/numofpixels; 

        end 

    end 

     sum=0; 

    n=255; 

     for i=1:size(probf) 

       sum=sum+cnts(i); 

       cum(i)=sum; 

       prbc(i)=cum(i)/numofpixels; 

       fin_lc(i)=round(prbc(i)*n); 

    end 

     for i=1:size(M,1) 

       for j=1:size(M,2) 

           Y(i,j)=fin_lc(M(i,j)+1); 

       end 

    end 

    Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh'); 

   W = imresize(Y,[480, 640]); 

     lbpRadiusSet = [2 4 6 8]; 

    lbpPointsSet = [8 8 8 8];  

     % selecting mrelbp features from preprocessed test image 

    xsum=0; 

    ysum=0; 

    num = 0; 

    px = []; 

    py = []; 

    px1 = []; 

    py1 = []; 

    px2 = []; 

    py2 = []; 

    for i = 95 : 4 : size(Y,1) - 40 

       for j = 30 : 24 : size(Y,2) - 120 

            Y1 = Y(i:i+19,j:j+79); 

             testfeatures1 = []; 

             testfeatures2 = []; 

            testfeatures3 = []; 
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             for idxLbpRadius = 1 : length(lbpRadiusSet) 

                 lbpRadius = lbpRadiusSet(idxLbpRadius); 

                 lbpPoints = lbpPointsSet(idxLbpRadius); 

                  mapping = get_mapping(lbpPoints);     

                 blockSize = lbpRadius*2+1;     

                  if idxLbpRadius > 1 

                     lbpRadiusPre = lbpRadiusSet(idxLbpRadius-1); 

                 else 

                     lbpRadiusPre = 0; 

                 end 

                  cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,1,1); 

                  testfeatures1 = [testfeatures1 cfmsWithLabels_LBP];    

                 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,1,2); 

                  testfeatures2 = [testfeatures2 cfmsWithLabels_LBP]; 

                 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,1,3); 

                  testfeatures3 = [testfeatures3 cfmsWithLabels_LBP]; 

             end       

             testclass1=adaboostBinPred(model1,testfeatures1'); 

            testclass2=adaboostBinPred(model2,testfeatures2'); 

            testclass3=adaboostBinPred(model3,testfeatures3'); 

             if testclass1 == 1 ||   testclass2 == 1 || testclass3 == 1 

                 num = num + 1; 

                 px = [px i * 2]; 

                 py = [py j * 2];   

                 result = imcrop(X,[i*2 j*2 250 45]); 

                 imwrite(result, strcat('detected/', num2str(id), '_cropped_', num2str(num), '.jpg')); 

             end        

        end 

    end 

     fh = figure('Name','LP detection','NumberTitle','off'); 

    subplot(2,1,1); 

    imshow( W, 'border', 'tight' ); %//show your image 

    subplot(2,1,2); 

    imshow( X, 'border', 'tight' ); %//show improve image 

    hold on; 

    for i = 1 : length(px) 

        rectangle('Position', [py(i) px(i) 250 45], 'EdgeColor', 'g'); %// draw rectangle on image 

        frm = getframe( fh ); %// get the image+rectangle 

        imwrite( frm.cdata, strcat('result/',num2str(id),'.jpg') ); %// save to file     

    end 

    pause(3); 

    close(fh); 

    disp(strcat('test image ', num2str(id), ' done' )); 

    disp(strcat('The number of ensemble classifiers is: ') ); 

   num 

end 

 toc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

global nump1 %number of positive samples 1 

global nump2 %number of positive samples 2 
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global nump3 %number of positive samples 3 

global numn  %number of negative samples  

 global lbpRadius 

global lbpPoints 

tic 

%% selecting mrelbp features from preprocessed train images 

lbpRadiusSet = [2 4 6 8]; 

lbpPointsSet = [8 8 8 8];  

 trainfeatures1 = []; 

trainfeatures2 = []; 

trainfeatures3 = []; 

trainfeatures4 = []; 

for idxLbpRadius = 1 : length(lbpRadiusSet) 

    lbpRadius = lbpRadiusSet(idxLbpRadius); 

    lbpPoints = lbpPointsSet(idxLbpRadius); 

    mapping = get_mapping(lbpPoints);     

    blockSize = lbpRadius*2+1;     

    if idxLbpRadius > 1 

        lbpRadiusPre = lbpRadiusSet(idxLbpRadius-1); 

    else 

        lbpRadiusPre = 0; 

    end 

    cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,1);     

    trainfeatures1 = [trainfeatures1 cfmsWithLabels_LBP]; 

    clear cfmsWithLabels_LBP 

    cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,2);     

    trainfeatures2 = [trainfeatures2 cfmsWithLabels_LBP]; 

    clear cfmsWithLabels_LBP 

    cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,3);     

    trainfeatures3 = [trainfeatures3 cfmsWithLabels_LBP];    

    clear cfmsWithLabels_LBP 

    cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,4);     

    trainfeatures4 = [trainfeatures4 cfmsWithLabels_LBP];    

end 

 trainfeatures1 = [trainfeatures1; trainfeatures4]; 

trainfeatures2 = [trainfeatures2; trainfeatures4]; 

trainfeatures3 = [trainfeatures3; trainfeatures4]; 

classes1 = zeros(1, 2030); 

for i = 1 : 500 

    classes1(i) = 1; 

end 

classes2 = zeros(1, 1607); 

for i = 1 : 77 

    classes2(i) = 1; 

end 

classes3 = zeros(1, 1574); 

for i = 1 : 44 

    classes3(i) = 1; 

end 
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--------------------------------Trainned models 

model1=adaboostBin(trainfeatures1',classes1,100); 

model2=adaboostBin(trainfeatures2',classes2,100); 

model3=adaboostBin(trainfeatures3',classes3,100); 

 save('model1.mat', '-struct', 'model1'); 

save('model2.mat', '-struct', 'model2'); 

save('model3.mat', '-struct', 'model3'); 

toc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Matlab simulation code for Chapter 4 

An efficient texture descriptor for the detection of license plates 

from vehicle images in difficult conditions 

 

The simulation codes to detect LPs from vehicles images having difficult conditions are 

presented. The experiment results were obtained using Matlab programming language version 

R2018a. 
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---------------------------------ELM CLASSIFIER----------------- 

function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] = 

elm(TrainingData_File, TestingData_File, Elm_Type, NumberofHiddenNeurons, 

ActivationFunction) 

 REGRESSION=0; 

CLASSIFIER=1; 

 %%%%%%%%%%% Load training dataset 

train_data=load(TrainingData_File); 

T=train_data(:,1)'; 

P=train_data(:,2:size(train_data,2))'; 

clear train_data;                                   %   Release raw training data array 

 %%%%%%%%%%% Load testing dataset 

test_data=load(TestingData_File); 

TV.T=test_data(:,1)'; 

TV.P=test_data(:,2:size(test_data,2))'; 

clear test_data;                                    %   Release raw testing data array 

NumberofTrainingData=size(P,2); 

NumberofTestingData=size(TV.P,2); 

NumberofInputNeurons=size(P,1); 

 if Elm_Type~=REGRESSION 

    %%%%%%%%%%%% Preprocessing the data of classification 

    sorted_target=sort(cat(2,T,TV.T),2); 

    label=zeros(1,1);                               %   Find and save in 'label' class label from training 

and testing data sets 

    label(1,1)=sorted_target(1,1); 

    j=1; 

    for i = 2:(NumberofTrainingData+NumberofTestingData) 

        if sorted_target(1,i) ~= label(1,j) 

            j=j+1; 

            label(1,j) = sorted_target(1,i); 

        end 

    end 

    number_class=j; 

    NumberofOutputNeurons=number_class; 

          %%%%%%%%%% Processing the targets of training 

    temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData); 

    for i = 1:NumberofTrainingData 

        for j = 1:number_class 

            if label(1,j) == T(1,i) 

                break;  

            end 

        end 

        temp_T(j,i)=1; 

    end  

    T=temp_T*2-1; 

     %%%%%%%%%% Processing the targets of testing 

    temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData); 

    for i = 1:NumberofTestingData 

        for j = 1:number_class 

            if label(1,j) == TV.T(1,i) 
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                break;  

            end 

        end 

        temp_TV_T(j,i)=1; 

    end 

    TV.T=temp_TV_T*2-1; 

 end                                                 %   end if of Elm_Type 

 %%%%%%%%%%% Calculate weights & biases 

start_time_train=cputime; 

 %%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases 

BiasofHiddenNeurons (b_i) of hidden neurons 

InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1; 

BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1); 

tempH=InputWeight*P; 

clear P;                                            %   Release input of training data  

ind=ones(1,NumberofTrainingData); 

BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix 

BiasofHiddenNeurons to match the demention of H 

tempH=tempH+BiasMatrix; 

%%%%%%%%%%% Calculate hidden neuron output matrix H 

switch lower(ActivationFunction) 

    case {'sig','sigmoid'} 

        %%%%%%%% Sigmoid  

        H = 1 ./ (1 + exp(-tempH)); 

    case {'sin','sine'} 

        %%%%%%%% Sine 

        H = sin(tempH);     

    case {'hardlim'} 

        %%%%%%%% Hard Limit 

        H = double(hardlim(tempH)); 

    case {'tribas'} 

        %%%%%%%% Triangular basis function 

        H = tribas(tempH); 

    case {'radbas'} 

        %%%%%%%% Radial basis function 

        H = radbas(tempH); 

        %%%%%%%% More activation functions can be added here                 

end 

clear tempH;                     %   Release the temparary array for calculation of hidden neuron 

output matrix H 

 %%%%%%%%%%% Calculate output weights OutputWeight (beta_i) 

OutputWeight=pinv(H') * T'  

  

end_time_train=cputime; 

TrainingTime=end_time_train-start_time_train        %   Calculate CPU time (seconds) spent 

for training ELM 

  

%%%%%%%%%%% Calculate the training accuracy 

Y=(H' * OutputWeight)';                             %   Y: the actual output of the training data 

if Elm_Type == REGRESSION 
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    TrainingAccuracy=sqrt(mse(T - Y))               %   Calculate training accuracy (RMSE) for 

regression case 

end 

clear H; 

 %%%%%%%%%%% Calculate the output of testing input 

start_time_test=cputime; 

tempH_test=InputWeight*TV.P; 

clear TV.P;             %   Release input of testing data              

ind=ones(1,NumberofTestingData); 

BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix 

BiasofHiddenNeurons to match the demention of H 

tempH_test=tempH_test + BiasMatrix; 

switch lower(ActivationFunction) 

    case {'sig','sigmoid'} 

        %%%%%%%% Sigmoid  

        H_test = 1 ./ (1 + exp(-tempH_test)); 

    case {'sin','sine'} 

        %%%%%%%% Sine 

        H_test = sin(tempH_test);         

    case {'hardlim'} 

        %%%%%%%% Hard Limit 

        H_test = hardlim(tempH_test);         

    case {'tribas'} 

        %%%%%%%% Triangular basis function 

        H_test = tribas(tempH_test);         

    case {'radbas'} 

        %%%%%%%% Radial basis function 

        H_test = radbas(tempH_test);         

        %%%%%%%% More activation functions can be added here         

end 

TY=(H_test' * OutputWeight)';                       %   TY: the actual output of the testing data 

end_time_test=cputime; 

TestingTime=end_time_test-start_time_test           %   Calculate CPU time (seconds) spent by 

ELM predicting the whole testing data 

 if Elm_Type == REGRESSION 

    TestingAccuracy=sqrt(mse(TV.T - TY))            %   Calculate testing accuracy (RMSE) for 

regression case 

end 

 if Elm_Type == CLASSIFIER 

%%%%%%%%%% Calculate training & testing classification accuracy 

    MissClassificationRate_Training=0; 

    MissClassificationRate_Testing=0; 

     for i = 1 : size(T, 2) 

        [x, label_index_expected]=max(T(:,i)); 

        [x, label_index_actual]=max(Y(:,i)); 

        if label_index_actual~=label_index_expected 

            MissClassificationRate_Training=MissClassificationRate_Training+1; 

        end 

    end 

    TrainingAccuracy=1-MissClassificationRate_Training/size(T,2) 
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    for i = 1 : size(TV.T, 2) 

        [x, label_index_expected]=max(TV.T(:,i)); 

        [x, label_index_actual]=max(TY(:,i)); 

        if label_index_actual~=label_index_expected 

            MissClassificationRate_Testing=MissClassificationRate_Testing+1; 

        end 

    end 

    TestingAccuracy=1-MissClassificationRate_Testing/size(TV.T,2)   

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy,TY] = 

elm_kernel(TrainingData_File, TestingData_File, Elm_Type, Regularization_coefficient, 

Kernel_type, Kernel_para) 

%%%%%%%%%%% Macro definition 

REGRESSION=0; 

CLASSIFIER=1; 

%%%%%%%%%%% Load training dataset 

train_data=load(TrainingData_File); 

T=train_data(:,1)'; 

P=train_data(:,2:size(train_data,2))'; 

clear train_data;                                   %   Release raw training data array 

 %%%%%%%%%%% Load testing dataset 

test_data=load(TestingData_File); 

TV.T=test_data(:,1)'; 

TV.P=test_data(:,2:size(test_data,2))'; 

clear test_data;                                    %   Release raw testing data array 

C = Regularization_coefficient; 

NumberofTrainingData=size(P,2); 

NumberofTestingData=size(TV.P,2); 

if Elm_Type~=REGRESSION 

    %%%%%%%%%%%% Preprocessing the data of classification 

    sorted_target=sort(cat(2,T,TV.T),2); 

    label=zeros(1,1);         %   Find and save in 'label' class label from training and testing data 

sets 

    label(1,1)=sorted_target(1,1); 

    j=1; 

    for i = 2:(NumberofTrainingData+NumberofTestingData) 

        if sorted_target(1,i) ~= label(1,j) 

            j=j+1; 

            label(1,j) = sorted_target(1,i); 

        end 

    end 

    number_class=j; 

    NumberofOutputNeurons=number_class; 

        %%%%%%%%%% Processing the targets of training 

    temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData); 

    for i = 1:NumberofTrainingData 

        for j = 1:number_class 

            if label(1,j) == T(1,i) 

                break;  
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            end 

        end 

        temp_T(j,i)=1; 

    end 

    T=temp_T*2-1; 

     %%%%%%%%%% Processing the targets of testing 

    temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData); 

    for i = 1:NumberofTestingData 

        for j = 1:number_class 

            if label(1,j) == TV.T(1,i) 

                break;  

            end 

        end 

        temp_TV_T(j,i)=1; 

    end 

    TV.T=temp_TV_T*2-1; 

                                              %   end if of Elm_Type 

end 

 %%%%%%%%%%% Training Phase % 

tic; 

n = size(T,2); 

Omega_train = kernel_matrix(P',Kernel_type, Kernel_para); 

OutputWeight=((Omega_train+speye(n)/C)\(T'));  

TrainingTime=toc 

 %%%%%%%%%%% Calculate the training output 

Y=(Omega_train * OutputWeight)';        %   Y: the actual output of the training data 

%%%%%%%%%%% Calculate the output of testing input 

tic; 

Omega_test = kernel_matrix(P',Kernel_type, Kernel_para,TV.P'); 

TY=(Omega_test' * OutputWeight)';                            %   TY: the actual output of the testing 

data 

TestingTime=toc 

 %%%%%%%%%% Calculate training & testing classification accuracy 

 if Elm_Type == REGRESSION 

%%%%%%%%%% Calculate training & testing accuracy (RMSE) for regression case 

    TrainingAccuracy=sqrt(mse(T - Y)) 

    TestingAccuracy=sqrt(mse(TV.T - TY))            

end 

 if Elm_Type == CLASSIFIER 

%%%%%%%%%% Calculate training & testing classification accuracy 

    MissClassificationRate_Training=0; 

    MissClassificationRate_Testing=0; 

     for i = 1 : size(T, 2) 

        [x, label_index_expected]=max(T(:,i)); 

        [x, label_index_actual]=max(Y(:,i)); 

        if label_index_actual~=label_index_expected 

            MissClassificationRate_Training=MissClassificationRate_Training+1; 

        end 

    end 

    TrainingAccuracy=1-MissClassificationRate_Training/size(T,2)   
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    for i = 1 : size(TV.T, 2) 

        [x, label_index_expected]=max(TV.T(:,i)); 

        [x, label_index_actual]=max(TY(:,i)); 

        if label_index_actual~=label_index_expected 

            MissClassificationRate_Testing=MissClassificationRate_Testing+1; 

        end 

    end 

    TestingAccuracy=1-MissClassificationRate_Testing/size(TV.T,2)   

end 

%%%%%%%%%%%%%%%%%% Kernel Matrix 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   function omega = kernel_matrix(Xtrain,kernel_type, kernel_pars,Xt) 

 nb_data = size(Xtrain,1); 

if strcmp(kernel_type,'RBF_kernel'), 

    if nargin<4, 

        XXh = sum(Xtrain.^2,2)*ones(1,nb_data); 

        omega = XXh+XXh'-2*(Xtrain*Xtrain'); 

        omega = exp(-omega./kernel_pars(1)); 

    else 

        XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1)); 

