
DEVELOPING NEW TECHNIQUES TO

IMPROVE LICENCE PLATE DETECTION

SYSTEMS FOR COMPLICATED AND LOW

QUALITY VEHICLE IMAGES

A thesis submitted by

Meeras Salman Juwad Al-Shemarry

For the award of

Doctor of Philosophy

2020

 Abstract

P a g e i | 254

i

Abstract

Intelligent transportation systems (ITSs) play a very important role in people’s lives in many

respects. One of the most important ITS applications is for automatic number plate recognition

systems. Over the years, many algorithms have been developed for detecting licence plates

(LPs) from vehicle images or from a sequence of images in a video. Many existing ITSs work

only under good conditions or normal environments.

It is still challenging to find effective techniques to identify LPs under difficult

conditions, such as low/high contrast, bad illumination, foggy, dusty, or distorted by high

speed or bad weather. New techniques are needed to improve the performance of existing

detection systems.

In this thesis, novel methods are developed for licence plate detection (LPD) systems

to extract key features, and classify the LP region from complicated vehicle images based on

preprocessing methods and machine learning algorithms with several types of texture

descriptors.

In order to identify LPs from complicated vehicles images, four LPD methods were

developed in this research. The first, is a three-level local binary pattern operator based on an

ensemble of Adaboost cascades classifiers (3L-LBP_Adaboost) detection method. The second

method, introduces a new texture descriptor based on a multi-level preprocessing stage with

extended local binary pattern descriptor using an extreme learning machine classifier

(MLELBP_ELM). The third, develops learning-based preprocessing methods using a local

binary pattern and a median filter histogram of the oriented gradient with support vector

machine classifier (LBP_MHOG_SVM) for detecting complicated LPs. Finally, for identifying

distorted LPs using hybrid features, median robust extended local binary pattern and speeded-

up robust with an extreme learning machine classifier (MRELBP_SURF_ELM). The

experimental results show that both of the LBP_MHOG_SVM and MRELBP_SURF_ELM

algorithms perform very well in LP detection accuracy rate compared with 3L-LBP_Adaboost

and MLELBP_ELM algorithms. Also, the false positive rate (FPR) for both methods is better

than those algorithms. The MLELBP_ELM and MRELBP_SURF_ELM methods carry out

significant classification of different types of LP key features. The 3L-LBP_Adaboost

approach takes much less execution time and produces high FPR compared to the three other

methods. But it was a good technique for selecting suitable preprocessing and extraction

methods, for detecting LPs from low quality vehicle images.

Abstract t

P a g e ii | 254

ii

The experimental results proved the efficiency of the proposed approaches for detecting

difficult regions of the LP inside a vehicle image with a high accuracy rate and low detection

time. Whereas the overall performance evaluation for the 3L-LBP_Adaboost method in terms

of detection, precision, and F-measure rates is 98.56%, 95.9%, and 97.19%, respectively, with

an FPR of 5.6%. The average detection time per vehicle image was 2.001miliseconds.

In the MLELBP_ELM method, detection accuracy and FPR were improved by 0.54%

and 0.56%, respectively, compared with the 3L-LBP_Adaboost approach. The classification

and detection rates are 99.78% and 99.10%, respectively, with an FPR of 5%. The average

execution time per vehicle image was 2.4530miliseconds.

The LBP_MHOG_SVM method yielded an excellent improvement compared with

existing proposed methods, a 4% improvement for the FPR, and 1.50% for detection accuracy.

The detection rate is 99.62%, with an FPR of 1.675%. The average of the processing time per

vehicle image was 2.2187miliseconds.

Finally, the accuracy and detection rates are 97.92% and 99.71, respectively, with the

FPR of 2.24% for the MRELBP_SURF_ELM method. The average of the execution time for

the whole detection system per vehicle image was 2.108 milliseconds. This method was

superior in the performance and execution time over the existing proposed methods in this

research.

The findings suggest that the outcomes of this study can improve the performances of

existing LPD systems. They can assist in law enforcement with an ITS system. Also, it can be

effectively used to detect LPs in real-time applications under difficult conditions.

 Certification of Thesis

P a g e iii | 254

iii

 Certification of Thesis

This thesis is the work of Meeras Salman Juwad Al-Shemarry except where otherwise

acknowledged, with the majority of the authorship of the papers presented as a Thesis by

Publication undertaken by the student. The work is original and has not previously been

submitted for any other award, except where acknowledged.

Student: Meeras Salman Juwad Al-Shemarry

Principal Supervisor: Prof. Yan Li

Associate Supervisor: Dr. Shahab Abdulla

Student and supervisors signatures of endorsement are held at the University.

 Statement of Contribution

P a g e iv | 254

iv

Statement of Contribution

This section presents details of contributions by the various authors for each of the paper

presented in this thesis by publication. The following detail is the agreed share of contributions

for the candidate and co-authors in the published articles and the ones to be published.

Chapter 3, Al-Shemarry et al., (2018)

Al-Shemarry, M. S., Li, Y. & Abdulla, S. 2018. Ensemble of Adaboost cascades of 3L-LBPs

classifiers for license plates detection with low quality images. Expert Systems with

Applications, 92, 216–235. (Q1)

Authors Percent

contribution

Tasks Performed

Al-Shemarry, M. S. 70% Designed the method, simulation, analysis,

interpretation, wrote entire draft of the paper.

Li, Y. and Abdulla, S. 30% Significantly improved the manuscript,

interpretation, and analysis.

Chapter 4, Al-Shemarry et al., (2019)

Al-Shemarry, M. S., Li, Y. & Abdulla, S. 2019. An Efficient Texture Descriptor for the

Detection of License Plates From Vehicle Images in Difficult Conditions. IEEE Transactions

on Intelligent Transportation Systems, vol. 21, no. 2, pp. 553-564, Feb. 2020. (Q1)

Authors Percent

contribution

Tasks Performed

Al-Shemarry, M. S. 65% Designed the method, simulation, analysis,

interpretation, wrote entire draft of paper.

Li, Y. 25%

Help with methodology design, significantly

improved the writing of the manuscript,

interpretation.

Abdulla, S. 10% Suggested edits the manuscript, interpretation.

Statement of Contribution n

P a g e v | 254

v

Chapter 5, Al-Shemarry and Li, (2020)

 Al-Shemarry, M. S. & Li, Y. 2020. Developing Learning-Based Preprocessing Methods for

Detecting Vehicle Complicated Licence Plates. IEEE Access,

 doi:10.1109/ACCESS.2020.3024625. (Q1).

Authors Percent

contribution

Tasks Performed

Al-Shemarry, M. S. 75% Designed the method, simulation, analysis,

interpretation, wrote entire draft of paper.

Li, Y. 25% Significantly improved the manuscript,

interpretation.

Chapter 6, Al-Shemarry and Li, (2020)

Al-Shemarry, M. S. & Li, Y. 2020. Distorted vehicle licence plates detection using hybrid

feature descriptors and extreme learning machine classifier. European Journal of Operational

Research, Q1, (Under review).

Authors Percent

contribution

Tasks Performed

Al-Shemarry, M. S. 70% Designed the method, simulation, analysis,

interpretation, wrote entire draft of paper.

Li, Y. 30% Significantly improved the manuscript,

interpretation.

 List of Publications

P a g e vi | 254

vi

List of Publications

1. Al-Shemarry, MS, Li, Y & Abdulla, S 2018, 'Ensemble of adaboost cascades of 3L-LBPs

classifiers for license plates detection with low quality images', Expert Systems With

Applications, vol. 92, pp. 216 - 235.

2. Al-Shemarry, MS, Li, Y & Abdulla, S 2019, 'An Efficient Texture Descriptor for the

Detection of License Plates From Vehicle Images in Difficult Conditions', IEEE

Transactions on Intelligent Transportation Systems, vol. 21, no. 2, pp. 553-564, Feb. 2020.

3. Al-Shemarry, M. S. & Li, Y. 2020, 'Developing Learning-Based Preprocessing Methods for

Detecting Complicated Vehicle Licence Plates', IEEE Acess,

 doi:10.1109/ACCESS.2020.3024625.

4. Al-Shemarry, M. S. & Li, Y. 2020, 'Distorted vehicle licence plates detection using hybrid

feature descriptors and extreme learning machine classifier', Submitted to the Journal.

(submitted).

 Acknowledgement

P a g e vii | 254

vii

Acknowledgement

I thank all who contributed to complete this thesis in one way or another.

First, I give deep thanks to Allah for protection and the ability to do this work.

Undertaking this PhD would not have been possible to do without the support and guidance

that I received from my supervisors. So I would like to express my sincere gratitude to Prof.

Yan, my principal supervisor. It would have been very difficult to complete my goal without

her support, guidance, patience, and encouragement. I also want to present my deep thanks to

associate supervisor Dr. Shahab for his expert advice and the valuable input to my project. It

is my great honor to be their student.

I would like to show my deep personal gratitude to Tim Passmore for proofreading my thesis.

I would like to dedicate this work to my parents. My father who raised me with a love of the

science and supported me in all my pursuits. My mother always in my dreams and heart,

without her prayers, I could not continue to complete this work. I am greatly indebted to them

for their unconditional support, love, and encouragement.

My respect goes to my husband and love of my life, Dr. Dawood, for keep going things even

though there are many difficulties which faced us. He always shows how proud he is of me.

Without his encouragement and support, I could not be able to finish my study. I am always

proud of him.

The last words go to my wonderful daughters Kawther and Ghadeer and my lovely son Ali.

You have given me extra strength and motivation to light my life and get things done. Thanks

for your endless love, tolerance, and patience. Big thanks go to my sisters, brothers for their

prayers and encouragement.

Also, I would like to dedicate this thesis to my beautiful little girl aged 9th months and three

weeks, who passed away during the birth. At this time I faced very difficult an financial

problems because of the unfair procedures of the ministry of higher education and scientific

research in Iraq which is effected on my health.

I wish to introduce my appreciation to the University of Southern Queensland (USQ) and

special thanks to the School of Sciences, Faculty of Health, Engineering, and Sciences for their

Acknowledgement n

P a g e viii | 254

viii

understanding of my difficult family situation. They have provided great support which is

helped me to reduce the challenges during my academic study.

I want to express my sincerest gratitude to the Iraq Government, my sponsors for giving me

the opportunity to come here and complete my PhD study. Also, my thanks extend to the Iraqi

Cultural Attache in Canberra for facilitating procedures, overcoming obstacles, and providing

the funding during the period of this study.

May the Almighty Allah richly bless all of you.

 Table of Contents

P a g e ix | 254

ix

Table of Contents

Abstract i

Certification of Thesis iii

Statement of Contribution Error! Bookmark not defined.

List of Publications vi

Acknowledgements vii

Table of Contents ix

List of Figures xi

List of Tables xi

Abbreviations xii

1 Introduction 1

1.1 Overview and Motivation of the Study ..2

1.2 Research Problems ...3

1.3 Contributions of the Thesis ..4

 1.3.1 Identifying the low quality LPs from three-level local binary pattern features

based ensemble of AdaBoost cascades classifiers5

 1.3.2 Developing texture descriptor to detect complicated LPs based extreme

learning machine classifier ...6

 1.3.3 Developing learning-based preprocessing methods for detecting complicated

vehicle LPs ..7

 1.3.4 Detecting distorted LPs using hybrid features and an extreme learning machine

classifier ..7

 1.3.5 Investigating which detection method is better to achieve the main key

requirements for detecting complicated vehicle LPs8

1.4 Structure of the Thesis ...9

2 Overview of an Licence Plates Detection System and its Components 11

2.1 The background knowledge associated with licence plates detection system

 ..11

2.1.1 Detection system components ..12

2.1.1.1 Vehicle images acquisition ... 12

2.1.1.2 Preprocessing stage ..12

2.1.1.3 Extraction stage ..12

2.1.1.4 Classification and detection stage13

2.1.1.5 Segmentation and recognition stage13

2.2 Applications of LPD Systems ..14

2.3 Overview of the licence plates detection system classification15

2.3.1 The classification concept ..15

2.3.2 Types of the classification techniques ...16

2.3.2.1 Supervised classification learning algorithms16

2.3.2.2 Unsupervised classification learning algorithms18

2.3.3 Structure of the classification...19

2.4 Overview of processing stages in licence plate detection methods20

2.4.1 Image preprocessing stage ...20

2.4.1.1 Image conversion ...20

2.4.1.2 Binary processing...21

2.4.1.3 Noise removal ..21

2.4.2 Extraction methods for LPD systems ...21

Table of Contents n

P a g e x | 254

x

2.4.2.1 Licence plate extraction using boundary /edge features

 ..22

2.4.2.2 Licence plate extraction using global features22

2.4.2.3 Licence plate extraction using texture features23

2.4.2.4 License plate extraction using color features24

2.4.2.5 License plate extraction using character features24

2.4.2.6 License plate extraction combining two or more features

 ..25

2.4.3 Classification and detection stage ..25

2.5 Existing licence plate detection methods ...26

2.6 Chapter summary ...26

3 Ensemble of Adaboost Cascades of 3l-LBPs Classifiers for Licence Plates Detection

with Low Quality Images 29

3.1 Introduction ...29

4 An Efficient Texture Descriptor for the Detection of License Plates from Vehicle

Images in Difficult Conditions 50

4.1 Introduction ..50

5 Developing Learning-Based Preprocessing Methods for Detecting Complicated

Vehicle Licence Plates 63

5.1 Introduction ...63

6 Distorted vehicle licence plate detection using hybrid feature descriptors

 80

6.1 Introduction ...80

7 Conclusions and future work 108

7.1 Summary and conclusion of the thesis ………………………………...108

7.1.1 The 3L-LBP descriptor based on Adaboost learning algorithm . 109

7.1.2 The MLELBP descriptor based on ELM classifier 109

7.1.3 The LBP_MHOG descriptors based on SVM classifier 110

7.1.4 The MRELBP_SURF features based on ELM classifier 111

7.2 Future work……………………………………………………………...111

References 114

Appendix A: A Matlab simulation code for chapter 3 ... 122

Appendix B: A Matlab simulation code for chapter 4 ... 160

Appendix C: A Matlab simulation code for chapter 5 ... 187

Appendix D: A Matlab simulation code for chapter 6 ... 198

Appendix E: English cars database for research project .. 227

 List of Figures

P a g e xi | 254

xi

List of Figures

(Excluding publications included in Chapters 3-6)

2.1 Stages involved in a licence plate detection (LPD) system 14

2.2 Examples of difficult conditions for licence plate detection 14

2.3 Examples of ANPR system applications .. 15

2.4 Types of classification learning algorithms ... 16

2.5 The structure of a supervised learning classification algorithm 17

2.6 Dividing the vehicle image database into two groups: training and testing

 datasets ... 18

2.7 The structure of a unsupervised learning classification algorithm 19

2.8 The process of the licence plate classification in the machine learning field 20

List of Tables

(Excluding publication included in Chapters 3-6)

 Abbreviations

P a g e xii | 254

xii

Abbreviations

3L-LBP Three-Level Local Binary Pattern

ANPR Automatic Number Plate Recognition System

CCA Connected Component Analysis

CLAHE Contrast- Limited Adaptive Histogram Equalization

CNN Convolutional Neural Network

CPR Car Plate Recognition

CRS Computer Recognition System

DWT Discrete Wavelet Transform

ECHE Enhancement Cumulative Histogram Equalization

ECLACHE Enhancement Contrast-Limited Adaptive-Cumulative Histogram Equalization

ELBP Extended Local Binary Pattern

ELM Extreme Learning Machine

FPR False Positive Rate

GA Genetic Algorithm

GST Generalized Symmetry Transform

HL Hue and Lightness

HLS Hue, Lightness, and Saturation

HOG Histogram of Oriented gradient

HSV Hue, Saturation, and Value

ICA Independent Component Analysis

KNN K-Nearest-Neighbor

LDA Linear Discriminant Analysis

LP Licence Plate

LPD Licence Plate Detection

LPR Licence Plate Reader

MHOG Median filter histograms of oriented gradients

MLELBP Multi-Level Extended Local Binary Patterns

MLPR Mobile Licence Plate Reader

MRELBP Median Robust Extended Local Binary Pattern

NN Neural Network

OCR Optical Character Recognition

PCA Principal Component Analysis

Abbreviations n

P a g e xiii | 254

xiii

RGB Red, Green, Blue

ROC Receiver Operating Characteristic

ROI Regions of Interest

SURF Speeded Up Robust Feature

SVM Support Vector Machine

VRI Vehicle Recognition Identification

 Chapter 1 Introduction

P a g e 1 | 254

1

CHAPTER 1

INTRODUCTION

These days, intelligent transportation systems (ITSs) play an important role in different aspects

of our daily life. Normally, these systems include two parts: the intelligent infrastructure system

and the automatic number plate recognition system (ANPR) (Anagnostopoulos et al. 2006;

Anagnostopoulos 2014). Using surveillance applications is necessary to observe and examine

road traffic for law enforcement activities (Castello et al. 1999; Duan et al. 2004b; Sarfraz et

al. 2013). In 1978, the first successful ANPR system was used in the UK to detect stolen cars.

ANPRs have several names reflecting different purposes, like licence plate recognition (LPR),

car plate recognition (CPR), licence plate reader (LPR), mobile licence plate reader (MLPR),

and vehicle recognition identification (VRI). Some applications are: security systems (Sheldon

2013), highway road tolling systems (Song & Sarker 2014; Panahi & Gholampour 2017),

parking management systems, enforcing move over laws for emergency vehicles (Roberts &

Casanova 2012), traffic control (Dehghan et al. 2017), traffic management systems (He et al.

2017), and so on. Nowadays, the key requirements for a good ANPR system are high accuracy

and better execution speed for any application (Angelova et al. 2015). All the ARPR

applications still have difficulties for detecting licence plates (LPs) from vehicle images, or a

sequence of images in a video, under difficult conditions. These difficulties impact on the main

system stages, such as, extraction and detection. Therefore, the ARPR software should be able

to deal with the following:

 Poor resolution/ low-quality camera, sometimes this problem appears due to either short

or long distance between the vehicle and the camera, which results in having low/bad image

quality. The system accuracy often depends on camera qualities, like type, resolution, shutter

speed, light, and the installation method.

 Blurry vehicle images caused by the high-speed vehicle movement.

1

Chapter 1 Introduction n

P a g e 2 | 254

2

 The location and tilt the LP may be found in the different places of an image with different

angles and conditions.

 Different sizes, languages, and fonts some countries do not allow to the use of different

types of fonts, this could help to reduce some difficulties.

 Occlusion problems due to dirt during an image capture or inaccurate distance between the

vehicle and the camera.

 Color problems due to different color between the vehicle body and the LP area.

 Distortion problems some characters in the LP, and the plate itself have screws and frames

with a dirty background.

 Environmental problems poor illumination or lighting conditions because of weather, such

as raining, snowing, and so on.

 Low/high contrast problem due to the vehicle headlights, and the different lighting

resources during an image capture.

 However, some of these problems could be corrected through the software. A robust

licence plate detection (LPD) system is required to effectively work under all difficult

conditions. Hence, developing new LP detection methods to solve those problems is a very

important topic to improve the existing LPD systems. This thesis focus on the detection of LPs

from vehicle images under complicated conditions, such as low/high contrast and poor lighting

condition, dusk, fog, dirt, and distortion problems. This study proposes four algorithms for

identification LPs from complicated and low quality vehicles images. These methods can

identify and detect the LP and provide reliable and accurate detection results that will be useful

to improve the performance of existing LPD systems in terms of accuracy rates and execution

time. Finally, the outcomes of this study will help to enhance the quality of the life through

using the ITSs with high quality and security.

1.1 Overview and Motivation of the Study

An LPD system has become a very important tool for many surveillance applications over the

past decades (Kamat & Ganesan 1995; Kasaei et al. 2010; Angelova et al. 2015; Azam &

Gavrilova 2017; Arafat et al. 2019). For detecting complicated LP problems, the preprocessing

and feature extraction techniques should be selected and developed carefully. Selecting good

software components plays an important role in the quality of the detection system. In

particular, evaluation of a system performance is a very popular tool to determine LP problems

 Chapter 1 Introduction

P a g e 3 | 254

3

and test possible solutions to improve system weaknesses. In this study, an LPD system

includes four stages: images acquisition, preprocessing, extraction, and detection. In chapter 2,

a detailed description of those stages is provided. The two main key requirements of the LPD

system are accuracy and runtime (Angelova et al. 2015). Recently, increased attention has been

paid to efficient strategies to improve existing systems as an important topic in the field of

machine learning. The main challenge is how to detect LPs from complicated vehicle images

as fast, and with as high an accuracy as possible. Therefore, several detection methods were

reported which identify different kinds of LP problems (Asif et al. 2016; Azam & Islam 2016;

Boonsim & Prakoonwit 2016; Chen et al. 2017; Panahi & Gholampour 2017; Wang et al. 2018;

Al-Shemarry et al. 2019). The detection of LPs under complicated conditions is still far from

being achieved. A considerable amount of research is still needed. Therefore, in this thesis, the

aim is to develop efficient and accurate methods to identify the LP area from distorted vehicle

images.

1.2 Research Problems

The existing ANPR systems are far from satisfactory in detecting the LPs under difficult

conditions. Therefore, developing new novel methods to detect LPs from complicated vehicle

images is the main goal of this thesis. The performance of the developed approaches has been

evaluated using several assessment tools. They are mainly object detection methods, such as

detection and object localization metrics, and the receiver operating characteristic (ROC)

curve. These measurement tools are used to check the detection system’s ability and

performance at identifying objects (Bashir & Porikli 2006; Kasturi et al. 2009). This study used

very challenging and complicated data, compared with the existing databases used by other

studies (Azam & Islam 2016; Azam & Gavrilova 2017; Liu et al. 2017; Panahi & Gholampour

2017; Silva & Jung 2018). Using supervised learning algorithms requires more images to

produce accurate results. Therefore, the English LP database (EnglishLPDatabase-2001 ;

MedialabLPRdatabase-2007) is extended to increase the number of vehicle images by adding

many changes using an image photo editor application. Efficient preprocessing methods and

powerful descriptors that are suitable to enhance the low-quality images have been used. This

study focuses on answering the question :

How to enhance the performance of an LPD system under different conditions by

developing advanced classification techniques?

Chapter 1 Introduction n

P a g e 4 | 254

4

This question leads to the following sub-questions:

a. What are the best preprocessing and extraction methods for the complicated LP

detection?

b. How to enhance the performance of an LPD system through the developed methods?

The main objectives are:

1. To develop new methods for the LP detection, that will result in a good detection results

(performance, accuracy, and processing speed) under difficult conditions;

2. To improve the working of existing ANPR systems and reduce the efforts required to

efficiently detect unacceptable activities under complicated conditions in transport

systems.

Based on the experimental results, the developed methods can achieve good system

performance through identifying different types of LP problems from low-quality vehicles

images, such as low/high contrast, bad illumination, foggy, dusty, and distortion. Also, they

can be applied to different types of car LP databases. As there are no constraints in the proposed

methods as to object shape, color, edge, and so on, due to the use of supervised learning

techniques.

1.3 Contributions of the Thesis

In this thesis, four techniques are developed for detecting LPs from low-quality vehicles images

with difficult conditions. Different types of LPs were detected successfully with high system

performance. To investigate the performance of those proposed methods, they were compared

with recently reported algorithms with different and/or the same databases. The following

contributions have been made to answer the research questions and achieve the objectives:

1. Effective methods were developed for detecting LPs under complicated conditions, such

as low/high contrast, bad illumination, foggy, dusty, and distorted by high speed and bad

weather. They improved the detection system performance with less execution time and

low false positive rate.

2. The developed methods were improved by presenting new preprocessing and extraction

techniques that can improve the classification accuracy.

 Chapter 1 Introduction

P a g e 5 | 254

5

3. Investigating which method is better to achieve the main requirements of an LPD system

under difficult conditions like distorted vehicle images, low/high contrast, and bad

illumination.

The proposed methods have been implemented in Matlab R2018a. The database that is

used in this study is the English LP (EnglishLPDatabase-2001 ; MedialabLPRdatabase-2007).

It is a very popular database that is used by many researchers for detecting distorted vehicle

images. Also, it contains three types of LP resolutions, which made this research very challenge

and interesting. Moreover, each algorithm was evaluated using detection and object

localization metrics. Those metrics are the false positive (FP), true positive (TP), false negative

(FN), true negative (TN), recall rate (RR) or detection rate (DR), accuracy rate (AR), precision

rate (PR) or positive prediction rate (PPR), and F-measure rate. The receiver operating

characteristic (ROC) curve was used to evaluate the classification accuracy for the proposed

algorithms. The ROC curve depends on four parameters which are the true positive rate (TPR)

or RR, false positive rate (FPR), positive predictive value (PPV) or PR, and negative predictive

value (NPV). A brief discussion about these contributions is provided below.

1.3.1 Identifying low quality licence plates from three-level local binary pattern features

based on ensemble of AdaBoost cascade classifiers

This method employed an ensemble of AdaBoost cascade classifiers with a three-level local

binary pattern (3L-LBP) operator for detecting LPs from vehicle images having low/high

lighting and contrast conditions, fog, dusk and distorted. It includes two phases: testing and

training. The same preprocessing and extraction techniques were applied for both phases. The

images in the database include different types of noise with the texts referring to the false

positive regions, such as dust, surface textures, distortion, and dirt. This noise increases the

unwanted feature intensities in an image. For de-noising, a two-dimensional Gaussian filter

and a contrast limited adaptive histogram equalization (CLAHE) method were used to filter

out the noise and contrast problems. The enhancement steps could help to reduce the change

in illumination and feature dimensions. The LBP is an effective operator for the illumination

conditions. It can solve the occlusion and rotated LP problems. Therefore, it was used in this

study as a powerful operator to extract features from three preprocessing levels. The first level

is the extraction of LBP features from the grayscale image. The second one is extraction of

LBP features from a Gaussian filtered image. The final level is the extraction of LBP features

Chapter 1 Introduction n

P a g e 6 | 254

6

from the CLAHE image. After that, the AdaBoost algorithm was used to train and classify the

extracted LP features to produce strong cascade classifiers that consists of a large number of

the weak classifiers or LBP features. An ensemble of cascade classifiers was used as detectors

or trained models to detect LP objects. From the experiments in Chapter 3, it can be observed

that the proposed method works very well compared with other existing methods. It produced

a good detection accuracy with less execution time and good false positive rate (FPR), 98.56%,

0.780miliseconds, 5.6%, respectively. The preprocessing methods and adding LP images with

different illumination conditions to the training dataset could help to reduce the FPR and

increase system performance. The content of this chapter was published by Expert Systems

with Applications, 92, 216–235.

1.3.2 Developing a texture descriptor to detect complicated licence plates based on an

extreme learning machine classifier

This method provided many improvements to the method introduced in Section 1.3.1 above.

An efficient texture descriptor was developed to make the detection system more robust with

less processing time and a good detection rate. A multi-level extended local binary patterns

(MLELBP) descriptor with a Gaussian filter and CLAHE method were used to extract different

features from complicated LP images. Each LP produced four LP images from four

preprocessing levels that were applied on the extended local binary (ELBP) descriptors.

Therefore, the number of training LP images was increased. Several relevant features were

extracted from those images. The English car LP database was extended by making many

changes in the original database to reflect different difficult conditions. It helped to improve

the performance of the detection system. The ELM classifier was used to train the extracted LP

features and produced a strong features vector as a detector. The proposed method was tested

on unseen data (distorted vehicle images). The experimental results were compared with

existing LPD algorithms with the same database. The method has outperformed other

algorithms in terms of classification, detection accuracies, and good detection time, 99.78%,

99.10%, and 0.735miliseconds, respectively. Moreover, many of the existing algorithms have

only the testing phase (preprocessing stage) under some assumptions. This algorithm works

without any assumptions, due to using two phases of testing and training. It could be used

efficiently with real-time applications. However, it needs some further improvements to reduce

the FPR and the time of the extraction stage using good preprocessing methods. The detail of

this method is given in Chapter 4. The content of this chapter was published in IEEE

 Chapter 1 Introduction

P a g e 7 | 254

7

Transactions on Intelligent Transportation Systems, Digital Object Identifier

10.1109/TITS.2019.289799, 1524-9050 © 2019 IEEE.

1.3.3 Developing learning-based preprocessing methods for detecting complicated

vehicle licence plates

A precise LPD system with a low FPR is very crucial to increase the efficiency and safety of

any transportation system. This study developed an efficient preprocessing method to detect

LPs from low-quality vehicles images. It contributed to improvements in the MLELPB_ELM

method introduced in Section 1.3.2. It includes the combination of preprocessing methods, such

as an enhancement cumulative histogram equalization (ECHE) and CLAHE. Those techniques

were used for filtering unwanted LP regions or FP values and they reduced the dimensions of

the features. The quality of normal vehicles images were kept during the enhancement stage.

After that, the LBP and the histogram of the oriented gradient (HOG) were used as powerful

descriptors for very sensitive and difficult conditions. They were used to extract the key

features from three types of licence plate resolutions in the database. The same preprocessing

and extraction techniques were used for both the training and testing phases. Then, the key

extracted LP features were used as the inputs to feed the support vector machine (SVM) and

ELM classifiers to build the trained models. A mean-shift algorithm was used with the detector

to reduce redundant bounding boxes as well as FP values. For the performance assessment,

detection metrics, object localization, and the ROC curve were used to evaluate this work. The

experiments, compared the proposed method with the newest existing approaches. It achieved

excellent results, in terms of detection accuracy, processing time, and FPR, 99.62%,

0.2408miliseconds, and 1.675%, respectively. The detail of this method was given in Chapter

5. The content of this chapter was published to IEEE Access journal.

1.3.4 Distorted vehicle licence plates detection using hybrid features and an extreme

learning machine classifier

To make the LPD system more robust with high detection accuracy and less execution time, a

new detection method was developed to add slight improvements in MHOG_LBP_SVM

method introduce in section 1.3.3. The detection of LPs is similar to finding the ROIs that may

contain the LP or non-LP. In this method, the preprocessing techniques of the

MHOG_LBP_SVM method were developed to produce a new improvement technique,

Chapter 1 Introduction n

P a g e 8 | 254

8

enhancement contrast-limited adaptive-cumulative histogram equalization (ECLACHE). It

was used to improve the distorted test images. Then, a new median robust ELBP (MRELBP)

descriptor was used to extract different and difficult LP features from the improved images.

This descriptor was developed recently by Liu et al. (2016) based on a median filter to make

more improvements on the original ELBP descriptor. Also, a speeded-up robust feature

(SURF) descriptor was used with the MRELBP descriptor to increase the extraction accuracy

for more complicated LPs feature. Then, the ELM classifier with a mean-shift algorithm was

used to classify the extracted MRELBP_SURF features to build strong LP detector. The

performance of the MRELBP_SURF_ELM method can be observed in Chapter 6. The

proposed method reduced both the range of the unwanted regions of the LP and the extraction

time. The detection metrics using the confusion matrix and the ROC curve were used to

evaluate the work. The experimental results show that the overall classification accuracy of the

proposed algorithm is about 100% for all complicated LP conditions. The performance of the

LPD system was very satisfactory, with good processing time and FPR, 99.71%,

0.323miliseconds, and 2.24%, respectively. The content of this chapter has been submitted to

the journal.

1.3.5 Investigating which detection method is better to achieve the main requirements

for detecting complicated vehicle licence plates

This thesis investigated which developed method has the best performance for LPD systems.

This research compared the performances of four proposed methods, 3L-LBP_Adaboost,

MLELBP_ELM, MHOG_LBP_SVM, and MRELBP_SURF_ELM, on two English car LP

databases. The evaluations of the experimental results concluded that the last two methods,

MHOG_LBP_SVM, and MRELBP_SURF_ELM were the best methods for detecting LPs

from low-quality vehicle images. Those methods could be used for real-time applications. In

this thesis, each proposed method presented a new idea to improve the performance of the LPD

system by determining the drawbacks that face the detection system and implementing the

solutions to fix it. The 3L-LBP_Adaboost method determined the best preprocessing and

extraction techniques that should be selected to make LPD systems work very well under

difficult conditions. After that, a new extraction and detection method, MLELBP_ELM, was

developed to improve the weaknesses of the 3L-LBP_Adaboost method. This method achieved

good detection results, but increased the extraction time. Moreover, the FPR was slightly

improved, compared with that by 3L-LBP_Adboost method. This thesis developed new

 Chapter 1 Introduction

P a g e 9 | 254

9

methods to detect LPs in low quality and complicated vehicle images. These four approaches

contribute to successful detection system performance. They can be used to improve the work

of existing ANPR systems under difficult conditions. Hence they reduce the human effort to

police activities in transport systems.

1.4 Structure of the Thesis

This thesis consists of seven chapters structured as follows:

Chapter 2 provides an overview of the ANPR system background. This chapter

introduces briefly ANPR system applications and purposes, their components, phases, and

concepts of classification, including its methods and the structure.

Chapter 3 introduces a new LP detection method based on extracted features from

three preprocessing levels of the local binary pattern descriptor (3L-LBP). An ensemble of

Adaboost cascade classifiers was used for detecting regions of the interest (ROI) for LPs. The

results were compared with the results reported from the existing LP detection methods. This

method can help improve the LPD systems for work under difficult conditions.

Chapter 4 presents a new extraction technique based on the multi-level preprocessing

extended local binary patterns (MLELBP). The extreme learning machine (ELM) was

employed for the classification task. The experimental results were compared with the results

of the 3L-LBP_Adaboost method and the results of the existing LPs detection methods. This

extraction method could help to improve the classification accuracy for the LPD system and

produce a good detection rate under complicated conditions.

Chapter 5 focuses on developing an efficient preprocessing method for reducing the

false positive rate (FPR) and increasing the accuracy rate for the LPD system. It includes the

combination of an enhancement cumulative histogram equalization and a contrast-limited

adaptive histogram equalization (ECHE_CLAHE) techniques. For extracting LP features, the

combination of the local binary pattern and median filter histogram of the oriented gradient

(LBP_MHOG) have been used. The support vector machine (SVM) classifier was used to train

the extracted LPs features. This chapter investigates the performance of these techniques for

improving the quality of the LPD system. It also investigates how much more efficient the

SVM is in classifying the complicated features due to preprocessing techniques and good

Chapter 1 Introduction n

P a g e 10 | 254

10

descriptors. The results were compared with the results of the 3L-LBP_Adaboost,

MLELBP_ELM methods, and the results reported from the newest existing LP detection

methods.

Chapter 6 presents the modified version of the ECHE_CLAHE techniques. It includes

the enhancement contrast-limited adaptive-cumulative histogram equalization (ECLACHE)

technique. In addition, another combination of strong descriptors, the median robust extended

local binary and the speeded up a robust feature (MRELBP_SURF) was used for extracting

complicated LPs features. The ELM classifier was used to learn features and build the trained

models, or detectors, to detect LP. This chapter investigates how the performance of the LPD

system was improved by using this method.

Chapter 7 provides a summary and the findings of this research presented in this thesis.

This chapter also discusses the ideas for future work.

Appendices A-D provide the simulation codes for the proposed approaches, which are

presented in Chapters 3, 4, 5 and 6.

 Chapter 2 Overview of an LPD System and Its Components

P a g e 11 | 254

11

CHAPTER 2

OVERVIEW OF AN LPD SYSTEM AND ITS COMPONENTS

The goal of this thesis is to develop methods that are capable of detecting LPs from complicated

vehicle images under difficult conditions. In order understand the detection system

components, this chapter provides an overview of an LPD system structure. General concepts

about detection system stages or components are discussed in Section 2.1. Section 2.2

introduces a core idea about the classification techniques of an LPD system. Section 2.3

overviews LPD system techniques that are currently used in each system stage. Section 2.4

provides brief details about LP detection methods used in each stage. Section 2.5 discusses

different detection methods reported in the literature about LP identification. Finally, a brief

summary of the detection system and its components and classification techniques for this

thesis is given at the end of this chapter.

2.1 The background knowledge associated with LPD systems

The ANPR was firstly invented in 1976 in the UK at the Police Scientific Development Branch.

The prototype of the systems worked in 1979, and the contracts were awarded to produce the

industrial systems like the computer recognition systems (CRS) in the Wokingham, UK. Many

early trial detection systems were deployed on the Dartford tunnel and the first arrest operation

in 1981 was made through the detection of a stolen car (News 2005). However, ANPR systems

did not become widely used until they became cheaper and easier to use during the 1990s. In

the early 2000s, the collection of the ANPR data for future use to solve crime was reported

(Taylor 2005). The first documented case in which an ANPR system was used to help to solve

a murder occurred in 2005, in the Bradford, UK, where the ANPR system played an important

role in locating the killers of Sharon Beshenivsky (News 2005). The next subsection describes

system stages or components.

2

 Chapter 2 Overview of an LPD System and Its Components n

P a g e 12 | 254

12

2.1.1 Detection system components

The software aspect for ANPR system runs on the standard hardware desktop computer and

could be linked to the other applications with the same databases. It uses a series of image

enhancement techniques to improve and normalize the input image with the number of an LP.

Then, it uses many extraction and classification algorithms to extract and detect LP

information. Generally, the ANPR systems are deployed in two basic ways. The first way

allows for the entire detection process of LPs to be implemented in real time. The second way

transmits all images captured by the system camera from many lanes to a remote computer

location. Then, it implements the detection process with the delay in the time depending on the

speed of processing methods used. There are four primary stages that the LPD system required

for identifying an LP, which are listed below.

2.1.1.1 Vehicle images acquisition

The first stage is the vehicle image acquisition using a camera. The accuracy of any detection

system depends on the quality of the camera, such as type, resolution, light, shutter speed, and

the installation method. Sometimes many problems appear due to the short or long distance

between the vehicle and camera which results in low/bad quality images.

2.1.1.2 Preprocessing stage

Once the vehicle image is captured, then further processing is carried out. It needs to improve

the texture pattern by reducing the noise information in an LP background to enhance the

processing speed for the extraction and detection stages. This stage has many steps applied to

a vehicle image, such as resizing of the resolution, removal of the noise, and the conversion of

the color from RGB to grayscale level or to the binary format (black and white) using several

preprocessing techniques. Subsection 2.3.1 presents more details about those techniques.

2.1.1.3 Extraction stage

After the preprocessing stage, regions of interest (ROIs) are extracted from a vehicle image.

This stage also influences the accuracy of the LP detection system. The vehicle image is

cropped to the middle and the extraction methods are applied on every pixel of the rest vehicle

image. This will reduce the processing time for the extraction stage, especially if those methods

use unsupervised learning algorithms. But, the LP can exist anywhere in an image. Therefore,

the extraction stage of the LP depends on some features, such as boundary, edges, color,

 Chapter 2 Overview of an LPD System and Its Components

P a g e 13 | 254

13

background as well as the texture features. These features can be used to identify the LP region

using many extraction methods. In addition, two or more extraction techniques can be

combined to extract further features. The detailed description of extraction techniques was

given in Section 2.3.2.

2.1.1.4 Classification and detection stage

The third stage is to detect the LP area from the extracted features using many supervised

learning algorithms. This stage depends on the quality of preprocessing and extraction methods

to obtain the LP areas (Hongliang & Changping 2004a; Yousef et al. 2015). The relevant

extracted features of the LP are classified by using classifiers to produce trained models. The

detectors could detect different types of complicated LP features. There are many studies using

unsupervised learning algorithms or preprocessing methods to detect two or more LP

difficulties. This leads to increase the processing time for the detection system (Silapachote et

al. 2005; Lee et al. 2013; Patel et al. 2013). The output result of this stage as a decision function

to detect LP regions from vehicle image; whether it is LP or non-LP. Moreover, the aim of

using supervised learning algorithms on this stage is to obtain high system performance with

less execution time for the testing phase.

2.1.1.5 Segmentation and recognition stage

The final stage is to recognize the extracted characters from detected LP area. This stage uses

many segmentation and recognition methods like the template matching techniques or

classifiers, such as neural networks and fuzzy classifiers. In this stage, the LP number converts

into machine-encoded text. Here optical character recognition (OCR) is used to recognize the

plate numbers from the LP image.

 Figure 2.1 shows the structure of the LPD system stages. The performance of the

detection system relies on the robustness and reliability of each individual stage. This research

focused only on the important stage of the LPD system, detection stage for detecting LPs from

complicated vehicles images. Hence, the segmentation and recognition stages were not

considered in this thesis.

The main objective of this study is to develop LP detection methods that yield better

performance for detecting LPs from vehicle images having different difficult conditions, such

as low/high contrast, dusk, fogy, distorted and so on (see Figure 2.2).

 Chapter 2 Overview of an LPD System and Its Components n

P a g e 14 | 254

14

2.2 Applications of LPD systems

The ANPR systems have become a very important tool in many surveilling applications over

the past few decades. They are often used as a surveillance technique to identify LPs of vehicle

images. There are several ANPR system applications, such as security systems (Sheldon

2013), highway road tolling systems (Song & Sarker 2014; Panahi & Gholampour 2017),

Figure 2.1. Stages involved in licence plate detection (LPD) system.

Low/high contrast

Background clutter

Illumination and View point variation

Distortion

Figure 2.2. Examples of difficult conditions for licence plate detection.

 Chapter 2 Overview of an LPD System and Its Components

P a g e 15 | 254

15

parking management systems, enforcing moveover laws for emergency vehicles (Roberts &

Casanova 2012), traffic control (Dehghan et al. 2017), traffic management systems (He et al.

2017), and so on (see Figure 2.3).

The existing applications often work under some standard conditions, such as low/high

lighting, rain, and limited day/night lighting. It is still very challenging to identify LPs from

complicated vehicle images because of environmental effects.

2.3 Overview of an LPD system classification

Classification techniques play an important role in the field of machine learning. As an LP

contains many extracted data for analysis purposes, such as the classification. Therefore, it is

very important to extract useful features from an LP image, and then use those features for the

classification. The following subsections provide a detailed description of the LP classification

methods in this research.

2.3.1 The classification concept

The classification task occurs throughout our daily life. It is a very essential means to make a

decision, based on the available information. In the field of machine learning, the classification

task denotes an algorithmic procedure. It works to assign one of a number of categories as input

data (Brunelli 2009; Duda et al. 2012). The input data refer to instances and categories refer to

classes. For example, the LP instance includes two classes or categories an LP or non-LP. This

instance described by a vector of features which includes all known instance characteristics.

 Parking Guidance System Access Control to Residential Traffic Law Enforcement

 Motorway Road Tolling Parking and Secure Access Road Signs Systems

Figure 2.3 Examples of ANPR system applications.

 Chapter 2 Overview of an LPD System and Its Components n

P a g e 16 | 254

16

The main goal from the classification task is to assign the class labels for the extracted

features among a set of data for a specific problem. The term classifier refers to a mathematical

decision function which is implemented using the classification algorithm that maps the input

data to it. The classifier is able to learn and identify the class of a features vector from training

datasets. The training sets are included feature vectors with class labels.

The difficult LP has a large amount of different data, or values which describe relevant

information of the LP area. These values, named “features”, which are aggregated into a vector,

the “features vector” (Makinacı 2005). Thus, the extracted feature process can be defined as a

transformation operation to transform one or many LP features into a features vector. This

operation helps to describe LP patterns and reduce the dimension of representation of those

patterns. The LP classification means to classify different features of LPs and based on those

features will be decided which class the LP belongs to. The output of the classification task is

a decision function to present an LP or non-LP.

2.3.2 Types of classification techniques

There are two main types of machine learning algorithms: supervised and unsupervised (see

Figure 2.4). In supervised learning, the observations of a group of data are related with the class

labels (Zhu & Goldberg 2009; Duda et al. 2012). In unsupervised learning, the observations of

a group or set of data are unlabelled or assigned to the known classes (Barlow 1989). The next

subsection provides more details about those types of classification.

2.3.2.1 Supervised classification learning algorithms

Supervised classification is one of the algorithms associated with machine learning that deals

with a set of data that have some information about the dataset. This type of classification, the

Figure 2.4: Types of classification learning algorithms

 Chapter 2 Overview of an LPD System and Its Components

P a g e 17 | 254

17

class labels information are given during the training dataset to train the classifier and produce

the classification model (Brunelli 2009; Duda et al. 2012). The supervised approach proposes

that a set from the training data have a set of relevant labelled instances which refer to correct

output (Mohri et al. 2018).

In the supervised classification, given a set of the training examples N of the pairs

form {(x1, y1), …, (xn, yn) },where xi is a set of features or the feature vector and yi is the class

label of the i-th example. The learning algorithm seeks about the function g: X→Y, where X is

the space of the input data and Y is the space of the output. For example, the spam filtering

problem, the xi refers to an email and yi refers to either “spam” or “non-spam”. Moreover, the

class labels usually represent as an integer numbers y. Therefore, in the supervised

classification learning, the aim found the transformation between the input feature space x and

the output class label space y. If the output of class label has a known number of elements, such

as 1, 2,......, L then the problem was considered as classification task. In the case of classifying

the LP problem, the classes labels are divided into two categories, such as the LP and non-LP

which are represented as y = {-1, +1} or y = {0, 1}. Figure 2.5 shows the structure of a

supervised learning technique.

There are many supervised classification learning algorithms, such as the support vector

machine (SVM) (Cortes & Vapnik 1995), extreme learning machine (ELM) (Huang et al.

2004), Adaboost algorithms (Freund & Schapire 1995), linear discriminant analysis (LDA)

(Fukunaga 2013), decision trees (Quinlan 1986), neural networks (NN) (Haykin 1994), logistic

regression (Hosmer Jr et al. 2013), kernel estimation (Gasser & Müller 1979), linear regression

(Seber & Lee 2012), Bayesian network classifier (Friedman et al. 1997), a fuzzy K-nearest-

neighbor (kNN) (Keller et al. 1985), etc.

Figure 2.5: The structure of a supervised learning classification algorithm

 Chapter 2 Overview of an LPD System and Its Components n

P a g e 18 | 254

18

A database is usually divided into two sets, the training dataset and the testing dataset,

in a typical supervised learning procedure. Using the training dataset, the classifier is

constructed. After that, the performance of the trained classifier is evaluated by using the

testing dataset. This evaluation process sometimes repeats for the different parameters of the

constructed classifier. Therefore, the parameters of the classifier should be optimized in order

to be ready for assigning the class labels to the features with unseen class labels. The main

goal from the learning procedure is to maximize the testing accuracy on the testing dataset.

This study used the supervised learning algorithms to classify LPs regions to produce

the trained models. During experiments, the English cars plate database is divided into two

groups of data, which are the training and testing datasets as shown in Figure 2.6. The training

dataset is used to train the classifier and build the trained model to detect an LP area, while the

testing dataset is used for evaluating the performance of the trained model.

2.3.2.2 Unsupervised learning classification algorithms

The unsupervised learning classification is the second approach of machine learning

algorithms, that involves grouping of the unlabeled input data into classes to determine hidden

patterns. This procedure assumes the training data have not been labeled and try to find the

inherent patterns in the data to determine the correct output value for a new instance data

(Brunelli 2009; Duda et al. 2012). In this type of learning, the class label information is not

Figure 2.6: Dividing the vehicles images database into two groups: training and testing

datasets.

 Chapter 2 Overview of an LPD System and Its Components

P a g e 19 | 254

19

provided even for a small number of data. Figure 2.7 shows the structure of an unsupervised

learning technique.

The common examples of unsupervised learning algorithms, K-means clustering

(Hartigan & Wong 1979), principal component analysis (PCA) (Jolliffe 2011), hierarchical

clustering (Johnson 1967), kernel principal component analysis (Kernel PCA) (Schölkopf et

al. 1997), independent component analysis (ICA) (Hyvärinen & Oja 2000), hidden Markov

models (Rabiner & Juang 1986), categorical mixture model (Oberski 2016), and so on.

Combination of the two classification learning procedures (supervised and

unsupervised) has been recently explored (Chapelle et al. 2009), is a semi-supervised learning

procedure, which is used a combination of the small set of labeled data and a large set of

unlabeled data.

2.3.3 Structure of a LPD classification

 A classification process includes two stages: feature extraction and classification. The

extraction for the most important LP features values is done at the extraction stage. The

classification stage requires a classifier to determine the correct class of the LP area based on

the extracted features. The concept of an LPD classification is provided in Figure 2.8. From

this figure, it can be seen that appropriate LPs features were extracted from the LPs features

space. At the LP features space, the LP features are divided into two classes, the LP and non-

LP.

 In this thesis, five extraction methods were used to extract complicated LP features

under difficult conditions. Three levels local binary pattern, multi-levels preprocessing

extended local binary pattern, median robust extended local binary pattern, median filter

histogram of the oriented gradient, and the speeded-up robust feature extraction. While the

Figure 2.7: The structure of a unsupervised learning classification algorithm

 Chapter 2 Overview of an LPD System and Its Components n

P a g e 20 | 254

20

supervised learning algorithms are Adaboost, extreme learning machine, and support vector

machine was used to perform the classification stage to classify and train the extracted LP

features.

2.4 Overview of processing stages in licence plate detection methods

In this section the basic processing stages for developing a ANPR system are described.

2.4.1 Image preprocessing stage

Researchers have proposed different detection methods for the image preprocessing stage.

While others have used this stage for both system phases: testing and training. Initially, the

vehicle image is captured using a high-quality camera. After that, the preprocessing is applied

to the captured image to improve the image and reduce unwanted features or noise. In the next

step, the improved image is converted from a color RGB image to the grayscale image

depending on a threshold value (Kaur & Kaur 2014). An image preprocessing stage includes

the following methods.

2.4.1.1 Image conversion

The converting of a color RGB image to a grayscale one is a very important step for ANPR

system stages. Sharma et al. (2014) used a wavelet transform, Gaussian filter, and then

preserved the high-frequency component. Al-Shemarry et al. (2018) and Al-Shemarry et al.

(2019) converted a color image into a grayscale one and used the preprocessing filter methods

to filter out unwanted features or false positive values.

2.4.1.2 Binary processing

The next step is to convert a grayscale image to a binary representation. Samra and Khalefah

(2013) suggested using a dynamic adaptive threshold method to avoid the illumination

variation present in the vehicle image. There are many methods to convert a grayscale image

Figure 2.8: The process of the licence plate classification.

 Chapter 2 Overview of an LPD System and Its Components

P a g e 21 | 254

21

into binary, such as the Otsu algorithm, which is faster than the Sauvola and Niblack

algorithms. Both methods are based on a thresholding value of an image and provided good

results for the poorly illuminated images (Puloria & Mahajan 2015).

2.4.1.3 Noise removal

There is still some noise remaining in the grayscale image. Therefore, different filtering

techniques are applied to remove this noise. The filters that are widely used in ANPR systems

are Gaussian and median (Prabhakar et al. 2014; Karwal & Girdhar 2015; Azam & Islam 2016;

Al-Shemarry et al. 2019). Kaur and Kaur (2014) suggested that the noise can be removed by

using an iterative bilateral filter in the transport systems. Some researchers proposed blurring

the image to filter out the noise (Beibut et al. 2014; Al-Shemarry et al. 2018).

The steps above are not fixed. Karwal and Girdhar (2015) proposed different steps to

remove noise. The first step is to convert the captured image to grayscale. The second step is

to apply a median filter to filter out the noise. The final step is to apply the Otsu method. Beibut

et al. (2014) only used the Otsu algorithm for image binarization. Moreover, Kaur and Kaur

(2014) in the image preprocessing stage implemented some different steps. After converting a

color image RGB to a grayscale, they applied an iterative bilateral filter to remove the noise.

Then the contrast of the image was enhanced using the contrast adaptive histogram equalization

(CAHE) method (Sharma & Kaur 2011; Al-Shemarry et al. 2018, 2019). Selecting appropriate

methods for the preprocessing stage is a very important process for LPD systems to obtain

robust detection results in less time.

2.4.2 Extraction methods for LPD systems

In this stage, the LP regions from the image are being extracted out after the enhancement at

the preprocessing stage. The LP extraction stage influences the accuracy of an LPD system.

The input data to this stage is a vehicle image and the output is a part of the vehicle image that

contains the potential LP region. The LP can exist anywhere inside the vehicle image, and it

can be distinguished by its features. The LP color is one of the features since some countries

have certain colors for their LPs. A rectangular shape of the LP boundary is another type of

features that are used to extract the LP. Also, the color change between the LP characters and

the LP background, which is known as the texture, is used to extract the LP region from vehicle

images. The combination of two or more features can be identified as the LP. In the following

subsections, the existing LP extraction methods are categorized depending on the type of

features used.

 Chapter 2 Overview of an LPD System and Its Components n

P a g e 22 | 254

22

2.4.2.1 Licence plate extraction using boundary/ edge information

Because of the shape of an LP is normally rectangular with known window size, it can be

extracted through finding all the possible rectangles in a car image. Edge detection techniques

are commonly and widely used to find these rectangles (Wang & Lee 2003; Hongliang &

Changping 2004b; Zheng et al. 2005; Faradji et al. 2007). Many methods, Sarfraz et al. (2003),

Zheng et al. (2005), Kanayama et al. (1991), Kamat and Ganesan (1995), and Sanyuan et al.

(2004) used the Sobel filter to detect the LP edges. Due to the color transition between the LP

and the vehicle body, the boundary of the LP is represented using edge characteristics. The LP

edges have two horizontal and vertical lines when performing horizontal and vertical edges

detection. Then, getting a complete rectangle when performing both edges at the same time.

Al-Ghaili et al. (2008) proposed a new vertical edge extraction method. It showed that it is

faster than the Sobel filter by about seven to nine times. The block-based with high edge

magnitudes is identified as the possible LP areas. Since the block processing does not depend

on the edges of the LP boundary, it can be applied to an input image with an unclear LP

boundary (Lee et al. 2004). A boundary-based extraction uses the Hough transform (HT)

(Kamat & Ganesan 1995; Duan et al. 2004a). It detected the straight lines in the vehicle image

to locate the LP. It has the advantage of detecting the straight lines in an image with up to 30°

inclination. Boundary line based methods also use the HT combined with a contouring

algorithm (Duan et al. 2005). Kim and Chien (2001) used the generalized symmetry transform

(GST) to extract the LP features. after getting the edge features the car image scanned in

selective directions for detecting LP corners. Then, the GST used to detect a similarity between

those corners and to form LP regions.

2.4.2.2 Licence plate extraction using global features

The connected component analysis (CCA) technique is important for a binary image processing

(Matas & Zimmermann 2005; Qin et al. 2006; Wu et al. 2007; Anagnostopoulos et al. 2008).

It scanned a binary image and labeled image pixels into components depending on pixels

connectivity. The spatial measurements like area and the aspect ratio (M×N) are commonly

used for LP extraction (Bellas et al. 2006). Chacon and Zimmerman (2003) applied a contour

detection method on the binary image to identify the connected objects which are chosen to be

the LP candidates due to having the same geometrical features. This method failed to detect LP

in the case of the poor quality images because of the distorted contours. Miyamoto et al. (1991)

 Chapter 2 Overview of an LPD System and Its Components

P a g e 23 | 254

23

used the 2-D cross-correlation method to find the LP. This method with a pre-stored LP

template is performed over the entire vehicle image to locate the most likely LP area.

 Extracting LPs using correlation with the template is independent of the LP position in

an image.

2.4.2.3 Licence plate extraction using texture features

This type of extraction method depends on characters present in the LP area. It results in

significant changes for the greyscale level between the characters color and LP background

color. Many texture extraction techniques are used by researchers (Yang & Ma 2005;

Muhammad & Altun 2016b; Azam & Gavrilova 2017; Tsai et al. 2017; Al-Shemarry et al.

2018, 2019). Muhammad and Altun (2016b) employed the genetic algorithm (GA) method to

perform the LP detection by repeatedly selecting extracted points of the HOG descriptor within

the car image randomly. Then, it evaluated the LP regions at these points. Finally, it selected

the regions of the LP which give the best similarity score. Tsai et al. (2017) used the modified

histograms of oriented gradients (MHOGs) to extract the principal direction for each pixel in

an image. Then, they determined the principal direction of each sample and its component cells.

Al-Shemarry et al. (2018) extracted LPs feature from a three preprocessing levels using

filtering methods with a powerful texture descriptor, local binary patterns (LBP). This method

succeeded to extract different and difficult features from the distorted LP image (see chapter

3). Also, Al-Shemarry et al. (2019) used a new texture extraction method, MLELBP, to extract

complicated features for LPs. This method used the new texture descriptor with preprocessing

techniques to extract multi feature from three types of ELBP descriptors (see chapter 4). Deb

et al. (2009) proposed an LP detection method based on using a sliding window and the

histogram technique. Image transformations tools are also widely used in the LP extraction

methods, such as the Gabor filter which is one of the main tools for the texture analysis (Caner

et al. 2008). It has the advantage to analyze the texture in unlimited scales and orientations.

Parisi et al. (1998) used the discrete Fourier transform (DFT) to detect the horizontal position

in a row-wise fashion and the vertical position in a column-wise fashion of the LP.

The texture features make the classifier very invariant to the color, brightness, and size

changes. Therefore, all the methods that are based on the texture features have the ability to

detect the LP even if its the background and boundary are very deformed. Due to the many

advantages of texture descriptors, this research focused on using this type of extraction method

to achieve its objectives.

 Chapter 2 Overview of an LPD System and Its Components n

P a g e 24 | 254

24

2.4.2.4 License plate extraction using color features

Since some countries have specific LP colors, this work requires the extraction of LPs by

identifying their colors inside the car image. The simple and easy idea is that the combination

of the LP colors and characters is unique. This combination appears almost only in the LP

regions (Shi et al. 2005). According to a specific format of Chinese LPs, Shi et al. (2005)

proposed that all the input pixels in an image are classified by using the hue, lightness, and

saturation (HLS) model color into 13 categories. Lee et al. (1994) converted the RGB image

color into the HLS, then used a neural network to classify the color feature of each pixel. The

neural network outputs were green, red, and white colors for Korean LPs. The same LP color

is projected horizontally and vertically to identify the highest color density of the LP regions.

Pan and Li (2010) employed a fast mean-shift method to deal with the illumination variation

problems related to the color based method. Wang et al. (2008) employed the hue, saturation,

and value (HSV) color features space to extract the LP features. Wan et al. (2011) proposed a

new method to localize the LP using the color barycenters hexagon model which is only slightly

sensitive to the brightness conditions.

Extracting the LP using color features has the ability to detect the deformed and inclined

plates. However, also it has several difficulties, especially for different illumination conditions.

2.4.2.5 License plate extraction using character features

There are many LP extraction methods proposed that are based on locating characters

positioned inside the image. The existence of the character is examined using those methods.

Then, the regions of characters are extracted as LP regions if the character is found. After that,

the corresponding LP region is detected. Hontani and Koga (2001) extracted characters using

the scale space analysis tool. It extracted the large size of blob type figures, which consists of

the smaller line-type figures as the LP character candidates. The character regions are

recognized through the difference between the character background and its region and the

width of the characters. Then the LP is extracted by finding the distance of the inter-character

space in the plate region (Cho et al. 2011). Yongchun and Jing (2012) introduced a method to

find and extract all the characters that look like LP regions in a car image, instead of using the

LP features directly.

These extraction methods using characters from the binary car image to define the LP

region are time-consuming due to processing all the binary objects which look like an LP

 Chapter 2 Overview of an LPD System and Its Components

P a g e 25 | 254

25

object. Moreover, these methods produce many false positive values when there is other text

inside the image.

2.4.2.6 License plate extraction combining two or more features

Many methods used a combination concept as an effective way to extract two or more features

for LPs regions. In this case, the extraction methods called hybrid extraction methods (Le &

Li 2006). The color and edges features were combined in Xu et al. (2004) and Wang et al.

(2010) methods. Wu et al. (2009) applied the hue and lightness sub-band (HLS) feature of the

2-D discrete wavelet transform (DWT) to significantly highlight the vertical edges of the LP.

The most probable candidate was selected by edge density verification and an aspect ratio

constraint. Al-Shemarry and Li (2019b) used the combination of MHOG and LBP features to

extract a multi LP features from complicated vehicle images (see Chapter 5). Also, Al-

Shemarry and Li (2019c) introduce robust extraction method using the MRELBP descriptor

combined with SURF features to extract LPs regions from the vehicle image under distorted

conditions (see chapter 6). Mao et al. (2010) proposed a new extraction method using the

wavelet analysis and improved HLS color to extract LPs regions.

2.4.3 LP classification and detection stage

In the detection stage, the LP area is being detected from the vehicle image using a classifier,

detector, or trained model. There are different kinds of the classifiers that are used to classify

extracted LP features, such as SVM, ELM, Adaboost, neural networks (NNs), convolutional

neural network (CNN) and so on. Recently, deep neural networks (DNNs) (Masood et al.

2017) and CNN (Li & Shen 2016; Liu et al. 2018) were used to learn the key features of LPs.

They showed a good detection accuracy. However, the learning mechanism for DNNs in

difficult conditions, such as image rotation and scaling, cannot have robustness guaranteed

unless the training dataset covers all the various LP conditions. The SVM classifier is widely

used for LPD (Yuan & Cheu 2003; Ho et al. 2009; Sun & Watada 2015). Al-Shemarry et al.

(2019) used the SVM with a mean-shift algorithm to train the combination of the MHOG and

LBP features to detect the LP area for complicated vehicles images (see chapter 5). Also, many

multiclass identification algorithms are used, such as NNs (Park et al. 1999; Yuan & Cheu

2003; Porikli & Kocak 2006) and the AdaBoost cascade classifier (Ho et al. 2009; Chen et al.

2015; Al-Shemarry et al. 2018). A cascade classifiers had shown good performance with other

methods in terms of the detection process speed (see chapter 3). However, these algorithms are

 Chapter 2 Overview of an LPD System and Its Components n

P a g e 26 | 254

26

not very robust if they are used without efficient enhancement techniques that should be applied

to both system data phases: the training and testing. CNN is also used to learn features with

ELM (Ding et al. 2017). This method yielded competitive results with less execution time

compared with the DNN methods. Also, the ELM was used to detect LP regions with the HOG

and by means of the maximally stable external region (Gou et al. 2014). The ELM classifier

was used to classify a MLELBP features to detect complicated LPs (Al-Shemarry et al. 2019)

(see chapter 4). Moreover, an ensemble of the ELM classifiers also was used to classify the

combination of MRELBP and SURF features (see chapter 6). There are also many ensemble

classifiers proposed to detect different LPs conditions (Zhao et al. 2010).

2.5 Existing methods of the LPD system

Over the last decade, many studies in the area of ANPR systems were conducted (Du et al.

2013). Some of the proposed detection systems depend on the color and language, some are

sensitive to the illumination and complex background, while some are restricted to good

weather conditions (Azam & Islam 2016). In addition, the camera distance and angle

restrictions make detection systems less robust (Anagnostopoulos et al. 2008). According to

the Azam and Islam (2016), detecting the LP area in hazardous conditions is not an insignificant

task, especially when the complex background of the LP produces a number of the false

positive values. However, this method proposed using different LPs parameters for different

conditions. Recent studies between 2014 and 2016 used a fixed threshold value to maximize

the method accuracy based on filtering criteria, such as edge density, counting intensity

transition, color, and height and width (Samra & Khalefah 2013; Baharlou et al. 2015; Davis

et al. 2015; Yousef et al. 2015). The car images used to evaluate detection systems typically

had simple complexity in the background (Gerber & Chung 2016; Muhammad & Altun 2016a).

Overall, most of the existing LPD methods did not consider filtering techniques

comprehensively. Kusakunniran et al. (2014) used the SVM as the machine learning tool which

was applied directly to the LP images without extracting any discriminative LP features. This

makes the LPD system very sensitive to geometric transformation and noise. It reduces the

detection accuracy and increases the training time. Baohua et al. (2010) proposed finding an

LP location based on histogram equalization. This method addressed noise caused by light

conditions. The histogram equalization technique works well when the LP image is affected by

one noise source (e.g. light condition) but not with the different sources. Al-Ghaili et al. (2012)

proposed a car LP detection method based on the vertical edge by using the Sobel gradient

information. This method claims that it works very well with low contrast images conditions

 Chapter 2 Overview of an LPD System and Its Components

P a g e 27 | 254

27

captured using web cameras, but it may not be robust with complex backgrounds. Yu et al.

(2015) introduced a method to find the LP location based on the wavelet transform with

empirical mode decomposition (EMD) analysis tool. This method used the histogram

equalization to improve the edge details of texts inside the image. However, it depended on

heavily on the horizontal and vertical information of the LP characters. Panahi and

Gholampour (2017) proposed a method for high-speed applications under dirty LP conditions.

It used a specific device to capture vehicle images on the highway at night. Most of LP

detection methods use one of the simple enhancement techniques like the histogram

equalization for improving the information of the input images. This confirms that the

enhancement step is very important for LP detection. Weng et al. (2015) presented a multi-

spectral fusion algorithm for the degraded video frame text enhancement. It explored the RGB

color information with statistical features to find the right combination for different feature

bands. However, this method focused on non-uniform illumination effects but not with effects

caused by other sources.

From studies listed in the literature, many LP extraction and detection methods have been

developed. But there are still some limitations that must be considered. These limitations could

be overcome using some further enhancement techniques. The work in this thesis aims to

introduce methods to overcome these difficulties. These proposed methods enhance the

existing LPD systems based on powerful preprocessing and extraction methods that are

selected carefully to detect LPs from complicated vehicles images.

2.6 Chapter summary

An overview of the LPD system was provided in this chapter. Also, it presented the necessary

background information about the steps of detecting the LP from vehicle images. Firstly, this

chapter outlined of LPD system invention and development. Then, it discussed the system

components and the fundamentals of the LPD system stages. The classification concept was

discussed and the current methods reviewed in each stage of the LPD system. It identified and

justified the methods that are used in this thesis to detect the LP from distorted vehicles images.

Also, it reviewed the recent detection and classification methods for LPs.

From the literature, it can be concluded that there are still many limitations in the

existing LP detection methods. Hence new detection algorithms are required to increase the

reliability and accuracy in different ITS applications.

 Chapter 2 Overview of an LPD System and Its Components n

P a g e 28 | 254

28

In the next chapters 3, 4, 5, and 6, new detection methods are developed to detect

complicated LPs from low-quality vehicle images. Those methods could help to improve the

work of existing ANPR systems under complicated conditions.

 Chapter 3 Ensemble of AdaBoost Cascades of 3L-LBPs Classifiers

P a g e 29 | 254

29

CHAPTER 3

ENSEMBLE OF ADABOOST CASCADES OF 3L-LBPS

CLASSIFIERS FOR LICENCE PLATES DETECTION WITH

LOW QUALITY IMAGES

3.1 Introduction

The content of this chapter is an exact copy of the published paper in the journal of Expert

Systems with Applications by Al-Shemarry et al., (2018) ‘Ensemble of Adaboost cascades of

3L-LBPs classifiers for license plates detection with low quality images’, vol. 92, pp. 216-35.

The development of detection methods for ITS systems is essential in the field of

machine vision. Many researchers work on finding reliable techniques to increase the

performance of LPD systems under critical conditions. This chapter presents a new LP

detection method for complicated vehicles images. It includes extracting features from three

preprocessing levels of a local binary pattern descriptor using an ensemble of Adaboost cascade

classifiers (3L-LBP_Adaboost). The aim of this study is to determine an optimal detection

scheme with preprocessing methods to extract the ROI features of the LP object under various

complicated conditions like low/high lighting and contrast, dusk, dirt, and foggy. This method

was implemented on the English cars database (EnglishLPDatabase-2001 ;

MedialabLPRdatabase-2007) for evaluation purposes and also it was compared with recently

existing methods using the same database. The reason for selecting this database was that it

contains a number of vehicles images that have different conditions which made it a strong,

good database for testing different LPs difficulties (see Appendix E). The proposed method

yields a high detection rate and a good processing time, compared with the state-of the art

3

 Chapter 3 Ensemble of AdaBoost Cascades of 3L-LBPs Classifiers n

P a g e 30 | 254

30

approaches. Furthermore, the proposed method may improve the performance of existing LPD

systems in detecting LPs under difficult conditions.

Appendix A provides the simulation Matlab code for the proposed LPD method.