        XXh2 = sum(Xt.^2,2)*ones(1,nb_data); 

        omega = XXh1+XXh2' - 2*Xtrain*Xt'; 

        omega = exp(-omega./kernel_pars(1)); 

    end 

elseif strcmp(kernel_type,'lin_kernel') 

    if nargin<4, 

        omega = Xtrain*Xtrain'; 

    else 

        omega = Xtrain*Xt'; 

    end 

elseif strcmp(kernel_type,'poly_kernel') 

    if nargin<4, 

        omega = (Xtrain*Xtrain'+kernel_pars(1)).^kernel_pars(2); 

    else 

        omega = (Xtrain*Xt'+kernel_pars(1)).^kernel_pars(2); 

    end 

elseif strcmp(kernel_type,'wav_kernel') 

    if nargin<4, 

        XXh = sum(Xtrain.^2,2)*ones(1,nb_data); 

        omega = XXh+XXh'-2*(Xtrain*Xtrain'); 

        XXh1 = sum(Xtrain,2)*ones(1,nb_data); 

        omega1 = XXh1-XXh1'; 

        omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1)); 

    else 

        XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1)); 

        XXh2 = sum(Xt.^2,2)*ones(1,nb_data); 

        omega = XXh1+XXh2' - 2*(Xtrain*Xt'); 

         

        XXh11 = sum(Xtrain,2)*ones(1,size(Xt,1)); 

        XXh22 = sum(Xt,2)*ones(1,nb_data); 
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        omega1 = XXh11-XXh22'; 

        omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1)); 

    end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] = 

elm_MultiOutputRegression(TrainingData_File, TestingData_File, No_of_Output, 

NumberofHiddenNeurons, ActivationFunction) 

%%%%%%%%%%% Load training dataset 

train_data=load(TrainingData_File); 

T=train_data(:,1:No_of_Output)'; 

P=train_data(:,No_of_Output+1:size(train_data,2))'; 

clear train_data;                                   %   Release raw training data array 

 %%%%%%%%%%% Load testing dataset 

test_data=load(TestingData_File); 

TV.T=test_data(:,1:No_of_Output)'; 

TV.P=test_data(:,No_of_Output+1:size(test_data,2))'; 

clear test_data;                                    %   Release raw testing data array 

 NumberofTrainingData=size(P,2); 

NumberofTestingData=size(TV.P,2); 

NumberofInputNeurons=size(P,1); 

 %%%%%%%%%%% Calculate weights & biases 

start_time_train=cputime; 

 %%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases 

BiasofHiddenNeurons (b_i) of hidden neurons 

InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1; 

BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1); 

tempH=InputWeight*P; 

clear P;                                            %   Release input of training data  

ind=ones(1,NumberofTrainingData); 

BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix 

BiasofHiddenNeurons to match the demention of H 

tempH=tempH+BiasMatrix; 

%%%%%%%%%%% Calculate hidden neuron output matrix H 

switch lower(ActivationFunction) 

    case {'sig','sigmoid'} 

        %%%%%%%% Sigmoid  

        H = 1 ./ (1 + exp(-tempH)); 

    case {'sin','sine'} 

        %%%%%%%% Sine 

        H = sin(tempH);     

    case {'hardlim'} 

        %%%%%%%% Hard Limit 

        H = hardlim(tempH);             

        %%%%%%%% More activation functions can be added here                 

end 

clear tempH;                                        %   Release the temparary array for calculation of 

hidden neuron output matrix H 

 %%%%%%%%%%% Calculate output weights OutputWeight (beta_i) 

OutputWeight=pinv(H') * T'; 
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end_time_train=cputime; 

TrainingTime=end_time_train-start_time_train        %   Calculate CPU time (seconds) spent 

for training ELM 

 %%%%%%%%%%% Calculate the training accuracy 

Y=(H' * OutputWeight)';                             %   Y: the actual output of the training data 

TrainingAccuracy=sqrt(mse(T - Y))               %   Calculate training accuracy (RMSE) for 

regression case 

clear H; 

 %%%%%%%%%%% Calculate the output of testing input 

start_time_test=cputime; 

tempH_test=InputWeight*TV.P; 

clear TV.P;             %   Release input of testing data              

ind=ones(1,NumberofTestingData); 

BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix 

BiasofHiddenNeurons to match the demention of H 

tempH_test=tempH_test + BiasMatrix; 

switch lower(ActivationFunction) 

    case {'sig','sigmoid'} 

        %%%%%%%% Sigmoid  

        H_test = 1 ./ (1 + exp(-tempH_test)); 

    case {'sin','sine'} 

        %%%%%%%% Sine 

        H_test = sin(tempH_test);         

    case {'hardlim'} 

        %%%%%%%% Hard Limit 

        H_test = hardlim(tempH_test);         

        %%%%%%%% More activation functions can be added here         

end 

TY=(H_test' * OutputWeight)';                       %   TY: the actual output of the testing data 

end_time_test=cputime; 

TestingTime=end_time_test-start_time_test           %   Calculate CPU time (seconds) spent by 

ELM predicting the whole testing data 

  

TestingAccuracy=sqrt(mse(TV.T - TY))            %   Calculate testing accuracy (RMSE) for 

regression case 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [TestingTime, TestingAccuracy, output] = elm_predict(TestingData_File) 

 %%%%%%%%%%% Macro definition 

REGRESSION=0; 

CLASSIFIER=1; 

 %%%%%%%%%%% Load testing dataset 

test_data=load(TestingData_File); 

TV.T=test_data(:,1)'; 

TV.P=test_data(:,2:size(test_data,2))'; 

clear test_data;                                    %   Release raw testing data array 

NumberofTestingData=size(TV.P,2); 

load elm_model.mat; 

 if Elm_Type~=REGRESSION 

     %%%%%%%%%% Processing the targets of testing 

    temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData); 
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    for i = 1:NumberofTestingData 

        for j = 1:size(label,2) 

            if label(1,j) == TV.T(1,i) 

                break;  

            end 

        end 

        temp_TV_T(j,i)=1; 

    end 

    TV.T=temp_TV_T*2-1; 

  

end                                                 %   end if of Elm_Type 

%%%%%%%%%%% Calculate the output of testing input 

start_time_test=cputime; 

tempH_test=InputWeight*TV.P; 

clear TV.P;             %   Release input of testing data              

ind=ones(1,NumberofTestingData); 

BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix 

BiasofHiddenNeurons to match the demention of H 

tempH_test=tempH_test + BiasMatrix; 

switch lower(ActivationFunction) 

    case {'sig','sigmoid'} 

        %%%%%%%% Sigmoid  

        H_test = 1 ./ (1 + exp(-tempH_test)); 

    case {'sin','sine'} 

        %%%%%%%% Sine 

        H_test = sin(tempH_test);         

    case {'hardlim'} 

        %%%%%%%% Hard Limit 

        H_test = hardlim(tempH_test);         

        %%%%%%%% More activation functions can be added here         

end 

TY=(H_test' * OutputWeight)';                       %   TY: the actual output of the testing data 

end_time_test=cputime; 

TestingTime=end_time_test-start_time_test;           %   Calculate CPU time (seconds) spent 

by ELM predicting the whole testing data 

  

if Elm_Type == REGRESSION 

    TestingAccuracy=sqrt(mse(TV.T - TY));            %   Calculate testing accuracy (RMSE) for 

regression case 

    output=TY; 

end 

  

if Elm_Type == CLASSIFIER 

%%%%%%%%%% Calculate training & testing classification accuracy 

    MissClassificationRate_Testing=0; 

  

    for i = 1 : size(TV.T, 2) 

        [x, label_index_expected]=max(TV.T(:,i)); 

        [x, label_index_actual]=max(TY(:,i)); 

        output(i)=label(label_index_actual);         
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        if label_index_actual~=label_index_expected 

            MissClassificationRate_Testing=MissClassificationRate_Testing+1; 

        end 

    end 

    TestingAccuracy=1-MissClassificationRate_Testing/NumberofTestingData;   

end 

 save('elm_output','output'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [TrainingTime,TrainingAccuracy] = elm_train(TrainingData_File, Elm_Type, 

NumberofHiddenNeurons, ActivationFunction) 

 %%%%%%%%%%% Macro definition 

REGRESSION=0; 

CLASSIFIER=1; 

 %%%%%%%%%%% Load training dataset 

train_data=load(TrainingData_File); 

T=train_data(:,1)'; 

P=train_data(:,2:size(train_data,2))'; 

clear train_data;                                   %   Release raw training data array 

NumberofTrainingData=size(P,2); 

NumberofInputNeurons=size(P,1); 

if Elm_Type~=REGRESSION 

    %%%%%%%%%%%% Preprocessing the data of classification 

    sorted_target=sort(T,2); 

    label=zeros(1,1);                               %   Find and save in 'label' class label from training 

and testing data sets 

    label(1,1)=sorted_target(1,1); 

    j=1; 

    for i = 2:NumberofTrainingData 

        if sorted_target(1,i) ~= label(1,j) 

            j=j+1; 

            label(1,j) = sorted_target(1,i); 

        end 

    end 

    number_class=j; 

    NumberofOutputNeurons=number_class; 

        %%%%%%%%%% Processing the targets of training 

    temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData); 

    for i = 1:NumberofTrainingData 

        for j = 1:number_class 

            if label(1,j) == T(1,i) 

                break;  

            end 

        end 

        temp_T(j,i)=1; 

    end 

    T=temp_T*2-1; 

end                                                 %   end if of Elm_Type 

 %%%%%%%%%%% Calculate weights & biases 

start_time_train=cputime; 
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 %%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases 

BiasofHiddenNeurons (b_i) of hidden neurons 

InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1; 

BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1); 

tempH=InputWeight*P; 

clear P;                                            %   Release input of training data  

ind=ones(1,NumberofTrainingData); 

BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix 

BiasofHiddenNeurons to match the demention of H 

tempH=tempH+BiasMatrix; 

 %%%%%%%%%%% Calculate hidden neuron output matrix H 

switch lower(ActivationFunction) 

    case {'sig','sigmoid'} 

        %%%%%%%% Sigmoid  

        H = 1 ./ (1 + exp(-tempH)); 

    case {'sin','sine'} 

        %%%%%%%% Sine 

        H = sin(tempH);     

    case {'hardlim'} 

        %%%%%%%% Hard Limit 

        H = hardlim(tempH);             

        %%%%%%%% More activation functions can be added here                 

end 

clear tempH;                                        %   Release the temparary array for calculation of 

hidden neuron output matrix H 

 %%%%%%%%%%% Calculate output weights OutputWeight (beta_i) 

OutputWeight=pinv(H') * T'; 

end_time_train=cputime; 

TrainingTime=end_time_train-start_time_train        %   Calculate CPU time (seconds) spent 

for training ELM 

  

%%%%%%%%%%% Calculate the training accuracy 

Y=(H' * OutputWeight)';                             %   Y: the actual output of the training data 

if Elm_Type == REGRESSION 

    TrainingAccuracy=sqrt(mse(T - Y))               %   Calculate training accuracy (RMSE) for 

regression case 

    output=Y;     

end 

clear H; 

  

if Elm_Type == CLASSIFIER 

%%%%%%%%%% Calculate training & testing classification accuracy 

    MissClassificationRate_Training=0; 

     for i = 1 : size(T, 2) 

        [x, label_index_expected]=max(T(:,i)); 

        [x, label_index_actual]=max(Y(:,i)); 

        output(i)=label(label_index_actual); 

        if label_index_actual~=label_index_expected 

            MissClassificationRate_Training=MissClassificationRate_Training+1; 

        end 
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    end 

    TrainingAccuracy=1-MissClassificationRate_Training/NumberofTrainingData 

end 

  

if Elm_Type~=REGRESSION 

    save('elm_model', 'NumberofInputNeurons', 'NumberofOutputNeurons', 'InputWeight', 

'BiasofHiddenNeurons', 'OutputWeight', 'ActivationFunction', 'label', 'Elm_Type'); 

else 

    save('elm_model', 'InputWeight', 'BiasofHiddenNeurons', 'OutputWeight', 

'ActivationFunction', 'Elm_Type');     

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function blocks = cirInterpSingleRadius(img) 

 global lbpPoints; 

global lbpRadius; 

 [imgH,imgW] = size(img); 

 imgNewH = imgH - 2*lbpRadius; 

imgNewW = imgW - 2*lbpRadius; 

% the interpolated img 

blocks = zeros(lbpPoints,imgNewH*imgNewW); 

 radius = lbpRadius; 

neighbors = lbpPoints; 

spoints = zeros(neighbors,2); 

 % Determine the dimensions of the input img. 

[ysize,xsize] = size(img); 

 % Angle step 

angleStep = 2 * pi / neighbors; 

for i = 1 : neighbors 

    spoints(i,1) = -radius * sin((i-1)*angleStep); 

    spoints(i,2) = radius * cos((i-1)*angleStep); 

end 

miny = min(spoints(:,1)); 

maxy = max(spoints(:,1)); 

minx = min(spoints(:,2)); 

maxx = max(spoints(:,2)); 

 % Block size, each LBP code is computed within angleStep block of size bsizey*bsizex 

bsizey = ceil(max(maxy,0)) - floor(min(miny,0))+1; 

bsizex = ceil(max(maxx,0)) - floor(min(minx,0))+1; 

 % Coordinates of origin (0,0) in the block 

origy = 1 - floor(min(miny,0)); 

origx = 1 - floor(min(minx,0)); 

 % Minimum allowed size for the input img depends 

% on the radius of the used LBP operator. 

if(xsize < bsizex || ysize < bsizey) 

    error('Too small input img. Should be at least (2*radius+1) x (2*radius+1)'); 

end 

% Calculate dx and dy; 

dx = xsize - bsizex; 

dy = ysize - bsizey; 

 % Compute the LBP code img 
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for i = 1 : neighbors 

    y = spoints(i,1) + origy; 

    x = spoints(i,2) + origx; 

    % Calculate floors, ceils and rounds for the x and y. 

    fy = floor(y); 

    cy = ceil(y); 

    ry = round(y); 

    fx = floor(x); 

    cx = ceil(x); 

    rx = round(x); 

        % Check if interpolation is needed. 

    if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6) 

        % Interpolation is not needed, use original datatypes 

        imgNew = img(ry:ry+dy,rx:rx+dx); 

        blocks(i,:) = imgNew(:)'; 

    else 

        % Interpolation needed, use double type images 

        ty = y - fy; 

        tx = x - fx; 

        % Calculate the interpolation weights. 

        w1 = (1 - tx) * (1 - ty); 

        w2 =      tx  * (1 - ty); 

        w3 = (1 - tx) *      ty ; 

        w4 =      tx  *      ty ; 

        % Compute interpolated pixel values 

        imgNew = w1*img(fy:fy+dy,fx:fx+dx) + w2*img(fy:fy+dy,cx:cx+dx) + ... 

            w3*img(cy:cy+dy,fx:fx+dx) + w4*img(cy:cy+dy,cx:cx+dx); 

        blocks(i,:) = imgNew(:)'; 

    end 

end % loop neighbors 

end % end of the function 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function blocks = cirInterpSingleRadiusNew(img,lbpPoints,lbpRadius) 

 [imgH,imgW] = size(img); 

 imgNewH = imgH - 2*lbpRadius; 

imgNewW = imgW - 2*lbpRadius; 

% the interpolated img 

blocks = zeros(lbpPoints,imgNewH*imgNewW); 

radius = lbpRadius; 

neighbors = lbpPoints; 

spoints = zeros(neighbors,2); 

% Determine the dimensions of the input img. 

[ysize,xsize] = size(img); 

 % Angle step 

angleStep = 2 * pi / neighbors; 

for i = 1 : neighbors 

    spoints(i,1) = -radius * sin((i-1)*angleStep); 

    spoints(i,2) = radius * cos((i-1)*angleStep); 

end 

 miny = min(spoints(:,1)); 
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maxy = max(spoints(:,1)); 

minx = min(spoints(:,2)); 

maxx = max(spoints(:,2)); 

 % Block size, each LBP code is computed within angleStep block of size bsizey*bsizex 

bsizey = ceil(max(maxy,0)) - floor(min(miny,0))+1; 

bsizex = ceil(max(maxx,0)) - floor(min(minx,0))+1; 

 % Coordinates of origin (0,0) in the block 

origy = 1 - floor(min(miny,0)); 

origx = 1 - floor(min(minx,0)); 

 % Minimum allowed size for the input img depends 

% on the radius of the used LBP operator. 

if(xsize < bsizex || ysize < bsizey) 

    error('Too small input img. Should be at least (2*radius+1) x (2*radius+1)'); 

end 

 % Calculate dx and dy; 

dx = xsize - bsizex; 

dy = ysize - bsizey; 

% Compute the LBP code img 

for i = 1 : neighbors 

    y = spoints(i,1) + origy; 

    x = spoints(i,2) + origx; 

    % Calculate floors, ceils and rounds for the x and y. 

    fy = floor(y); 

    cy = ceil(y); 

    ry = round(y); 

     fx = floor(x); 

    cx = ceil(x); 

    rx = round(x); 

    % Check if interpolation is needed. 

    if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6) 

        % Interpolation is not needed, use original datatypes 

        imgNew = img(ry:ry+dy,rx:rx+dx); 

        blocks(i,:) = imgNew(:)'; 

    else 

        % Interpolation needed, use double type images 

        ty = y - fy; 

        tx = x - fx; 

        % Calculate the interpolation weights. 

        w1 = (1 - tx) * (1 - ty); 

        w2 =      tx  * (1 - ty); 

        w3 = (1 - tx) *      ty ; 

        w4 =      tx  *      ty ; 

        % Compute interpolated pixel values 

        imgNew = w1*img(fy:fy+dy,fx:fx+dx) + w2*img(fy:fy+dy,cx:cx+dx) + ... 

            w3*img(cy:cy+dy,fx:fx+dx) + w4*img(cy:cy+dy,cx:cx+dx); 

        blocks(i,:) = imgNew(:)'; 

    end 

end % loop neighbors 

 end % end of the function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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function mapping = get_mapping(samples) 

numAllLBPs = 2^samples; 

table = 0 : numAllLBPs-1; 

newMax = samples + 2; % number of patterns in the resulting LBP code 

for i = 0:2^samples - 1 

    j = bitset(bitshift(i,1),1,bitget(i,samples)); % rotate left 

    numt = sum(bitget(bitxor(i,j),1:samples)); 

    if numt <= 2 

        table(i+1) = sum(bitget(i,1:samples)); 

    else 

        table(i+1) = samples+1; 

    end 

end 

mapping.table = table; 

mapping.samples = samples; 

mapping.num = newMax; 

 end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,check,setnum) 

 global nump  %number of positive samples 

global numn  %number of negative samples  

 global pathp 

global pathn 

 global lbpRadius 

global lbpPoints 

global Y1 

 numLBPbins = mapping.num; 

 if check == 0 

    if setnum == 1 

        samplenum = nump; 

        path = pathp;             

    elseif setnum == 2 

        samplenum = numn; 

        path = pathn; 

    end 

    cfmsWithLabels_MRELBP_CINIRD = 

zeros(samplenum,(numLBPbins*numLBPbins*2)); 

    for idxSample = 1 : samplenum     

        Joint_CINIRD = zeros(numLBPbins,numLBPbins,2);     

        img = imread(strcat(path, num2str(idxSample), '.jpg')); 

         img = samp_prepro(img);     

         imgExt = padarray(img,[1 1],'symmetric','both');     

        imgblks = im2col(imgExt,[3 3],'sliding'); 

        a = median(imgblks); 

        b = reshape(a,size(img)); 

        CImg = b(lbpRadius+1:end-lbpRadius,lbpRadius+1:end-lbpRadius); 

        CImg = CImg(:) - mean(CImg(:)); 

        CImg(CImg >= 0) = 2; 

        CImg(CImg < 0) = 1; 

        if lbpRadius == 2 
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            filWin = 3; 

            halfWin = (filWin-1)/2; 

            imgExt = padarray(img,[halfWin halfWin],'symmetric','both'); 

            imgblks = im2col(imgExt,[filWin filWin],'sliding'); 

            imgMedian = median(imgblks); 

            imgCurr = reshape(imgMedian,size(img)); 

            NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image'); 

            NILBPImage = NILBPImage(:); 

            histNI = hist(NILBPImage,0:(numLBPbins-1)); 

            NILBPImage = NILBPImage + 1; 

             RDLBPImage = 

RDLBP_Image_SmallestRadiusOnly(b,imgCurr,lbpRadius,lbpPoints,mapping,'image'); 

            RDLBPImage = RDLBPImage(:); 

            histRD = hist(RDLBPImage,0:(numLBPbins-1)); 

            RDLBPImage = RDLBPImage + 1; 

        else 

            if mod(lbpRadius,2) == 0 

                filWin = lbpRadius + 1; 

            else 

                filWin = lbpRadius; 

            end 

            halfWin = (filWin-1)/2; 

            imgExt = padarray(img,[halfWin halfWin],'symmetric','both'); 

            imgblks = im2col(imgExt,[filWin filWin],'sliding'); 

            imgMedian = median(imgblks); 

            imgCurr = reshape(imgMedian,size(img)); 

            NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image'); 

            NILBPImage = NILBPImage(:); 

            histNI = hist(NILBPImage,0:(numLBPbins-1)); 

            NILBPImage = NILBPImage + 1; 

             if mod(lbpRadiusPre,2) == 0 

                filWin = lbpRadiusPre + 1; 

            else 

                filWin = lbpRadiusPre; 

            end 

             halfWin = (filWin-1)/2; 

            imgExt = padarray(img,[halfWin halfWin],'symmetric','both'); 

            imgblks = im2col(imgExt,[filWin filWin],'sliding'); 

            imgMedian = median(imgblks); 

            imgPre = reshape(imgMedian,size(img)); 

             RDLBPImage = 

NewRDLBP_Image(imgCurr,imgPre,lbpRadius,lbpRadiusPre,lbpPoints,mapping,'image'); 

            RDLBPImage = RDLBPImage(:); 

            histRD = hist(RDLBPImage,0:(numLBPbins-1)); 

            RDLBPImage = RDLBPImage + 1;  

        end     

             for i = 1 : length(NILBPImage)     

            Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) = 

Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) + 1; 

        end     
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          cfmsWithLabels_MRELBP_CINIRD(idxSample,:) = Joint_CINIRD(:)'; 

    end 

else 

    cfmsWithLabels_MRELBP_CINIRD = zeros(1,(numLBPbins*numLBPbins*2)); 

    Joint_CINIRD = zeros(numLBPbins,numLBPbins,2);     

     img = samp_prepro(Y1);     

    imgExt = padarray(img,[1 1],'symmetric','both');     

    imgblks = im2col(imgExt,[3 3],'sliding'); 

    a = median(imgblks); 

    b = reshape(a,size(img)); 

    CImg = b(lbpRadius+1:end-lbpRadius,lbpRadius+1:end-lbpRadius); 

    CImg = CImg(:) - mean(CImg(:)); 

    CImg(CImg >= 0) = 2; 

    CImg(CImg < 0) = 1; 

    if lbpRadius == 2 

        filWin = 3; 

        halfWin = (filWin-1)/2; 

        imgExt = padarray(img,[halfWin halfWin],'symmetric','both'); 

        imgblks = im2col(imgExt,[filWin filWin],'sliding'); 

        imgMedian = median(imgblks); 

        imgCurr = reshape(imgMedian,size(img)); 

        NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image'); 

        NILBPImage = NILBPImage(:); 

        histNI = hist(NILBPImage,0:(numLBPbins-1)); 

        NILBPImage = NILBPImage + 1; 

         RDLBPImage = 

RDLBP_Image_SmallestRadiusOnly(b,imgCurr,lbpRadius,lbpPoints,mapping,'image'); 

        RDLBPImage = RDLBPImage(:); 

        histRD = hist(RDLBPImage,0:(numLBPbins-1)); 

        RDLBPImage = RDLBPImage + 1; 

    else 

        if mod(lbpRadius,2) == 0 

            filWin = lbpRadius + 1; 

        else 

            filWin = lbpRadius; 

        end 

        halfWin = (filWin-1)/2; 

        imgExt = padarray(img,[halfWin halfWin],'symmetric','both'); 

        imgblks = im2col(imgExt,[filWin filWin],'sliding'); 

        % each column of imgblks represents a feature vector 

        imgMedian = median(imgblks); 

        imgCurr = reshape(imgMedian,size(img)); 

        NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image'); 

        NILBPImage = NILBPImage(:); 

        histNI = hist(NILBPImage,0:(numLBPbins-1)); 

        NILBPImage = NILBPImage + 1; 

         if mod(lbpRadiusPre,2) == 0 

            filWin = lbpRadiusPre + 1; 

        else 

            filWin = lbpRadiusPre; 
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        end 

         halfWin = (filWin-1)/2; 

        imgExt = padarray(img,[halfWin halfWin],'symmetric','both'); 

        imgblks = im2col(imgExt,[filWin filWin],'sliding'); 

        imgMedian = median(imgblks); 

        imgPre = reshape(imgMedian,size(img)); 

         RDLBPImage = 

NewRDLBP_Image(imgCurr,imgPre,lbpRadius,lbpRadiusPre,lbpPoints,mapping,'image'); 

        RDLBPImage = RDLBPImage(:); 

        histRD = hist(RDLBPImage,0:(numLBPbins-1)); 

        RDLBPImage = RDLBPImage + 1;  

    end 

       for i = 1 : length(NILBPImage)     

        Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) = 

Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) + 1; 

    end   

    cfmsWithLabels_MRELBP_CINIRD = Joint_CINIRD(:)'; 

end 

cfmsWithLabels_LBP = cfmsWithLabels_MRELBP_CINIRD; 

clear cfmsWithLabels_MRELBP_CINIRD; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function result = 

NewRDLBP_Image(img,imgPre,lbpRadius,lbpRadiusPre,lbpPoints,mapping,mode) 

blocks1 = cirInterpSingleRadiusNew(img,lbpPoints,lbpRadius); 

blocks1 = blocks1';   

 imgPre = imgPre(lbpRadius-lbpRadiusPre+1:end-(lbpRadius-lbpRadiusPre),lbpRadius-

lbpRadiusPre+1:end-(lbpRadius-lbpRadiusPre)); 

blocks2 = cirInterpSingleRadiusNew(imgPre,lbpPoints,lbpRadiusPre); 

blocks2 = blocks2';   

 radialDiff = blocks1 - blocks2; 

radialDiff(radialDiff >= 0) = 1; 

radialDiff(radialDiff < 0) = 0; 

 bins = 2^lbpPoints; 

weight = 2.^(0:lbpPoints-1); 

radialDiff = radialDiff .* repmat(weight,size(radialDiff,1),1); 

% mapping = getmapping(lbpPoints,'riu2'); 

 radialDiff = sum(radialDiff,2); 

result = radialDiff; 

% Apply mapping if it is defined 

if isstruct(mapping) 

    bins = mapping.num; 

    for i = 1:size(result,1) 

        for j = 1:size(result,2) 

            result(i,j) = mapping.table(result(i,j)+1); 

        end 

    end 

end 

 if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh')) 

    % Return with LBP histogram if mode equals 'hist'. 



 Appendix B        Matlab Simulation Code for Chapter 4                                                        t                                                                                                                                 

r                                                

P a g e  179 254 

 

179 

    result = hist(result(:),0:(bins-1)); 

    if (strcmp(mode,'nh')) 

        result = result/sum(result); 

    end 

else 

    % Otherwise return a matrix of unsigned integers 

    if ((bins-1) <= intmax('uint8')) 

        result = uint8(result); 

    elseif ((bins-1) <= intmax('uint16')) 

        result = uint16(result); 

    else 

        result = uint32(result); 

    end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function result = NILBP_Image(img,lbpPoints,mapping,mode) 

blocks = cirInterpSingleRadius(img);   

blocks = blocks';  

blocks = blocks - repmat(mean(blocks,2),1,size(blocks,2)); 

blocks(blocks >= 0) = 1; 

blocks(blocks < 0) = 0; 

 weight = 2.^(0:lbpPoints-1); 

blocks = blocks .* repmat(weight,size(blocks,1),1); 

blocks = sum(blocks,2); 

result = blocks; 

% Apply mapping if it is defined 

if isstruct(mapping) 

    bins = mapping.num; 

    for i = 1:size(result,1) 

        for j = 1:size(result,2) 

            result(i,j) = mapping.table(result(i,j)+1); 

        end 

    end 

end 

  

if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh')) 

    % Return with LBP histogram if mode equals 'hist'. 

    result = hist(result(:),0:(bins-1)); 

    if (strcmp(mode,'nh')) 

        result = result/sum(result); 

    end 

else 

    % Otherwise return a matrix of unsigned integers 

    % result = reshape(result,size(imgTemp)); 

    if ((bins-1) <= intmax('uint8')) 

        result = uint8(result); 

    elseif ((bins-1) <= intmax('uint16')) 

        result = uint16(result); 

    else 

        result = uint32(result); 
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    end 

end 

  

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function result = 

RDLBP_Image_SmallestRadiusOnly(imgCenSmooth,img,lbpRadius,lbpPoints,mapping,mod

e) 

blocks1 = cirInterpSingleRadiusNew(img,lbpPoints,lbpRadius); 

blocks1 = blocks1';  

imgTemp = imgCenSmooth(lbpRadius+1:end-lbpRadius,lbpRadius+1:end-lbpRadius); 

blocks2 = repmat(imgTemp(:),1,lbpPoints); 

 radialDiff = blocks1 - blocks2; 

 radialDiff(radialDiff >= 0) = 1; 

radialDiff(radialDiff < 0) = 0; 

 bins = 2^lbpPoints; 

weight = 2.^(0:lbpPoints-1); 

radialDiff = radialDiff .* repmat(weight,size(radialDiff,1),1); 

% mapping = getmapping(lbpPoints,'riu2'); 

 radialDiff = sum(radialDiff,2); 

result = radialDiff; 

% Apply mapping if it is defined 

if isstruct(mapping) 

    bins = mapping.num; 

    for i = 1:size(result,1) 

        for j = 1:size(result,2) 

            result(i,j) = mapping.table(result(i,j)+1); 

        end 

    end 

end 

 if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh')) 

    % Return with LBP histogram if mode equals 'hist'. 

    result = hist(result(:),0:(bins-1)); 

    if (strcmp(mode,'nh')) 

        result = result/sum(result); 

    end 

else 

    % Otherwise return a matrix of unsigned integers 

    if ((bins-1) <= intmax('uint8')) 

        result = uint8(result); 

    elseif ((bins-1) <= intmax('uint16')) 

        result = uint16(result); 

    else 

        result = uint32(result); 

    end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function sampleIn = samp_prepro(sampleIn) 

% image sample preprocessing 

sampleIn = double(sampleIn); 

sampleIn = sampleIn - mean(sampleIn(:)); 
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% sampleIn = sampleIn / sqrt(mean(mean(sampleIn .^ 2))); 

sampleIn = sampleIn / std(sampleIn(:)); 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function D = sqdist(X1, X2) 

D = bsxfun(@plus,dot(X2,X2,1),dot(X1,X1,1)')-2*(X1'*X2); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

global nump  %number of positive samples 

global numn  %number of negative samples  

 global pathp 

global pathn 

 %% preprocessing of train images 

tic 

path1 = 'train/lp';   %training lps 

path2 = 'train/nonlp';  %trainging nonlps 

 pathp = 'realtrain/lp/';   %rectangle training lps 

pathn = 'realtrain/nonlp/';  %trainging nonlps 

 %preprocessed training lps will be saved in 'realtrain' directory 

if ~isdir('realtrain') 

    mkdir('realtrain');          

    mkdir('realtrain/lp');     

    mkdir('realtrain/nonlp') 

end 

 %image files in directories 

files1 = dir(fullfile(path1,'*.jpg'));     

files2 = dir(fullfile(path2,'*.jpg')); 

  

%number of positive and negative trainging samples 

nump = numel(files1); %number of training lps = positive 

numn = numel(files2);  %number of nonlps = negative 

 %preprocessing of training lps 

for samples = 1 : nump 

    file = fullfile(path1, files1(samples).name);     

    X = imread(file); 

    X = imresize(X, 0.5); 

       M = imgaussfilt(X,0.25);     

    M = rgb2gray(M); 

    [m n] = size(M); 

    p = 25; 

    q = 100; 

    if p >= m && q >= n 

        M_pad = padarray(M, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p < m && q >= n 

        m = p; 

        M_pad = imresize(M, [m, n]); 

        M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p >= m && q < n 

        n = q; 
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        M_pad = imresize(M, [m, n]); 

        M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p < m && q < n 

        M_pad = imresize(M, [p, q]); 

    end     

    M = M_pad; 

    numofpixels=size(M,1)*size(M,2); 

    Y=uint8(zeros(size(M,1),size(M,2))); 

    cnts=zeros(256,1); 

    probf=zeros(256,1); 

    prbc=zeros(256,1); 

    cum=zeros(256,1); 

    fin_lc=zeros(256,1); 

        for i=1:size(M,1) 

        for j=1:size(M,2) 

            value=M(i,j); 

            cnts(value+1)=cnts(value+1)+1; 

            probf(value+1)=cnts(value+1)/numofpixels; 

        end 

    end 

    sum=0; 

    n=255; 

size(probf) 

       sum=sum+cnts(i); 

       cum(i)=sum; 

       prbc(i)=cum(i)/numofpixels; 

       fin_lc(i)=round(prbc(i)*n); 

    end 

        for i=1:size(M,1) 

           for j=1:size(M,2) 

               Y(i,j)=fin_lc(M(i,j)+1); 

           end 

    end 

    Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');     

     imwrite(Y, strcat(pathp, num2str(samples), '.jpg')); 

end 

 %preprocessing of training nonlps 

for samples = 1 : numn 

    file = fullfile(path2, files2(samples).name);     

    X = imread(file); 

    X = imresize(X, 0.5); 