Expert Systems With Applications 92 (2018) 216–235

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Ensemble of adaboost cascades of 3L-LBPs classifiers for license plates

detection with low quality images

Meeras Salman Al-Shemarry

a , ∗, Yan Li a , Shahab Abdulla

b

a School of Agricultural, Computational and Environmental Sciences, Faculty of Health, Engineering and Sciences, University of Southern Queensland,

Australia
b Open Access College, University of Southern Queensland, Australia, QLD 4350, Australia

a r t i c l e i n f o

Article history:

Received 4 May 2017

Revised 22 August 2017

Accepted 11 September 2017

Available online 21 September 2017

Keywords:

License plate detection (LPD)

Region of interest (ROI)

Adaboost Learning algorithm

Cascade classifier

Local binary pattern classifiers (LBP)

a b s t r a c t

Due to the plate formats and multiform outdoor illumination conditions during the image acquisition

phase, it is challenging to find effective license plate detection (LPD) method. This paper aims to develop

a new detection method for identifying vehicle license plates under low quality images using image pro-

cessing techniques. In this research, a robust method using a large number of AdaBoost cascades with

three levels pre-processing local binary patterns classifiers (3L-LBPs) are used to detect license plates

(LPs) regions. The method achieves a very high accuracy for detecting LP number from one vehicle image.

The proposed method was tested and trained with the images from 630 and 400 vehicles, respectively.

The images involve many difficult conditions, such as low/high contrast, dusk, dirt, fogy, and distortion

problems. The experimental results demonstrate very satisfactory performance for LP detection in term

of speed and accuracy, and were better than the most of the existing methods. The processing time for

the whole testing LPD system was about 1.63 seconds to 2 seconds. The overall probability detection,

precision, and f-measurement are 98.56%, 95.9% and 97.19%, respectively; with false positive rate 5.6%.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, intelligent transportation systems (ITSs) play a very

important role in our daily life in many aspects. An ITS normally

consist of two parts: a smart infrastructure system and an auto-

matic number plate recognition system (ANPR) (Anagnostopoulos,

2014; Anagnostopoulos, Anagnostopoulos, Loumos, & Kayafas,

2006). It is necessary to examine and observe the road traffic

to avoid unacceptable behaviors using surveillance applications

(Castello, Coelho, Del Ninno, Ottaviani, & Zanini, 1999; Chakraborty

& Parekh, 2015; Duan, Duc, & Du, 2004; Sarfraz et al., 2013). The

first successful ANPR was recorded in 1978 for the detection of

stolen cars in UK. Such an ANPR system is also named as opti-

cal character recognition (OCR), automatic license plate recognition

(ALPR), or car plate recognition (CPR). An ANPR system has many

different applications for a variety of purposes, such as for highway

road tolling systems, security systems, parking management sys-

tems, and so on (Azad & Ahmadzadeh, 2014; Baharlou, Hemayat,

Saberkari, & Yaghoobi, 2015; Dehshibi & Allahverdi, 2012). Cur-

rently, the ANPR still has big problems which are described below.

Therefore, many researchers in the field of machine vision have

∗ Corresponding author.

E-mail addresses: MeerasSalmanJuwad.Al-Shemarry@usq.edu.au (M.S. Al-

Shemarry), Yan.Li@usq.edu.au (Y. Li), Shahab.Abdulla@usq.edu.au (S. Abdulla).

tried to find modern and reliable methods to build an ITS. The

main objective of an ANPR system is to identify a vehicle license

plate from images or a sequence of images in a video. Those im-

ages are often captured from high quality cameras installed on the

street lights, road traffic signs, high buildings or motorway over-

pass (Azam & Islam, 2016; Valera & Velastin, 2005 ; D. Zheng, Zhao,

& Wang, 2005). LPD means extracting LP number from captured

image which is the one of the most important stage of ALPR sys-

tem (D. Zheng, Zhao, & Wang, 2005). The ANPR system involves

four stages as shown in Fig. 1 . The first one is the vehicle image ac-

quisition using a camera. The accuracy of an ANPR system depends

on the parameters of a camera, such as type, resolution, light, shut-

ter speed, and the installation method. The capture vehicle image

needs pre-processing stage to reduce the noise on LP background

information and enhance the processing speed for detection and

recognition stages. The key requirements for a high quality ANPR

are high accuracy and processing speed for real-time application

(Angelova, Krizhevsky, Vanhoucke, Ogale, & Ferguson, 2015). The

second stage is to detect the LP area from acquired images. The LP

detection stage depends on the quality of the images and the type

of processing methods used to obtain the LPs images (Hongliang

& Changping, 2004; Yousef, Al-Tabanjah, Hudaib, & Ikrai, 2015). In

this stage, the LP region extracts from vehicle image as a region

of interested and eliminates the unwanted background features by

using many pre-processing algorithms and learning algorithms for

https://doi.org/10.1016/j.eswa.2017.09.036

0957-4174/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2017.09.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.09.036&domain=pdf
mailto:MeerasSalmanJuwad.Al-Shemarry@usq.edu.au
mailto:Yan.Li@usq.edu.au
mailto:Shahab.Abdulla@usq.edu.au
https://doi.org/10.1016/j.eswa.2017.09.036

M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235 217

Fig. 1. ANPR system stages.

different f eatures of LP, such as edge information, texture features

and color features. The aims of using learning algorithm for this

stage to obtain high performance in terms of the detection rate

and processing time for testing phase. Moreover, the trained model

from those algorithms can detect multi features values for different

problems of LPs unlike the pre-processing algorithms (Lee, Han,

& Ko, 2013; Patel, Shah, & Patel, 2013; Silapachote, Karuppiah, &

Hanson, 2005). The third stage is to segment the LP area and ex-

tract the characters by using many techniques, such as projecting

color information, labeling, or matching positions with templates.

The final stage is to recognize the LP extracted characters by using

template matching or using classifiers, such as boosting, extreme

learning machine, neural networks and fuzzy classifiers (Baharlou

et al., 2015; Chakraborty & Parekh, 2015; Han, Lee, Lim, & Chung,

2015). This stage needs many Samples of characters as inputs for

training in advance. Then, the input image of segment characters

is compared with the trained data to produce the output results.

There are many surveys have been conducted by many authors

(Atiwadkar, Mahajan, Lande, & Patil, 2015; Bhardwaj & Mahajan,

2015; Du, Ibrahim, Shehata, & Badawy, 2013; Panchal, Patel, & Pan-

chal, 2016; Patel et al., 2013 ; M. Sarker, Mostafa, Yoon, Lee, & Park,

2013) related on ALPR system problems which are affected on de-

tection and recognition stages:

i Low resolution problems related with camera quality and the

distance between vehicle and camera.

ii Plate problems such as blurry, location, sizes, special symbols

and fonts, occlusion, tilted, blurry LP backgrounds, distortions,

and screws.

iii Environmental problems, such as lighting, rainy day, snow.

iv Illumination problems, such as vehicle headlights, and different

lighting sources during image capturing.

In the past and recently time, many effort s have been done

to develop a robust LPD system, but they missed most of LPs is-

sues which make the LPD systems very limited for detecting LP

level. Therefore, an efficient LP detection method is still needed

to make a robust LPD system. In this paper, we focus only on

the LP detection area from a vehicle image, so we not consider

the segmentation and recognition stages of an ANPR system. The

main objective of this study is to develop a LPD method that

yields better performance for vehicles images having different dif-

ficult conditions, such as low/high contrast, dusk, fogy, and dis-

torted. It employed a large number of AdaBoost cascades classi-

fiers with three-levels LBPs (3L-LBP) features to detect the ROI area

for LP from vehicles images. The paper is organized as follows:

The first section introduces the ANPR system. The second section

provides an overview of the related work about ANPR systems.

Section 3 presents the proposed method. The experimental results

are reported in Section 4 . Finally, this study is concluded with

some useful recommendations and suggestions for the future work.

2. Related work

Over the years, there are many algorithms being developed

to extract LP features from one image or a sequence of images

(video). Those features are used as the input to various classifiers

such as cascade classifier, neural networks and fuzzy logic classi-

fiers (Du et al., 2013). Different features, such as Haar-like feature,

LBP features, ROI features, color features, boundary features, edge

features and texture feature (Anagnostopoulos, Anagnostopoulos,

Psoroulas, Loumos, & Kayafas, 2008; Azad, Davami, Jeo, & Shayegh,

2014; He, Zhang, Jia, Wu, & Hintz, 2007; Jia, Zhang, & He, 2007;

Zheng, Zhao, Gu, & Hu, 2012), are used either separately or com-

bined together to detect the LP region from images. In this pa-

per the proposed method uses ensemble of AdaBoost cascades of

3L-LBPs classifiers for extracting ROI features from the LP area.

It is usually one AdaBoost cascade being employed to detect the

LP area. Throughout our literature review, many methods for the

LP detection have been developed for real time LPDs (Gao & Lee,

2015; Li & Shen, 2016; Lienhart & Maydt, 2002; Porikli & Kocak,

2006;Sarker & Song, 2014; Song & Sarker, 2014). A brief overview

about those existing methods is discussed below.

A strong classifier reported by Viola and Jones (2004) was

trained using an AdaBoost algorithm and Haar-like features. It per-

formed well for face detection. The study used “integral image”

to calculate Haar-like features and used the AdaBoost algorithm

to reduce the Haar-like features, and trained one cascaded clas-

sifier. The cascade classifier involved several stages to discard un-

wanted regions (non-face) from the image and saved the interested

regions (face) for future processing. The accuracy rate by that al-

gorithm was 96%. Ho, Lim, and Tay (2009) used two stages meth-

ods to extract the LP features. Several LP regions were identified

in the first stage using a gentle AdaBoost classifier. In the second

stage, the false positive rate was filtered using a support vector

machine (SVM) classifier based on a scale-invariant feature trans-

form (SIFT). The accuracy rate for the LP detection was 92%. A prin-

cipal visual word (PVW) technique was developed by Zhou, Li, Lu,

and Tian (2012) to locate the LP by local feature matching to-

gether with the PVW. The accuracy rate for the LP detection was

84.8%. Lim and Tay (2010) designed a character based method,

maximally stable extremely regions (MSER) method to detect char-

218 M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235

Fig. 2. (a) and (b). The framework of the proposed LPD system using the ensemble of AdaBoost cascades of the 3L-LBP classifiers for training and testing.

acters inside images and trained the SIFT-based unigram classi-

fier using a core vector machine learning method to filter out the

false alarms. The accuracy rate for the LP detection was 90.47%.

Nguyen and Nguyen (2012) introduced an efficient algorithm for

the real-time LP detection from images captured in real scenar-

ios using a boosting technique for training an LP detector. A lo-

cal binary patterns (LBPs) classifier was employed with traditional

Haar features for discriminating LP image patches and also used a

new mechanism to evaluate and improve the system performance

through reducing false positive errors. The accuracy rate for the

LPD was 85.2%. Wang, Sang, Wang, and Kuang (2013) used an Ad-

aBoost classifier to detect LPs. A morphology based method was

used to reduce some false positive rate and to identify LP regions.

Then, the trained SVM classifier was used to verify the possible

LP regions and to remove the non-candidate LP regions. The ac-

curacy rate for the LPD was 88.28%. T. He, Yao, Zhang, Hou, and

Han (2014) proposed a method to locate the regions of interest

for multi-scale LPs in different inclination directions. This method

used a blob technique with a filtering affine distortion method to

detect the ROI area. The accuracy rate for the LP detection was

94.7%. Azam and Islam (2016) presented an effective LPD method

to detect the LP area in an image under rainy conditions. A fre-

quency domain mask was used to remove rain drops from the im-

age. For handling indoor contrast, blurry, and night conditions, a

new contrast improvement technique with a statistical binariza-

tion method was used. A random transform based on a tilt cor-

rection approach was applied to correct the tilted LP. The over-

all accuracy rate for the LPD was 94%. M. D. A. Asif, Tariq, Baig,

and Ahmad (2014) introduced the YDbDr colour space to identify

the blue regions, whereas a simple colour detection method used

to identify yellow LP regions. The Otsu method used to gain bi-

nary image and the connected component analysis used to obtain

on LP regions. The accuracy rate was 93.86%. Chen, Han, Ho, and

Fan (2015) extracted the LP using a feature-salience theory with

rectangle shape, texture, and colour features. The accuracy rate was

97.3%. Lee, Song, Ku, Jeon, Han, and Ko (2010) used local struc-

ture patterns that were calculated from the modified census trans-

form (MCT) to extract the LP from vehicle images. The accuracy

rate was 88.9% for the LP detection. He et al. (2007) also used

an AdaBoost algorithm based on the both global statistical and lo-

cal Haar features for LP detection. The accuracy rate for LPD was

96.4%. Hasan (2013) used canny edge, horizontal and Vertical edge

M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235 219

methods to detect LP regions with three stages Artificial Neural

Network (ANN) to extracted features from LP regions. The accuracy

rate for LPD was 92.7%. Panahi and Gholampour (2017) used ver-

tical sobel edge operator and hough transform to identify LP area,

and connected component algorithm (CCA) with two level SVM to

extract LP features. The accuracy rate for LPD was 97%. Wafy and

Madbouly (2016) used semi-symmetric corner points, morphologi-

cal feature, and linear discriminated analysis (LDA) methods to ex-

tracted features from LP area. The accuracy rate for LPD was 98%.

There was no attempt to use the ensemble of AdaBoost cas-

cades with multi levels pre-processing features extraction method,

such as LBPs, Haar-like, and histogram of oriented gradients (HOG)

classifiers to detect many difficult features of LP problems. The

main contributions of this study, that many researchers used one

level strong cascade classifier (sliding window) to detect ROI fea-

tures for specific problems of the LP. This work uses multiple

cascades classifiers with multi levels pre-processing stage to de-

tect different features values under difficult conditions, such as

low/high contrast, dusk, dirt, fogy, and distortion using an Ad-

aBoost algorithm with 3L-LBP classifier. We used the best enhance-

ment methods for pre-processing stage, such as two dimension

Gaussian filter (2D-Gaussian) with standard deviation σ = 0.25 and

contrast-limited adaptive histogram equalization(CLAHE) method

with standard deviation σ = 1 for training and testing images. The

LBPs classifier is employed for improving the accuracy rate be-

cause it has a discriminative power for extracting the ROIs from

the LP area with a low processing time. The proposed method for

the LPD is adaptive for different LP styles, colors, and languages. It

can be used to enhance the performance of any existing ANPR sys-

tem with different datasets. The next section provides more details

about the proposed LPD method.

3. The proposed method

The proposed method involves two phases: the image pre-

processing phase and the LP detection phase. The first phase aims

to reduce the processing time through enhancing vehicle’s images

processes while preparing for the detection phase. To detect the

ROIs area for the LP under different conditions, a large number of

AdaBoost cascades of 3L-LBP classifiers are employed. The number

of cascades classifiers depends on the LP variation problems. Each

cascade classifier has different features values in order to solve

one LP problem. The number of strong classifiers is obtained from

the training phase. The proposed framework of the LPD system for

training and testing phases is shown in Figs. 2 (a) and 2(b).

3.1. Image pre-processing phase

This study uses a grayscale image by converting a color input

image (24 bit) into a grayscale image (8 bit) as follows:

G (I, J) = 0 . 3 × R (I, J) + 0 . 59 × G (I, J) + 0 . 11 × B (I, J) (1)

where I and J are any pixel inside a grayscale image, G is a

grayscale image and (R, G, B) are three color channels of red, green

and blue for color images.

There are different resolutions involved in vehicles images, with

large resolutions often require more processing time. Therefore, the

grayscale images are resized to a desired size for the output image.

To reduce the computational time, the images of sizes 1280 × 960,

1024 × 768 and 640 × 480 as shown in Fig. 3 were resized into a

400 × 300 resolutions.

The histogram for the grayscale image has 256 bins by default.

It is a chart which presents the distribution of the grayscale im-

age intensities. The (imhist) function in Matlab produces a his-

togram plot by defining (X) equally spaced bins, each bin repre-

senting a range of features values. After that, calculating the num-

ber of pixels (Y) within each range which represents the features

Fig. 3. Resized the different resolutions of original vehicles images with histograms

(For histogram: X axis = the range of features values in each bin, Y axis = no. of

features values appearance in each range of bins). (a) Resized vehicle image from

640 × 480 into 400 × 300 resolution; (b) Resized vehicle image from 1024 × 768 into

400 × 300 resolutions; (c) Resized vehicle image from 1280 × 960 into 400 × 300

resolutions.

values appearance in each range of bins. Moreover, the informa-

tion in a histogram can be used to choose an appropriate enhance-

ment method to reduce the range of intensity features values. The

proposed method uses texture features instead of color features

to detect the LPs because the color features are very sensitive to

the illumination conditions and noise (Azad et al., 2014). The LPD

220 M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235

Fig. 4a. Example of vehicles images with dirt, and dust problems after applying Gaussian filter and CLAHE enhancement method to a grayscale image and their histograms

(For histogram: X axis = the range of features values in each bin, Y axis = no. of features values appearance in each range of bins).

method employed an intensity transition on a vehicle image based

on the 3L-LBP extracted features as initial localization for the LP.

The intensity in the LP region is very high because various texts

are included in the vehicle images. There are also various noises

with the texts referring to non-LP regions, such as surface textures,

dust, distortion, and small dirt (Fig. 4a , 4b). The noise conditions

increase the unnecessary features intensities in an image. For de-

noising, a two dimension Gaussian filter with standard deviation

σ = 0.25 (Lalimi, Ghofrani, & McLernon, 2013; Nixon & Aguado,

2012; Parker, 2010; Yogamangalam & Karthikeyan, 2013) has been

used for this purpose. The Gaussian filter is defined as:

G (x , y) =

1

2 πσ 2
e

−
x 2 + y 2

2 σ 2 (2)

Some vehicles images are suffered from low illumination and

weather conditions, such as low/high contrast (indoor/ night-light

conditions) (Fig. 4c , 4f) and fogy (Fig. 4d , 4e , 4f). A contrast-

limited adaptive histogram equalization (CLAHE) method with

some improvement and standard deviation σ = 1 is applied on the

grayscale filtered image to enhance the contrast condition. It is a

common image enhancement method and widely used for image

processing (Azam & Islam, 2016; Kaur & Kaur, 2014; Moustafa &

Jaradat, 2015). The same pre-processing techniques are applied to

positive and negative samples for the LPs at the training phase.

The enhancement steps of resizing, filtering, and contrasting

images help in reducing changing day light effect and improv-

ing the contrast between the original image and enhanced image

(Asif et al., 2014). The pre-processing stage has clearly effects to

reduce the unnecessary features from images, so the histograms

demonstrate their effects in each step (see Figs 0.4 steps (i, ii)).

There a wide different between step (i) and step (ii) related to a

high reduction on features bins range and space. The next section

presents more details about the LPD method.

3.2. The LP detection method

3.2.1. 3L-LBP detectors for features extraction

There is no one detection method works for all types of

images problems by using unsupervised learning algorithms

(Silapachote et al., 2005). Therefore, the features extraction meth-

ods should be selected carefully to detect different types of prob-

lems. Some image problems, such as scale, rotation, and contrast

should be considered for the detectors because each detector is

M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235 221

Fig. 4b. Example of vehicles images with distortion and dusk or low light problems after applying Gaussian filter and CLAHE enhancement method to a grayscale image and

their histograms (For histogram: X axis = the range of features values in each bin, Y axis = no. of features values appearance in each range of bins).

designed for a specific kind of features. The proposed method uses

supervised learning algorithms to employ a three levels of LBPs op-

erator to extract different features for several reasons (Cvetkovi ́c,

Rajkovi ́c, & Nikoli ́c, 2016; Hussein, Porikli, & Davis, 2009; Krig,

2014; Lee et al., 2013; Li & Shen, 2016; Nguyen & Nguyen, 2012;

Shan & Gritti, 2008). The first level is extracted LBPs features from

LP grayscale image, the second one extracted LBPs features from

filtered LP image, and the third level extracted LBPs features from

contrasted LP image (see Fig. 5). Moreover, when the levels of LPs

images changed in pre-processing stage, the significant features for

different problems can be captured. Therefore, we utilize a maxi-

mum pooling strategy that selects the maximum values from the

corresponding bins of 3L-LBPs histogram features concatenation at

different scales of LP image. The AdaBoost algorithm compares a

test vehicle image features with trained models features for LP and

labels the LP test image features using the class that the training

image with the highest similarity belongs to.

The LBP is an effective operator for various illumination condi-

tions and can solve the occlusion and scale invariance problems.

Ojala, Pietikäinen, and Harwood (1996) presented the first LBP op-

erator by dividing an image into cells or regions and labeling the

pixels for each region using a 3 × 3 thresholding neighborhood. The

method involves comparing the center value with 8 neighbors and

transferring the results to a binary number with weighted values

as shown in Fig. 6 . The output of the LBP operator can be pre-

sented in decimal form:

BP (x center , y center) =

7 ∑

n =0

s (i n − i center) 2

n (4)

where n is the number of neighbors for the central pixel value

(center), i center , i n is the gray pixel value for center and the sur-

rounding pixel values , and s(x) is equal to 1 if x ≥ 0, and 0 other-

wise.

s (x) =

{
1 x ≥ 0

0 x < 0

(5)

The pattern 11110 0 01 is called uniform-patterns because it con-

tains more than two transitions with a single label of a LBP oper-

ator, which are produced much less uniform-patterns without los-

ing too much information. The most of the texture information are

contained in the uniform-patterns, which are caused by the local

primitives like corners and edges from the images. After labeling

222 M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235

Fig. 4c. Example of vehicles images with night-light contrast problem after applying Gaussian filter and CLAHE enhancement method to a grayscale image with their

histograms (For histogram: X axis = the range of features values in each bin, Y axis = no. of features values appearance in each range of bins).

each region image with the LBP operator, the histograms of the la-

beled image regions R 1, R 2 ,…, R M

can be presented as:

H i, j =

∑

x,y
I (f i (x, y) = i) I ((x, y) ε R j)

i = 0 , . . . , L − 1 , j = 0 , . . . , M − 1

(6)

where L is the number of different labels that are produced by the

LBP operators, and M is the number of the LP regions.

This study uses two types of LP training samples, with 50 × 260

and 115 × 80 resolutions and being resized into 35 × 160 and

70 × 48, respectively which is the same size of LP testing images

after resized it. The LPs training images are subdivided into 16 × 5

and 21 × 12 pixels to produce 80 and 252 cells, respectively, as

shown in Fig. 7 . The size of each cell is 3 × 3 pixels and the num-

ber of bins is 59. Therefore, the cascades classifiers have different

LBP features range, but with the same number of the LBPs features.

In this work, the training LP features are generated from 5 and 10

stages, respectively.

The quantized LBP weak classifier for every region in each level

is aggregated into maximum pooling features histogram. The ex-

tracted features histograms perform as inputs to AdaBoost algo-

rithm to produce the final LP detector. The LBP operator already re-

moves the non-ROI or any noise from the training images (Jia et al.,

2007). This is useful to reduce unnecessary features and the pro-

cessing time for the training phase.

3.2.2. AdaBoost learning algorithm for the LP detection

Freund and Shapire in 1995 proposed an adaptive boosting (Ad-

aBoost) algorithm to solve the difficulties in the Boosting method.

The algorithm generates a strong classifier from a large number

of weak learner classifiers to make the performance of a detection

system better than randomly guessing (Freund & Schapire, 1995;

Freund, Schapire, & Abe, 1999). The AdaBoost successfully provided

good and accurate results in computer vision (Lienhart & Maydt,

2002). A weak learner or classifier that has the lowest error selects

in each iteration stage. Then, the weak classifier works to increase

the rate of the weighted error for misclassified training samples

and decrease the rate of the weighted error for the classified train-

ing samples. This study uses the AdaBoost to train a large number

of weak classifiers, and each weak classifier is designed to select a

single LBP features histogram for best separating the positive and

negative LPs samples. The basic AdaBoost learning algorithm works

as follows:

M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235 223

Fig. 4d. Example of vehicles images with dusk or low light problem after applying the Gaussian filter and CLAHE enhancement method to a grayscale image with their

histograms (For histogram: X axis = the range of features values in each bin, Y axis = no. of features values appearance in each range of bins).

Provided the training dataset of (X 1 , Y 1),…, (X n ,Y n), where y i = 0

for negative examples (X) , 1 for positive samples (X); n the num-

ber of training samples, and i the number of the output for training

samples, and given weights of W 1 ,i =

1
2 m

+

1
2 l

for y i = 0, 1 negative

and positive samples, respectively, where m is the number of the

negative samples and l is the number of positive samples. For each

iteration t normalizes the samples weights, W t,i =

W t,i ∑ n
j=1 W t, j

, where

w t is a probability distribution of samples. The trained classifier

(h j) for each feature (j) is limited to use a single feature. To evalu-

ate the weighted error for each feature (j),

W t , ε j =

∑

i

W i

∣∣h j (x i) − y i
∣∣ (7)

Then select the classifier h t with the lowest error εt . To update

the feature weights,

W t,i = W t,i + 1 , (8)

where i = w t,i β
1 −e i
t , e i = 0 if sample x i is correctly classified, e i = 1

otherwise, and βt =

εt
1 −εt

.

Finally, to produce a final strong classifier (Y(x)):

Y (x) =

{
1

0

T ∑

t=1

αt h t (x) ≥ 1

2

T ∑

t=1

αt , (9)

where αt = log 1
βt

.

The learning algorithm works to re-train the samples with new

weights, instead of re-sampling them. This means to start with reg-

ular weights on the training examples for (T) rounds or iterations,

and to evaluate the weighted error for each LBP feature and pick

the best one. After that, we update the feature weights by giving

more weights for the LBP feature that is incorrectly classified and

less weight for others. In the final step, this algorithm produces

one strong cascade classifier for each level pre-processing LP which

consists of the combination of the weak weighted classifiers with

the weights depending on the error they have. The final ensemble

of strong cascades classifiers for 3L-LBPs is used as trained models

for the LP detection. Each strong classifier has a number of weak

classifiers, which represents the LBPs features. The final step of the

proposed algorithm can be represented as follows:

Y i (x) =

{
1

0

T ∑

t=1

αt h t (x) ≥ 1

2

T ∑

t=1

αt (10)

where i = 1…..n is the number of strong cascades classifiers that

are associated to the LP problems and each problem is related to

one LBP histogram features.

224 M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235

Fig. 4e. Example of vehicles images with dusk or low light and fog problems after applying the Gaussian filter and CLAHE enhancement method to a grayscale image with

their histograms (For histogram: X axis = the range of features values in each bin, Y axis = no. of features values appearance in each range of bins).

M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235 225

Fig. 4f. Example of vehicle image with low light and fog problems after applying the Gaussian filter and CLAHE enhancement method to a grayscale image with their

histograms (For histogram: X axis = the range of features values in each bin, Y axis = no. of features values appearance in each range of bins).

Fig. 5. The framework of 3L-LBP extraction features from LP vehicle image.

3.2.3. Cascade structure of boosted classifiers

A cascade structure is mainly developed for having high testing

detection speed. The cascade classifier consists of a sequence of

ensemble weak classifiers with binary nodes of features H 1 , H 2 ,…,

H n , which are trained using a learning algorithm such as AdaBoost

algorithm (Wu & Rehg, 2012). As a result of the rarity of inter-

est objects, the most background areas in the tested image are

filtered out using a cascade classifier. Only the objects of inter-

est, which are found in a few areas of the tested image, can be

detected quickly (Nguyen & Nguyen, 2012; Wu & Rehg, 2012). In

the proposed method the training cascades classifiers with the 3L-

LBPs filter out different types of scenes where they are identified

definitely as non-LP areas, such as road surface, vehicle surface or

highly textural areas. For example, the cascade classifiers for ter-

rain can quickly reject a terrain area. The cascade classifiers for a

vehicle surface can quickly reject a surface area. The hard and fi-

nal complicated ensemble for the textural regions is used only for

the remaining regions. For difficult types of vehicle images, this

method is successful for detecting the LP regions using a large

number of cascades classifiers with the strong LBP classifiers, and

filtering out non-LPs regions in order to reduce the false positive

rate. Let us assume the errors produced by the weak classifiers are

226 M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235

Fig. 6. Example of the extraction process for the LBP operator.

independent of each other for the image conditions. The final cas-

cade has 20 weak classifiers and those classifiers have a high de-

tection rate for the LP d i = 99.9% and the false positive rate f i = 50%

for all i . The cascade classifier is capable of detecting
∏ 20

i =1 d i = 98%

for the LP with a false positive rate of
∏ 20

i =1 f i = 10 −6 . The algo-

rithm for the cascade classifier structure is shown in Fig. 8 .

The negative training samples are used to limit the number

for training the weak classifiers. When those classifiers are trained

with T iterations, the current ensemble of the cascades are applied

to a large set of the negative vehicle image areas to find out the

difficult examples that are incorrectly classified by all the existing

weak classifiers in each cascade. For each round or iteration T + 1

for training weak classifiers, these negative examples are added.

The bootstrapping database for the negative examples does not

need to be stored because it can be obtained by using the current

cascade classifier on the images that do not have any objects of

interest. The flow chart of the training strong cascades classifiers

using AdaBoost algorithm is shown in Fig. 9 .

In the training phase the number of the negative training sam-

ples must be larger than the positive training samples. The boot-

strapping operation is implemented only on the negative training

samples rather than the positive training samples. The bootstrap-

ping process in each round is applied to the whole negative sam-

ples to randomly select the small part of the negative samples in

order to obtain a small sub-window of all the samples in the train-

ing stage (Ma, Tan, & Yang, 2008). The second stage has the same

number of the samples that came from the original or previous

stage. In every round for the training phase each weak classifier

gets a single LBP feature and adds it to the ensemble of the cas-

cade classifiers. The stages in each cascade are built by the train-

ing classifiers using the AdaBoost learning algorithm. In our cas-

cades structure each cascade has different stages, with each stage

has different features, which is an important reason for the com-

bination of the classifiers. Therefore, increasing the number of cas-

cades in the training phase leads to the increase of the number

of features. This means the important information do not get lost

and can be used to solve difficult problems, such as deformable

features (Hussein et al., 2009; Wu & Rehg, 2012). In Table 1 , we

explain how this work differs from (He et al., 2007; Nguyen &

Nguyen, 2012; Wang et al., 2013) studies which are a very closed

from this study.

4. Experimental results

4.1. Dataset

All the experiments were designed and conducted using a stan-

dard PC with 2.40 GHz Intel Core i5-4210 U and 4GB RAM, and us-

ing Matlab language version R2016a. This study uses various ve-

hicles images captured by OLYMPUS C-2040ZOOM digital camera

under different environmental conditions (cloudy weather, sunny

day, night lighting, dusk). The database contains 530 vehicles im-

ages for different types of vehicles, such as trucks, passenger cars,

and buses. This database is publicly available (EnglishLPDatabase)

and with 640 × 480 resolutions. Each image contains a single li-

cense plate with the 640 × 480 resolution. The proposed method

is also applied to another database that contains 300 images cap-

tured by an IR camera under different illumination, and each image

has a single plate and/or multi-license plates with 1280 × 960 and

1024 × 768 resolutions (MedialabLPRdatabase). The online photo

editor application used to increase the car English dataset through

making difficult changes on the original dataset to evaluate the

proposed method performance. The total number of the images in

the database is 1030, which are divided into two groups with the

testing phase contains 630 vehicle images as shown in Fig. 10 , and

the training phase contains 400 LPs images which are also used in

testing phase.

In the training phase, the large numbers of the positive samples

are required to capture the LP variations. For example, the train-

ing dataset contains the images of the rotated LPs in order to de-

tect the various types of LPs rotated with different angles, such as

45 °, ± 18 °, 12 ° and 6 °. Those images can be detected using rotating

LBP features detectors as shown in Fig. 11 .

With the training datasets above, it is observed that the LPD

system works very well because it can detect LPs in the images

with a low false alarm rate. While it cannot detect LPs with a low

light and dark condition, there are two ways to solve the problems.

The first one is the image pre-processing stage and another one

is to enhance the training datasets. To enable the LPD system to

detect the LPs in low light conditions, LPs images with different

illuminations are added to the training dataset. Examples of the

images are shown in Fig. 12 .

Fig. 7. LPs images are subdivided into 16 × 5 and 21 × 12 sub- regions.

M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235 227

Fig. 8. The algorithm of a cascade classifier structure (Wu, Brubaker, Mullin, & Rehg, 2008).

Fig. 9. The flowchart of learning cascades AdaBoost structure for the LPD.

Table 1

The differences between Nguyen and Nguyen (2012); Wang et al. (2013) , He et al. (2007) methods, and the proposed method.

Ref. Methods Difference

Nguyen and Nguyen (2012) Boosting + two combined

features(LBP + Haar-like)

to produce one strong

cascade classifier)

Used the original learning algorithm which selected features based on random guessing that led

to many irrelevant features selected. It caused high false positive rate and low accuracy results

under good conditions, such as fixed resolutions, good illumination conditions.

Wang et al. (2013) Adaboost + Morphology-

based method + SVM

classifier

Used an advance boosting method that selected features based on the best weighted feature

values (best weak classifier) to reduce the dimensionality of the features space and provided

good results depending on the classifier used. It took more computational time because it

used the SVM classifier to extract features from the LP area and produced one strong cascade

classifier. It also used the Morphology based method to reduce some false positive rate. The

detection accuracy of the method was low.

He et al. (2007) AdaBoost + global

statistical + local Haar

features.

Time consuming using AdaBoost with global statistical features to identify edges for the ROI

features in order to reduce the space of extracted features by using local Haar features. Not

consider weather and illumination conditions.

-The cascade classifiers for this algorithm worked only in invariant conditions, such as colour,

brightness, size, and position of LP.

Proposed Ensemble of AdaBoost

cascades of LBP

classifiers.

The better techniques were used in terms of accuracy and processing time for training,

extracting, and selecting features from LP vehicles images under low/high contrast, fog,

rotation, and the deformation problems. The 3L-LBP is used to extract multi-level

pre-processing features to detect difficult and complicated regions for LP area. The LBP was

used by (He et al., 2007; Hussein et al., 2009; Krig, 2014; Li & Shen, 2016; Shan & Gritti, 2008)

due to: it has a discriminative power to extract the best relevant features and not need more

time for extracting. Also this classifier can reduce the false positive rate without using any

other methods. We selected the advance version of boosting learning named AdaBoost for

training and selection features and obtained good accurate results (Freund & Schapire, 1995;

Freund et al., 1999).

The training dataset for the negative samples contains 600 non-

LPs images that were collected from vehicles images with the

background having road, building, tree, and ground as shown in

Fig. 13 .

In this study, we made the number of negative samples more

than the number of positive samples in order to reduce the error

rate for the LP detection stage. The training images were processed

to the same size of the LPs patterns for the testing images.

4.2. Detection results

Some results by the proposed method based on the vehicles im-

ages in the dataset are shown in Fig. 14 . It can be noticed that

all the LPs were detected although there were bad features ap-

peared with different LP variations conditions. The detailed infor-

mation for the LPs on all the datasets with detection or recall rate

are shown in Table 2 . In Table 2 the low detection results are ap-

228 M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235

Fig. 10. Some examples from the testing vehicles images in the dataset. (a) Some vehicles images from original dataset. (b) Some vehicles images with difficult changes

using online photo editor application.

Fig. 11. Some examples of LPs images from the training dataset with rotation.

peared at the dusk time compared with the daytime or night-time.

The reason is that the lighting conditions is very poor during the

dusk time; therefore, making LP hard to identify.

Moreover, some false positive (FP) are noticed when several ob-

jects in the vehicle images as shown in Fig. 15 , look like a LP (such

as commercial signs and vehicle logo), are detected with a low

trust value.

4.3. Processing time

The detection rate also can be referred as the accuracy rate of

the proposed method is 98.53%. The processing time is an impor-

tant indicator of system performance. The proposed 3L-LBP classi-

fier does not need more processing time and achieves a very good

accuracy compared with other existing classifiers. Therefore, the

average of processing time per one vehicle image for the whole

system stages pre-processing, extraction and detection was 1.82 s

which is between 1.63 and 2 seconds as shown in Table 2 and

Fig. 16 . In Table 2 , the complicated vehicles images for dusk time,

fogy daytime, and distortion need more processing time to detect

the difficult LP features. Some vehicles images have high false pos-

itive rate 7% at sunny daytime because they have more logos and

commercial signs on them which have clearly vision at this time

on vehicle mage. However, the proposed method can solve some

of the errors in the pre-processing phase. Form Table 4 the re-

ported time is much better compared with other existing method

to solve many difficult problems. The efficiency and the accuracy of

M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235 229

Fig. 12. Some examples of LPs images with different illumination conditions are added to the training datasets.

Fig. 13. Some examples of the negative images in the training dataset.

Table 2

The description of dataset and the performance results.

Condition No. of vehicle image True LP False LP False Positive Rate Detection Rate Average Processing Time(s)

Dusk time 226 210 16 4.5% 97.6% 2.00

night-time(low/high contrast) 135 130 5 4.3% 98.7% 1.63

Sunny daytime 294 294 0 7% 100% 1.65

Fogy daytime 210 202 8 6.5% 98.8% 1.85

Distortion 165 156 9 5.6% 98.2% 1.98

Total 1030 992 38 5.6% 98.56% 1.82

the proposed method make the LP detection reliable and possible

for large-scale or real-time applications.

4.4. The performance evaluation

This study follows the popular evaluation measurements for ob-

jects detection in natural scene, such as precision, recall and F-

measure, and the processing time (Bashir & Porikli, 2006; Kaur

& Kaur, 2014; Li & Shen, 2016). These measurements consider the

true positive (TP) detection rate from the number of the positives

as the ground truth that is related to the number of the FP rate

(Jia et al., 2007). Those measurements can be defined as follows:

P osit i v e predict ion or P recision rate (P R) =

T P

T P + F P
(11)

Detection or Recall rate (RR) =

T P

T P + F N

(12)

F − measure (F m) = 2 ∗
(

RR ∗ P R

RR + P R

)
(13)

where (Fm) is the trade-off harmonic mean between the recall

and precision rates; FN is a false negative rate which means the

number of images in the ground truth at least has one object,

but the system confirms that there are no objects inside the

images.

The FP rate is 5.6% using the ensemble of AdaBoost cascades

with 3L-LBP classifiers and 7.5% using one AdaBoost cascade of

Table 3

Comparisons of the LPD results by different methods, the proposed cascades LBPs

classifiers produced the best detection rate, both with the highest recall and f-

measure rates.

Ref. FP Precision (%) Recall (%) F-measure (%)

Azam and Islam (2016) 6.3% NR 98.15% NR

Ho et al. (2009) NR 90.18% 92.07% 91.10%

Zhou et al. (2012) 4.5% 95.50% 84.80% 89.83%

Lim and Tay (2010) ≈13% 83.73% 90.47% 86.97%

Wang et al. (2013) NR 81.68% 88.28% 84.84%

He et al. (2014) 19.6% 92.7% 94.7% 93.68%

Asif et al. (2016) 6.5% 87.15 93.86% 90.38%

Proposed (1) One

cascades with LBP

classifiers

7.5% 93.6% 89.3% 91.4%

Proposed (2) Ensemble

of cascades with

3L-LBP classifiers

5.6% 95.9% 98.56% 97.19%

NR: Not Reported.

LBP classifiers with a detection rates of 98.56% and 89.3%, respec-

tively. The comparison results of the performance evaluation of this

work with some reported methods in the related work are shown

in Table 3 . It achieved a recall rate of 98.56%, which are 4.67%

higher than M. R. Asif, Chun, Hussain, and Fareed (2016) method

and 0.38% than Azam and Islam (2016) method. The F-measure

of the proposed method is 97.19%, which is also the best, with

6.42% higher than the method by Asif et al method. The FP rate

is a little bit than Asif et al. which is 0.7%. Also, the proposed

method achieved 4.1% and 3.12% for the recall rate and F-measure,

respectively, higher than He et al. (2014) method with 19.6% FP

230 M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235

Fig. 14. Successful vehicles images detection results using our proposed LPD method with different views point (a, h, k, l), dirt and low light (f, h, i), fog and dusk (a, g, e, i,

l), low/high contrast (b, f, j, m) and distortion(b, c, f, j) problems.

rate which is very high 14% compared with the proposed method.

Wang et al. (2013) achieved an 88.28% and 84.84% recall rate and

F-measure, respectively, which is less than the proposed method

with 10.52% and 12.04% for recall rate and F-measure, respec-

tively. Moreover, the proposed method achieved 6.7%, which is

higher than Ho et al. (2009) method for recall rate and 5.7% for

F-measure rate. Lim and Tay (2010) achieved a 90.47% and 86.97%

recall rate and F-measure, respectively, which is less than the pro-

posed method with 8.09% and 10.22% for recall rate and F-measure,

respectively, with 7.4% FP rate. Zhou et al. (2012) achieved 84.80%

and 89.83% recall rate and F-measure, respectively, which is less

than the proposed method with 13.76% and 7.36% for recall rate

and F-measure, respectively, with FP rate 4.5% which is only 1.1%

higher than proposed method under complicated vehicles images.

Finally, the proposed method gained 95.9%, 98.56%, and 97.19%, re-

spectively, for precision, detection, and F-measure rates using the

ensemble of AdaBoost cascades of 3L-LBPs classifiers. While the

results of one AdaBoost cascade yields 93.6%, 89.3% and 91.4%,

respectively. Based on the performance evaluation measurements

which are described above, the proposed method outperforms all

the existing methods in terms of recall rate, F-measure, and FP rate

for LP detection.

M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235 231

Fig. 15. Examples of detect LP with false positive value.

Fig. 16. Average of the processing times for all the tested images.

4.5. Comparison with existing methods

The proposed method is compared using the same dataset that

was used by (Azam & Islam, 2016; Hasan, 2013; Panahi & Gho-

lampour, 2017; Wafy & Madbouly, 2016) studies and other dif-

ferent datasets in (Asif et al., 2016; He et al., 2014; Ho et al.,

2009; Lee et al., 2013; Lim & Tay, 2010; Zhou et al., 2012) under

less difficult conditions. The presented LPD method by Azam and

Islam (2016) shows good performance over few of the previous

state-of-the-art techniques as mentioned in the literature. Also,

the detection time 0.45 s which is less than the proposed method

0.33 s with a little bit detection rate 0.41%. But, it only consid-

ers easy tilted LP under good conditions and low difficult con-

trast night conditions using many unsupervised learning meth-

ods with 325 English car image database using MATLAB 7.12.

Hasan (2013) method has detection rate 92.7% which is less than

the proposed method 5.86% under good conditions also by using

many unsupervised learning methods for detection stage with 69

English car images using MATLAB 7.1. It does not consider the tilted

LP, noise and low/high contrast image environment. Panahi and

Gholampour (2017) also show good performance method, the de-

tection rate is a little bit less 1.56% than the proposed method

with the same hardware platform 2.40 GHz Intel Core i5 and 4GB

RAM. It only considers medium quality plates not solve the tilted

LP, noise, fogy, and high contrast image environment. They used

many unsupervised learning methods with 500 English car image

dataset using C + + without reported the detection time. The de-

tection method presented by Wafy and Madbouly (2016) shows

good detection rate 98% which is a little bit less than the proposed

method 0.56% and 0.22 s detection time. They only consider easy

and good conditions using unsupervised time consuming methods

with 405 English car database using Open CV&C + + , the detection

time not reported. However, the dataset used in this study was

more complicated compared with existing studies. So, we com-

pared it with other different datasets for existing methods and the

experimental results are summarized in Table 4 . The reason for

selecting different datasets, such as Malaysia, Chinese, Korea, and

Caltech cars LPs to see the main difference between the proposed

method and those existing methods in term of performance be-

cause of our algorithm targets to detect LP from a large amount

of very distorted and complicated images. The detection time on

Ho et al. (2009), Zhou et al. (2012) , and Lee et al. (2010) meth-

ods is much higher than the others and our method due to apply-

ing the time consuming methods to detect and extract LP regions

as well as the detection rate. The detection rate of the proposed

LPD method is 98.56% with 1030 good and complicated vehicles

images under difficult conditions, and the average running time

for the whole LPD system is only 2 s. The memory complexity of

those methods is O (N × M); where N and M is the dimension of

the input tested image. The average of memory usage for the pro-

posed LPD is not a big implementation issue nowadays compared

with existing methods. From the Table 4 , we can see that the per-

formance of the proposed LPD method is better than the others

methods. In the large scale and the real-time implementation, this

proposed method will show a good performance with high per-

formed hardware platform involved, for example, high quality cap-

turing device, high processing device, and faster network connec-

tion.

In summary, the proposed LPD method successfully detects LP

area in the difficult conditions, and performs better than the four

existing LPD methods with the same datasets.

232 M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235

Table 4

Comparison results between the proposed methods with other existing methods.

Ref. Methods LP Format Dataset Platform Detection Detection time(s)

size rate

Azam and Islam (2016) Frequency domain mask,

contrast improvement

technique, statistical

binarization, Radon

transform, and entropy

vector.

English car 325 MATLAB 7.12, Intel Core

2 Duo CPU T6600,

2.2 GHz, 2 GB RAM

98.15% 0.450s

Wafy and Madbouly (2016) semi-symmetric corner

points, morphological

feature, linear

discriminated analysis

(LDA)

English car 405 Intel Pentium 4, 3 GHz

CPU, 2 MB cache, 2

GB RAM, Open

CV&C + +

98% 1s

Panahi and Gholampour (2017) vertical Sobel edge

operator and Hough

transform,

ConnectedComponent

Algorithm, 2L-SVM

English car 500 Intel core i5 2.2

GHzCPU, 4 GB RAM,

C + +

97% NR

Hasan (2013) Canny edge, Horizontal

and Vertical edge,

three stages Artificial

Neural Network (ANN)

English car 69 MATLAB 7.1 92.7% NR

Ho et al. (2009) AdaBoost + (SIFT + SVM) Malaysia car 79 NR 92.07% 5s

Zhou et al. (2012) Principal Visual Word

(PVW)

Chinese car 410 MATLAB, 4GB RAM,

2.53-GHz

84.8% D(1.06 s) + E(6.13 s)

Lim and Tay (2010) MSER + Heuristic + CVM Caltech Car 126 OpenCV 90.47% NR

He et al. (2014) Blob for candidate

detection, filtering

affine distortion,

saliency detection,

post-processing

Chinese car 200 NR 94.7% NR

Asif et al. (2016) YDbDr color space + Otsu

method

Chinese car 1511(300R) MATLAB 2013b,a

Pentium® Dual-Core,

3.06 GHz, 2 GB RAM

93.86% 0.33s

Lee et al. (2013) local structure

patterns + MCT + color

based

method + position

based method

Korea car Video MATLAB 88.9% 3.293s

Proposed(1) One cascade with LBP

classifiers

English car 1030 2.40 GHz Intel Core

i5-4210 U and 4GB

RAM

89.3% D(1.325 s) + E(2.43 s) + P(0.10 s)

Proposed(2) Ensemble of cascades

with 3L-LBP classifiers

English car 1030 2.40 GHz Intel Core

i5-4210 U and 4GB

RAM

98.56% D(0.78 s) + E(1.12 s) + P(0.10 s)

E: Extraction time, D: detection time, P: pre-processing time, NR: Not Reported, R: rejected LP.

5. Conclusion

In this paper, we proposed a new LPD which includes two

phases. At each phase, we used better approaches capable of han-

dling different difficult conditions. The aims of this study to learn

the ensemble of cascades for 3L-LBPs classifiers due to its discrim-

inative power using AdaBoost learning algorithm. The strong cas-

cade classifier contains a large number of weak classifiers with

different types of 3L-LBPs features values to detect different LP

regions. The proposed method is implemented and tested on

1030 vehicles images having different difficult conditions, such as

low/high contrast, fogy, tilted LP, and distortion. The overall perfor-

mance evaluation for detection, precision and F-measure rates are

98.56%, 95.9%, and 97.19%, respectively, with FP rate 5.6%. We also

compared the experimental results against existing LPD methods

which are presented in the literature. We find that the proposed

LPD method outperforms many existing LPD methods which have

the same and different datasets in terms of detection probability

and running time under difficult condition. The average of process-

ing time per one vehicle image was 1.82 seconds for whole LPD

system. Moreover, the proposed method works without any limi-

tations due to using two phases testing and learning reverse other

existing methods which use only testing phase with pre-processing

stage under some limitations. In the training phase, we extracted

LP features using three level LBPs classifiers, the first one from LP

grayscale image, the second from filtered LP image, the third from

enhancement LP image in order to detect all difficult features val-

ues from LP area. Due to many vehicle images in the dataset have

many commercial signs and logos which are lead to increase the FP

rate unwanted features values and take more processing time, in

the future work, we intend to improve the proposed LPD to solve

these problems and work on the whole ANPR system for real time

applications through complete the recognition stage. In addition,

the overall processing time of a detection system can be reduced

through high speed hardware and software. Also, we can add more

difficult issues like weather condition to increase the performance

of the LPD method. Finally, the experimental results on selected

dataset demonstrated that the proposed method has a good per-

formance compared with other existing methods, and can be im-

plemented efficiently for real-time applications.

Acknowledgments

The authors thank Mohammed Diykh and Dawood Sallem Hus-

sian, and the anonymous reviewers for their valuable comments.

M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235 233

References

Anagnostopoulos, C.-N. E. (2014). License plate recognition: A brief tutorial. IEEE In-

telligent transportation systems magazine, 6 (1), 59–67 .

Anagnostopoulos, C.-N. E. , Anagnostopoulos, I. E. , Psoroulas, I. D. , Loumos, V. , &
Kayafas, E. (2008). License plate recognition from still images and video se-

quences: A survey. IEEE Transactions on Intelligent transportation systems, 9 (3),
377–391 .

Anagnostopoulos, C. N. E. , Anagnostopoulos, I. E. , Loumos, V. , & Kayafas, E. (2006).
A license plate-recognition algorithm for intelligent transportation system ap-

plications. IEEE Transactions on Intelligent transportation systems, 7 (3), 377–392 .

Angelova, A., Krizhevsky, A., Vanhoucke, V., Ogale, A. S., & Ferguson, D., Real-Time
Pedestrian Detection with Deep Network Cascades, In BMVC , 2015, September,

32-1.
Asif, M. D. A. , Tariq, U. U. , Baig, M. N. , & Ahmad, W. (2014). A novel hybrid method

for text detection and extraction from news videos. Middle-East Journal of Scien-
tific Research, 19 (5), 716–722 .

Asif, M. R. , Chun, Q. , Hussain, S. , & Fareed, M. S. (2016). Multiple licence plate de-
tection for Chinese vehicles in dense traffic scenarios. IET Intelligent Transport

Systems, 10 (8), 535–544 .

Atiwadkar, A. , Mahajan, S. , Lande, T. , & Patil, K. (2015). Vehicle license plate de-
tection: A survey. International Research Journal of Engineering and Technology

(IRJET), 2 (8), 354–360 .
Azad, B. , & Ahmadzadeh, E. (2014). Real-time multiple license plate recognition sys-

tem. International Journal of Research in Computer Science, 4 (2), 11–17 .
Azad, R. , Davami, F. , Jeo, J. , & Shayegh, H. R. (2014). New framework based on com-

plementary methods for efficiency and accuracy of license plate recognition sys-

tem. Paper presented at the Information and Knowledge Technology (IKT), 2014 6th
Conference on .

Azam, S. , & Islam, M. M. (2016). Automatic license plate detection in hazardous con-
dition. Journal of Visual Communication and Image Representation, 36 , 172–186 .

Baharlou, S. M. , Hemayat, S. , Saberkari, A. , & Yaghoobi, S. (2015). Fast and adap-
tive license plate recognition algorithm for Persian plates. Paper presented at the

Pattern Recognition and Image Analysis (IPRIA), 2015 2nd International Conference

on .
Bashir, F. , & Porikli, F. (2006). Performance evaluation of object detection and track-

ing systems. In Paper presented at the Proceedings 9th IEEE International Work-
shop on PETS .

Bhardwaj, D. , & Mahajan, S. (2015). Review Paper on Automated Number Plate
Recognition Techniques. International Journal of Emerging Research in Manage-

ment &Technology, 4 (5), 319–324 .

Castello, P. , Coelho, C. , Del Ninno, E. , Ottaviani, E. , & Zanini, M. (1999). Traffic mon-
itoring in motorways by real-time number plate recognition. In Paper presented

at the Image Analysis and Processing, 1999. Proceedings. International Conference
on .

Chakraborty, S. , & Parekh, R. (2015). An Improved Template Matching Algorithm

for Car License Plate Recognition. International Journal of Computer Applications,

118 (25), 16–22 .

Chen, Y.-N. , Han, C.-C. , Ho, G.-F. , & Fan, K.-C. (2015). Facial/license plate detection
using a two-level cascade classifier and a single convolutional feature map. In-

ternational Journal of Advanced Robotic Systems, 12 (183), 1–16 .
Cvetkovi ́c, S. , Rajkovi ́c, B. , & Nikoli ́c, S. V. (2016). Real-time image classification using

LBP and ensembles of ELM. Scientific Publications of the State University of Novi
Pazar Series A: Applied Mathematics, Informatics and mechanics, 8 (1), 101–109 .

Dehshibi, M. M. , & Allahverdi, R. (2012). Persian vehicle license plate recognition

using multiclass Adaboost. International Journal of Computer and Electrical Engi-
neering, 4 (3), 355–358 .

Du, S. , Ibrahim, M. , Shehata, M. , & Badawy, W. (2013). Automatic license plate recog-
nition (ALPR): A state-of-the-art review. IEEE Transactions on Circuits and Sys-

tems for Video Technology, 23 (2), 311–325 .
Duan, T. D. , Duc, D. A. , & Du, T. L. H. (2004). Combining Hough transform and con-

tour algorithm for detecting vehicles’ license-plates. In Paper presented at the
Intelligent Multimedia, Video and Speech Processing, 2004. Proceedings of 2004 In-

ternational Symposium on .

EnglishLPDatabase. http://www.zemris.fer.hr/projects/LicensePlates/english/baza
_ slika.zip accessed July 2016 .

Freund, Y. , Schapire, R. , & Abe, N. (1999). A short introduction to boosting. Journal–
Japanese Society For Artificial Intelligence, 14 , 771–780 1612 .

Freund, Y. , & Schapire, R. E. (1995). A desicion-theoretic generalization of on-line
learning and an application to boosting. Paper presented at the European confer-

ence on computational learning theory .

Gao, Y. , & Lee, H. J. (2015). Vehicle Make Recognition Based on Convolutional Neural
Network. Paper presented at the Information Science and Security (ICISS), 2015 2nd

International Conference on .
Han, B.-G. , Lee, J. T. , Lim, K.-T. , & Chung, Y. (2015). Real-time license plate detec-

tion in high-resolution videos using fastest available cascade classifier and core
patterns. ETRI Journal, 37 (2), 251–261 .

Hasan, M. (2003). Real time detection and recognition of license plate in Bengali

(pp. 1–16). UC Riverside: Bourns College of Engineering , Retrieved from: http:
//escholarship.org/uc/item/0m27j18m .

He, T. , Yao, J. , Zhang, K. , Hou, Y. , & Han, S. (2014). Accurate multi-scale license plate
localization via image saliency. Paper presented at the Intelligent Transportation

Systems (ITSC), 2014 IEEE 17th International Conference on .
He, X. , Zhang, H. , Jia, W. , Wu, Q. , & Hintz, T. (2007). Combining global and local

features for detection of license plates in a video. In Paper presented at the Pro-

ceedings of Image and Vision Computing New Zealand .

Ho, W. T. , Lim, H. W. , & Tay, Y. H. (2009). Two-stage license plate detection using
gentle Adaboost and SIFT-SVM. Paper presented at the Intelligent Information and

Database Systems, 2009. ACIIDS 2009. First Asian Conference on .
Hongliang, B. , & Changping, L. (2004). A hybrid license plate extraction method

based on edge statistics and morphology. In Paper presented at the Pattern
Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on .

Hussein, M. , Porikli, F. , & Davis, L. (2009). Object detection via boosted deformable
features. Paper presented at the Image Processing (ICIP), 2009 16th IEEE Interna-

tional Conference on .

Jia, W. , Zhang, H. , & He, X. (2007). Region-based license plate detection. Journal of
Network and computer Applications, 30 (4), 1324–1333 .

Kaur, S. , & Kaur, S. (2014). An efficient approach for number plate extraction from

vehicles image under image processing. International Journal of Computer Science

and Information Technologies, 5 (3), 2954–2959 .
Krig, S. (2014). Computer vision metrics: Survey, Taxonomy, and Analysis . New York:

Springer .

Lalimi, M. A. , Ghofrani, S. , & McLernon, D. (2013). A vehicle license plate detection
method using region and edge based methods. Computers & Electrical Engineer-

ing, 39 (3), 834–845 .
Lee, Y. , Han, D. K. , & Ko, H. (2013). Reinforced adaboost learning for object detection

with local pattern representations. The Scientific World Journal, 2013 , 1–14 .
Lee, Y. , Song, T. , Ku, B. , Jeon, S. , Han, D. K. , & Ko, H. (2010). License plate detection

using local structure patterns. Paper presented at the Advanced Video and Signal

Based Surveillance (AVSS), 2010 Seventh IEEE International Conference on .
Li, H., & Shen, C. (2016). Reading Car License Plates Using Deep Convolutional Neural

Networks and LSTMs. arXiv preprint arXiv: 1601.05610 .
Lienhart, R. , & Maydt, J. (2002). An extended set of haar-like features for rapid ob-

ject detection. In Paper presented at the Image Processing. 2002. Proceedings. 2002
International Conference on .

Lim, H. W. , & Tay, Y. H. (2010). Detection of license plate characters in natural scene

with MSER and SIFT unigram classifier. Paper presented at the Sustainable Utiliza-
tion and Development in Engineering and Technology (STUDENT), 2010 IEEE Con-

ference on .
Ma, C. , Tan, T. , & Yang, Q. (2008). Cascade boosting lbp feature based classifiers for

face recognition. Paper presented at the Intelligent System and Knowledge Engi-
neering, 2008. ISKE 2008. 3rd International Conference on .

MedialabLPRdatabase. http://www.medialab.ntua.gr/research/LPRdatabase.html ac-

cessed July 2016 .
Moustafa, A . A . , & Jaradat, M.-I. R. M. (2015). A New Approach for License Plate De-

tection and Localization: Between Reality and Applicability. International Busi-
ness Research, 8 (11), 13–25 .

Nguyen, T.-T. , & Nguyen, T. T. (2012). A real time license plate detection system

based on boosting learning algorithm. Paper presented at the Image and Signal

Processing (CISP), 2012 5th International Congress on .

Nixon, M. S. , & Aguado, A. S. (2012). Feature extraction & image processing for com-
puter vision . London: Academic Press .

Ojala, T. , Pietikäinen, M. , & Harwood, D. (1996). A comparative study of texture
measures with classification based on featured distributions. Pattern recognition,

29 (1), 51–59 .
Panahi, R. , & Gholampour, I. (2017). Accurate detection and recognition of dirty ve-

hicle plate numbers for high-speed applications. IEEE Transactions on Intelligent
Transportation Systems, 18 (4), 767–779 .

Panchal, T. , Patel, H. , & Panchal, A. (2016). License Plate Detection Using Harris Cor-

ner and Character Segmentation by Integrated Approach from an Image. Proce-
dia Computer Science, 79 , 419–425 .

Parker, J. R. (2010). Algorithms for image processing and computer vision . Hoboken,
New Jersey: John Wiley & Sons .

Patel, C. , Shah, D. , & Patel, A. (2013). Automatic number plate recognition system

(anpr): A survey. International Journal of Computer Applications, 69 (9), 21–33 .

Porikli, F. , & Kocak, T. (2006). Robust license plate detection using covariance de-

scriptor in a neural network framework. Paper presented at the Video and Signal
Based Surveillance, 2006. AVSS’06. IEEE International Conference on .

Sarfraz, M. S. , Shahzad, A. , Elahi, M. A. , Fraz, M. , Zafar, I. , & Edirisinghe, E. A. (2013).
Real-time automatic license plate recognition for CCTV forensic applications.

Journal of Real-Time Image Processing, 8 (3), 285–295 .
Sarker, M. , Mostafa, K. , Yoon, S. , Lee, J. , & Park, D. S. (2013). Novel License Plate

Detection Method Based on Heuristic Energy. The Journal of Korean Institute of

Communications and Information Sciences, 38 (12), 1114–1125 .
Sarker, M. M. K. , & Song, M. K. (2014). Real-Time Vehicle License Plate Detection

Based on Background Subtraction and Cascade of Boosted Classifiers. The Journal
of Korea Information and Communications Society, 39C (10), 909–919 .

Shan, C., & Gritti, T. (2008). Learning Discriminative LBP-Histogram Bins for Facial Ex-
pression Recognition . Paper presented at the BMVC.

Silapachote, P., Karuppiah, D. R., & Hanson, A. R. (2005). Feature selection using ad-

aboost for face expression recognition . Retrieved from.
Song, M. K., & Sarker, M. M. K. (2014). Modeling and implementing two-stage Ad-

aBoost for real-time vehicle license plate detection. Journal of Applied Mathe-
matics, 2014 .

Valera, M. , & Velastin, S. A. (2005). Intelligent distributed surveillance systems: A
review. IEE Proceedings-Vision, Image and Signal Processing, 152 (2), 192–204 .

Viola, P. , & Jones, M. J. (2004). Robust real-time face detection. International Journal

of Computer Vision, 57 (2), 137–154 .
Wafy, M. , & Madbouly, A. M. (2016). Efficient method for vehicle license plate iden-

tification based on learning a morphological feature. IET Intelligent Transport
Systems, 10 (6), 389–395 .

Wang, R. , Sang, N. , Wang, R. , & Kuang, X. (2013). Novel License Plate Detection

http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0005a
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0005a
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0005a
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0005a
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0005a
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0005a
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0019
http://www.zemris.fer.hr/projects/LicensePlates/english/baza_slika.zip
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0024
http://escholarship.org/uc/item/0m27j18m
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0035
http://1601.05610
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0038
http://www.medialab.ntua.gr/research/LPRdatabase.html
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0043
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0043
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0043
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0043
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0045
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0045
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0050
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0050
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0050
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0050
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0052
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0052
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0052
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0052
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0053
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0053
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0053
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0053
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0054
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0054
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0054
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0054
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0054
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0054

234 M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235

Method for Complex Scenes. Paper presented at the Image and Graphics (ICIG),
2013 Seventh International Conference on .

Wu, J. , Brubaker, S. C. , Mullin, M. D. , & Rehg, J. M. (2008). Fast asymmetric learn-
ing for cascade face detection. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 30 (3), 369–382 .
Wu, J. , & Rehg, J. M. (2012). Object detection ensemble machine learning

(pp. 225–250). New York: Springer .
Yogamangalam, R. , & Karthikeyan, B. (2013). Segmentation techniques comparison

in image processing. International Journal of Engineering and Technology (IJET),

5 (1), 307–313 .

Yousef, K. M. A. , Al-Tabanjah, M. , Hudaib, E. , & Ikrai, M. (2015). SIFT based automatic
number plate recognition. Paper presented at the Information and Communication

Systems (ICICS), 2015 6th International Conference on .
Zheng, D. , Zhao, Y. , & Wang, J. (2005). An efficient method of license plate location.

Pattern Recognition Letters, 26 (15), 2431–2438 .
Zheng, K. , Zhao, Y. , Gu, J. , & Hu, Q. (2012). License plate detection using haar-like

features and histogram of oriented gradients. Paper presented at the Industrial
Electronics (ISIE), 2012 IEEE International Symposium on .

Zhou, W. , Li, H. , Lu, Y. , & Tian, Q. (2012). Principal visual word discovery for au-

tomatic license plate detection. IEEE Transactions on Image Processing, 21 (9),
4269–4279 .

http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0054
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0055
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0055
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0055
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0055
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0055
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0055
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0056
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0056
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0056
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0056
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0057
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0057
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0057
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0057
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0058
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0058
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0058
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0058
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0058
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0058
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0059
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0059
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0059
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0059
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0059
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0060
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0060
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0060
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0060
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0060
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0060
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0061
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0061
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0061
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0061
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0061
http://refhub.elsevier.com/S0957-4174(17)30635-8/sbref0061

M.S. Al-Shemarry et al. / Expert Systems With Applications 92 (2018) 216–235 235

Meeras Salman Al-Shemarry received her B.Sc Degree in Computer Science from Babylon University, Iraq in 2002 and M.Sc Degree in Information Technology (IT) from

University Utara Malaysia (UUM) in 2010. She is a Lecturer in Computer Department, College of Science, University of Karbala, Iraq. She is currently a P.h.D Student in

the Faculty of Health, Engineering and Sciences, University of Southern Queensland, Australia. Her research interests include image processing, system analysis using UML
diagrams, Database management system and artificial intelligence.

Yan Li is currently an Associate Professor in Computer Sciences in the Faculty of Health, Engineering and Sciences at the University of Southern Queensland (USQ), Australia.

Her research interests are in the areas of Big Data Technologies, Artificial Intelligence, Biomedical Engineering, and Signal/Image Processing.

Shahab Abdulla received his B.Sc and M.Sc Degrees from University of Technology Baghdad and PhD from USQ. He is currently a Lecturer in Language Centre, University
of Southern Queensland, Australia. His research interests are in the areas of biomedical engineering, complex medical engineering, networked system, intelligent control,

computer control systems, robotics and mathematics research, etc.

 Chapter 4 ML_ELBP Descriptor with ELM Classifiers

P a g e 50 | 254

50

CHAPTER 4

AN EFFICIENT TEXTURE DESCRIPTOR FOR THE

DETECTION OF LICENSE PLATES FROM VEHICLE

IMAGES IN DIFFICULT CONDITIONS

4.1 Introduction

The content of this chapter is an exact copy of the published paper in the journal of IEEE

Transactions on Intelligent Transportation Systems by Al-Shemarry et al., (2019) ‘An Efficient

Texture Descriptor for the Detection of License Plates from Vehicle Images in Difficult

Conditions’.

In Chapter 3, the developed method, 3L-LBP_Adaboost, achieved a good detection

accuracy with a acceptable time for detecting LPs from low-quality vehicles images. During

the experiments, there are many objects that look like LPs inside vehicle images, such as

commercial signals plates and logos, which increased the false positive rate (FPR) and took

more processing time. But this method was a good schema to search for further performance

improvements in LPD systems.

This chapter proposes an efficient extraction method, based on preprocessing methods, to

improve an extended local binary pattern (ELBP) descriptor during the extraction stage. A

Gaussian filter and a contrast-limited adaptive histogram equalization (CLAHE) enhancement

method are used to build the enhancement texture descriptor, multi-level extended local binary

pattern (MLELBP).

It extracted multiple complicated features, through an increased size of the training dataset

during the preprocessing stage, by introducing some noisy data into training set using a

Gaussian filter and a CLAHE method. The English car database was extended using an online

4

 Chapter 4 ML_ELBP Descriptor with ELM Classifier n

P a g e 51 | 254

51

photo editor application to make different changes to the original database and to increase the

number of vehicle images in the database in order to improve the accuracy of the LPD system.

The extracted key features are then used as inputs to the extreme learning machine classifier

(ELM) for multiclass identification under difficult conditions. This chapter discusses the

performance of the MLELBP_ELM algorithm for the LP extraction and classification stages

and compares it with the 3L-LBP_Adaboost algorithm. Also, the performance of this method

was compared with other existing approaches reported in the literature. The MLELBP_ELM

method helps to improve the LPD system through achieving a high detection rate with a fast

computational speed for difficult vehicle images.

 Appendix B provides a Matlab code for the proposed LPD method.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2020 553

An Efficient Texture Descriptor for the Detection
of License Plates From Vehicle Images

in Difficult Conditions
Meeras Salman Al-Shemarry , Yan Li , and Shahab Abdulla

Abstract— This paper aims to identify the license plates
under difficult image conditions, such as low/high contrast,
foggy, distorted, and dusty conditions. This paper proposes an
efficient descriptor, multi-level extended local binary pattern,
for the license plates (LPs) detection system. A pre-processing
Gaussian filter with contrast-limited adaptive histogram equaliza-
tion enhancement method is applied with the proposed descriptor
to capture all the representative features. The corresponding bins
histogram features for a license plate image at each different level
are calculated. The extracted features are used as the input to
an extreme learning machine classifier for multiclass vehicle LPs
identification. The dataset with English cars LPs is extended
using an online photo editor to make changes on the original
dataset to improve the accuracy of the LPs detection system.
The experimental results show that the proposed method has a
high detection accuracy with an extremely high computational
efficiency in both training and detection processes compared
to the most popular detection methods. The detection rate is
99.10% with a false positive rate of 5% under difficult images.
The average training and detection time per vehicle image is
4.25 and 0.735 s, respectively.

Index Terms— Extreme learning machine, local binary pattern,
extended local binary pattern, license plate detection.

I. INTRODUCTION

THE automatic license plate recognition (ALPR) is a
well-known topic in the field of intelligent transportation

systems (ITS). It is a surveillance technique to detect and
recognize vehicle license plates (LPs) for many security and
service purposes. For example, for observing and examining
the roads traffic to prevent unacceptable behaviors, highway
tolling systems, security systems, and parking management
systems [1]–[4]. The core part of an ANPR system is to
identify a vehicle LP from an image or a sequence of images
in a video. One of the most important factors in a license
plate detection (LPD) system is feature extraction. For easy

Manuscript received December 18, 2017; revised July 5, 2018,
October 11, 2018 and January 4, 2019; accepted January 31, 2019. Date
of publication February 22, 2019; date of current version February 3, 2020.
This work was supported by the University of Southern Queensland and the
Ministry of Higher Education and Scientific Research of Iraq. The Associate
Editor for this paper was S. S. Nedevschi. (Corresponding author: Yan Li.)

M. S. Al-Shemarry is with the School of Agricultural, Computational
and Environmental Sciences, Faculty of Health, Engineering and Sciences,
University of Southern Queensland, Toowoomba, QLD 4350, Australia, and
also with the Computer Department, Science College, Karbala University,
Karbala 56001, Iraq (e-mail: meerassalmanjuwad.al-shemarry@usq.edu.au).

Y. Li is with the School of Agricultural, Computational and Environmental
Sciences, Faculty of Health, Engineering and Sciences, University of Southern
Queensland, Toowoomba, QLD 4350, Australia (e-mail: liyan@usq.edu.au).

S. Abdulla is with the Open Access College, University of Southern Queens-
land, Toowoomba, QLD 4350, Australia (e-mail: shahab.abdulla@usq.edu.au).

Digital Object Identifier 10.1109/TITS.2019.2897990

Fig. 1. Examples of the difficult conditions for license plates.

recognizing, LPs are always designed in specific shapes and
colors. It is often problematic to extract features of license
plates with difficult conditions, such as lighting variations, dirt,
dusk, viewpoint variations, and distortions, as shown in Fig. 1.
Some descriptors like the texture features operators and local
binary patterns (LBPs) are effective for various illumination
conditions. They can partly solve the occlusion and scale
invariance problems [5].

There are a large number of LBP variants proposed by
researchers to improve its robustness and distinctiveness. For
example, the completed local binary patterns (CLBPs) [6],
extended local binary patterns (ELBPs) [7], and completed
local derivative patterns (CLDPs) [8]. Those LBP descriptors
are robust to gray-scale and rotation variations. To improve
efficiency, Guo et al. [8] proposed a scale-selective local
binary pattern (SSLBP) that firstly extracted scale-sensitive
local features and then applied a global operator to achieve the
scale-invariance. In [8], the scale-invariant feature extraction
scheme achieved a good texture classification performance, but
it was a high-dimensional descriptor.

Various studies revealed that ensembles of multiple clas-
sifiers [9]–[12] were able to produce better performance
than a single classifier. However, those ensemble based
methods faced an issue of imbalance between the number
of positive and negative training samples due to under-
lying mechanism of binary classification. Those methods
are likely to reach a local optimum or an over-fitting
solution. Recently, deep neural networks (DNNs) [13] and

1524-9050 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern Queensland. Downloaded on September 20,2020 at 13:27:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2859-9441
https://orcid.org/0000-0002-4694-4926

554 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2020

convolutional neural networks (CNNs) [14], [15] have been
used as an automatic way to learn the key features in LPs.
The DNN algorithms can combine the feature extraction
and classification into one unified neural network framework.
They have shown a higher detection accuracy. However,
the features learning mechanism in DNNs cannot guarantee
robustness in difficult image conditions, for example, rotation
and scaling, unless the training samples can cover various
observation conditions. Furthermore, their computational costs
during both training and detection processes are expensive.
With a high speed of vehicles, not only the accuracy but
also the computational speed are the key factors for real-time
applications. In this paper, a multi-level extended local binary
patterns (ML-ELBP) descriptor uses a Gaussian filter [16]
and contrast-limited adaptive histogram equalization (CLAHE)
enhancement method [17] to extract different features from
license plate images. After extracting the key features, the
extreme learning machine (ELM) classifier [18] is used for
multiclass identification. The proposed method can achieve a
high detection accuracy with a fast computational speed. The
major contributions of this work are:

1) Proposed an efficient new descriptor, the ML-ELBP,
to extract key LP features from vehicle images with
difficult conditions like lighting, foggy, rotations, blurry,
darkness, and complex backgrounds.

2) Introduced two phases of an LPD system development:
testing and training using ELM classifier as a good
trainer.

3) Achieved a high detection accuracy with an extremely
high computational efficiency in both training and detec-
tion processes compared to the most popular detection
methods.

4) Increased the size of the training dataset during the
pre-processing stage by introducing some noisy data
into training set using a Gaussian filter and a CLAHE
method.

5) Extended the English cars dataset using an online photo
editor to make changes on the original dataset to improve
the accuracy of the LPD system.

The rest of the paper is organized as follows. Section II
reviews the related work on the LPD. Section III intro-
duces the framework of this proposed method. Section IV
presents details about the extraction of ML-ELBP features and
ELM-based classification. Section V shows the experimental
results. Finally, the conclusion with future works for this study
are provided in Section VI.

II. RELATED WORK

Many studies on developing LPDs have been reported
both recently and in the past [9], [13], [15], [19]–[23].
An LPD system consists of three stages: 1) image pre-
processing; 2) feature extraction; and 3) classification. The
image preprocessing stage is important to improve features’
robustness and detection accuracy. Thus, various preprocess-
ing methods have been proposed [24]–[27]. With illumina-
tion changes and low/high contrast variations, some methods
normalize the input images in a different color space, for

example, RGB color space [28]–[30] or gray space [31], [32].
Other methods convert input images from the RGB color space
into the HSV color space [33], [34].

Transformations like translation, rotation, and scaling, can
been made on training images to improve robustness in feature
extraction and detection [35], [36]. Those transformed images
can represent various observation conditions. An accurate LPD
system is important for security and management purposes.
Some researchers used those features that are sensitive to
light changes to represent LPs. For example, descriptors
based on global and local features [37], [38], local binary
patterns (LBPs) [39], histogram of oriented gradients (HOG)
[40], [41], scale-invariant feature transform (SIFT) [19], [42],
and Gabor features [43], [44] have been used.

As an LBP descriptor on each cell is normalized over several
of its neighbors, it includes more discriminative neighboring
information than other descriptors. The features based on gray
level statistics [45] are used to describe the textures in LPs and
have shown good discrimination results. Various combinations
of several different descriptors were also proposed for LPD
in an attempt to complement each other [37], [39], [40], [43].
However, it would lead to high feature dimensions. A num-
ber of techniques [46], [47] have been designed to reduce
dimensionality. Recently, several methods were reported to
quantify local features using coding techniques. They then
concatenated those coded features into a global features repre-
sentation over the whole image using pooling techniques, and
spatial pyramid matching [48], [49]. An one-to-all strategy
with a binary support vector machine (SVM) as the base
classifier [3], [19], [50] is widely used for LPD. Other
multiclass identification techniques are also used, such as
neural networks (NNs) [3], [51], [52] and AdaBoost cascade
classifier [19], [53]. A cascade classifier has shown a com-
parable performance with other popular methods in terms of
the computational speed of the detection process. However, the
detection accuracy for the cascade classifier is not very high if
it does not use some efficient enhancement techniques for the
training and testing datasets. Deep neural networks (DNNs)
based methods have a large number of tuning parameters.
Meanwhile, due to the multi hidden-layer structure, its com-
putational cost is very high. In [54], a method using CNN
to learn features and using an ELM as the classifier was
reported. That method obtained competitive results with less
computation time compared with those DNN methods. In
another study, the ELM was used for LPD with HOG and
the means of maximally stable external region [55]. Several
ensemble classifiers were also proposed [9], [56] to detect
various problems.

In this paper we propose a new descriptor, ML-ELBP, for
features extraction and use an ensemble of ELMs as the
classifier. We increase the size of the training dataset by using
better enhancement preprocessing methods through three level
processing steps. The Gaussian filter and CLAHE method are
used to introduce extra noise into the training set to avoid
the overfitting problem. We extend the English cars plates’
dataset to improve the detection accuracy of the LPD system.
The proposed method is robust to different LP styles, colors,

Authorized licensed use limited to: University of Southern Queensland. Downloaded on September 20,2020 at 13:27:13 UTC from IEEE Xplore. Restrictions apply.

AL-SHEMARRY et al.: EFFICIENT TEXTURE DESCRIPTOR FOR THE DETECTION OF LPs FROM VEHICLE IMAGES 555

Fig. 2. Framework of the proposed LPD method. (a) Testing Phase and
(b) Training Phase.

and languages. It can be used to enhance the performance of
any existing ANPR systems with different datasets.

III. THE PROPOSED METHOD

The proposed method involves two phases: the image pre-
processing phase and the LP detection phase. The first phase is
to enhance vehicle images for better performance while prepar-
ing for the detection phase. The second phase includes two
stages: 1) feature extraction stage; and 2) ELM classification
stage.

In the feature extraction stage, the ML-ELBP descriptor
is employed to extract features from a given input image
through three level pre-processing processes. The details of
this descriptor is described in Section IV. The second stage
applies an ELM classifier composed of a single hidden layer
feedforward network (SLFN) to train the ML-ELBP features.
An ensemble of strong features vectors are obtained as the
trained models.

The training phase uses the ELM algorithm to estimate the
connection weights in the SLFN for all training samples. The
proposed framework of the LPD system for training and testing
phases are shown in Figs. 2(a) and 2(b).

This study converts a color input image into a grayscale
image by formula (1):

Gray(i, j)=0.3 × R(i, j)+0.59 × G(i, j)+0.11×B(i, j) (1)

where i and j are any pixel inside a grayscale image. R (i, j),
G(i, j) and B(i, j) are three channels of Red, Green, and Blue,
respectively, for color images.

Large resolutions need more processing time. The vehicles
images are resized from 640 × 480 to 320 × 240 as shown in
Fig. 3. The proposed method uses texture features instead of
color features to detect the LPs because the color features are
very sensitive to the illumination conditions and noise [57].

Fig. 3. Examples of the resized original vehicle images from 640×480 into
320 ×240 resolutions with histograms (X axis = the range of features values
in each bin; Y axis = the numbers of features values appeared in each range
of bins).

The LPD method employs an intensity transition on a vehicle
image based on the extracted three level ELBP features as an
initial localization for the LP.

The intensity in the LP region may be very high because
various texts are included in the vehicle image. There are
various noise mixed with the text referring to non-LP regions,
such as surface textures, dust, distortion, and small amounts
of dirt. Noise incurs unnecessary features in an image. Image
enhancement methods are used to reduce noise and improve
the lighting conditions. Some LPs may not be recognized if the
vehicle images contain too much mixed noise and too distorted
(too dirty and dark etc).

IV. THE PROPOSED ML-ELBP DESCRIPTOR

The LBP [58] is one of the most popular texture descriptors
in the field of the computer vision and image analysis. It has
many advantages, such as invariance to illumination condi-
tions, low computational cost, and ease of implementation
[47]. A large number of LBP variants [6]–[8], [46], [47], [59]
have been proposed to improve its discriminative power,
robustness, and applicability. However, they are not so effec-
tive for processing images with difficult conditions.

In this paper we propose a new descriptor, ML-ELBP, based
on combining a CLAHE method and a Gaussian filter for
vehicle LP image feature extraction. It can extract repre-
sentative texture features from distorted images and images
under difficult conditions. The proposed descriptor is shown
in Fig. 4. It has a similar structure as the scale space ELBP
(SSELBP) descriptor proposed by Hu et al. [46], but with dif-
ferent preprocessing methods. Next we will briefly introduce
the concept behind the ELBP [7], [46], [47] before explaining
the block diagram of the proposed descriptor.

A. Review of the ELBP

Whereas the LBP encodes only the relationship between the
central point and its neighbours, ELBP was initially designed
to encode distinctive spatial relationships in a local region.
It contains more spatial information. The ELBP [7] consists

Authorized licensed use limited to: University of Southern Queensland. Downloaded on September 20,2020 at 13:27:13 UTC from IEEE Xplore. Restrictions apply.

556 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2020

Fig. 4. The block diagram of the proposed ML-ELBP descriptor.

Fig. 5. The block diagram of the ELBP descriptor.

of three LBP-like descriptors: the intensity value of the central
pixel (ELBP_CI), the intensity values of its neighboring pixels
in radial directions with radius R (ELBP_NI), and the intensity
difference values of the central pixel with its neighboring
pixels in radial directions (ELBP_RD). The ELBP framework
is shown in Fig. 5. The central pixel xC with the intensity
value gC are given to encode the intensity value of xC . The
ELBP_CI descriptor compares the gC value with the mean of

the neighboring pixels, denoted, βP,R = 1
P

P−1∑
N=0

gP,R,N, which

is defined as

ELBP_CI (xC) = L (gC − β), L(x) =
{

1, if x ≥ 0

0, if x < 0.
(2)

The ELBP_CI descriptor generates an one-bit binary pattern
in an image for each pixel. In addition to ELBP_CI, the ELBP
involves the ELBP_NI descriptor to extract features from the
intensities of the neighboring pixels P . The P neighbors
of the central pixel value are distributed on the circle with
the radius R and have the intensities values denoted as
gP,R,N=0,1,...,P−1. By comparing the neighboring pixels with
their average value denoted as βP,R , the ELBP_NI descriptor
encodes the intensity values as follows:

ELBP_NIP,R(xC) =
∑P−1

N=0
L(gP,R,N − βP,R) 2N (3)

The ELBP_NI generates a P-bit binary pattern in each
comparison which has been transferred into a decimal value.
The third descriptor involved in the ELBP is the ELBP_RD
descriptor, which encodes the intensity differences of the
pixels on two circles with the radius R and R-1 along the radial

Fig. 6. Pixel relations in radial directions.

directions (see Fig. 6). It is similar to ELBP_NI descriptor,
it generates a P-bit binary pattern and converts to the decimal
value, the ELBP_RD defined as

ELBP_RDP,R−1,R(xC)=
∑P−1

N=0
L (gP,R,N − gP,R−1,N) 2N

(4)

Liu et al. [7] found that the ELBPriu2
r,p led to a good texture

classification performance. The operators of ELBP_NI and
ELBP_RD can produce 2N different binary patterns. We
further apply rotation-invariant and uniform mappings on
ELBP_NI and ELBP_RD to remove the rotation effect, and,
to reduce the pattern dimension. The updated operators are
denoted as ELBP_NIriu2

P,R and ELBP_RDriu2
P,R . Where the super-

scripts, “ri” and “u2”, represent the rotation-invariant and
uniform mappings, respectively.

B. Multi-Level Pre-Processing

A new descriptor uses multi-level pre-processing steps
through applying a Gaussian filter and the CLAHE method.
Firstly, we convert an LP image into a grayscale image, and
resize it from 50 ×260 to 25×100 resolution. Then, we build
a multi-level pre-processing features space to grayscale image
(Y) as follows:

Li =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y, i = 0,

CLAHE(σ) × G(σ), i = 1,

CLAHE(σ), i = 2,

G(σ) i = N

(5)

where Li is the level of pre-processing steps, i = 1, 2, . . . , N ,
and N is the total number of the levels. In this paper,
N = 4. G(σ) is the Gaussian filter with the standard deviation
σ = 0.25. CLAHE(σ) defines as a contrast-limited adap-
tive histogram equalization method with a standard deviation
σ = 0.01 (see Fig.7).

As a new image is produced in each pre-processing step, one
LP image is related to four images now. Therefore, the training
LP images database has been expended. Various representative
features can be captured from those images. The same pre-
processing steps are applied to the testing images, but just
with the first step L1. After that, we normalize each LP image
(Y) to ensure that it has zero mean and unit variance.

C. ML-ELBP Features Extraction

The ELBP descriptor depends only on one or two local
neighboring circles. It is not sufficiently robust to classify
texture images with scale variations. To solve this problem,

Authorized licensed use limited to: University of Southern Queensland. Downloaded on September 20,2020 at 13:27:13 UTC from IEEE Xplore. Restrictions apply.

AL-SHEMARRY et al.: EFFICIENT TEXTURE DESCRIPTOR FOR THE DETECTION OF LPs FROM VEHICLE IMAGES 557

Fig. 7. The multi-level preprocessing steps are applied on a training image.

we use more neighboring circles for the ELBP descriptor
with the Gaussian filter and CLAHE enhancement methods.
The training images are increased as the result of multi-
level image pre-processing. The next stage is to extract
strong weighted features using the ELBP descriptor with multi
neighboring pixels and different radius. As shown in Fig. 6,
with different (P, R) choices, the output group of ELBPs
are denoted as ELBP (Pi, Ri), i = 1, 2, . . . , N . Where N
is determined based on the size and the complexity of the
LPs images. To combine patterns in ELBP (Pi , Ri), the joint
histogram brings the first concatenating patterns, after that
it calculates the corresponding histogram. The combination
scheme can be considered as the conversion from a joint multi-
dimensional histogram to one dimensional histogram. Based
on Hu et al. [46] the joint histogram of ELBP_CI, ELBP_NIriu2

r,p
and ELBP_RDriu2

r,p are denoted as HELBP_CI/NI/RDriu2
Pi ,Ri

. The joint

histograms of ELBP (Pi , Ri) are calculated and the ML- ELBP
features are obtained and denoted HELBP_CI/NI/RDriu2

L(i)
, where

L(i) = ∑N
i=1 (Pi , Ri).

The descriptor, firstly, divides an LP image into 16 cells
(2 × 8), then labels pixel P for each cell based on different
thresholding neighborhood circles and radius ((P = 8, R = 1),
(P = 12, R = 2.5) and (P = 16, R = 4)). The different
descriptors, ELBP_CI, ELBP_NI, and ELBP_RD, are used
in this paper to capture key features for the images with
difficult conditions (like distorted, dark, rotations, and dirty
images). The feature extraction involves to compare the center
pixels values with different neighbor’s circles and transfer the
decimal results to binary results with weighted values.

D. Maximum Pooling

The maximum pooling strategy is utilized for selecting the
maximum values from the corresponding bins of the multi-
level ELBP histogram features at different scales of an LP
image. For each level Li , the same (Pi , Ri) set is used to
calculate the corresponding level of ELBP histogram features,
denoted as H Li

ELBP_CI/NI/RDriu2
L(i)

. The significant features of LPs

images at different levels can be captured by a parameter pair
in the (Pi , Ri) set based on the multiple choices of (Pi , Ri)

Fig. 8. Architecture of the SLFN.

in the ML-ELBP. When the levels of LPs images change, the
remaining key features can be captured by the next pair of
histogram features. Their mathematical expression is shown
as follows:

HELBP_CI/NI /RDL(i) = max
i=1,2,...,N

(H Li

ELBP_CI/NI /RDriu2
L(i)

) (6)

Next an ELM classifier [18] is applied to distinguish the
extracted ML-ELBP histogram features, and to build the
trained models.

E. ELM Classifier

The ELM is a machine learning algorithm with a single
hidden layer feedforward network (SLFN) [18]. It is with high
efficient and easy to implement. It normally contains three
layers: input layer, hidden layer and output layer [60], [61].
The architecture of an ELM is shown in Fig. 8, containing N
input neurons, L hidden neurons and M output neurons. For
N different input data {xi}, i = 1, 2, . . . , N , the output H(x)
of the hidden layer can be expressed as shown in formula (7).

H (xi,) = Â(wx + b) (7)

where Â(x) represents the hidden layer activation function of
the ELM, w is the weight matrix between the hidden layer and
the input layer, and b is the bias of the hidden neurons.

The output of the neurons in the output layer can be
expressed as in formula (8).

H (xi)β = Y T
i , i = 1, 2, . . . , N (8)

The default activation function, sigmoid function for the hid-
den neurons in the ELM is applied in this study. Y represents
the training data target matrix. Formula (8) can be abbreviated
as:

H (xi,)β = Y (9)

where

H (xi,)

=

⎡
⎢⎢⎢⎣

Â (w1, b1, x1) Â (w2, b2, x2) . . . Â (wL, bL, x1)

Â (w1, b1, x2) Â (w2, b2, x2) . . . Â (wL, bL, x2)
...

...

Â (w1, b1, xN) Â (w2, b2, xN) . . . Â (wL , bL, xN)

⎤
⎥⎥⎥⎦

N×L

Authorized licensed use limited to: University of Southern Queensland. Downloaded on September 20,2020 at 13:27:13 UTC from IEEE Xplore. Restrictions apply.

558 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2020

and

β =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

βT
1

βT
2

.

.

.

βT
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

L×m

, Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT
1

yT
2

.

.

.

yT
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×m

(10)

The input weights w and bias b are randomly assigned in the
ELM algorithm. The speed of the ELM is significantly faster
than other training algorithms. For multiclass classification,
the ELM aims at minimizing the training error and the norm
of the output weights, which results in a less computational
time for training the SLFN [62]. Thus, in ELM the following
parameters are minimized:

Min. err. =
{∥∥Hβ − Y‖2

‖β‖ (11)

In the implementation, the minimal norm least square
method is used in this study. Therefore, only the training
error is minimized and the solution is unique. The input layer
is connected to the input feature vector x, (i.e., ML-ELBP)
for the LP image. The dimension number of x is denoted
as D. The connection between the input and hidden layers is
actually a function of feature mapping from a D space to an
L-dimensional space. Given an input feature x , its mapped
feature vector can be denoted as:

V(x) = [Â(w1, b1, x1), . . . , Â(wL, bL , xN)]. (12)

For the output layer, the number of the output nodes M is
equal to the number of ML-ELBP features for three levels.
The output weight between the ith hidden node and the jth
output node is denoted as βi, j , where j = 1, . . . , M . The
value of an output node j can be calculated as:

Fj (x) =
∑L

i=1
βi, j × Â (wL , bL , xN) (13)

β is the weighting vector between output and hidden layers.
Thus, for the input sample xi , its output vector at the hidden

layer can be written as

F(x) = [f1(x), . . . , fM (x)] = V (x)β (14)

Tamura and Tateishi [63] and Huang [64] pointed out that
a SLFN with N sigmoid hidden nodes could learn exactly
N distinctive ways. In this paper, the number of the hidden
nodes is 550 for getting the optimal detection results with the
extracted ML-ELBP features. It is set based on the detection
performance with the testing data set. The cell size is 9 × 9
for different thresholding neighborhood circles (8, 12, and 16)
and the average dimension of the feature vectors is 710.

V. EXPERIMENTAL RESULTS

A. Database

In this study, various vehicles images captured by digi-
tal cameras under different environmental conditions (cloudy
weather, rainy day, night lighting, dusk) are used. The database

Fig. 9. Examples of testing vehicles images in the database. (a) Vehicles
images from the original database. (b) Vehicles images with difficult changes
using the online photo editor.

Fig. 10. Some examples of LPs training images with rotations.

Fig. 11. Some examples for difficult training LPs images.

contains different types of 471 vehicles images, such as
trucks, passenger cars, and buses. This database is publicly
available [65]. An online photo editor [66] is used to increase
the vehicle images in the English license plates database. The
photo editor makes various complex changes on the original
images (see Fig. 9), and the resultant images are included in
the database. The final total number of vehicles images used
in this study is 1500. It contains rotated images in order to
detect various types of the rotated LPs with different angles,
such as 45◦, 30◦, 20◦, 15◦, and 5◦ as shown in Fig. 10.
To enable the LPD system to detect the LPs from low quality
images, the LPs images with different illumination conditions
are added to the training dataset. The final LPs images in
the database are divided into two groups: the testing group
containing 1000 vehicle images and the training group having
500 LPs images (see Fig. 11). Both original and changed
vehicles images are used in the testing set. The experimental
results showed that the detection accuracy was not noticeably
increased when more images were put in the training set.
This demonstrated that all the key characteristics have been

Authorized licensed use limited to: University of Southern Queensland. Downloaded on September 20,2020 at 13:27:13 UTC from IEEE Xplore. Restrictions apply.

AL-SHEMARRY et al.: EFFICIENT TEXTURE DESCRIPTOR FOR THE DETECTION OF LPs FROM VEHICLE IMAGES 559

TABLE I

THE CLASSIFICATION RESULTS BY LBP, ELBP, SSELBP, AND THE PROPOSED ML-ELBP DESCRIPTORS
WITH THE ELM CLASSIFIER ON ENGLISH PLATES CARS DATABASE, WHERE THE

TRAINING IS DONE WITH FIVE ROTATION ANGLES

captured from the 500 original LP images and their three level
pre-processing images in the training data.

B. Features Extraction and Classification

As this study focuses on features extraction rather than
classification, the ELM classifier has been used as a trainer to
distinguish the extracted histogram features for the LP regions.
In the proposed method, to build the multi-level processing,
we use a Gaussian filter with the standard deviation σ = 0.25,
and CLAHE (σ) with the standard deviation σ = 0.01,
and set the pre-processing step to three. For all the levels,
we extract ML-ELBP features using the same set (Pi , Ri),
i = 1, . . . , N , where N is determined based on the size
and the complexity of LPs images. We set i depending on
the use of different neighborhood circles i = 1, 2, . . . , 8;
i = 1, 2, . . . , 12; or i = 1, 2, . . . , 16 with R = 1; 2.5; 4,
respectively. The LPs features from the images with different
angles and descriptors are classified using the ELM.

For comparison, in addition to our proposed ML-ELBP,
other descriptors, LBP, ELBP, and SSELBP, along with the
ELM classifier are also applied to the same vehicle LP images.
All the experimental results are listed in Table I. It is noticed
that the best classification accuracy is from the ML-ELBP
descriptor with radius of (1; 2.5; 4). Through our experiments
and as reported in [7], the performance of the ELBP increases
when the neighborhood size is 11 ×11. The best performance
is achieved by ELBPriu2

((8,1)+(16,2)+(24,5)) for all the training
images and with different angles. The classification accuracy
is 97.89% when the features dimension is 1300. In general,
the LBP had the worst performance among the descriptors. The
central pixel also provides useful discriminative information.
Neglecting the central pixel would clearly result in information
lost, which is consistent with the conclusion reported by
Guo et al. [6] and Varma and Zissermam [67]. Thus it is
better to explicitly include the information from the central
pixel in ELBP based descriptors. Better results by the SSELBP
descriptor at the neighborhood size of 9 × 9 are obtained.
Combining SSELBPriu2

((8, 1)+(12, 1.5)+(16, 2)) can achieve an accu-

rate result of 98.41%, for the five angles at 45◦, 30◦, 20◦,
15◦, and 5◦. With all the training images and different angles
the classification accuracy is 98.76%. The features dimension
is 1010. The SSELBP performs better than the ELBP and
LBP descriptors. However, the proposed ML-ELBP descriptor
produces the best classification results for the five angles at
45◦, 30◦, 20◦, 15◦ , and 5◦. It combines all the features of
the M-ELBPriu2

((8, 1)+(12, 2.5)+(16, 4)) and can capture all important
textures information in an LP area. The average classification
accuracy for the five LP angles is 99.16%. The classification
accuracy for all datasets with different angles and resolutions
is 99.78%. The features dimension is 710 for a 9 × 9 cell
size. Also, it was observed that the good results obtained by
using different neighboring pixels with different radius values.
We acknowledge that different neighboring analysis increase
the histogram features dimension. However the dimensionality
of 710 for three resolutions is not a significant problem in
relation to our proposed descriptor. Finally, the ML-ELBP
produces robust classification results compared with the ELBP
and SSELBP descriptors.

The ELM constructs several models in the hidden layer from
the extracted features. Each training image is split into 16 cells
with 8×2 subsamples. The 16 cells histograms are merged into
one model histogram for the ML-ELBP descriptor. Moreover,
from one designated training image, each training sample has
three other physically different samples generated by the three
preprocessing levels. After that, the classifier produces binary
values or predicted value of “0” for non-LP and “1” for LP. It
can become a detector based on the predicted value from the
classifier. It is trained with different rotation invariant textures
for the LP with five angles (45◦, 30, 20◦, 15◦ and 5◦) and
different neighborhood circles with radius selection P and
R. We set the number of angles depending on the vehicle
images dataset which contains only those angles. The number
of overlaps depends on the locations from the LP region, with
an average of 2∼6 bounding boxes. Therefore, the trained
model detects different numbers of LP regions per vehicle
image.

Authorized licensed use limited to: University of Southern Queensland. Downloaded on September 20,2020 at 13:27:13 UTC from IEEE Xplore. Restrictions apply.

560 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2020

TABLE II

THE AVERAGE CLASSIFICATION RESULTS FOR ALL THE TRAINING
DATASET WITH DIFFERENT RESOLUTIONS BY LBP, ELBP, SSELBP,

AND THE PROPOSED ML-ELBP DESCRIPTORS

This study used one single classifier for all the rotated
images. During the experiments, firstly five classifiers were
used to train all the LP images rotated with angles of 45◦, 30◦,
20◦, 15◦, and 5◦, separately. Then, five trained models were
built and computed with results. After that, one classifier was
trained for all the rotated images and the results were obtained.
We observed that the results from both cases were very similar.
One single classifier, therefore, was finally used for efficiency.
There were two trained models: one was the normal LP, and
another one was for the rotated images with difficult problems.
Each trained model included two classes (LP vs non-LP).
In this work, we tried to increase the number of pre-processing
levels to reduce features dimensions. But this did not help
improve the accuracy for classification process. All the training
and testing images were conducted under different conditions
like low/high lighting, dirt, rotation, foggy, and distortion.

Due to the illuminant varied, some LP samples included sig-
nificant large grayscale distortions. Therefore, the English cars
database is more challenging than other databases which were
used in the previous studies [22]. Table II presents the average
classification results for our proposed descriptor, compared
with other existing state-of-the-art descriptors [5], [7], [8].

C. Impact of the Number of the Hidden Neurons

In the experiments, the only parameter to be determined for
the ELM is the number of the hidden neurons with ‘sigmoid’
activation function. Fig. 12 shows the detection rates with dif-
ferent numbers of neurons for the English plates cars database.
With a small number of the hidden neurons, the detection rate
is very low. The detection rate keeps improving as the number
of the neurons increases from 100 to 550. Adding more hidden
neurons does not help to further boost the performance beyond
550. Thus 550 neurons in the hidden layer was set for the ELM
in the experiments. We also tested other activation functions,
such as ‘sin’and ‘hardlim’. We found that the sigmoid function
gave better results. The whole process can finish in one
time period without iterations with a minimum training error.
We can notice from Fig. 12 that the performance of the ELM
is very stable for the large number of the hidden neurons.
Also, the performance tends to become worse, when it has
too few or many nodes generated randomly [68]. However,

Fig. 12. Detection rate and the number of the hidden neurons in the ELM
with different LBP based descriptors.

TABLE III

THE COMPARISONS OF THE LP DETECTION PERFORMANCES

BY DIFFERENT METHODS

the ELM with the ML-ELBP can achieve a good detection rate
at 99.10% with 550 hidden nodes, which is slightly higher
than the SSELBP with 650 nodes and with a detection rate
of 98.76%. It can also be observed that the ELM with the
LBP achieves a low detection rate of 94.55% with 900 nodes
compared to the ELBP that achieved 97.89% detection rate
with 800 hidden nodes. The proposed method outperforms
all the existing LBP based descriptors along with the ELM
in terms of the detection rate. It appears to be suitable in
real-time applications that, need fast prediction results and
response capability.

D. LP Detection Performance

The detection accuracies for the English car plates’ dataset
are shown in Table III. In this study, using different descriptors
to produce more advanced features brings the detection rate to
nearly 100%. For the real world scenario database, using those
features helps improve the detection rate significantly and pro-
duce good results. To evaluate the performance of the proposed
method, common measurement, such as detection or recall
rate (RR), precision rate (PR), and F-measure rate (FR) are
used in this paper. These measurements consider the true pos-
itive (TP) detection rate from the number of the positives as the
ground truth that is related to the number of the false positive
(FP) rate [32]. Those measurements can be defined as follows:

Positive prediction or Precision rate (PR) = T P

T P + F P
(15)

Detection or Recall rate (RR) = T P

T P + F N
(16)

F-measure (Fm) = 2∗
(

RR ∗ P R

RR+ P R

)
(17)

Authorized licensed use limited to: University of Southern Queensland. Downloaded on September 20,2020 at 13:27:13 UTC from IEEE Xplore. Restrictions apply.

AL-SHEMARRY et al.: EFFICIENT TEXTURE DESCRIPTOR FOR THE DETECTION OF LPs FROM VEHICLE IMAGES 561

TABLE IV

COMPARISON RESULTS FOR THE PROPOSED LPD METHOD AND OTHER
METHODS. THE PROPOSED METHOD PRODUCED THE BEST

DETECTION RATE WITH THE LOWEST FP RATE

where (Fm) is the trade-off between RR and PR; FN is the
false negative rate, which is equal to the number of vehicles
images in the ground truth that have LP, but the output of
LPD system shows that there is no LP inside those images.

Along with the ELM classifier, the ML-ELBP outperforms
other LBP descriptors. It takes less than one second to
process 640 × 480 images under difficult lighting conditions.
From Table III we can observe that the proposed ML-ELBP
descriptor produces the best recall and F-measure rates com-
pared with the LBP, ELBP, and SSELBP descriptors. The
ELBP descriptor achieves 98.6% precision rate which is 0.4%
higher than the ML-ELBP descriptor. The comparison results
of the performance evaluation with some existing methods
are shown in Table IV. The proposed method in this study
achieves a recall rate of 99.10%, which is higher than the
results by Asif, et al. [69] and Azam and Islam [22]. The F-
measure of the proposed method is 98.65%, which is also
the best compared with the method used by Asif et al.
The FP rate is less than those by Asif et al. and Azam
and Islam. Al-Shemarry et al. [56] introduced an efficient
detection method that achieved a 98.56% and 97.19% for
recall rate and f-measure, respectively, with 5.6% FP rate.
The proposed method in this paper has a slightly higher recall
and F-measure rate, respectively, and with a slightly lower FP
rate than those reported in [56]. This work obtained a 98.2%,
99.10%, and 98.65% for precision, detection, and F-measure
rate, respectively, with an FP rate of 5%. The results are much
better than those by He et al. [70] and Ho et al. [19].

Based on the above performance evaluation measurements,
the proposed method outperforms all the existing methods
in terms of precision, recall, F-measure, and FP rates for
LP detection. The ELM is significantly faster than other
classification methods, which makes the proposed method
more feasible for large-scale real-time applications.

E. Detection Results

Some detection results of the proposed method based on the
vehicles images in the database are shown in Fig. 13. It can be
noticed that all the LPs were detected although some unwanted
features appeared with different LP variations conditions. The
reason is that the lighting conditions are very poor with dusk.
Therefore, these conditions are making the LP hard to identify.
Moreover, some false positives were noticed when several
objects that look like a LP (such as commercial signs and

Fig. 13. Examples of successful vehicles images detection results using the
proposed method for the cars images with dirt and low light (b), (e), (j), (k);
with different views point (a), (b), (d), (l); with fog and dusk (e), (f), (j); with
distortion (c), (f), (i) and with low/high contrast (d), (g), (h), (i) problems.

vehicle logo) in the vehicle images are detected with a low
trust value.

F. Computational Cost

The computational costs for the LP detection using the
ELM with different LBP descriptors for the training and
testing phases are shown in Table V. The reported time is
the averaged time for both phases. All the experiments were
conducted using a computer with 3.4 GHz Intel Core i7-4770,
16GB RAM, using MATLAB, R2017b version. The process-
ing time is an important indicator of a system performance.
The proposed descriptor does not need much processing time
and achieves a very good accuracy compared with other
existing descriptors. The average of detection time per one
vehicle image is 0.735s. The vehicles images under dusty,
foggy, night-time and distortion conditions normally need

Authorized licensed use limited to: University of Southern Queensland. Downloaded on September 20,2020 at 13:27:13 UTC from IEEE Xplore. Restrictions apply.

562 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2020

TABLE V

THE AVERAGE COMPUTATIONAL TIME FOR THE TRAINING AND TESTING
PHASES. THE TRAINING TIME IS IN SECONDS (S) AND

TESTING TIME IS IN MILLISECONDS (MS)

more processing time to detect the complicated LP features.
Some vehicle images include other logos and commercial
signs on them, which are easily mixed up as the LP area.
The proposed method is robust and can capture the significant
LP features during the pre-processing phase. It produces a low
FP rate. From Table V the computation time for the ML-ELBP
descriptor with the ELM is much shorter, compared with other
existing descriptors to solve many difficult problems.

VI. CONCLUSION

This study proposed a new ML-ELBP descriptor to extract
different LP features from a multi-level preprocessing stage
by a Gaussian filter and the CLAHE method using an ELBP
descriptor. We increased the number of training vehicle images
through the pre-processing stage. The English car plate data-
base was extended using an online photo editor to make
different changes on the original vehicle images to reflect
various difficult conditions. It helped improve the accuracy
of the LPD system. The ELM classifier was used to classify
and learn the ML-ELBP features in order to produce an
ensemble of strong features vectors or trained network models
as a detector to detect different LPs. This work used a
feature vector of 710 dimensions to represent the LP regions,
which was trained using a SLFN with 550 hidden nodes.
The output neurons depend on the number of LP classes
in the training dataset. The proposed method was tested on
further distorted images (unseen data) taken under difficult
conditions, such as low/high contrast, foggy, and rotated LPs.
The overall performance evaluation for the detection, precision
and F-measure rate is 99.10%, 98.2%, and 98.86%, respec-
tively, with an FP rate of 5%. The experimental results of the
proposed method were also compared with several existing
LPD methods that used the same database. It outperformed
those methods in terms of the detection rate and efficiency.
The average detection time per vehicle image was 0.735s.
Many existing methods used only the testing phase with the
pre-processing stage under some assumptions. This proposed
method works well without assumptions due to the use of two
separate phases of testing and learning.

The experimental results demonstrated that the proposed
method could be used efficiently for real-time applications.
In the future, we intend to improve the proposed LPD to
further reduce the false positive, and to better adopt weather
conditions. At the same time, the overall processing time of the
detection system will be reduced through high speed hardware
and software selections.

REFERENCES

[1] S. L. Gomes et al., “Embedded real-time speed limit sign recognition
using image processing and machine learning techniques,” Neural Com-
put. Appl., vol. 28, pp. 573–584, Dec. 2017.

[2] M. S. Sarfraz, A. Shahzad, M. A. Elahi, M. Fraz, I. Zafar, and
E. A. Edirisinghe, “Real-time automatic license plate recognition for
CCTV forensic applications,” J. Real-Time Image Process., vol. 8, no. 3,
pp. 285–295, Sep. 2013.

[3] F. Yuan and R. L. Cheu, “Incident detection using support vec-
tor machines,” Transp. Res. C, Emerg. Technol., vol. 11, nos. 3–4,
pp. 309–328, Jun./Aug. 2003.

[4] B. Azad and E. Ahmadzadeh, “Real-time multiple license plate recog-
nition system,” Int. J. Res. Comput. Sci., vol. 4, no. 2, pp. 11–17, 2014.

[5] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of
texture measures with classification based on featured distributions,”
Pattern Recognit., vol. 29, no. 1, pp. 51–59, 1996.

[6] Z. Guo and D. Zhang, “A completed modeling of local binary pattern
operator for texture classification,” IEEE Trans. Image Process., vol. 19,
no. 6, pp. 1657–1663, Jan. 2010.

[7] L. Liu, L. Zhao, Y. Long, G. Kuang, and P. Fieguth, “Extended local
binary patterns for texture classification,” Image Vis. Comput., vol. 30,
no. 2, pp. 86–99, Feb. 2012.

[8] Z. Guo, X. Wang, J. Zhou, and J. You, “Robust texture image repre-
sentation by scale selective local binary patterns,” IEEE Trans. Image
Process., vol. 25, no. 2, pp. 687–699, Feb. 2016.

[9] Y. Zhao, J. Gu, C. Liu, S. Han, Y. Gao, and Q. Hu, “License plate
location based on Haar-like cascade classifiers and edges,” in Proc. 2nd
WRI Global Congr. Intell. Syst., vol. 3, Dec. 2010, pp. 102–105.

[10] B. Zhang, H. Pan, Y. Li, and L. Xu, “Reliable license plate recognition
by cascade classifier ensemble,” in Proc. Int. Conf. Comput. Sci. Inf.
Technol., 2014, pp. 699–706.

[11] N. Boonsim and S. Prakoonwit, “Car make and model recognition under
limited lighting conditions at night,” Pattern Anal. Appl., vol. 20, no. 4,
pp. 1195–1207, Nov. 2016.

[12] J.-H. Jo and D.-J. Kang, “An ensemble classifier based method to select
optimal image features for license plate recognition,” Trans. Korean Inst.
Elect. Eng., vol. 65, no. 1, pp. 142–149, 2016.

[13] S. Z. Masood, G. Shu, A. Dehghan, and E. G. Ortiz. (2017). “License
plate detection and recognition using deeply learned convolutional neural
networks.” [Online]. Available:https://arxiv.org/abs/1703.07330

[14] Y. Liu, H. Huang, J. Cao, and T. Huang, “Convolutional neural networks-
based intelligent recognition of Chinese license plates,” Soft Comput.,
vol. 22, no. 7, pp. 2403–2419, Apr. 2018.

[15] H. Li and C. Shen. (2016). “Reading car license plates using
deep convolutional neural networks and LSTMs.” [Online]. Available:
https://arxiv.org/abs/1601.05610

[16] M. S. Nixon and A. S. Aguado, Feature Extraction & Image Processing
for Computer Vision. New York, NY, USA: Academic, 2012.

[17] K. Zuiderveld, “Contrast limited adaptive histogram equalization,”
in Graphics Gems IV, New York, NY, USA: Academic, 1994,
pp. 474–485.

[18] G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in extreme learn-
ing machines: A review,” Neural Netw., vol. 61, pp. 32–48, Jan. 2015.

[19] W. T. Ho, H. W. Lim, and Y. H. Tay, “Two-stage license plate detection
using gentle adaboost and SIFT-SVM,” in Proc. 1st Asian Conf. Intell.
Inf. Database Syst., Apr. 2009, pp. 109–114.

[20] M. Hasan, “Real time detection and recognition of license plate in
bengali,” Bourns College Eng., Riverside, CA, USA, 2013. [Online].
Available: http://escholarship.org/uc/item/0m27j18m

[21] M. Wafy and A. M. M. Madbouly, “Efficient method for vehicle license
plate identification based on learning a morphological feature,” IET
Intell. Transp. Syst., vol. 10, no. 6, pp. 389–395, Aug. 2016.

Authorized licensed use limited to: University of Southern Queensland. Downloaded on September 20,2020 at 13:27:13 UTC from IEEE Xplore. Restrictions apply.

AL-SHEMARRY et al.: EFFICIENT TEXTURE DESCRIPTOR FOR THE DETECTION OF LPs FROM VEHICLE IMAGES 563

[22] S. Azam and M. M. Islam, “Automatic license plate detection in
hazardous condition,” J. Vis. Commun. Image Represent., vol. 36,
pp. 172–186, Apr. 2016.

[23] R. Panahi and I. Gholampour, “Accurate detection and recognition of
dirty vehicle plate numbers for high-speed applications,” IEEE Trans.
Intell. Transp. Syst., vol. 18, no. 4, pp. 767–779, Apr. 2017.

[24] D.-S. Kim and S.-I. Chien, “Automatic car license plate extraction using
modified generalized symmetry transform and image warping,” in Proc.
IEEE Int. Symp. Ind. Electron., vol. 3, Jun. 2001, pp. 2022–2027.

[25] S. Kim, D. Kim, Y. Ryu, and G. Kim, “A robust license-plate
extraction method under complex image conditions,” in Proc. Object
Recognit. Supported User Interact. Service Robots, vol. 3, Aug. 2002,
pp. 216–219.

[26] T. D. Duan, D. A. Duc, and T. Le Hong Du, “Combining Hough
transform and contour algorithm for detecting vehicles’ license-plates,”
in Proc. Int. Symp. Intell. Multimedia, Video Speech Process., Oct. 2004,
pp. 747–750.

[27] C.-T. Hsieh, Y.-S. Juan, and K.-M. Hung, “Multiple license plate
detection for complex background,” in Proc. 19th Int. Conf. Adv. Inf.
Netw. Appl. (AINA), vol. 2, Mar. 2005, pp. 389–392.

[28] G. Li, R. Yuan, Z. Yang, and X. Huang, “A yellow license plate location
method based on RGB model of color image and texture of plate,” in
Proc. 2nd Workshop Digit. Media Appl. Museum Heritages (DMAMH),
Dec. 2007, pp. 42–46.

[29] A. H. Ashtari, M. J. Nordin, and M. Fathy, “An iranian license plate
recognition system based on color features,” IEEE Trans. Intell. Transp.
Syst., vol. 15, no. 4, pp. 1690–1705, Aug. 2014.

[30] A. H. Ashtari, M. J. Nordin, and S. M. M. Kahaki, “A new reliable
approach for Persian license plate detection on colour images,” in Proc.
Int. Conf. Elect. Eng. Inform. (ICEEI), Jul. 2011, pp. 1–5.

[31] M. K. Song and M. M. K. Sarker, “Modeling and implementing two-
stage AdaBoost for real-time vehicle license plate detection,” J. Appl.
Math., vol. 2014, Aug. 2014, Art. no. 697658.

[32] W. Jia, H. Zhang, and X. He, “Region-based license plate detection,”
J. Netw. Comput. Appl., vol. 30, no. 4, pp. 1324–1333, Nov. 2007.

[33] X. Wang, M. Zhou, and G. Geng, “An approach of vehicle plate extract
based on HSV color space,” Comput. Eng., vol. 17, no. 30, pp. 133–135,
2004.

[34] H. Wang, X. Wang, W. Li, and X. Jia, “Color prior knowledge-based
license plate location algorithm,” in Proc. 2nd Workshop Digital Media
Appl. Museum Heritages (DMAMH), Dec. 2007, pp. 47–52.

[35] C.-C. R. Wang and J.-J. J. Lien, “Automatic vehicle detection using
local features—A statistical approach,” IEEE Trans. Intell. Transp. Syst.,
vol. 9, no. 1, pp. 83–96, Mar. 2008.

[36] D.-M. Tsai and C.-H. Chiang, “Rotation-invariant pattern matching
using wavelet decomposition,” Pattern Recognit. Lett., vol. 23, nos. 1–3,
pp. 191–201, Jan. 2002.

[37] X. He, H. Zhang, W. Jia, Q. Wu, and T. Hintz, “Combining global and
local features for detection of license plates in video,” in Proc. Image
Vis. Comput. Conf. New Zealand, Dec. 2007, pp. 288–293.

[38] M. Hussein, F. Porikli, and L. Davis, “Object detection via boosted
deformable features,” in Proc. 16th IEEE Int. Conf. Image Process.
(ICIP), Nov. 2009, pp. 1445–1448.

[39] T.-T. Nguyen and T. T. Nguyen, “A real time license plate detection
system based on boosting learning algorithm,” in Proc. 5th Int. Congr.
Image Signal Process., Oct. 2012, pp. 819–823.

[40] K. Zheng, Y. Zhao, J. Gu, and Q. Hu, “License plate detection using
Haar-like features and histogram of oriented gradients,” in Proc. IEEE
Int. Symp. Ind. Electron., May 2012, pp. 1502–1505.

[41] S. Lew, C.-S. Yi, W.-J. Lee, B.-R. Lee, K.-W. Min, and H.-C. Kang,
“Extraction of the license plate region using HoG and AdaBoost,”
J. Digit. Contents Soc., vol. 10, no. 4, pp. 597–604, 2009.

[42] M. Zahedi and S. M. Salehi, “License plate recognition system based
on SIFT features,” Procedia Comput. Sci., vol. 3, pp. 998–1002, 2011.

[43] Y. Wang, H. Zhang, X. Fang, and J. Guo, “Low-resolution Chinese
character recognition of vehicle license plate based on ALBP and
Gabor filters,” in Proc. 7th Int. Conf. Adv. Pattern Recognit., Feb. 2009,
pp. 302–305.

[44] S. Ktata, F. Benzarti, and H. Amiri, “License plate localization using
Gabor filters and neural networks,” J. Comput. Sci., vol. 9, no. 10,
p. 1341, Oct. 2013.

[45] S. Du, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic license
plate recognition (ALPR): A state-of-the-art review,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 23, no. 2, pp. 311–325, Feb. 2013.

[46] Y. Hu, Z. Long, and G. AlRegib, “Scale selective extended local binary
pattern for texture classification,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Mar. 2017, pp. 1413–1417.

[47] L. Liu, S. Lao, P. W. Fieguth, Y. Guo, X. Wang, and M. Pietikäinen,
“Median robust extended local binary pattern for texture classifica-
tion,” IEEE Trans. Image Process., vol. 25, no. 3, pp. 1368–1381,
Mar. 2016.

[48] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 2,
Jun. 2006, pp. 2169–2178.

[49] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-
constrained linear coding for image classification,” in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2010,
pp. 3360–3367.

[50] K. S. Durgesh and B. Lekha, “Data classification using support vector
machine,” J. Theor. Appl. Inf. Technol., vol. 12, no. 1, pp. 1–7,
Feb. 2010.

[51] F. Porikli and T. Kocak, “Robust license plate detection using covariance
descriptor in a neural network framework,” in Proc. IEEE Int. Conf.
Video Signal Based Surveill., Nov. 2006, p. 107.

[52] S. H. Park, K. I. Kim, K. Jung, and H. J. Kim, “Locating car
license plates using neural networks,” Electron. Lett., vol. 35, no. 17,
pp. 1475–1477, Aug. 1999.

[53] Y.-N. Chen, C.-C. Han, G.-F. Ho, and K.-C. Fan, “Facial/license plate
detection using a two-level cascade classifier and a single convolu-
tional feature map,” Int. J. Adv. Robot. Syst., vol. 12, no. 12, p. 183,
Dec. 2015.

[54] S. Ding, L. Guo, and Y. Hou, “Extreme learning machine with Kernel
model based on deep learning,” Neural Comput. Appl., vol. 28, no. 8,
pp. 1975–1984, Aug. 2017.

[55] C. Gou, K. Wang, Z. Yu, and H. Xie, “License plate recognition using
MSER and HOG based on ELM,” in Proc. IEEE Int. Conf. Service Oper.
Logistics, Inform., Oct. 2014, pp. 217–221.

[56] M. S. Al-Shemarry, L. Yan, and S. Abdulla, “Ensemble of adaboost
cascades of 3L-LBPs classifiers for license plates detection with low
quality images,” Expert Syst. Appl., vol. 92, pp. 216–235, Feb. 2018.

[57] R. Azad, F. Davami, J. Jeo, and H. R. Shayegh, “New framework based
on complementary methods for efficiency and accuracy of license plate
recognition system,” in Proc. 6th Conf. Inf. Knowl. Technol. (IKT),
May 2014, pp. 171–176.

[58] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987,
Jul. 2002.

[59] Y. Hu, Z. Long, and G. AlRegib, “Completed local derivative pattern for
rotation invariant texture classification,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2016, pp. 3548–3552.

[60] G. Feng, G.-B. Huang, Q. Lin, and R. Gay, “Error minimized extreme
learning machine with growth of hidden nodes and incremental learn-
ing,” IEEE Trans. Neural Netw., vol. 20, no. 8, pp. 1352–1357,
Aug. 2009.

[61] Q.-Y. Zhu, A. K. Qin, P. N. Suganthan, and G.-B. Huang, “Evolu-
tionary extreme learning machine,” Pattern Recognit., vol. 38, no. 10,
pp. 1759–1763, Oct. 2005.

[62] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” IEEE Trans. Syst.,
Man, Cybern. B. Cybern., vol. 42, no. 2, pp. 513–529, Apr. 2012.

[63] S. Tamura and M. Tateishi, “Capabilities of a four-layered feedforward
neural network: Four layers versus three,” IEEE Trans. Neural Netw.,
vol. 8, no. 2, pp. 251–255, Mar. 1997.

[64] G.-B. Huang, “Learning capability and storage capacity of two-hidden-
layer feedforward networks,” IEEE Trans. Neural Netw., vol. 14, no. 2,
pp. 274–281, Mar. 2003.

[65] LPDatabase. Accessed: Jul. 2016. [Online]. Available: http://www.
zemris.fer.hr/projects/LicensePlates/english/baza_slika.zip

[66] OnlinePhotoEditor. Accessed: Jul. 2017. [Online]. Available:
https://www.freeonlinephotoeditor.com/

[67] M. Varma and A. Zisserman, “A statistical approach to material classifi-
cation using image patch exemplars,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 11, pp. 2032–2047, Nov. 2009.

[68] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: Theory and applications,” Neurocomputing, vol. 70, nos. 1–3,
pp. 489–501, 2006.

[69] M. R. Asif, Q. Chun, S. Hussain, and M. S. Fareed, “Multiple licence
plate detection for Chinese vehicles in dense traffic scenarios,” IET Intell.
Transport Syst., vol. 10, no. 8, pp. 535–544, Oct. 2016.

[70] T. He, J. Yao, K. Zhang, Y. Hou, and S. Han, “Accurate multi-scale
license plate localization via image saliency,” in Proc. 17th Int. IEEE
Conf. Intell. Transp. Syst. (ITSC), Oct. 2014, pp. 1567–1572.

Authorized licensed use limited to: University of Southern Queensland. Downloaded on September 20,2020 at 13:27:13 UTC from IEEE Xplore. Restrictions apply.

564 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2020

Meeras Salman Al-Shemarry received the bach-
elor’s degree in computer science from Babylon
University, Iraq, in 2002, and the master’s degree
in IT from University Utara Malaysia, Malaysia,
in 2010. She is currently pursuing the Ph.D. degree
with the Faculty of Health, Engineering and Sci-
ences, University of Southern Queensland, Australia.
She is also a Lecturer with the Computer Depart-
ment, Science College, Karbala University, Iraq.
Her research interests include system analysis using
UML diagrams, image processing and objects detec-

tion, artificial intelligence, and database management system.

Yan Li is currently a Professor in computer
science with the Faculty of Health, Engineering
and Sciences, University of Southern Queensland,
Australia. Her research interests are in the areas of
signal and image processing, biomedical engineer-
ing, artificial intelligence, big data analytics, and
computer networking technologies.

Shahab Abdulla received the B.Sc. and M.Sc.
degrees from the University of Technology,
Baghdad, Iraq, and the Ph.D. degree from the
University of Southern Queensland (USQ),
Australia. He is currently a Lecturer with the
Language Centre, USQ. His research interests
include computer control systems, intelligent
control, complex medical engineering, and in the
areas of biomedical engineering, networked system,
robotics, and mathematics research.

Authorized licensed use limited to: University of Southern Queensland. Downloaded on September 20,2020 at 13:27:13 UTC from IEEE Xplore. Restrictions apply.

 Chapter 5 Developing Learning-Based Preprocessing Methods

P a g e 63 | 254

63

CHAPTER 5

DEVELOPING LEARNING-BASED PREPROCESSING

METHODS FOR DETECTING COMPLICATED LICENCE

PLATES

5.1 Introduction

The content of this chapter is an exact copy of the published paper in the journal of IEEE Access

by Al-Shemarry, M.S. and Li, Y, (2020) ‘Developing Learning-Based Preprocessing Methods

for Detecting Complicated Vehicle Licence Plates’.

 In Chapter 4, the MLELBP_ELM method succeeded to solve some weakness that faced

the detection system in chapter 3, such as increased the detection accuracy, reduced the

execution time, and a slightly improved FPR.

 This chapter focuses on the preprocessing techniques that use a combination of

powerful descriptors for distorted images. At the preprocessing stage the method now consists

of a Gaussian filter, an enhanced version of the cumulative histogram equalization (ECHE),

and a contrast-limited adaptive histogram equalization (CLAHE) techniques. These

enhancement techniques are very useful to filter out the unwanted LP regions, to reduce feature

dimensions and save the processing time at extraction stage. At the extraction stage, the

combination of powerful descriptors, a median-filter histogram of oriented gradient (MHOG),

and LBP descriptors are used for extracting complicated feature values. The extracted features

use as inputs to the support vector machine (SVM) classifier to construct the detector that

identifies the LP area. The SVM detector successfully removed the redundant bounding boxes,

or unwanted sliding windows, which lead to increased FPR, by using the mean-shift algorithm.

The proposed method was tested on a very challenging database published in Chapter 4. The

5

 Chapter 5 Developing Learning-Based Preprocessing Methods r

P a g e 64 | 254

64

performance of the SVM detector was evaluated with the ELM detector through a 5-fold cross-

validation procedure and using the receiver operating characteristic (ROC) curve. Also, the

proposed approach was evaluated using several performance measurement metrics for object

detection systems. The outcomes were compared with the recently reported algorithms in

Chapters 3 and 4, and with other existing detection algorithms. From the experimental results,

the proposed method outperformed other existing methods with the same database in terms of

the FPR, detection accuracy rate, and time processing.

 The Matlab code of this method is provided in Appendix C.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

VOLUME XX, 2020 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Developing Learning-Based Preprocessing
Methods for Detecting Complicated Vehicle
Licence Plates

Meeras Al-Shemarry1, 2 and Yan Li1
1School of Sciences, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Australia
2 Computer Department, Science College, Karbala University, Karbala 56001, Iraq

Corresponding author: Meeras Al-Shemarry (e-mail: meerassalmanjuwad.al-shemarry@usq.edu.au).

This work was supported by the University of Southern Queensland and Ministry of Higher Education and Scientific Research of Iraq.

ABSTRACT A licence plate detection (LPD) system is an important tool in several roadway traffic

applications. This study aims to develop an advanced detection system that works well in complicated

scenarios. It proposes a robust preprocessing enhancement method for accurately detecting the licence plates

from difficult vehicle images. The proposed method includes the combination of a Gaussian filter, an

enhancement cumulative histogram equalization method, and a contrast-limited adaptive histogram

equalization technique. The local binary pattern and median filter with histogram of oriented gradient

descriptors are used as powerful tools to extract key features from three types of licence plate resolutions.

The extracted features are used as input to support vector machine classifier. Processing methods, such as a

position-based method are used with the detector to reduce unwanted bounding boxes, as well as false positive

values. Four databases consisting of 2050 vehicle images under different conditions are used. Various

detection metrics, object localization, and the receiver operating characteristic (ROC) curve are used to

evaluate the performance of the proposed method. The experimental results on vehicles databases in several

languages, including English, Chinese, and Arabic number plates, show that the proposed method has

achieved significant performance improvements. It outperforms the state-of-the-art approaches in terms of

both the detection rate and the processing time. The detection rate when trained with 1520 LP images is

99.62% with a false positive rate of 1.675% for complicated images. The average detection time per vehicle

image is 0.2408 milliseconds.

INDEX TERMS Histogram of oriented gradient, Licence plate detection, Local binary patterns, Support

vector machine.

I. INTRODUCTION

Automatic number plate recognition (ANPR) systems have

become a very important tool in many surveilling

applications over the past few decades. They are often used

as a surveillance technique to identify licence plates of

vehicles and are very useful for security systems, highway

road tolling systems, traffic sign systems, tracking, and

parking management systems [1-5]. The existing systems

often work under some standard conditions, such as low-high

lighting, rain, and limited day-night lighting. It is still very

challenging to identify licence plates (LPs) from complicated

vehicle images because of environmental effects.

A robust licence plate detection (LPD) system is desirable

to effectively work under all sorts of difficult conditions,

such as night, dusk, rain, fog or snow; with images that are

blurred, rotated, low-high lighting, distorted, with complex

backgrounds and different colors. A number of examples for

problematic licence plate (LP) images are shown in Fig. 1.

Some examples for ANPR applications are shown in Fig.

2. As an LPD system is rather difficult, the feature extraction

techniques for doing this task should be developed carefully

to extract and classify relevant features from regions of

FIGURE 1. Examples for complicated images of an LP included in
the databases.

mailto:meerassalmanjuwad.al-shemarry@usq.edu.au

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

Meeras Al-Shemarry and Yan Li: Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates

2

interest. Several extraction methods are widely used

individually or combined together for the LP detection, such

as local binary patterns (LBPs) [6], global and local features

[7], Haar-like features [8], scale invariant feature transform

(SIFT) [9], histogram of oriented gradient (HOG) [10], and

so on.

The robustness and distinctiveness of the LBP descriptor

is usually used to capture the important information that is

sensitive to the illumination and rotation conditions [11]. But

especially with distorted images, the descriptor needs to be

further improved to focus on important information. Since

the HOG focuses more on the edge information of an image,

it is used widely to detect objects inside an image [10].

Therefore, the HOG features have been used with LBPs to

obtain good extraction results. The main contributions of this

study are:

1) Developing a new pre-processing method that includes

the combination of a Gaussian filter, the enhancement

cumulative histogram equalization (ECHE) method, and

contrast-limited adaptive histogram equalization

(CLAHE) technique to filter out unwanted LP regions to

improve the accuracy of the detection system.

2) Improving the work of the HOG descriptor by using a

median filter and combined it with the LBP descriptor

to produce a powerful feature extraction method for

complicated image environments, such as low/high

contrast, fogginess, blurriness, rotated LPs, and dark, or

complex backgrounds.

3) Increasing the classification accuracy by applying a

support vector machine (SVM) and extreme learning

machine (ELM) as an effective classifier, separately,

with a new updated descriptor MHOG and LBP

descriptor.

4) Removing redundant bounding boxes, which increase

the false positive rate, using processing methods, such

as a position-based method (mean-shift) with detectors.

5) Evaluating the proposed method using several

performance measurement metrics and comparing its

performance with the newest existing LPD methods.

 This paper is organized as follows: Section II reviews the

related research work. Section III introduces the proposed

method, the details about the HOG and LBP descriptors, and

the SVM and ELM classifiers. Section IV presents the

databases. Section V shows the experimental results. Section

VI presents the comparison with other existing methods.

Finally, Section VII describes the conclusions and future

work.

II. RELEVANT WORK

The main goal of developing an LPD system is to identify

the licence plate number from the regions of interest (ROIs)

in vehicle images. Many LPD methods in the literature were

proposed. Although the LPD systems have been studied for

many years, it is still very challenging to detect LPs from low

quality images. Some methods developed depended on a

specific color or language, or were limited to fine weather

conditions, while others were sensitive to the lighting and

complex backgrounds [12-14]. In addition, the angle of

camera and the distance constraint make an LPD system less

robust [15]. The detection of LPs in hazardous conditions is

not easy, especially with complex backgrounds, which often

produces a number of non-LP regions. For example, the

proposed method by Azam and Islam [16] was not robust for

angle invariant nor with distance. The texture-based methods

are widely used by many researchers due to the significant

texture change in the pixels greyscale level. The support

vector machine (SVM) classifier is one of the supervised

machine learning algorithms that is commonly used for

classification and regression [17]. It can be seen as a type of

single layer forward neural network (SLFN), called a support

vector network [18]. The output be very good using a SVM

if it is used to detect objects with good pre-processing and

extraction techniques. The method by Kusakunniran, et al.

[19] used a SVM as the machine learning tool, and fed the

candidate license plate (CLP) images as the input to the SVM

during the training and testing phases. In that study, the SVM

was applied directly to the input images without any

discriminative features being extracted. It made the detection

system very sensitive to noise and geometric transformation.

As a result, the detection accuracy was reduced to 80% and

the training time was increased. Recently, deep neural

networks (DNNs) [20] and convolutional neural networks

(CNNs) [21] have been used as an automatic means to learn

the key features in LPs. The DNN algorithms can combine

the feature extraction and classification into one unified

neural network framework. They have shown a higher

detection accuracy. However, the features learning

mechanism in DNNs cannot guarantee robustness in difficult

image conditions, for example, rotation and scaling, unless

the training samples can cover various observation

conditions. Furthermore, their computational costs during

both training and detection processes are expensive due to

Parking Guidance System Access Control to Residential

 Traffic Law Enforcement Motorway Road Tolling

Parking and Secure Access Road Signs Systems

FIGURE 2. Examples of ANPR applications.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

Meeras Al-Shemarry and Yan Li: Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates

3

the multi-hidden-layer structure. In [22], a method using a

CNN to learn features and an ELM as the classifier was

reported. That method obtained competitive results with less

computation time compared with those with DNN methods.

However, the performances of those methods were

compromised with the real conditions of a complex

background and changing outdoor light conditions.

Therefore, using a combination of textures features with

good pre-processing methods to detect the LPs from

complicated images can result in a better system

performance. With the high speed of vehicles, not only the

accuracy but also the computational speed are the key factors

for real-time applications.

This paper proposes an efficient framework for improving

the performance of an LPD system. It includes a pre-

processing method, containing a Gaussian filter,

enhancement cumulative histogram equalization (ECHE)

and contrast-limited adaptive histogram equalization

(CLAHE) methods. This combination works well for all

conditions, and is suitable for different LP colors, styles, and

languages. It can be applied to enhance any existing ANPR

system with different databases. After the pre-processing

stage, this study employs two powerful descriptors, HOG

and LBP [23, 24]. A median filter was used with HOG

(MHOG), descriptor to reduce noise during the extraction

stage. The MHOG and LBP descriptors are used to extract

several significant features from LP images. Finally, the

SVM is used to build the trained model to detect the LP

regions and also an ELM classifier was used for evaluation

purposes. An English car database which was reported by Al-

Shemarry et al. [25] was used in this study. This database

contains many complicated vehicle images with different

conditions, including low/high lighting, dusk, dirt, fog, and

distorted images.

III. PROPOSED METHODOLOGIES

The structural diagram of the proposed LPD methodology is

illustrated in Fig.3. It consists of two stages: training and

testing. The training stage employs SVM and ELM learning

algorithms, separately. Both training and testing phases use

the same pre-processing and extraction methods. At the pre-

processing stage, the ECHE and CLAHE techniques are

applied to enhance the problematic part of vehicles images,

while keeping the quality of the normal images during the

enhancement process. Through the feature extraction stage,

this study carefully selects the effective descriptors, MHOG

and LBP, which are suitable for difficult conditions such as

under low/high contrast, dirt, dusk, fog, and distortion

problems. Finally, the detection stage uses a SVM and an

ELM classifier, separately, as trained models to detect the LP

region from the tested input vehicle image. The output results

are saved for the recognition stage to obtain a complete

ANPR system. The details about the proposed method are

presented in the next sections.

A. ENHANCEMENT STAGE FOR VEHICLE IMAGES

The proposed framework uses the texture and gray level

features to detect the LP regions instead of color features

FIGURE 3. The structural diagram of the proposed LPD method for both testing and training phases.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

Meeras Al-Shemarry and Yan Li: Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates

4

which are very sensitive to the illumination and noise

problems. The main purpose of this study is to detect the LP

numbers under complicated conditions, for example under

different illumination. Most previous studies converted the

color images into grayscale ones for RGB reduction [26].

According to Saravanan [27] a color image IMRGB (i, j) has

M × N dimensions. Where M is the height or the number of

rows and N is the width or the number of columns in the

image, and 0 ≤ i ≤ (M-1) and 0 ≤ j ≤ (N-1). IMRGB (i, j)

was converted to a grayscale image, Gray (i, j), by Eq. (1)

[27] :

Gray (i, j) = 0.2989 × R (i, j) + 0.5870 × G (i, j) + 0.1140
× B (i, j) (1)

where R(i, j), G(i, j), and B(i, j) are the three channels of

colors, red, green and blue, respectively.