    M = imgaussfilt(X,0.25);     

    M = rgb2gray(M);    

    numofpixels=size(M,1)*size(M,2); 

    Y=uint8(zeros(size(M,1),size(M,2))); 

    cnts=zeros(256,1); 

    probf=zeros(256,1); 

    prbc=zeros(256,1); 

    cum=zeros(256,1); 
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    fin_lc=zeros(256,1); 

        for i=1:size(M,1) 

        for j=1:size(M,2) 

            value=M(i,j); 

            cnts(value+1)=cnts(value+1)+1; 

            probf(value+1)=cnts(value+1)/numofpixels; 

        end 

    end 

    sum=0; 

    n=255; 

     for i=1:size(probf) 

       sum=sum+cnts(i); 

       cum(i)=sum; 

       prbc(i)=cum(i)/numofpixels; 

       fin_lc(i)=round(prbc(i)*n); 

    end 

    for i=1:size(M,1) 

           for j=1:size(M,2) 

               Y(i,j)=fin_lc(M(i,j)+1); 

           end 

    end 

    Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');     

    imwrite(Y, strcat(pathn, num2str(samples), '.jpg')); 

end 

toc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

global Y1 

tic 

 if ~isdir('result') 

    mkdir('result');   

end 

if ~isdir('detected') 

    mkdir('detected');   

end 

 %% testing 

files = dir(fullfile('test','*.jpg'));   

for id = 1 : numel(files) 

    file = fullfile('test/', files(id).name);  

        %preprocessing 

    X=imread(file); 

     M = imgaussfilt(X,0.25); 

    M = imresize(M,[240, 320]); 

    M=rgb2gray(M); 

    numofpixels=size(M,1)*size(M,2); 

    Y=uint8(zeros(size(M,1),size(M,2))); 

    cnts=zeros(256,1); 

    probf=zeros(256,1); 

    prbc=zeros(256,1); 

    cum=zeros(256,1); 

    fin_lc=zeros(256,1); 
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     for i=1:size(M,1) 

        for j=1:size(M,2) 

            value=M(i,j); 

            cnts(value+1)=cnts(value+1)+1; 

            probf(value+1)=cnts(value+1)/numofpixels; 

        end 

    end 

     sum=0; 

    n=255; 

  

    for i=1:size(probf) 

       sum=sum+cnts(i); 

       cum(i)=sum; 

       prbc(i)=cum(i)/numofpixels; 

       fin_lc(i)=round(prbc(i)*n); 

    end 

     for i=1:size(M,1) 

       for j=1:size(M,2) 

           Y(i,j)=fin_lc(M(i,j)+1); 

       end 

    end 

    Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh'); 

     lbpRadiusSet = [2 4 6 8]; 

    lbpPointsSet = [8 8 8 8];  

     % selecting mrelbp features from preprocessed test image 

    xsum=0; 

    ysum=0; 

    num = 0; 

    px = []; 

    py = []; 

    px1 = []; 

    py1 = []; 

    px2 = []; 

    py2 = []; 

    for i = 100 : 5 : size(Y,1) - 70 

       for j = 50 : 20 : size(Y,2) - 160     

            Y1 = Y(i:i+24,j:j+99); 

            testfeatures1 = []; 

            for idxLbpRadius = 1 : length(lbpRadiusSet) 

                lbpRadius = lbpRadiusSet(idxLbpRadius); 

                lbpPoints = lbpPointsSet(idxLbpRadius); 

                 mapping = get_mapping(lbpPoints);     

                blockSize = lbpRadius*2+1;     

                 if idxLbpRadius > 1 

                    lbpRadiusPre = lbpRadiusSet(idxLbpRadius-1); 

                else 

                    lbpRadiusPre = 0; 

                end 

                 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,1,1); 

                 testfeatures1 = [testfeatures1 cfmsWithLabels_LBP];                    
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            end 

            feature = testfeatures1 / max(testfeatures1); 

            dlmwrite('testdata',[1 feature], ' '); 

            [TestingTime, TestingAccuracy, output]= elm_predict('testdata'); 

                                

            if output == 1      

                num = num + 1; 

                px = [px i * 2]; 

                py = [py j * 2];        

%                 result = X(i*2:i*2+44,j*2:j*2+199); 

%                 result = imresize(result, [45,200]); 

                result = imcrop(X,[i*2 j*2 200 50]); 

                %imwrite(result, strcat('detected/', num2str(id), '_cropped_', num2str(num), '.jpg')); 

            end       

        end 

    end 

  

    fh = figure; 

    imshow( X, 'border', 'tight' ); %//show your image 

    hold on; 

  

    for i = 1 : length(px) 

        rectangle('Position', [py(i) px(i) 200 50], 'EdgeColor', 'g'); %// draw rectangle on image 

        frm = getframe( fh ); %// get the image+rectangle 

        imwrite( frm.cdata, strcat('result/',num2str(id),'.jpg') ); %// save to file     

    end 

    pause(3); 

    close(fh); 

    disp(strcat('test image ', num2str(id), ' done' ));     

end 

toc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

addpath('mrelbp'); 

addpath('elmbase'); 

 global nump  %number of positive samples 

global numn  %number of negative samples  

 global lbpRadius 

global lbpPoints 

%% selecting mlelbp features from preprocessed train images 

tic 

lbpRadiusSet = [1 2.5 4]; 

lbpPointsSet = [8 12 16];  

 trainfeatures1 = []; 

trainfeatures2 = []; 

  

for idxLbpRadius = 1 : length(lbpRadiusSet) 

    lbpRadius = lbpRadiusSet(idxLbpRadius); 

    lbpPoints = lbpPointsSet(idxLbpRadius); 

     

    mapping = get_mapping(lbpPoints);     
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    blockSize = lbpRadius*2+1;     

     

    if idxLbpRadius > 1 

        lbpRadiusPre = lbpRadiusSet(idxLbpRadius-1); 

    else 

        lbpRadiusPre = 0; 

    end 

    cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,1);          

    trainfeatures1 = [trainfeatures1 cfmsWithLabels_LBP]; 

     

    clear cfmsWithLabels_LBP 

    cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,2);         

    trainfeatures2 = [trainfeatures2 cfmsWithLabels_LBP]; 

    clear cfmsWithLabels_LBP    

end 

 trainfeatures1 = [trainfeatures1; trainfeatures2]; 

shape = size(trainfeatures1); 

feature = []; 

for i = 1 : shape(1) 

    feature = [feature; trainfeatures1(i,:)/max(trainfeatures1(i,:))]; 

end 

classes = zeros(nump + numn, 1); 

for i = 1 : nump 

    classes(i) = 1; 

end 

 M = [classes feature]; 

dlmwrite('traindata',M, ' '); 

 elm_train('traindata', 1, 550, 'sig'); 

toc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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A Matlab simulation code for Chapter 5 

 Developing learning-based preprocessing methods for detecting 

complicated licence plates  

 

The simulation codes to detect LPs from complicated vehicles images are presented. The 

experiment results were obtained using Matlab programming language version R2018a. 
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%Image descriptor based on Histogram of Orientated Gradients and local binary pattern  

 function H=HOG(Im) 

nwin_x=3;%set here the number of HOG windows per bound box 

nwin_y=3; 

B=9;%set here the number of histogram bins 

[L,C]=size(Im); % L num of lines ; C num of columns 

H=zeros(nwin_x*nwin_y*B,1); % column vector with zeros 

m=sqrt(L/2); 

if C==1 % if num of columns==1 

    Im=im_recover(Im,m,2*m);%verify the size of image, e.g. 25x50 

    L=2*m; 

    C=m; 

end 

Im=double(Im); 

step_x=floor(C/(nwin_x+1)); 

step_y=floor(L/(nwin_y+1)); 

cont=0; 

hx = [-1,0,1]; 

hy = -hx'; 

grad_xr = imfilter(double(Im),hx); 

grad_yu = imfilter(double(Im),hy); 

angles=atan2(grad_yu,grad_xr); 

magnit=((grad_yu.^2)+(grad_xr.^2)).^.5; 

for n=0:nwin_y-1 

    for m=0:nwin_x-1 

        cont=cont+1; 

        angles2=angles(n*step_y+1:(n+2)*step_y,m*step_x+1:(m+2)*step_x);  

        magnit2=magnit(n*step_y+1:(n+2)*step_y,m*step_x+1:(m+2)*step_x); 

        v_angles=angles2(:);     

        v_magnit=magnit2(:); 

        K=max(size(v_angles)); 

        %assembling the histogram with 9 bins (range of 20 degrees per bin) 

        bin=0; 

        H2=zeros(B,1); 

        for ang_lim=-pi+2*pi/B:2*pi/B:pi 

            bin=bin+1; 

            for k=1:K 

                if v_angles(k)<ang_lim 

                    v_angles(k)=100; 

                    H2(bin)=H2(bin)+v_magnit(k); 

                end 

            end  

        end 

                 

        H2=H2/(norm(H2)+0.01);         

        H((cont-1)*B+1:cont*B,1)=H2; 

    end 

end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [feature] = hog_feature_vector(im) 

  

% Convert RGB iamge to grayscale 

if size(im,3)==3 

    im=rgb2gray(im); 

end 

im=double(im); 

 rows=size(im,1); 

cols=size(im,2); 

Ix=im; %Basic Matrix assignment 

Iy=im; %Basic Matrix assignment 

 % Gradients in X and Y direction. Iy is the gradient in X direction and Iy 

% is the gradient in Y direction 

for i=1:rows-2 

    Iy(i,:)=(im(i,:)-im(i+2,:)); 

end 

for i=1:cols-2 

    Ix(:,i)=(im(:,i)-im(:,i+2)); 

end 

gauss=fspecial('gaussian',8); %% Initialized a gaussian filter with sigma=0.5 * block width.     

 angle=atand(Ix./Iy); % Matrix containing the angles of each edge gradient 

angle=imadd(angle,180); %Angles in range (0,180) 

magnitude=sqrt(Ix.^2 + Iy.^2); 

angle(isnan(angle))=0; 

magnitude(isnan(magnitude))=0; 

feature=[]; %initialized the feature vector 

 % Iterations for Blocks 

for i = 0: rows/8 - 2 

    for j= 0: cols/8 -2 

        mag_patch = magnitude(8*i+1 : 8*i+16 , 8*j+1 : 8*j+16); 

        %mag_patch = imfilter(mag_patch,gauss); 

        ang_patch = angle(8*i+1 : 8*i+16 , 8*j+1 : 8*j+16); 

        block_feature=[]; 

        %Iterations for cells in a block 

        for x= 0:1 

            for y= 0:1 

                angleA =ang_patch(8*x+1:8*x+8, 8*y+1:8*y+8); 

                magA   =mag_patch(8*x+1:8*x+8, 8*y+1:8*y+8);  

                histr  =zeros(1,9); 

                %Iterations for pixels in one cell 

                for p=1:8 

                    for q=1:8 

                        alpha= angleA(p,q); 

                                                % Binning Process (Bi-Linear Interpolation) 

                        if alpha>10 && alpha<=30 

                            histr(1)=histr(1)+ magA(p,q)*(30-alpha)/20; 

                            histr(2)=histr(2)+ magA(p,q)*(alpha-10)/20; 

                        elseif alpha>30 && alpha<=50 

                            histr(2)=histr(2)+ magA(p,q)*(50-alpha)/20;                  
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                            histr(3)=histr(3)+ magA(p,q)*(alpha-30)/20; 

                        elseif alpha>50 && alpha<=70 

                            histr(3)=histr(3)+ magA(p,q)*(70-alpha)/20; 

                            histr(4)=histr(4)+ magA(p,q)*(alpha-50)/20; 

                        elseif alpha>70 && alpha<=90 

                            histr(4)=histr(4)+ magA(p,q)*(90-alpha)/20; 

                            histr(5)=histr(5)+ magA(p,q)*(alpha-70)/20; 

                        elseif alpha>90 && alpha<=110 

                            histr(5)=histr(5)+ magA(p,q)*(110-alpha)/20; 

                            histr(6)=histr(6)+ magA(p,q)*(alpha-90)/20; 

                        elseif alpha>110 && alpha<=130 

                            histr(6)=histr(6)+ magA(p,q)*(130-alpha)/20; 

                            histr(7)=histr(7)+ magA(p,q)*(alpha-110)/20; 

                        elseif alpha>130 && alpha<=150 

                            histr(7)=histr(7)+ magA(p,q)*(150-alpha)/20; 

                            histr(8)=histr(8)+ magA(p,q)*(alpha-130)/20; 

                        elseif alpha>150 && alpha<=170 

                            histr(8)=histr(8)+ magA(p,q)*(170-alpha)/20; 

                            histr(9)=histr(9)+ magA(p,q)*(alpha-150)/20; 

                        elseif alpha>=0 && alpha<=10 

                            histr(1)=histr(1)+ magA(p,q)*(alpha+10)/20; 

                            histr(9)=histr(9)+ magA(p,q)*(10-alpha)/20; 

                        elseif alpha>170 && alpha<=180 

                            histr(9)=histr(9)+ magA(p,q)*(190-alpha)/20; 

                            histr(1)=histr(1)+ magA(p,q)*(alpha-170)/20; 

                        end 

                    end 

                end 

                block_feature=[block_feature histr]; % Concatenation of Four histograms to form 

one block feature 

                   end 

        end 

        % Normalize the values in the block using L1-Norm 

        block_feature=block_feature/sqrt(norm(block_feature)^2+.01); 

        feature=[feature block_feature]; %Features concatenation 

    end 

end 

 feature(isnan(feature))=0; %Removing Infinitiy values 

 % Normalization of the feature vector using L2-Norm 

feature=feature/sqrt(norm(feature)^2+.001); 

for z=1:length(feature) 

    if feature(z)>0.2 

         feature(z)=0.2; 

    end 

end 

feature=feature/sqrt(norm(feature)^2+.001);         

 % toc;        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

tic 

global nump  %number of positive samples 
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global numn  %number of negative samples  

global pathp 

global pathn 

global flags 

%% preprocessing of train images 

path1 = 'train/lp';   %training lps 

path2 = 'train/nonlp';  %trainging nonlps 

pathp = 'realtrain/lp/';   %rectangle training lps 

pathn = 'realtrain/nonlp/';  %trainging nonlps 

%preprocessed training lps will be saved in 'realtrain' directory 

if ~isdir('realtrain') 

    mkdir('realtrain');          

    mkdir('realtrain/lp');     

    mkdir('realtrain/nonlp') 

end 

%image files in directories 

files1 = dir(fullfile(path1,'*.jpg'));     

files2 = dir(fullfile(path2,'*.jpg')); 

%number of positive and negative trainging samples 

nump = numel(files1); %number of training lps = positive 

numn = numel(files2);  %number of nonlps = negative 

flags = zeros(nump,1); 

%preprocessing of training lps 

for samples = 1 : nump 

    file = fullfile(path1, files1(samples).name);     

    X = imread(file); 

%     X = imresize(X, 0.5);     

    M = imgaussfilt(X,0.25);     

%     M = imresize(M, [60 250]); 

    M = rgb2gray(M);        

    [m n] = size(M); 

        if m < 37.5 

        p = 25; 

        q = 100; 

        flags(samples) = 1; 

    elseif m >= 37.5 && m < 62.5 

        p = 50; 

        q = 200; 

        flags(samples) = 2; 

    elseif m >= 62.5 

        p = 75; 

        q = 300; 

        flags(samples) = 3; 

    end 

       %M = imresize(M, [p, q]); 

    if p >= m && q >= n 

        M_pad = padarray(M, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p < m && q >= n 

        m = p; 
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        M_pad = imresize(M, [m, n]); 

        M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p >= m && q < n 

        n = q; 

        M_pad = imresize(M, [m, n]); 

        M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p < m && q < n 

        M_pad = imresize(M, [p, q]); 

    end     

      M = M_pad; 

        numofpixels=size(M,1)*size(M,2); 

    Y=uint8(zeros(size(M,1),size(M,2))); 

    cnts=zeros(256,1); 

    probf=zeros(256,1); 

    prbc=zeros(256,1); 

    cum=zeros(256,1); 

    fin_lc=zeros(256,1); 

        for i=1:size(M,1) 

        for j=1:size(M,2) 

            value=M(i,j); 

            cnts(value+1)=cnts(value+1)+1; 

            probf(value+1)=cnts(value+1)/numofpixels; 

        end 

    end 

        sum=0; 

    n=255; 

       for i=1:size(probf) 

       sum=sum+cnts(i); 

       cum(i)=sum; 

       prbc(i)=cum(i)/numofpixels; 

       fin_lc(i)=round(prbc(i)*n); 

    end 

        for i=1:size(M,1) 

           for j=1:size(M,2) 

               Y(i,j)=fin_lc(M(i,j)+1); 

           end 

    end 

    Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');          

    imwrite(Y, strcat(pathp, num2str(samples), '.jpg')); 

end 

 %preprocessing of training nonlps 

for samples = 1 : numn 

    file = fullfile(path2, files2(samples).name);     

    X = imread(file); 

    M = imgaussfilt(X,0.25);     

    %M = imresize(M, [60 250]); 

    M = rgb2gray(M);    

       numofpixels=size(M,1)*size(M,2); 
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    Y=uint8(zeros(size(M,1),size(M,2))); 

    cnts=zeros(256,1); 

    probf=zeros(256,1); 

    prbc=zeros(256,1); 

    cum=zeros(256,1); 

    fin_lc=zeros(256,1); 

       for i=1:size(M,1) 

        for j=1:size(M,2) 

            value=M(i,j); 

            cnts(value+1)=cnts(value+1)+1; 

            probf(value+1)=cnts(value+1)/numofpixels; 

        end 

    end 

      sum=0; 

    n=255; 

       for i=1:size(probf) 

       sum=sum+cnts(i); 

       cum(i)=sum; 

       prbc(i)=cum(i)/numofpixels; 

       fin_lc(i)=round(prbc(i)*n); 

    end 

        for i=1:size(M,1) 

           for j=1:size(M,2) 

               Y(i,j)=fin_lc(M(i,j)+1); 

           end 

    end 

    Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');     

        imwrite(Y, strcat(pathn, num2str(samples), '.jpg')); 

end 

toc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if ~isdir('result') 

    mkdir('result');   

end 

if ~isdir('detected') 

    mkdir('detected');   

end 

 % load model 

model1 = loadCompactModel('model1'); 

model2 = loadCompactModel('model2'); 

model3 = loadCompactModel('model3'); 

%% testing 

files = dir(fullfile('test','*.png'));   

for id = 1 : numel(files) 

    file = fullfile('test/', files(id).name);  

%preprocessing 

       X=imread(file); 

    M = imgaussfilt(X,0.25); 

    M=rgb2gray(M); 
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     numofpixels=size(M,1)*size(M,2); 

    Y=uint8(zeros(size(M,1),size(M,2))); 

    cnts=zeros(256,1); 

    probf=zeros(256,1); 

    prbc=zeros(256,1); 

    cum=zeros(256,1); 

    fin_lc=zeros(256,1); 

     for i=1:size(M,1) 

        for j=1:size(M,2) 

            value=M(i,j); 

            cnts(value+1)=cnts(value+1)+1; 

            probf(value+1)=cnts(value+1)/numofpixels; 

        end 

    end 

     sum=0; 

    n=255; 

     for i=1:size(probf) 

       sum=sum+cnts(i); 

       cum(i)=sum; 

       prbc(i)=cum(i)/numofpixels; 

       fin_lc(i)=round(prbc(i)*n); 

    end 

     for i=1:size(M,1) 

       for j=1:size(M,2) 

           Y(i,j)=fin_lc(M(i,j)+1); 

       end 

    end 

    Y = adapthisteq(Y,'clipLimit',0.05,'Distribution','rayleigh'); 

     % selecting hog features from preprocessed test image    

    num = 0; 

    px1 = []; 

    py1 = [];    

    px2 = []; 

    py2 = [];    

    px3 = []; 

    py3 = [];    

        for i = 200 : 10 : size(Y,1) - 100 

       for j = 50 : 10 : size(Y,2) - 350  

          tic 

            Y2 = Y(i:i+ 74,j:j+299); 

             Y1 = Y(i:i+ 49,j:j+199);  

              Y3 = Y(i:i+24,j:j+99); 

            label1 = predict(model2,[hog_feature_vector(Y1) extractLBPFeatures(Y1)]); 

            label2 = predict(model3,[hog_feature_vector(Y2) extractLBPFeatures(Y2)]); 

             label3 = predict(model1,[hog_feature_vector(Y3) extractLBPFeatures(Y3)]); 

            %label2 = predict(model1,hog_feature_vector(Y1)); 

             testfeatures1 = [hog_feature_vector(Y1) extractLBPFeatures(Y1)]; 

             testfeatures2 = [hog_feature_vector(Y2) extractLBPFeatures(Y2)]; 

             testfeatures23 = [hog_feature_vector(Y3) extractLBPFeatures(Y3)]; 

             a = toc; 
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          w = w + a; 

                      if label2 == 1 || label1==1 || label3==1                    

                px2 = [px2 i]; 

                py2 = [py2 j];        

                continue; 

            end 

        end 

    end 

     fh = figure; 

    imshow( X, 'border', 'tight' ); %//show your image 

    hold on; 

    px21 = unique(px2); 

    py21 = []; 

    for i = 1 : length(px21) 

        temp = []; 

        for j = 1 : length(px2) 

            if px21(i) == px2(j) 

                temp = [temp; py2(j)]; 

            end 

        end 

        py21 = [py21; round(mean(temp))]; 

    end 

     

    for i = 1 : length(px21) 

        if i > 1 

            if abs(px21(i)-px21(i-1)) > 30 

                rectangle('Position', [py21(i)-10 px21(i) 250 50], 'EdgeColor', 'g'); %// draw 

rectangle on image 

                frm = getframe( fh ); %// get the image+rectangle 

                imwrite( frm.cdata, strcat('result/',num2str(id),'.jpg') ); %// save to file     

            end 

        else 

            rectangle('Position', [py21(i)-10 px21(i) 250 50], 'EdgeColor', 'g'); %// draw rectangle 

on image 

            frm = getframe( fh ); %// get the image+rectangle 

            imwrite( frm.cdata, strcat('result/',num2str(id),'.jpg') ); %// save to file     

        end 

    end 

     pause(3); 

    close(fh); 

    disp(strcat('test image ', num2str(id), ' done' ));   

 end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%tic 

global nump  %number of positive samples 

global numn  %number of negative samples  

 global pathp 

global pathn 

 global flags 

 clc 

 %image files in directories 
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files1 = dir(fullfile(pathp,'*.jpg'));     

files2 = dir(fullfile(pathn,'*.jpg')); 

 trainfeatures1 = []; 

trainfeatures2 = []; 

trainfeatures3 = []; 

trainfeatures4_1 = []; 

trainfeatures4_2 = []; 

trainfeatures4_3 = []; 

 n1 = 0; 

n2 = 0; 

n3 = 0; 

for i = 1 : nump 

    %file = fullfile(pathp, files1(i).name); 

    file = fullfile(pathp, strcat(num2str(i), '.jpg')); 

    X = imread(file);        

    if flags(i) == 1                        

        trainfeatures1 =[trainfeatures1; hog_feature_vector(X) extractLBPFeatures(X)];     

        n1 = n1 + 1; 

    elseif flags(i) == 2         

        trainfeatures2 =[trainfeatures2; hog_feature_vector(X) extractLBPFeatures(X)];             

        n2 = n2 + 1; 

    elseif flags(i) == 3 

        trainfeatures3 =[trainfeatures3; hog_feature_vector(X) extractLBPFeatures(X)];     

        n3 = n3 + 1; 

    end 

end 

for i = 1 : numn 

    file = fullfile(pathn, files2(i).name); 

    X = imread(file);         

    X = imresize(X, [25, 100]);     

    trainfeatures4_1 = [trainfeatures4_1; hog_feature_vector(X) extractLBPFeatures(X)]; 

end 

for i = 1 : numn 

    file = fullfile(pathn, files2(i).name); 

    X = imread(file); 

    X = imresize(X, [50, 200]);    

    trainfeatures4_2 = [trainfeatures4_2; hog_feature_vector(X) extractLBPFeatures(X)]; 

end 

for i = 1 : numn 

    file = fullfile(pathn, files2(i).name); 

    X = imread(file); 

    X = imresize(X, [75, 300]); 

    trainfeatures4_3 = [trainfeatures4_3; hog_feature_vector(X) extractLBPFeatures(X)]; 

end 

  

trainfeatures1 = [trainfeatures1; trainfeatures4_1]; 

trainfeatures2 = [trainfeatures2; trainfeatures4_2]; 

trainfeatures3 = [trainfeatures3; trainfeatures4_3]; 

classes1 = zeros(n1 + numn, 1); 

for i = 1 : n1 
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    classes1(i) = 1; 

end 

classes2 = zeros(n2 + numn, 1); 

for i = 1 : n2 

    classes2(i) = 1; 

end 

 classes3 = zeros(n3 + numn, 1); 

for i = 1 : n3 

    classes3(i) = 1; 

end 

Mdl1 = fitcsvm(trainfeatures1,classes1,'Crossval','on','KFold',5); 

saveCompactModel(Mdl1.Trained(Y. Han & 10.1109/EIT.2015.7293386),'model1'); 

Mdl2 = fitcsvm(trainfeatures2,classes2,'Crossval','on','KFold',5); 

saveCompactModel(Mdl2.Trained(Y. Han & 10.1109/EIT.2015.7293386),'model2'); 

Mdl3 = fitcsvm(trainfeatures3,classes3,'Crossval','on','KFold',5); 

saveCompactModel(Mdl3.Trained(Y. Han & 10.1109/EIT.2015.7293386),'model3'); 

toc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Matlab simulation code for Chapter 6 

Distorted vehicle licence plates detection using hybrid feature 

descriptors 

 

The simulation codes for detecting LPs from distorted vehicles images are presented. The 

experiment results were obtained using Matlab programming language version R2018a 
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----------- Convert training and testing vehicles images from “.jpg” to “.png”--------- 

global nump 

folder = 'train\lp or test\'; 

vet_files=dir(fullfile(folder, '*.jpg')); 

nump = numel(vet_files); 

for i=1:nump 

    inputFullFileName = fullfile(folder, vet_files(i).name); 

    outputFullFileName = strrep(inputFullFileName, '.jpg', '.png'); 

    thisImage = imread(inputFullFileName); 

    imwrite(thisImage, outputFullFileName); 

end 

------------------------------------------------------------------------------------------------------ 

-----------------------------Exterme learning machine classifier------------------------------ 

function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] = 

elm(TrainingData_File, TestingData_File, Elm_Type, NumberofHiddenNeurons, 

ActivationFunction) 

 %%%%%%%%%%% Macro definition 

REGRESSION=0; 

CLASSIFIER=1; 

 %%%%%%%%%%% Load training dataset 

train_data=load(TrainingData_File); 

T=train_data(:,1)'; 

P=train_data(:,2:size(train_data,2))'; 

clear train_data;                                   %   Release raw training data array 

 %%%%%%%%%%% Load testing dataset 

test_data=load(TestingData_File); 

TV.T=test_data(:,1)'; 

TV.P=test_data(:,2:size(test_data,2))'; 

clear test_data;                                    %   Release raw testing data array 

 NumberofTrainingData=size(P,2); 

NumberofTestingData=size(TV.P,2); 

NumberofInputNeurons=size(P,1); 

 if Elm_Type~=REGRESSION 

    %%%%%%%%%%%% Pre-processing the data of classification 

    sorted_target=sort(cat(2,T,TV.T),2); 

    label=zeros(1,1);         %Find and save in 'label' class label from training and testing data 

sets 

    label(1,1)=sorted_target(1,1); 

    j=1; 

    for i = 2:(NumberofTrainingData+NumberofTestingData) 

        if sorted_target(1,i) ~= label(1,j) 

            j=j+1; 

            label(1,j) = sorted_target(1,i); 

        end 

    end  

    number_class=j; 

    NumberofOutputNeurons=number_class; 

    %%%%%%%%%% Processing the targets of training 

    temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData); 
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    for i = 1:NumberofTrainingData 

        for j = 1:number_class 

            if label(1,j) == T(1,i) 

                break;  

            end 

        end 

        temp_T(j,i)=1; 

    end 

    T=temp_T*2-1; 

     %%%%%%%%%% Processing the targets of testing 

    temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData); 

    for i = 1:NumberofTestingData 

        for j = 1:number_class 

            if label(1,j) == TV.T(1,i) 

                break;  

            end 

        end 

        temp_TV_T(j,i)=1; 

    end 

    TV.T=temp_TV_T*2-1; 

  

end                    %   end if of Elm_Type 

%%%%%%%%%%% Calculate weights & biases 

start_time_train=cputime; 

%%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases 

BiasofHiddenNeurons (b_i) of hidden neurons 

InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1; 

BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1); 

tempH=InputWeight*P; 

clear P;                                            %   Release input of training data  

ind=ones(1,NumberofTrainingData); 

BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix 

BiasofHiddenNeurons to match the demention of H 

tempH=tempH+BiasMatrix; 

%%%%%%%%%%% Calculate hidden neuron output matrix H 

switch lower(ActivationFunction) 

    case {'sig','sigmoid'} 

        %%%%%%%% Sigmoid  

        H = 1 ./ (1 + exp(-tempH)); 

    case {'sin','sine'} 

        %%%%%%%% Sine 

        H = sin(tempH);     

    case {'hardlim'} 

        %%%%%%%% Hard Limit 

        H = double(hardlim(tempH)); 

    case {'tribas'} 

        %%%%%%%% Triangular basis function 

        H = tribas(tempH); 

    case {'radbas'} 

        %%%%%%%% Radial basis function 
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        H = radbas(tempH); 

        %%%%%%%% More activation functions can be added here                 

end 

clear tempH;                    %   Release the temparary array for calculation of hidden neuron 

output matrix H 

%%%%%%%%%%% Calculate output weights OutputWeight (beta_i) 

OutputWeight=pinv(H') * T';                        % implementation without regularization  

end_time_train=cputime; 

TrainingTime=end_time_train-start_time_train        %   Calculate CPU time (seconds) spent 

for training ELM 

%%%%%%%%%%% Calculate the training accuracy 

Y=(H' * OutputWeight)';                             %   Y: the actual output of the training data 

if Elm_Type == REGRESSION 

    TrainingAccuracy=sqrt(mse(T - Y))               %   Calculate training accuracy (RMSE) for 

regression case 

end 

clear H; 

%%%%%%%%%%% Calculate the output of testing input 

start_time_test=cputime; 

tempH_test=InputWeight*TV.P; 

clear TV.P;             %   Release input of testing data              

ind=ones(1,NumberofTestingData); 

BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix 

BiasofHiddenNeurons to match the demention of H 

tempH_test=tempH_test + BiasMatrix; 

switch lower(ActivationFunction) 

    case {'sig','sigmoid'} 

        %%%%%%%% Sigmoid  

        H_test = 1 ./ (1 + exp(-tempH_test)); 

    case {'sin','sine'} 

        %%%%%%%% Sine 

        H_test = sin(tempH_test);         

    case {'hardlim'} 

        %%%%%%%% Hard Limit 

        H_test = hardlim(tempH_test);         

    case {'tribas'} 

        %%%%%%%% Triangular basis function 

        H_test = tribas(tempH_test);         

    case {'radbas'} 

        %%%%%%%% Radial basis function 

        H_test = radbas(tempH_test);         

        %%%%%%%% More activation functions can be added here         

end 

TY=(H_test' * OutputWeight)';                       %   TY: the actual output of the testing data 

end_time_test=cputime; 

TestingTime=end_time_test-start_time_test           %   Calculate CPU time (seconds) spent by 

ELM predicting the whole testing data 

  

if Elm_Type == REGRESSION 



                                                        Appendix D         Matlab Simulation Code for Chapter 6   

 

P a g e  202 | 254 

 

202 

    TestingAccuracy=sqrt(mse(TV.T - TY))            %   Calculate testing accuracy (RMSE) for 

regression case 

end 

 if Elm_Type == CLASSIFIER 

%%%%%%%%%% Calculate training & testing classification accuracy 

    MissClassificationRate_Training=0; 

    MissClassificationRate_Testing=0; 

     for i = 1 : size(T, 2) 

        [x, label_index_expected]=max(T(:,i)); 

        [x, label_index_actual]=max(Y(:,i)); 

        if label_index_actual~=label_index_expected 

            MissClassificationRate_Training=MissClassificationRate_Training+1; 

        end 

    end 

    TrainingAccuracy=1-MissClassificationRate_Training/size(T,2) 

    for i = 1 : size(TV.T, 2) 

        [x, label_index_expected]=max(TV.T(:,i)); 

        [x, label_index_actual]=max(TY(:,i)); 

        if label_index_actual~=label_index_expected 

            MissClassificationRate_Testing=MissClassificationRate_Testing+1; 

        end 

    end 

    TestingAccuracy=1-MissClassificationRate_Testing/size(TV.T,2)   

end 

------------------------------------------------------------------------------------------- 

-----------------------Kernal_ELM classifier----------------------------------------- 

function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy,TY] = 

elm_kernel(TrainingData_File, TestingData_File, Elm_Type, Regularization_coefficient, 

Kernel_type, Kernel_para) 

REGRESSION=0; 

CLASSIFIER=1; 

%%%%%%%%%%% Load training dataset 

train_data=load(TrainingData_File); 

T=train_data(:,1)'; 

P=train_data(:,2:size(train_data,2))'; 

clear train_data;                                   %   Release raw training data array 

 %%%%%%%%%%% Load testing dataset 

test_data=load(TestingData_File); 

TV.T=test_data(:,1)'; 

TV.P=test_data(:,2:size(test_data,2))'; 

clear test_data;                                    %   Release raw testing data array 

 C = Regularization_coefficient; 

NumberofTrainingData=size(P,2); 