A large image resolution needs more time processing. In

this study, an English car database has a consistent resolution

of 640×480 pixels. In this study, a sliding window (M×N)

will be used to scan an image from M×N resolution instead

of scanning the whole image. The sliding window will be

started to detect LP regions from M = 200 and N = 30. This

process leads to reduce the processing time and obtain better

detection results. As shown in Fig. 4, the LPs in the training

dataset have three resolutions, 100×25, 200×50, and 300×75

pixels.

Referring to non-LP regions, there are various sources of

noise along with the text in a vehicle image, such as surface

textures, distortion, dusk, low/high lighting, and dirt. Those

noises increase the bounding boxes during the detection

stage.

In this study, we propose an enhancement pre-processing

algorithm to reduce noise and improve the lighting

conditions for complicated images without affecting on the

quality of the images in normal conditions. The steps of the

ECHE combined with the CLAHE algorithm are as follows:

1) Apply a Gaussian filter with the standard deviation

σ= 0.25,

2) Apply the cumulative histogram equalization

(CHE) method,

𝑃𝑥(𝑖) = 𝑃(𝑥 = 𝑖) = 𝑛𝑖 𝑛⁄ , 0 ≤ 𝑖 < 𝐿 (2)

where L is the total number of grayscale levels in an

image which is typically 256 and n is the image

pixels. 𝑃𝑥(𝑖) is the image's histogram of the pixel

value i, which is normalized to [0, 1].

3) Calculate the histogram of the cumulative

distribution function (CDF), which is also an image

accumulated normalized histogram and defined as

 𝐶𝐷𝐹𝑥(𝑖) = ∑ 𝑃𝑥(𝑗)𝑖
𝑗=0 (3)

4) Calculate the new values of the histogram through

the general histogram equalization formula,

𝐶𝐷𝐹𝑦(𝑖) = 𝑖𝐶 (4)

where C is a constant in the range of [0-L] , which

is also needs a linearized CDF across the new value

range y.

5) Apply the contrast-limited adaptive histogram

equalization (CLAHE) method with the standard

deviation σ= 0.02, and

6) Build a new enhanced image by replacing each gray

value in the image with the new gray values.

The performance differences between the CHE, CLAHE,

and the proposed pre-processing methods (ECHE+CLAHE)

can be observed on Figs.5 (a), (b), and (c), respectively.

From Figs. 5(a), (b), and (c), note that the proposed pre-

processing method reduced the range of feature dimensions.

Some results applied on testing vehicle images by the

algorithm are shown in Fig. 6.

 640 × 480 pixels 640 × 480 pixels 640 × 480 pixels

 100× 25 pixels 200 × 50 pixels 300 × 75 pixels

FIGURE 4. The different resolution for LP in the training dataset.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

Meeras Al-Shemarry and Yan Li: Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates

5

The grayscale image histogram has 256 bins by default. It

represents the distribution function of image intensities. The

imhist function in Matlab shows the histogram plot (X, Y),

where X is the spaced bins, and each bin represents the range

of feature values, Y is the number of pixels within each range.

From the Fig. 6, we can observe the results by the

enhancement method for different types of both, clear and

complicated vehicle images. Using the histogram

information helps decrease the value ranges of the unwanted

features. The next subsection presents more details about the

strong descriptors used in this study.

B. THE HOG AND LBP DESCRIPTORS

This study uses two powerful descriptors, HOG and LBP, to

extract key features from complicated LP images. They are

used in this work for many reasons as described in this paper.

 Original image CHE method CLAHE method (ECHE+CLAHE) method

 (a) (b) (c)
FIGURE 5. The output of unenhanced image (left) compared to three preprocessing enhancement (a), (b), (c) to the right, (a) is the CHE method, (b)
is the CLAHE method, and (c) is the proposed preprocessing method (ECHE+CLAHE) (X axis = the range of features’ values in each bin, Y axis =
the number of features’ values appearing in each bin range).

FIGURE 6. The output with the histogram for the testing complicated vehicle images in the dataset. The histogram displays how the enhancement
algorithm works (X axis = the range of features values in each bin, Y axis = the number of feature values appeared in each bin range).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

Meeras Al-Shemarry and Yan Li: Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates

6

The description about the extraction descriptors is given in

this section.

1) The HOG descriptor

The HOG descriptor is one of the common imaging

descriptors in the area of the computer vision [28]. It delivers

good results in different computer vision applications, such

as face detection [29], vehicle detection [30], and text

extraction [31]. In addition, it is not sensitive to lighting

changes and small offsets. It can effectively describe the

edge features of an object. Therefore, it provides a rough

estimation of the object appearance and shape. The steps for

the extraction of the HOG features were as follows:

a. Used the median filter with HOG and assumed that the

input to the MHOG descriptor is a window G from the

enhancement LP grayscale image. The first step for

MHOG is to divide G into non-overlapping blocks of 8

× 2 pixels. Each block is divided into small regions or

called cells (8 × 8 pixels). The cells are combined into

adjacent blocks of 2 × 2 cells, and we concatenate those

four cells histogram into one block features. The

horizontal and vertical gradients are obtained for each

pixel inside the cell. The simplest technique to do that

is by using the 1D Sobel operators ([-1, 0, 1] and [-1,

0, 1] T) [32]:

Gx (x, y) = G (x+1, y) – G (x-1, y) (5)

Gy (x, y) = G (x, y+1) – G (x, y-1) (6)

where Gx (x, y) is the horizontal gradient, and Gy (x, y)

is the vertical gradient. x and y are the row and column

indexes, respectively.

b. After that, the gradient is transformed into the polar

coordinates of x and y directions with the angle set to

between 0 and 180 degrees. The gradient magnitude µ

and the direction of pixel θ are calculated according to

Eqs. (7) and (8).

µ(x, y) =√Gx
2+Gy

2 (7)

θ (x, y) =
180

π
(tan2

-1(Gx, Gy) mod π) (8)

where tan2
-1 is the inverse tangent for the quadrant,

which produces values between −π and π.

c. The MHOG histogram in each cell is computed, and all

the values are joined into 9 bins, meaning the cell is

divided into nine gradient directions from 0° to 180°

orientations. In this way, we can gain different gradient

orientations due to different contrasts among images.

Therefore, the block gradient histogram should be

normalized. The block normalization technique is a

mid-solution for changes in illumination conditions.

The cell histograms need to be normalized to reduce

the contrast changes between the images for the same

object. The normalization process can be done on the

histogram vector by using L1-norm or L2-norm. The

L1-norm provides lower reliability than L2-norm [28].

This study uses the L1-norm for the normalization of

the MHOG features vector.

d. Finally, we collect the MHOG for all overlapping

blocks features in the detection window, and combine

them into a final MHOG features vector for

classification. The steps of generating the MHOG

descriptor from an LP image are shown in Fig. 7. The

extracted features’ histograms are used as the input to

the SVM and ELM classifiers, separately, to build the

final LP detector.

2) The LBP descriptor

The second powerful descriptor used in this study is the LBP.

It is employed to extract different features for several reasons

[24]. The LBP is effective for different illumination

FIGURE 7. Steps of generating the MHOG descriptor for a LP image patch.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

Meeras Al-Shemarry and Yan Li: Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates

7

conditions and can solve the scale invariance and occlusion

problems. The first LBP descriptor was presented by Ojala

et al. [24] . The study divided the trained image into cells and

labelled the pixels in each cell using a 3 × 3 window, then

selected the center pixel value of the cell as a threshold. The

center pixel value was then compared with the gray values

from neighboring 8 pixel cells. If it was smaller than the

neighbouring pixel value, the location of the pixel was

marked by 1, otherwise 0. Therefore, the 8 neighboring

values in the 3×3 window could produce 8 binary numbers.

The 8 binary numbers are usually converted to the decimal

numbers which are the LBP code. In total there were 256

grayscale values. The LBP values of the window for the

central pixel are utilized to reflect the texture information in

the region (see Fig. 8). The LBP code value of the center

pixel is calculated by Eq. (9):

LBP(xc,yc
)= ∑ f(p

n
-p

c
)2ni-1

n=0 (9)

where p
c
 is the brightness value of the center pixel

value (xc,yc
), p

n
 is the brightness value of the n point in the

i neighbouring domain. f(x) function is defined as:

f(x)= {
1, x≥0

0, x<0
} (10)

For example, the pattern of 11001111 includes more than

two transitions. Therefore, it is called uniform patterns. The

single LBP descriptor can produce much fewer uniform

patterns without loss of useful features. After the LBP

operator labelled image, f
l
 (x, y) has been obtained. The

histogram of the LBP can be defined as:

Hi= ∑ I{f
l
(x, y)=i}, i=0, …, n-1,x, y (11)

in which n is the number of labels that are produced by the

LBP descriptor, and I{f(x)} is 1 if f(x) is true and 0 if f(x) is

false.

The features from each LBP region are concatenated into

a maximum pooling features histogram vector. The steps for

generating the LBP descriptor from an LP image are shown

in Fig. 8. Finally, the extracted features histograms are used

as the input to the SVM or ELM classifier to build the final

trained LP detector. The LBPs are useful to remove the

unwanted regions or noise from images [33].

C. FEATURE SELECTION USING SVM AND ELM

CLASSIFIERS

Despite most of the learning algorithms being able to do the

same job, their performance is heavily dependent on the pre-

processing and extraction methods used. In this research, a

deep learning classifier, such as a CNN, was also used. But

it did not yield good classification results, especially with the

HOG descriptor. A CNN classifier normally requires a fixed-

resolution for input images [34], while there are three

resolutions included in our training dataset. Thus it is not

easy to conclude which learning algorithm is better than

others. In this study, two popular classifiers were used, SVM

and ELM, to evaluate the performance of the proposed

method. All the extracted features using the MHOG and LBP

procedures are fed to the classifiers separately, and build an

ensemble of strong LP detectors to detect different LP

features. To make the trained model computationally

efficient in terms of the processing time and accuracy, most

discriminative features should be extracted, and redundant

information and noise are removed. This paper applies a

SVM or ELM classifier to train and classify the extracted

features. The descriptions of the classifiers are given in this

section.

1) Support Vector Machine (SVM)

The SVM is one of the supervised machine learning

algorithms, that is commonly used for classification and

regression [17]. It can be seen as a type of artificial

intelligence network, called a support vector network [18].

The main objectives of a binary SVM is to separate the

FIGURE 8. Steps of generating the LBP descriptor for LP images.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

Meeras Al-Shemarry and Yan Li: Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates

8

margins in the feature space of the two different classes 𝛼𝑖 ,

positive and negative (see Fig. 9).

In general, linear functions are utilized as a separating

hyperplane in the feature space 𝑥𝑁 . It is used in pattern

recognition and object detection for the generalized linear

classifier. Then, it gives a decision surface maximized by

employing an optimization approach. A kernel function K

(𝑥𝑁 , x), such as linear, nonlinear, gaussian kernel, sigmoid,

polynomial, radial basis function etc., is used to achieve

better classification performance. When using a kernel

function K, the scalar output y
N

α
N

, can be implicitly

calculated in the kernel feature space N with a threshold bias

value b. Refer to the references in [17] for more details about

the SVM classifier.

2) Extreme Learning Machine (ELM)

Although the neural network and support vector machine are

widely used [35, 36] , those types of algorithms have a low

learning speed for a reasonable classification accuracy [37].

The ELM is a single hidden-layer feedforward neural

network (SLFN), initially proposed by Huang et al [38]. It

can be viewed as a variant of a random vector functional-link

(RVFL) network classifier [39] without direct links and bias

terms. It ignores the need for tuning parameters in the

training phase and hence minimizes the training time

compared to the traditional neural networks. The ELM

workflow is illustrated in Fig. 10, where the network input

(IW) vector obtained from the input extracted features of the

HOG and LBP multiplied by the input weight IW matrix.

The IW and the hidden-layer bias b values are randomly

assigned, while the output weights OW are analytically

calculated. After that, the results are added to the bias vector

b to create the input to the “sigmoid” activation function and

produce a good output layer. The b value as the threshold

helps the input layer to decide the activation of neurons and

increases the flexibility of the training model. Without bias,

the neurons do not pass to the other network layers. Finally,

the output of the “sigmoid” function is multiplied with the

network output weight OW matrix to produce the final results

ym or decision function. Refer to reference [40] for more

details about the ELM classifier.

D. THE OVERLAPPING AND REDUNDANT BOUNDING
BOXES

In this study, a sliding window is applied to scan vehicle

images. The MHOG and LBP features are extracted at each

stage of the sliding window. After that, the trained classifiers,

SVM or ELM, are applied to detect the LPs. If the classifier

detects the LP, the bounding box records the region of

interest. When the scan process is completed on the whole

testing image, many bounding boxes are detected around the

LP region in the vehicle image. Therefore, a suppression

technique is applied in order to remove the overlapping and

redundant bounding boxes from the detection area. Fig. 11

shows an example of the overlapping bounding boxes

problem with both classifiers, SVM and ELM.

As shown in Figs. 11 (a) and (b), the vehicle image has six

and 15 overlapping bounding boxes with SVM and ELM,

respectively. This is an open problem, no matter which

detection method is used, whenever the LP area was

correctly detected. Here all those redundant boxes refer to

the same LP, a technique to suppress the smaller bounding

boxes and keep the larger bounding boxes is required, as

shown in Figs. 12 (a) and (b).

There are many ways to solve the overlapping bounding

boxes problem. A position-based method, or mean-shift, is a

generalized as the way to detect an object by searching the

candidate objects which have the highest similarity with the

detected one [41] . In this study, the proposed method applies

the mean-shift algorithm to reduce the similar candidate

objects or overlapping bounding boxes for LPs. It is used to

capture multiple regions in the space of the bounding boxes

by utilizing the coordinates of the redundant boxes, (x, y), as

well as the current scale of the tested image (logarithm). A

mean-shift tracking technique is used to track the detected

LP in a vehicle image. The process of the mean-shift method

is shown in Fig. 13.

FIGURE 9. The workflow of the support vector machine network.

FIGURE 10. Extreme learning machine workflow.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

Meeras Al-Shemarry and Yan Li: Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates

9

This method starts with searching around the overlapping

windows of the LP region. The windows have the same x

coordinate as the LP frame. Then, the average of y

coordinates which have different positions to the start point

x is calculated and removed. The results from using this

algorithm are very satisfactory, with low false positive

values and higher accuracy rates. Also, this algorithm relies

on the effective classifier of the SVM or ELM that is selected

to produce good results. Refer to reference [41] for more

details about the mean-shift algorithm.

IV. DATABASE

The proposed method is tested on two groups of databases:

1) An English car database including 510 vehicle images

under different conditions [42]. 2) An extended English car

database by Al-Shemarry et al. [25] covering 1540 vehicle

images under complicated conditions, such as too dark,

blurry, distortion, and low/high contrast environments (see

Fig. 14). The second database is an extension of the first

English car database as Al-Shemarry et al. [25] changed the

lighting, blurry, distortion conditions using online photo

editor application to make it more challenging [43]. From the

two databases, 530 vehicle images were randomly selected

for the testing and 1520 were used for the training LPs

dataset. The total number of vehicle images is 2050. In

addition, this method is also applied to different vehicle

images with Arabic or Chinese language on the licence

plates. The vehicle images are downloaded from the Internet

and resized into 480 ×640 resolution and are used to evaluate

the performance of the LPD system as shown in Fig. 15.

 The extended database also includes the rotated images with

different LP angles, such as 45˚, 30˚, 20°, 15°, and 5˚.

Moreover, the training dataset contains various illumination

 SVM _MHOG_LBP ELM_MHOG_LBP

 (a) (b)
FIGURE 11. (a) The output of the proposed method using the SVM without the mean-shift algorithm; (b) The output of the proposed method using

the ELM without the mean-shift algorithm.

FIGURE 13. Steps of the mean-shift algorithm.

 SVM_MHOG_LBP+ mean-shift ELM_MHOG_LBP + mean-shift

 (a) (b)
FIGURE 12. (a) The output of the proposed method using the SVM with mean-shift algorithm, (b) The output of the proposed method using the ELM

with mean-shift algorithm.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

Meeras Al-Shemarry and Yan Li: Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates

10

conditions with three LPs resolutions of 100×25, 200×50,

and 300×75 to enable the LPD system to capture LPs from

complicated or low-quality images. Fig. 16 shows some of

the training LPs images under difficult and simple

conditions. The experimental results showed that all the key

characteristics have been captured from the 1520 training

images.

V. EXPERIMENTS AND RESULTS

All the experiments by the proposed method are

implemented on a computer with 3.4 GHz Intel Core i7-

(a)

(b)

FIGURE 15. (a) Examples of Arabic vehicles images; (b) Examples of Chinese vehicles images.

(a)

(b)

FIGURE 14. (a) Examples of vehicles images in the original English vehicles database with simple conditions; (b) Examples from the extended
English vehicles database after photo editing.

 n

FIGURE 16. Examples of LPs training images under simple and complicated conditions.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

Meeras Al-Shemarry and Yan Li: Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates

11

4770, 16GB of RAM using MATLAB, version R2017b. In

this section, the descriptions of MHOG and LBP features

analysis and features selection processes by SVM and ELM

classifiers are firstly presented. Secondly, the performance

evaluation of the proposed method is evaluated using the

detection and object localization metrics. Thirdly, the

performance comparison using the receive operating

characteristic (ROC) curve between the SVM_MHOG_LBP

and ELM_MHOG_LBP is provided. Finally, the detection

accuracy and time efficiency of the proposed method are

compared with the newest detection methods that also used

the same database [25, 44, 45] as the one used in this study.

A. FEATURE ANALYSIS AND SELECTION

Feature analysis is a very important step for any

classification problems. This study combines the MHOG and

LBP features into a features vector. The SVM and ELM

classifiers are used separately, to detect LPs from vehicle

images. With the MHOG features, each bin includes the

feature magnitude for 8×8 cells for a specific direction. High

feature values indicate the most discriminative bin. The

complete MHOG operator contains the magnitude values in

all 180 directions. Therefore, it is a high value around the 20,

60, 100, 140, and 180 degrees. For the LBP descriptor each

bin contains features values for 3×3 cells. The extracted

features for the three LP resolutions of 100×25, 200×50, and

300×75 using the MHOG and LBP descriptors are shown in

Fig. 17.

The dimensions of the extracted feature values for the

three resolutions above are 1517, 1784, and 1582,

respectively. The linear SVM and the kernel ELM classifiers

were applied to select strong subset feature values. The

information about features selection for both classifiers are

displayed in Table 1.

In this study, the linear kernel function for the SVM was

used for learning the classes of LPs and non-LPs. The SVM

classifier was tested with 5-fold cross validation for three

dimensions features values as well as three LPs resolutions

of 313, 547, and 348, respectively. From Table 1 the training

dataset includes three detectors or training models with

different dimension features values. Each SVM trained

model with 5-fold cross validation contains five ensemble

classes for LPs features. The weighting values for three SVM

training models are 6.591, 5.605, and 6.321, respectively,

with different bias values. The bias is a special parameter in

the SVM. The classifier without this value would always go

to the origin. Also, the SVM does not give the separating

hyperplane for the maximum features margin without the

bias term. The ELM was tested with 550 input hidden

neurons, and the input neurons for the three LP resolutions

are 640, 851, and 1202, respectively. The ELM classifier

produced three training models for the three LP resolutions

with a training accuracy rate of 100%.

B. PERFORMANCE EVALUATION

The proposed method is evaluated using detection and object

localization metrics.

1) Detection Metrics for LPD

Several assessment measures are used to check the

performance of the proposed detection system. The

assessment metrics include the number of objects that are

correctly detected, falsely detected, or miss-undetected by

the system [46]. Also, the detection based metrics are used

to evaluate the system under test (SUT) performance. For

those metrics, all the objects are validated to see if there is a

matching between SUT and the ground truth (GT). The

detection metrics used in this study to evaluate the LPD

system are as follows:

TABLE 1. The dimension of training models using SVM and ELM
classifiers.

Method TM1

(100×25)

TM2

(200×50)

TM3

(300×75)

Average

TA

SVM_MHOG_LBP features features features 99.786%

Class 1 62 110 71

Class 2 64 111 71

Class 3 61 105 66

Class 4 62 112 72

Class 5 64 109 68

Total features 313 547 348

ELM_MHOG_LBP 640 851 1202 100%

TM: Trained Model; TA: Training Accuracy

(a) (b) (c)

FIGURE 17. (a) The output of the extracted MHOG_LBP features for an LP with 100×25 resolution; (b) The output of the extracted MHOG_LBP features
for an LP with 200×50 resolution; (c) The output of the extracted MHOG_LBP features for an LP with 300×75 resolution (For histogram: X axis = the

range of features values in each bin, Y axis = the features values appearance in each bin range).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

Meeras Al-Shemarry and Yan Li: Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates

12

- FP (false positive): means that the LP is detected by

the SUT, but it is not in the GT.

- FN (false negative): indicates that the LP exists in the

GT, but it is not detected by the SUT.

- TP (true positive or correct detection): means that the

LP exists in both the GT and the SUT.

- TN (true negative): indicates that the LP does not exist

in the GT and by the SUT.

We added in the car English car database 50 vehicle images

without the LP that means the TN which refers to the vehicle

image without the LP object inside it. This is a very

important step to validate the detection system performance.

TABLE 2. The detection results for the proposed method using the
SVM and ELM classifiers.

Method No. of Testing Images = 530, TN= 50 Images

FP TP FN TN DR AR

SVM_LBP 15 483 47 40 91.13% 89.40%

SVM_MHOG 25 478 52 44 91.57% 87.14%

SVM_MHOG_LBP 9 528 2 48 99.62% 98.12%

ELM_LBP 14 480 50 42 90.56% 89.07%

ELM_MHOG 21 473 57 39 89.24% 86.77%

ELM_MHOG_LBP 13 515 15 43 97.16% 95.22%

AR: Accuracy Rate

 (a) (b) (c) (d)

 (e) (f) (g) (h)

 (i) (j) (k) (l)

 (m) (n) (o) (p)

 (q) (r) (s) (t)

FIGURE 18. Examples of the successful detection results by the proposed method for complicated cars images with low light and dirt (a), (b), (d),
(e), (q); with various views points (c), (h), (i), (k), (l), (o); with dusk and fog (a), (e), (f), (i), (m); with distortion (d), (e), (k), (p), (n), with different color

(h), (r), (s), (t), and with low/high contrast (f), (l), (m), (o), (p), (r) problems.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

Meeras Al-Shemarry and Yan Li: Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates

13

The detection and accuracy rates can be calculated as

follows:

 Detection rate (DR) = TP/ (TP+ FN) (12)

Accuracy = (TP+TN)/ (TP+TN+FP+FN) (13)

The DR is the proportion of the true positive result that is

truly predicted as a positive result by the detector, while the

accuracy rate is the proportion of the true results for both

positive and negative LP objects in the GT. The detection

results are shown in Table 2.

 From Table 2, it is noticeable that the combination of the

extracted features from both the MHOG and LBP improves

the detection results. The SVM_MHOG_LBP method

outperforms other methods in terms of the detection

accuracy rates. Some examples of the detection results for

the proposed method are shown in Fig.18.

 It was observed that all LPs were detected with very low

FPs values, and fewer redundant bounding boxes appeared

under difficult conditions. Also, some FPs were noticed

when some objects in the vehicle image looked like an LP

(for example, commercial signs and the vehicle logos).

2) Object Localization Metrics

The recall (RR) or detection rate (DR), precision (PR), and

F-measure (F-m) rates [47] at a matching confidence of δ ≥

0.5 are used to evaluate the LP localization performance.

Those metrics are defined as follows:

RR = TP/ (TP + FN) when δ ≥ 0.5 (14)

PR = TP/ (TP + FP) when δ ≥ 0.5 (15)

F-m = 2(PR ×RR)/ (PR + RR) (16)

PR is the proportion of the actual negative objects that the

detection system predicted correctly as negatives [47]. The

matching confidence assumption δ is defined as follows:

δ = {Bb ∩ GT/Bb ∪ GT, GT ⊆ Bb} (17)

where Bb denotes the predicted area of the LP bounding box.

The detection performance is analyzed with the confidence δ

≥ 0.5. It means that Bb encloses to the related GT while the

area of the former is twice of the latter. If δ is too big, the

predicted Bb would be much larger than the GT, which does

not make any sense to the LP detection ratio. The confidence

value determines directly from the strong classifier. Table 3

shows the object localization metrics of the proposed

method.

We can observe from Table 3 that the results of object

localization metrics for SVM_MHOG_LBP are better than

other methods’ results.

C. THE RECEIVE OPERATING CHARACTERISTIC
(ROC) CURVE

This study uses a combined features vector extracted by the

HOG and LBP, and employs a SVM or an ELM classifier to

detect the LPs from complicated vehicle images. The

efficiency of the proposed method is evaluated using the

receiver operating characteristic (ROC) curve. The ROC

curve is a useful tool for organizing the work of the

classifiers and displaying their quality of the performance

[48]. It is known as a performance metric for comparing and

evaluating algorithms [48, 49]. The ROC curve depends on

four parameters, true positive rate (TPR) or RR rate (see Eq.

9), false positive rate (FPR), positive predictive value (PPV)

or PR rate (see Eq. (15)), and negative predictive value

(NPV). Those parameters are defined as follows:

FPR = FP/ (FP+TP) (18)

NPV= TN/ (TN+FN) (19)

The ROC results from the SVM and ELM classifiers are

reported in Figs. 19, 20, and Table 4.

The ROC curve for the SVM with MHOG_LBP features

is better than that for the ELM with MHOG_LBP. The TPR

and FPR from the SVM_MHOG_LBP are improved by

2.46% and 0.787%, respectively, in comparison to those by

the ELM_MHOG_LBP. The area under curve (AUC) values

are between 0 and 1.

The high value of the AUC is a better measure for

evaluating the performance of the proposed method than the

accuracy rate [49]. The AUC for the SVM_MHOG_LBP is

better than the ELM_MHOG_LBP of 99.99% and 99.20%,

respectively.

TABLE 3. The performance results by the proposed LPD system.

Method RR PR F-m

SVM_LBP 91.13% 96.98% 93.96%

SVM_MHOG 91.57% 95.02% 93.26%

SVM_MHOG_LBP 99.62% 98.32% 98.96%

ELM_LBP 90.56% 97.16% 93.74%

ELM_MHOG 89.24% 95.74% 92.66%

ELM_MHOG_LBP 97.16% 97.53% 97.34%

FIGURE 19. The ROC curve for the MHOG_LBP features

classification using the ELM.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

Meeras Al-Shemarry and Yan Li: Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates

14

D. RUN TIME

The runtime is a key indicator of a system performance.

Table 5 shows the average running time per vehicle image

for the total and the three stages of preprocessing, extraction

and detection by the proposed LPD system. The

implementation time for the SVM_MHOG_LBP was much

shorter than that for the ELM_MHOG_LBP method under

both ordinary and complicated conditions. The proposed

method makes the LPD system reliable for real-time

applications through removing the unwanted bounding

boxes and decreasing the running time.

VI. COMPARISON WITH EXISTING METHODS

In this section, the proposed method is compared with the

state-of-the-art license plate detection methods that used the

same database of English car plates [25, 44, 45, 50]. The

performances are compared using the measures of the RR

and PR rates as well as the F-m rate. Azam and Gavrilova

[45] reported a genetic algorithm depending on the HOG

features with a mixture of binary classifiers to classify LP

and non-LP images. To improve the classification

performance, the genetic algorithm was applied to select the

best features subset. The method used a mixture of binary

classifiers of k-nearest neighbor, SVM, decision tree, and

linear discriminant analysis. It achieved some good results

under different conditions, but it required a high-contrast

preprocessing method to improve images. This leads to

increase the false positive rate. Raghunandan, et al. [44]

proposed a mathematical model using a Riesz fractional

operator to enhance the details of LP edges’ information.

That method worked well as long as there was a clear LP

shape in the image. It was not robust for distorted images and

it was time-consuming with a low RR rate. Yousif, et al. [50]

presented a novel methods based on genetic algorithm (GA)

to identify LPs under limited conditions. Henry, et al. [51]

designed a deep ALPR system to identify multinational LPs.

Their proposed system included three steps: LP detection, LP

recognition, and multinational layout LP detection. It

achieved good results under good conditions but it was not

robust or perform satisfactorily for complicated vehicle

images. Also, Al-Shemarry, et al. [25] produced a new and

efficient descriptor, with multi-level extended local binary

patterns (MLELBP) to extract difficult features’ using three

neighbouring feature dimensions under complicated

conditions. The input image was resized to make the

proposed method work without any limitations related to

standard vehicle image resolution and save the processing

time. The ELM was used to build the trained model and

obtain good detection results. In this method, the multi-levels

preprocessing in the extraction stage leads to getting high

feature dimensions which causes increases in the false

positive rate. In addition, the resizing image process is not

always successful especially with distorted images that could

lead to loss of important feature values. Therefore this study

proposed a new enhancement preprocessing method and

used the mean-shift technique with a detector to reduce false

positive values and decrease the processing time. The

performance results of the proposed detection method and

latest detection methods are reported in Table 6. Note from

Table 6 that the proposed method achieved the best detection

results compared with the existing methods in terms of RR,

PR, and F-m rates.

FIGURE 20. The ROC curve for the MHOG_LBP features

classification using the SVM.

TABLE 4. The performance results from SVM and ELM classifiers
with the MHOG_LBP features, using ROC curve parameters.

Method SVM_HOG_LBP ELM_HOG_LBP

AUC 99.99% 99.20%

FPR 1.67% 2.46%

TPR 99.62% 97.16%

PPV 98.32% 97.53%

NPV 96% 74.17%

CA 99.78% 96.92%

CA: Classification Accuracy

TABLE 5. The average run time for the proposed method for each
stage in the SVM_MHOG_LBP and ELM_MHOG_LBP schemes.

Stages Proposed method

SVM_MHOG_LBP ELM_MHOG_LBP

Pre-processing 0.0519ms 0.0519ms

Extraction 1.7260ms 1.7260ms

Detection 0.4408ms 1.0089ms

Total test time 2.2187ms 2.7868ms

Training Time 201.835ms 116.087ms

TABLE 6. Comparisons of the proposed method with the existing
state-of-the-art methods in terms of the RR, PR, and F-m rates.

Method RR PR F-m

Azam and Gavrilova [45] 91.3% NR NR

Raghunandan et al. [44] 79.4% 84.6% 81.9%

Al-Shemarry et al. [25] 99.10% 98.2% 98.65%

Yousif, et al. [50] 85.43% 97.86% 91.22%

Henry, et al. [51] 99.76% 98.85% 99.30%

Proposed

SVM_MHOG_LBP

99.62% 98.32% 98.96%

NR: Not Reported

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

Meeras Al-Shemarry and Yan Li: Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates

15

VII. CONCLUSIONS AND FUTURE WORK

This study proposed a new preprocessing method to improve

the LPD system performance for complicated vehicle images

by a Gaussian filter and the ECHE with the CLAHE

algorithm. The MHOG and LBP descriptors were used to

extract the representative LP features. The English car

plates’ database, Al-Shemarry et al. database, Arabic and

Chinese vehicles images databases were used to evaluate the

system performance under more difficult and complicated

image conditions. The SVM and ELM classifiers were used

to classify the extracted features, separately, for comparison

purposes. An ensemble of strong detectors or trained models

for three types of LP resolutions, 100×25, 200×50 and

300×75, were developed. From the experimental results, the

SVM with the combined MHOG and LBP descriptors

outperformed the ELM and the other methods with a single

descriptor in terms of the detection accuracy rate. The

proposed method was tested using different databases with

simple and complicated conditions, such as fogy, low/high

contrast, distorted and rotated LPs. It yielded excellent

results. The detection and accuracy rates are 99.62% and

98.12%, respectively. The overall performance evaluation

for the object localization metrics of the recall, precision, and

F-measure rates are 99.62%, 98.32%, and 98.96%,

respectively, with an FPR of 1.675%. Also, the ROC curve

was used to compare and evaluate the results of the proposed

method. The classification results of the ROC curve were

very good for the SVM and ELM methods at 99.78% and

96.92%, respectively. The proposed method was also

compared with the existing LP detection methods that used

the same English car database. It showed that the proposed

method performed better than those by other methods in

terms of the efficiency and detection rate. The average

runtime for the detection stage per vehicle image was

0.2408ms. The experimental results demonstrated that the

proposed technique could be applied efficiently for real-time

applications. We plan, in future work, to enhance the

proposed detection method through using high-quality

hardware and software components for reducing the overall

detection time of the LPD system, that currently is 2.2187ms

in total.

REFERENCES

[1] Z. Huang, Y. Yu, J. Gu, and H. Liu, "An efficient method for traffic

sign recognition based on extreme learning machine," IEEE

transactions on cybernetics, vol. 47, no. 4, pp. 920-933, 2017.

[2] D. Selmanaj, M. Corno, and S. M. Savaresi, "Hazard detection for

motorcycles via accelerometers: A self-organizing map approach,"

IEEE transactions on cybernetics, vol. 47, no. 11, pp. 3609-3620,

2016.

[3] P. Pramkeaw, M. Ketcham, W. Limpornchitwilai, and N. Chumuang,

"Analysis of Detecting and Interpreting Warning Signs for Distance of

Cars using Analyzing the License Plate," in 2019 14th International

Joint Symposium on Artificial Intelligence and Natural Language

Processing (iSAI-NLP): IEEE, pp. 1-8.

[4] P. Gao, R. Yuan, F. Wang, L. Xiao, H. Fujita, and Y. Zhang, "Siamese

attentional keypoint network for high performance visual tracking,"

Knowledge-Based Systems, vol. 193, p. 105448, 2020.

[5] P. Gao, Q. Zhang, F. Wang, L. Xiao, H. Fujita, and Y. Zhang,

"Learning reinforced attentional representation for end-to-end visual

tracking," Information Sciences, vol. 517, pp. 52-67, 2020.

[6] M. S. Al-Shemarry, Y. Li, and S. Abdulla, "Ensemble of adaboost

cascades of 3L-LBPs classifiers for license plates detection with low

quality images," Expert Systems With Applications, vol. 92, pp. 216-

235, 2018.

[7] H. Zhang, W. Jia, X. He, and Q. Wu, "Learning-based license plate

detection using global and local features," in Pattern Recognition,

2006. ICPR 2006. 18th International Conference on, 2006, vol. 2:

IEEE, pp. 1102-1105.

[8] K. Zheng, Y. Zhao, J. Gu, and Q. Hu, "License plate detection using

haar-like features and histogram of oriented gradients," in Industrial

Electronics (ISIE), 2012 IEEE International Symposium on, 2012:

IEEE, pp. 1502-1505.

[9] W. T. Ho, H. W. Lim, and Y. H. Tay, "Two-stage license plate

detection using gentle Adaboost and SIFT-SVM," in Intelligent

Information and Database Systems, 2009. ACIIDS 2009. First Asian

Conference on, 2009: IEEE, pp. 109-114.

[10] S. Lew, C.-S. Yi, W.-J. Lee, B.-R. Lee, K.-W. Min, and H.-C. Kang,

"Extraction of the License Plate Region Using HoG and AdaBoost,"

Journal of Digital Contents Society, vol. 10, no. 4, pp. 597-604, 2009.

[11] L. Liu, L. Zhao, Y. Long, G. Kuang, and P. Fieguth, "Extended local

binary patterns for texture classification," Image and Vision

Computing, vol. 30, no. 2, pp. 86-99, 2012.

[12] L. Xie, T. Ahmad, L. Jin, Y. Liu, and S. Zhang, "A New CNN-Based

Method for Multi-Directional Car License Plate Detection," IEEE

Transactions on Intelligent Transportation Systems, vol. 19, no. 2, pp.

507-517, 2018.

[13] M. Molina-Moreno, I. González-Díaz, and F. Díaz-de-María,

"Efficient Scale-Adaptive License Plate Detection System," IEEE

Transactions on Intelligent Transportation Systems, no. 99, pp. 1-13,

2018.

[14] W. Weihong and T. Jiaoyang, "Research on License Plate Recognition

Algorithms Based on Deep Learning in Complex Environment," IEEE

Access, vol. 8, pp. 91661-91675, 2020.

[15] C.-N. E. Anagnostopoulos, I. E. Anagnostopoulos, I. D. Psoroulas, V.

Loumos, and E. Kayafas, "License plate recognition from still images

and video sequences: A survey," IEEE Transactions on intelligent

transportation systems, vol. 9, no. 3, pp. 377-391, 2008.

[16] S. Azam and M. M. Islam, "Automatic license plate detection in

hazardous condition," Journal of Visual Communication and Image

Representation, vol. 36, pp. 172-186, 2016.

[17] S. R. Gunn, "Support vector machines for classification and

regression," ISIS technical report, vol. 14, no. 1, pp. 5-16, 1998.

[18] C. Cortes and V. Vapnik, "Support-vector networks," Machine

learning, vol. 20, no. 3, pp. 273-297, 1995.

[19] W. Kusakunniran, K. Ngamaschariyakul, C. Chantaraviwat, K.

Janvittayanuchit, and K. Thongkanchorn, "A Thai license plate

localization using SVM," in Computer Science and Engineering

Conference (ICSEC), 2014 International, 2014: IEEE, pp. 163-167.

[20] S. Z. Masood, G. Shu, A. Dehghan, and E. G. Ortiz, "License Plate

Detection and Recognition Using Deeply Learned Convolutional

Neural Networks," arXiv preprint arXiv:1703.07330, 2017.

[21] Y. Liu, H. Huang, J. Cao, and T. Huang, "Convolutional neural

networks-based intelligent recognition of Chinese license plates," Soft

Computing, pp. 1-17, 2017.

[22] S. Ding, L. Guo, and Y. Hou, "Extreme learning machine with kernel

model based on deep learning," Neural Computing and Applications,

vol. 28, no. 8, pp. 1975-1984, 2017.

[23] P. Felzenszwalb, D. McAllester, and D. Ramanan, "A

discriminatively trained, multiscale, deformable part model," in

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE

Conference on, 2008: IEEE, pp. 1-8.

[24] T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution gray-scale

and rotation invariant texture classification with local binary patterns,"

IEEE Transactions on pattern analysis and machine intelligence, vol.

24, no. 7, pp. 971-987, 2002.

[25] M. S. Al-Shemarry, Y. Li, and S. Abdulla, "An Efficient Texture

Descriptor for the Detection of License Plates From Vehicle Images

in Difficult Conditions," IEEE Transactions on Intelligent

Transportation Systems, 2019.

[26] A. A. Gooch, S. C. Olsen, J. Tumblin, and B. Gooch, "Color2gray:

salience-preserving color removal," ACM Transactions on Graphics

(TOG), vol. 24, no. 3, pp. 634-639, 2005.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024625, IEEE Access

Meeras Al-Shemarry and Yan Li: Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates

16

[27] C. Saravanan, "Color image to grayscale image conversion," in 2010

Second International Conference on Computer Engineering and

Applications, 2010: IEEE, pp. 196-199.

[28] N. Dalal and B. Triggs, "Histograms of oriented gradients for human

detection," in Computer Vision and Pattern Recognition, 2005. CVPR

2005. IEEE Computer Society Conference on, 2005, vol. 1: IEEE, pp.

886-893.

[29] H. Tan, B. Yang, and Z. Ma, "Face recognition based on the fusion of

global and local HOG features of face images," IET computer vision,

vol. 8, no. 3, pp. 224-234, 2014.

[30] D. Sun and J. Watada, "Detecting pedestrians and vehicles in traffic

scene based on boosted HOG features and SVM," in Intelligent Signal

Processing (WISP), 2015 IEEE 9th International Symposium on,

2015: IEEE, pp. 1-4.

[31] Y. Feng, Y. Song, and Y. Zhang, "Scene text localization using

extremal regions and Corner-HOG feature," in Robotics and

Biomimetics (ROBIO), 2015 IEEE International Conference on, 2015:

IEEE, pp. 881-886.

[32] L. Mao, M. Xie, Y. Huang, and Y. Zhang, "Preceding vehicle

detection using Histograms of Oriented Gradients," in 2010

International Conference on Communications, Circuits and Systems

(ICCCAS), 2010: IEEE, pp. 354-358.

[33] W. Jia, H. Zhang, and X. He, "Region-based license plate detection,"

Journal of Network and computer Applications, vol. 30, no. 4, pp.

1324-1333, 2007.

[34] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, "Object detection with

deep learning: A review," IEEE transactions on neural networks and

learning systems, 2019.

[35] Y. Wang, H. Yu, D. Sylvester, and P. Kong, "Energy efficient in-

memory AES encryption based on nonvolatile domain-wall

nanowire," in Proceedings of the conference on Design, Automation

& Test in Europe, 2014: European Design and Automation

Association, p. 183.

[36] T. Hastie, S. Rosset, J. Zhu, and H. Zou, "Multi-class adaboost,"

Statistics and its Interface, vol. 2, no. 3, pp. 349-360, 2009.

[37] D. E. Goldberg and J. H. Holland, "Genetic algorithms and machine

learning," Machine learning, vol. 3, no. 2, pp. 95-99, 1988.

[38] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine:

a new learning scheme of feedforward neural networks," in Neural

Networks, 2004. Proceedings. 2004 IEEE International Joint

Conference on, 2004, vol. 2: IEEE, pp. 985-990.

[39] Y.-H. Pao and Y. Takefuji, "Functional-link net computing: theory,

system architecture, and functionalities," Computer, vol. 25, no. 5, pp.

76-79, 1992.

[40] Y. Yang and Q. J. Wu, "Extreme learning machine with subnetwork

hidden nodes for regression and classification," IEEE transactions on

cybernetics, vol. 46, no. 12, pp. 2885-2898, 2015.

[41] D. Comaniciu and P. Meer, "Mean shift: A robust approach toward

feature space analysis," IEEE Transactions on pattern analysis and

machine intelligence, vol. 24, no. 5, pp. 603-619, 2002.

[42] EnglishLPDatabase-2001, "

http://www.zemris.fer.hr/projects/LicensePlates/english/," accessed

July 2016.

[43] Online.Photo.Editor. ""https://www.freeonlinephotoeditor.com/,"

accessed April, 2017." (accessed.

[44] K. Raghunandan et al., "Riesz fractional based model for enhancing

license plate detection and recognition," IEEE Transactions on

Circuits and Systems for Video Technology, 2017.

[45] S. Azam and M. Gavrilova, "License plate image patch filtering using

HOG descriptor and bio-inspired optimization," in Proceedings of the

Computer Graphics International Conference, 2017: ACM, p. 1.

[46] F. Bashir and F. Porikli, "Performance evaluation of object detection

and tracking systems," in Proceedings 9th IEEE International

Workshop on PETS, 2006, pp. 7-14.

[47] D. François, "Binary classification performances measure cheat

sheet," ed: Volume, 2009.

[48] A. Slaby, "ROC analysis with Matlab," in Information Technology

Interfaces, 2007. ITI 2007. 29th International Conference on, 2007:

IEEE, pp. 191-196.

[49] A. Godil, R. Bostelman, W. Shackleford, T. Hong, and M. Shneier,

"Performance Metrics for Evaluating Object and Human Detection

and Tracking Systems," 2014.

[50] B. B. Yousif, M. M. Ata, N. Fawzy, and M. Obaya, "Toward an

Optimized Neutrosophic k-Means With Genetic Algorithm for

Automatic Vehicle License Plate Recognition (ONKM-AVLPR),"

IEEE Access, vol. 8, pp. 49285-49312, 2020.

[51] C. Henry, S. Y. Ahn, and S.-W. Lee, "Multinational License Plate

Recognition Using Generalized Character Sequence Detection," IEEE

Access, vol. 8, pp. 35185-35199, 2020.

Meeras Salman Al-Shemarry is a Lecturer in

Computer Department, Science College, Karbala

University, Iraq. She has a Bachelor of Computer

Science from Babylon University, Iraq in 2002.

She received her Master degree in IT 2010 from

University Utara Malaysia (UUM), Malaysia.

Currently, she is a PhD Student in the Faculty of

Health, Engineering and Sciences, University of Southern

Queensland, Australia. Her research interests include system

analysis using UML diagrams, image processing and objects

detection, artificial intelligence, database management system.

Yan Li is currently a Professor in Computer

Science in the school of sciences, University of

Southern Queensland, Australia. Her research

interests are in the areas of Artificial Intelligence,

Big Data Analytics, Signal and Image Processing,

Biomedical Engineering, Artificial Intelligence,

Big Data Analytics and Computer Networking

Technologies.

http://www.zemris.fer.hr/projects/LicensePlates/english/
https://www.freeonlinephotoeditor.com/

 Chapter 6 Distorted vehicle licence plates detection using hybrid feature

P a g e 80 | 254

80

CHAPTER 6

DISTORTED VEHICLE LICENCE PLATE DETECTION

USING HYBRID FEATURES DESCRIPTOR AND EXTREME

LEARNING MACHINE CLASSIFIER

6.1 Introduction

The content of this chapter is an exact copy of a submitted paper to the journal (2020) for

publication ‘Distorted vehicle licence plates detection using hybrid feature descriptors’,

(submitted).

The detection of LPs is similar to find the regions of interest (ROIs) that may contain

the LP (true positive value) or non-LP (false positive value).

In Chapter 5, an efficient preprocessing method was introduced for the purpose of

reducing the FPR and execution time for identifying LPs from complicated vehicle images. It

was showed a large improvement in reducing the FPR and system runtime.

This chapter makes a further enhancement to modify the previous version of the

preprocessing method in Chapter 5 and increase the system detection accuracy while reduce

the testing time and keeping the previous improvement for in FPR. It applies the enhancement

contrast-limited adaptive-cumulative histogram equalization (ECLACHE) technique. At the

extraction stage, a combination of a median robust extend local binary pattern (MRELBP) and

speeded up robust feature (SURF) descriptors as used. Those descriptors have the same

powerful advantages that were described for previously descriptors in Chapters 3, 4, and 5.

They extracted LP features under distorted conditions. The ELM with a mean-shift algorithm

was used to train the extracted features and built a strong detector.

6

 Chapter 6 Distorted Vehicle Licence Plate Detection using Hybrid Feature s

r

P a g e 81 | 254

81

There is no one detection method working to solve all types of images problems and

satisfy all system requirements. This method succeeded in achieving good detection accuracy

results with a large improvement for system runtime. But the FPR was slightly increased

compared with the method in Chapter 5 due to large improvements in preprocessing methods.

The proposed method outperforms other reported methods in Chapters 3, 4, 5, in terms of the

detection accuracy and execution time.

The Matlab code of this method is provided in Appendix D.

1

Distorted vehicle licence plate detection using hybrid feature descriptors

Meeras Salman Al-Shemarry a, b,* and Yan Li a

a School of Agricultural, Computational and Environmental Sciences

Faculty of Health, Engineering and Sciences

University of Southern Queensland, Australia
b Computer Department, Science College, Karbala University, Karbala 56001, Iraq

*Correspondence author

E-mail addresses: MeerasSalmanJuwad.Al-Shemarry@usq.edu.au (M. S. Al-Shemarry), Yan.Li@usq.edu.au (Y. Li)

Abstract

Intelligent transportation systems (ITSs) play a very important role in people’s lives in many respects. One of the

most important ITS applications is A licence plate detection system (LPD). In this paper, a new LPD framework is

proposed. It includes a novel technique for the preprocessing, extraction, and detection stages to detect LPs from

distorted vehicle images. An efficient preprocessing method is developed in this study which proposes an enhanced

contrast-limited adaptive histogram equalization technique for filtering the unwanted LP regions. At the extraction

stage, strong hybrid features of a median robust extended local binary pattern and speeded-up robust feature

descriptor are applied to extract complicated features from LPs. Those hybrid features can enhance the useful

information, and thus the detection system performance under difficult scenarios. In the detection stage, the trained

model of an extreme learning machine classifier, with a mean-shift algorithm, is used as a detector to make a

decision for output results. The performance of the proposed method was compared in terms of true-positive and

false-positive rates with other classifiers and existing detection methods. The experiments on an English car plates

database show that the proposed method made significant improvements in accuracy and runtime speed for the LPD

system under difficult scenarios.

Keywords

Transportation systems; Licence plate detection (LPD); Hybrid features; Extreme learning machine (ELM);

Confusion matrix; Receiver operating characteristic curve (ROC).

1. Introduction

There is rapid growth in automatic systems development including the licence plate detection (LPD) system

that helps to automatically identify the license plate (LP) of vehicles as quickly as possible. It is a difficult

challenging to identify LPs from images complicated due to environmental effects. Therefore, a good LPD system

is required to effectively work under difficult scenarios, for example, low/high lighting, night, or with blurred,

foggy, rotated, dusty, distorted, and with complex backgrounds, etc. For an LP to be identified, the test image is

passed through three stages as shown in Fig. 1.

Manuscript Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mailto:MeerasSalmanJuwad.Al-Shemarry@usq.edu.au
mailto:Yan.Li@usq.edu.au
https://www.editorialmanager.com/ejor/viewRCResults.aspx?pdf=1&docID=59918&rev=0&fileID=1220405&msid=1fbfed2f-4729-471f-8513-95b5de1d0da4
https://www.editorialmanager.com/ejor/viewRCResults.aspx?pdf=1&docID=59918&rev=0&fileID=1220405&msid=1fbfed2f-4729-471f-8513-95b5de1d0da4

2

In the first stage, the quality of a captured image is improved using some preprocessing methods. There are

many enhancement techniques to do that, like filtering, contrast enhancement, histogram equalization, binarization,

and so on. In the second stage, the region of the interest (ROI) is extracted by using various extraction descriptors.

These extracted regions may or may not be the true LP regions. This stage is called the extraction stage for LPs. In

the third stage, the extracted regions are used as inputs for a good classifier in order to build a strong detector, or a

trained model, for LP localization. This stage is called as LP detection. The performance of the detection system

relies on the robustness and reliability of each individual stage. This paper focuses only on the detection stage for

detecting LPs from distorted vehicle images. Therefore, the segmentation and recognition stages were not

considered in this work. In this stage, the number from the LP converts into machine-encoded text. Then, the optical

character recognition (OCR) is used to recognize the plate numbers from the LP image. Many methods have been

proposed in the past years to detect LPs. They can be categorized as color-based (Ashtari, Nordin, & Fathy, 2014;

Shi, Zhao, & Shen, 2005), edge-based (Ascar Davix, Oshin, & Shamili, 2016; Azad, Azad, & Shayegh, 2014; Ha

& Shakeri, 2016; J. Wang, Bacic, & Yan, 2018), character-based (Li & Wang, 2016; Soora & Deshpande, 2016),

texture features-based (Al-Shemarry, Li, & Abdulla, 2018, 2019), and filter-based (Tadic, Popovic, & Odry, 2016;

L. Zhang, Shi, Xia, & Mao, 2013) methods. But the task of identifying an LP properly is still a very challenging

task. The preprocessing stage plays an important role in enhancing and building up detection system performance.

Descriptors, like local binary pattern (LBP), works well for different illumination conditions. It can partly solve

scale invariance problems (Ojala, Pietikäinen, & Harwood, 1996). Many researchers proposed a large number of

LBP variant descriptors to improve the weakness of LBP operators and achieved good classification performance

(El Khadiri, Kas, El Merabet, Ruichek, & Touahni, 2018). For example, the extended local binary pattern (ELBP)

Fig. 1. Stages involved in the licence plate detection (LPD) system.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

(Liu, Zhao, Long, Kuang, & Fieguth, 2012), the completed local binary pattern (CLBP) (Guo, Zhang, & Zhang,

2010), multi-level extended local binary pattern (Al-Shemarry et al., 2019), completed local derivative patterns

(CLDPs) (Hu, Long, & AlRegib, 2016), scale-selective local binary pattern (SSLBP) (Guo, Wang, Zhou, & You,

2016), and median robust extend local binary pattern (MRELBP) (Liu, Fieguth, Pietikäinen, & Lao, 2015). The

speeded up robust feature descriptor (SURF) is better than other features for object detection inside an image

(Arróspide & Salgado, 2014; Bauer, Sünderhauf, & Protzel, 2007; Bay, Tuytelaars, & Van Gool, 2006a). It is

usually used to capture the important information which is sensitive to illumination and rotation conditions (Hanbay,

Alpaslan, Talu, & Hanbay, 2016; Khan, McCane, & Wyvill, 2011; Z. Luo, Chen, Takiguchi, & Ariki, 2015;

Panchal, Panchal, & Shah, 2013; Pang, Li, Yuan, & Pan, 2012; Rajesh, Kaushik, & Jangra, 2016). For illumination

problems, the SURF descriptor has a discriminative power to extract contrast lighting features with or without

rotation problems (Bay et al., 2006a; Pang et al., 2012). One method is often not sufficient to solve several problems

for a robust system. Recent studies showed that combining multiple descriptors enables good extraction compared

with using a single descriptor for multiple problems (Y. Chen, Zhao, Lv, & Zhang, 2018; Kim, Song, Kim, & Park,

2019; Lalimi, Ghofrani, & McLernon, 2013; Y. Wang, Zhang, Fang, & Guo, 2009; H. Zhang, Jia, He, & Wu, 2006).

In supervised learning, the extraction features are trained by the classifier to produce trained models and these

models learn to discriminate different LP problems. Classifiers used for detection of LPs include ELM (G.-B.

Huang, Zhu, & Siew, 2006), Adaboost (Hastie, Rosset, Zhu, & Zou, 2009), SVM (Gunn, 1998) and CNN (Xie,

Ahmad, Jin, Liu, & Zhang, 2018). The purpose of this work is to develop an LPD framework for complicated

vehicle images. It includes a new enhanced preprocessing method, the enhancement contrast-limited adaptive-

cumulative histogram equalization (ECLACHE), the combination of the MRELBP and SURF descriptors, and an

extreme learning machine (ELM) classifier with a mean-shift algorithm to reduce a false-positive rate and improve

the classification accuracy.

The main contributions of this work are as follows:

i. Updating our previous work (Al-Shemarry et al., 2018), the pre-processing method to improve the

performance of the LPD system by filtering unwanted LP regions. The new method is an enhancement

contrast-limited adaptive-cumulative histogram equalization (ECLACHE).

ii. Utilizing hybrid features, MRELBP and SURF, as extraction methods. Based on previous studies in the

literature those methods very strong and suitable descriptors to extract several features under different

environments like low/high contrast, blurry, foggy, rotated LPs, complex backgrounds, dark, and so on.

iii. Applying a mean-shift algorithm with ELM classifier to reduce the false-positive values and improve the

classification accuracy.

iv. Using complicated and much challenged English car databases (Al-Shemarry et al., 2019;

EnglishLPDatabase-2001) in this work.

v. Evaluating the proposed object detection method using very important factors for performance measurement

metrics.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

vi. Comparing the performance of the proposed method with new existing detection methods.

This paper is organized as follows: Section 2 introduces the framework of the LPD system. Section 3 shows

system database. Section 4 presents the experimental results. Section 5 displays the comparison with other existing

methods. Finally, in section 6 the conclusion and future work are discussed.

2. The proposed method

In this research, the proposed LPD system for vehicle images under difficult environmental conditions is

presented. The framework of the proposed method is depicted in Fig. 2. It is consists of three main stages:

preprocessing, extraction and detection. For the preprocessing stage, a good enhancement method, the ECLACHE,

is developed. It overcomes all difficulties related to high/low lighting, dusk, blurry, and foggy conditions. At the

second stage, the features are extracted from the enhanced image using a combination of the two powerful

descriptors, MRELBP and SURF. These descriptors were carefully selected for being suitable for difficult

conditions. Finally, the ELM classifier is used to build the trained model from the extracted MRELBP and SURF

features. The LPD system consists of two phases of training and testing. The same methods in the preprocessing

and extraction stages are used in both phases. The detected LP images are cropped and stored for the recognition

stage to obtain a complete licence number plate recognition system. The detail of the proposed framework is

described in the following sections.

2.1 The preprocessing stage

 The detection of an LP is related to find the ROI that may be LP or non-LP. In this system, the texture and

gray scale features are used to reduce the feature dimension and the processing time for the next stage. The input

image format of “.jpg” is converted to “.png” in order to save the quality of the image instead of resizing. Then, it

converts to the grayscale image of GIMG (Saravanan, 2010) by Eq. (1).

GIMG {X} = 0.2989 × R {X} + 0.5870 × G {X} + 0.1140 × B {X} (1)

Fig. 2. The framework for the proposed LPD system

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

where R {X}, G{X}, and B {X} are the red, green, and blue channels of colors, respectively, and X refer to the image

pixels.

 There are different sources of noise in a distorted vehicle image, leading to false-positive detections, like

surface textures, low/high lighting, distortion, dirt, and dust. Therefore, the enhancement preprocessing algorithm,

ECLACHE, is used to reduce the noise and enhance the lighting conditions. The steps of the ECLACHE algorithm

are shown in Fig. 3.

 The first step is applied the cumulative histogram equalization (CHE) method to the grayscale image, GIMG

{X}, and let ni is the number of pixels occurrences on gray-level i. The probability of an occurrence pixel of level i in

the GIMG {X} image is

𝑃𝑥(𝑖) = 𝑃(𝑥 = 𝑖) = 𝑛𝑖 𝑛⁄ , 0 ≤ 𝑖 < 𝐿 (2)

where L is the total number of grayscale levels in an image which is typically 256 and n is the image pixels. 𝑃𝑥(𝑖) is

the image's histogram of the pixel value i, which is normalized to [0, 1]. The second step is calculated the cumulative

distribution function (CDF) for CHE method, which is also an image accumulated normalized histogram and

defined as

𝐶𝐷𝐹𝑥(𝑖) = ∑ 𝑃𝑥(𝑗)𝑖
𝑗=0 (3)

The third step is created a transformation form, Y = T(x) to produce a new image {Y}, with a new values of the flat

histogram, which is also need a linearized CDF across the new value range and defined as

𝐶𝐷𝐹𝑦(𝑖) = 𝑖𝐶 (4)

where C is some constant in the range [0-L]. Notable that T maps the new values back into the original range, since

it used a normalized histogram of {X}. A more detailed is provided by Pizer et al. (1987). Fourth step is applied the

contrast limiting adaptive histogram equalization (CLAHE) method on the new image {Y}, and repeated the 2nd

and 3rd steps in order to produce a new enhanced image that contains the new grayscale values.

 The performance of the proposed preprocessing method, ECLACHE, can be observed from Fig. 4. From Fig.

4, it can be noticed the difference between the improved method by Al-Shemarry et al (2019) and ECLACHE

method. Also, the range of the feature dimensions is reduced by this method giving a good image quality. Moreover,

Fig. 3. The steps for the new enhanced method, ECLACHE.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

the histogram information helps to display the difference between the original image and the enhanced image

through decreasing the range of the unwanted features.

 Original vehicle image

(a)

 Improved image by Al-Shemarry et al. (2018)

(b)

 Improved image using ECLACHE

(c)

Fig. 4. (a) The original licence plate image; (b) The output for the preprocessing enhancement method by Al-

Shemarry et al (2019); (c) The output for the ECLACHE method with the histogram. The histogram shows how

the ECLACHE method works (X axis is the range of the feature values in each bin; Y axis is the number of

feature values appearing in each bin range).

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18
104

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

2.2 The features extraction stage

 This research uses the combination of MRELBP and SURF descriptors to extract the key features from low-

quality vehicles images. There are many reasons for us to use those descriptors as described in the introduction.

2.2.1 The speeded-up robust feature (SURF) descriptor

The scale invariant feature transform (SIFT) descriptor is the most widely used, but it has a high

computational cost. In 2006, Bay et al. (2006a) developed a SURF variant descriptor of the SIFT. This section

presents a brief summary of the SURF construction process, strong interest point localization and interest point

descriptor computation.

2.2.1.1 Interest point localization

The SURF descriptor is depended on the Hessian matrix. Given an image I a point x= [x, y], the Hessian

matrix H (x, σ) of the point x at the scale σ is defined as

𝐻(𝑥, 𝜎) = [
𝐶𝐺𝑥𝑥 𝐶𝐺𝑥𝑦

𝐶𝐺𝑥𝑦 𝐶𝐺𝑦𝑦
] , (5)

where 𝐶𝐺𝑥𝑥(x, σ) is the convolution of the Gaussian order derivative
𝜕

𝜕𝑥
2 𝑔(𝜎) for the image I in the point x, and

similarly for 𝐶𝐺𝑥𝑦(x, σ) and 𝐶𝐺𝑦𝑦(x, σ). In the contrast to the SIFT descriptor, which approximates laplacian of

Gaussian with the difference of Gaussians, the SURF approximates second derivatives Gaussian order with box

filters. An example of the lowest scale analysed by this filters in Fig. 5. Image I convolutions with box filters were

computed rapidly using the integral image (Viola & Jones, 2001).

The scale and location of interest points are selected based on the determinant of the Hessian matrix. Interest

points are localized in the scale and image I space through applying the non-maximum suppression in the 3×3×3

neighbourhood. For more details, see the reference by Bay, Tuytelaars, and Van Gool (2006b).

Fig. 5. Left: the Gaussian second order derivative in the xy-direction. Right:

the corresponding box filter approximation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

2.2.1.2 Interest point descriptor

The first step of the SURF descriptor is constructed circulars regions around the strong detected interest points

to assign a unique orientation and gain invariance to the image rotation. The orientation is calculated by using the

Haar wavelet response in both directions, x and y. It can be computed through the integral image quickly, similar to

the second derivatives Gaussian order with box filters. The dominant orientation in the interest point’s information

is estimated and included. The next step is extracted the square regions around interest points and divided into 4×4

sub-regions. In each sub-region, the Haar wavelet response is computed at horizontal d(x) and vertical d(y)

directions. Each sub-region is represented on four-dimensional descriptor that contains the sum of absolute values

of the d(x) and the d(y), which is summarized in Eq. 5 (Bay et al., 2006a).

V= (∑ 𝑑(𝑥) , ∑ 𝑑(𝑦) , ∑|𝑑(𝑥)| , ∑|𝑑(𝑦)|) (6)

The result of the SURF descriptor for all 4×4 sub-regions is about 64 features dimension. Through the

experimental the main advantage of the SURF descriptor is good and fast extraction process. It is claimed that, the

SURF descriptor is invariant to the scale and rotation of the object inside an image (Han, Virupakshappa, & Oruklu,

2015). The input value for the SURF descriptor is an enhanced image and the output is strong key points or features

from the regions of interest. As shown in Fig. 6 (a) the dimension of the extracted feature values for the SURF

descriptor and Fig. 6 (b) the location of the strongest key points in the regions of interest for the feature extraction

process.

Fig. 6. The SURF descriptor output: (a) The dimension of the extracted features values for the SURF

descriptors; (b) the location of the strongest key points in the regions of interest for the feature extraction

process.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

2.2.2 Median robust extend local binary pattern (MRELBP)

 The texture LBP descriptors, produced good performance texture classification results, however there are still

some significant drawbacks if they are used alone without improvement methods. The drawback of the ELBP (Liu

et al., 2012) descriptor is that it is very vulnerable to the image noise. The first strategy is to replace the individual

pixel gray-scale values for the sample points with the simple filter responses. The MRELBP (Liu et al., 2016)

descriptor is simple conceptually, high-quality, and a computationally effective approach, based on the combination

of a median filter with multi-feature resolution support. This descriptor offers the gray-scale invariance, noise

robustness, rotation invariance, and powerful discrimination. It was compared against many other LBP descriptors

(Liu et al., 2016) and produced good extraction results. The ELBP is modified by replacing the individual pixel

intensities with filter responses φ, as shown in the Fig. 6. The image is normalized to zero mean and unit variance,

using standard encoding scheme (riu2). If the center pixel value is 𝑋𝐶 and the patch filter φ, the MRELBP_CI,

MRELBP_NI and MRELBP_RD descriptors are defined as

 1) MRELBP of the center pixel:

MRELBP_CI (𝑋𝐶) = S (φ (𝑋𝐶,𝑤) − µ𝑤) (7)

The result from applying the filter φ to 𝑋𝐶,𝑤 is that the local patch of the size w×w (neighbouring feature space)

centered on the center pixel 𝑋𝐶 , and µ𝑤 denoting the mean of the φ (𝑋𝐶,𝑤) over the whole normalized image.

2) MRELBP of the neighbors’ pixels:

MRELBP_𝑁𝐼𝑟, 𝑝
𝑟𝑖𝑢2

(𝑋𝐶) = ∑ 𝑆(

𝑝−1
𝑛=0 𝜑 (𝑋𝑟,𝑝,𝑤𝑟,𝑛) − µ𝑟,𝑝,𝑤𝑟)2𝑛 (8)

µ𝑟,𝑝,𝑤𝑟 =
1

𝑝
 ∑ 𝜑 (𝑋𝑟,𝑝,𝑤𝑟,𝑛)

𝑝−1
𝑛=0 (9)

where 𝑋𝑟,𝑝,𝑤𝑟,𝑛 refers to the neighbouring features space or the patch size of the wr × wr which is centered on the

 𝑋𝑟,𝑝,𝑛.

3) MRELBP of the radial difference:

MRELBP_𝑅𝐷𝑟, 𝑟−1, 𝑝, 𝑤𝑟, 𝑤𝑟−1
𝑟𝑖𝑢2

(𝑋𝐶) = ∑ 𝑆(

𝑝−1
𝑛=0 𝜑 (𝑋𝑟,𝑝,𝑤𝑟,𝑛) − 𝜑 (𝑋𝑟−1,𝑝,𝑤𝑟−1,𝑛))2𝑛 (10)

where 𝑋𝑟,𝑝,𝑤𝑟,𝑛 and 𝑋𝑟−1,𝑝,𝑤𝑟−1,𝑛 refer to the centered patches at the neighboring pixels 𝑋𝑟,𝑝,𝑛 and 𝑋𝑟−1,𝑝,𝑛 ,

respectively. The formula {𝑋𝑟,𝑝,𝑛}𝑛
𝑝

 denotes the circular of the neighbors pixels for the center pixel Xc at radius r.

Referring to Fig. 7, this study used multi-feature space, MRELBP (r, p, w) descriptors to extract difficult

features from complicated enhanced images. The MRELBP used the median filter remove the noise or unwanted

regions from the vehicle image. The results are four local binary pattern images. Liu et al. (2015) fixed the number

of neighbour pixels at 8 on each MRELBP descriptor to reduce the dimension of the extracted features and obtain

good extraction results. The main parameters for MRELBP descriptor are the sampling radius r, the size of the

center patch wc×wc, and the sizes of the neighboring patches wr×wr. Choosing (r, p) as (2,8)+(4,8)+(6,8)+(8,8)

gave very good results. Also, each LBP image has a joint histogram, which refers to the strong extracted features.

The four joint histograms merge together to produce the concatenation histogram for all the MRELBP descriptors.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

2.3 Detection stage

 The ELM classifier (G.-B. Huang et al., 2006; G. Huang, Huang, Song, & You, 2015) was used at the

detection stage. The speed of the ELM is significantly faster than other training algorithms. It can be viewed as a

variant of a random vector functional-link (RVFL) network classifier (Pao & Takefuji, 1992; Scardapane, Wang,

Panella, & Uncini, 2015) without direct links and bias terms. It is widely used as a strong classifier for the pattern

classification task. As shown in the Fig. 8 the combination of the extracted features (n), or input neurons, feeds the

ELM. For optimal LP detection results, in this paper, the number of hidden neurons (L) is 1000 which is set

depending on the detection performance with the testing data set. The default activation function for the hidden

neurons in the ELM that is applied in this work is a ‘sigmoid’ function. Also, other activation functions, such as

‘sin’ and ‘hardlim’ are tested, but the experiments found that the sigmoid function gave better results. The ELM

starts to train extracted features, MRELBP_SURF with hidden nodes to obtain output neurons (m). After that, the

Fig. 7. The overview of the MRELBP descriptor. For illustrating the work of the MRELBP an example features

scheme is given with their neighbouring features space. Each circle represents a neighbors’ pixels over the center

pixel point which are computed to replace the gray value of the central point based on the LBP formula.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

strong detector was built as a decision function to detect the LP regions from the vehicle image. For more detail

about ELM using the references above.

3. Database for experiment

In order to evaluate the performance of the proposed method, we used the same database that presented by

Al-Shemarry et al. (2019) and (EnglishLPDatabase-2001). An English car database that contains 2050 images,

with various scenes, and size of 640×480. Some of these images are captured by an OLYMPUS C-2040ZOOM

digital camera under different environmental conditions (EnglishLPDatabase-2001), such as cloudy weather, night

Fig. 8. Architecture of the ELM.

Fig. 9. Some examples of complicated scenes for each vehicle image in the database.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

lighting, sunny day, and dusk. The remaining vehicle images one from Al-Shemarry et al. (2019) under blurry,

low/high contrast environments, and distortion conditions. We divided the database into datasets, 1700 for training

and 350 for testing. A very important aspect of this database is that the LP inside vehicle image has different sizes,

25×100, 50×200, and 75×300. This makes the work is very challenging and the result more reliable. In addition,

each vehicle image in this database has various complicated scenes, in order to capture all LP difficulties (see Fig.

9). Some samples of the training and testing data sets are shown in Figs. 10 and 11.

The experimental results showed that all the key characteristics have been captured from the 1700 training

images in the data set.

4. Experimental results

This section presents experimental results of the proposed work. The data is trained and tested on the

following platform: Desktop and laptop computer with 3.4 GHz Intel Core i7-4770, 16GB of RAM using MATLAB

programming language, version R2018a. The performance of the ELM classifier is evaluated using the confusion

matrix and receive operating characteristic (ROC) curve.

(a)

(b)

(c)

Fig. 11. Some examples of real training LPs in the dataset: (a) LPs with 25×100 size; (b) LPs

with 50×200 size; (c) LPs with 75×300 size.

(a)

(b)

(c)

Fig. 10. Some examples of testing images in the dataset: (a) Vehicle images with LPs 25×100

in size; (b) Vehicle images with LPs 50×200 in size; (c) Vehicle images with LPs 75×300 in

size.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13

4.1 Extraction and classification results

This work focuses on the preprocessing and the features extraction methods rather than the classification

methods. The ELM classifier is used to classify the MRELBP and SURF features of the LP regions. The MRELBP

descriptor used a median filter with four circular neighbourhood or the features space which contain different radius

r and window size w × w with the same number of neighbouring pixels p. For all the circulars, we extract the

MRELBP features using the set of (P i, Ri), i = 1,..., N, where the value of N is identified based on the LP image

size and its complexity. We set i depending on the use of different neighborhood circles for four MRELBP

descriptors, i = 0, 1, 2,...,7 means 8 pixels neighbours with R = 2;4;6;8, respectively, and different windows size

w = 3×3; 5×5; 7×7; 9×9 respectively, (see Figure 7). From our experimental results, it is noticed that the combining

of the four MRELBP descriptors can achieve good extraction results. The SURF descriptor extracted features from

the LP images with 60 strong points as shown in Fig. 6. The combination of MRELBP and SURF was used as input

to the ELM classifier to build a strong detector. This detector produces a binary predicted value of “1” for the LP

and “0” for non-LP. The number of the overlapping bounding boxes depends on the location of the LP regions, with

an average of ∼2 is very good due to use the mean-shift algorithm with the ELM detector. The elapsed time for

training phase with 1700 LP images is 74.501691ms. The classification results are shown in Table 1.

4.2 Performances of the ELM classifier

In the machine learning field, confusion matrix and ROC curve are good measurement techniques to

compare the performance of supervised learning algorithms (Bashir & Porikli, 2006; Godil, Bostelman,

Shackleford, Hong, & Shneier, 2014; Slaby, 2007) .

Table1

The average of the classification results for the proposed method descriptors.

Method IS SP WS FD CA

ELM_SURF 25×100

50×200

75×300

60 4×4 341 95.58%

ELM_MRELBP (((8, 2))+

 (8, 4) +

 (8, 6)+

(8, 8))

Riu2
 25×100

50×200

75×300

- 3×3

5×5

7×7

9×9

223

256

252

250

93.89%

95.06%

96.98%

98.30%

ELM_SURF_𝐌𝐑𝐄𝐋𝐁𝐏 ((8, 2) + (𝟖, 4)

+(𝟖, 6)+(8, 8))

Riu2
 25×100

50×200

75×300

 All WS 920 100.00%

CA: Classification Accuracy; FD: Feature Dimension; IS: Image Size; SP: Strong Points;

WS: Window Size.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14

4.2.1 The confusion matrix

Many detection systems used the confusion matrix to evaluate the system performance under test (SUT)

(Kasturi et al., 2009). Using the confusion matrix, all objects are validated to show if there is any matching between

the SUT and ground truth (GT). The parameters for this matrix as follows:

 The false positive (FP) where the LP is detected by the system, but it is not in the GT.

 The false negative (FN) where the LP exists in the GT, but the detection system fails to identify it.

 The true positive (TP) means the LP is correctly detected by system and it exists in the GT.

 The true negative (TN) where the LP is not detected by the system and it does not exist in the GT.

 From the confusion matrix parameters the accuracy rate (AR) and the detection rate (DR) are calculated as follows:

DR = TP/ (TP+ FN) (11)

AR = (TP+TN)/ (TP+TN+FP+FN) (12)

The DR is the proportion of the TP results that are truly predicted as positive results by the detection system. While

the AR rate is the proportion of the both TP and TN results for the LP objects in the GT. The detection results based

on the confusion matrix are shown in Table 2.

 From the Table 2, it is notable that the combination of MRELBP and SURF descriptors with the ELM

classifier improves the detection results. The average of the runtime for the whole detection system per vehicle

image was 2.108 seconds. Examples of system detection results are shown in the Fig. 12. The database that was

presented by Al-Shemarry et al. (2019) was very challenge database, each image has several news with different

conditions. It was observed that all detection results have very low FPs values due to use the mean-shift algorithm

with ELM detector. Also, the main reason for increased FP values was when some objects inside a vehicle image

were similar to the LP, such as texts or commercial logos.

4.2.2 The receiver operating characteristic (ROC) curves of the classifier

This study uses a ROC curve as a useful tool to evaluate the classifier performance quality (Slaby, 2007). The

graphical plot of the ROC curve depends on the true positive rate (TPR) or detection rate against of the false positive

rate (FPR). They are defined as follows:

TPR= TP/ (TP+ FN) (13)

FPR = FP/ (FP+TP) (14)

Table 2

The detection results for the proposed method using the ELM classifier.

Method No. of Testing Images = 350, TN= 30 Images

FP TP FN TN DR AR

ELM_SURF 18 315 35 23 90.14% 86.44%

ELM_MRELBP 11 336 14 27 96.32% 93.55%

Proposed

ELM_SURF_MRELBP

8 349 ~2 30 99.71% 97.92%

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15

The TPR and FPR results from the confusion matrix for the both phases testing and training using the ELM classifier

as shown in the Fig. 13. The results are very satisfactory and the TPR and FPR for testing and training are 99.71%,

2.24%, 100%, and 1%, respectively, for complicated images. Also, the high value of the area under ROC curve

(AUC) is a good measure of classifier performance (Godil et al., 2014). From Figure. 13 the AUC for the ELM

classifier is very close to 1 is about 99.89% for testing phase. Thus, the performance of the ELM is quite

satisfactory.

The cropped enhancement results for LP

The cropped enhancement results for LP

The cropped enhancement results for LP

Fig. 12. Successful detection examples for complicated vehicle images with cropped LP images results under

low/high light, various viewpoints, with dusk and fog, with distortion, and with low/high contrast problems.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16

4.3 Comparison with other classifiers

This section illustrates two issues. The first one is the classification accuracy of the LPD system using

MRELBP, SURF features, and hybrid features (MRELBP_SURF) for the ELM classifier. The second is the

comparative analysis of the proposed LPD system with other machine classifiers, such as SVM, Adaboost, and

CNN. We also tried to use the CNN algorithm as classifier and detector, but experiments showed that this algorithm

does not detect objects inside an image. The CNN works very well for the recognition task. This means after the

LP object is detected at the detection stage, we can use the CNN to recognize the LP as text. Table 3 shows the

classification accuracy of the LPD system with MRELBP, SURF, and hybrid features, respectively. The

classification accuracy based on MRELBP_SURF with the ELM classifier is outperformed.

From the Table 3 it is evident that using the hybrid feature descriptors the classification accuracy for all the

classifiers has been increased significantly and the ELM outperforms than SVM and Adaboost classifiers. Fig. 14

(a), (b), and (c) represents the ROC curves for the classification accuracy of the proposed system with other

classifiers.

Fig. 13. The ROC curve of the ELM Classifier for training

and testing phases.

Table 3

The average of the classification results for the proposed method with other classifiers.

Classifier Classification Accuracy Classifier Parameters

 MRELBP SURF MRELBP_SURF

ELM 96.0714% 89.2143% 100.0000% Sigmoid activation function with 1000

hidden neurons.

SVM 95.8571% 91.9286% 99.5000% Linear function with 5- fold cross validation

model.

Ensembles (Adaboost) 97.7143% 86.5000% 98.2143% Cascade classifier technique with 10

training iteration stages.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

17

5. Comparison with other methods

In this section, the proposed framework is compared with the latest LP detection methods that used the

same database (Al-Shemarry et al., 2018, 2019; Azam & Gavrilova, 2017; Azam & Islam, 2016; Hasan, 2013;

Panahi & Gholampour, 2017; Raghunandan et al., 2017; Silva & Jung, 2018; Wafy & Madbouly, 2016). Also, this

method was compared with other methods that have different databases (Anagnostopoulos, Anagnostopoulos,

Loumos, & Kayafas, 2006; M. D. A. Asif, Tariq, Baig, & Ahmad, 2014; M. R. Asif, Chun, Hussain, & Fareed,

2016; Y.-N. Chen, Han, Ho, & Fan, 2015; Z.-X. Chen, Liu, Chang, & Wang, 2009; Deb, Chae, & Jo, 2009; Deb &

Jo, 2009; Duan, Duc, & Du, 2004; He, Yao, Zhang, Hou, & Han, 2014; Lee, Han, & Ko, 2013; Lee et al., 2010;

Lim & Tay, 2010; Y. Luo, Li, Huang, & Han, 2018). The performance of the proposed method and those methods

is evaluated using the parameters for ROC curve, the TPR and FPR rates with system runtime. Table 4 shows the

performance of the proposed method with some typical methods. Al-Shemarry et al. (2018) proposed detection

method for low-quality vehicle images. The method extracted the features using a three preprocessing levels for

local binary pattern (3L-LBP) with the AdaBoost algorithm. At the preprocessing stage, a contrast-limited adaptive

 (a) (b)

 (c)

Fig. 14. The ROC curves of the proposed system with other classifiers: (a) The ROC curve for ELM

classification; (b) The ROC curve for SVM classification; (c) The ROC curve for ensembles (Adaboost)

classification;

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18

histogram equalization method with a high standard derivation was used, which is led to increase the FPR. Azam

and Gavrilova (2017) reported a genetic algorithm (GA) depending on the HOG features with a mixture of binary

classifiers to classify LP and non-LP images. To improve the classification performance, the genetic algorithm was

applied to select the best features subset. It achieved good results under different conditions, but it required a high-

contrast preprocessing method to improve images. Hence the FPR increased. Raghunandan et al. (2017) proposed

a mathematical model using a Riesz fractional operator to enhance the details of LP edges’ information. That method

worked well as long as it had a clear LP shape in an image. It was not robust for distorted images and it was time-

consuming with a low TPR rate. Also, Al-Shemarry et al. (2019) produced a new descriptor, with multi-level

extended local binary patterns (MLELBP) to extract multiple LP features under complicated conditions. The input

image was resized to save the processing time. The ELM was used to build the trained model and obtain good

detection results. In this method, resizing the image is not always good, especially with distorted images. It lead to

the loss of important feature values and tends to reduce the TPR. Azam and Islam (2016) showed good performance

techniques using several unsupervised learning methods for each LP problem. However, those techniques leads to

increased FPR and are not robust if there is another LP problem that needs to be considered. Hasan (2013) had a

TPR less than the proposed method by 7.01% under good conditions. Also, this method used many unsupervised

learning methods for detection stage. It does not consider tilted LPs, low/high contrast, and noise problems. Panahi

and Gholampour (2017) used an unsupervised learning method to consider the images affected by illumination,

weather, and vehicle movement effects. However, the vehicle images are captured using specific devices, which

make LPs easy to detect and recognize. Wafy and Madbouly (2016) shows a good TPR which is a little bit less than

the proposed method 1.71% and 0.677ms detection time. The method using unsupervised time consuming methods

and the TPR time was not reported. Silva and Jung (2018) used deep learning algorithms as good classification

methods that are currently used. They just considered tilted LPs with simple conditions. The TPR and FPR are less

and higher than the proposed method by 6.19%, respectively. However, the database used in this study (Al-

Shemarry et al., 2019) was more complicated compared with existing studies which are used the original English

car plates database. This work also compared with other existing methods that used different databases. The reason

for selecting different databases, such as Chinese, Korea, Caltech cars and so on, was to compare the performance

of our algorithm detecting LPs from a large amount of very distorted and complicated vehicle images. The detection

time of Lee et al. (2010) method is much higher than the others due to applying time-consuming methods to detect

and extract LP regions. It had a high FPR and low TPR. Anagnostopoulos et al. (2006) depended on thresholding

and binarization; they required high-contrast images for achieving good results, which led to increased FPR. The

memory complexity of those methods is O (N×M); where N and M is the dimension of the input tested image.

Nowadays, the average of memory usage for the proposed detection method is not as big an implementation issue

as existing works. From the Table 4, we can see that the proposed method has a very competitive TPR (detection

accuracy) and with less system runtime. This method keeps a good balance between TPR and FPR and is more

suitable for a real time automatic licence plate detection system.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

19

 Table 4

Performance comparisons of the proposed method with others in terms of the TPR, FPR, and runtime.

Ref. Method DS Image condition FPR TPR DT(ms) PF

Al-Shemarry et al.

(2018)

3L-LBP descriptor with

AdaBoost algorithm

1030 Illumination, weather

effect, low/high lighting

effect, dirty

5.56% 98.56% 0.78ms English

Azam and

Gavrilova (2017)

HOG features with a mixture

of binary classifiers and GA

540 Texts images background NR 91.31% NR English

Raghunandan et

al. (2017)

Riesz fractional operator 114 Complex background,

different weather

conditions, night light

7.01% 79.4% NR English

Hasan (2013) Canny edge, Horizontal and

Vertical edge, three stages

Artificial Neural Network

(ANN)

69 Simple conditions NR 92.7% NR English

Azam and Islam

(2016)

Frequency domain mask,

contrast improvement

technique, statistical

binarization, Radon

transform, and entropy

vector.

325 Simple tilted LP and low

difficult contrast night

conditions

6.3% 98.15% 0.450ms English

Wafy and

Madbouly (2016)

Semi-symmetric corner

points, morphological

feature, linear discriminated

analysis (LDA)

405 Simple conditions NR 98% 1.00ms English

Panahi and

Gholampour

(2017)

Vertical Sobel edge operator

and Hough transform,

ConnectedComponent

Algorithm, 2L-SVM

500 Medium quality plates,

dirty LPs.

NR 97% NR English

Al-Shemarry et al.

(2019)

MLELBP_ELM 1500 640×480, various

complicated scenes

5% 99.10% 0.735ms English

Silva and Jung

(2018)

Convolutional Neural

Network

196 Unconstrained capture

scenarios,

5% 93.52% NR English

Asif et al. (2016) YDbDr color space + Otsu

method

1511 Simple conditions and

background is either

yellow or white LPs

background with black

characters.

6.5% 93.86% 0.33ms Chinese

Lee et al. (2010) Local structure patterns, the

modified census transform

580 720×486 ,various weather

conditions

18% 88.9% 3.293ms Korea

Lim and Tay

(2010)

MSER + Heuristic + CVM 126 ~13% 90.47% NR Caltech

Chen et al. (2018) Rectangle shape, texture and

color features

1176 640×480, various scenes 4.6 97.3% 0.220ms Chinese

He et al. (2014) Blob for candidate detection,

filtering affine distortion,

saliency detection, post-

processing

200 Multi-scale LPs under

different inclination

directions

19.6% 94.7% NR Chinese

Anagnostopoulos

et al. (2006)

Sliding concentric windows

with thresholding and

binarization

1334 Different scene and

illumination

9% 96.5% 0.111ms Greek

Duan et al. (2004) Hough Transform and

contour

algorithm

805 800×600, different

rotation and

lighting conditions

1.6% 98.8% 0.650ms Vietnamese

Luo et al. (2018) Single shot multi-box

Detector, corner points,

character contours based on

multi-level thresholding and

binarization.

1200 800×800, various scenes,

illumination and view

angles

27% 96.5% 0.370ms Taiwanese

Proposed

ELM_MRELBP_SURF 2050 Simple and distorted

conditions

2.24% 99.71% 0.323ms English

DS: Database Size; DT: Detection Time; NR: Not Reported; PF: Plate Format

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20

6. Conclusion and future work

This study illustrates a new detection approach which is invariant to high/low contrast and lighting, rotation,

blur, fog, and distortion under difficult conditions due to the use of a robust preprocessing method and strong hybrid-

feature descriptors, MRELBP and SURF. A precise LPD system with low FPR is very crucial to contribute more

efficiency and safety for transportation systems. In the experiments, this method achieved significant classification

and detection results. The confusion matrix and the ROC curve, show that the overall classification accuracy of the

ELM classifier is 99.95% and the AUC is close to the 1 for all LPs problems. The accuracy and TPR are 97.92%

and 99.71, respectively, with the FPR of 2.24%. The average of the runtime for the whole detection system per

vehicle image was 2.108 milliseconds. Also, the ROC curve was used to compare and evaluate the results of the

proposed method with other classifiers. The classification results of the ROC curve were very good for the ELM

classifier at 100.0000%. The proposed method was also compared with the existing LP detection methods that used

either the same database, or a different database. It showed that the proposed method performed better than other

methods in terms of the TPR and FPR. This method can improve the work of existing ANPR systems under

complicated conditions. In addition, it can be applied to different types of LP data sets, such as Australian LPs and

Arabic LPs. Moreover, due to using supervised learning techniques, there is no limitation in our method that relates

to objects shape, color, and edge and so on. In future work, for further improvement of the proposed LPD system,

we want to take account of more challenges, such as snow, rain conditions and difficult tilted LPs. We are also

planning to recognize the LP number under difficult conditions. Therefore, the future target is introducing deep

learning for the recognition stage. Also, the proposed system could be applied efficiently to real-time applications.

Acknowledgements

This work was supported by the University of Southern Queensland and Ministry of Higher Education and Scientific

Research of Iraq.

References

Al-Shemarry, M. S., Li, Y., & Abdulla, S. (2018). Ensemble of adaboost cascades of 3L-LBPs classifiers for license
plates detection with low quality images. Expert Systems With Applications, 92, 216-235.

Al-Shemarry, M. S., Li, Y., & Abdulla, S. (2019). An Efficient Texture Descriptor for the Detection of License Plates
From Vehicle Images in Difficult Conditions. IEEE Transactions on Intelligent Transportation Systems.

Anagnostopoulos, C. N. E., Anagnostopoulos, I. E., Loumos, V., & Kayafas, E. (2006). A license plate-recognition
algorithm for intelligent transportation system applications. IEEE Transactions on Intelligent
Transportation Systems, 7(3), 377-392.

Arróspide, J., & Salgado, L. (2014). A study of feature combination for vehicle detection based on image processing.
The Scientific World Journal, 2014.

Ascar Davix, X., Oshin, L., & Shamili, P. (2016). License plate localization by sobel vertical edge detection method.
Int. J. Emerg. Technol. Eng. Res, 4(6), 48-53.

Ashtari, A. H., Nordin, M. J., & Fathy, M. (2014). An Iranian license plate recognition system based on color
features. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1690-1705.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

21

Asif, M. D. A., Tariq, U. U., Baig, M. N., & Ahmad, W. (2014). A novel hybrid method for text detection and
extraction from news videos. Middle-East Journal of Scientific Research, 19(5), 716-722.

Asif, M. R., Chun, Q., Hussain, S., & Fareed, M. S. (2016). Multiple licence plate detection for Chinese vehicles in
dense traffic scenarios. IET Intelligent Transport Systems, 10(8), 535-544.

Azad, R., Azad, B., & Shayegh, H. R. (2014). Real-time and efficient method for accuracy enhancement of edge
based license plate recognition system. arXiv preprint arXiv:1407.6498.

Azam, S., & Gavrilova, M. (2017). License plate image patch filtering using HOG descriptor and bio-inspired
optimization. Paper presented at the Proceedings of the Computer Graphics International Conference.

Azam, S., & Islam, M. M. (2016). Automatic license plate detection in hazardous condition. Journal of Visual
Communication and Image Representation, 36, 172-186.

Bashir, F., & Porikli, F. (2006). Performance evaluation of object detection and tracking systems. Paper presented
at the Proceedings 9th IEEE International Workshop on PETS.

Bauer, J., Sünderhauf, N., & Protzel, P. (2007). Comparing several implementations of two recently published
feature detectors. IFAC Proceedings Volumes, 40(15), 143-148.

Bay, H., Tuytelaars, T., & Van Gool, L. (2006a). Surf: Speeded up robust features. Computer vision–ECCV 2006, 404-
417.

Bay, H., Tuytelaars, T., & Van Gool, L. (2006b). Surf: Speeded up robust features. Paper presented at the European
conference on computer vision.

Chen, Y.-N., Han, C.-C., Ho, G.-F., & Fan, K.-C. (2015). Facial/license plate detection using a two-level cascade
classifier and a single convolutional feature map. International Journal of Advanced Robotic Systems,
12(12), 183.

Chen, Y., Zhao, D., Lv, L., & Zhang, Q. (2018). Multi-task learning for dangerous object detection in autonomous
driving. Information Sciences, 432, 559-571.

Chen, Z.-X., Liu, C.-Y., Chang, F.-L., & Wang, G.-Y. (2009). Automatic license-plate location and recognition based
on feature salience. IEEE Transactions on Vehicular Technology, 58(7), 3781-3785.

Deb, K., Chae, H.-U., & Jo, K.-H. (2009). Vehicle License Plate Detection Method Based on Sliding Concentric
Windows and Histogram. JCP, 4(8), 771-777.

Deb, K., & Jo, K.-H. (2009). A vehicle license plate detection method for intelligent transportation system
applications. Cybernetics and Systems: An International Journal, 40(8), 689-705.

Duan, T. D., Duc, D. A., & Du, T. L. H. (2004). Combining Hough transform and contour algorithm for detecting
vehicles' license-plates. Paper presented at the Proceedings of 2004 International Symposium on
Intelligent Multimedia, Video and Speech Processing, 2004.

El Khadiri, I., Kas, M., El Merabet, Y., Ruichek, Y., & Touahni, R. (2018). Repulsive-and-attractive local binary
gradient contours: New and efficient feature descriptors for texture classification. Information Sciences,
467, 634-653.

EnglishLPDatabase-2001. http://www.zemris.fer.hr/projects/LicensePlates/english/. accessed July 2016.
Godil, A., Bostelman, R., Shackleford, W., Hong, T., & Shneier, M. (2014). Performance Metrics for Evaluating

Object and Human Detection and Tracking Systems. Retrieved from
Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS technical report, 14(1), 5-16.
Guo, Z., Wang, X., Zhou, J., & You, J. (2016). Robust texture image representation by scale selective local binary

patterns. IEEE Transactions on Image Processing, 25(2), 687-699.
Guo, Z., Zhang, L., & Zhang, D. (2010). A completed modeling of local binary pattern operator for texture

classification. IEEE Transactions on Image Processing, 19(6), 1657-1663.
Ha, P. S., & Shakeri, M. (2016). License Plate Automatic Recognition based on edge detection. Paper presented at

the 2016 Artificial Intelligence and Robotics (IRANOPEN).
Han, Y., Virupakshappa, K., & Oruklu, E. (2015). Robust traffic sign recognition with feature extraction and k-NN

classification methods. Paper presented at the 2015 IEEE International Conference on Electro/Information
Technology (EIT).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.zemris.fer.hr/projects/LicensePlates/english/

22

Hanbay, K., Alpaslan, N., Talu, M. F., & Hanbay, D. (2016). Principal curvatures based rotation invariant algorithms
for efficient texture classification. Neurocomputing, 199, 77-89.

Hasan, M. (2013). Real Time Detection and Recognition of License Plate in Bengali. In.
Hastie, T., Rosset, S., Zhu, J., & Zou, H. (2009). Multi-class adaboost. Statistics and its Interface, 2(3), 349-360.
He, T., Yao, J., Zhang, K., Hou, Y., & Han, S. (2014). Accurate multi-scale license plate localization via image saliency.

Paper presented at the Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International Conference
on.

Hu, Y., Long, Z., & AlRegib, G. (2016). Completed local derivative pattern for rotation invariant texture
classification. Paper presented at the Image Processing (ICIP), 2016 IEEE International Conference on.

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: theory and applications.
Neurocomputing, 70(1-3), 489-501.

Huang, G., Huang, G.-B., Song, S., & You, K. (2015). Trends in extreme learning machines: A review. Neural
Networks, 61, 32-48.

Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V., Garofolo, J., Bowers, R., . . . Zhang, J. (2009). Framework
for performance evaluation of face, text, and vehicle detection and tracking in video: Data, metrics, and
protocol. IEEE Transactions on pattern analysis and machine intelligence, 31(2), 319-336.

Khan, N. Y., McCane, B., & Wyvill, G. (2011). SIFT and SURF performance evaluation against various image
deformations on benchmark dataset. Paper presented at the Digital Image Computing Techniques and
Applications (DICTA), 2011 International Conference on.

Kim, C., Song, D., Kim, C.-S., & Park, S.-K. (2019). Object tracking under large motion: Combining coarse-to-fine
search with superpixels. Information Sciences, 480, 194-210.

Lalimi, M. A., Ghofrani, S., & McLernon, D. (2013). A vehicle license plate detection method using region and edge
based methods. Computers & Electrical Engineering, 39(3), 834-845.

Lee, Y., Han, D. K., & Ko, H. (2013). Reinforced adaboost learning for object detection with local pattern
representations. The Scientific World Journal, 2013.

Lee, Y., Song, T., Ku, B., Jeon, S., Han, D. K., & Ko, H. (2010). License plate detection using local structure patterns.
Paper presented at the Advanced Video and Signal Based Surveillance (AVSS), 2010 Seventh IEEE
International Conference on.

Li, D., & Wang, Z. (2016). A character-based method for license plate detection in complex scenes. Paper presented
at the Chinese Conference on Pattern Recognition.

Lim, H. W., & Tay, Y. H. (2010). Detection of license plate characters in natural scene with MSER and SIFT unigram
classifier. Paper presented at the Sustainable Utilization and Development in Engineering and Technology
(STUDENT), 2010 IEEE Conference on.

Liu, L., Fieguth, P., Pietikäinen, M., & Lao, S. (2015). Median robust extended local binary pattern for texture
classification. Paper presented at the Image Processing (ICIP), 2015 IEEE International Conference on.

Liu, L., Lao, S., Fieguth, P. W., Guo, Y., Wang, X., & Pietikäinen, M. (2016). Median robust extended local binary
pattern for texture classification. IEEE Transactions on Image Processing, 25(3), 1368-1381.

Liu, L., Zhao, L., Long, Y., Kuang, G., & Fieguth, P. (2012). Extended local binary patterns for texture classification.
Image and Vision Computing, 30(2), 86-99.

Luo, Y., Li, Y., Huang, S., & Han, F. (2018). Multiple Chinese Vehicle License Plate Localization in Complex Scenes.
Paper presented at the 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC).

Luo, Z., Chen, J., Takiguchi, T., & Ariki, Y. (2015). Rotation-invariant histograms of oriented gradients for local patch
robust representation. Paper presented at the Signal and Information Processing Association Annual
Summit and Conference (APSIPA), 2015 Asia-Pacific.

Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based
on featured distributions. Pattern recognition, 29(1), 51-59.

Panahi, R., & Gholampour, I. (2017). Accurate detection and recognition of dirty vehicle plate numbers for high-
speed applications. IEEE Transactions on Intelligent Transportation Systems, 18(4), 767-779.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

23

Panchal, P., Panchal, S., & Shah, S. (2013). A comparison of SIFT and SURF. International Journal of Innovative
Research in Computer and Communication Engineering, 1(2), 323-327.

Pang, Y., Li, W., Yuan, Y., & Pan, J. (2012). Fully affine invariant SURF for image matching. Neurocomputing, 85, 6-
10.

Pao, Y.-H., & Takefuji, Y. (1992). Functional-link net computing: theory, system architecture, and functionalities.
Computer, 25(5), 76-79.

Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., . . . Zuiderveld, K. (1987). Adaptive
histogram equalization and its variations. Computer vision, graphics, and image processing, 39(3), 355-
368.

Raghunandan, K., Shivakumara, P., Jalab, H. A., Ibrahim, R. W., Kumar, G. H., Pal, U., & Lu, T. (2017). Riesz fractional
based model for enhancing license plate detection and recognition. IEEE Transactions on Circuits and
Systems for Video Technology.

Rajesh, G. K., Kaushik, R., & Jangra, R. (2016). A Comparative Analysis of Object Recognition System Using SIFT,
SURF and FAST Algorithms. IJITR, 4(3), 3025-3032.

Saravanan, C. (2010). Color image to grayscale image conversion. Paper presented at the 2010 Second
International Conference on Computer Engineering and Applications.

Scardapane, S., Wang, D., Panella, M., & Uncini, A. (2015). Distributed learning for random vector functional-link
networks. Information Sciences, 301, 271-284.

Shi, X., Zhao, W., & Shen, Y. (2005). Automatic license plate recognition system based on color image processing.
Paper presented at the International Conference on Computational Science and Its Applications.

Silva, S. M., & Jung, C. R. (2018). License Plate Detection and Recognition in Unconstrained Scenarios. Paper
presented at the European Conference on Computer Vision.

Slaby, A. (2007). ROC analysis with Matlab. Paper presented at the Information Technology Interfaces, 2007. ITI
2007. 29th International Conference on.

Soora, N. R., & Deshpande, P. S. (2016). Color, scale, and rotation independent multiple license plates detection
in videos and still images. Mathematical Problems in Engineering, 2016.

Tadic, V., Popovic, M., & Odry, P. (2016). Fuzzified Gabor filter for license plate detection. Engineering Applications
of Artificial Intelligence, 48, 40-58.

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. CVPR (1), 1(511-
518), 3.

Wafy, M., & Madbouly, A. M. (2016). Efficient method for vehicle license plate identification based on learning a
morphological feature. IET Intelligent Transport Systems, 10(6), 389-395.

Wang, J., Bacic, B., & Yan, W. Q. (2018). An effective method for plate number recognition. Multimedia Tools and
Applications, 77(2), 1679-1692.

Wang, Y., Zhang, H., Fang, X., & Guo, J. (2009). Low-resolution Chinese character recognition of vehicle license plate
based on ALBP and Gabor filters. Paper presented at the Advances in Pattern Recognition, 2009. ICAPR'09.
Seventh International Conference on.

Xie, L., Ahmad, T., Jin, L., Liu, Y., & Zhang, S. (2018). A New CNN-Based Method for Multi-Directional Car License
Plate Detection. IEEE Transactions on Intelligent Transportation Systems, 19(2), 507-517.

Zhang, H., Jia, W., He, X., & Wu, Q. (2006). Learning-based license plate detection using global and local features.
Paper presented at the Pattern Recognition, 2006. ICPR 2006. 18th International Conference on.

Zhang, L., Shi, X., Xia, Y., & Mao, K. (2013). A multi-filter based license plate localization and recognition framework.
Paper presented at the 2013 Ninth International Conference on Natural Computation (Icnc).

Meeras Salman Al-Shemarry is a Lecturer in Computer Department, Science College, Karbala University, Iraq.

She has a Bachelor of Computer Science from Babylon University, Iraq in 2002. She received her Master degree in

IT 2010 from University Utara Malaysia (UUM), Malaysia. Currently, she is a PhD Student in the Faculty of Health,

Engineering and Sciences, University of Southern Queensland, Australia. Her research interests include system

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24

analysis using UML diagrams, image processing and objects detection, artificial intelligence, database management

system.

Yan Li is currently a Professor in Computer Science in the school of sciences, University of Southern Queensland,

Australia. Her research interests are in the areas of Artificial Intelligence, Big Data Analytics, Signal and Image

Processing, Biomedical Engineering, Artificial Intelligence, Big Data Analytics and Computer Networking

Technologies.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 Chapter 7 Conclusion and Future Work

P a g e 108 | 254

108

CHAPTER 7

 CONCLUSIONS AND FUTURE WORK

7.1 Summary and Conclusions of the Thesis

An LPD system is an important application for our daily life to contribute more efficiency and

safety in ITSs. It has great potential in helping to monitor road traffic for law enforcement

activities. The detection of an LP number from low-quality vehicles images is the main

improvement in performance needed for existing detection systems. Many researchers have

developed various methods for enhancing ITSs. Identification of various conditions of LPs is

a complicated issue, requiring the collection of large data sets. Finding representative multi-

features from a large data set plays an important role in identifying LPs. In this thesis, the

performance of the proposed LPD system was improved through three main ways:

1. Developing effective methods for detecting LPs under complicated conditions, such as

low/high contrast, bad illumination, foggy, dusty, and distorted by high speed and bad

weather. They improved the detection system performance with less execution time and

good false positive rate.

2. Improving the developed methods by presenting new preprocessing and extraction

techniques that can improve the classification accuracy.

3. Investigating which method is better to achieve the main requirements of an LPD system

under difficult conditions like distorted vehicle images, low/high contrast, and bad

illumination.

To achieve these objectives and answer research questions, four methods were developed,

based on different types of texture descriptors: a local binary patterns (LBPs), extended local

binary pattern (ELBP) based preprocessing methods, a median robust extended local binary

pattern (MRELBP), a median filter histogram of oriented gradient (MHOG), and the speeded-

7

 Chapter 7 Conclusion and Future Work r

P a g e 109 | 254

109

up a robust feature (SURF) with three supervised learning algorithms, Adaboost, extreme

learning machine (ELM), and support vector machine (SVM), were developed in this research.

In the following subsections, a summary of those proposed methods is provided.

7.1.1 A three-level features extraction based on LBP descriptor using Adaboost learning

algorithm

This method includes two phases: testing and training. At each phase, the same preprocessing

and extraction methods were used to capture different types of complicated LPs features (see

Chapter 3). Al-Shemarry et al. (2018) applied the concept of an ensemble of cascade Adaboost

classifiers to learn the extracted features of the LP due to its discriminative power. The strong

cascade classifier contains a large number of weak classifiers to classify three-level extracted

LBP (3L-LBP) features which include a LBP grayscale features, a LBP filtered features, and a

contrast LBP features. In this study, the texture descriptor LBP is selected to extract key

features from low-quality images due to its advantages. To test the effectiveness of this method,

it was implemented with 1030 vehicles images, each having 640×480 resolution with difficult

conditions, such as low/high contrast, foggy, tilted LP, and distortions. From the experimental

results, the overall performance evaluation for detection, precision, and F-measure rates are

98.56%, 95.9%, and 97.19%, respectively, with an FPR of 5.6%. This method was compared

against existing LPD methods presented in the literature. It outperforms those methods that

used the same databases, in terms of detection accuracy and execution time under difficult

conditions. The average detection time for the whole system per vehicle image was 2.001ms.

Moreover, the proposed method works without any limitations due to the use of testing and

learning phases with a texture descriptor. Many vehicle images in the database include

commercial signs and logos which lead to increased FP values and take more processing time.

7.1.2 A multi-preprocessing extraction level using ELBP descriptor based on an ELM

classifier

A new extraction technique was developed using multi-preprocessing levels based on ELBP

descriptor, MLELBP, to extract different LP features. The preprocessing steps use a Gaussian

filter and CLAHE method to improve LP images and capture more complicated features. Those

steps improved the classification performance for the LPD system (see Chapter 4). This work

successfully reduced the extracted features dimension as well as FP values. The extracted

features provide the input data to an ELM classifier to make a decision about the LP regions,

 Chapter 7 Conclusion and Future Work

P a g e 110 | 254

110

if it is LP or non-LP. At the evaluation stage, this method was tested on further distorted images

(unseen data) taken under difficult conditions, such as low/high contrast, foggy, and rotated

LPs. The MLELBP_ELM method has three main advantages compared to the 3L-

LBP_Adaboost method. The first one is that increasing the size of the training dataset through

the preprocessing stage in order to capture more key features from the LP region. The second

increases the size of a testing dataset through using an online photo editor application to reflect

various difficult conditions for vehicle images. The third is that the detection accuracy and FPR

were improved by 0.54% and 0.56%, respectively. The classification and detection rates are

99.78% and 99.10%, respectively, with an FPR of 5%. The average execution time for the

whole detection system per vehicle image was 2.4530ms. This method was compared with

several existing LPD methods that used the same database. The experimental results showed

that the MLELBP_ELM method can produce better results than the 3L-LBP_Adaboost

method. The findings indicate that this method is superior in the classification performance

over most existing methods under complicated conditions. It can help provide more useful

information about complicated LP images to improve an LPD system’s performance.

7.1.3 The LBP_MHOG descriptors based on the SVM classifier

In this section, a new preprocessing technique was proposed for improving vehicle images as

well as reducing the extraction time. It included the combination of a Gaussian filter and the

ECHE technique with the CLAHE algorithm. The MHOG and LBP descriptors were used to

extract more difficult representative LP features. Then, the SVM was used to classify the

extracted features. The LBP_MHOG_SVM method was introduced to improve an LPD system

performance (see Chapter 5). This method tested on an English car LP database, which has

three types of LP resolutions, 25×100, 50×200, and 75×300. Therefore, an ensemble of strong

detectors or trained models as developed. The performance of this method was evaluated

through the 5-fold cross-validation procedure. The LBP_HOG_SVM method was compared in

terms of the FPR and running time with the 3L-LBP_Adaboos and MLELBP_ELM methods.

It yielded an excellent improvement over existing methods, a 4% improvement for the FPR

and 1.50% for accuracy with execution time. Also, this method was compared with other

newest existing methods in the literature for the same database using the detection and object

localization metrics. The ROC curve also was used to compare and evaluate the results of the

proposed method with the ELM classifier. The overall performance evaluation for the object

localization metrics of the detection or recall rate is 99.62%, with an FPR of 1.675%. The

 Chapter 7 Conclusion and Future Work r

P a g e 111 | 254

111

average of the runtime for the whole detection system per vehicle image was 2.2187ms. The

experimental results demonstrated that the proposed technique could be applied efficiently for

real-time applications. Also, this method can help improve the work of existing ANPR systems

under complicated conditions.

7.1.4 The MRELBP_SURF features based on an ELM classifier

In order to achieve a good system performance, a new detection approach was developed for

detecting distorted LP images. The modified preprocessing version, ECLACHE, of the

ECHE_CLAHE method was used in this work. Also, a recently developed texture descriptor,

MRELBP with SURF, was used to extract complicated features. Then, the extracted LP

features were used as input to the ELM classifier to produce a strong detector (see Chapter 6).

Through the experiments, the ELM classifier works very well with different types of texture

descriptors. Using the previous method (MHOG_LBP_SVM), the ELM takes more time to

classify HOG features. From the confusion matrix and the ROC curve, there is evidence that

the overall classification accuracy of the ELM classifier is 99.95% and the AUC are close to 1

for all complicated LPs images. The accuracy and detection rates are 97.92% and 99.71,

respectively, with the FPR of 2.24%. The average runtime for the whole detection system per

vehicle image was 2.108 seconds. Furthermore, the MRELBP_SURF_ELM based approach

can correctly identify the discriminative LP regions correctly and efficiently. The method was

superior in the performance and execution time over the most existing algorithms as well as

other proposed methods in this research.

Taken together, it can be concluded that the research presented in this thesis has found

new robust successful methods for reliable detection of LPs from low-quality vehicles images

under difficult conditions. These techniques can improve the performance of the existing

ANPR systems under complicated conditions. The outcomes will contribute to increasing the

quality of transport systems with better efficiency and safety.

7.2 Future work

The approaches presented in this thesis provide good performance in the LP detection under

difficult conditions. The future work will investigate the possibility of using those methods to

improve ANPR applications. To facilitate the further development of this work, a few key areas

below have been explored.

 Chapter 7 Conclusion and Future Work

P a g e 112 | 254

112

Concerning the 3L-LBP_Adaboost and MLELBP_ELM algorithms, they can be

improved to further reduce the false positive rate and extraction time using the preprocessing

techniques for both phases of testing and training. In regards to the dimensionality reduction

for the extracted features, a Gaussian filter, median filter, CLAHE, ECHE, and ECLACHE

techniques have been used.

One future improvement could be to eliminate those LP objects that look like the LP

and have the same characteristics as LP regions, such as texts or commercial signs and logo

objects. This step would decrease the processing time as well as the memory required to process

the LP detection task.

In addition, using a combination of several supervised machine learning algorithms

instead of a single one is very efficient. This is a preferable solution for capturing more

information about the LP area and increase the detection system accuracy. Also, in the

detection stage using an ensemble of the classifiers could improve the classification accuracy

and the efficiency of the trained models compared with using a single classifier.

The study in this thesis has shown that selecting supervised machine learning

algorithms to identify and classify the extracted features for the complicated LP is an extremely

challenging task. The quality of detection results depends on how the extraction and

classification algorithms are selected and developed. The detection algorithms are mostly

evaluated using multiple criteria, such as recall (detection) rate or true positive rate, false

positive rate, precision rate, f-measure rate, the accuracy rate, and the receiver operating

characteristic curve.

Those methods can be applied to different types of LP datasets, such as Australian car

LPs, Arabic car LPs, and so on. More generally the proposed methods could be used by other

fields that are related to objects detection subjects. Due to using supervised learning techniques,

there is no limitation in those methods which are associated with objects shape, color, and edge

and so on.

Further study is required to take account of other challenges and to enhance this work

for dealing with other difficult conditions, such as licence plates with difficult tilt, rain, and

snow in images. The detected LPs are normally stored as images in the memory and used by

transportation systems to complete their tasks. This needs more storage devices, therefore, the

 Chapter 7 Conclusion and Future Work r

P a g e 113 | 254

113

LP recognition stage is required. This stage works to recognize the LP number as a text. This

is a very easy task to do using deep learning algorithms and template matching techniques with

optical character recognition (OCR).

This thesis studied offline detection methods, but it is desirable for this work to be

applied to real online LPD systems to see the impact of this research. This will require more

work. Therefore, all of the proposed methods need to be employed for online detection. This

would be a significant achievement in the field of transport systems for work under difficult

conditions.

 References

P a g e 114 | 254

114

References

Al-Ghaili, AM, Mashohor, S, Ismail, A & Ramli, AR 2008, 'A new vertical edge detection
algorithm and its application', in 2008 International Conference on Computer Engineering
& Systems, IEEE, pp. 204-9.

Al-Ghaili, AM, Mashohor, S, Ramli, AR & Ismail, A 2012, 'Vertical-edge-based car-license-
plate detection method', IEEE Transactions on Vehicular Technology, vol. 62, no. 1, pp.
26-38.

Al-Shemarry, MS, Li, Y & Abdulla, S 2018, 'Ensemble of adaboost cascades of 3L-LBPs
classifiers for license plates detection with low quality images', Expert Systems With
Applications, vol. 92, pp. 216-35.

Al-Shemarry, MS, Li, Y & Abdulla, S 2019, 'An Efficient Texture Descriptor for the Detection
of License Plates From Vehicle Images in Difficult Conditions', IEEE Transactions on
Intelligent Transportation Systems.

Anagnostopoulos, C-NE 2014, 'License plate recognition: A brief tutorial', IEEE Intelligent
transportation systems magazine, vol. 6, no. 1, pp. 59-67.

Anagnostopoulos, C-NE, Anagnostopoulos, IE, Psoroulas, ID, Loumos, V & Kayafas, E 2008,
'License plate recognition from still images and video sequences: A survey', IEEE
Transactions on Intelligent Transportation Systems, vol. 9, no. 3, pp. 377-91.

Anagnostopoulos, CNE, Anagnostopoulos, IE, Loumos, V & Kayafas, E 2006, 'A license plate-
recognition algorithm for intelligent transportation system applications', IEEE
Transactions on Intelligent Transportation Systems, vol. 7, no. 3, pp. 377-92.

Angelova, A, Krizhevsky, A, Vanhoucke, V, Ogale, AS & Ferguson, D 2015, 'Real-Time
Pedestrian Detection with Deep Network Cascades', in BMVC, pp. 32.1-.12.

Arafat, MY, Khairuddin, ASM, Khairuddin, U & Paramesran, R 2019, 'Systematic review on
vehicular licence plate recognition framework in intelligent transport systems', IET
Intelligent Transport Systems.

Asif, MR, Chun, Q, Hussain, S & Fareed, MS 2016, 'Multiple licence plate detection for
Chinese vehicles in dense traffic scenarios', IET Intelligent Transport Systems, vol. 10, no.
8, pp. 535-44.

Azam, S & Islam, MM 2016, 'Automatic license plate detection in hazardous condition',
Journal of Visual Communication and Image Representation, vol. 36, pp. 172-86.

Azam, S & Gavrilova, M 2017, 'License plate image patch filtering using HOG descriptor and
bio-inspired optimization', in Proceedings of the Computer Graphics International
Conference, ACM, p. 1.

Baharlou, SM, Hemayat, S, Saberkari, A & Yaghoobi, S 2015, 'Fast and adaptive license plate
recognition algorithm for Persian plates', in Pattern Recognition and Image Analysis
(IPRIA), 2015 2nd International Conference on, IEEE, pp. 1-6.

Baohua, Z, Dahua, Y, Hongmei, H & Lanying, G 2010, 'License plate location algorithm based
on histogram equalization', in 2010 International Conference On Computer Design and
Applications, IEEE, pp. V1-517-V1-9.

Barlow, HB 1989, 'Unsupervised learning', Neural computation, vol. 1, no. 3, pp. 295-311.

 References r

P a g e 115 | 254

115

Bashir, F & Porikli, F 2006, 'Performance evaluation of object detection and tracking systems',
in Proceedings 9th IEEE International Workshop on PETS, pp. 7-14.

Beibut, A, Magzhan, K & Chingiz, K 2014, 'Effective algorithms and methods for automatic
number plate recognition', in 2014 IEEE 8th International Conference on Application of
Information and Communication Technologies (AICT), IEEE, pp. 1-4.

Bellas, N, Chai, SM, Dwyer, M & Linzmeier, D 2006, 'FPGA implementation of a license plate
recognition SoC using automatically generated streaming accelerators', in Proceedings
20th IEEE International Parallel & Distributed Processing Symposium, IEEE, p. 8 pp.

Boonsim, N & Prakoonwit, S 2016, 'Car make and model recognition under limited lighting
conditions at night', Pattern Analysis and Applications, pp. 1-13.

Brunelli, R 2009, Template matching techniques in computer vision: theory and practice, John
Wiley & Sons.

Caner, H, Gecim, HS & Alkar, AZ 2008, 'Efficient embedded neural-network-based license
plate recognition system', IEEE Transactions on Vehicular Technology, vol. 57, no. 5, pp.
2675-83.

Castello, P, Coelho, C, Del Ninno, E, Ottaviani, E & Zanini, M 1999, 'Traffic monitoring in
motorways by real-time number plate recognition', in Image Analysis and Processing,
1999. Proceedings. International Conference on, IEEE, pp. 1128-31.

Chacon, MI & Zimmerman, A 2003, 'License plate location based on a dynamic PCNN
scheme', in Proc. Int. Joint Conf. Neural Netw, pp. 1195-200.

Chapelle, O, Scholkopf, B & Zien, A 2009, 'Semi-supervised learning (chapelle, o. et al., eds.;
2006)[book reviews]', IEEE Transactions on Neural Networks, vol. 20, no. 3, pp. 542-.

Chen, H-K, Zhao, X-G, Sun, S-Y & Tan, M 2017, 'PLS-CCA heterogeneous features fusion-
based low-resolution human detection method for outdoor video surveillance',
International Journal of Automation and Computing, vol. 14, no. 2, pp. 136-46.

Chen, Y-N, Han, C-C, Ho, G-F & Fan, K-C 2015, 'Facial/license plate detection using a two-
level cascade classifier and a single convolutional feature map', International Journal of
Advanced Robotic Systems, vol. 12, no. 12, p. 183.

Cho, B, Ryu, S, Shin, D & Jung, J 2011, 'License plate extraction method for identification of
vehicle violations at a railway level crossing', International Journal of Automotive
Technology, vol. 12, no. 2, pp. 281-9.

Cortes, C & Vapnik, V 1995, 'Support-vector networks', Machine learning, vol. 20, no. 3, pp.
273-97.

Davis, AM, Arunvinodh, C & Np, AM 2015, 'Automatic license plate detection using vertical
edge detection method', in 2015 International Conference on Innovations in Information,
Embedded and Communication Systems (ICIIECS), IEEE, pp. 1-6.

Deb, K, Chae, H-U & Jo, K-H 2009, 'Vehicle License Plate Detection Method Based on Sliding
Concentric Windows and Histogram', JCP, vol. 4, no. 8, pp. 771-7.

Dehghan, A, Masood, SZ, Shu, G & Ortiz, E 2017, 'View independent vehicle make, model
and color recognition using convolutional neural network', arXiv preprint
arXiv:1702.01721.

Ding, S, Guo, L & Hou, Y 2017, 'Extreme learning machine with kernel model based on deep

 References

P a g e 116 | 254

116

learning', Neural Computing and Applications, vol. 28, no. 8, pp. 1975-84.

Du, S, Ibrahim, M, Shehata, M & Badawy, W 2013, 'Automatic license plate recognition
(ALPR): A state-of-the-art review', IEEE Transactions on Circuits and Systems for Video
Technology, vol. 23, no. 2, pp. 311-25.

Duan, TD, Duc, DA & Du, TLH 2004a, 'Combining Hough transform and contour algorithm
for detecting vehicles' license-plates', in Proceedings of 2004 International Symposium on
Intelligent Multimedia, Video and Speech Processing, 2004., IEEE, pp. 747-50.

Duan, TD, Duc, DA & Du, TLH 2004b, 'Combining Hough transform and contour algorithm
for detecting vehicles' license-plates', in Intelligent Multimedia, Video and Speech
Processing, 2004. Proceedings of 2004 International Symposium on, IEEE, pp. 747-50.

Duan, TD, Du, TH, Phuoc, TV & Hoang, NV 2005, 'Building an automatic vehicle license plate
recognition system', in Proc. Int. Conf. Comput. Sci. RIVF, pp. 59-63.

Duda, RO, Hart, PE & Stork, DG 2012, Pattern classification, John Wiley & Sons.

EnglishLPDatabase-2001 ' http://www.zemris.fer.hr/projects/LicensePlates/english/', accessed
July 2016.

Faradji, F, Rezaie, AH & Ziaratban, M 2007, 'A morphological-based license plate location', in
2007 IEEE International Conference on Image Processing, IEEE, pp. I-57-I-60.

Freund, Y & Schapire, RE 1995, 'A desicion-theoretic generalization of on-line learning and
an application to boosting', in European conference on computational learning theory,
Springer, pp. 23-37.

Friedman, N, Geiger, D & Goldszmidt, M 1997, 'Bayesian network classifiers', Machine
learning, vol. 29, no. 2-3, pp. 131-63.

Fukunaga, K 2013, Introduction to statistical pattern recognition, Elsevier.

Gasser, T & Müller, H-G 1979, 'Kernel estimation of regression functions', in Smoothing
techniques for curve estimation, Springer, pp. 23-68.

Gerber, C & Chung, M 2016, 'Number Plate Detection with a Multi-Convolutional Neural
Network Approach with Optical Character Recognition for Mobile Devices', Journal of
Information Processing Systems, vol. 12, no. 1.

Gou, C, Wang, K, Yu, Z & Xie, H 2014, 'License plate recognition using MSER and HOG
based on ELM', in Service Operations and Logistics, and Informatics (SOLI), 2014 IEEE
International Conference on, IEEE, pp. 217-21.

Hartigan, JA & Wong, MA 1979, 'Algorithm AS 136: A k-means clustering algorithm', Journal
of the Royal Statistical Society. Series C (Applied Statistics), vol. 28, no. 1, pp. 100-8.

Haykin, S 1994, Neural networks: a comprehensive foundation, Prentice Hall PTR.

He, Y, Ma, X, Luo, X, Li, J, Zhao, M, An, B & Guan, X 2017, 'Vehicle traffic driven camera
placement for better metropolis security surveillance', arXiv preprint arXiv:1705.08508.

Ho, WT, Lim, HW & Tay, YH 2009, 'Two-stage license plate detection using gentle Adaboost
and SIFT-SVM', in Intelligent Information and Database Systems, 2009. ACIIDS 2009.
First Asian Conference on, IEEE, pp. 109-14.

Hongliang, B & Changping, L 2004a, 'A hybrid license plate extraction method based on edge

http://www.zemris.fer.hr/projects/LicensePlates/english/'

 References r

P a g e 117 | 254

117

statistics and morphology', in Pattern Recognition, 2004. ICPR 2004. Proceedings of the
17th International Conference on, IEEE, pp. 831-4.

Hongliang, B & Changping, L 2004b, 'A hybrid license plate extraction method based on edge
statistics and morphology', in Proceedings of the 17th International Conference on Pattern
Recognition, 2004. ICPR 2004., IEEE, pp. 831-4.

Hontani, H & Koga, T 2001, 'Character extraction method without prior knowledge on size and
position information', in IVEC2001. Proceedings of the IEEE International Vehicle
Electronics Conference 2001. IVEC 2001 (Cat. No. 01EX522), IEEE, pp. 67-72.

Hosmer Jr, DW, Lemeshow, S & Sturdivant, RX 2013, Applied logistic regression, vol. 398,
John Wiley & Sons.

Huang, G-B, Zhu, Q-Y & Siew, C-K 2004, 'Extreme learning machine: a new learning scheme
of feedforward neural networks', in Neural Networks, 2004. Proceedings. 2004 IEEE
International Joint Conference on, IEEE, pp. 985-90.

Hyvärinen, A & Oja, E 2000, 'Independent component analysis: algorithms and applications',
Neural Networks, vol. 13, no. 4-5, pp. 411-30.

Johnson, SC 1967, 'Hierarchical clustering schemes', Psychometrika, vol. 32, no. 3, pp. 241-
54.

Jolliffe, I 2011, Principal component analysis, Springer.

Kamat, V & Ganesan, S 1995, 'An efficient implementation of the Hough transform for
detecting vehicle license plates using DSP'S', in Proceedings Real-Time Technology and
Applications Symposium, IEEE, pp. 58-9.

Kanayama, K, Fujikawa, Y, Fujimoto, K & Horino, M 1991, 'Development of vehicle-license
number recognition system using real-time image processing and its application to travel-
time measurement', in [1991 Proceedings] 41st IEEE Vehicular Technology Conference,
IEEE, pp. 798-804.

Karwal, H & Girdhar, A 2015, 'Vehicle number plate detection system for indian vehicles', in
2015 IEEE International Conference on Computational Intelligence & Communication
Technology, IEEE, pp. 8-12.

Kasaei, SH, Kasaei, SM & Kasaei, SA 2010, 'New Morphology-Based Method for
RobustIranian Car Plate Detection and Recognition', International Journal of Computer
Theory and Engineering, vol. 2, no. 2, p. 264.

Kasturi, R, Goldgof, D, Soundararajan, P, Manohar, V, Garofolo, J, Bowers, R, Boonstra, M,
Korzhova, V & Zhang, J 2009, 'Framework for performance evaluation of face, text, and
vehicle detection and tracking in video: Data, metrics, and protocol', IEEE Transactions
on pattern analysis and machine intelligence, vol. 31, no. 2, pp. 319-36.

Kaur, S & Kaur, S 2014, 'An efficient approach for number plate extraction from vehicles image
under image processing', International Journal of Computer Science and Information
Technologies, vol. 5, no. 3, pp. 2954-9.

Keller, JM, Gray, MR & Givens, JA 1985, 'A fuzzy k-nearest neighbor algorithm', IEEE
transactions on systems, man, and cybernetics, no. 4, pp. 580-5.

Kim, D-S & Chien, S-I 2001, 'Automatic car license plate extraction using modified
generalized symmetry transform and image warping', in ISIE 2001. 2001 IEEE
International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570),

 References

P a g e 118 | 254

118

IEEE, pp. 2022-7.

Kusakunniran, W, Ngamaschariyakul, K, Chantaraviwat, C, Janvittayanuchit, K &
Thongkanchorn, K 2014, 'A Thai license plate localization using SVM', in Computer
Science and Engineering Conference (ICSEC), 2014 International, IEEE, pp. 163-7.

Le, W & Li, S 2006, 'A hybrid license plate extraction method for complex scenes', in 18th
International Conference on Pattern Recognition (ICPR'06), IEEE, pp. 324-7.

Lee, ER, Kim, PK & Kim, HJ 1994, 'Automatic recognition of a car license plate using color
image processing', in Proceedings of 1st International Conference on Image Processing,
IEEE, pp. 301-5.

Lee, H-J, Chen, S-Y & Wang, S-Z 2004, 'Extraction and recognition of license plates of
motorcycles and vehicles on highways', in Proceedings of the 17th International
Conference on Pattern Recognition, 2004. ICPR 2004., IEEE, pp. 356-9.

Lee, Y, Han, DK & Ko, H 2013, 'Reinforced adaboost learning for object detection with local
pattern representations', The Scientific World Journal, vol. 2013.

Li, H & Shen, C 2016, 'Reading car license plates using deep convolutional neural networks
and LSTMs', arXiv preprint arXiv:1601.05610.

Liu, L, Lao, S, Fieguth, PW, Guo, Y, Wang, X & Pietikäinen, M 2016, 'Median robust extended
local binary pattern for texture classification', IEEE Transactions on Image Processing,
vol. 25, no. 3, pp. 1368-81.

Liu, Y, Huang, H, Cao, J & Huang, T 2017, 'Convolutional neural networks-based intelligent
recognition of Chinese license plates', Soft Computing, pp. 1-17.

Liu, Y, Huang, H, Cao, J & Huang, T 2018, 'Convolutional neural networks-based intelligent
recognition of Chinese license plates', Soft Computing, vol. 22, no. 7, pp. 2403-19.

Makinacı, M 2005, 'Support vector machine approach for classification of cancerous prostate
regions', World Academy of Science, Engineering and Technology, pp. 166-9.

Mao, S, Huang, X & Wang, M 2010, 'An adaptive method for Chinese license plate location',
in 2010 8th World Congress on Intelligent Control and Automation, IEEE, pp. 6173-7.

Masood, SZ, Shu, G, Dehghan, A & Ortiz, EG 2017, 'License Plate Detection and Recognition
Using Deeply Learned Convolutional Neural Networks', arXiv preprint
arXiv:1703.07330.

Matas, J & Zimmermann, K 2005, 'Unconstrained licence plate and text localization and
recognition', in Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005., IEEE,
pp. 225-30.

MedialabLPRdatabase-2007 'http://www.medialab.ntua.gr/research/LPRdatabase.html',
accessed July 2016.

Miyamoto, K, Nagano, K, Tamagawa, M, Fujita, I & Yamamoto, M 1991, 'Vehicle license-
plate recognition by image analysis', in Proceedings IECON'91: 1991 International
Conference on Industrial Electronics, Control and Instrumentation, IEEE, pp. 1734-8.

Mohri, M, Rostamizadeh, A & Talwalkar, A 2018, Foundations of machine learning, MIT
press.

Muhammad, J & Altun, H 2016a, 'Improved license plate detection using HOG-based features

http://www.medialab.ntua.gr/research/LPRdatabase.html'

 References r

P a g e 119 | 254

119

and genetic algorithm', in 2016 24th Signal Processing and Communication Application
Conference (SIU), IEEE, pp. 1269-72.

Muhammad, J & Altun, H 2016b, 'Improved license plate detection using HOG-based features
and genetic algorithm', in Signal Processing and Communication Application Conference
(SIU), 2016 24th, IEEE, pp. 1269-72.

News, B 2005, 'CCTV network tracks 'getaway' car". BBC News. 21 November 2005.
Retrieved 12 August 2018.

Oberski, D 2016, 'Mixture models: Latent profile and latent class analysis', in Modern
statistical methods for HCI, Springer, pp. 275-87.

Pan, L & Li, S 2010, 'A new license plate extraction framework based on fast mean shift', in
International Conference on Image Processing and Pattern Recognition in Industrial
Engineering, International Society for Optics and Photonics, p. 782007.

Panahi, R & Gholampour, I 2017, 'Accurate detection and recognition of dirty vehicle plate
numbers for high-speed applications', IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 4, pp. 767-79.

Parisi, R, Di Claudio, E, Lucarelli, G & Orlandi, G 1998, 'Car plate recognition by neural
networks and image processing', in ISCAS'98. Proceedings of the 1998 IEEE International
Symposium on Circuits and Systems (Cat. No. 98CH36187), IEEE, pp. 195-8.

Park, SH, Kim, KI, Jung, K & Kim, HJ 1999, 'Locating car license plates using neural
networks', Electronics Letters, vol. 35, no. 17, pp. 1475-7.

Patel, C, Shah, D & Patel, A 2013, 'Automatic number plate recognition system (anpr): A
survey', International Journal of Computer Applications, vol. 69, no. 9.

Porikli, F & Kocak, T 2006, 'Robust license plate detection using covariance descriptor in a
neural network framework', in Video and Signal Based Surveillance, 2006. AVSS'06. IEEE
International Conference on, IEEE, pp. 107-.

Prabhakar, P, Anupama, P & Resmi, S 2014, 'Automatic vehicle number plate detection and
recognition', in 2014 International Conference on Control, Instrumentation,
Communication and Computational Technologies (ICCICCT), IEEE, pp. 185-90.

Puloria, K & Mahajan, S 2015, 'A Review on Automatic Number Plate Recognition System',
International Journal of Software and Hardware Research in Engineering, vol. 3, no. 1.

Qin, Z, Shi, S, Xu, J & Fu, H 2006, 'Method of license plate location based on corner feature',
in 2006 6th World Congress on Intelligent Control and Automation, IEEE, pp. 8645-9.

Quinlan, JR 1986, 'Induction of decision trees', Machine learning, vol. 1, no. 1, pp. 81-106.

Rabiner, LR & Juang, B-H 1986, 'An introduction to hidden Markov models', ieee assp
magazine, vol. 3, no. 1, pp. 4-16.

Roberts, DJ & Casanova, M 2012, Automated license plate recognition systems: Policy and
operational guidance for law enforcement.

Samra, GA & Khalefah, F 2013, 'Localization of license plate number using dynamic image
processing techniques and genetic algorithms', IEEE transactions on evolutionary
computation, vol. 18, no. 2, pp. 244-57.

Sanyuan, Z, Mingli, Z & Xiuzi, Y 2004, 'Car plate character extraction under complicated

 References

P a g e 120 | 254

120

environment', in 2004 IEEE International Conference on Systems, Man and Cybernetics
(IEEE Cat. No. 04CH37583), IEEE, pp. 4722-6.

Sarfraz, M, Ahmed, MJ & Ghazi, SA 2003, 'Saudi Arabian license plate recognition system', in
2003 International Conference on Geometric Modeling and Graphics, 2003. Proceedings,
IEEE, pp. 36-41.

Sarfraz, MS, Shahzad, A, Elahi, MA, Fraz, M, Zafar, I & Edirisinghe, EA 2013, 'Real-time
automatic license plate recognition for CCTV forensic applications', Journal of real-time
image processing, vol. 8, no. 3, pp. 285-95.

Schölkopf, B, Smola, A & Müller, K-R 1997, 'Kernel principal component analysis', in
International conference on artificial neural networks, Springer, pp. 583-8.

Seber, GA & Lee, AJ 2012, Linear regression analysis, vol. 329, John Wiley & Sons.

Sharma, C & Kaur, A 2011, 'Indian vehicle license plate extraction and segmentation',
International Journal of Computer Science and Communication, vol. 2, no. 2, pp. 593-9.

Sharma, J, Mishra, A, Saxena, K & Kumar, S 2014, 'A hybrid technique for license plate
recognition based on feature selection of wavelet transform and artificial neural network',
in 2014 International Conference on Reliability Optimization and Information Technology
(ICROIT), IEEE, pp. 347-52.

Sheldon, B 2013, 'Camera surveillance within the UK: Enhancing public safety or a social
threat?', in Developments in Counter-Terrorist Measures and Uses of Technology,
Routledge, pp. 93-104.

Shi, X, Zhao, W & Shen, Y 2005, 'Automatic license plate recognition system based on color
image processing', in International Conference on Computational Science and Its
Applications, Springer, pp. 1159-68.

Silapachote, P, Karuppiah, DR & Hanson, AR 2005, Feature selection using adaboost for face
expression recognition, DTIC Document.

Silva, SM & Jung, CR 2018, 'License Plate Detection and Recognition in Unconstrained
Scenarios', in European Conference on Computer Vision, Springer, pp. 593-609.

Song, MK & Sarker, MMK 2014, 'Modeling and implementing two-stage AdaBoost for real-
time vehicle license plate detection', Journal of Applied Mathematics, vol. 2014.

Sun, D & Watada, J 2015, 'Detecting pedestrians and vehicles in traffic scene based on boosted
HOG features and SVM', in Intelligent Signal Processing (WISP), 2015 IEEE 9th
International Symposium on, IEEE, pp. 1-4.

Taylor, JA 2005, Forensic person tracking method and apparatus, Google Patents.

Tsai, W-K, Lo, S-K, Su, C-D & Sheu, M-H 2017, 'Vehicle Detection Algorithm Based on
Modified Gradient Oriented Histogram Feature', in Advances in Intelligent Information
Hiding and Multimedia Signal Processing, Springer, pp. 127-34.

Wan, X, Liu, J & Liu, J 2011, 'A vehicle license plate localization method using color
barycenters hexagon model', in Third International Conference on Digital Image
Processing (ICDIP 2011), International Society for Optics and Photonics, p. 80092O.

Wang, D, Tian, Y, Geng, W, Zhao, L & Gong, C 2018, 'LPR-Net: Recognizing Chinese license
plate in complex environments', Pattern Recognition Letters.

 References r

P a g e 121 | 254

121

Wang, F, Man, L, Wang, B, Xiao, Y, Pan, W & Lu, X 2008, 'Fuzzy-based algorithm for color
recognition of license plates', Pattern Recognition Letters, vol. 29, no. 7, pp. 1007-20.

Wang, M-L, Liu, Y-H, Liao, B-Y, Lin, Y-S & Horng, M-F 2010, 'A vehicle license plate
recognition system based on spatial/frequency domain filtering and neural networks', in
International Conference on Computational Collective Intelligence, Springer, pp. 63-70.

Wang, S-Z & Lee, H-J 2003, 'Detection and recognition of license plate characters with
different appearances', in Proceedings of the 2003 IEEE International Conference on
Intelligent Transportation Systems, IEEE, pp. 979-84.

Weng, Y, Shivakumara, P, Lu, T, Meng, LK & Woon, HH 2015, 'A new multi-spectral fusion
method for degraded video text frame enhancement', in Pacific Rim Conference on
Multimedia, Springer, pp. 495-506.

Wu, B-F, Lin, S-P & Chiu, C-C 2007, 'Extracting characters from real vehicle licence plates
out-of-doors', IET computer vision, vol. 1, no. 1, pp. 2-10.

Wu, M-K, Wei, J-S, Shih, H-C & Ho, CC 2009, 'License plate detection based on 2-level 2D
Haar wavelet transform and edge density verification', in 2009 IEEE International
Symposium on Industrial Electronics, IEEE, pp. 1699-704.

Xu, J-F, Li, S-F & Yu, M-S 2004, 'Car license plate extraction using color and edge
information', in Proceedings of 2004 International Conference on Machine Learning and
Cybernetics (IEEE Cat. No. 04EX826), IEEE, pp. 3904-7.

Y. Han, KVaEO, "Robust traffic sign recognition with feature extraction and k-NN
classification methods," 2015 IEEE International Conference on Electro/Information
Technology (EIT), Dekalb, IL, 2015, pp. 484-488. & 10.1109/EIT.2015.7293386, d.

Yang, F & Ma, Z 2005, 'Vehicle license plate location based on histogramming and
mathematical morphology', in Fourth IEEE Workshop on Automatic Identification
Advanced Technologies (AutoID'05), IEEE, pp. 89-94.