NumberofTestingData=size(TV.P,2); 

 if Elm_Type~=REGRESSION 

    %%%%%%%%%%%% Preprocessing the data of classification 

    sorted_target=sort(cat(2,T,TV.T),2); 

    label=zeros(1,1);                %   Find and save in 'label' class label from training and testing 

data sets 

    label(1,1)=sorted_target(1,1); 
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    j=1; 

    for i = 2:(NumberofTrainingData+NumberofTestingData) 

        if sorted_target(1,i) ~= label(1,j) 

            j=j+1; 

            label(1,j) = sorted_target(1,i); 

        end 

    end 

    number_class=j; 

    NumberofOutputNeurons=number_class; 

    %%%%%%%%%% Processing the targets of training 

    temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData); 

    for i = 1:NumberofTrainingData 

        for j = 1:number_class 

            if label(1,j) == T(1,i) 

                break;  

            end 

        end 

        temp_T(j,i)=1; 

    end 

    T=temp_T*2-1; 

     %%%%%%%%%% Processing the targets of testing 

    temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData); 

    for i = 1:NumberofTestingData 

        for j = 1:number_class 

            if label(1,j) == TV.T(1,i) 

                break;  

            end 

        end 

        temp_TV_T(j,i)=1; 

    end 

    TV.T=temp_TV_T*2-1; 

                                              %   end if of Elm_Type 

end 

%%%%%%%%%%% Training Phase 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

tic; 

n = size(T,2); 

Omega_train = kernel_matrix(P',Kernel_type, Kernel_para); 

OutputWeight=((Omega_train+speye(n)/C)\(T'));  

TrainingTime=toc 

 %%%%%%%%%%% Calculate the training output 

Y=(Omega_train * OutputWeight)';                             %   Y: the actual output of the training 

data 

%%%%%%%%%%% Calculate the output of testing input 

tic; 

Omega_test = kernel_matrix(P',Kernel_type, Kernel_para,TV.P'); 

TY=(Omega_test' * OutputWeight)';                            %   TY: the actual output of the testing 

data 

TestingTime=toc 

 %%%%%%%%%% Calculate training & testing classification accuracy 
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 if Elm_Type == REGRESSION 

%%%%%%%%%% Calculate training & testing accuracy (RMSE) for regression case 

    TrainingAccuracy=sqrt(mse(T - Y)) 

    TestingAccuracy=sqrt(mse(TV.T - TY))            

end 

if Elm_Type == CLASSIFIER 

%%%%%%%%%% Calculate training & testing classification accuracy 

    MissClassificationRate_Training=0; 

    MissClassificationRate_Testing=0; 

     for i = 1 : size(T, 2) 

        [x, label_index_expected]=max(T(:,i)); 

        [x, label_index_actual]=max(Y(:,i)); 

        if label_index_actual~=label_index_expected 

            MissClassificationRate_Training=MissClassificationRate_Training+1; 

        end 

    end 

    TrainingAccuracy=1-MissClassificationRate_Training/size(T,2)   

    for i = 1 : size(TV.T, 2) 

        [x, label_index_expected]=max(TV.T(:,i)); 

        [x, label_index_actual]=max(TY(:,i)); 

        if label_index_actual~=label_index_expected 

            MissClassificationRate_Testing=MissClassificationRate_Testing+1; 

        end 

    end 

    TestingAccuracy=1-MissClassificationRate_Testing/size(TV.T,2)   

end 

   %%%%%%%%%%%%%%%%%% Kernel Matrix  

    function omega = kernel_matrix(Xtrain,kernel_type, kernel_pars,Xt) 

 nb_data = size(Xtrain,1); 

 if strcmp(kernel_type,'RBF_kernel'), 

    if nargin<4, 

        XXh = sum(Xtrain.^2,2)*ones(1,nb_data); 

        omega = XXh+XXh'-2*(Xtrain*Xtrain'); 

        omega = exp(-omega./kernel_pars(1)); 

    else 

        XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1)); 

        XXh2 = sum(Xt.^2,2)*ones(1,nb_data); 

        omega = XXh1+XXh2' - 2*Xtrain*Xt'; 

        omega = exp(-omega./kernel_pars(1)); 

    end 

    elseif strcmp(kernel_type,'lin_kernel') 

    if nargin<4, 

        omega = Xtrain*Xtrain'; 

    else 

        omega = Xtrain*Xt'; 

    end 

    elseif strcmp(kernel_type,'poly_kernel') 

    if nargin<4, 

        omega = (Xtrain*Xtrain'+kernel_pars(1)).^kernel_pars(2); 

    else 



 Appendix D        Matlab Simulation Code for Chapter 6                                                        t                                                                                                                                 

r                                                

P a g e  205 | 254 

 

205 

        omega = (Xtrain*Xt'+kernel_pars(1)).^kernel_pars(2); 

    end 

    elseif strcmp(kernel_type,'wav_kernel') 

    if nargin<4, 

        XXh = sum(Xtrain.^2,2)*ones(1,nb_data); 

        omega = XXh+XXh'-2*(Xtrain*Xtrain'); 

        XXh1 = sum(Xtrain,2)*ones(1,nb_data); 

omega1 = XXh1-XXh1'; 

omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1)); 

            else 

XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1)); 

XXh2 = sum(Xt.^2,2)*ones(1,nb_data); 

omega = XXh1+XXh2' - 2*(Xtrain*Xt'); 

XXh11 = sum(Xtrain,2)*ones(1,size(Xt,1)); 

XXh22 = sum(Xt,2)*ones(1,nb_data); 

omega1 = XXh11-XXh22'; 

omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1)); 

    end 

end 

------------------------------------------------------------------------------------------------- 

------------------------------------ELM_Multi-output-Regression------------------------ 

function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] = 

elm_MultiOutputRegression(TrainingData_File, TestingData_File, No_of_Output, 

NumberofHiddenNeurons, ActivationFunction) 

 %%%%%%%%%%% Load training dataset 

train_data=load(TrainingData_File); 

T=train_data(:,1:No_of_Output)'; 

P=train_data(:,No_of_Output+1:size(train_data,2))'; 

clear train_data;                                   %   Release raw training data array 

 %%%%%%%%%%% Load testing dataset 

test_data=load(TestingData_File); 

TV.T=test_data(:,1:No_of_Output)'; 

TV.P=test_data(:,No_of_Output+1:size(test_data,2))'; 

clear test_data;                                    %   Release raw testing data array 

 NumberofTrainingData=size(P,2); 

NumberofTestingData=size(TV.P,2); 

NumberofInputNeurons=size(P,1); 

 %%%%%%%%%%% Calculate weights & biases 

start_time_train=cputime; 

 %%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases 

BiasofHiddenNeurons (b_i) of hidden neurons 

InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1; 

BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1); 

tempH=InputWeight*P; 

clear P;                                            %   Release input of training data  

ind=ones(1,NumberofTrainingData); 

BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix 

BiasofHiddenNeurons to match the demention of H 

tempH=tempH+BiasMatrix; 

 %%%%%%%%%%% Calculate hidden neuron output matrix H 
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switch lower(ActivationFunction) 

    case {'sig','sigmoid'} 

        %%%%%%%% Sigmoid  

        H = 1 ./ (1 + exp(-tempH)); 

    case {'sin','sine'} 

        %%%%%%%% Sine 

        H = sin(tempH);     

    case {'hardlim'} 

        %%%%%%%% Hard Limit 

        H = hardlim(tempH);             

        %%%%%%%% More activation functions can be added here                 

end 

clear tempH;                                        %   Release the temparary array for calculation of 

hidden neuron output matrix H 

 %%%%%%%%%%% Calculate output weights OutputWeight (beta_i) 

OutputWeight=pinv(H') * T'; 

end_time_train=cputime; 

TrainingTime=end_time_train-start_time_train        %   Calculate CPU time (seconds) spent 

for training ELM 

 %%%%%%%%%%% Calculate the training accuracy 

Y=(H' * OutputWeight)';                             %   Y: the actual output of the training data 

TrainingAccuracy=sqrt(mse(T - Y))               %   Calculate training accuracy (RMSE) for 

regression case 

clear H; 

%%%%%%%%%%% Calculate the output of testing input 

start_time_test=cputime; 

tempH_test=InputWeight*TV.P; 

clear TV.P;             %   Release input of testing data              

ind=ones(1,NumberofTestingData); 

BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix 

BiasofHiddenNeurons to match the demention of H 

tempH_test=tempH_test + BiasMatrix; 

switch lower(ActivationFunction) 

    case {'sig','sigmoid'} 

        %%%%%%%% Sigmoid  

        H_test = 1 ./ (1 + exp(-tempH_test)); 

    case {'sin','sine'} 

        %%%%%%%% Sine 

        H_test = sin(tempH_test);         

    case {'hardlim'} 

        %%%%%%%% Hard Limit 

        H_test = hardlim(tempH_test);         

        %%%%%%%% More activation functions can be added here         

end 

TY=(H_test' * OutputWeight)';                       %   TY: the actual output of the testing data 

end_time_test=cputime; 

TestingTime=end_time_test-start_time_test           %   Calculate CPU time (seconds) spent by 

ELM predicting the whole testing data 

TestingAccuracy=sqrt(mse(TV.T - TY))            %   Calculate testing accuracy (RMSE) for 

regression case 
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------------------------------------------------------------------------------------------------- 

------------------------------ELM_Predict procedure------------------------------------- 

function [TestingTime, TestingAccuracy, output] = elm_predict(TestingData_File) 

 REGRESSION=0; 

CLASSIFIER=1; 

 %%%%%%%%%%% Load testing dataset 

test_data=load(TestingData_File); 

TV.T=test_data(:,1)'; 

TV.P=test_data(:,2:size(test_data,2))'; 

clear test_data;                                    %   Release raw testing data array 

 NumberofTestingData=size(TV.P,2); 

 load elm_model.mat; 

 if Elm_Type~=REGRESSION 

     %%%%%%%%%% Processing the targets of testing 

    temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData); 

    for i = 1:NumberofTestingData 

        for j = 1:size(label,2) 

            if label(1,j) == TV.T(1,i) 

                break;  

            end 

        end 

        temp_TV_T(j,i)=1; 

    end 

    TV.T=temp_TV_T*2-1; 

  

end                                                 %   end if of Elm_Type 

%%%%%%%%%%% Calculate the output of testing input 

start_time_test=cputime; 

tempH_test=InputWeight*TV.P; 

clear TV.P;             %   Release input of testing data              

ind=ones(1,NumberofTestingData); 

BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix 

BiasofHiddenNeurons to match the demention of H 

tempH_test=tempH_test + BiasMatrix; 

switch lower(ActivationFunction) 

    case {'sig','sigmoid'} 

        %%%%%%%% Sigmoid  

        H_test = 1 ./ (1 + exp(-tempH_test)); 

    case {'sin','sine'} 

        %%%%%%%% Sine 

        H_test = sin(tempH_test);         

    case {'hardlim'} 

        %%%%%%%% Hard Limit 

        H_test = hardlim(tempH_test);         

        %%%%%%%% More activation functions can be added here         

end 

TY=(H_test' * OutputWeight)';         %   TY: the actual output of the testing data 

end_time_test=cputime; 

TestingTime=end_time_test-start_time_test;           %   Calculate CPU time (seconds) spent 

by ELM predicting the whole testing data 
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 if Elm_Type == REGRESSION 

    TestingAccuracy=sqrt(mse(TV.T - TY));            %   Calculate testing accuracy (RMSE) for 

regression case 

    output=TY; 

end 

 if Elm_Type == CLASSIFIER 

%%%%%%%%%% Calculate training & testing classification accuracy 

    MissClassificationRate_Testing=0; 

     for i = 1 : size(TV.T, 2) 

        [x, label_index_expected]=max(TV.T(:,i)); 

        [x, label_index_actual]=max(TY(:,i)); 

        output(i)=label(label_index_actual);         

        if label_index_actual~=label_index_expected 

            MissClassificationRate_Testing=MissClassificationRate_Testing+1; 

        end 

    end 

    TestingAccuracy=1-MissClassificationRate_Testing/NumberofTestingData;   

end 

  

save('elm_output','output'); 

----------------------------------------------------------------------------------------------------------------

------------- ELM_Train procedure--------------------------------------------------- 

 

function [TrainingTime,TrainingAccuracy] = elm_train(TrainingData_File, Elm_Type, 

NumberofHiddenNeurons, ActivationFunction) 

 REGRESSION=0; 

CLASSIFIER=1; 

  

%%%%%%%%%%% Load training dataset 

train_data=load(TrainingData_File); 

T=train_data(:,1)'; 

P=train_data(:,2:size(train_data,2))'; 

clear train_data;                                   %   Release raw training data array 

 NumberofTrainingData=size(P,2); 

NumberofInputNeurons=size(P,1); 

 if Elm_Type~=REGRESSION 

    %%%%%%%%%%%% Preprocessing the data of classification 

    sorted_target=sort(T,2); 

    label=zeros(1,1);                               %   Find and save in 'label' class label from training 

and testing data sets 

    label(1,1)=sorted_target(1,1); 

    j=1; 

    for i = 2:NumberofTrainingData 

        if sorted_target(1,i) ~= label(1,j) 

            j=j+1; 

            label(1,j) = sorted_target(1,i); 

        end 

    end 

    number_class=j; 

    NumberofOutputNeurons=number_class; 
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    %%%%%%%%%% Processing the targets of training 

    temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData); 

    for i = 1:NumberofTrainingData 

        for j = 1:number_class 

            if label(1,j) == T(1,i) 

                break;  

            end 

        end 

        temp_T(j,i)=1; 

    end 

    T=temp_T*2-1; 

end                                                 %   end if of Elm_Type 

%%%%%%%%%%% Calculate weights & biases 

start_time_train=cputime; 

%%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases 

BiasofHiddenNeurons (b_i) of hidden neurons 

InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1; 

BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1); 

tempH=InputWeight*P; 

clear P;                                            %   Release input of training data  

ind=ones(1,NumberofTrainingData); 

BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix 

BiasofHiddenNeurons to match the demention of H 

tempH=tempH+BiasMatrix; 

%%%%%%%%%%% Calculate hidden neuron output matrix H 

switch lower(ActivationFunction) 

    case {'sig','sigmoid'} 

        %%%%%%%% Sigmoid  

        H = 1 ./ (1 + exp(-tempH)); 

    case {'sin','sine'} 

        %%%%%%%% Sine 

        H = sin(tempH);     

    case {'hardlim'} 

        %%%%%%%% Hard Limit 

        H = hardlim(tempH);             

        %%%%%%%% More activation functions can be added here                 

end 

clear tempH;                                        %   Release the temparary array for calculation of 

hidden neuron output matrix H 

  

%%%%%%%%%%% Calculate output weights OutputWeight (beta_i) 

OutputWeight=pinv(H') * T'; 

end_time_train=cputime; 

TrainingTime=end_time_train-start_time_train        %   Calculate CPU time (seconds) spent 

for training ELM 

  

%%%%%%%%%%% Calculate the training accuracy 

Y=(H' * OutputWeight)';                             %   Y: the actual output of the training data 

if Elm_Type == REGRESSION 
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    TrainingAccuracy=sqrt(mse(T - Y))               %   Calculate training accuracy (RMSE) for 

regression case 

    output=Y;     

end 

clear H; 

 if Elm_Type == CLASSIFIER 

%%%%%%%%%% Calculate training & testing classification accuracy 

    MissClassificationRate_Training=0; 

     for i = 1 : size(T, 2) 

        [x, label_index_expected]=max(T(:,i)); 

        [x, label_index_actual]=max(Y(:,i)); 

        output(i)=label(label_index_actual); 

        if label_index_actual~=label_index_expected 

            MissClassificationRate_Training=MissClassificationRate_Training+1; 

        end 

    end 

    TrainingAccuracy=1-MissClassificationRate_Training/NumberofTrainingData 

end 

if Elm_Type~=REGRESSION 

    save('elm_model', 'NumberofInputNeurons', 'NumberofOutputNeurons', 'InputWeight', 

'BiasofHiddenNeurons', 'OutputWeight', 'ActivationFunction', 'label', 'Elm_Type'); 

else 

    save('elm_model', 'InputWeight', 'BiasofHiddenNeurons', 'OutputWeight', 

'ActivationFunction', 'Elm_Type');     

end 

----------------------------------------------------------------------------------------------------------------

-----------------Codes for MRELBP descriptor-------------------------------------- 

function blocks = cirInterpSingleRadius(img) 

 global lbpPoints; 

global lbpRadius; 

 [imgH,imgW] = size(img); 

 imgNewH = imgH - 2*lbpRadius; 

imgNewW = imgW - 2*lbpRadius; 

 % the interpolated img 

blocks = zeros(lbpPoints,imgNewH*imgNewW); 

 radius = lbpRadius; 

neighbors = lbpPoints; 

spoints = zeros(neighbors,2); 

 % Determine the dimensions of the input img. 