Yongchun, L & Jing, Y 2012, 'Research of license plate character features extraction and
recognition', in Proceedings of 2012 2nd International Conference on Computer Science
and Network Technology, IEEE, pp. 2154-7.

Yousef, KMA, Al-Tabanjah, M, Hudaib, E & Ikrai, M 2015, 'SIFT based automatic number
plate recognition', in Information and Communication Systems (ICICS), 2015 6th
International Conference on, IEEE, pp. 124-9.

Yu, S, Li, B, Zhang, Q, Liu, C & Meng, MQ-H 2015, 'A novel license plate location method
based on wavelet transform and EMD analysis', Pattern recognition, vol. 48, no. 1, pp.
114-25.

Yuan, F & Cheu, RL 2003, 'Incident detection using support vector machines', Transportation
Research Part C: Emerging Technologies, vol. 11, no. 3, pp. 309-28.

Zhao, Y, Gu, J, Liu, C, Han, S, Gao, Y & Hu, Q 2010, 'License plate location based on haar-
like cascade classifiers and edges', in Intelligent Systems (GCIS), 2010 Second WRI Global
Congress on, IEEE, pp. 102-5.

Zheng, D, Zhao, Y & Wang, J 2005, 'An efficient method of license plate location', Pattern
Recognition Letters, vol. 26, no. 15, pp. 2431-8.

Zhu, X & Goldberg, AB 2009, 'Introduction to semi-supervised learning', Synthesis lectures on
artificial intelligence and machine learning, vol. 3, no. 1, pp. 1-130.

APPENDIX A

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 122 | 254

122

Matlab simulation code for Chapter 3

Ensemble of Adaboost cascades of 3L-LBPs classifiers for license

plates detection with low quality images

The simulation codes to detect LPs from low quality vehicle images are presented. The

experiment results were obtained using Matlab programming language version R2018a.

A

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 123 | 254

123

--------------------------------Adaboost classifier

function [L,hits] = ADABOOST_te(adaboost_model,te_func_handle,test_set,.

 true_labels)

hypothesis_n = length(adaboost_model.weights);

sample_n = size(test_set,1);

class_n = length(unique(true_labels));

temp_L = zeros(sample_n,class_n,hypothesis_n); % likelihoods for each weak classifier

 % for each weak classifier, likelihoods of test samples are collected

for i=1:hypothesis_n

 [temp_L(:,:,i),hits,error_rate] = te_func_handle(adaboost_model.parameters{i},...

 test_set,ones(sample_n,1),true_labels);

 temp_L(:,:,i) = temp_L(:,:,i)*adaboost_model.weights(i);

end

 L = sum(temp_L,3);

hits = sum(likelihood2class(L)==true_labels);

 %%%

function adaboost_model = ADABOOST_tr(tr_func_handle, te_func_handle, train_set,

labels, no_of_hypothesis)

adaboost_model = struct('weights',zeros(1,no_of_hypothesis),...

 'parameters',[]); %cell(1,no_of_hypothesis));

 sample_n = size(train_set,1);

samples_weight = ones(sample_n,1)/sample_n;

 for turn=1:no_of_hypothesis

 adaboost_model.parameters{turn} = tr_func_handle(train_set,samples_weight,labels);

 [L,hits,error_rate] = te_func_handle(adaboost_model.parameters{turn},...

 train_set,samples_weight,labels);

 if(error_rate==1)

 error_rate=1-eps;

 elseif(error_rate==0)

 error_rate=eps;

 end

 % The weight of the turn-th weak classifier

 adaboost_model.weights(turn) = log10((1-error_rate)/error_rate);

 C=likelihood2class(L);

 t_labeled=(C==labels); % true labeled samples

 % Importance of the true classified samples is decreased for the next weak classifier

 samples_weight(t_labeled) = samples_weight(t_labeled)*...

 ((error_rate)/(1-error_rate));

 % Normalization

 samples_weight = samples_weight/sum(samples_weight);

end

 % Normalization

adaboost_model.weights=adaboost_model.weights/sum(adaboost_model.weights);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

--------------------------------LBP descriptor

function BasicLBP = ComputeRotationInvariance(RotateIndex, NeighborPoints,

tempLBPpre, tempLBPcur, tempLBPpos, tempLBPpreC, tempLBPposC, binCount,

BasicLBP)

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 124 | 254

124

minLBP = BasicLBP;

if RotateIndex == 1

 for p = 1 : NeighborPoints - 1

 tempLBPpreT = bitor(bitshift(tempLBPpre, -1 * p), bitshift(bitand(tempLBPpre,

(uint8(2^p) - 1)), (NeighborPoints - p)));

 tempLBPcurT = bitor(bitshift(tempLBPcur, -1 * p), bitshift(bitand(tempLBPcur,

(uint8(2^p) - 1)), (NeighborPoints - p)));

 tempLBPposT = bitor(bitshift(tempLBPpos, -1 * p), bitshift(bitand(tempLBPpos,

(uint8(2^p) - 1)), (NeighborPoints - p)));

 temp = (tempLBPpreC + bitshift(double(tempLBPpreT), 1)) +

bitshift(double(tempLBPcurT), (NeighborPoints + 1)) + bitshift(double(tempLBPposT),

(NeighborPoints * 2 + 1)) + tempLBPposC * 2 ^ (binCount - 1);

 if temp < minLBP

 minLBP = temp;

 end

 end

 BasicLBP = minLBP;

else

 tempLBPpreT = RotLBP(tempLBPpre, NeighborPoints);

 tempLBPcurT = RotLBP(tempLBPcur, NeighborPoints);

 tempLBPposT = RotLBP(tempLBPpos, NeighborPoints);

 temp = tempLBPpreC + bitshift(double(tempLBPpreT), 1) +

bitshift(double(tempLBPcurT), (NeighborPoints + 1)) + bitshift(double(tempLBPposT),

(NeighborPoints * 2 + 1)) + tempLBPposC * 2 ^ (binCount - 1);

 BasicLBP = temp;

end

%%%

function LBP= efficientLBP(inImg, varargin)

%% efficientLBP

% The function implements LBP (Local Binary Pattern analysis).

%% Deafult params

isRotInv=false;

isChanWiseRot=false;

filtR=generateRadialFilterLBP(8, 1);

 %% Get user inputs overriding default values

funcParamsNames={'filtR', 'isRotInv', 'isChanWiseRot'};

assignUserInputs(funcParamsNames, varargin(Y. Han & 10.1109/EIT.2015.7293386));

 if ischar(inImg) && exist(inImg, 'file')==2 % In case of file name input- read graphical file

 inImg=imread(inImg);

end

 nClrChans=size(inImg, 3);

 inImgType=class(inImg);

calcClass='single';

isCalcClassInput=strcmpi(inImgType, calcClass);

if ~isCalcClassInput

 inImg=cast(inImg, calcClass);

end

imgSize=size(inImg);

 nNeigh=size(filtR, 3);

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 125 | 254

125

 if nNeigh<=8

 outClass='uint8';

elseif nNeigh>8 && nNeigh<=16

 outClass='uint16';

elseif nNeigh>16 && nNeigh<=32

 outClass='uint32';

elseif nNeigh>32 && nNeigh<=64

 outClass='uint64';

else

 outClass=calcClass;

end

if isRotInv

 nRotLBP=nNeigh;

 nPixelsSingleChan=imgSize(1)*imgSize(2);

 iSingleChan=reshape(1:nPixelsSingleChan, imgSize(1), imgSize(2));

else

 nRotLBP=1;

end

 nEps=-3;

weigthVec=reshape(2.^((1:nNeigh) -1), 1, 1, nNeigh);

weigthMat=repmat(weigthVec, imgSize([1, 2]));

binaryWord=zeros(imgSize(1), imgSize(2), nNeigh, calcClass);

LBP=zeros(imgSize, outClass);

possibleLBP=zeros(imgSize(1), imgSize(2), nRotLBP);

for iChan=1:nClrChans

 % Initiate neighbours relation filter and LBP's matrix

 for iFiltElem=1:nNeigh

 % Rotate filter- to compare center to next neigbour

 filtNeight=filtR(:, :, iFiltElem);

 % calculate relevant LBP elements via filtering

 binaryWord(:, :, iFiltElem)=cast(...

 roundnS(filter2(filtNeight, inImg(:, :, iChan), 'same'), nEps) >= 0,...

 calcClass);

 % Without rounding sometimes inaqulity happens in some pixels

 % compared to pixelwiseLBP

 end % for iFiltElem=1:nNeigh

 for iRot=1:nRotLBP

 % find all relevant LBP candidates

 possibleLBP(:, :, iRot)=sum(binaryWord.*weigthMat, 3);

 if iRot < nRotLBP

 binaryWord=circshift(binaryWord, [0, 0, 1]); % shift binaryWord elements

 end

 end

 if isRotInv

 if iChan==1 || isChanWiseRot

 % Find minimal LBP, and the rotation applied to first color channel

 [minColroInvLBP, iMin]=min(possibleLBP, [], 3);

 % calculte 3D matrix index

 iCircShiftMinLBP=iSingleChan+(iMin-1)*nPixelsSingleChan;

 else

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 126 | 254

126

 % the above rotation of the first channel, holds to rest of the channels

 minColroInvLBP=possibleLBP(iCircShiftMinLBP);

 end % if iChan==1 || isChanWiseRot

 else

 minColroInvLBP=possibleLBP;

 end % if isRotInv

 if strcmpi(outClass, calcClass)

 LBP(:, :, iChan)=minColroInvLBP;

 else

 LBP(:, :, iChan)=cast(minColroInvLBP, outClass);

 end

end % for iChan=1:nClrChans

%%%

function [Boxes] = funcSol3(Im, ~)

 Im = imgaussfilt(Im,0.25);

Im = adapthisteq(Im,'clipLimit',0.25,'Distribution','rayleigh');

 I= Im;

 [~, mserConnComp] = detectMSERFeatures(I, ...

 'RegionAreaRange',[140 9000],'ThresholdDelta',3);

mserStats = regionprops(mserConnComp, 'BoundingBox', 'Eccentricity', ...

 'Solidity', 'Extent', 'Euler', 'Image');

% Compute the aspect ratio using bounding box data.

bbox = vertcat(mserStats.BoundingBox);

w = bbox(:,3);

h = bbox(:,4);

aspectRatio = w./h;

% Threshold the data to determine which regions to remove. These thresholds

% may need to be tuned for other images.

filterIdx = aspectRatio' > 3;

filterIdx = filterIdx | [mserStats.Eccentricity] > .990 ;

filterIdx = filterIdx | [mserStats.Solidity] < .3;

filterIdx = filterIdx | [mserStats.Extent] < 0.2 | [mserStats.Extent] > 0.9;

filterIdx = filterIdx | [mserStats.EulerNumber] < -4;

% Remove OR Filter out regions

mserStats(filterIdx) = [];

regionImage = mserStats(6).Image;

regionImage = padarray(regionImage, [1 1]);

 % Compute the stroke width image.

distanceImage = bwdist(~regionImage);

skeletonImage = bwmorph(regionImage, 'thin', inf);

strokeWidthValues = distanceImage(skeletonImage);

strokeWidthMetric = std(strokeWidthValues)/mean(strokeWidthValues);

 % Threshold the stroke width variation metric

strokeWidthThreshold = 0.4;

strokeWidthFilterIdx = strokeWidthMetric > strokeWidthThreshold;

 % Process the remaining regions

for j = 1:numel(mserStats)

 regionImage = mserStats(j).Image;

 regionImage = padarray(regionImage, [1 1], 0);

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 127 | 254

127

 distanceImage = bwdist(~regionImage);

 skeletonImage = bwmorph(regionImage, 'thin', inf);

 strokeWidthValues = distanceImage(skeletonImage);

 strokeWidthMetric = std(strokeWidthValues)/mean(strokeWidthValues);

 strokeWidthFilterIdx(j) = strokeWidthMetric > strokeWidthThreshold;

 end

mserStats(strokeWidthFilterIdx) = [];

bboxes = vertcat(mserStats.BoundingBox);

if isempty(bboxes)

 Boxes = [];

 return

end

 xmin = bboxes(:,1);

ymin = bboxes(:,2);

xmax = xmin + bboxes(:,3) - 1;

ymax = ymin + bboxes(:,4) - 1;

 % Expand the bounding boxes by a small amount.

expansionAmount = 0.02;

xmin = (1-expansionAmount*7) * xmin;

ymin = (1-expansionAmount) * ymin;

xmax = (1+expansionAmount*4) * xmax;

ymax = (1+expansionAmount) * ymax;

 % Clip the bounding boxes to be within the image bounds

xmin = max(xmin, 1);

ymin = max(ymin, 1);

xmax = min(xmax, size(I,2));

ymax = min(ymax, size(I,1));

 % Show the expanded bounding boxes

expandedBBoxes = [xmin ymin xmax-xmin+1 ymax-ymin+1];

% Compute the overlap ratio

overlapRatio = bboxOverlapRatio(expandedBBoxes, expandedBBoxes);

 % Set the overlap ratio between a bounding box and itself to zero to

% simplify the graph representation.

n = size(overlapRatio,1);

overlapRatio(1:n+1:n^2) = 0;

 % Create the graph

g = graph(overlapRatio);

 % Find the connected text regions within the graph

componentIndices = conncomp(g);

 % Merge the boxes based on the minimum and maximum dimensions.

xmin = accumarray(componentIndices', xmin, [], @min);

ymin = accumarray(componentIndices', ymin, [], @min);

xmax = accumarray(componentIndices', xmax, [], @max);

ymax = accumarray(componentIndices', ymax, [], @max);

 % Compose the merged bounding boxes using the [x y width height] format.

Boxes = [xmin ymin xmax-xmin+1 ymax-ymin+1];

 % Remove bounding boxes that only contain one text region

numRegionsInGroup = histcounts(componentIndices);

Boxes(numRegionsInGroup == 1, :) = [];

 end

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 128 | 254

128

 %%

function Boxes = funcSol5(Im,l)

 l=l+1;

[y,x]=size(Im);

Im2 = imadjust(Im,[0.1;0.5]);

BW = edge(Im2,'Sobel');

 reg = regionprops(BW,'Area','Centroid','BoundingBox');

 reg([reg.Area]<100)=[];

regBad = [];

for i = 1:length(reg)

 % filter some boxes

 if reg(i).BoundingBox(4) < 15

 regBad = [regBad,i];

 elseif reg(i).BoundingBox(3) < 10

 regBad = [regBad,i];

 elseif reg(i).BoundingBox(3) < 70 && reg(i).BoundingBox(4) < 70

 regBad = [regBad,i];

 elseif reg(i).BoundingBox(3) < 70 && reg(i).BoundingBox(4) > 70

 regBad = [regBad,i];

 elseif reg(i).BoundingBox(3) > 150 && reg(i).BoundingBox(4) > 150

 regBad = [regBad,i];

 elseif reg(i).BoundingBox(4) < 20 && reg(i).BoundingBox(3) > 80

 regBad = [regBad,i];

 elseif reg(i).BoundingBox(3) > 300

 regBad = [regBad,i];

 elseif reg(i).BoundingBox(4) > 100

 regBad = [regBad,i];

 end

 %remove regions that are at the top

 if reg(i).BoundingBox(1) < 50 || reg(i).BoundingBox(1) > x - 50

 regBad = [regBad,i];

 elseif reg(i).BoundingBox(2) < 150

 regBad = [regBad,i];

 end

end

reg(unique(regBad))=[];

%if multiple candidates - leave with max corners

iMax=[];

for i = 1:length(reg)

 corners = detectFASTFeatures(imcrop(Im,(reg(i).BoundingBox)));

 iMax(i) = length(corners);

end

[~,chosen]=max(iMax);

 if ~isempty(chosen)

 Boxes = reg(chosen).BoundingBox;

else

 %just to avoid error

 Boxes = [1,1,1,1];

end

 end

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 129 | 254

129

%%%

function [radInterpFilt]=generateRadialFilterLBP(p, r)

%% Default params

if nargin<2

 r=1;

 if nargin<1

 p=8;

 end

end

 %% verify params leget values

r=max(1, r); % radius below 1 is illegal

p=round(p); % non integer number of neighbours sound oucward

p=max(1, p); % number of neighbours below 1 is illegal

%% find elements angles, aranged counter clocwise starting from "X axis"

% See http://www.ee.oulu.fi/mvg/files/pdf/pdf_6.pdf for illustration

theta=linspace(0, 2*pi, p+1)+pi/2;

theta=theta(1:end-1); % remove obsolite last element (0=2*pi)

 %% Find relevant coordinates

[rowsFilt, colsFilt] = pol2cart(theta, repmat(r, size(theta))); % convert to cartesian

nEps=-3;

rowsFilt=roundnS(rowsFilt, nEps);

colsFilt=roundnS(colsFilt, nEps);

 % Matrix indexes should be integers

rowsFloor=floor(rowsFilt);

rowsCeil=ceil(rowsFilt);

 colsFloor=floor(colsFilt);

colsCeil=ceil(colsFilt);

 rowsDistFloor=1-abs(rowsFloor-rowsFilt);

rowsDistCeil=1-abs(rowsCeil-rowsFilt);

colsDistFloor=1-abs(colsFloor-colsFilt);

colsDistCeil=1-abs(colsCeil-colsFilt);

 %Find minimal filter dimentions, based on indexes

filtDims=[ceil(max(rowsFilt))-floor(min(rowsFilt)),...

ceil(max(colsFilt))-floor(min(colsFilt))];

filtDims=filtDims+mod(filtDims+1, 2); % verify filter dimentions are odd

 filtCenter=(filtDims+1)/2;

 %% Convert cotersian coordinates to matrix elements coordinates via simple shift

rowsFloor=rowsFloor+filtCenter(1);

rowsCeil=rowsCeil+filtCenter(1);

colsFloor=colsFloor+filtCenter(2);

colsCeil=colsCeil+filtCenter(2);

%% Generate the filter- each 2D slice for filter element

radInterpFilt=zeros([filtDims, p], 'single'); % initate filter with zeros

for iP=1:p

 radInterpFilt(rowsFloor(iP), colsFloor(iP), iP)=...

 radInterpFilt(rowsFloor(iP), colsFloor(iP), iP)+rowsDistFloor(iP)+colsDistFloor(iP);

 radInterpFilt(rowsFloor(iP), colsCeil(iP), iP)=...

 radInterpFilt(rowsFloor(iP), colsCeil(iP), iP)+rowsDistFloor(iP)+colsDistCeil(iP);

 radInterpFilt(rowsCeil(iP), colsFloor(iP), iP)=...

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 130 | 254

130

 radInterpFilt(rowsCeil(iP), colsFloor(iP), iP)+rowsDistCeil(iP)+colsDistFloor(iP);

 radInterpFilt(rowsCeil(iP), colsCeil(iP), iP)=...

 radInterpFilt(rowsCeil(iP), colsCeil(iP), iP)+rowsDistCeil(iP)+colsDistCeil(iP);

 radInterpFilt(:, :, iP)=radInterpFilt(:, :, iP)/sum(sum(radInterpFilt(:, :, iP)));

end

radInterpFilt(filtCenter(1), filtCenter(2), :)=...

radInterpFilt(filtCenter(1), filtCenter(2), :)-1;

 %%

function Histogram = LBPTOP(VolData, FxRadius, FyRadius, TInterval, NeighborPoints,

TimeLength, BorderLength, bBilinearInterpolation, Bincount, Code)

[height width Length] = size(VolData);

 XYNeighborPoints = NeighborPoints(1);

XTNeighborPoints = NeighborPoints(2);

YTNeighborPoints = NeighborPoints(3);

 if (Bincount == 0)

 % normal code

 nDim = 2^(YTNeighborPoints);

 Histogram = zeros(3, nDim);

else

 % uniform code

 Histogram = zeros(3, Bincount); % Bincount = 59;

end

 if (bBilinearInterpolation == 0)

 for i = TimeLength + 1 : Length - TimeLength

 for yc = BorderLength + 1 : height - BorderLength

 for xc = BorderLength + 1 : width - BorderLength

 CenterVal = VolData(yc, xc, i);

 %% In XY plane

 BasicLBP = 0;

 FeaBin = 0;

 for p = 0 : XYNeighborPoints - 1

 X = floor(xc + FxRadius * cos((2 * pi * p) / XYNeighborPoints) + 0.5);

 Y = floor(yc - FyRadius * sin((2 * pi * p) / XYNeighborPoints) + 0.5);

 CurrentVal = VolData(Y, X, i);

 if CurrentVal >= CenterVal

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 end

 FeaBin = FeaBin + 1;

 end

 %% if Bincount is "0", it means basic LBP-TOP will be

 %% computed and uniform patterns does not work in this case

 %%. Otherwide it should be the number of the uniform

 %%patterns, then "Code" keeps the lookup-table of the basic

 %%LBP and uniform LBP

 if Bincount == 0

 Histogram(1, BasicLBP + 1) = Histogram(1, BasicLBP + 1) + 1;

 else

 Histogram(1, Code(BasicLBP + 1, 2) + 1) = Histogram(1, Code(BasicLBP + 1,

2) + 1) + 1;

 end

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 131 | 254

131

 %% In XT plane

 BasicLBP = 0;

 FeaBin = 0;

 for p = 0 : XTNeighborPoints - 1

 X = floor(xc + FxRadius * cos((2 * pi * p) / XTNeighborPoints) + 0.5);

 Z = floor(i + TInterval * sin((2 * pi * p) / XTNeighborPoints) + 0.5);

 CurrentVal = VolData(yc, X, Z);

 if CurrentVal >= CenterVal

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 end

 FeaBin = FeaBin + 1;

 end

 %% if Bincount is "0", it means basic LBP-TOP will be

 %% computed and uniform patterns does not work in this case

 %%. Otherwide it should be the number of the uniform

 %%patterns, then "Code" keeps the lookup-table of the basic

 %%LBP and uniform LBP

 if Bincount == 0

 Histogram(2, BasicLBP + 1) = Histogram(2, BasicLBP + 1) + 1;

 else % uniform patterns

 Histogram(2, Code(BasicLBP + 1, 2) + 1) = Histogram(2, Code(BasicLBP + 1,

2) + 1) + 1;

 end

 BasicLBP = 0;

 FeaBin = 0;

 for p = 0 : YTNeighborPoints - 1

 Y = floor(yc - FyRadius * sin((2 * pi * p) / YTNeighborPoints) + 0.5);

 Z = floor(i + TInterval * cos((2 * pi * p) / YTNeighborPoints) + 0.5);

 CurrentVal = VolData(Y, xc, Z);

 if CurrentVal >= CenterVal

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 end

 FeaBin = FeaBin + 1;

 end

 %% if Bincount is "0", it means basic LBP-TOP will be

 %% computed and uniform patterns does not work in this case

 %%. Otherwide it should be the number of the uniform

 %%patterns, then "Code" keeps the lookup-table of the basic

 %%LBP and uniform LBP

 if Bincount == 0

 Histogram(3, BasicLBP + 1) = Histogram(3, BasicLBP + 1) + 1;

 else

 Histogram(3, Code(BasicLBP + 1, 2) + 1) = Histogram(3, Code(BasicLBP + 1,

2) + 1) + 1;

 end

 end

 end

 end

else % bilinear interpolation

 for i = TimeLength + 1 : Length - TimeLength

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 132 | 254

132

 for yc = BorderLength + 1 : height - BorderLength

 for xc = BorderLength + 1 : width - BorderLength

 CenterVal = VolData(yc, xc, i);

 %% In XY plane

 BasicLBP = 0;

 FeaBin = 0;

 for p = 0 : XYNeighborPoints - 1

 % bilinear interpolation

 x1 = single(xc + FxRadius * cos((2 * pi * p) /

XYNeighborPoints));%%"float" are called "single" in Matlab

 y1 = single(yc - FyRadius * sin((2 * pi * p) / XYNeighborPoints));

 u = x1 - floor(x1);

 v = y1 - floor(y1);

 ltx = floor(x1);

 lty = floor(y1);

 lbx = floor(x1);

 lby = ceil(y1);

 rtx = ceil(x1);

 rty = floor(y1);

 rbx = ceil(x1);

 rby = ceil(y1);

 % the values of neighbors that do not fall exactly on

 % pixels are estimated by bilinear interpolation of

 % four corner points near to it.

 CurrentVal = floor(VolData(lty, ltx, i) * (1 - u) * (1 - v) + VolData(lby, lbx, i) *

(1 - u) * v + VolData(rty, rtx, i) * u * (1 - v) + VolData(rby, rbx, i) * u * v);

 if CurrentVal >= CenterVal

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 end

 FeaBin = FeaBin + 1;

 end

 %% if Bincount is "0", it means basic LBP-TOP will be

 %% computed and uniform patterns does not work in this case

 %%. Otherwide it should be the number of the uniform

 %%patterns, then "Code" keeps the lookup-table of the basic

 %%LBP and uniform LBP

 if Bincount == 0

 Histogram(1, BasicLBP + 1) = Histogram(1, BasicLBP + 1) + 1;

 else

 Histogram(1, Code(BasicLBP + 1, 2) + 1) = Histogram(1, Code(BasicLBP + 1,

2) + 1) + 1;

 end

 %% In XT plane

 BasicLBP = 0;

 FeaBin = 0;

 for p = 0 : XTNeighborPoints - 1

 % bilinear interpolation

 x1 = single(xc + FxRadius * cos((2 * pi * p) / XTNeighborPoints));

 z1 = single(i + TInterval * sin((2 * pi * p) / XTNeighborPoints));

 u = x1 - floor(x1);

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 133 | 254

133

 v = z1 - floor(z1);

 ltx = floor(x1);

 lty = floor(z1);

 lbx = floor(x1);

 lby = ceil(z1);

 rtx = ceil(x1);

 rty = floor(z1);

 rbx = ceil(x1);

 rby = ceil(z1);

 % the values of neighbors that do not fall exactly on

 % pixels are estimated by bilinear interpolation of

 % four corner points near to it.

 CurrentVal = floor(VolData(yc, ltx, lty) * (1 - u) * (1 - v) + VolData(yc, lbx, lby)

* (1 - u) * v + VolData(yc, rtx, rty) * u * (1 - v) + VolData(yc, rbx, rby) * u * v);

 if CurrentVal >= CenterVal

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 end

 FeaBin = FeaBin + 1;

 end

 %% if Bincount is "0", it means basic LBP-TOP will be

 %% computed and uniform patterns does not work in this case

 %%. Otherwide it should be the number of the uniform

 %%patterns, then "Code" keeps the lookup-table of the basic

 %%LBP and uniform LBP

 if Bincount == 0

 Histogram(2, BasicLBP + 1) = Histogram(2, BasicLBP + 1) + 1;

 else

 Histogram(2, Code(BasicLBP + 1, 2) + 1) = Histogram(2, Code(BasicLBP + 1,

2) + 1) + 1;

 end

 %% In YT plane

 BasicLBP = 0;

 FeaBin = 0;

 for p = 0 : YTNeighborPoints - 1

 % bilinear interpolation

 y1 = single(yc - FyRadius * sin((2 * pi * p) / YTNeighborPoints));

 z1 = single(i + TInterval * cos((2 * pi * p) / YTNeighborPoints));

 u = y1 - floor(y1);

 v = z1 - floor(z1);

 ltx = floor(y1);

 lty = floor(z1);

 lbx = floor(y1);

 lby = ceil(z1);

 rtx = ceil(y1);

 rty = floor(z1);

 rbx = ceil(y1);

 rby = ceil(z1);

 % the values of neighbors that do not fall exactly on

 % pixels are estimated by bilinear interpolation of

 % four corner points near to it.

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 134 | 254

134

 CurrentVal = floor(VolData(ltx, xc, lty) * (1 - u) * (1 - v) + VolData(lbx, xc,

lby) * (1 - u) * v + VolData(rtx, xc, rty) * u * (1 - v) + VolData(rbx, xc, rby) * u * v);

 if CurrentVal >= CenterVal

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 end

 FeaBin = FeaBin + 1;

 end

 %% if Bincount is "0", it means basic LBP-TOP will be

 %% computed and uniform patterns does not work in this case

 %%. Otherwide it should be the number of the uniform

 %%patterns, then "Code" keeps the lookup-table of the basic

 %%LBP and uniform LBP

 if Bincount == 0

 Histogram(3, BasicLBP + 1) = Histogram(3, BasicLBP + 1) + 1;

 else

 Histogram(3, Code(BasicLBP + 1, 2) + 1) = Histogram(3, Code(BasicLBP + 1,

2) + 1) + 1;

 end

 end %%

 end %%

 end %%

end

%% normalization

for j = 1 : 3

 Histogram(j, :) = Histogram(j, :)./sum(Histogram(j, :));

end

%%%

function classes = likelihood2class(likelihoods)

[sample_n,class_n] = size(likelihoods);

maxs = (likelihoods==repmat(max(likelihoods,[],2),[1,class_n]));

 classes=zeros(sample_n,1);

for i=1:sample_n

 classes(i) = find(maxs(i,:),1);

end

%%%

function LBP= pixelwiseLBP(inImg, varargin) % isRotInv, isChanWiseRot, filtR

%% Deafult params

isRotInv=false;

isChanWiseRot=false;

filtR=generateRadialFilterLBP(8, 1);

%% Get user inputs overriding default values

funcParamsNames={'filtR', 'isRotInv', 'isChanWiseRot'};

assignUserInputs(funcParamsNames, varargin(Y. Han & 10.1109/EIT.2015.7293386));

if ischar(inImg) && exist(inImg, 'file')==2 % In case of file name input- read graphical file

 inImg=imread(inImg);

end

 nClrChans=size(inImg, 3);

 inImgType=class(inImg);

calcClass='single';

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 135 | 254

135

 isCalcClassInput=strcmpi(inImgType, calcClass);

if ~isCalcClassInput

 inImg=cast(inImg, calcClass);

end

imgSize=size(inImg);

filtDims=size(filtR);

nNeigh=filtDims(3);

if nNeigh<=8

 outClass='uint8';

elseif nNeigh>8 && nNeigh<=16

 outClass='uint16';

elseif nNeigh>16 && nNeigh<=32

 outClass='uint32';

elseif nNeigh>32 && nNeigh<=64

 outClass='uint64';

else

 outClass=calcClass;

end

 LBP=zeros(imgSize, outClass);

nEps=-3;

weigthVec=reshape(2.^((1:nNeigh) -1), 1, nNeigh);

%% Primitive pixelwise solution

filtDimsR=floor(filtDims([1, 2])/2); % Filter Radius

% update index values, so it will be from 1 to N-1, where N is number of pixels in

% support area, including the central pixel

 % Padding image with zeroes, to deal with the edges

chanImgPad=zeros(imgSize(1)+2*filtDimsR(1), imgSize(2)+2*filtDimsR(2), calcClass);

padImgSize=size(chanImgPad);

currChanLBP=zeros(padImgSize, outClass);

if isRotInv

 if verLessThan('matlab', '7.14') % due to some issue with circshift and non dounle inputs

 iCircShiftMinLBP=zeros(padImgSize, 'double');

 else

 iCircShiftMinLBP=zeros(padImgSize, 'int8'); % outClass % Limits number fo color

channels to 127

 end

end

hWaitbar=waitbar(0, 'Calculating LBP in pixel-wise manner',...

 'Name', 'pixel-wise LBP!');

hTicPixelwiseLBP=tic;

is2dFilter = filtDims(1)>1 && filtDims(2)>1;

for iChan=1:nClrChans

 chanImgPad((1+filtDimsR(1)):(end-filtDimsR(1)),...

 (1+filtDimsR(2)): (end-filtDimsR(2)))=inImg(:, :, iChan);

 nRows=padImgSize(1)-2*filtDimsR(1);

 for iRow=(filtDimsR(1)+1):(padImgSize(1)-filtDimsR(1))

 for iCol=(filtDimsR(2)+1):(padImgSize(2)-filtDimsR(2))

 subImg=chanImgPad(iRow+(-filtDimsR(1):filtDimsR(1)),...

 iCol+(-filtDimsR(2):filtDimsR(2)));

 % find differences between current pixel, and it's neighours

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 136 | 254

136

 diffVec=sum(bsxfun(@times, filtR, subImg));

 if is2dFilter

 diffVec = sum(diffVec);

 end

 diffVec=roundnS(diffVec, nEps);

 binaryWord=(diffVec(:)>=0);

 if isRotInv

 if iChan==1 || isChanWiseRot % go through all posible binary

 % word combination, finding minimal LBP

 [minLBP, iCircShiftMinLBP(iRow, iCol)]=...

 sortNeighbours(binaryWord, weigthVec);

 else % if iChan==1 || isChanWiseRot

 [minLBP, ~]=sortNeighbours(binaryWord, weigthVec,...

 iCircShiftMinLBP(iRow, iCol));

 end % if iChan==1 || isChanWiseRot

 else

 minLBP=weigthVec*binaryWord;

 end % if isRotInv

 currChanLBP(iRow, iCol)=cast(minLBP, outClass); % convert to decimal.

 end % for iCol=(1+filtDimsR(2)):(imgSize(2)-filtDimsR(2))

 % Present waitbar- a bar with progress, time passed and time remaining

 waitbarTimeRemaining(hWaitbar, hTicPixelwiseLBP,...

 ((iRow-filtDimsR(1))+nRows*(iChan-1))/(nClrChans*nRows));

 end % for iRow=(1+filtDimsR(1)):(imgSize(1)-filtDimsR(1))

 % crop the margins resulting from zero padding

 LBP(:, :, iChan)=currChanLBP((filtDimsR(1)+1):(end-filtDimsR(1)),...

 (filtDimsR(2)+1):(end-filtDimsR(2)));

 if iChan==nClrChans

 close(hWaitbar); % close the waitbar

 end

end % for iChan=1:nClrChans

function [minLBP, iCircShift]=sortNeighbours(origBinWord, weigthVec, iShift)

 nElems=numel(origBinWord);

if size(origBinWord, 1)~=nElems

 origBinWord=origBinWord(:);

end

if size(weigthVec, 2)~=nElems

 weigthVec=reshape(weigthVec, 1, nElems);

end

if nargin < 3 || isempty(iShift)

 % initial values- current LBP, zero shift

 iCircShift=0;

 minLBP=weigthVec*origBinWord;

 % go through all posible binary word combination, finding minimal LBP

 nShifts=numel(origBinWord)-1;

 for iCurrShift=1:nShifts

 origBinWord=circshift(origBinWord, 1);

 currLBP=weigthVec*origBinWord;

 if currLBP < minLBP

 minLBP=currLBP;

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 137 | 254

137

 iCircShift=iCurrShift;

 end % if currLBP < minLBP

 end % for iCurrShift=iShift

else

 iCircShift=iShift(1);

 minLBP=weigthVec*circshift(origBinWord, iCircShift);

end % if nargin < 3 || isempty(iShift)

%%%

function Histogram = RIVLBP(VolData, TInterval, FRadius, NeighborPoints, BorderLength,

TimeLength, RotateIndex, bBilinearInterpolation)

% This function is to compute the Basic VLBP and two kinds of rotation invariant VLBP

features for a video sequence

 [height width Length] = size(VolData);

binCount = (NeighborPoints + 1) * 2 + NeighborPoints;

nDim = 2 ^ binCount;

Histogram = zeros(nDim, 1);

 if bBilinearInterpolation == 0

 for i = TimeLength + 1 : Length - TimeLength

 for yc = BorderLength + 1 : height - BorderLength

 for xc = BorderLength + 1 : width - BorderLength

 CenterVal = VolData(yc, xc, i);

 BasicLBP = 0;

 FeaBin = 0;

 %% In previous frame

 CurrentVal = VolData(yc, xc, i - TInterval);

 if CurrentVal >= CenterVal

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 end

 tempLBPpreC = BasicLBP;

 FeaBin = FeaBin + 1;

 tempLBPpre = 0;

 for p = 0 : NeighborPoints - 1

 X = floor(xc + FRadius * cos((2 * pi * p) / NeighborPoints) + 0.5);

 Y = floor(yc - FRadius * sin((2 * pi * p) / NeighborPoints) + 0.5);

 CurrentVal = VolData(Y, X, i - TInterval);

 if CurrentVal >= CenterVal

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 tempLBPpre = tempLBPpre + 2 ^ p;

 end

 FeaBin = FeaBin + 1;

 end

 %% In current frame

 tempLBPcur = 0;

 for p = 0 : NeighborPoints - 1

 X = floor(xc + FRadius * cos((2 * pi * p) / NeighborPoints) + 0.5);

 Y = floor(yc - FRadius * sin((2 * pi * p) / NeighborPoints) + 0.5);

 CurrentVal = VolData(Y, X, i);

 if CurrentVal >= CenterVal

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 138 | 254

138

 tempLBPcur = tempLBPcur + 2 ^ p;

 end

 FeaBin = FeaBin + 1;

 end

 %% In post frame

 tempLBPpos = 0;

 for p = 0 : NeighborPoints - 1

 X = floor(xc + FRadius * cos((2 * pi * p) / NeighborPoints) + 0.5);

 Y = floor(yc - FRadius * sin((2 * pi * p) / NeighborPoints) + 0.5);

 CurrentVal = VolData(Y, X, i + TInterval);

 if CurrentVal >= CenterVal

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 tempLBPpos = tempLBPpos + 2 ^ p;

 end

 FeaBin = FeaBin + 1;

 end

 tempLBPposC = 0;

 CurrentVal = VolData(yc, xc, i + TInterval);

 if CurrentVal >= CenterVal

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 tempLBPposC = 1;

 end

 %% Rotation invariance (if RotateIndex = 1/2)

 if (RotateIndex == 1)||(RotateIndex == 2)

 % if RotateIndex == 0, basic VLBP is computed

 % else for rotation invariance code

 BasicLBP = ComputeRotationInvariance(RotateIndex, NeighborPoints,

tempLBPpre, tempLBPcur, tempLBPpos, tempLBPpreC, tempLBPposC, binCount,

BasicLBP);

 end

 % the index under matlab start from 1 in the vector and matrix

 Histogram(BasicLBP + 1) = Histogram(BasicLBP + 1) + 1;

 end

 end

 end

else

 for i = TimeLength + 1: Length - TimeLength

 for yc = BorderLength + 1 : height - BorderLength

 for xc = BorderLength + 1 : width - BorderLength

 CenterVal = VolData(yc, xc, i);

 BasicLBP = 0;

 FeaBin = 0;

 %% In previous frame

 CurrentVal = VolData(yc, xc, i - TInterval);

 if CurrentVal >= CenterVal

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 end

 tempLBPpreC = BasicLBP;

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 139 | 254

139

 FeaBin = FeaBin + 1;

 tempLBPpre = 0;

 for p = 0 : NeighborPoints - 1

 % bilinear interpolation

 x1 = single(xc + FRadius * cos((2 * pi * p)/NeighborPoints));

 y1 = single(yc - FRadius * sin((2 * pi * p)/NeighborPoints));

 u = x1 - floor(x1);

 v = y1 - floor(y1);

 ltx = (floor(x1));

 lty = (floor(y1));

 lbx = (floor(x1));

 lby = (ceil(y1));

 rtx = (ceil(x1));

 rty = (floor(y1));

 rbx = (ceil(x1));

 rby = (ceil(y1));

 % values of neighbors that do not fall exactly on

 % pixels are estimated by bilinear interpolation of

 % four corner points near to it

 CurrentVal = floor(VolData(lty, ltx, i - TInterval) * (1 - u) * (1 - v) +

VolData(lby, lbx, i - TInterval) * (1 - u) * v + VolData(rty, rtx, i - TInterval) * u * (1 - v) +

VolData(rby, rbx, i - TInterval) * u * v);

 if CurrentVal >= CenterVal

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 tempLBPpre = tempLBPpre + 2 ^ p;

 end

 FeaBin = FeaBin + 1;

 end

 %% In current frame

 tempLBPcur = 0;

 for p = 0 : NeighborPoints - 1

 % bilinear interpolation

 x1 = single(xc + FRadius * cos((2 * pi * p)/NeighborPoints));

 y1 = single(yc - FRadius * sin((2 * pi * p)/NeighborPoints));

 u = x1 - floor(x1);

 v = y1 - floor(y1);

 ltx = (floor(x1));

 lty = (floor(y1));

 lbx = (floor(x1));

 lby = (ceil(y1));

 rtx = (ceil(x1));

 rty = (floor(y1));

 rbx = (ceil(x1));

 rby = (ceil(y1));

 % values of neighbors that do not fall exactly on

 % pixels are estimated by bilinear interpolation of

 % four corner points near to it

 CurrentVal = floor(VolData(lty, ltx, i) * (1 - u) * (1 - v) + VolData(lby, lbx, i) *

(1 - u) * v + VolData(rty, rtx, i) * u * (1 - v) + VolData(rby, rbx, i) * u * v);

 if CurrentVal >= CenterVal

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 140 | 254

140

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 tempLBPcur = tempLBPcur + 2 ^ p;

 end

 FeaBin = FeaBin + 1;

 end

 %% In post frame

 tempLBPpos = 0;

 for p = 0 : NeighborPoints - 1

 % bilinear interpolation

 x1 = single(xc + FRadius * cos((2 * pi * p)/NeighborPoints));

 y1 = single(yc - FRadius * sin((2 * pi * p)/NeighborPoints));

 u = x1 - floor(x1);

 v = y1 - floor(y1);

 ltx = (floor(x1));

 lty = (floor(y1));

 lbx = (floor(x1));

 lby = (ceil(y1));

 rtx = (ceil(x1));

 rty = (floor(y1));

 rbx = (ceil(x1));

 rby = (ceil(y1));

 % values of neighbors that do not fall exactly on

 % pixels are estimated by bilinear interpolation of

 % four corner points near to it

 CurrentVal = floor(VolData(lty, ltx, i + TInterval) * (1 - u) * (1 - v) +

VolData(lby, lbx, i + TInterval) * (1 - u) * v + VolData(rty, rtx, i + TInterval) * u * (1 - v) +

VolData(rby, rbx, i + TInterval) * u * v);

 if CurrentVal >= CenterVal

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 tempLBPpos = tempLBPpos + 2 ^ p;

 end

 FeaBin = FeaBin + 1;

 end

 tempLBPposC = 0;

 CurrentVal = VolData(yc, xc, i + TInterval);

 if (CurrentVal >= CenterVal)

 BasicLBP = BasicLBP + 2 ^ FeaBin;

 tempLBPposC = 1;

 end

 %% rotation invariance (if RotateIndex = 1/2)

 if (RotateIndex == 1) || (RotateIndex == 2)

 %for roataion invariance code

 BasicLBP = ComputeRotationInvariance(RotateIndex, NeighborPoints,

tempLBPpre, tempLBPcur, tempLBPpos, tempLBPpreC, tempLBPposC, binCount,

BasicLBP);

 end

 % the index under matlab start from 1 in the vector and

 % matrix

 Histogram(BasicLBP + 1) = Histogram(BasicLBP + 1) + 1;

 end

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 141 | 254

141

 end

 end

end

%% Normalization

Total = 0;

for i = 1 : nDim

 Total = Total + Histogram(i);

end

Histogram = Histogram./Total;

%%%

function minLBP = RotLBP(LBPCode, NeighborPoints)

%% For a basic LBP code, this function is to get its rotation invariance

% corresponding code

 minLBP = LBPCode;

for p = 1 : NeighborPoints - 1

 tempCode = bitor(bitshift(LBPCode, -1 * p), bitshift(bitand(LBPCode, (uint8(2 ^ p) - 1)),

(NeighborPoints - p)));

 if tempCode < minLBP

 minLBP = tempCode;

 end

end

%%%

function outData=roundnS(inData, nEps)

quantVal=10^nEps;

outData=round(inData/quantVal)*quantVal;

%%%

clear;

 % DEMONSTRATION OF ADABOOST_tr and ADABOOST_te

% Using adaboost with linear threshold classifier

% for a two class classification problem.

% Bug Reporting: Please contact the author for bug reporting and comments.

 tic

%% Read all images from location

ImgFolder = '040603';

dirLoc = ['baza_slika/',ImgFolder,'/'];

 imagefiles = dir([dirLoc, '*.jpg']);

nfiles = length(imagefiles); % files found

 for ii=1:nfiles

 currentfilename = imagefiles(ii).name;

 currentimage = imread([dirLoc,currentfilename]);

 images(Rabiner & Juang) = currentimage;

end

 %% if cropped folder exists - delete it. If not create.

toSave = ['baza_slika/',ImgFolder,'_cropped'];

if exist(toSave)==7

 rmdir (toSave, 's');

end

mkdir(toSave);

 %% run one by one

 k=0;

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 142 | 254

142

 l=0;

for ii=1:nfiles

 Im = rgb2gray(images(Rabiner & Juang));

 Im = adapthisteq(Im,'clipLimit',0.01,'Distribution','rayleigh');

 %L2:Gaussian filtering image

 Im = imgaussfilt(Im,0.01);

 %L3:Constract image

 % Im=imhistmatch(Im,Im);

 edgeThreshold = 0.10;

amount = 0.05;

Im = localcontrast(Im, edgeThreshold, amount);

 %get candidate bounding boxes

 boxes = funcSol3(Im,k);

 k=k+1;

 chosen=1;

 iMax=[];

 %***********************LBP*****************

 %if there is more than one box output

 if size(boxes,1)>1

 for i = 1:size(boxes,1)

 corners = detectFASTFeatures(imcrop(Im,(boxes(i,:))));

 iMax(i) = length(corners);

 end

 [~,chosen]=max(iMax);

 end

 %if there are no boxes - choose alternative method

 if size(boxes,1) == 0 || length(detectFASTFeatures(imcrop(Im,(boxes(chosen,:)))))<50

 k=k-1;

 boxes = funcSol5(Im,l);

 l=l+1;

 chosen=1;

 end

 ITextRegion = insertShape(images(Rabiner & Juang), 'Rectangle',

boxes(chosen,:),'Color','green','LineWidth',2);

 imshow(ITextRegion);

 pause(1)

 % cropped LP images and saved it for recogntion stage

 imwrite(imcrop(images(Rabiner &

Juang),(boxes(chosen,:))),[toSave,'/',imagefiles(ii).name(1:end-4),'_cropped.jpg'])

end

%***

 cd ('C:\Users\U1069157\Desktop\LP-DETECTION\Tr-PositiveLP\'); % please replace "..."

by your images path

a = dir('*.jpg'); % directory of images, ".jpg" can be changed, for example, ".bmp" if you use

for i = 1 : length(a)

 ImgName = getfield(a, {i}, 'name');

 Imgdat = imread(ImgName);

 if size(Imgdat, 3) == 4 % if color images, convert it to gray

 Imgdat = rgb2gray(Imgdat);

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 143 | 254

143

 end

 [height width] = size(Imgdat);

 if i == 1

 VolData = zeros(height, width, length(a));

 end

 % VolData(:, :, i) = Imgdat;

end

RotateIndex = 1;

 % parameter set

% 1. the radii parameter in space and Time axis; They could be 1, 2 or 3 or 4

FRadius = 1;

TInterval = 2;

 % 2. the number of the neighboring points; It can be 2 and 4.

NeighborPoints = 4;

 TimeLength = 2;

BorderLength = 1;

bBilinearInterpolation = 1;

fHistogram = RIVLBP(VolData, TInterval, FRadius, NeighborPoints, BorderLength,

TimeLength, RotateIndex, bBilinearInterpolation);

FxRadius = 1;

FyRadius = 1;

TInterval = 2;

 TimeLength = 2;

BorderLength = 1;

 bBilinearInterpolation = 1; % 0: not / 1: bilinear interpolation

Bincount = 59; %59 / 0

NeighborPoints = [8 8 8]; % XY, XT, and YT planes, respectively

if Bincount == 0

 Code = 0;

 nDim = 2 ^ (NeighborPoints(1)); %dimensionality of basic LBP

else

 % uniform patterns for neighboring points with 8

 U8File = importdata('UniformLBP8.txt');

 BinNum = U8File(1, 1);

 Code = U8File(2 : end, :);

 nDim = Bincount; %dimensionality of uniform patterns

 clear U8File;

end

% call LBPTOP

Histogram = LBPTOP(VolData, FxRadius, FyRadius, TInterval, NeighborPoints,

TimeLength, BorderLength, bBilinearInterpolation, Bincount, Code);

%**

% Creating the training and testing sets

tr_n = 200;

te_n = 200;

weak_learner_n = 20;

tr_set = abs(rand(tr_n,2))*100;

te_set = abs(rand(te_n,2))*100;

 tr_labels = (tr_set(:,1)-tr_set(:,2) > 0) + 1;

te_labels = (te_set(:,1)-te_set(:,2) > 0) + 1;

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 144 | 254

144

 % Displaying the training and testing sets

 % Training and testing error rates

tr_error = zeros(1,weak_learner_n);

te_error = zeros(1,weak_learner_n);

 for i=1:weak_learner_n

 adaboost_model = ADABOOST_tr(@threshold_tr,@threshold_te,tr_set,tr_labels,i);

 [L_tr,hits_tr] = ADABOOST_te(adaboost_model,@threshold_te,tr_set,tr_labels);

 tr_error(i) = (tr_n-hits_tr)/tr_n;

 [L_te,hits_te] = ADABOOST_te(adaboost_model,@threshold_te,te_set,te_labels);

 te_error(i) = (te_n-hits_te)/te_n;

end

fprintf('The total No. of vechiles images is: ');

disp(ii);

fprintf('The Number of vheciles images detect by system(TP) is: ');

disp(k);

 fprintf('The Number of vheciles images not detect by system (FN) is: ');

disp(ii-k);

y= toc;

fprintf('The Processing Time per detected image is: %0f\n ', round(y/ii));

 %%

%% read images

clc

clear all

cd ('C:\Users\meeras\Desktop\codes\lbp\LBP_Matlab\Tr-PositiveLP\'); % please replace "..."

by your images path

a = dir('*.jpg'); % directory of images, ".jpg" can be changed, for example, ".bmp" if you use

for i = 1 : length(a)

 ImgName = getfield(a, {i}, 'name');

 Imgdat = imread(ImgName);

 if size(Imgdat, 3) == 3 % if color images, convert it to gray

 Imgdat = rgb2gray(Imgdat);

 end

 [height width] = size(Imgdat);

 if i == 1

 VolData = zeros(height, width, length(a));

 end

 VolData(:, :, i) = Imgdat;

end

cd ..

 RotateIndex = 1;

 % parameter set

% 1. the radii parameter in space and Time axis; They could be 1, 2 or 3 or 4

FRadius = 1;

TInterval = 2;

 % 2. the number of the neighboring points; It can be 2 and 4.

NeighborPoints = 4;

 % 3. "TimeLength" and "BorderLength" are the parameters for bordering parts in time and

% space which would not be computed for features. Usually they are same to TInterval and

% the bigger one of "FRadius";

TimeLength = 2;

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 145 | 254

145

BorderLength = 1;

% 4. "bBilinearInterpolation" : if use bilinear interpolation for computing a

% neighbor point in a circle: 1 (yes), 0 (not)

bBilinearInterpolation = 1;

 % call VLBP

fHistogram = RIVLBP(VolData, TInterval, FRadius, NeighborPoints, BorderLength,

TimeLength, RotateIndex, bBilinearInterpolation);

%% LBP-TOP

% parameter set

 % 1. "FxRadius", "FyRadius" and "TInterval" are the radii parameter along X, Y and T axis;

They can be 1, 2, 3 and 4. "1" and "3" are recommended.

% Pay attention to "TInterval". "TInterval * 2 + 1" should be smaller than the length of the

input sequence "Length".

% For example, if one sequence includes seven frames, and you set TInterval

% to three, only the pixels in the frame 4 would be considered as central

% pixel and computed to get the LBP-TOP feature.

FxRadius = 1;

FyRadius = 1;

TInterval = 2;

 % 2. "TimeLength" and "BoderLength" are the parameters for bodering parts in time and

space which would not

% be computed for features. Usually they are same to TInterval and the

% bigger one of "FxRadius" and "FyRadius";

TimeLength = 2;

BorderLength = 1;

% 3. "bBilinearInterpolation" : if use bilinear interpolation for computing a

% neighbor point in a circle: 1 (yes), 0 (not)

bBilinearInterpolation = 1; % 0: not / 1: bilinear interpolation

%% 59 is only for neighboring points with 8. If won't compute uniform

%% patterns, please set it to 0, then basic LBP will be computed

Bincount = 59; %59 / 0

NeighborPoints = [8 8 8]; % XY, XT, and YT planes, respectively

if Bincount == 0

 Code = 0;

 nDim = 2 ^ (NeighborPoints(1)); %dimensionality of basic LBP

else

 % uniform patterns for neighboring points with 8

 U8File = importdata('UniformLBP8.txt');

 BinNum = U8File(1, 1);

 Code = U8File(2 : end, :);

 nDim = Bincount; %dimensionality of uniform patterns

 clear U8File;

end

% call LBPTOP

Histogram = LBPTOP(VolData, FxRadius, FyRadius, TInterval, NeighborPoints,

TimeLength, BorderLength, bBilinearInterpolation, Bincount, Code);

%%%

%%%%%

function [L,hits,error_rate] = threshold_te(model,test_set,sample_weights,true_labels)

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 146 | 254

146

% TESTING THRESHOLD CLASSIFIER

feat = test_set(:,model.dim);

if(strcmp(model.pos_neg,'pos'))

 ind = (feat>model.min_error_thr)+1;

else

 ind = (feat<model.min_error_thr)+1;

end

 hits = sum(ind==true_labels);

error_rate = sum(sample_weights(ind~=true_labels));

 L = zeros(length(feat),2);

L(ind==1,1) = 1;

L(ind==2,2) = 1;

 %%

function model = adaboostBin(X, t, M)

% Adaboost for binary classification (weak learner: kmeans)

% Input:

% X: d x n data matrix

% t: 1 x n label (0/1)

% Output:

% model: trained model structure

% Written by Mo Chen (sth4nth@gmail.com).

t = t+1;

k = 2;

[d,n] = size(X);

w = ones(1,n)/n;

%M = 100;

Alpha = zeros(1,M);

Theta = zeros(d,k,M);

T = sparse(1:n,t,1,n,k,n); % transform label into indicator matrix

for m = 1:M

 % weak learner

 E = spdiags(w',0,n,n)*T;

 E = E*spdiags(1./sum(E,1)',0,k,k);

 c = X*E;

 [~,y] = min(sqdist(c,X),[],1);

 Theta(:,:,m) = c;

 % adaboost

 I = y~=t;

 e = dot(w,I);

 alpha = log((1-e)/e);

 w = w.*exp(alpha*I);

 w = w/sum(w);

 Alpha(m) = alpha;

end

model.alpha = Alpha;

model.theta = Theta;

%%%

function t = adaboostBinPred(model, X)

% Prediction of binary Adaboost

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 147 | 254

147

% input:

% model: trained model structure

% X: d x n data matrix

% output:

% t: 1 x n prediction

Alpha = model.alpha;

Theta = model.theta;

M = size(Alpha,2);

t = zeros(1,size(X,2));

for m = 1:M

 c = Theta(:,:,m);

 [~,y] = min(sqdist(c,X),[],1);

 y(y==1) = -1;

 y(y==2) = 1;

 t = t+Alpha(m)*y;

end

t = sign(t);

t(t==-1) = 0;

%%%

function blocks = cirInterpSingleRadius(img)

 global lbpPoints;

global lbpRadius;

 [imgH,imgW] = size(img);

 imgNewH = imgH - 2*lbpRadius;

imgNewW = imgW - 2*lbpRadius;

 % the interpolated img

blocks = zeros(lbpPoints,imgNewH*imgNewW);

 radius = lbpRadius;

neighbors = lbpPoints;

spoints = zeros(neighbors,2);

 % Determine the dimensions of the input img.

[ysize,xsize] = size(img);

 % Angle step

angleStep = 2 * pi / neighbors;

for i = 1 : neighbors

 spoints(i,1) = -radius * sin((i-1)*angleStep);

 spoints(i,2) = radius * cos((i-1)*angleStep);

end

 miny = min(spoints(:,1));

maxy = max(spoints(:,1));

minx = min(spoints(:,2));

maxx = max(spoints(:,2));

 % Block size, each LBP code is computed within angleStep block of size bsizey*bsizex

bsizey = ceil(max(maxy,0)) - floor(min(miny,0))+1;

bsizex = ceil(max(maxx,0)) - floor(min(minx,0))+1;

 % Coordinates of origin (0,0) in the block

origy = 1 - floor(min(miny,0));

origx = 1 - floor(min(minx,0));

 % Minimum allowed size for the input img depends

% on the radius of the used LBP operator.

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 148 | 254

148

if(xsize < bsizex || ysize < bsizey)

 error('Too small input img. Should be at least (2*radius+1) x (2*radius+1)');

end

 % Calculate dx and dy;

dx = xsize - bsizex;

dy = ysize - bsizey;

 % Compute the LBP code img

for i = 1 : neighbors

 y = spoints(i,1) + origy;

 x = spoints(i,2) + origx;

 % Calculate floors, ceils and rounds for the x and y.

 fy = floor(y);

 cy = ceil(y);

 ry = round(y);

 fx = floor(x);

 cx = ceil(x);

 rx = round(x);

 % Check if interpolation is needed.

 if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6)

 % Interpolation is not needed, use original datatypes

 imgNew = img(ry:ry+dy,rx:rx+dx);

 blocks(i,:) = imgNew(:)';

 else

 % Interpolation needed, use double type images

 ty = y - fy;

 tx = x - fx;

 % Calculate the interpolation weights.

 w1 = (1 - tx) * (1 - ty);

 w2 = tx * (1 - ty);

 w3 = (1 - tx) * ty ;

 w4 = tx * ty ;

 % Compute interpolated pixel values

 imgNew = w1*img(fy:fy+dy,fx:fx+dx) + w2*img(fy:fy+dy,cx:cx+dx) + ...

 w3*img(cy:cy+dy,fx:fx+dx) + w4*img(cy:cy+dy,cx:cx+dx);

 blocks(i,:) = imgNew(:)';

 end

end % loop neighbors

 end % end of the function

 %%

function blocks = cirInterpSingleRadiusNew(img,lbpPoints,lbpRadius)

 [imgH,imgW] = size(img);

 imgNewH = imgH - 2*lbpRadius;

imgNewW = imgW - 2*lbpRadius;

 % the interpolated img

blocks = zeros(lbpPoints,imgNewH*imgNewW);

 radius = lbpRadius;

neighbors = lbpPoints;

spoints = zeros(neighbors,2);

 % Determine the dimensions of the input img.

[ysize,xsize] = size(img);

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 149 | 254

149

 % Angle step

angleStep = 2 * pi / neighbors;

for i = 1 : neighbors

 spoints(i,1) = -radius * sin((i-1)*angleStep);

 spoints(i,2) = radius * cos((i-1)*angleStep);

end

 miny = min(spoints(:,1));

maxy = max(spoints(:,1));

minx = min(spoints(:,2));

maxx = max(spoints(:,2));

 % Block size, each LBP code is computed within angleStep block of size bsizey*bsizex

bsizey = ceil(max(maxy,0)) - floor(min(miny,0))+1;

bsizex = ceil(max(maxx,0)) - floor(min(minx,0))+1;

 % Coordinates of origin (0,0) in the block

origy = 1 - floor(min(miny,0));

origx = 1 - floor(min(minx,0));

 % Minimum allowed size for the input img depends

% on the radius of the used LBP operator.

if(xsize < bsizex || ysize < bsizey)

 error('Too small input img. Should be at least (2*radius+1) x (2*radius+1)');

end

 % Calculate dx and dy;

dx = xsize - bsizex;

dy = ysize - bsizey;

 % Compute the LBP code img

for i = 1 : neighbors

 y = spoints(i,1) + origy;

 x = spoints(i,2) + origx;

 % Calculate floors, ceils and rounds for the x and y.

 fy = floor(y);

 cy = ceil(y);

 ry = round(y);

 fx = floor(x);

 cx = ceil(x);

 rx = round(x);

 % Check if interpolation is needed.

 if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6)

 % Interpolation is not needed, use original datatypes

 imgNew = img(ry:ry+dy,rx:rx+dx);

 blocks(i,:) = imgNew(:)';

 else

 % Interpolation needed, use double type images

 ty = y - fy;

 tx = x - fx;

 % Calculate the interpolation weights.

 w1 = (1 - tx) * (1 - ty);

 w2 = tx * (1 - ty);

 w3 = (1 - tx) * ty ;

 w4 = tx * ty ;

 % Compute interpolated pixel values

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 150 | 254

150

 imgNew = w1*img(fy:fy+dy,fx:fx+dx) + w2*img(fy:fy+dy,cx:cx+dx) + ...

 w3*img(cy:cy+dy,fx:fx+dx) + w4*img(cy:cy+dy,cx:cx+dx);

 blocks(i,:) = imgNew(:)';

 end

end % loop neighbors

 end % end of the function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function mapping = get_mapping(samples)

 numAllLBPs = 2^samples;

table = 0 : numAllLBPs-1;

newMax = samples + 2; % number of patterns in the resulting LBP code

for i = 0:2^samples - 1

 j = bitset(bitshift(i,1),1,bitget(i,samples)); % rotate left

 numt = sum(bitget(bitxor(i,j),1:samples));

 if numt <= 2

 table(i+1) = sum(bitget(i,1:samples));

 else

 table(i+1) = samples+1;

 end

end

mapping.table = table;

mapping.samples = samples;

mapping.num = newMax;

 end

%%%

--------------------------------Training Stage

global nump1 %number of positive samples 1

global nump2 %number of positive samples 2

global nump3 %number of positive samples 3

global numn %number of negative samples

global path1_1

global path2_1

global path3_1

global path4_1

tic

%% preprocessing of train images

path1 = 'train/rect'; %rectangle training lps

path2 = 'train/slope'; %slope rectangle training lps

path3 = 'train/square'; %square training lps

path4 = 'train/nonlp'; %trainging nonlps

path1_1 = 'realtrain/rect/'; %rectangle training lps

path2_1 = 'realtrain/slope/'; %slope rectangle training lps

path3_1 = 'realtrain/square/'; %square training lps

path4_1 = 'realtrain/nonlp/'; %trainging nonlps

%preprocessed training lps will be saved in 'realtrain' directory

if ~isdir('realtrain')

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 151 | 254

151

 mkdir('realtrain');

 mkdir('realtrain/rect');

 mkdir('realtrain/slope');

 mkdir('realtrain/square');

 mkdir('realtrain/nonlp')

end

 %image files in directories

files1 = dir(fullfile(path1,'*.jpg'));

files2 = dir(fullfile(path2,'*.jpg'));

files3 = dir(fullfile(path3,'*.jpg'));

files4 = dir(fullfile(path4,'*.jpg'));

 %number of positive and negative trainging samples

nump1 = numel(files1); %number of rectangle training lps = positive 1

nump2 = numel(files2); %number of slope training lps = positive 2

nump3 = numel(files3); %number of square training lps = positive 3

numn = numel(files4); %number of nonlps = negative

 %preprocessing of rectangle training lps

for samples = 1 : nump1

 file = fullfile(path1, files1(samples).name);

 X = imread(file);

 X = imresize(X, 0.5);

 M = imgaussfilt(X,0.25);

 M = rgb2gray(M);

 [m n] = size(M);

 p = 20;

 q = 80;

 if p >= m && q >= n

 M_pad = padarray(M, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p < m && q >= n

 m = p;

 M_pad = imresize(M, [m, n]);

 M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p >= m && q < n

 n = q;

 M_pad = imresize(M, [m, n]);

 M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p < m && q < n

 M_pad = imresize(M, [p, q]);

 end

 M = M_pad;

 numofpixels=size(M,1)*size(M,2);

 Y=uint8(zeros(size(M,1),size(M,2)));

 cnts=zeros(256,1);

 probf=zeros(256,1);

 prbc=zeros(256,1);

 cum=zeros(256,1);

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 152 | 254

152

 fin_lc=zeros(256,1);

 for i=1:size(M,1)

 for j=1:size(M,2)

 value=M(i,j);

 cnts(value+1)=cnts(value+1)+1;

 probf(value+1)=cnts(value+1)/numofpixels;

 end

 end

 sum=0;

 n=255;

 for i=1:size(probf)

 sum=sum+cnts(i);

 cum(i)=sum;

 prbc(i)=cum(i)/numofpixels;

 fin_lc(i)=round(prbc(i)*n);

 end

 for i=1:size(M,1)

 for j=1:size(M,2)

 Y(i,j)=fin_lc(M(i,j)+1);

 end

 end

 Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');

 imwrite(Y, strcat(path1_1, num2str(samples), '.jpg'));

end

 %preprocessing of slope rectangle training lps

for samples = 1 : nump2

 file = fullfile(path2, files2(samples).name);

 X = imread(file);

 X = imresize(X, 0.5);

 M = imgaussfilt(X,0.25);

 M = rgb2gray(M);

 [m n] = size(M);

 p = 25;

 q = 70;

 if p >= m && q >= n

 M_pad = padarray(M, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p < m && q >= n

 m = p;

 M_pad = imresize(M, [m, n]);

 M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p >= m && q < n

 n = q;

 M_pad = imresize(M, [m, n]);

 M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p < m && q < n

 M_pad = imresize(M, [p, q]);

 end

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 153 | 254

153

 M = M_pad;

 numofpixels=size(M,1)*size(M,2);

 Y=uint8(zeros(size(M,1),size(M,2)));

 cnts=zeros(256,1);

 probf=zeros(256,1);

 prbc=zeros(256,1);

 cum=zeros(256,1);

 fin_lc=zeros(256,1);

 for i=1:size(M,1)

 for j=1:size(M,2)

 value=M(i,j);

 cnts(value+1)=cnts(value+1)+1;

 probf(value+1)=cnts(value+1)/numofpixels;

 end

 end

 sum=0;

 n=255;

 for i=1:size(probf)

 sum=sum+cnts(i);

 cum(i)=sum;

 prbc(i)=cum(i)/numofpixels;

 fin_lc(i)=round(prbc(i)*n);

 end

 for i=1:size(M,1)

 for j=1:size(M,2)

 Y(i,j)=fin_lc(M(i,j)+1);

 end

 end

 Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');

 imwrite(Y, strcat(path2_1, num2str(samples), '.jpg'));

end

 %preprocessing of square training lps

for samples = 1 : nump3

 file = fullfile(path3, files3(samples).name);

 X = imread(file);

 X = imresize(X, 0.5);

 M = imgaussfilt(X,0.25);

 M = rgb2gray(M);

 [m n] = size(M);

 p = 32;

 q = 45;

 if p >= m && q >= n

 M_pad = padarray(M, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p < m && q >= n

 m = p;

 M_pad = imresize(M, [m, n]);

 M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p >= m && q < n

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 154 | 254

154

 n = q;

 M_pad = imresize(M, [m, n]);

 M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p < m && q < n

 M_pad = imresize(M, [p, q]);

 end

 M = M_pad;

 numofpixels=size(M,1)*size(M,2);

 Y=uint8(zeros(size(M,1),size(M,2)));

 cnts=zeros(256,1);

 probf=zeros(256,1);

 prbc=zeros(256,1);

 cum=zeros(256,1);

 fin_lc=zeros(256,1);

 for i=1:size(M,1)

 for j=1:size(M,2)

 value=M(i,j);

 cnts(value+1)=cnts(value+1)+1;

 probf(value+1)=cnts(value+1)/numofpixels;

 end

 end

 sum=0;

 n=255;

 for i=1:size(probf)

 sum=sum+cnts(i);

 cum(i)=sum;

 prbc(i)=cum(i)/numofpixels;

 fin_lc(i)=round(prbc(i)*n);

 end

 for i=1:size(M,1)

 for j=1:size(M,2)

 Y(i,j)=fin_lc(M(i,j)+1);

 end

 end

 Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');

 imwrite(Y, strcat(path3_1, num2str(samples), '.jpg'));

end

 %preprocessing of training nonlps

for samples = 1 : numn

 file = fullfile(path4, files4(samples).name);

 X = imread(file);

 X = imresize(X, 0.5);

 M = imgaussfilt(X,0.25);

 M = rgb2gray(M);

 numofpixels=size(M,1)*size(M,2);

 Y=uint8(zeros(size(M,1),size(M,2)));

 cnts=zeros(256,1);

 probf=zeros(256,1);

 prbc=zeros(256,1);

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 155 | 254

155

 cum=zeros(256,1);

 fin_lc=zeros(256,1);

 for i=1:size(M,1)

 for j=1:size(M,2)

 value=M(i,j);

 cnts(value+1)=cnts(value+1)+1;

 probf(value+1)=cnts(value+1)/numofpixels;

 end

 end

 sum=0;

 n=255;

 for i=1:size(probf)

 sum=sum+cnts(i);

 cum(i)=sum;

 prbc(i)=cum(i)/numofpixels;

 fin_lc(i)=round(prbc(i)*n);

 end

 for i=1:size(M,1)

 for j=1:size(M,2)

 Y(i,j)=fin_lc(M(i,j)+1);

 end

 end

 Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');

 imwrite(Y, strcat(path4_1, num2str(samples), '.jpg'));

end

toc

%%%

--------------------------------Testing stage

global Y1

tic

%import trained model

model1 = load('model1.mat');

model2 = load('model2.mat');

model3 = load('model3.mat');

 if ~isdir('result')

 mkdir('result');

end

if ~isdir('detected')

 mkdir('detected');

 rmdir('detected');

end

if ~isdir('detected')

 mkdir('detected');

end

%% testing

files = dir(fullfile('test','*.jpg'));

for id = 1 : numel(files)

 file = fullfile('test/', files(id).name);

 %preprocessing

 X=imread(file);

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 156 | 254

156

 M = imgaussfilt(X,0.25);

 M = imresize(M,[240, 320]);

 M=rgb2gray(M);

 numofpixels=size(M,1)*size(M,2);

 Y=uint8(zeros(size(M,1),size(M,2)));

 cnts=zeros(256,1);

 probf=zeros(256,1);

 prbc=zeros(256,1);

 cum=zeros(256,1);

 fin_lc=zeros(256,1);

 for i=1:size(M,1)

 for j=1:size(M,2)

 value=M(i,j);

 cnts(value+1)=cnts(value+1)+1;

 probf(value+1)=cnts(value+1)/numofpixels;

 end

 end

 sum=0;

 n=255;

 for i=1:size(probf)

 sum=sum+cnts(i);

 cum(i)=sum;

 prbc(i)=cum(i)/numofpixels;

 fin_lc(i)=round(prbc(i)*n);

 end

 for i=1:size(M,1)

 for j=1:size(M,2)

 Y(i,j)=fin_lc(M(i,j)+1);

 end

 end

 Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');

 W = imresize(Y,[480, 640]);

 lbpRadiusSet = [2 4 6 8];

 lbpPointsSet = [8 8 8 8];

 % selecting mrelbp features from preprocessed test image

 xsum=0;

 ysum=0;

 num = 0;

 px = [];

 py = [];

 px1 = [];

 py1 = [];

 px2 = [];

 py2 = [];

 for i = 95 : 4 : size(Y,1) - 40

 for j = 30 : 24 : size(Y,2) - 120

 Y1 = Y(i:i+19,j:j+79);

 testfeatures1 = [];

 testfeatures2 = [];

 testfeatures3 = [];

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 157 | 254

157

 for idxLbpRadius = 1 : length(lbpRadiusSet)

 lbpRadius = lbpRadiusSet(idxLbpRadius);

 lbpPoints = lbpPointsSet(idxLbpRadius);

 mapping = get_mapping(lbpPoints);

 blockSize = lbpRadius*2+1;

 if idxLbpRadius > 1

 lbpRadiusPre = lbpRadiusSet(idxLbpRadius-1);

 else

 lbpRadiusPre = 0;

 end

 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,1,1);

 testfeatures1 = [testfeatures1 cfmsWithLabels_LBP];

 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,1,2);

 testfeatures2 = [testfeatures2 cfmsWithLabels_LBP];

 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,1,3);

 testfeatures3 = [testfeatures3 cfmsWithLabels_LBP];

 end

 testclass1=adaboostBinPred(model1,testfeatures1');

 testclass2=adaboostBinPred(model2,testfeatures2');

 testclass3=adaboostBinPred(model3,testfeatures3');

 if testclass1 == 1 || testclass2 == 1 || testclass3 == 1

 num = num + 1;

 px = [px i * 2];

 py = [py j * 2];

 result = imcrop(X,[i*2 j*2 250 45]);

 imwrite(result, strcat('detected/', num2str(id), '_cropped_', num2str(num), '.jpg'));

 end

 end

 end

 fh = figure('Name','LP detection','NumberTitle','off');

 subplot(2,1,1);

 imshow(W, 'border', 'tight'); %//show your image

 subplot(2,1,2);

 imshow(X, 'border', 'tight'); %//show improve image

 hold on;

 for i = 1 : length(px)

 rectangle('Position', [py(i) px(i) 250 45], 'EdgeColor', 'g'); %// draw rectangle on image

 frm = getframe(fh); %// get the image+rectangle

 imwrite(frm.cdata, strcat('result/',num2str(id),'.jpg')); %// save to file

 end

 pause(3);

 close(fh);

 disp(strcat('test image ', num2str(id), ' done'));

 disp(strcat('The number of ensemble classifiers is: '));

 num

end

 toc

%%%

global nump1 %number of positive samples 1

global nump2 %number of positive samples 2

 Appendix A Matlab Simulation Code for Chapter 3

P a g e 158 | 254

158

global nump3 %number of positive samples 3

global numn %number of negative samples

 global lbpRadius

global lbpPoints

tic

%% selecting mrelbp features from preprocessed train images

lbpRadiusSet = [2 4 6 8];

lbpPointsSet = [8 8 8 8];

 trainfeatures1 = [];

trainfeatures2 = [];

trainfeatures3 = [];

trainfeatures4 = [];

for idxLbpRadius = 1 : length(lbpRadiusSet)

 lbpRadius = lbpRadiusSet(idxLbpRadius);

 lbpPoints = lbpPointsSet(idxLbpRadius);

 mapping = get_mapping(lbpPoints);

 blockSize = lbpRadius*2+1;

 if idxLbpRadius > 1

 lbpRadiusPre = lbpRadiusSet(idxLbpRadius-1);

 else

 lbpRadiusPre = 0;

 end

 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,1);

 trainfeatures1 = [trainfeatures1 cfmsWithLabels_LBP];

 clear cfmsWithLabels_LBP

 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,2);

 trainfeatures2 = [trainfeatures2 cfmsWithLabels_LBP];

 clear cfmsWithLabels_LBP

 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,3);

 trainfeatures3 = [trainfeatures3 cfmsWithLabels_LBP];

 clear cfmsWithLabels_LBP

 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,4);

 trainfeatures4 = [trainfeatures4 cfmsWithLabels_LBP];

end

 trainfeatures1 = [trainfeatures1; trainfeatures4];

trainfeatures2 = [trainfeatures2; trainfeatures4];

trainfeatures3 = [trainfeatures3; trainfeatures4];

classes1 = zeros(1, 2030);

for i = 1 : 500

 classes1(i) = 1;

end

classes2 = zeros(1, 1607);

for i = 1 : 77

 classes2(i) = 1;

end

classes3 = zeros(1, 1574);

for i = 1 : 44

 classes3(i) = 1;

end

 Appendix A Matlab Simulation Code for Chapter 3 t

r

P a g e 159 | 254

159

--------------------------------Trainned models

model1=adaboostBin(trainfeatures1',classes1,100);

model2=adaboostBin(trainfeatures2',classes2,100);

model3=adaboostBin(trainfeatures3',classes3,100);

 save('model1.mat', '-struct', 'model1');

save('model2.mat', '-struct', 'model2');

save('model3.mat', '-struct', 'model3');

toc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

 APPENDIX B

 Appendix B Matlab Simulation Code for Chapter 4

P a g e 160 | 254

160

Matlab simulation code for Chapter 4

An efficient texture descriptor for the detection of license plates

from vehicle images in difficult conditions

The simulation codes to detect LPs from vehicles images having difficult conditions are

presented. The experiment results were obtained using Matlab programming language version

R2018a.