[ysize,xsize] = size(img); 

 % Angle step 

angleStep = 2 * pi / neighbors; 

for i = 1 : neighbors 

    spoints(i,1) = -radius * sin((i-1)*angleStep); 

    spoints(i,2) = radius * cos((i-1)*angleStep); 

end 

 miny = min(spoints(:,1)); 

maxy = max(spoints(:,1)); 

minx = min(spoints(:,2)); 

maxx = max(spoints(:,2)); 
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 % Block size, each LBP code is computed within angleStep block of size bsizey*bsizex 

bsizey = ceil(max(maxy,0)) - floor(min(miny,0))+1; 

bsizex = ceil(max(maxx,0)) - floor(min(minx,0))+1; 

 % Coordinates of origin (0,0) in the block 

origy = 1 - floor(min(miny,0)); 

origx = 1 - floor(min(minx,0)); 

 % Minimum allowed size for the input img depends 

% on the radius of the used LBP operator. 

if(xsize < bsizex || ysize < bsizey) 

    error('Too small input img. Should be at least (2*radius+1) x (2*radius+1)'); 

end 

 % Calculate dx and dy; 

dx = xsize - bsizex; 

dy = ysize - bsizey; 

 % Compute the LBP code img 

for i = 1 : neighbors 

    y = spoints(i,1) + origy; 

    x = spoints(i,2) + origx; 

    % Calculate floors, ceils and rounds for the x and y. 

    fy = floor(y); 

    cy = ceil(y); 

    ry = round(y); 

    fx = floor(x); 

    cx = ceil(x); 

    rx = round(x); 

    % Check if interpolation is needed. 

    if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6) 

        % Interpolation is not needed, use original datatypes 

        imgNew = img(ry:ry+dy,rx:rx+dx); 

        blocks(i,:) = imgNew(:)'; 

    else 

        % Interpolation needed, use double type images 

        ty = y - fy; 

        tx = x - fx; 

        % Calculate the interpolation weights. 

        w1 = (1 - tx) * (1 - ty); 

        w2 =      tx  * (1 - ty); 

        w3 = (1 - tx) *      ty ; 

        w4 =      tx  *      ty ; 

        % Compute interpolated pixel values 

        imgNew = w1*img(fy:fy+dy,fx:fx+dx) + w2*img(fy:fy+dy,cx:cx+dx) + ... 

            w3*img(cy:cy+dy,fx:fx+dx) + w4*img(cy:cy+dy,cx:cx+dx); 

        blocks(i,:) = imgNew(:)'; 

    end 

end % loop neighbors 

 end % end of the function 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function blocks = cirInterpSingleRadiusNew(img,lbpPoints,lbpRadius) 

 [imgH,imgW] = size(img); 

 imgNewH = imgH - 2*lbpRadius; 
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imgNewW = imgW - 2*lbpRadius; 

 % the interpolated img 

blocks = zeros(lbpPoints,imgNewH*imgNewW); 

 radius = lbpRadius; 

neighbors = lbpPoints; 

spoints = zeros(neighbors,2); 

 % Determine the dimensions of the input img. 

[ysize,xsize] = size(img); 

 % Angle step 

angleStep = 2 * pi / neighbors; 

for i = 1 : neighbors 

    spoints(i,1) = -radius * sin((i-1)*angleStep); 

    spoints(i,2) = radius * cos((i-1)*angleStep); 

end 

 miny = min(spoints(:,1)); 

maxy = max(spoints(:,1)); 

minx = min(spoints(:,2)); 

maxx = max(spoints(:,2)); 

 % Block size, each LBP code is computed within angleStep block of size bsizey*bsizex 

bsizey = ceil(max(maxy,0)) - floor(min(miny,0))+1; 

bsizex = ceil(max(maxx,0)) - floor(min(minx,0))+1; 

 % Coordinates of origin (0,0) in the block 

origy = 1 - floor(min(miny,0)); 

origx = 1 - floor(min(minx,0)); 

 % Minimum allowed size for the input img depends 

% on the radius of the used LBP operator. 

if(xsize < bsizex || ysize < bsizey) 

    error('Too small input img. Should be at least (2*radius+1) x (2*radius+1)'); 

end 

% Calculate dx and dy; 

dx = xsize - bsizex; 

dy = ysize - bsizey; 

% Compute the LBP code img 

for i = 1 : neighbors 

    y = spoints(i,1) + origy; 

    x = spoints(i,2) + origx; 

    % Calculate floors, ceils and rounds for the x and y. 

    fy = floor(y); 

    cy = ceil(y); 

    ry = round(y); 

        fx = floor(x); 

    cx = ceil(x); 

    rx = round(x); 

    % Check if interpolation is needed. 

    if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6) 

        % Interpolation is not needed, use original datatypes 

        imgNew = img(ry:ry+dy,rx:rx+dx); 

        blocks(i,:) = imgNew(:)'; 

    else 

        % Interpolation needed, use double type images 
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        ty = y - fy; 

        tx = x - fx; 

        % Calculate the interpolation weights. 

        w1 = (1 - tx) * (1 - ty); 

        w2 =      tx  * (1 - ty); 

        w3 = (1 - tx) *      ty ; 

        w4 =      tx  *      ty ; 

        % Compute interpolated pixel values 

        imgNew = w1*img(fy:fy+dy,fx:fx+dx) + w2*img(fy:fy+dy,cx:cx+dx) + ... 

            w3*img(cy:cy+dy,fx:fx+dx) + w4*img(cy:cy+dy,cx:cx+dx); 

        blocks(i,:) = imgNew(:)'; 

    end 

end % loop neighbors 

end % end of the function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

function mapping = get_mapping(samples) 

 numAllLBPs = 2^samples; 

table = 0 : numAllLBPs-1; 

newMax = samples + 2; % number of patterns in the resulting LBP code 

 for i = 0:2^samples - 1 

    j = bitset(bitshift(i,1),1,bitget(i,samples)); % rotate left 

    numt = sum(bitget(bitxor(i,j),1:samples)); 

    if numt <= 2 

        table(i+1) = sum(bitget(i,1:samples)); 

    else 

        table(i+1) = samples+1; 

    end 

end 

 mapping.table = table; 

mapping.samples = samples; 

mapping.num = newMax; 

 end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,check,setnum) 

 global nump  %number of positive samples 

global numn  %number of negative samples  

 global pathp 

global pathn 

 global lbpRadius 

global lbpPoints 

global Y1 

 numLBPbins = mapping.num; 

 if check == 0 

    if setnum == 1 

        samplenum = nump; 

        path = pathp;             

    elseif setnum == 2 

        samplenum = numn; 

        path = pathn; 
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    end 

    cfmsWithLabels_MRELBP_CINIRD = 

zeros(samplenum,(numLBPbins*numLBPbins*2)); 

    for idxSample = 1 : samplenum     

        Joint_CINIRD = zeros(numLBPbins,numLBPbins,2);     

        img = imread(strcat(path, num2str(idxSample), '.png')); 

       img = samp_prepro(img);     

        imgExt = padarray(img,[1 1],'symmetric','both');     

        imgblks = im2col(imgExt,[3 3],'sliding'); 

        a = median(imgblks); 

        b = reshape(a,size(img)); 

        CImg = b(lbpRadius+1:end-lbpRadius,lbpRadius+1:end-lbpRadius); 

        CImg = CImg(:) - mean(CImg(:)); 

        CImg(CImg >= 0) = 2; 

        CImg(CImg < 0) = 1; 

        if lbpRadius == 2 

            filWin = 3; 

            halfWin = (filWin-1)/2; 

            imgExt = padarray(img,[halfWin halfWin],'symmetric','both'); 

            imgblks = im2col(imgExt,[filWin filWin],'sliding'); 

            imgMedian = median(imgblks); 

            imgCurr = reshape(imgMedian,size(img)); 

            NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image'); 

            NILBPImage = NILBPImage(:); 

            histNI = hist(NILBPImage,0:(numLBPbins-1)); 

            NILBPImage = NILBPImage + 1; 

             RDLBPImage = 

RDLBP_Image_SmallestRadiusOnly(b,imgCurr,lbpRadius,lbpPoints,mapping,'image'); 

            RDLBPImage = RDLBPImage(:); 

            histRD = hist(RDLBPImage,0:(numLBPbins-1)); 

            RDLBPImage = RDLBPImage + 1; 

        else 

            if mod(lbpRadius,2) == 0 

                filWin = lbpRadius + 1; 

            else 

                filWin = lbpRadius; 

            end 

            halfWin = (filWin-1)/2; 

            imgExt = padarray(img,[halfWin halfWin],'symmetric','both'); 

            imgblks = im2col(imgExt,[filWin filWin],'sliding'); 

            imgMedian = median(imgblks); 

            imgCurr = reshape(imgMedian,size(img)); 

            NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image'); 

            NILBPImage = NILBPImage(:); 

            histNI = hist(NILBPImage,0:(numLBPbins-1)); 

            NILBPImage = NILBPImage + 1; 

             if mod(lbpRadiusPre,2) == 0 

                filWin = lbpRadiusPre + 1; 

            else 

                filWin = lbpRadiusPre; 
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            end 

             halfWin = (filWin-1)/2; 

            imgExt = padarray(img,[halfWin halfWin],'symmetric','both'); 

            imgblks = im2col(imgExt,[filWin filWin],'sliding'); 

            imgMedian = median(imgblks); 

            imgPre = reshape(imgMedian,size(img)); 

             RDLBPImage = 

NewRDLBP_Image(imgCurr,imgPre,lbpRadius,lbpRadiusPre,lbpPoints,mapping,'image'); 

            RDLBPImage = RDLBPImage(:); 

            histRD = hist(RDLBPImage,0:(numLBPbins-1)); 

            RDLBPImage = RDLBPImage + 1;  

        end     

            for i = 1 : length(NILBPImage)     

            Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) = 

Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) + 1; 

        end     

                cfmsWithLabels_MRELBP_CINIRD(idxSample,:) = Joint_CINIRD(:)'; 

    end 

else 

    cfmsWithLabels_MRELBP_CINIRD = zeros(1,(numLBPbins*numLBPbins*2)); 

    Joint_CINIRD = zeros(numLBPbins,numLBPbins,2);     

    img = samp_prepro(Y1);     

        imgExt = padarray(img,[1 1],'symmetric','both');     

    imgblks = im2col(imgExt,[3 3],'sliding'); 

    a = median(imgblks); 

    b = reshape(a,size(img)); 

    CImg = b(lbpRadius+1:end-lbpRadius,lbpRadius+1:end-lbpRadius); 

    CImg = CImg(:) - mean(CImg(:)); 

    CImg(CImg >= 0) = 2; 

    CImg(CImg < 0) = 1; 

    if lbpRadius == 2 

        filWin = 3; 

        halfWin = (filWin-1)/2; 

        imgExt = padarray(img,[halfWin halfWin],'symmetric','both'); 

        imgblks = im2col(imgExt,[filWin filWin],'sliding'); 

        imgMedian = median(imgblks); 

        imgCurr = reshape(imgMedian,size(img)); 

        NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image'); 

        NILBPImage = NILBPImage(:); 

        histNI = hist(NILBPImage,0:(numLBPbins-1)); 

        NILBPImage = NILBPImage + 1; 

        RDLBPImage = 

RDLBP_Image_SmallestRadiusOnly(b,imgCurr,lbpRadius,lbpPoints,mapping,'image'); 

        RDLBPImage = RDLBPImage(:); 

        histRD = hist(RDLBPImage,0:(numLBPbins-1)); 

        RDLBPImage = RDLBPImage + 1; 

    else 

        if mod(lbpRadius,2) == 0 

            filWin = lbpRadius + 1; 

        else 
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            filWin = lbpRadius; 

        end 

        halfWin = (filWin-1)/2; 

        imgExt = padarray(img,[halfWin halfWin],'symmetric','both'); 

        imgblks = im2col(imgExt,[filWin filWin],'sliding'); 

        % each column of imgblks represents a feature vector 

        imgMedian = median(imgblks); 

        imgCurr = reshape(imgMedian,size(img)); 

        NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image'); 

        NILBPImage = NILBPImage(:); 

        histNI = hist(NILBPImage,0:(numLBPbins-1)); 

        NILBPImage = NILBPImage + 1; 

         if mod(lbpRadiusPre,2) == 0 

            filWin = lbpRadiusPre + 1; 

        else 

            filWin = lbpRadiusPre; 

        end 

         halfWin = (filWin-1)/2; 

        imgExt = padarray(img,[halfWin halfWin],'symmetric','both'); 

        imgblks = im2col(imgExt,[filWin filWin],'sliding'); 

        imgMedian = median(imgblks); 

        imgPre = reshape(imgMedian,size(img)); 

         RDLBPImage = 

NewRDLBP_Image(imgCurr,imgPre,lbpRadius,lbpRadiusPre,lbpPoints,mapping,'image'); 

        RDLBPImage = RDLBPImage(:); 

        histRD = hist(RDLBPImage,0:(numLBPbins-1)); 

        RDLBPImage = RDLBPImage + 1;  

    end 

       for i = 1 : length(NILBPImage)     

        Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) = 

Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) + 1; 

    end   

    cfmsWithLabels_MRELBP_CINIRD = Joint_CINIRD(:)'; 

end 

 cfmsWithLabels_LBP = cfmsWithLabels_MRELBP_CINIRD; 

clear cfmsWithLabels_MRELBP_CINIRD; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function result = 

NewRDLBP_Image(img,imgPre,lbpRadius,lbpRadiusPre,lbpPoints,mapping,mode) 

blocks1 = cirInterpSingleRadiusNew(img,lbpPoints,lbpRadius); 

blocks1 = blocks1';   

 imgPre = imgPre(lbpRadius-lbpRadiusPre+1:end-(lbpRadius-lbpRadiusPre),lbpRadius-

lbpRadiusPre+1:end-(lbpRadius-lbpRadiusPre)); 

blocks2 = cirInterpSingleRadiusNew(imgPre,lbpPoints,lbpRadiusPre); 

blocks2 = blocks2';   

 radialDiff = blocks1 - blocks2; 

 radialDiff(radialDiff >= 0) = 1; 

radialDiff(radialDiff < 0) = 0; 

 bins = 2^lbpPoints; 
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weight = 2.^(0:lbpPoints-1); 

radialDiff = radialDiff .* repmat(weight,size(radialDiff,1),1); 

% mapping = getmapping(lbpPoints,'riu2'); 

 radialDiff = sum(radialDiff,2); 

result = radialDiff; 

% Apply mapping if it is defined 

if isstruct(mapping) 

    bins = mapping.num; 

    for i = 1:size(result,1) 

        for j = 1:size(result,2) 

            result(i,j) = mapping.table(result(i,j)+1); 

        end 

    end 

end 

  if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh')) 

    % Return with LBP histogram if mode equals 'hist'. 

    result = hist(result(:),0:(bins-1)); 

    if (strcmp(mode,'nh')) 

        result = result/sum(result); 

    end 

else 

    % Otherwise return a matrix of unsigned integers 

    if ((bins-1) <= intmax('uint8')) 

        result = uint8(result); 

    elseif ((bins-1) <= intmax('uint16')) 

        result = uint16(result); 

    else 

        result = uint32(result); 

    end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 

function result = NILBP_Image(img,lbpPoints,mapping,mode) 

blocks = cirInterpSingleRadius(img);   

blocks = blocks';  

blocks = blocks - repmat(mean(blocks,2),1,size(blocks,2)); 

 blocks(blocks >= 0) = 1; 

blocks(blocks < 0) = 0; 

 weight = 2.^(0:lbpPoints-1); 

blocks = blocks .* repmat(weight,size(blocks,1),1); 

 blocks = sum(blocks,2); 

result = blocks; 

% Apply mapping if it is defined 

if isstruct(mapping) 

    bins = mapping.num; 

    for i = 1:size(result,1) 

        for j = 1:size(result,2) 

            result(i,j) = mapping.table(result(i,j)+1); 

        end 

    end 
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end 

 if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh')) 

    % Return with LBP histogram if mode equals 'hist'. 

    result = hist(result(:),0:(bins-1)); 

    if (strcmp(mode,'nh')) 

        result = result/sum(result); 

    end 

else 

    % Otherwise return a matrix of unsigned integers 

    % result = reshape(result,size(imgTemp)); 

    if ((bins-1) <= intmax('uint8')) 

        result = uint8(result); 

    elseif ((bins-1) <= intmax('uint16')) 

        result = uint16(result); 

    else 

        result = uint32(result); 

    end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function result = 

RDLBP_Image_SmallestRadiusOnly(imgCenSmooth,img,lbpRadius,lbpPoints,mapping,mod

e) 

blocks1 = cirInterpSingleRadiusNew(img,lbpPoints,lbpRadius); 

blocks1 = blocks1';  

imgTemp = imgCenSmooth(lbpRadius+1:end-lbpRadius,lbpRadius+1:end-lbpRadius); 

blocks2 = repmat(imgTemp(:),1,lbpPoints); 

 radialDiff = blocks1 - blocks2; 

 radialDiff(radialDiff >= 0) = 1; 

radialDiff(radialDiff < 0) = 0; 

 bins = 2^lbpPoints; 

weight = 2.^(0:lbpPoints-1); 

radialDiff = radialDiff .* repmat(weight,size(radialDiff,1),1); 

% mapping = getmapping(lbpPoints,'riu2'); 

 radialDiff = sum(radialDiff,2); 

result = radialDiff; 

% Apply mapping if it is defined 

if isstruct(mapping) 

    bins = mapping.num; 

    for i = 1:size(result,1) 

        for j = 1:size(result,2) 

            result(i,j) = mapping.table(result(i,j)+1); 

        end 

    end 

end 

  if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh')) 

    % Return with LBP histogram if mode equals 'hist'. 

    result = hist(result(:),0:(bins-1)); 

    if (strcmp(mode,'nh')) 

        result = result/sum(result); 

    end 
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else 

    % Otherwise return a matrix of unsigned integers 

    if ((bins-1) <= intmax('uint8')) 

        result = uint8(result); 

    elseif ((bins-1) <= intmax('uint16')) 

        result = uint16(result); 

    else 

        result = uint32(result); 

    end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function sampleIn = samp_prepro(sampleIn) 

% image sample preprocessing 

sampleIn = double(sampleIn); 

sampleIn = sampleIn - mean(sampleIn(:)); 

% sampleIn = sampleIn / sqrt(mean(mean(sampleIn .^ 2))); 

sampleIn = sampleIn / std(sampleIn(:)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 

function D = sqdist(X1, X2) 

% Pairwise square Euclidean distance between two sample sets 

% Input: 

%   X1, X2: dxn1 dxn2 sample matrices 

% Output: 

%   D: n1 x n2 square Euclidean distance matrix 

% Written by Mo Chen (sth4nth@gmail.com). 

D = bsxfun(@plus,dot(X2,X2,1),dot(X1,X1,1)')-2*(X1'*X2); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% 

----------------------Preprocessing stage----------- 

global nump  %number of positive samples 

global numn  %number of negative samples  

 global pathp 

global pathn 

 %% preprocessing of train images 

tic 

path1 = 'train/lp';   %training lps 

path2 = 'train/nonlp';  %trainging nonlps 

 pathp = 'realtrain/lp/';   %rectangle training lps 

pathn = 'realtrain/nonlp/';  %trainging nonlps 

 %preprocessed training lps will be saved in 'realtrain' directory 

if ~isdir('realtrain') 

    mkdir('realtrain');          

    mkdir('realtrain/lp');     

    mkdir('realtrain/nonlp') 

end 

 %image files in directories 

 files1 = dir(fullfile(path1,'*.png'));     

files2 = dir(fullfile(path2,'*.png')); 

%number of positive and negative trainging samples 
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nump = numel(files1); %number of training lps = positive 

numn = numel(files2);  %number of nonlps = negative 

  

%preprocessing of training lps 

for samples = 1 : nump 

    file = fullfile(path1, files1(samples).name);   

       X = imread(file); 

       M = rgb2gray(X); 

        [m n] = size(M); 

    p = 50; 

    q = 200; 

    if p >= m && q >= n 

        M_pad = padarray(M, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p < m && q >= n 

        m = p; 

        M_pad = imresize(M, [m, n]); 

        M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p >= m && q < n 

        n = q; 

        M_pad = imresize(M, [m, n]); 

        M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post'); 

        M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');    

    elseif p < m && q < n 

        M_pad = imresize(M, [p, q]); 

    end     

        M = M_pad; 

        numofpixels=size(M,1)*size(M,2); 

    Y=uint8(zeros(size(M,1),size(M,2))); 

    cnts=zeros(256,1); 

    probf=zeros(256,1); 

    prbc=zeros(256,1); 

    cum=zeros(256,1); 

    fin_lc=zeros(256,1); 

        for i=1:size(M,1) 

        for j=1:size(M,2) 

            value=M(i,j); 

            cnts(value+1)=cnts(value+1)+1; 

            probf(value+1)=cnts(value+1)/numofpixels; 

        end 

    end 

        sum=0; 

    n=255; 

     

    for i=1:size(probf) 

       sum=sum+cnts(i); 

       cum(i)=sum; 

       prbc(i)=cum(i)/numofpixels; 

       fin_lc(i)=round(prbc(i)*n); 
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    end 

        for i=1:size(M,1) 

           for j=1:size(M,2) 

               Y(i,j)=fin_lc(M(i,j)+1); 

           end 

    end 

    imwrite(Y, strcat(pathp, num2str(samples), '.png')); 

end 

 %preprocessing of training nonlps 

for samples = 1 : numn 

    file = fullfile(path2, files2(samples).name);     

    X = imread(file); 

    X = imresize(X, 0.5); 

   M = imgaussfilt(X,0.25);     

    M = rgb2gray(M);    

     numofpixels=size(M,1)*size(M,2); 

    Y=uint8(zeros(size(M,1),size(M,2))); 

    cnts=zeros(256,1); 

    probf=zeros(256,1); 

    prbc=zeros(256,1); 

    cum=zeros(256,1); 

    fin_lc=zeros(256,1); 

        for i=1:size(M,1) 

        for j=1:size(M,2) 

            value=M(i,j); 

            cnts(value+1)=cnts(value+1)+1; 

            probf(value+1)=cnts(value+1)/numofpixels; 

        end 

    end 

        sum=0; 

    n=255; 

        for i=1:size(probf) 

       sum=sum+cnts(i); 

       cum(i)=sum; 

       prbc(i)=cum(i)/numofpixels; 

       fin_lc(i)=round(prbc(i)*n); 

    end 

        for i=1:size(M,1) 

           for j=1:size(M,2) 

               Y(i,j)=fin_lc(M(i,j)+1); 

           end 

    end 

          imwrite(Y, strcat(pathn, num2str(samples), '.png')); 

end 

toc 

---------------------------------------Training\Extraction Stages--------------------- 

addpath('mrelbp'); 

addpath('elmbase'); 

 global nump  %number of positive samples 

global numn  %number of negative samples  
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 global lbpRadius 

global lbpPoints 

 %% selecting mrelbp features from preprocessed train images 

tic 

lbpRadiusSet = [2 4 6 8]; 

lbpPointsSet = [8 8 8 8];  

trainfeatures1 = []; 

trainfeatures2 = []; 

trainfeatures4 = []; 

trainfeatures5 = []; 

for idxLbpRadius = 1 : length(lbpRadiusSet) 

    lbpRadius = lbpRadiusSet(idxLbpRadius); 

    lbpPoints = lbpPointsSet(idxLbpRadius); 

        mapping = get_mapping(lbpPoints);     

    blockSize = lbpRadius*2+1;     

        if idxLbpRadius > 1 

        lbpRadiusPre = lbpRadiusSet(idxLbpRadius-1); 

    else 

        lbpRadiusPre = 0; 

    end 

    %--------------------SURF-------------------- 

    Z=  detectSURFFeatures(Y); 

    [SURF_features, valid_points] = extractFeatures(Y,Z); 

    strongestPoints = valid_points.selectStrongest(60); 

   trainfeatures4= [trainfeatures4 SURF_features ]; 

    trainfeatures5= [trainfeatures5 SURF_features]; 

        cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,1);          

    trainfeatures1 = [trainfeatures1 cfmsWithLabels_LBP  ]; 

    clear cfmsWithLabels_LBP 

    cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,2);         

    trainfeatures2 = [trainfeatures2 cfmsWithLabels_LBP  ]; 

    clear cfmsWithLabels_LBP  

end 

 trainfeatures1 = [trainfeatures1; trainfeatures2]; 

trainfeatures4 = [trainfeatures4; trainfeatures5]; 

 shape = size(trainfeatures1); 

shape2= size(trainfeatures4); 

feature = []; 

feature4= []; 

for i = 1 : shape(1) 

    feature = [feature; trainfeatures1(i,:)/max(trainfeatures1(i,:))]; 

end 

for i = 1 : shape2(1) 

    feature4 = [feature4; trainfeatures4(i,:)/max(trainfeatures4(i,:))]; 

end 

 classes = zeros(nump + numn, 1); 

for i = 1 : nump 

    classes(i) = 1; 

end 

 M = [classes feature]; 
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M4 = [feature4]; 

dlmwrite('traindata',M, ' '); 

%dlmwrite('traindata',M4, ' '); 

  elm_train('traindata', 1, 1000, 'sig'); 

 toc 

------------------------------------------Testing or Detection Stage---------- 

 global Y1 

 tic 

 if ~isdir('result') 

    mkdir('result');   

end 

if ~isdir('detected') 

    mkdir('detected');   

end 

 %% testing 

files = dir(fullfile('test','*.png'));   

for id = 1 : numel(files) 

    file = fullfile('test/', files(id).name);  

        %preprocessing 

    X=imread(file); 

 % M = imresize(X,[240, 320]); 

    M=rgb2gray(X); 

     numofpixels=size(M,1)*size(M,2); 

    Y=uint8(zeros(size(M,1),size(M,2))); 

    cnts=zeros(256,1); 

    probf=zeros(256,1); 

    prbc=zeros(256,1); 

    cum=zeros(256,1); 

    fin_lc=zeros(256,1); 

     for i=1:size(M,1) 

        for j=1:size(M,2) 

            value=M(i,j); 

            cnts(value+1)=cnts(value+1)+1; 

            probf(value+1)=cnts(value+1)/numofpixels; 

        end 

    end 

     sum=0; 

    n=255; 

     for i=1:size(probf) 

       sum=sum+cnts(i); 

       cum(i)=sum; 

       prbc(i)=cum(i)/numofpixels; 

       fin_lc(i)=round(prbc(i)*n); 

    end 

     for i=1:size(M,1) 

       for j=1:size(M,2) 

           Y(i,j)=fin_lc(M(i,j)+1); 

       end 

    end 

        lbpRadiusSet = [2 4 6 8]; 
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    lbpPointsSet = [8 8 8 8];  

     % selecting mrelbp features from preprocessed test image 

    xsum=0; 

    ysum=0; 

    num = 0; 

    px = []; 

    py = []; 

    px1 = []; 

    py1 = []; 

    px2 = []; 

    py2 = [];    

    px3 = []; 

     for i = 126 :100: size(Y,1) - 165 

       for j = 50 :18: size(Y,2) - 350 

            Y1 = Y(i:i+49,j:j+199); 

            testfeatures1 = []; 

            for idxLbpRadius = 1 : length(lbpRadiusSet) 

                lbpRadius = lbpRadiusSet(idxLbpRadius); 

                lbpPoints = lbpPointsSet(idxLbpRadius); 

                 mapping = get_mapping(lbpPoints);     

                blockSize = lbpRadius*2+1;     

                 if idxLbpRadius > 1 

                    lbpRadiusPre = lbpRadiusSet(idxLbpRadius-1); 

                else 

                    lbpRadiusPre = 0; 

                end 

                 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,1,1); 

                 testfeatures1 = [testfeatures1 cfmsWithLabels_LBP];                    

            end 

            feature = testfeatures1 / max(testfeatures1); 

            dlmwrite('testdata',[1 feature], ' '); 

            [TestingTime, TestingAccuracy, output]= elm_predict('testdata');                  

            if output == 1      

                %num = num + 1; 

                px2 = [px2 i ]; 

                py2 = [py2 j ];        

                 continue; 

            end       

        end 

    end 

     fh = figure; 

    imshow( X, 'border', 'loose' ); %//show your image 

    hold on; 

     px21 = unique(px2); 

    py21 = []; 

    for i = 1 : length(px21) 

        temp = []; 

        for j = 1 : length(px2) 

            if px21(i) == px2(j) 

                temp = [temp; py2(j)]; 
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            end 

        end 

        py21 = [py21; round(mean(temp))]; 

    end 

    for i = 1 : length(px21) 

        if i > 1 

            if abs(px21(i)-px21(i-1)) > 30 

                rectangle('Position', [py21(i)-10 px21(i) 300 100], 'EdgeColor', 'y'); %// draw 

rectangle on image 

                frm = getframe( fh ); %// get the image+rectangle 

                imwrite( frm.cdata, strcat('result/',num2str(id),'.png') ); %// save to file     

            end 

       end 

    end 

        pause(3); 

    close(fh); 

    disp(strcat('test image ', num2str(id), ' done' ));   

 end 

toc 

------------------------------ROC_curve----------------------- 

%               + AROC:     Area Under ROC Curve.                         % 

%               + Accuracy: Maximum accuracy obtained.                    % 

%               + Sensi:    Optimum threshold sensitivity.                % 

%               + Speci:    Optimum threshold specificity.                % 

%               + PPV:      Positive predicted value.                     % 

%               + NPV:      Negative predicted value.                     % 

%           - curve:    Matrix which contains the specificity and specifi-% 

%                       city of each threshold point in columns.          % 

function ROC_data = roc_curve(classes1,classes2, dispp, dispt) 

     % Setting default parameters and detecting errors 

    if(nargin<4), dispt = 1;    end 

    if(nargin<3), dispp = 1;    end 

   % if(nargin<2), error('Class_1 or class_2 are not indicated.'); end 

   model1 = loadCompactModel('model1'); 

         y=load('classes1.mat'); 

    class_1 = 0.13* randn(700,1); 

    class_2 = 0.5 + 0.1* randn(700,1); 

       % Calculating the threshold values between the data points 

    s_data = unique(sort([class_1; class_2]));          % Sorted data points 

    s_data(isnan(s_data)) = [];                 % Delete NaN values 

    d_data = diff(s_data);                      % Difference between consecutive points 

    if(isempty(d_data)), error('Both class data are the same!'); end 

    d_data(length(d_data)+1,1) = d_data(length(d_data));% Last point 

    thres(1,1) = s_data(1) - d_data(1);                 % First point 

    thres(2:length(s_data)+1,1) = s_data + d_data./2;   % Threshold values 

     % Sorting each class 

    if(nanmean(class_1)>nanmean(class_2))     

    end          % Calculating the sensibility and specificity of each threshold 

    curve = zeros(size(thres,1),2); 

    distance = zeros(size(thres,1),1); 
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    for id_t = 1:1:length(thres) 

        TP = length(find(class_2 >= thres(id_t)));    % True positives 

        FP = length(find(class_1 >= thres(id_t)));    % False positives 

        FN = length(find(class_2 < thres(id_t)));     % False negatives 

        TN = length(find(class_1 < thres(id_t)));     % True negatives 

                curve(id_t,1) = TP/(TP + FN);   % Sensitivity 

        curve(id_t,2) = TN/(TN + FP);   % Specificity 

                % Distance between each point and the optimum point (0,1) 

        distance(id_t)= sqrt((1-curve(id_t,1))^2+(curve(id_t,2)-1)^2); 

    end         % Optimum threshold and parameters 

    [~, opt] = min(distance); 

    TP = length(find(class_2 >= thres(opt)));    

    FP = length(find(class_1 >= thres(opt)));     

    FN = length(find(class_2 < thres(opt)));                                     

    TN = length(find(class_1 < thres(opt)));                                     

    param.Threshold = thres(opt);       % Optimum threshold position 

    param.Sensi = curve(opt,1);         % Optimum threshold's sensitivity 

    param.Speci = curve(opt,2);         % Optimum threshold's specificity 

    param.AROC  = abs(trapz(1-curve(:,2), curve(:,1))); % Area under curve 

    param.Accuracy = (TP+TN)/(TP+TN+FP+FN);             % Maximum accuracy 

    param.PPV   = TP/(TP+FP);           % Positive predictive value 

    param.NPV   = TN/(TN+FN);           % Negative predictive value 

     % Plotting if required 

    if(dispp == 1) 

        fill_color = [11/255, 208/255, 217/255]; 

        fill([1-curve(:,2); 1], [curve(:,1); 0], fill_color,'FaceAlpha',0.10); 

        hold on; plot(1-curve(:,2), curve(:,1), '-r', 'LineWidth', 3); 

        hold on; plot(1-curve(opt,2), curve(opt,1), 'ob', 'MarkerSize', 5); 

        hold on; plot(1-curve(opt,2), curve(opt,1), 'xb', 'MarkerSize', 12); 

        hold off; axis square; grid on; xlabel('False Positive Rate'); ylabel('True Positive Rate'); 

        legend('Threshold =  0.2140','Location','SE'); 

        title(['AUC for Testing by ELM = ' num2str(param.AROC)]); 

    end         % Log screen parameters if required 

    if(dispt == 1) 

        fprintf('\n ROC CURVE PARAMETERS\n'); 

        fprintf(' ------------------------------\n'); 

        fprintf('  - Distance:     %.4f\n', distance(opt)); 

        fprintf('  - Threshold:    %.4f\n', param.Threshold); 

        fprintf('  - Sensitivity:  %.4f\n', param.Sensi); 

        fprintf('  - Specificity:  %.4f\n', param.Speci); 

        fprintf('  - AROC:         %.4f\n', param.AROC); 

        fprintf('  - Accuracy:     %.4f%%\n', param.Accuracy*100); 

        fprintf('  - PPV:          %.4f%%\n', param.PPV*100); 

        fprintf('  - NPV:          %.4f%%\n', param.NPV*100); 

        fprintf(' \n'); 

    end         % Assinging parameters and curve data 

    ROC_data.param = param; 

    ROC_data.curve = curve; 

end 

--------------------------------------THE END 
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English cars database for research project  

 

 

This appendix includes some samples for testing vehicle images and real training licences 

plates images for English cars database. 
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Some samples for vehicles images  
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Some samples for real training licences plates images 
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