B

 Appendix B Matlab Simulation Code for Chapter 4 t

r

P a g e 161 254

161

---------------------------------ELM CLASSIFIER-----------------

function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] =

elm(TrainingData_File, TestingData_File, Elm_Type, NumberofHiddenNeurons,

ActivationFunction)

 REGRESSION=0;

CLASSIFIER=1;

 %%%%%%%%%%% Load training dataset

train_data=load(TrainingData_File);

T=train_data(:,1)';

P=train_data(:,2:size(train_data,2))';

clear train_data; % Release raw training data array

 %%%%%%%%%%% Load testing dataset

test_data=load(TestingData_File);

TV.T=test_data(:,1)';

TV.P=test_data(:,2:size(test_data,2))';

clear test_data; % Release raw testing data array

NumberofTrainingData=size(P,2);

NumberofTestingData=size(TV.P,2);

NumberofInputNeurons=size(P,1);

 if Elm_Type~=REGRESSION

 %%%%%%%%%%%% Preprocessing the data of classification

 sorted_target=sort(cat(2,T,TV.T),2);

 label=zeros(1,1); % Find and save in 'label' class label from training

and testing data sets

 label(1,1)=sorted_target(1,1);

 j=1;

 for i = 2:(NumberofTrainingData+NumberofTestingData)

 if sorted_target(1,i) ~= label(1,j)

 j=j+1;

 label(1,j) = sorted_target(1,i);

 end

 end

 number_class=j;

 NumberofOutputNeurons=number_class;

 %%%%%%%%%% Processing the targets of training

 temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData);

 for i = 1:NumberofTrainingData

 for j = 1:number_class

 if label(1,j) == T(1,i)

 break;

 end

 end

 temp_T(j,i)=1;

 end

 T=temp_T*2-1;

 %%%%%%%%%% Processing the targets of testing

 temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData);

 for i = 1:NumberofTestingData

 for j = 1:number_class

 if label(1,j) == TV.T(1,i)

 Appendix B Matlab Simulation Code for Chapter 4

P a g e 162 | 254

162

 break;

 end

 end

 temp_TV_T(j,i)=1;

 end

 TV.T=temp_TV_T*2-1;

 end % end if of Elm_Type

 %%%%%%%%%%% Calculate weights & biases

start_time_train=cputime;

 %%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases

BiasofHiddenNeurons (b_i) of hidden neurons

InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1;

BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1);

tempH=InputWeight*P;

clear P; % Release input of training data

ind=ones(1,NumberofTrainingData);

BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix

BiasofHiddenNeurons to match the demention of H

tempH=tempH+BiasMatrix;

%%%%%%%%%%% Calculate hidden neuron output matrix H

switch lower(ActivationFunction)

 case {'sig','sigmoid'}

 %%%%%%%% Sigmoid

 H = 1 ./ (1 + exp(-tempH));

 case {'sin','sine'}

 %%%%%%%% Sine

 H = sin(tempH);

 case {'hardlim'}

 %%%%%%%% Hard Limit

 H = double(hardlim(tempH));

 case {'tribas'}

 %%%%%%%% Triangular basis function

 H = tribas(tempH);

 case {'radbas'}

 %%%%%%%% Radial basis function

 H = radbas(tempH);

 %%%%%%%% More activation functions can be added here

end

clear tempH; % Release the temparary array for calculation of hidden neuron

output matrix H

 %%%%%%%%%%% Calculate output weights OutputWeight (beta_i)

OutputWeight=pinv(H') * T'

end_time_train=cputime;

TrainingTime=end_time_train-start_time_train % Calculate CPU time (seconds) spent

for training ELM

%%%%%%%%%%% Calculate the training accuracy

Y=(H' * OutputWeight)'; % Y: the actual output of the training data

if Elm_Type == REGRESSION

 Appendix B Matlab Simulation Code for Chapter 4 t

r

P a g e 163 254

163

 TrainingAccuracy=sqrt(mse(T - Y)) % Calculate training accuracy (RMSE) for

regression case

end

clear H;

 %%%%%%%%%%% Calculate the output of testing input

start_time_test=cputime;

tempH_test=InputWeight*TV.P;

clear TV.P; % Release input of testing data

ind=ones(1,NumberofTestingData);

BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix

BiasofHiddenNeurons to match the demention of H

tempH_test=tempH_test + BiasMatrix;

switch lower(ActivationFunction)

 case {'sig','sigmoid'}

 %%%%%%%% Sigmoid

 H_test = 1 ./ (1 + exp(-tempH_test));

 case {'sin','sine'}

 %%%%%%%% Sine

 H_test = sin(tempH_test);

 case {'hardlim'}

 %%%%%%%% Hard Limit

 H_test = hardlim(tempH_test);

 case {'tribas'}

 %%%%%%%% Triangular basis function

 H_test = tribas(tempH_test);

 case {'radbas'}

 %%%%%%%% Radial basis function

 H_test = radbas(tempH_test);

 %%%%%%%% More activation functions can be added here

end

TY=(H_test' * OutputWeight)'; % TY: the actual output of the testing data

end_time_test=cputime;

TestingTime=end_time_test-start_time_test % Calculate CPU time (seconds) spent by

ELM predicting the whole testing data

 if Elm_Type == REGRESSION

 TestingAccuracy=sqrt(mse(TV.T - TY)) % Calculate testing accuracy (RMSE) for

regression case

end

 if Elm_Type == CLASSIFIER

%%%%%%%%%% Calculate training & testing classification accuracy

 MissClassificationRate_Training=0;

 MissClassificationRate_Testing=0;

 for i = 1 : size(T, 2)

 [x, label_index_expected]=max(T(:,i));

 [x, label_index_actual]=max(Y(:,i));

 if label_index_actual~=label_index_expected

 MissClassificationRate_Training=MissClassificationRate_Training+1;

 end

 end

 TrainingAccuracy=1-MissClassificationRate_Training/size(T,2)

 Appendix B Matlab Simulation Code for Chapter 4

P a g e 164 | 254

164

 for i = 1 : size(TV.T, 2)

 [x, label_index_expected]=max(TV.T(:,i));

 [x, label_index_actual]=max(TY(:,i));

 if label_index_actual~=label_index_expected

 MissClassificationRate_Testing=MissClassificationRate_Testing+1;

 end

 end

 TestingAccuracy=1-MissClassificationRate_Testing/size(TV.T,2)

end

%%%

function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy,TY] =

elm_kernel(TrainingData_File, TestingData_File, Elm_Type, Regularization_coefficient,

Kernel_type, Kernel_para)

%%%%%%%%%%% Macro definition

REGRESSION=0;

CLASSIFIER=1;

%%%%%%%%%%% Load training dataset

train_data=load(TrainingData_File);

T=train_data(:,1)';

P=train_data(:,2:size(train_data,2))';

clear train_data; % Release raw training data array

 %%%%%%%%%%% Load testing dataset

test_data=load(TestingData_File);

TV.T=test_data(:,1)';

TV.P=test_data(:,2:size(test_data,2))';

clear test_data; % Release raw testing data array

C = Regularization_coefficient;

NumberofTrainingData=size(P,2);

NumberofTestingData=size(TV.P,2);

if Elm_Type~=REGRESSION

 %%%%%%%%%%%% Preprocessing the data of classification

 sorted_target=sort(cat(2,T,TV.T),2);

 label=zeros(1,1); % Find and save in 'label' class label from training and testing data

sets

 label(1,1)=sorted_target(1,1);

 j=1;

 for i = 2:(NumberofTrainingData+NumberofTestingData)

 if sorted_target(1,i) ~= label(1,j)

 j=j+1;

 label(1,j) = sorted_target(1,i);

 end

 end

 number_class=j;

 NumberofOutputNeurons=number_class;

 %%%%%%%%%% Processing the targets of training

 temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData);

 for i = 1:NumberofTrainingData

 for j = 1:number_class

 if label(1,j) == T(1,i)

 break;

 Appendix B Matlab Simulation Code for Chapter 4 t

r

P a g e 165 254

165

 end

 end

 temp_T(j,i)=1;

 end

 T=temp_T*2-1;

 %%%%%%%%%% Processing the targets of testing

 temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData);

 for i = 1:NumberofTestingData

 for j = 1:number_class

 if label(1,j) == TV.T(1,i)

 break;

 end

 end

 temp_TV_T(j,i)=1;

 end

 TV.T=temp_TV_T*2-1;

 % end if of Elm_Type

end

 %%%%%%%%%%% Training Phase %

tic;

n = size(T,2);

Omega_train = kernel_matrix(P',Kernel_type, Kernel_para);

OutputWeight=((Omega_train+speye(n)/C)\(T'));

TrainingTime=toc

 %%%%%%%%%%% Calculate the training output

Y=(Omega_train * OutputWeight)'; % Y: the actual output of the training data

%%%%%%%%%%% Calculate the output of testing input

tic;

Omega_test = kernel_matrix(P',Kernel_type, Kernel_para,TV.P');

TY=(Omega_test' * OutputWeight)'; % TY: the actual output of the testing

data

TestingTime=toc

 %%%%%%%%%% Calculate training & testing classification accuracy

 if Elm_Type == REGRESSION

%%%%%%%%%% Calculate training & testing accuracy (RMSE) for regression case

 TrainingAccuracy=sqrt(mse(T - Y))

 TestingAccuracy=sqrt(mse(TV.T - TY))

end

 if Elm_Type == CLASSIFIER

%%%%%%%%%% Calculate training & testing classification accuracy

 MissClassificationRate_Training=0;

 MissClassificationRate_Testing=0;

 for i = 1 : size(T, 2)

 [x, label_index_expected]=max(T(:,i));

 [x, label_index_actual]=max(Y(:,i));

 if label_index_actual~=label_index_expected

 MissClassificationRate_Training=MissClassificationRate_Training+1;

 end

 end

 TrainingAccuracy=1-MissClassificationRate_Training/size(T,2)

 Appendix B Matlab Simulation Code for Chapter 4

P a g e 166 | 254

166

 for i = 1 : size(TV.T, 2)

 [x, label_index_expected]=max(TV.T(:,i));

 [x, label_index_actual]=max(TY(:,i));

 if label_index_actual~=label_index_expected

 MissClassificationRate_Testing=MissClassificationRate_Testing+1;

 end

 end

 TestingAccuracy=1-MissClassificationRate_Testing/size(TV.T,2)

end

%%%%%%%%%%%%%%%%%% Kernel Matrix

%%%

 function omega = kernel_matrix(Xtrain,kernel_type, kernel_pars,Xt)

 nb_data = size(Xtrain,1);

if strcmp(kernel_type,'RBF_kernel'),

 if nargin<4,

 XXh = sum(Xtrain.^2,2)*ones(1,nb_data);

 omega = XXh+XXh'-2*(Xtrain*Xtrain');

 omega = exp(-omega./kernel_pars(1));

 else

 XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));

 XXh2 = sum(Xt.^2,2)*ones(1,nb_data);

 omega = XXh1+XXh2' - 2*Xtrain*Xt';

 omega = exp(-omega./kernel_pars(1));

 end

elseif strcmp(kernel_type,'lin_kernel')

 if nargin<4,

 omega = Xtrain*Xtrain';

 else

 omega = Xtrain*Xt';

 end

elseif strcmp(kernel_type,'poly_kernel')

 if nargin<4,

 omega = (Xtrain*Xtrain'+kernel_pars(1)).^kernel_pars(2);

 else

 omega = (Xtrain*Xt'+kernel_pars(1)).^kernel_pars(2);

 end

elseif strcmp(kernel_type,'wav_kernel')

 if nargin<4,

 XXh = sum(Xtrain.^2,2)*ones(1,nb_data);

 omega = XXh+XXh'-2*(Xtrain*Xtrain');

 XXh1 = sum(Xtrain,2)*ones(1,nb_data);

 omega1 = XXh1-XXh1';

 omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1));

 else

 XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));

 XXh2 = sum(Xt.^2,2)*ones(1,nb_data);

 omega = XXh1+XXh2' - 2*(Xtrain*Xt');

 XXh11 = sum(Xtrain,2)*ones(1,size(Xt,1));

 XXh22 = sum(Xt,2)*ones(1,nb_data);

 Appendix B Matlab Simulation Code for Chapter 4 t

r

P a g e 167 254

167

 omega1 = XXh11-XXh22';

 omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1));

 end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] =

elm_MultiOutputRegression(TrainingData_File, TestingData_File, No_of_Output,

NumberofHiddenNeurons, ActivationFunction)

%%%%%%%%%%% Load training dataset

train_data=load(TrainingData_File);

T=train_data(:,1:No_of_Output)';

P=train_data(:,No_of_Output+1:size(train_data,2))';

clear train_data; % Release raw training data array

 %%%%%%%%%%% Load testing dataset

test_data=load(TestingData_File);

TV.T=test_data(:,1:No_of_Output)';

TV.P=test_data(:,No_of_Output+1:size(test_data,2))';

clear test_data; % Release raw testing data array

 NumberofTrainingData=size(P,2);

NumberofTestingData=size(TV.P,2);

NumberofInputNeurons=size(P,1);

 %%%%%%%%%%% Calculate weights & biases

start_time_train=cputime;

 %%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases

BiasofHiddenNeurons (b_i) of hidden neurons

InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1;

BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1);

tempH=InputWeight*P;

clear P; % Release input of training data

ind=ones(1,NumberofTrainingData);

BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix

BiasofHiddenNeurons to match the demention of H

tempH=tempH+BiasMatrix;

%%%%%%%%%%% Calculate hidden neuron output matrix H

switch lower(ActivationFunction)

 case {'sig','sigmoid'}

 %%%%%%%% Sigmoid

 H = 1 ./ (1 + exp(-tempH));

 case {'sin','sine'}

 %%%%%%%% Sine

 H = sin(tempH);

 case {'hardlim'}

 %%%%%%%% Hard Limit

 H = hardlim(tempH);

 %%%%%%%% More activation functions can be added here

end

clear tempH; % Release the temparary array for calculation of

hidden neuron output matrix H

 %%%%%%%%%%% Calculate output weights OutputWeight (beta_i)

OutputWeight=pinv(H') * T';

 Appendix B Matlab Simulation Code for Chapter 4

P a g e 168 | 254

168

end_time_train=cputime;

TrainingTime=end_time_train-start_time_train % Calculate CPU time (seconds) spent

for training ELM

 %%%%%%%%%%% Calculate the training accuracy

Y=(H' * OutputWeight)'; % Y: the actual output of the training data

TrainingAccuracy=sqrt(mse(T - Y)) % Calculate training accuracy (RMSE) for

regression case

clear H;

 %%%%%%%%%%% Calculate the output of testing input

start_time_test=cputime;

tempH_test=InputWeight*TV.P;

clear TV.P; % Release input of testing data

ind=ones(1,NumberofTestingData);

BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix

BiasofHiddenNeurons to match the demention of H

tempH_test=tempH_test + BiasMatrix;

switch lower(ActivationFunction)

 case {'sig','sigmoid'}

 %%%%%%%% Sigmoid

 H_test = 1 ./ (1 + exp(-tempH_test));

 case {'sin','sine'}

 %%%%%%%% Sine

 H_test = sin(tempH_test);

 case {'hardlim'}

 %%%%%%%% Hard Limit

 H_test = hardlim(tempH_test);

 %%%%%%%% More activation functions can be added here

end

TY=(H_test' * OutputWeight)'; % TY: the actual output of the testing data

end_time_test=cputime;

TestingTime=end_time_test-start_time_test % Calculate CPU time (seconds) spent by

ELM predicting the whole testing data

TestingAccuracy=sqrt(mse(TV.T - TY)) % Calculate testing accuracy (RMSE) for

regression case

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [TestingTime, TestingAccuracy, output] = elm_predict(TestingData_File)

 %%%%%%%%%%% Macro definition

REGRESSION=0;

CLASSIFIER=1;

 %%%%%%%%%%% Load testing dataset

test_data=load(TestingData_File);

TV.T=test_data(:,1)';

TV.P=test_data(:,2:size(test_data,2))';

clear test_data; % Release raw testing data array

NumberofTestingData=size(TV.P,2);

load elm_model.mat;

 if Elm_Type~=REGRESSION

 %%%%%%%%%% Processing the targets of testing

 temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData);

 Appendix B Matlab Simulation Code for Chapter 4 t

r

P a g e 169 254

169

 for i = 1:NumberofTestingData

 for j = 1:size(label,2)

 if label(1,j) == TV.T(1,i)

 break;

 end

 end

 temp_TV_T(j,i)=1;

 end

 TV.T=temp_TV_T*2-1;

end % end if of Elm_Type

%%%%%%%%%%% Calculate the output of testing input

start_time_test=cputime;

tempH_test=InputWeight*TV.P;

clear TV.P; % Release input of testing data

ind=ones(1,NumberofTestingData);

BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix

BiasofHiddenNeurons to match the demention of H

tempH_test=tempH_test + BiasMatrix;

switch lower(ActivationFunction)

 case {'sig','sigmoid'}

 %%%%%%%% Sigmoid

 H_test = 1 ./ (1 + exp(-tempH_test));

 case {'sin','sine'}

 %%%%%%%% Sine

 H_test = sin(tempH_test);

 case {'hardlim'}

 %%%%%%%% Hard Limit

 H_test = hardlim(tempH_test);

 %%%%%%%% More activation functions can be added here

end

TY=(H_test' * OutputWeight)'; % TY: the actual output of the testing data

end_time_test=cputime;

TestingTime=end_time_test-start_time_test; % Calculate CPU time (seconds) spent

by ELM predicting the whole testing data

if Elm_Type == REGRESSION

 TestingAccuracy=sqrt(mse(TV.T - TY)); % Calculate testing accuracy (RMSE) for

regression case

 output=TY;

end

if Elm_Type == CLASSIFIER

%%%%%%%%%% Calculate training & testing classification accuracy

 MissClassificationRate_Testing=0;

 for i = 1 : size(TV.T, 2)

 [x, label_index_expected]=max(TV.T(:,i));

 [x, label_index_actual]=max(TY(:,i));

 output(i)=label(label_index_actual);

 Appendix B Matlab Simulation Code for Chapter 4

P a g e 170 | 254

170

 if label_index_actual~=label_index_expected

 MissClassificationRate_Testing=MissClassificationRate_Testing+1;

 end

 end

 TestingAccuracy=1-MissClassificationRate_Testing/NumberofTestingData;

end

 save('elm_output','output');

%%%

function [TrainingTime,TrainingAccuracy] = elm_train(TrainingData_File, Elm_Type,

NumberofHiddenNeurons, ActivationFunction)

 %%%%%%%%%%% Macro definition

REGRESSION=0;

CLASSIFIER=1;

 %%%%%%%%%%% Load training dataset

train_data=load(TrainingData_File);

T=train_data(:,1)';

P=train_data(:,2:size(train_data,2))';

clear train_data; % Release raw training data array

NumberofTrainingData=size(P,2);

NumberofInputNeurons=size(P,1);

if Elm_Type~=REGRESSION

 %%%%%%%%%%%% Preprocessing the data of classification

 sorted_target=sort(T,2);

 label=zeros(1,1); % Find and save in 'label' class label from training

and testing data sets

 label(1,1)=sorted_target(1,1);

 j=1;

 for i = 2:NumberofTrainingData

 if sorted_target(1,i) ~= label(1,j)

 j=j+1;

 label(1,j) = sorted_target(1,i);

 end

 end

 number_class=j;

 NumberofOutputNeurons=number_class;

 %%%%%%%%%% Processing the targets of training

 temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData);

 for i = 1:NumberofTrainingData

 for j = 1:number_class

 if label(1,j) == T(1,i)

 break;

 end

 end

 temp_T(j,i)=1;

 end

 T=temp_T*2-1;

end % end if of Elm_Type

 %%%%%%%%%%% Calculate weights & biases

start_time_train=cputime;

 Appendix B Matlab Simulation Code for Chapter 4 t

r

P a g e 171 254

171

 %%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases

BiasofHiddenNeurons (b_i) of hidden neurons

InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1;

BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1);

tempH=InputWeight*P;

clear P; % Release input of training data

ind=ones(1,NumberofTrainingData);

BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix

BiasofHiddenNeurons to match the demention of H

tempH=tempH+BiasMatrix;

 %%%%%%%%%%% Calculate hidden neuron output matrix H

switch lower(ActivationFunction)

 case {'sig','sigmoid'}

 %%%%%%%% Sigmoid

 H = 1 ./ (1 + exp(-tempH));

 case {'sin','sine'}

 %%%%%%%% Sine

 H = sin(tempH);

 case {'hardlim'}

 %%%%%%%% Hard Limit

 H = hardlim(tempH);

 %%%%%%%% More activation functions can be added here

end

clear tempH; % Release the temparary array for calculation of

hidden neuron output matrix H

 %%%%%%%%%%% Calculate output weights OutputWeight (beta_i)

OutputWeight=pinv(H') * T';

end_time_train=cputime;

TrainingTime=end_time_train-start_time_train % Calculate CPU time (seconds) spent

for training ELM

%%%%%%%%%%% Calculate the training accuracy

Y=(H' * OutputWeight)'; % Y: the actual output of the training data

if Elm_Type == REGRESSION

 TrainingAccuracy=sqrt(mse(T - Y)) % Calculate training accuracy (RMSE) for

regression case

 output=Y;

end

clear H;

if Elm_Type == CLASSIFIER

%%%%%%%%%% Calculate training & testing classification accuracy

 MissClassificationRate_Training=0;

 for i = 1 : size(T, 2)

 [x, label_index_expected]=max(T(:,i));

 [x, label_index_actual]=max(Y(:,i));

 output(i)=label(label_index_actual);

 if label_index_actual~=label_index_expected

 MissClassificationRate_Training=MissClassificationRate_Training+1;

 end

 Appendix B Matlab Simulation Code for Chapter 4

P a g e 172 | 254

172

 end

 TrainingAccuracy=1-MissClassificationRate_Training/NumberofTrainingData

end

if Elm_Type~=REGRESSION

 save('elm_model', 'NumberofInputNeurons', 'NumberofOutputNeurons', 'InputWeight',

'BiasofHiddenNeurons', 'OutputWeight', 'ActivationFunction', 'label', 'Elm_Type');

else

 save('elm_model', 'InputWeight', 'BiasofHiddenNeurons', 'OutputWeight',

'ActivationFunction', 'Elm_Type');

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function blocks = cirInterpSingleRadius(img)

 global lbpPoints;

global lbpRadius;

 [imgH,imgW] = size(img);

 imgNewH = imgH - 2*lbpRadius;

imgNewW = imgW - 2*lbpRadius;

% the interpolated img

blocks = zeros(lbpPoints,imgNewH*imgNewW);

 radius = lbpRadius;

neighbors = lbpPoints;

spoints = zeros(neighbors,2);

 % Determine the dimensions of the input img.

[ysize,xsize] = size(img);

 % Angle step

angleStep = 2 * pi / neighbors;

for i = 1 : neighbors

 spoints(i,1) = -radius * sin((i-1)*angleStep);

 spoints(i,2) = radius * cos((i-1)*angleStep);

end

miny = min(spoints(:,1));

maxy = max(spoints(:,1));

minx = min(spoints(:,2));

maxx = max(spoints(:,2));

 % Block size, each LBP code is computed within angleStep block of size bsizey*bsizex

bsizey = ceil(max(maxy,0)) - floor(min(miny,0))+1;

bsizex = ceil(max(maxx,0)) - floor(min(minx,0))+1;

 % Coordinates of origin (0,0) in the block

origy = 1 - floor(min(miny,0));

origx = 1 - floor(min(minx,0));

 % Minimum allowed size for the input img depends

% on the radius of the used LBP operator.

if(xsize < bsizex || ysize < bsizey)

 error('Too small input img. Should be at least (2*radius+1) x (2*radius+1)');

end

% Calculate dx and dy;

dx = xsize - bsizex;

dy = ysize - bsizey;

 % Compute the LBP code img

 Appendix B Matlab Simulation Code for Chapter 4 t

r

P a g e 173 254

173

for i = 1 : neighbors

 y = spoints(i,1) + origy;

 x = spoints(i,2) + origx;

 % Calculate floors, ceils and rounds for the x and y.

 fy = floor(y);

 cy = ceil(y);

 ry = round(y);

 fx = floor(x);

 cx = ceil(x);

 rx = round(x);

 % Check if interpolation is needed.

 if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6)

 % Interpolation is not needed, use original datatypes

 imgNew = img(ry:ry+dy,rx:rx+dx);

 blocks(i,:) = imgNew(:)';

 else

 % Interpolation needed, use double type images

 ty = y - fy;

 tx = x - fx;

 % Calculate the interpolation weights.

 w1 = (1 - tx) * (1 - ty);

 w2 = tx * (1 - ty);

 w3 = (1 - tx) * ty ;

 w4 = tx * ty ;

 % Compute interpolated pixel values

 imgNew = w1*img(fy:fy+dy,fx:fx+dx) + w2*img(fy:fy+dy,cx:cx+dx) + ...

 w3*img(cy:cy+dy,fx:fx+dx) + w4*img(cy:cy+dy,cx:cx+dx);

 blocks(i,:) = imgNew(:)';

 end

end % loop neighbors

end % end of the function

 %%

function blocks = cirInterpSingleRadiusNew(img,lbpPoints,lbpRadius)

 [imgH,imgW] = size(img);

 imgNewH = imgH - 2*lbpRadius;

imgNewW = imgW - 2*lbpRadius;

% the interpolated img

blocks = zeros(lbpPoints,imgNewH*imgNewW);

radius = lbpRadius;

neighbors = lbpPoints;

spoints = zeros(neighbors,2);

% Determine the dimensions of the input img.

[ysize,xsize] = size(img);

 % Angle step

angleStep = 2 * pi / neighbors;

for i = 1 : neighbors

 spoints(i,1) = -radius * sin((i-1)*angleStep);

 spoints(i,2) = radius * cos((i-1)*angleStep);

end

 miny = min(spoints(:,1));

 Appendix B Matlab Simulation Code for Chapter 4

P a g e 174 | 254

174

maxy = max(spoints(:,1));

minx = min(spoints(:,2));

maxx = max(spoints(:,2));

 % Block size, each LBP code is computed within angleStep block of size bsizey*bsizex

bsizey = ceil(max(maxy,0)) - floor(min(miny,0))+1;

bsizex = ceil(max(maxx,0)) - floor(min(minx,0))+1;

 % Coordinates of origin (0,0) in the block

origy = 1 - floor(min(miny,0));

origx = 1 - floor(min(minx,0));

 % Minimum allowed size for the input img depends

% on the radius of the used LBP operator.

if(xsize < bsizex || ysize < bsizey)

 error('Too small input img. Should be at least (2*radius+1) x (2*radius+1)');

end

 % Calculate dx and dy;

dx = xsize - bsizex;

dy = ysize - bsizey;

% Compute the LBP code img

for i = 1 : neighbors

 y = spoints(i,1) + origy;

 x = spoints(i,2) + origx;

 % Calculate floors, ceils and rounds for the x and y.

 fy = floor(y);

 cy = ceil(y);

 ry = round(y);

 fx = floor(x);

 cx = ceil(x);

 rx = round(x);

 % Check if interpolation is needed.

 if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6)

 % Interpolation is not needed, use original datatypes

 imgNew = img(ry:ry+dy,rx:rx+dx);

 blocks(i,:) = imgNew(:)';

 else

 % Interpolation needed, use double type images

 ty = y - fy;

 tx = x - fx;

 % Calculate the interpolation weights.

 w1 = (1 - tx) * (1 - ty);

 w2 = tx * (1 - ty);

 w3 = (1 - tx) * ty ;

 w4 = tx * ty ;

 % Compute interpolated pixel values

 imgNew = w1*img(fy:fy+dy,fx:fx+dx) + w2*img(fy:fy+dy,cx:cx+dx) + ...

 w3*img(cy:cy+dy,fx:fx+dx) + w4*img(cy:cy+dy,cx:cx+dx);

 blocks(i,:) = imgNew(:)';

 end

end % loop neighbors

 end % end of the function

%%%

 Appendix B Matlab Simulation Code for Chapter 4 t

r

P a g e 175 254

175

function mapping = get_mapping(samples)

numAllLBPs = 2^samples;

table = 0 : numAllLBPs-1;

newMax = samples + 2; % number of patterns in the resulting LBP code

for i = 0:2^samples - 1

 j = bitset(bitshift(i,1),1,bitget(i,samples)); % rotate left

 numt = sum(bitget(bitxor(i,j),1:samples));

 if numt <= 2

 table(i+1) = sum(bitget(i,1:samples));

 else

 table(i+1) = samples+1;

 end

end

mapping.table = table;

mapping.samples = samples;

mapping.num = newMax;

 end

%%%

function cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,check,setnum)

 global nump %number of positive samples

global numn %number of negative samples

 global pathp

global pathn

 global lbpRadius

global lbpPoints

global Y1

 numLBPbins = mapping.num;

 if check == 0

 if setnum == 1

 samplenum = nump;

 path = pathp;

 elseif setnum == 2

 samplenum = numn;

 path = pathn;

 end

 cfmsWithLabels_MRELBP_CINIRD =

zeros(samplenum,(numLBPbins*numLBPbins*2));

 for idxSample = 1 : samplenum

 Joint_CINIRD = zeros(numLBPbins,numLBPbins,2);

 img = imread(strcat(path, num2str(idxSample), '.jpg'));

 img = samp_prepro(img);

 imgExt = padarray(img,[1 1],'symmetric','both');

 imgblks = im2col(imgExt,[3 3],'sliding');

 a = median(imgblks);

 b = reshape(a,size(img));

 CImg = b(lbpRadius+1:end-lbpRadius,lbpRadius+1:end-lbpRadius);

 CImg = CImg(:) - mean(CImg(:));

 CImg(CImg >= 0) = 2;

 CImg(CImg < 0) = 1;

 if lbpRadius == 2

 Appendix B Matlab Simulation Code for Chapter 4

P a g e 176 | 254

176

 filWin = 3;

 halfWin = (filWin-1)/2;

 imgExt = padarray(img,[halfWin halfWin],'symmetric','both');

 imgblks = im2col(imgExt,[filWin filWin],'sliding');

 imgMedian = median(imgblks);

 imgCurr = reshape(imgMedian,size(img));

 NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image');

 NILBPImage = NILBPImage(:);

 histNI = hist(NILBPImage,0:(numLBPbins-1));

 NILBPImage = NILBPImage + 1;

 RDLBPImage =

RDLBP_Image_SmallestRadiusOnly(b,imgCurr,lbpRadius,lbpPoints,mapping,'image');

 RDLBPImage = RDLBPImage(:);

 histRD = hist(RDLBPImage,0:(numLBPbins-1));

 RDLBPImage = RDLBPImage + 1;

 else

 if mod(lbpRadius,2) == 0

 filWin = lbpRadius + 1;

 else

 filWin = lbpRadius;

 end

 halfWin = (filWin-1)/2;

 imgExt = padarray(img,[halfWin halfWin],'symmetric','both');

 imgblks = im2col(imgExt,[filWin filWin],'sliding');

 imgMedian = median(imgblks);

 imgCurr = reshape(imgMedian,size(img));

 NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image');

 NILBPImage = NILBPImage(:);

 histNI = hist(NILBPImage,0:(numLBPbins-1));

 NILBPImage = NILBPImage + 1;

 if mod(lbpRadiusPre,2) == 0

 filWin = lbpRadiusPre + 1;

 else

 filWin = lbpRadiusPre;

 end

 halfWin = (filWin-1)/2;

 imgExt = padarray(img,[halfWin halfWin],'symmetric','both');

 imgblks = im2col(imgExt,[filWin filWin],'sliding');

 imgMedian = median(imgblks);

 imgPre = reshape(imgMedian,size(img));

 RDLBPImage =

NewRDLBP_Image(imgCurr,imgPre,lbpRadius,lbpRadiusPre,lbpPoints,mapping,'image');

 RDLBPImage = RDLBPImage(:);

 histRD = hist(RDLBPImage,0:(numLBPbins-1));

 RDLBPImage = RDLBPImage + 1;

 end

 for i = 1 : length(NILBPImage)

 Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) =

Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) + 1;

 end

 Appendix B Matlab Simulation Code for Chapter 4 t

r

P a g e 177 254

177

 cfmsWithLabels_MRELBP_CINIRD(idxSample,:) = Joint_CINIRD(:)';

 end

else

 cfmsWithLabels_MRELBP_CINIRD = zeros(1,(numLBPbins*numLBPbins*2));

 Joint_CINIRD = zeros(numLBPbins,numLBPbins,2);

 img = samp_prepro(Y1);

 imgExt = padarray(img,[1 1],'symmetric','both');

 imgblks = im2col(imgExt,[3 3],'sliding');

 a = median(imgblks);

 b = reshape(a,size(img));

 CImg = b(lbpRadius+1:end-lbpRadius,lbpRadius+1:end-lbpRadius);

 CImg = CImg(:) - mean(CImg(:));

 CImg(CImg >= 0) = 2;

 CImg(CImg < 0) = 1;

 if lbpRadius == 2

 filWin = 3;

 halfWin = (filWin-1)/2;

 imgExt = padarray(img,[halfWin halfWin],'symmetric','both');

 imgblks = im2col(imgExt,[filWin filWin],'sliding');

 imgMedian = median(imgblks);

 imgCurr = reshape(imgMedian,size(img));

 NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image');

 NILBPImage = NILBPImage(:);

 histNI = hist(NILBPImage,0:(numLBPbins-1));

 NILBPImage = NILBPImage + 1;

 RDLBPImage =

RDLBP_Image_SmallestRadiusOnly(b,imgCurr,lbpRadius,lbpPoints,mapping,'image');

 RDLBPImage = RDLBPImage(:);

 histRD = hist(RDLBPImage,0:(numLBPbins-1));

 RDLBPImage = RDLBPImage + 1;

 else

 if mod(lbpRadius,2) == 0

 filWin = lbpRadius + 1;

 else

 filWin = lbpRadius;

 end

 halfWin = (filWin-1)/2;

 imgExt = padarray(img,[halfWin halfWin],'symmetric','both');

 imgblks = im2col(imgExt,[filWin filWin],'sliding');

 % each column of imgblks represents a feature vector

 imgMedian = median(imgblks);

 imgCurr = reshape(imgMedian,size(img));

 NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image');

 NILBPImage = NILBPImage(:);

 histNI = hist(NILBPImage,0:(numLBPbins-1));

 NILBPImage = NILBPImage + 1;

 if mod(lbpRadiusPre,2) == 0

 filWin = lbpRadiusPre + 1;

 else

 filWin = lbpRadiusPre;

 Appendix B Matlab Simulation Code for Chapter 4

P a g e 178 | 254

178

 end

 halfWin = (filWin-1)/2;

 imgExt = padarray(img,[halfWin halfWin],'symmetric','both');

 imgblks = im2col(imgExt,[filWin filWin],'sliding');

 imgMedian = median(imgblks);

 imgPre = reshape(imgMedian,size(img));

 RDLBPImage =

NewRDLBP_Image(imgCurr,imgPre,lbpRadius,lbpRadiusPre,lbpPoints,mapping,'image');

 RDLBPImage = RDLBPImage(:);

 histRD = hist(RDLBPImage,0:(numLBPbins-1));

 RDLBPImage = RDLBPImage + 1;

 end

 for i = 1 : length(NILBPImage)

 Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) =

Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) + 1;

 end

 cfmsWithLabels_MRELBP_CINIRD = Joint_CINIRD(:)';

end

cfmsWithLabels_LBP = cfmsWithLabels_MRELBP_CINIRD;

clear cfmsWithLabels_MRELBP_CINIRD;

end

%%%

function result =

NewRDLBP_Image(img,imgPre,lbpRadius,lbpRadiusPre,lbpPoints,mapping,mode)

blocks1 = cirInterpSingleRadiusNew(img,lbpPoints,lbpRadius);

blocks1 = blocks1';

 imgPre = imgPre(lbpRadius-lbpRadiusPre+1:end-(lbpRadius-lbpRadiusPre),lbpRadius-

lbpRadiusPre+1:end-(lbpRadius-lbpRadiusPre));

blocks2 = cirInterpSingleRadiusNew(imgPre,lbpPoints,lbpRadiusPre);

blocks2 = blocks2';

 radialDiff = blocks1 - blocks2;

radialDiff(radialDiff >= 0) = 1;

radialDiff(radialDiff < 0) = 0;

 bins = 2^lbpPoints;

weight = 2.^(0:lbpPoints-1);

radialDiff = radialDiff .* repmat(weight,size(radialDiff,1),1);

% mapping = getmapping(lbpPoints,'riu2');

 radialDiff = sum(radialDiff,2);

result = radialDiff;

% Apply mapping if it is defined

if isstruct(mapping)

 bins = mapping.num;

 for i = 1:size(result,1)

 for j = 1:size(result,2)

 result(i,j) = mapping.table(result(i,j)+1);

 end

 end

end

 if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh'))

 % Return with LBP histogram if mode equals 'hist'.

 Appendix B Matlab Simulation Code for Chapter 4 t

r

P a g e 179 254

179

 result = hist(result(:),0:(bins-1));

 if (strcmp(mode,'nh'))

 result = result/sum(result);

 end

else

 % Otherwise return a matrix of unsigned integers

 if ((bins-1) <= intmax('uint8'))

 result = uint8(result);

 elseif ((bins-1) <= intmax('uint16'))

 result = uint16(result);

 else

 result = uint32(result);

 end

end

%%%

function result = NILBP_Image(img,lbpPoints,mapping,mode)

blocks = cirInterpSingleRadius(img);

blocks = blocks';

blocks = blocks - repmat(mean(blocks,2),1,size(blocks,2));

blocks(blocks >= 0) = 1;

blocks(blocks < 0) = 0;

 weight = 2.^(0:lbpPoints-1);

blocks = blocks .* repmat(weight,size(blocks,1),1);

blocks = sum(blocks,2);

result = blocks;

% Apply mapping if it is defined

if isstruct(mapping)

 bins = mapping.num;

 for i = 1:size(result,1)

 for j = 1:size(result,2)

 result(i,j) = mapping.table(result(i,j)+1);

 end

 end

end

if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh'))

 % Return with LBP histogram if mode equals 'hist'.

 result = hist(result(:),0:(bins-1));

 if (strcmp(mode,'nh'))

 result = result/sum(result);

 end

else

 % Otherwise return a matrix of unsigned integers

 % result = reshape(result,size(imgTemp));

 if ((bins-1) <= intmax('uint8'))

 result = uint8(result);

 elseif ((bins-1) <= intmax('uint16'))

 result = uint16(result);

 else

 result = uint32(result);

 Appendix B Matlab Simulation Code for Chapter 4

P a g e 180 | 254

180

 end

end

 %%

function result =

RDLBP_Image_SmallestRadiusOnly(imgCenSmooth,img,lbpRadius,lbpPoints,mapping,mod

e)

blocks1 = cirInterpSingleRadiusNew(img,lbpPoints,lbpRadius);

blocks1 = blocks1';

imgTemp = imgCenSmooth(lbpRadius+1:end-lbpRadius,lbpRadius+1:end-lbpRadius);

blocks2 = repmat(imgTemp(:),1,lbpPoints);

 radialDiff = blocks1 - blocks2;

 radialDiff(radialDiff >= 0) = 1;

radialDiff(radialDiff < 0) = 0;

 bins = 2^lbpPoints;

weight = 2.^(0:lbpPoints-1);

radialDiff = radialDiff .* repmat(weight,size(radialDiff,1),1);

% mapping = getmapping(lbpPoints,'riu2');

 radialDiff = sum(radialDiff,2);

result = radialDiff;

% Apply mapping if it is defined

if isstruct(mapping)

 bins = mapping.num;

 for i = 1:size(result,1)

 for j = 1:size(result,2)

 result(i,j) = mapping.table(result(i,j)+1);

 end

 end

end

 if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh'))

 % Return with LBP histogram if mode equals 'hist'.

 result = hist(result(:),0:(bins-1));

 if (strcmp(mode,'nh'))

 result = result/sum(result);

 end

else

 % Otherwise return a matrix of unsigned integers

 if ((bins-1) <= intmax('uint8'))

 result = uint8(result);

 elseif ((bins-1) <= intmax('uint16'))

 result = uint16(result);

 else

 result = uint32(result);

 end

end

%%%

function sampleIn = samp_prepro(sampleIn)

% image sample preprocessing

sampleIn = double(sampleIn);

sampleIn = sampleIn - mean(sampleIn(:));

 Appendix B Matlab Simulation Code for Chapter 4 t

r

P a g e 181 254

181

% sampleIn = sampleIn / sqrt(mean(mean(sampleIn .^ 2)));

sampleIn = sampleIn / std(sampleIn(:));

 %%

function D = sqdist(X1, X2)

D = bsxfun(@plus,dot(X2,X2,1),dot(X1,X1,1)')-2*(X1'*X2);

%%%

%%%%%

global nump %number of positive samples

global numn %number of negative samples

 global pathp

global pathn

 %% preprocessing of train images

tic

path1 = 'train/lp'; %training lps

path2 = 'train/nonlp'; %trainging nonlps

 pathp = 'realtrain/lp/'; %rectangle training lps

pathn = 'realtrain/nonlp/'; %trainging nonlps

 %preprocessed training lps will be saved in 'realtrain' directory

if ~isdir('realtrain')

 mkdir('realtrain');

 mkdir('realtrain/lp');

 mkdir('realtrain/nonlp')

end

 %image files in directories

files1 = dir(fullfile(path1,'*.jpg'));

files2 = dir(fullfile(path2,'*.jpg'));

%number of positive and negative trainging samples

nump = numel(files1); %number of training lps = positive

numn = numel(files2); %number of nonlps = negative

 %preprocessing of training lps

for samples = 1 : nump

 file = fullfile(path1, files1(samples).name);

 X = imread(file);

 X = imresize(X, 0.5);

 M = imgaussfilt(X,0.25);

 M = rgb2gray(M);

 [m n] = size(M);

 p = 25;

 q = 100;

 if p >= m && q >= n

 M_pad = padarray(M, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p < m && q >= n

 m = p;

 M_pad = imresize(M, [m, n]);

 M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p >= m && q < n

 n = q;

 Appendix B Matlab Simulation Code for Chapter 4

P a g e 182 | 254

182

 M_pad = imresize(M, [m, n]);

 M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p < m && q < n

 M_pad = imresize(M, [p, q]);

 end

 M = M_pad;

 numofpixels=size(M,1)*size(M,2);

 Y=uint8(zeros(size(M,1),size(M,2)));

 cnts=zeros(256,1);

 probf=zeros(256,1);

 prbc=zeros(256,1);

 cum=zeros(256,1);

 fin_lc=zeros(256,1);

 for i=1:size(M,1)

 for j=1:size(M,2)

 value=M(i,j);

 cnts(value+1)=cnts(value+1)+1;

 probf(value+1)=cnts(value+1)/numofpixels;

 end

 end

 sum=0;

 n=255;

size(probf)

 sum=sum+cnts(i);

 cum(i)=sum;

 prbc(i)=cum(i)/numofpixels;

 fin_lc(i)=round(prbc(i)*n);

 end

 for i=1:size(M,1)

 for j=1:size(M,2)

 Y(i,j)=fin_lc(M(i,j)+1);

 end

 end

 Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');

 imwrite(Y, strcat(pathp, num2str(samples), '.jpg'));

end

 %preprocessing of training nonlps

for samples = 1 : numn

 file = fullfile(path2, files2(samples).name);

 X = imread(file);

 X = imresize(X, 0.5);

 M = imgaussfilt(X,0.25);

 M = rgb2gray(M);

 numofpixels=size(M,1)*size(M,2);

 Y=uint8(zeros(size(M,1),size(M,2)));

 cnts=zeros(256,1);

 probf=zeros(256,1);

 prbc=zeros(256,1);

 cum=zeros(256,1);

 Appendix B Matlab Simulation Code for Chapter 4 t

r

P a g e 183 254

183

 fin_lc=zeros(256,1);

 for i=1:size(M,1)

 for j=1:size(M,2)

 value=M(i,j);

 cnts(value+1)=cnts(value+1)+1;

 probf(value+1)=cnts(value+1)/numofpixels;

 end

 end

 sum=0;

 n=255;

 for i=1:size(probf)

 sum=sum+cnts(i);

 cum(i)=sum;

 prbc(i)=cum(i)/numofpixels;

 fin_lc(i)=round(prbc(i)*n);

 end

 for i=1:size(M,1)

 for j=1:size(M,2)

 Y(i,j)=fin_lc(M(i,j)+1);

 end

 end

 Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');

 imwrite(Y, strcat(pathn, num2str(samples), '.jpg'));

end

toc

%%%

global Y1

tic

 if ~isdir('result')

 mkdir('result');

end

if ~isdir('detected')

 mkdir('detected');

end

 %% testing

files = dir(fullfile('test','*.jpg'));

for id = 1 : numel(files)

 file = fullfile('test/', files(id).name);

 %preprocessing

 X=imread(file);

 M = imgaussfilt(X,0.25);

 M = imresize(M,[240, 320]);

 M=rgb2gray(M);

 numofpixels=size(M,1)*size(M,2);

 Y=uint8(zeros(size(M,1),size(M,2)));

 cnts=zeros(256,1);

 probf=zeros(256,1);

 prbc=zeros(256,1);

 cum=zeros(256,1);

 fin_lc=zeros(256,1);

 Appendix B Matlab Simulation Code for Chapter 4

P a g e 184 | 254

184

 for i=1:size(M,1)

 for j=1:size(M,2)

 value=M(i,j);

 cnts(value+1)=cnts(value+1)+1;

 probf(value+1)=cnts(value+1)/numofpixels;

 end

 end

 sum=0;

 n=255;

 for i=1:size(probf)

 sum=sum+cnts(i);

 cum(i)=sum;

 prbc(i)=cum(i)/numofpixels;

 fin_lc(i)=round(prbc(i)*n);

 end

 for i=1:size(M,1)

 for j=1:size(M,2)

 Y(i,j)=fin_lc(M(i,j)+1);

 end

 end

 Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');

 lbpRadiusSet = [2 4 6 8];

 lbpPointsSet = [8 8 8 8];

 % selecting mrelbp features from preprocessed test image

 xsum=0;

 ysum=0;

 num = 0;

 px = [];

 py = [];

 px1 = [];

 py1 = [];

 px2 = [];

 py2 = [];

 for i = 100 : 5 : size(Y,1) - 70

 for j = 50 : 20 : size(Y,2) - 160

 Y1 = Y(i:i+24,j:j+99);

 testfeatures1 = [];

 for idxLbpRadius = 1 : length(lbpRadiusSet)

 lbpRadius = lbpRadiusSet(idxLbpRadius);

 lbpPoints = lbpPointsSet(idxLbpRadius);

 mapping = get_mapping(lbpPoints);

 blockSize = lbpRadius*2+1;

 if idxLbpRadius > 1

 lbpRadiusPre = lbpRadiusSet(idxLbpRadius-1);

 else

 lbpRadiusPre = 0;

 end

 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,1,1);

 testfeatures1 = [testfeatures1 cfmsWithLabels_LBP];

 Appendix B Matlab Simulation Code for Chapter 4 t

r

P a g e 185 254

185

 end

 feature = testfeatures1 / max(testfeatures1);

 dlmwrite('testdata',[1 feature], ' ');

 [TestingTime, TestingAccuracy, output]= elm_predict('testdata');

 if output == 1

 num = num + 1;

 px = [px i * 2];

 py = [py j * 2];

% result = X(i*2:i*2+44,j*2:j*2+199);

% result = imresize(result, [45,200]);

 result = imcrop(X,[i*2 j*2 200 50]);

 %imwrite(result, strcat('detected/', num2str(id), '_cropped_', num2str(num), '.jpg'));

 end

 end

 end

 fh = figure;

 imshow(X, 'border', 'tight'); %//show your image

 hold on;

 for i = 1 : length(px)

 rectangle('Position', [py(i) px(i) 200 50], 'EdgeColor', 'g'); %// draw rectangle on image

 frm = getframe(fh); %// get the image+rectangle

 imwrite(frm.cdata, strcat('result/',num2str(id),'.jpg')); %// save to file

 end

 pause(3);

 close(fh);

 disp(strcat('test image ', num2str(id), ' done'));

end

toc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

addpath('mrelbp');

addpath('elmbase');

 global nump %number of positive samples

global numn %number of negative samples

 global lbpRadius

global lbpPoints

%% selecting mlelbp features from preprocessed train images

tic

lbpRadiusSet = [1 2.5 4];

lbpPointsSet = [8 12 16];

 trainfeatures1 = [];

trainfeatures2 = [];

for idxLbpRadius = 1 : length(lbpRadiusSet)

 lbpRadius = lbpRadiusSet(idxLbpRadius);

 lbpPoints = lbpPointsSet(idxLbpRadius);

 mapping = get_mapping(lbpPoints);

 Appendix B Matlab Simulation Code for Chapter 4

P a g e 186 | 254

186

 blockSize = lbpRadius*2+1;

 if idxLbpRadius > 1

 lbpRadiusPre = lbpRadiusSet(idxLbpRadius-1);

 else

 lbpRadiusPre = 0;

 end

 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,1);

 trainfeatures1 = [trainfeatures1 cfmsWithLabels_LBP];

 clear cfmsWithLabels_LBP

 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,2);

 trainfeatures2 = [trainfeatures2 cfmsWithLabels_LBP];

 clear cfmsWithLabels_LBP

end

 trainfeatures1 = [trainfeatures1; trainfeatures2];

shape = size(trainfeatures1);

feature = [];

for i = 1 : shape(1)

 feature = [feature; trainfeatures1(i,:)/max(trainfeatures1(i,:))];

end

classes = zeros(nump + numn, 1);

for i = 1 : nump

 classes(i) = 1;

end

 M = [classes feature];

dlmwrite('traindata',M, ' ');

 elm_train('traindata', 1, 550, 'sig');

toc

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 Appendix C Matlab Simulation Code for Chapter 5

P a g e 187 | 254

187

A Matlab simulation code for Chapter 5

 Developing learning-based preprocessing methods for detecting

complicated licence plates

The simulation codes to detect LPs from complicated vehicles images are presented. The

experiment results were obtained using Matlab programming language version R2018a.

C

 Appendix C Matlab Simulation Code for Chapter 5 t

r

P a g e 188 | 254

188

%Image descriptor based on Histogram of Orientated Gradients and local binary pattern

 function H=HOG(Im)

nwin_x=3;%set here the number of HOG windows per bound box

nwin_y=3;

B=9;%set here the number of histogram bins

[L,C]=size(Im); % L num of lines ; C num of columns

H=zeros(nwin_x*nwin_y*B,1); % column vector with zeros

m=sqrt(L/2);

if C==1 % if num of columns==1

 Im=im_recover(Im,m,2*m);%verify the size of image, e.g. 25x50

 L=2*m;

 C=m;

end

Im=double(Im);

step_x=floor(C/(nwin_x+1));

step_y=floor(L/(nwin_y+1));

cont=0;

hx = [-1,0,1];

hy = -hx';

grad_xr = imfilter(double(Im),hx);

grad_yu = imfilter(double(Im),hy);

angles=atan2(grad_yu,grad_xr);

magnit=((grad_yu.^2)+(grad_xr.^2)).^.5;

for n=0:nwin_y-1

 for m=0:nwin_x-1

 cont=cont+1;

 angles2=angles(n*step_y+1:(n+2)*step_y,m*step_x+1:(m+2)*step_x);

 magnit2=magnit(n*step_y+1:(n+2)*step_y,m*step_x+1:(m+2)*step_x);

 v_angles=angles2(:);

 v_magnit=magnit2(:);

 K=max(size(v_angles));

 %assembling the histogram with 9 bins (range of 20 degrees per bin)

 bin=0;

 H2=zeros(B,1);

 for ang_lim=-pi+2*pi/B:2*pi/B:pi

 bin=bin+1;

 for k=1:K

 if v_angles(k)<ang_lim

 v_angles(k)=100;

 H2(bin)=H2(bin)+v_magnit(k);

 end

 end

 end

 H2=H2/(norm(H2)+0.01);

 H((cont-1)*B+1:cont*B,1)=H2;

 end

end

 Appendix C Matlab Simulation Code for Chapter 5

P a g e 189 | 254

189

%%%

function [feature] = hog_feature_vector(im)

% Convert RGB iamge to grayscale

if size(im,3)==3

 im=rgb2gray(im);

end

im=double(im);

 rows=size(im,1);

cols=size(im,2);

Ix=im; %Basic Matrix assignment

Iy=im; %Basic Matrix assignment

 % Gradients in X and Y direction. Iy is the gradient in X direction and Iy

% is the gradient in Y direction

for i=1:rows-2

 Iy(i,:)=(im(i,:)-im(i+2,:));

end

for i=1:cols-2

 Ix(:,i)=(im(:,i)-im(:,i+2));

end

gauss=fspecial('gaussian',8); %% Initialized a gaussian filter with sigma=0.5 * block width.

 angle=atand(Ix./Iy); % Matrix containing the angles of each edge gradient

angle=imadd(angle,180); %Angles in range (0,180)

magnitude=sqrt(Ix.^2 + Iy.^2);

angle(isnan(angle))=0;

magnitude(isnan(magnitude))=0;

feature=[]; %initialized the feature vector

 % Iterations for Blocks

for i = 0: rows/8 - 2

 for j= 0: cols/8 -2

 mag_patch = magnitude(8*i+1 : 8*i+16 , 8*j+1 : 8*j+16);

 %mag_patch = imfilter(mag_patch,gauss);

 ang_patch = angle(8*i+1 : 8*i+16 , 8*j+1 : 8*j+16);

 block_feature=[];

 %Iterations for cells in a block

 for x= 0:1

 for y= 0:1

 angleA =ang_patch(8*x+1:8*x+8, 8*y+1:8*y+8);

 magA =mag_patch(8*x+1:8*x+8, 8*y+1:8*y+8);

 histr =zeros(1,9);

 %Iterations for pixels in one cell

 for p=1:8

 for q=1:8

 alpha= angleA(p,q);

 % Binning Process (Bi-Linear Interpolation)

 if alpha>10 && alpha<=30

 histr(1)=histr(1)+ magA(p,q)*(30-alpha)/20;

 histr(2)=histr(2)+ magA(p,q)*(alpha-10)/20;

 elseif alpha>30 && alpha<=50

 histr(2)=histr(2)+ magA(p,q)*(50-alpha)/20;

 Appendix C Matlab Simulation Code for Chapter 5 t

r

P a g e 190 | 254

190

 histr(3)=histr(3)+ magA(p,q)*(alpha-30)/20;

 elseif alpha>50 && alpha<=70

 histr(3)=histr(3)+ magA(p,q)*(70-alpha)/20;

 histr(4)=histr(4)+ magA(p,q)*(alpha-50)/20;

 elseif alpha>70 && alpha<=90

 histr(4)=histr(4)+ magA(p,q)*(90-alpha)/20;

 histr(5)=histr(5)+ magA(p,q)*(alpha-70)/20;

 elseif alpha>90 && alpha<=110

 histr(5)=histr(5)+ magA(p,q)*(110-alpha)/20;

 histr(6)=histr(6)+ magA(p,q)*(alpha-90)/20;

 elseif alpha>110 && alpha<=130

 histr(6)=histr(6)+ magA(p,q)*(130-alpha)/20;

 histr(7)=histr(7)+ magA(p,q)*(alpha-110)/20;

 elseif alpha>130 && alpha<=150

 histr(7)=histr(7)+ magA(p,q)*(150-alpha)/20;

 histr(8)=histr(8)+ magA(p,q)*(alpha-130)/20;

 elseif alpha>150 && alpha<=170

 histr(8)=histr(8)+ magA(p,q)*(170-alpha)/20;

 histr(9)=histr(9)+ magA(p,q)*(alpha-150)/20;

 elseif alpha>=0 && alpha<=10

 histr(1)=histr(1)+ magA(p,q)*(alpha+10)/20;

 histr(9)=histr(9)+ magA(p,q)*(10-alpha)/20;

 elseif alpha>170 && alpha<=180

 histr(9)=histr(9)+ magA(p,q)*(190-alpha)/20;

 histr(1)=histr(1)+ magA(p,q)*(alpha-170)/20;

 end

 end

 end

 block_feature=[block_feature histr]; % Concatenation of Four histograms to form

one block feature

 end

 end

 % Normalize the values in the block using L1-Norm

 block_feature=block_feature/sqrt(norm(block_feature)^2+.01);

 feature=[feature block_feature]; %Features concatenation

 end

end

 feature(isnan(feature))=0; %Removing Infinitiy values

 % Normalization of the feature vector using L2-Norm

feature=feature/sqrt(norm(feature)^2+.001);

for z=1:length(feature)

 if feature(z)>0.2

 feature(z)=0.2;

 end

end

feature=feature/sqrt(norm(feature)^2+.001);

 % toc;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tic

global nump %number of positive samples

 Appendix C Matlab Simulation Code for Chapter 5

P a g e 191 | 254

191

global numn %number of negative samples

global pathp

global pathn

global flags

%% preprocessing of train images

path1 = 'train/lp'; %training lps

path2 = 'train/nonlp'; %trainging nonlps

pathp = 'realtrain/lp/'; %rectangle training lps

pathn = 'realtrain/nonlp/'; %trainging nonlps

%preprocessed training lps will be saved in 'realtrain' directory

if ~isdir('realtrain')

 mkdir('realtrain');

 mkdir('realtrain/lp');

 mkdir('realtrain/nonlp')

end

%image files in directories

files1 = dir(fullfile(path1,'*.jpg'));

files2 = dir(fullfile(path2,'*.jpg'));

%number of positive and negative trainging samples

nump = numel(files1); %number of training lps = positive

numn = numel(files2); %number of nonlps = negative

flags = zeros(nump,1);

%preprocessing of training lps

for samples = 1 : nump

 file = fullfile(path1, files1(samples).name);

 X = imread(file);

% X = imresize(X, 0.5);

 M = imgaussfilt(X,0.25);

% M = imresize(M, [60 250]);

 M = rgb2gray(M);

 [m n] = size(M);

 if m < 37.5

 p = 25;

 q = 100;

 flags(samples) = 1;

 elseif m >= 37.5 && m < 62.5

 p = 50;

 q = 200;

 flags(samples) = 2;

 elseif m >= 62.5

 p = 75;

 q = 300;

 flags(samples) = 3;

 end

 %M = imresize(M, [p, q]);

 if p >= m && q >= n

 M_pad = padarray(M, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p < m && q >= n

 m = p;

 Appendix C Matlab Simulation Code for Chapter 5 t

r

P a g e 192 | 254

192

 M_pad = imresize(M, [m, n]);

 M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p >= m && q < n

 n = q;

 M_pad = imresize(M, [m, n]);

 M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p < m && q < n

 M_pad = imresize(M, [p, q]);

 end

 M = M_pad;

 numofpixels=size(M,1)*size(M,2);

 Y=uint8(zeros(size(M,1),size(M,2)));

 cnts=zeros(256,1);

 probf=zeros(256,1);

 prbc=zeros(256,1);

 cum=zeros(256,1);

 fin_lc=zeros(256,1);

 for i=1:size(M,1)

 for j=1:size(M,2)

 value=M(i,j);

 cnts(value+1)=cnts(value+1)+1;

 probf(value+1)=cnts(value+1)/numofpixels;

 end

 end

 sum=0;

 n=255;

 for i=1:size(probf)

 sum=sum+cnts(i);

 cum(i)=sum;

 prbc(i)=cum(i)/numofpixels;

 fin_lc(i)=round(prbc(i)*n);

 end

 for i=1:size(M,1)

 for j=1:size(M,2)

 Y(i,j)=fin_lc(M(i,j)+1);

 end

 end

 Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');

 imwrite(Y, strcat(pathp, num2str(samples), '.jpg'));

end

 %preprocessing of training nonlps

for samples = 1 : numn

 file = fullfile(path2, files2(samples).name);

 X = imread(file);

 M = imgaussfilt(X,0.25);

 %M = imresize(M, [60 250]);

 M = rgb2gray(M);

 numofpixels=size(M,1)*size(M,2);

 Appendix C Matlab Simulation Code for Chapter 5

P a g e 193 | 254

193

 Y=uint8(zeros(size(M,1),size(M,2)));

 cnts=zeros(256,1);

 probf=zeros(256,1);

 prbc=zeros(256,1);

 cum=zeros(256,1);

 fin_lc=zeros(256,1);

 for i=1:size(M,1)

 for j=1:size(M,2)

 value=M(i,j);

 cnts(value+1)=cnts(value+1)+1;

 probf(value+1)=cnts(value+1)/numofpixels;

 end

 end

 sum=0;

 n=255;

 for i=1:size(probf)

 sum=sum+cnts(i);

 cum(i)=sum;

 prbc(i)=cum(i)/numofpixels;

 fin_lc(i)=round(prbc(i)*n);

 end

 for i=1:size(M,1)

 for j=1:size(M,2)

 Y(i,j)=fin_lc(M(i,j)+1);

 end

 end

 Y = adapthisteq(Y,'clipLimit',0.01,'Distribution','rayleigh');

 imwrite(Y, strcat(pathn, num2str(samples), '.jpg'));

end

toc

%%%

if ~isdir('result')

 mkdir('result');

end

if ~isdir('detected')

 mkdir('detected');

end

 % load model

model1 = loadCompactModel('model1');

model2 = loadCompactModel('model2');

model3 = loadCompactModel('model3');

%% testing

files = dir(fullfile('test','*.png'));

for id = 1 : numel(files)

 file = fullfile('test/', files(id).name);

%preprocessing

 X=imread(file);

 M = imgaussfilt(X,0.25);

 M=rgb2gray(M);

 Appendix C Matlab Simulation Code for Chapter 5 t

r

P a g e 194 | 254

194

 numofpixels=size(M,1)*size(M,2);

 Y=uint8(zeros(size(M,1),size(M,2)));

 cnts=zeros(256,1);

 probf=zeros(256,1);

 prbc=zeros(256,1);

 cum=zeros(256,1);

 fin_lc=zeros(256,1);

 for i=1:size(M,1)

 for j=1:size(M,2)

 value=M(i,j);

 cnts(value+1)=cnts(value+1)+1;

 probf(value+1)=cnts(value+1)/numofpixels;

 end

 end

 sum=0;

 n=255;

 for i=1:size(probf)

 sum=sum+cnts(i);

 cum(i)=sum;

 prbc(i)=cum(i)/numofpixels;

 fin_lc(i)=round(prbc(i)*n);

 end

 for i=1:size(M,1)

 for j=1:size(M,2)

 Y(i,j)=fin_lc(M(i,j)+1);

 end

 end

 Y = adapthisteq(Y,'clipLimit',0.05,'Distribution','rayleigh');

 % selecting hog features from preprocessed test image

 num = 0;

 px1 = [];

 py1 = [];

 px2 = [];

 py2 = [];

 px3 = [];

 py3 = [];

 for i = 200 : 10 : size(Y,1) - 100

 for j = 50 : 10 : size(Y,2) - 350

 tic

 Y2 = Y(i:i+ 74,j:j+299);

 Y1 = Y(i:i+ 49,j:j+199);

 Y3 = Y(i:i+24,j:j+99);

 label1 = predict(model2,[hog_feature_vector(Y1) extractLBPFeatures(Y1)]);

 label2 = predict(model3,[hog_feature_vector(Y2) extractLBPFeatures(Y2)]);

 label3 = predict(model1,[hog_feature_vector(Y3) extractLBPFeatures(Y3)]);

 %label2 = predict(model1,hog_feature_vector(Y1));

 testfeatures1 = [hog_feature_vector(Y1) extractLBPFeatures(Y1)];

 testfeatures2 = [hog_feature_vector(Y2) extractLBPFeatures(Y2)];

 testfeatures23 = [hog_feature_vector(Y3) extractLBPFeatures(Y3)];

 a = toc;

 Appendix C Matlab Simulation Code for Chapter 5

P a g e 195 | 254

195

 w = w + a;

 if label2 == 1 || label1==1 || label3==1

 px2 = [px2 i];

 py2 = [py2 j];

 continue;

 end

 end

 end

 fh = figure;

 imshow(X, 'border', 'tight'); %//show your image

 hold on;

 px21 = unique(px2);

 py21 = [];

 for i = 1 : length(px21)

 temp = [];

 for j = 1 : length(px2)

 if px21(i) == px2(j)

 temp = [temp; py2(j)];

 end

 end

 py21 = [py21; round(mean(temp))];

 end

 for i = 1 : length(px21)

 if i > 1

 if abs(px21(i)-px21(i-1)) > 30

 rectangle('Position', [py21(i)-10 px21(i) 250 50], 'EdgeColor', 'g'); %// draw

rectangle on image

 frm = getframe(fh); %// get the image+rectangle

 imwrite(frm.cdata, strcat('result/',num2str(id),'.jpg')); %// save to file

 end

 else

 rectangle('Position', [py21(i)-10 px21(i) 250 50], 'EdgeColor', 'g'); %// draw rectangle

on image

 frm = getframe(fh); %// get the image+rectangle

 imwrite(frm.cdata, strcat('result/',num2str(id),'.jpg')); %// save to file

 end

 end

 pause(3);

 close(fh);

 disp(strcat('test image ', num2str(id), ' done'));

 end

%%%tic

global nump %number of positive samples

global numn %number of negative samples

 global pathp

global pathn

 global flags

 clc

 %image files in directories

 Appendix C Matlab Simulation Code for Chapter 5 t

r

P a g e 196 | 254

196

files1 = dir(fullfile(pathp,'*.jpg'));

files2 = dir(fullfile(pathn,'*.jpg'));

 trainfeatures1 = [];

trainfeatures2 = [];

trainfeatures3 = [];

trainfeatures4_1 = [];

trainfeatures4_2 = [];

trainfeatures4_3 = [];

 n1 = 0;

n2 = 0;

n3 = 0;

for i = 1 : nump

 %file = fullfile(pathp, files1(i).name);

 file = fullfile(pathp, strcat(num2str(i), '.jpg'));

 X = imread(file);

 if flags(i) == 1

 trainfeatures1 =[trainfeatures1; hog_feature_vector(X) extractLBPFeatures(X)];

 n1 = n1 + 1;

 elseif flags(i) == 2

 trainfeatures2 =[trainfeatures2; hog_feature_vector(X) extractLBPFeatures(X)];

 n2 = n2 + 1;

 elseif flags(i) == 3

 trainfeatures3 =[trainfeatures3; hog_feature_vector(X) extractLBPFeatures(X)];

 n3 = n3 + 1;

 end

end

for i = 1 : numn

 file = fullfile(pathn, files2(i).name);

 X = imread(file);

 X = imresize(X, [25, 100]);

 trainfeatures4_1 = [trainfeatures4_1; hog_feature_vector(X) extractLBPFeatures(X)];

end

for i = 1 : numn

 file = fullfile(pathn, files2(i).name);

 X = imread(file);

 X = imresize(X, [50, 200]);

 trainfeatures4_2 = [trainfeatures4_2; hog_feature_vector(X) extractLBPFeatures(X)];

end

for i = 1 : numn

 file = fullfile(pathn, files2(i).name);

 X = imread(file);

 X = imresize(X, [75, 300]);

 trainfeatures4_3 = [trainfeatures4_3; hog_feature_vector(X) extractLBPFeatures(X)];

end

trainfeatures1 = [trainfeatures1; trainfeatures4_1];

trainfeatures2 = [trainfeatures2; trainfeatures4_2];

trainfeatures3 = [trainfeatures3; trainfeatures4_3];

classes1 = zeros(n1 + numn, 1);

for i = 1 : n1

 Appendix C Matlab Simulation Code for Chapter 5

P a g e 197 | 254

197

 classes1(i) = 1;

end

classes2 = zeros(n2 + numn, 1);

for i = 1 : n2

 classes2(i) = 1;

end

 classes3 = zeros(n3 + numn, 1);

for i = 1 : n3

 classes3(i) = 1;

end

Mdl1 = fitcsvm(trainfeatures1,classes1,'Crossval','on','KFold',5);

saveCompactModel(Mdl1.Trained(Y. Han & 10.1109/EIT.2015.7293386),'model1');

Mdl2 = fitcsvm(trainfeatures2,classes2,'Crossval','on','KFold',5);

saveCompactModel(Mdl2.Trained(Y. Han & 10.1109/EIT.2015.7293386),'model2');

Mdl3 = fitcsvm(trainfeatures3,classes3,'Crossval','on','KFold',5);

saveCompactModel(Mdl3.Trained(Y. Han & 10.1109/EIT.2015.7293386),'model3');

toc

%%

%%%

 Appendix D Matlab Simulation Code for Chapter 6

P a g e 198 | 254

198

Matlab simulation code for Chapter 6

Distorted vehicle licence plates detection using hybrid feature

descriptors

The simulation codes for detecting LPs from distorted vehicles images are presented. The

experiment results were obtained using Matlab programming language version R2018a

D

 Appendix D Matlab Simulation Code for Chapter 6 t

r

P a g e 199 | 254

199

----------- Convert training and testing vehicles images from “.jpg” to “.png”---------

global nump

folder = 'train\lp or test\';

vet_files=dir(fullfile(folder, '*.jpg'));

nump = numel(vet_files);

for i=1:nump

 inputFullFileName = fullfile(folder, vet_files(i).name);

 outputFullFileName = strrep(inputFullFileName, '.jpg', '.png');

 thisImage = imread(inputFullFileName);

 imwrite(thisImage, outputFullFileName);

end

--

-----------------------------Exterme learning machine classifier------------------------------

function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] =

elm(TrainingData_File, TestingData_File, Elm_Type, NumberofHiddenNeurons,

ActivationFunction)

 %%%%%%%%%%% Macro definition

REGRESSION=0;

CLASSIFIER=1;

 %%%%%%%%%%% Load training dataset

train_data=load(TrainingData_File);

T=train_data(:,1)';

P=train_data(:,2:size(train_data,2))';

clear train_data; % Release raw training data array

 %%%%%%%%%%% Load testing dataset

test_data=load(TestingData_File);

TV.T=test_data(:,1)';

TV.P=test_data(:,2:size(test_data,2))';

clear test_data; % Release raw testing data array

 NumberofTrainingData=size(P,2);

NumberofTestingData=size(TV.P,2);

NumberofInputNeurons=size(P,1);

 if Elm_Type~=REGRESSION

 %%%%%%%%%%%% Pre-processing the data of classification

 sorted_target=sort(cat(2,T,TV.T),2);

 label=zeros(1,1); %Find and save in 'label' class label from training and testing data

sets

 label(1,1)=sorted_target(1,1);

 j=1;

 for i = 2:(NumberofTrainingData+NumberofTestingData)

 if sorted_target(1,i) ~= label(1,j)

 j=j+1;

 label(1,j) = sorted_target(1,i);

 end

 end

 number_class=j;

 NumberofOutputNeurons=number_class;

 %%%%%%%%%% Processing the targets of training

 temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData);

 Appendix D Matlab Simulation Code for Chapter 6

P a g e 200 | 254

200

 for i = 1:NumberofTrainingData

 for j = 1:number_class

 if label(1,j) == T(1,i)

 break;

 end

 end

 temp_T(j,i)=1;

 end

 T=temp_T*2-1;

 %%%%%%%%%% Processing the targets of testing

 temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData);

 for i = 1:NumberofTestingData

 for j = 1:number_class

 if label(1,j) == TV.T(1,i)

 break;

 end

 end

 temp_TV_T(j,i)=1;

 end

 TV.T=temp_TV_T*2-1;

end % end if of Elm_Type

%%%%%%%%%%% Calculate weights & biases

start_time_train=cputime;

%%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases

BiasofHiddenNeurons (b_i) of hidden neurons

InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1;

BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1);

tempH=InputWeight*P;

clear P; % Release input of training data

ind=ones(1,NumberofTrainingData);

BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix

BiasofHiddenNeurons to match the demention of H

tempH=tempH+BiasMatrix;

%%%%%%%%%%% Calculate hidden neuron output matrix H

switch lower(ActivationFunction)

 case {'sig','sigmoid'}

 %%%%%%%% Sigmoid

 H = 1 ./ (1 + exp(-tempH));

 case {'sin','sine'}

 %%%%%%%% Sine

 H = sin(tempH);

 case {'hardlim'}

 %%%%%%%% Hard Limit

 H = double(hardlim(tempH));

 case {'tribas'}

 %%%%%%%% Triangular basis function

 H = tribas(tempH);

 case {'radbas'}

 %%%%%%%% Radial basis function

 Appendix D Matlab Simulation Code for Chapter 6 t

r

P a g e 201 | 254

201

 H = radbas(tempH);

 %%%%%%%% More activation functions can be added here

end

clear tempH; % Release the temparary array for calculation of hidden neuron

output matrix H

%%%%%%%%%%% Calculate output weights OutputWeight (beta_i)

OutputWeight=pinv(H') * T'; % implementation without regularization

end_time_train=cputime;

TrainingTime=end_time_train-start_time_train % Calculate CPU time (seconds) spent

for training ELM

%%%%%%%%%%% Calculate the training accuracy

Y=(H' * OutputWeight)'; % Y: the actual output of the training data

if Elm_Type == REGRESSION

 TrainingAccuracy=sqrt(mse(T - Y)) % Calculate training accuracy (RMSE) for

regression case

end

clear H;

%%%%%%%%%%% Calculate the output of testing input

start_time_test=cputime;

tempH_test=InputWeight*TV.P;

clear TV.P; % Release input of testing data

ind=ones(1,NumberofTestingData);

BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix

BiasofHiddenNeurons to match the demention of H

tempH_test=tempH_test + BiasMatrix;

switch lower(ActivationFunction)

 case {'sig','sigmoid'}

 %%%%%%%% Sigmoid

 H_test = 1 ./ (1 + exp(-tempH_test));

 case {'sin','sine'}

 %%%%%%%% Sine

 H_test = sin(tempH_test);

 case {'hardlim'}

 %%%%%%%% Hard Limit

 H_test = hardlim(tempH_test);

 case {'tribas'}

 %%%%%%%% Triangular basis function

 H_test = tribas(tempH_test);

 case {'radbas'}

 %%%%%%%% Radial basis function

 H_test = radbas(tempH_test);

 %%%%%%%% More activation functions can be added here

end

TY=(H_test' * OutputWeight)'; % TY: the actual output of the testing data

end_time_test=cputime;

TestingTime=end_time_test-start_time_test % Calculate CPU time (seconds) spent by

ELM predicting the whole testing data

if Elm_Type == REGRESSION

 Appendix D Matlab Simulation Code for Chapter 6

P a g e 202 | 254

202

 TestingAccuracy=sqrt(mse(TV.T - TY)) % Calculate testing accuracy (RMSE) for

regression case

end

 if Elm_Type == CLASSIFIER

%%%%%%%%%% Calculate training & testing classification accuracy

 MissClassificationRate_Training=0;

 MissClassificationRate_Testing=0;

 for i = 1 : size(T, 2)

 [x, label_index_expected]=max(T(:,i));

 [x, label_index_actual]=max(Y(:,i));

 if label_index_actual~=label_index_expected

 MissClassificationRate_Training=MissClassificationRate_Training+1;

 end

 end

 TrainingAccuracy=1-MissClassificationRate_Training/size(T,2)

 for i = 1 : size(TV.T, 2)

 [x, label_index_expected]=max(TV.T(:,i));

 [x, label_index_actual]=max(TY(:,i));

 if label_index_actual~=label_index_expected

 MissClassificationRate_Testing=MissClassificationRate_Testing+1;

 end

 end

 TestingAccuracy=1-MissClassificationRate_Testing/size(TV.T,2)

end

-----------------------Kernal_ELM classifier---

function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy,TY] =

elm_kernel(TrainingData_File, TestingData_File, Elm_Type, Regularization_coefficient,

Kernel_type, Kernel_para)

REGRESSION=0;

CLASSIFIER=1;

%%%%%%%%%%% Load training dataset

train_data=load(TrainingData_File);

T=train_data(:,1)';

P=train_data(:,2:size(train_data,2))';

clear train_data; % Release raw training data array

 %%%%%%%%%%% Load testing dataset

test_data=load(TestingData_File);

TV.T=test_data(:,1)';

TV.P=test_data(:,2:size(test_data,2))';

clear test_data; % Release raw testing data array

 C = Regularization_coefficient;

NumberofTrainingData=size(P,2);

NumberofTestingData=size(TV.P,2);

 if Elm_Type~=REGRESSION

 %%%%%%%%%%%% Preprocessing the data of classification

 sorted_target=sort(cat(2,T,TV.T),2);

 label=zeros(1,1); % Find and save in 'label' class label from training and testing

data sets

 label(1,1)=sorted_target(1,1);

 Appendix D Matlab Simulation Code for Chapter 6 t

r

P a g e 203 | 254

203

 j=1;

 for i = 2:(NumberofTrainingData+NumberofTestingData)

 if sorted_target(1,i) ~= label(1,j)

 j=j+1;

 label(1,j) = sorted_target(1,i);

 end

 end

 number_class=j;

 NumberofOutputNeurons=number_class;

 %%%%%%%%%% Processing the targets of training

 temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData);

 for i = 1:NumberofTrainingData

 for j = 1:number_class

 if label(1,j) == T(1,i)

 break;

 end

 end

 temp_T(j,i)=1;

 end

 T=temp_T*2-1;

 %%%%%%%%%% Processing the targets of testing

 temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData);

 for i = 1:NumberofTestingData

 for j = 1:number_class

 if label(1,j) == TV.T(1,i)

 break;

 end

 end

 temp_TV_T(j,i)=1;

 end

 TV.T=temp_TV_T*2-1;

 % end if of Elm_Type

end

%%%%%%%%%%% Training Phase

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tic;

n = size(T,2);

Omega_train = kernel_matrix(P',Kernel_type, Kernel_para);

OutputWeight=((Omega_train+speye(n)/C)\(T'));

TrainingTime=toc

 %%%%%%%%%%% Calculate the training output

Y=(Omega_train * OutputWeight)'; % Y: the actual output of the training

data

%%%%%%%%%%% Calculate the output of testing input

tic;

Omega_test = kernel_matrix(P',Kernel_type, Kernel_para,TV.P');

TY=(Omega_test' * OutputWeight)'; % TY: the actual output of the testing

data

TestingTime=toc

 %%%%%%%%%% Calculate training & testing classification accuracy

 Appendix D Matlab Simulation Code for Chapter 6

P a g e 204 | 254

204

 if Elm_Type == REGRESSION

%%%%%%%%%% Calculate training & testing accuracy (RMSE) for regression case

 TrainingAccuracy=sqrt(mse(T - Y))

 TestingAccuracy=sqrt(mse(TV.T - TY))

end

if Elm_Type == CLASSIFIER

%%%%%%%%%% Calculate training & testing classification accuracy

 MissClassificationRate_Training=0;

 MissClassificationRate_Testing=0;

 for i = 1 : size(T, 2)

 [x, label_index_expected]=max(T(:,i));

 [x, label_index_actual]=max(Y(:,i));

 if label_index_actual~=label_index_expected

 MissClassificationRate_Training=MissClassificationRate_Training+1;

 end

 end

 TrainingAccuracy=1-MissClassificationRate_Training/size(T,2)

 for i = 1 : size(TV.T, 2)

 [x, label_index_expected]=max(TV.T(:,i));

 [x, label_index_actual]=max(TY(:,i));

 if label_index_actual~=label_index_expected

 MissClassificationRate_Testing=MissClassificationRate_Testing+1;

 end

 end

 TestingAccuracy=1-MissClassificationRate_Testing/size(TV.T,2)

end

 %%%%%%%%%%%%%%%%%% Kernel Matrix

 function omega = kernel_matrix(Xtrain,kernel_type, kernel_pars,Xt)

 nb_data = size(Xtrain,1);

 if strcmp(kernel_type,'RBF_kernel'),

 if nargin<4,

 XXh = sum(Xtrain.^2,2)*ones(1,nb_data);

 omega = XXh+XXh'-2*(Xtrain*Xtrain');

 omega = exp(-omega./kernel_pars(1));

 else

 XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));

 XXh2 = sum(Xt.^2,2)*ones(1,nb_data);

 omega = XXh1+XXh2' - 2*Xtrain*Xt';

 omega = exp(-omega./kernel_pars(1));

 end

 elseif strcmp(kernel_type,'lin_kernel')

 if nargin<4,

 omega = Xtrain*Xtrain';

 else

 omega = Xtrain*Xt';

 end

 elseif strcmp(kernel_type,'poly_kernel')

 if nargin<4,

 omega = (Xtrain*Xtrain'+kernel_pars(1)).^kernel_pars(2);

 else

 Appendix D Matlab Simulation Code for Chapter 6 t

r

P a g e 205 | 254

205

 omega = (Xtrain*Xt'+kernel_pars(1)).^kernel_pars(2);

 end

 elseif strcmp(kernel_type,'wav_kernel')

 if nargin<4,

 XXh = sum(Xtrain.^2,2)*ones(1,nb_data);

 omega = XXh+XXh'-2*(Xtrain*Xtrain');

 XXh1 = sum(Xtrain,2)*ones(1,nb_data);

omega1 = XXh1-XXh1';

omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1));

 else

XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));

XXh2 = sum(Xt.^2,2)*ones(1,nb_data);

omega = XXh1+XXh2' - 2*(Xtrain*Xt');

XXh11 = sum(Xtrain,2)*ones(1,size(Xt,1));

XXh22 = sum(Xt,2)*ones(1,nb_data);

omega1 = XXh11-XXh22';

omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1));

 end

end

------------------------------------ELM_Multi-output-Regression------------------------

function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] =

elm_MultiOutputRegression(TrainingData_File, TestingData_File, No_of_Output,

NumberofHiddenNeurons, ActivationFunction)

 %%%%%%%%%%% Load training dataset

train_data=load(TrainingData_File);

T=train_data(:,1:No_of_Output)';

P=train_data(:,No_of_Output+1:size(train_data,2))';

clear train_data; % Release raw training data array

 %%%%%%%%%%% Load testing dataset

test_data=load(TestingData_File);

TV.T=test_data(:,1:No_of_Output)';

TV.P=test_data(:,No_of_Output+1:size(test_data,2))';

clear test_data; % Release raw testing data array

 NumberofTrainingData=size(P,2);

NumberofTestingData=size(TV.P,2);

NumberofInputNeurons=size(P,1);

 %%%%%%%%%%% Calculate weights & biases

start_time_train=cputime;

 %%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases

BiasofHiddenNeurons (b_i) of hidden neurons

InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1;

BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1);

tempH=InputWeight*P;

clear P; % Release input of training data

ind=ones(1,NumberofTrainingData);

BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix

BiasofHiddenNeurons to match the demention of H

tempH=tempH+BiasMatrix;

 %%%%%%%%%%% Calculate hidden neuron output matrix H

 Appendix D Matlab Simulation Code for Chapter 6

P a g e 206 | 254

206

switch lower(ActivationFunction)

 case {'sig','sigmoid'}

 %%%%%%%% Sigmoid

 H = 1 ./ (1 + exp(-tempH));

 case {'sin','sine'}

 %%%%%%%% Sine

 H = sin(tempH);

 case {'hardlim'}

 %%%%%%%% Hard Limit

 H = hardlim(tempH);

 %%%%%%%% More activation functions can be added here

end

clear tempH; % Release the temparary array for calculation of

hidden neuron output matrix H

 %%%%%%%%%%% Calculate output weights OutputWeight (beta_i)

OutputWeight=pinv(H') * T';

end_time_train=cputime;

TrainingTime=end_time_train-start_time_train % Calculate CPU time (seconds) spent

for training ELM

 %%%%%%%%%%% Calculate the training accuracy

Y=(H' * OutputWeight)'; % Y: the actual output of the training data

TrainingAccuracy=sqrt(mse(T - Y)) % Calculate training accuracy (RMSE) for

regression case

clear H;

%%%%%%%%%%% Calculate the output of testing input

start_time_test=cputime;

tempH_test=InputWeight*TV.P;

clear TV.P; % Release input of testing data

ind=ones(1,NumberofTestingData);

BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix

BiasofHiddenNeurons to match the demention of H

tempH_test=tempH_test + BiasMatrix;

switch lower(ActivationFunction)

 case {'sig','sigmoid'}

 %%%%%%%% Sigmoid

 H_test = 1 ./ (1 + exp(-tempH_test));

 case {'sin','sine'}

 %%%%%%%% Sine

 H_test = sin(tempH_test);

 case {'hardlim'}

 %%%%%%%% Hard Limit

 H_test = hardlim(tempH_test);

 %%%%%%%% More activation functions can be added here

end

TY=(H_test' * OutputWeight)'; % TY: the actual output of the testing data

end_time_test=cputime;

TestingTime=end_time_test-start_time_test % Calculate CPU time (seconds) spent by

ELM predicting the whole testing data

TestingAccuracy=sqrt(mse(TV.T - TY)) % Calculate testing accuracy (RMSE) for

regression case

 Appendix D Matlab Simulation Code for Chapter 6 t

r

P a g e 207 | 254

207

------------------------------ELM_Predict procedure-------------------------------------

function [TestingTime, TestingAccuracy, output] = elm_predict(TestingData_File)

 REGRESSION=0;

CLASSIFIER=1;

 %%%%%%%%%%% Load testing dataset

test_data=load(TestingData_File);

TV.T=test_data(:,1)';

TV.P=test_data(:,2:size(test_data,2))';

clear test_data; % Release raw testing data array

 NumberofTestingData=size(TV.P,2);

 load elm_model.mat;

 if Elm_Type~=REGRESSION

 %%%%%%%%%% Processing the targets of testing

 temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData);

 for i = 1:NumberofTestingData

 for j = 1:size(label,2)

 if label(1,j) == TV.T(1,i)

 break;

 end

 end

 temp_TV_T(j,i)=1;

 end

 TV.T=temp_TV_T*2-1;

end % end if of Elm_Type

%%%%%%%%%%% Calculate the output of testing input

start_time_test=cputime;

tempH_test=InputWeight*TV.P;

clear TV.P; % Release input of testing data

ind=ones(1,NumberofTestingData);

BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix

BiasofHiddenNeurons to match the demention of H

tempH_test=tempH_test + BiasMatrix;

switch lower(ActivationFunction)

 case {'sig','sigmoid'}

 %%%%%%%% Sigmoid

 H_test = 1 ./ (1 + exp(-tempH_test));

 case {'sin','sine'}

 %%%%%%%% Sine

 H_test = sin(tempH_test);

 case {'hardlim'}

 %%%%%%%% Hard Limit

 H_test = hardlim(tempH_test);

 %%%%%%%% More activation functions can be added here

end

TY=(H_test' * OutputWeight)'; % TY: the actual output of the testing data

end_time_test=cputime;

TestingTime=end_time_test-start_time_test; % Calculate CPU time (seconds) spent

by ELM predicting the whole testing data

 Appendix D Matlab Simulation Code for Chapter 6

P a g e 208 | 254

208

 if Elm_Type == REGRESSION

 TestingAccuracy=sqrt(mse(TV.T - TY)); % Calculate testing accuracy (RMSE) for

regression case

 output=TY;

end

 if Elm_Type == CLASSIFIER

%%%%%%%%%% Calculate training & testing classification accuracy

 MissClassificationRate_Testing=0;

 for i = 1 : size(TV.T, 2)

 [x, label_index_expected]=max(TV.T(:,i));

 [x, label_index_actual]=max(TY(:,i));

 output(i)=label(label_index_actual);

 if label_index_actual~=label_index_expected

 MissClassificationRate_Testing=MissClassificationRate_Testing+1;

 end

 end

 TestingAccuracy=1-MissClassificationRate_Testing/NumberofTestingData;

end

save('elm_output','output');

--

------------- ELM_Train procedure---

function [TrainingTime,TrainingAccuracy] = elm_train(TrainingData_File, Elm_Type,

NumberofHiddenNeurons, ActivationFunction)

 REGRESSION=0;

CLASSIFIER=1;

%%%%%%%%%%% Load training dataset

train_data=load(TrainingData_File);

T=train_data(:,1)';

P=train_data(:,2:size(train_data,2))';

clear train_data; % Release raw training data array

 NumberofTrainingData=size(P,2);

NumberofInputNeurons=size(P,1);

 if Elm_Type~=REGRESSION

 %%%%%%%%%%%% Preprocessing the data of classification

 sorted_target=sort(T,2);

 label=zeros(1,1); % Find and save in 'label' class label from training

and testing data sets

 label(1,1)=sorted_target(1,1);

 j=1;

 for i = 2:NumberofTrainingData

 if sorted_target(1,i) ~= label(1,j)

 j=j+1;

 label(1,j) = sorted_target(1,i);

 end

 end

 number_class=j;

 NumberofOutputNeurons=number_class;

 Appendix D Matlab Simulation Code for Chapter 6 t

r

P a g e 209 | 254

209

 %%%%%%%%%% Processing the targets of training

 temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData);

 for i = 1:NumberofTrainingData

 for j = 1:number_class

 if label(1,j) == T(1,i)

 break;

 end

 end

 temp_T(j,i)=1;

 end

 T=temp_T*2-1;

end % end if of Elm_Type

%%%%%%%%%%% Calculate weights & biases

start_time_train=cputime;

%%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases

BiasofHiddenNeurons (b_i) of hidden neurons

InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1;

BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1);

tempH=InputWeight*P;

clear P; % Release input of training data

ind=ones(1,NumberofTrainingData);

BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix

BiasofHiddenNeurons to match the demention of H

tempH=tempH+BiasMatrix;

%%%%%%%%%%% Calculate hidden neuron output matrix H

switch lower(ActivationFunction)

 case {'sig','sigmoid'}

 %%%%%%%% Sigmoid

 H = 1 ./ (1 + exp(-tempH));

 case {'sin','sine'}

 %%%%%%%% Sine

 H = sin(tempH);

 case {'hardlim'}

 %%%%%%%% Hard Limit

 H = hardlim(tempH);

 %%%%%%%% More activation functions can be added here

end

clear tempH; % Release the temparary array for calculation of

hidden neuron output matrix H

%%%%%%%%%%% Calculate output weights OutputWeight (beta_i)

OutputWeight=pinv(H') * T';

end_time_train=cputime;

TrainingTime=end_time_train-start_time_train % Calculate CPU time (seconds) spent

for training ELM

%%%%%%%%%%% Calculate the training accuracy

Y=(H' * OutputWeight)'; % Y: the actual output of the training data

if Elm_Type == REGRESSION

 Appendix D Matlab Simulation Code for Chapter 6

P a g e 210 | 254

210

 TrainingAccuracy=sqrt(mse(T - Y)) % Calculate training accuracy (RMSE) for

regression case

 output=Y;

end

clear H;

 if Elm_Type == CLASSIFIER

%%%%%%%%%% Calculate training & testing classification accuracy

 MissClassificationRate_Training=0;

 for i = 1 : size(T, 2)

 [x, label_index_expected]=max(T(:,i));

 [x, label_index_actual]=max(Y(:,i));

 output(i)=label(label_index_actual);

 if label_index_actual~=label_index_expected

 MissClassificationRate_Training=MissClassificationRate_Training+1;

 end

 end

 TrainingAccuracy=1-MissClassificationRate_Training/NumberofTrainingData

end

if Elm_Type~=REGRESSION

 save('elm_model', 'NumberofInputNeurons', 'NumberofOutputNeurons', 'InputWeight',

'BiasofHiddenNeurons', 'OutputWeight', 'ActivationFunction', 'label', 'Elm_Type');

else

 save('elm_model', 'InputWeight', 'BiasofHiddenNeurons', 'OutputWeight',

'ActivationFunction', 'Elm_Type');

end

--

-----------------Codes for MRELBP descriptor--------------------------------------

function blocks = cirInterpSingleRadius(img)

 global lbpPoints;

global lbpRadius;

 [imgH,imgW] = size(img);

 imgNewH = imgH - 2*lbpRadius;

imgNewW = imgW - 2*lbpRadius;

 % the interpolated img

blocks = zeros(lbpPoints,imgNewH*imgNewW);

 radius = lbpRadius;

neighbors = lbpPoints;

spoints = zeros(neighbors,2);

 % Determine the dimensions of the input img.

[ysize,xsize] = size(img);

 % Angle step

angleStep = 2 * pi / neighbors;

for i = 1 : neighbors

 spoints(i,1) = -radius * sin((i-1)*angleStep);

 spoints(i,2) = radius * cos((i-1)*angleStep);

end

 miny = min(spoints(:,1));

maxy = max(spoints(:,1));

minx = min(spoints(:,2));

maxx = max(spoints(:,2));

 Appendix D Matlab Simulation Code for Chapter 6 t

r

P a g e 211 | 254

211

 % Block size, each LBP code is computed within angleStep block of size bsizey*bsizex

bsizey = ceil(max(maxy,0)) - floor(min(miny,0))+1;

bsizex = ceil(max(maxx,0)) - floor(min(minx,0))+1;

 % Coordinates of origin (0,0) in the block

origy = 1 - floor(min(miny,0));

origx = 1 - floor(min(minx,0));

 % Minimum allowed size for the input img depends

% on the radius of the used LBP operator.

if(xsize < bsizex || ysize < bsizey)

 error('Too small input img. Should be at least (2*radius+1) x (2*radius+1)');

end

 % Calculate dx and dy;

dx = xsize - bsizex;

dy = ysize - bsizey;

 % Compute the LBP code img

for i = 1 : neighbors

 y = spoints(i,1) + origy;

 x = spoints(i,2) + origx;

 % Calculate floors, ceils and rounds for the x and y.

 fy = floor(y);

 cy = ceil(y);

 ry = round(y);

 fx = floor(x);

 cx = ceil(x);

 rx = round(x);

 % Check if interpolation is needed.

 if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6)

 % Interpolation is not needed, use original datatypes

 imgNew = img(ry:ry+dy,rx:rx+dx);

 blocks(i,:) = imgNew(:)';

 else

 % Interpolation needed, use double type images

 ty = y - fy;

 tx = x - fx;

 % Calculate the interpolation weights.

 w1 = (1 - tx) * (1 - ty);

 w2 = tx * (1 - ty);

 w3 = (1 - tx) * ty ;

 w4 = tx * ty ;

 % Compute interpolated pixel values

 imgNew = w1*img(fy:fy+dy,fx:fx+dx) + w2*img(fy:fy+dy,cx:cx+dx) + ...

 w3*img(cy:cy+dy,fx:fx+dx) + w4*img(cy:cy+dy,cx:cx+dx);

 blocks(i,:) = imgNew(:)';

 end

end % loop neighbors

 end % end of the function

 %%

function blocks = cirInterpSingleRadiusNew(img,lbpPoints,lbpRadius)

 [imgH,imgW] = size(img);

 imgNewH = imgH - 2*lbpRadius;

 Appendix D Matlab Simulation Code for Chapter 6

P a g e 212 | 254

212

imgNewW = imgW - 2*lbpRadius;

 % the interpolated img

blocks = zeros(lbpPoints,imgNewH*imgNewW);

 radius = lbpRadius;

neighbors = lbpPoints;

spoints = zeros(neighbors,2);

 % Determine the dimensions of the input img.

[ysize,xsize] = size(img);

 % Angle step

angleStep = 2 * pi / neighbors;

for i = 1 : neighbors

 spoints(i,1) = -radius * sin((i-1)*angleStep);

 spoints(i,2) = radius * cos((i-1)*angleStep);

end

 miny = min(spoints(:,1));

maxy = max(spoints(:,1));

minx = min(spoints(:,2));

maxx = max(spoints(:,2));

 % Block size, each LBP code is computed within angleStep block of size bsizey*bsizex

bsizey = ceil(max(maxy,0)) - floor(min(miny,0))+1;

bsizex = ceil(max(maxx,0)) - floor(min(minx,0))+1;

 % Coordinates of origin (0,0) in the block

origy = 1 - floor(min(miny,0));

origx = 1 - floor(min(minx,0));

 % Minimum allowed size for the input img depends

% on the radius of the used LBP operator.

if(xsize < bsizex || ysize < bsizey)

 error('Too small input img. Should be at least (2*radius+1) x (2*radius+1)');

end

% Calculate dx and dy;

dx = xsize - bsizex;

dy = ysize - bsizey;

% Compute the LBP code img

for i = 1 : neighbors

 y = spoints(i,1) + origy;

 x = spoints(i,2) + origx;

 % Calculate floors, ceils and rounds for the x and y.

 fy = floor(y);

 cy = ceil(y);

 ry = round(y);

 fx = floor(x);

 cx = ceil(x);

 rx = round(x);

 % Check if interpolation is needed.

 if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6)

 % Interpolation is not needed, use original datatypes

 imgNew = img(ry:ry+dy,rx:rx+dx);

 blocks(i,:) = imgNew(:)';

 else

 % Interpolation needed, use double type images

 Appendix D Matlab Simulation Code for Chapter 6 t

r

P a g e 213 | 254

213

 ty = y - fy;

 tx = x - fx;

 % Calculate the interpolation weights.

 w1 = (1 - tx) * (1 - ty);

 w2 = tx * (1 - ty);

 w3 = (1 - tx) * ty ;

 w4 = tx * ty ;

 % Compute interpolated pixel values

 imgNew = w1*img(fy:fy+dy,fx:fx+dx) + w2*img(fy:fy+dy,cx:cx+dx) + ...

 w3*img(cy:cy+dy,fx:fx+dx) + w4*img(cy:cy+dy,cx:cx+dx);

 blocks(i,:) = imgNew(:)';

 end

end % loop neighbors

end % end of the function

%%%

%%%%%%%%%%%

function mapping = get_mapping(samples)

 numAllLBPs = 2^samples;

table = 0 : numAllLBPs-1;

newMax = samples + 2; % number of patterns in the resulting LBP code

 for i = 0:2^samples - 1

 j = bitset(bitshift(i,1),1,bitget(i,samples)); % rotate left

 numt = sum(bitget(bitxor(i,j),1:samples));

 if numt <= 2

 table(i+1) = sum(bitget(i,1:samples));

 else

 table(i+1) = samples+1;

 end

end

 mapping.table = table;

mapping.samples = samples;

mapping.num = newMax;

 end

%%%

function cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,check,setnum)

 global nump %number of positive samples

global numn %number of negative samples

 global pathp

global pathn

 global lbpRadius

global lbpPoints

global Y1

 numLBPbins = mapping.num;

 if check == 0

 if setnum == 1

 samplenum = nump;

 path = pathp;

 elseif setnum == 2

 samplenum = numn;

 path = pathn;

 Appendix D Matlab Simulation Code for Chapter 6

P a g e 214 | 254

214

 end

 cfmsWithLabels_MRELBP_CINIRD =

zeros(samplenum,(numLBPbins*numLBPbins*2));

 for idxSample = 1 : samplenum

 Joint_CINIRD = zeros(numLBPbins,numLBPbins,2);

 img = imread(strcat(path, num2str(idxSample), '.png'));

 img = samp_prepro(img);

 imgExt = padarray(img,[1 1],'symmetric','both');

 imgblks = im2col(imgExt,[3 3],'sliding');

 a = median(imgblks);

 b = reshape(a,size(img));

 CImg = b(lbpRadius+1:end-lbpRadius,lbpRadius+1:end-lbpRadius);

 CImg = CImg(:) - mean(CImg(:));

 CImg(CImg >= 0) = 2;

 CImg(CImg < 0) = 1;

 if lbpRadius == 2

 filWin = 3;

 halfWin = (filWin-1)/2;

 imgExt = padarray(img,[halfWin halfWin],'symmetric','both');

 imgblks = im2col(imgExt,[filWin filWin],'sliding');

 imgMedian = median(imgblks);

 imgCurr = reshape(imgMedian,size(img));

 NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image');

 NILBPImage = NILBPImage(:);

 histNI = hist(NILBPImage,0:(numLBPbins-1));

 NILBPImage = NILBPImage + 1;

 RDLBPImage =

RDLBP_Image_SmallestRadiusOnly(b,imgCurr,lbpRadius,lbpPoints,mapping,'image');

 RDLBPImage = RDLBPImage(:);

 histRD = hist(RDLBPImage,0:(numLBPbins-1));

 RDLBPImage = RDLBPImage + 1;

 else

 if mod(lbpRadius,2) == 0

 filWin = lbpRadius + 1;

 else

 filWin = lbpRadius;

 end

 halfWin = (filWin-1)/2;

 imgExt = padarray(img,[halfWin halfWin],'symmetric','both');

 imgblks = im2col(imgExt,[filWin filWin],'sliding');

 imgMedian = median(imgblks);

 imgCurr = reshape(imgMedian,size(img));

 NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image');

 NILBPImage = NILBPImage(:);

 histNI = hist(NILBPImage,0:(numLBPbins-1));

 NILBPImage = NILBPImage + 1;

 if mod(lbpRadiusPre,2) == 0

 filWin = lbpRadiusPre + 1;

 else

 filWin = lbpRadiusPre;

 Appendix D Matlab Simulation Code for Chapter 6 t

r

P a g e 215 | 254

215

 end

 halfWin = (filWin-1)/2;

 imgExt = padarray(img,[halfWin halfWin],'symmetric','both');

 imgblks = im2col(imgExt,[filWin filWin],'sliding');

 imgMedian = median(imgblks);

 imgPre = reshape(imgMedian,size(img));

 RDLBPImage =

NewRDLBP_Image(imgCurr,imgPre,lbpRadius,lbpRadiusPre,lbpPoints,mapping,'image');

 RDLBPImage = RDLBPImage(:);

 histRD = hist(RDLBPImage,0:(numLBPbins-1));

 RDLBPImage = RDLBPImage + 1;

 end

 for i = 1 : length(NILBPImage)

 Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) =

Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) + 1;

 end

 cfmsWithLabels_MRELBP_CINIRD(idxSample,:) = Joint_CINIRD(:)';

 end

else

 cfmsWithLabels_MRELBP_CINIRD = zeros(1,(numLBPbins*numLBPbins*2));

 Joint_CINIRD = zeros(numLBPbins,numLBPbins,2);

 img = samp_prepro(Y1);

 imgExt = padarray(img,[1 1],'symmetric','both');

 imgblks = im2col(imgExt,[3 3],'sliding');

 a = median(imgblks);

 b = reshape(a,size(img));

 CImg = b(lbpRadius+1:end-lbpRadius,lbpRadius+1:end-lbpRadius);

 CImg = CImg(:) - mean(CImg(:));

 CImg(CImg >= 0) = 2;

 CImg(CImg < 0) = 1;

 if lbpRadius == 2

 filWin = 3;

 halfWin = (filWin-1)/2;

 imgExt = padarray(img,[halfWin halfWin],'symmetric','both');

 imgblks = im2col(imgExt,[filWin filWin],'sliding');

 imgMedian = median(imgblks);

 imgCurr = reshape(imgMedian,size(img));

 NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image');

 NILBPImage = NILBPImage(:);

 histNI = hist(NILBPImage,0:(numLBPbins-1));

 NILBPImage = NILBPImage + 1;

 RDLBPImage =

RDLBP_Image_SmallestRadiusOnly(b,imgCurr,lbpRadius,lbpPoints,mapping,'image');

 RDLBPImage = RDLBPImage(:);

 histRD = hist(RDLBPImage,0:(numLBPbins-1));

 RDLBPImage = RDLBPImage + 1;

 else

 if mod(lbpRadius,2) == 0

 filWin = lbpRadius + 1;

 else

 Appendix D Matlab Simulation Code for Chapter 6

P a g e 216 | 254

216

 filWin = lbpRadius;

 end

 halfWin = (filWin-1)/2;

 imgExt = padarray(img,[halfWin halfWin],'symmetric','both');

 imgblks = im2col(imgExt,[filWin filWin],'sliding');

 % each column of imgblks represents a feature vector

 imgMedian = median(imgblks);

 imgCurr = reshape(imgMedian,size(img));

 NILBPImage = NILBP_Image(imgCurr,lbpPoints,mapping,'image');

 NILBPImage = NILBPImage(:);

 histNI = hist(NILBPImage,0:(numLBPbins-1));

 NILBPImage = NILBPImage + 1;

 if mod(lbpRadiusPre,2) == 0

 filWin = lbpRadiusPre + 1;

 else

 filWin = lbpRadiusPre;

 end

 halfWin = (filWin-1)/2;

 imgExt = padarray(img,[halfWin halfWin],'symmetric','both');

 imgblks = im2col(imgExt,[filWin filWin],'sliding');

 imgMedian = median(imgblks);

 imgPre = reshape(imgMedian,size(img));

 RDLBPImage =

NewRDLBP_Image(imgCurr,imgPre,lbpRadius,lbpRadiusPre,lbpPoints,mapping,'image');

 RDLBPImage = RDLBPImage(:);

 histRD = hist(RDLBPImage,0:(numLBPbins-1));

 RDLBPImage = RDLBPImage + 1;

 end

 for i = 1 : length(NILBPImage)

 Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) =

Joint_CINIRD(NILBPImage(i),RDLBPImage(i),CImg(i)) + 1;

 end

 cfmsWithLabels_MRELBP_CINIRD = Joint_CINIRD(:)';

end

 cfmsWithLabels_LBP = cfmsWithLabels_MRELBP_CINIRD;

clear cfmsWithLabels_MRELBP_CINIRD;

end

%%%

function result =

NewRDLBP_Image(img,imgPre,lbpRadius,lbpRadiusPre,lbpPoints,mapping,mode)

blocks1 = cirInterpSingleRadiusNew(img,lbpPoints,lbpRadius);

blocks1 = blocks1';

 imgPre = imgPre(lbpRadius-lbpRadiusPre+1:end-(lbpRadius-lbpRadiusPre),lbpRadius-

lbpRadiusPre+1:end-(lbpRadius-lbpRadiusPre));

blocks2 = cirInterpSingleRadiusNew(imgPre,lbpPoints,lbpRadiusPre);

blocks2 = blocks2';

 radialDiff = blocks1 - blocks2;

 radialDiff(radialDiff >= 0) = 1;

radialDiff(radialDiff < 0) = 0;

 bins = 2^lbpPoints;

 Appendix D Matlab Simulation Code for Chapter 6 t

r

P a g e 217 | 254

217

weight = 2.^(0:lbpPoints-1);

radialDiff = radialDiff .* repmat(weight,size(radialDiff,1),1);

% mapping = getmapping(lbpPoints,'riu2');

 radialDiff = sum(radialDiff,2);

result = radialDiff;

% Apply mapping if it is defined

if isstruct(mapping)

 bins = mapping.num;

 for i = 1:size(result,1)

 for j = 1:size(result,2)

 result(i,j) = mapping.table(result(i,j)+1);

 end

 end

end

 if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh'))

 % Return with LBP histogram if mode equals 'hist'.

 result = hist(result(:),0:(bins-1));

 if (strcmp(mode,'nh'))

 result = result/sum(result);

 end

else

 % Otherwise return a matrix of unsigned integers

 if ((bins-1) <= intmax('uint8'))

 result = uint8(result);

 elseif ((bins-1) <= intmax('uint16'))

 result = uint16(result);

 else

 result = uint32(result);

 end

end

%%%

%%%%%%%

function result = NILBP_Image(img,lbpPoints,mapping,mode)

blocks = cirInterpSingleRadius(img);

blocks = blocks';

blocks = blocks - repmat(mean(blocks,2),1,size(blocks,2));

 blocks(blocks >= 0) = 1;

blocks(blocks < 0) = 0;

 weight = 2.^(0:lbpPoints-1);

blocks = blocks .* repmat(weight,size(blocks,1),1);

 blocks = sum(blocks,2);

result = blocks;

% Apply mapping if it is defined

if isstruct(mapping)

 bins = mapping.num;

 for i = 1:size(result,1)

 for j = 1:size(result,2)

 result(i,j) = mapping.table(result(i,j)+1);

 end

 end

 Appendix D Matlab Simulation Code for Chapter 6

P a g e 218 | 254

218

end

 if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh'))

 % Return with LBP histogram if mode equals 'hist'.

 result = hist(result(:),0:(bins-1));

 if (strcmp(mode,'nh'))

 result = result/sum(result);

 end

else

 % Otherwise return a matrix of unsigned integers

 % result = reshape(result,size(imgTemp));

 if ((bins-1) <= intmax('uint8'))

 result = uint8(result);

 elseif ((bins-1) <= intmax('uint16'))

 result = uint16(result);

 else

 result = uint32(result);

 end

end

%%%

function result =

RDLBP_Image_SmallestRadiusOnly(imgCenSmooth,img,lbpRadius,lbpPoints,mapping,mod

e)

blocks1 = cirInterpSingleRadiusNew(img,lbpPoints,lbpRadius);

blocks1 = blocks1';

imgTemp = imgCenSmooth(lbpRadius+1:end-lbpRadius,lbpRadius+1:end-lbpRadius);

blocks2 = repmat(imgTemp(:),1,lbpPoints);

 radialDiff = blocks1 - blocks2;

 radialDiff(radialDiff >= 0) = 1;

radialDiff(radialDiff < 0) = 0;

 bins = 2^lbpPoints;

weight = 2.^(0:lbpPoints-1);

radialDiff = radialDiff .* repmat(weight,size(radialDiff,1),1);

% mapping = getmapping(lbpPoints,'riu2');

 radialDiff = sum(radialDiff,2);

result = radialDiff;

% Apply mapping if it is defined

if isstruct(mapping)

 bins = mapping.num;

 for i = 1:size(result,1)

 for j = 1:size(result,2)

 result(i,j) = mapping.table(result(i,j)+1);

 end

 end

end

 if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh'))

 % Return with LBP histogram if mode equals 'hist'.

 result = hist(result(:),0:(bins-1));

 if (strcmp(mode,'nh'))

 result = result/sum(result);

 end

 Appendix D Matlab Simulation Code for Chapter 6 t

r

P a g e 219 | 254

219

else

 % Otherwise return a matrix of unsigned integers

 if ((bins-1) <= intmax('uint8'))

 result = uint8(result);

 elseif ((bins-1) <= intmax('uint16'))

 result = uint16(result);

 else

 result = uint32(result);

 end

end

%%%

function sampleIn = samp_prepro(sampleIn)

% image sample preprocessing

sampleIn = double(sampleIn);

sampleIn = sampleIn - mean(sampleIn(:));

% sampleIn = sampleIn / sqrt(mean(mean(sampleIn .^ 2)));

sampleIn = sampleIn / std(sampleIn(:));

%%%

%%%%%%%

function D = sqdist(X1, X2)

% Pairwise square Euclidean distance between two sample sets

% Input:

% X1, X2: dxn1 dxn2 sample matrices

% Output:

% D: n1 x n2 square Euclidean distance matrix

% Written by Mo Chen (sth4nth@gmail.com).

D = bsxfun(@plus,dot(X2,X2,1),dot(X1,X1,1)')-2*(X1'*X2);

%%%

%%%%%%%%%%%%

----------------------Preprocessing stage-----------

global nump %number of positive samples

global numn %number of negative samples

 global pathp

global pathn

 %% preprocessing of train images

tic

path1 = 'train/lp'; %training lps

path2 = 'train/nonlp'; %trainging nonlps

 pathp = 'realtrain/lp/'; %rectangle training lps

pathn = 'realtrain/nonlp/'; %trainging nonlps

 %preprocessed training lps will be saved in 'realtrain' directory

if ~isdir('realtrain')

 mkdir('realtrain');

 mkdir('realtrain/lp');

 mkdir('realtrain/nonlp')

end

 %image files in directories

 files1 = dir(fullfile(path1,'*.png'));

files2 = dir(fullfile(path2,'*.png'));

%number of positive and negative trainging samples

 Appendix D Matlab Simulation Code for Chapter 6

P a g e 220 | 254

220

nump = numel(files1); %number of training lps = positive

numn = numel(files2); %number of nonlps = negative

%preprocessing of training lps

for samples = 1 : nump

 file = fullfile(path1, files1(samples).name);

 X = imread(file);

 M = rgb2gray(X);

 [m n] = size(M);

 p = 50;

 q = 200;

 if p >= m && q >= n

 M_pad = padarray(M, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p < m && q >= n

 m = p;

 M_pad = imresize(M, [m, n]);

 M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p >= m && q < n

 n = q;

 M_pad = imresize(M, [m, n]);

 M_pad = padarray(M_pad, [floor((p-m)/2) floor((q-n)/2)], 'replicate','post');

 M_pad = padarray(M_pad, [ceil((p-m)/2) ceil((q-n)/2)], 'replicate','pre');

 elseif p < m && q < n

 M_pad = imresize(M, [p, q]);

 end

 M = M_pad;

 numofpixels=size(M,1)*size(M,2);

 Y=uint8(zeros(size(M,1),size(M,2)));

 cnts=zeros(256,1);

 probf=zeros(256,1);

 prbc=zeros(256,1);

 cum=zeros(256,1);

 fin_lc=zeros(256,1);

 for i=1:size(M,1)

 for j=1:size(M,2)

 value=M(i,j);

 cnts(value+1)=cnts(value+1)+1;

 probf(value+1)=cnts(value+1)/numofpixels;

 end

 end

 sum=0;

 n=255;

 for i=1:size(probf)

 sum=sum+cnts(i);

 cum(i)=sum;

 prbc(i)=cum(i)/numofpixels;

 fin_lc(i)=round(prbc(i)*n);

 Appendix D Matlab Simulation Code for Chapter 6 t

r

P a g e 221 | 254

221

 end

 for i=1:size(M,1)

 for j=1:size(M,2)

 Y(i,j)=fin_lc(M(i,j)+1);

 end

 end

 imwrite(Y, strcat(pathp, num2str(samples), '.png'));

end

 %preprocessing of training nonlps

for samples = 1 : numn

 file = fullfile(path2, files2(samples).name);

 X = imread(file);

 X = imresize(X, 0.5);

 M = imgaussfilt(X,0.25);

 M = rgb2gray(M);

 numofpixels=size(M,1)*size(M,2);

 Y=uint8(zeros(size(M,1),size(M,2)));

 cnts=zeros(256,1);

 probf=zeros(256,1);

 prbc=zeros(256,1);

 cum=zeros(256,1);

 fin_lc=zeros(256,1);

 for i=1:size(M,1)

 for j=1:size(M,2)

 value=M(i,j);

 cnts(value+1)=cnts(value+1)+1;

 probf(value+1)=cnts(value+1)/numofpixels;

 end

 end

 sum=0;

 n=255;

 for i=1:size(probf)

 sum=sum+cnts(i);

 cum(i)=sum;

 prbc(i)=cum(i)/numofpixels;

 fin_lc(i)=round(prbc(i)*n);

 end

 for i=1:size(M,1)

 for j=1:size(M,2)

 Y(i,j)=fin_lc(M(i,j)+1);

 end

 end

 imwrite(Y, strcat(pathn, num2str(samples), '.png'));

end

toc

---------------------------------------Training\Extraction Stages---------------------

addpath('mrelbp');

addpath('elmbase');

 global nump %number of positive samples

global numn %number of negative samples

 Appendix D Matlab Simulation Code for Chapter 6

P a g e 222 | 254

222

 global lbpRadius

global lbpPoints

 %% selecting mrelbp features from preprocessed train images

tic

lbpRadiusSet = [2 4 6 8];

lbpPointsSet = [8 8 8 8];

trainfeatures1 = [];

trainfeatures2 = [];

trainfeatures4 = [];

trainfeatures5 = [];

for idxLbpRadius = 1 : length(lbpRadiusSet)

 lbpRadius = lbpRadiusSet(idxLbpRadius);

 lbpPoints = lbpPointsSet(idxLbpRadius);

 mapping = get_mapping(lbpPoints);

 blockSize = lbpRadius*2+1;

 if idxLbpRadius > 1

 lbpRadiusPre = lbpRadiusSet(idxLbpRadius-1);

 else

 lbpRadiusPre = 0;

 end

 %--------------------SURF--------------------

 Z= detectSURFFeatures(Y);

 [SURF_features, valid_points] = extractFeatures(Y,Z);

 strongestPoints = valid_points.selectStrongest(60);

 trainfeatures4= [trainfeatures4 SURF_features];

 trainfeatures5= [trainfeatures5 SURF_features];

 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,1);

 trainfeatures1 = [trainfeatures1 cfmsWithLabels_LBP];

 clear cfmsWithLabels_LBP

 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,0,2);

 trainfeatures2 = [trainfeatures2 cfmsWithLabels_LBP];

 clear cfmsWithLabels_LBP

end

 trainfeatures1 = [trainfeatures1; trainfeatures2];

trainfeatures4 = [trainfeatures4; trainfeatures5];

 shape = size(trainfeatures1);

shape2= size(trainfeatures4);

feature = [];

feature4= [];

for i = 1 : shape(1)

 feature = [feature; trainfeatures1(i,:)/max(trainfeatures1(i,:))];

end

for i = 1 : shape2(1)

 feature4 = [feature4; trainfeatures4(i,:)/max(trainfeatures4(i,:))];

end

 classes = zeros(nump + numn, 1);

for i = 1 : nump

 classes(i) = 1;

end

 M = [classes feature];

 Appendix D Matlab Simulation Code for Chapter 6 t

r

P a g e 223 | 254

223

M4 = [feature4];

dlmwrite('traindata',M, ' ');

%dlmwrite('traindata',M4, ' ');

 elm_train('traindata', 1, 1000, 'sig');

 toc

--Testing or Detection Stage----------

 global Y1

 tic

 if ~isdir('result')

 mkdir('result');

end

if ~isdir('detected')

 mkdir('detected');

end

 %% testing

files = dir(fullfile('test','*.png'));

for id = 1 : numel(files)

 file = fullfile('test/', files(id).name);

 %preprocessing

 X=imread(file);

 % M = imresize(X,[240, 320]);

 M=rgb2gray(X);

 numofpixels=size(M,1)*size(M,2);

 Y=uint8(zeros(size(M,1),size(M,2)));

 cnts=zeros(256,1);

 probf=zeros(256,1);

 prbc=zeros(256,1);

 cum=zeros(256,1);

 fin_lc=zeros(256,1);

 for i=1:size(M,1)

 for j=1:size(M,2)

 value=M(i,j);

 cnts(value+1)=cnts(value+1)+1;

 probf(value+1)=cnts(value+1)/numofpixels;

 end

 end

 sum=0;

 n=255;

 for i=1:size(probf)

 sum=sum+cnts(i);

 cum(i)=sum;

 prbc(i)=cum(i)/numofpixels;

 fin_lc(i)=round(prbc(i)*n);

 end

 for i=1:size(M,1)

 for j=1:size(M,2)

 Y(i,j)=fin_lc(M(i,j)+1);

 end

 end

 lbpRadiusSet = [2 4 6 8];

 Appendix D Matlab Simulation Code for Chapter 6

P a g e 224 | 254

224

 lbpPointsSet = [8 8 8 8];

 % selecting mrelbp features from preprocessed test image

 xsum=0;

 ysum=0;

 num = 0;

 px = [];

 py = [];

 px1 = [];

 py1 = [];

 px2 = [];

 py2 = [];

 px3 = [];

 for i = 126 :100: size(Y,1) - 165

 for j = 50 :18: size(Y,2) - 350

 Y1 = Y(i:i+49,j:j+199);

 testfeatures1 = [];

 for idxLbpRadius = 1 : length(lbpRadiusSet)

 lbpRadius = lbpRadiusSet(idxLbpRadius);

 lbpPoints = lbpPointsSet(idxLbpRadius);

 mapping = get_mapping(lbpPoints);

 blockSize = lbpRadius*2+1;

 if idxLbpRadius > 1

 lbpRadiusPre = lbpRadiusSet(idxLbpRadius-1);

 else

 lbpRadiusPre = 0;

 end

 cfmsWithLabels_LBP = MRELBP(mapping,lbpRadiusPre,1,1);

 testfeatures1 = [testfeatures1 cfmsWithLabels_LBP];

 end

 feature = testfeatures1 / max(testfeatures1);

 dlmwrite('testdata',[1 feature], ' ');

 [TestingTime, TestingAccuracy, output]= elm_predict('testdata');

 if output == 1

 %num = num + 1;

 px2 = [px2 i];

 py2 = [py2 j];

 continue;

 end

 end

 end

 fh = figure;

 imshow(X, 'border', 'loose'); %//show your image

 hold on;

 px21 = unique(px2);

 py21 = [];

 for i = 1 : length(px21)

 temp = [];

 for j = 1 : length(px2)

 if px21(i) == px2(j)

 temp = [temp; py2(j)];

 Appendix D Matlab Simulation Code for Chapter 6 t

r

P a g e 225 | 254

225

 end

 end

 py21 = [py21; round(mean(temp))];

 end

 for i = 1 : length(px21)

 if i > 1

 if abs(px21(i)-px21(i-1)) > 30

 rectangle('Position', [py21(i)-10 px21(i) 300 100], 'EdgeColor', 'y'); %// draw

rectangle on image

 frm = getframe(fh); %// get the image+rectangle

 imwrite(frm.cdata, strcat('result/',num2str(id),'.png')); %// save to file

 end

 end

 end

 pause(3);

 close(fh);

 disp(strcat('test image ', num2str(id), ' done'));

 end

toc

------------------------------ROC_curve-----------------------

% + AROC: Area Under ROC Curve. %

% + Accuracy: Maximum accuracy obtained. %

% + Sensi: Optimum threshold sensitivity. %

% + Speci: Optimum threshold specificity. %

% + PPV: Positive predicted value. %

% + NPV: Negative predicted value. %

% - curve: Matrix which contains the specificity and specifi-%

% city of each threshold point in columns. %

function ROC_data = roc_curve(classes1,classes2, dispp, dispt)

 % Setting default parameters and detecting errors

 if(nargin<4), dispt = 1; end

 if(nargin<3), dispp = 1; end

 % if(nargin<2), error('Class_1 or class_2 are not indicated.'); end

 model1 = loadCompactModel('model1');

 y=load('classes1.mat');

 class_1 = 0.13* randn(700,1);

 class_2 = 0.5 + 0.1* randn(700,1);

 % Calculating the threshold values between the data points

 s_data = unique(sort([class_1; class_2])); % Sorted data points

 s_data(isnan(s_data)) = []; % Delete NaN values

 d_data = diff(s_data); % Difference between consecutive points

 if(isempty(d_data)), error('Both class data are the same!'); end

 d_data(length(d_data)+1,1) = d_data(length(d_data));% Last point

 thres(1,1) = s_data(1) - d_data(1); % First point

 thres(2:length(s_data)+1,1) = s_data + d_data./2; % Threshold values

 % Sorting each class

 if(nanmean(class_1)>nanmean(class_2))

 end % Calculating the sensibility and specificity of each threshold

 curve = zeros(size(thres,1),2);

 distance = zeros(size(thres,1),1);

 Appendix D Matlab Simulation Code for Chapter 6

P a g e 226 | 254

226

 for id_t = 1:1:length(thres)

 TP = length(find(class_2 >= thres(id_t))); % True positives

 FP = length(find(class_1 >= thres(id_t))); % False positives

 FN = length(find(class_2 < thres(id_t))); % False negatives

 TN = length(find(class_1 < thres(id_t))); % True negatives

 curve(id_t,1) = TP/(TP + FN); % Sensitivity

 curve(id_t,2) = TN/(TN + FP); % Specificity

 % Distance between each point and the optimum point (0,1)

 distance(id_t)= sqrt((1-curve(id_t,1))^2+(curve(id_t,2)-1)^2);

 end % Optimum threshold and parameters

 [~, opt] = min(distance);

 TP = length(find(class_2 >= thres(opt)));

 FP = length(find(class_1 >= thres(opt)));

 FN = length(find(class_2 < thres(opt)));

 TN = length(find(class_1 < thres(opt)));

 param.Threshold = thres(opt); % Optimum threshold position

 param.Sensi = curve(opt,1); % Optimum threshold's sensitivity

 param.Speci = curve(opt,2); % Optimum threshold's specificity

 param.AROC = abs(trapz(1-curve(:,2), curve(:,1))); % Area under curve

 param.Accuracy = (TP+TN)/(TP+TN+FP+FN); % Maximum accuracy

 param.PPV = TP/(TP+FP); % Positive predictive value

 param.NPV = TN/(TN+FN); % Negative predictive value

 % Plotting if required

 if(dispp == 1)

 fill_color = [11/255, 208/255, 217/255];

 fill([1-curve(:,2); 1], [curve(:,1); 0], fill_color,'FaceAlpha',0.10);

 hold on; plot(1-curve(:,2), curve(:,1), '-r', 'LineWidth', 3);

 hold on; plot(1-curve(opt,2), curve(opt,1), 'ob', 'MarkerSize', 5);

 hold on; plot(1-curve(opt,2), curve(opt,1), 'xb', 'MarkerSize', 12);

 hold off; axis square; grid on; xlabel('False Positive Rate'); ylabel('True Positive Rate');

 legend('Threshold = 0.2140','Location','SE');

 title(['AUC for Testing by ELM = ' num2str(param.AROC)]);

 end % Log screen parameters if required

 if(dispt == 1)

 fprintf('\n ROC CURVE PARAMETERS\n');

 fprintf(' ------------------------------\n');

 fprintf(' - Distance: %.4f\n', distance(opt));

 fprintf(' - Threshold: %.4f\n', param.Threshold);

 fprintf(' - Sensitivity: %.4f\n', param.Sensi);

 fprintf(' - Specificity: %.4f\n', param.Speci);

 fprintf(' - AROC: %.4f\n', param.AROC);

 fprintf(' - Accuracy: %.4f%%\n', param.Accuracy*100);

 fprintf(' - PPV: %.4f%%\n', param.PPV*100);

 fprintf(' - NPV: %.4f%%\n', param.NPV*100);

 fprintf(' \n');

 end % Assinging parameters and curve data

 ROC_data.param = param;

 ROC_data.curve = curve;

end

--------------------------------------THE END

 Appendix E English Car Database for Research Project

P a g e 227 | 254

227

English cars database for research project

This appendix includes some samples for testing vehicle images and real training licences

plates images for English cars database.

E

 Appendix E English Car Database for Research Project 6

t r

P a g e 228 | 254

228

Some samples for vehicles images

 Appendix E English Car Database for Research Project

P a g e 229 | 254

229

 Appendix E English Car Database for Research Project 6

t r

P a g e 230 | 254

230

 Appendix E English Car Database for Research Project

P a g e 231 | 254

231

 Appendix E English Car Database for Research Project 6

t r

P a g e 232 | 254

232

 Appendix E English Car Database for Research Project

P a g e 233 | 254

233

 Appendix E English Car Database for Research Project 6

t r

P a g e 234 | 254

234

 Appendix E English Car Database for Research Project

P a g e 235 | 254

235

 Appendix E English Car Database for Research Project 6

t r

P a g e 236 | 254

236

 Appendix E English Car Database for Research Project

P a g e 237 | 254

237

 Appendix E English Car Database for Research Project 6

t r

P a g e 238 | 254

238

 Appendix E English Car Database for Research Project

P a g e 239 | 254

239

 Appendix E English Car Database for Research Project 6

t r

P a g e 240 | 254

240

 Appendix E English Car Database for Research Project

P a g e 241 | 254

241

 Appendix E English Car Database for Research Project 6

t r

P a g e 242 | 254

242

 Appendix E English Car Database for Research Project

P a g e 243 | 254

243

 Appendix E English Car Database for Research Project 6

t r

P a g e 244 | 254

244

Some samples for real training licences plates images

 Appendix E English Car Database for Research Project

P a g e 245 | 254

245

 Appendix E English Car Database for Research Project 6

t r

P a g e 246 | 254

246

 Appendix E English Car Database for Research Project

P a g e 247 | 254

247

 Appendix E English Car Database for Research Project 6

t r

P a g e 248 | 254

248

 Appendix E English Car Database for Research Project

P a g e 249 | 254

249

 Appendix E English Car Database for Research Project 6

t r

P a g e 250 | 254

250

 Appendix E English Car Database for Research Project

P a g e 251 | 254

251

 Appendix E English Car Database for Research Project 6

t r

P a g e 252 | 254

252

 Appendix E English Car Database for Research Project

P a g e 253 | 254

253

 Appendix E English Car Database for Research Project 6

t r

P a g e 254 | 254

254

	Ensemble of adaboost cascades of 3L-LBPs classifiers for license plates detection with low quality images
	1 Introduction
	2 Related work
	3 The proposed method
	3.1 Image pre-processing phase
	3.2 The LP detection method
	3.2.1 3L-LBP detectors for features extraction
	3.2.2 AdaBoost learning algorithm for the LP detection
	3.2.3 Cascade structure of boosted classifiers

	4 Experimental results
	4.1 Dataset
	4.2 Detection results
	4.3 Processing time
	4.4 The performance evaluation
	4.5 Comparison with existing methods

	5 Conclusion
	 Acknowledgments
	 References

