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ABSTRACT

A new control volume approach is developed based on compact integrated radial basis 

function (CIRBF) stencils for solution of the highly nonlinear Richards equation describing 

transient water flow in variably saturated soils. Unlike the conventional control volume method, 

which is regarded as second-order accurate, the proposed approach has high-order accuracy owing 

to the use of a compact integrated radial basis function approximation that enables improved flux 

predictions. The method is used to solve the Richards equation for transient flow in 1D 

homogeneous and heterogeneous soil profiles. Numerical results for different boundary conditions, 

initial conditions and soil types are shown to be in good agreement with Warrick's semi-analytical 
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solution and simulations using the HYDRUS-1D software package. Results obtained with the 

proposed method were far less dependent upon the grid spacing than the HYDRUS-1D finite 

element solutions.

Keywords: Richards equation; finite volume method; integrated radial basis function; 

compact stencil; unsaturated flow.

*Corresponding author; Email address: duc.ngo@usq.edu.au (Duc Ngo-Cong)

1.  INTRODUCTION

The complex problem of transient water flow in unsaturated or variably-saturated porous 

media has been widely modelled using the highly nonlinear Richards equation. Neglecting 

sink/source terms (e.g, root water uptake) and soil and water compressibilities, the Richards 

equation in its mixed form can be written as (Celia et al., 1990):

(1) ( ) ( )( ) 0h K hK h h
t z

 
     

 

where θ and K are, respectively, the volumetric water content and hydraulic conductivity, both 

being a function of the pressure head h,  is the vertical coordinate (assumed positive upward z

here), and  is time. It is inherently difficult to obtain numerical solutions of Eq.  due to the highly t

nonlinear nature of the soil hydraulic functions θ(h) and K(h). Several approaches have been used 

to deal with nonlinearity of the Richards equation, such as applying Picard iteration (e.g., Celia et 

al., 1990; Huang et al., 1996) and Newton Raphson (e.g., Lehmann and Ackerer, 1998) methods, 

the method of lines (e.g., Fahs et al., 2009), or certain transformations (Kirkland et al., 1992; Pan 

and Wierenga, 1995). The nonlinearities pose especially difficulties under some extreme 

conditions (e.g., sharp wetting fronts, very dry initial conditions, extreme soil textures, 

heterogeneous and/or hysteretic soils) using traditional analytical or numerical techniques 

mailto:duc.ngo@usq.edu.au
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(Farthing and Ogden, 2017). For example, finite element solutions often suffer from numerical 

oscillations near sharp wetting fronts unless very dense grids are used (Celia et al., 1990; Pan and 

Wierenga, 1995; van Genuchten, 1982). 

In the past few years, many numerical schemes have been developed for solving the 

Richards equation (e.g., Fahs et al., 2009; Farthing et al., 2003; Kavetski et al., 2001; Lehmann 

and Ackerer, 1998; McBride et al., 2006; Zha et al., 2019). For example, Lehmann and Ackerer 

(1998) used the modified Picard and Newton iteration schemes to solve both the h-based and 

mixed forms of the Richards equation governing infiltration in homogeneous and heterogeneous 

dry porous media. Their results showed that, for the same numerical accuracy, a combination of 

the modified Picard and Newton scheme required fewer iterations than the modified Picard or 

Newton schemes as such. Kavetski et al. (2001) introduced an adaptive time stepping with 

embedded error control to solve the mixed form of the Richards equation. Their second-order 

adaptive time stepping algorithm improved the performance of the nonlinear solver by providing 

accurate initial solution estimates for the iterative process. Farthing et al. (2003) formulated a 

mixed hybrid finite element (MHFE) method and an enhanced cell-centred difference scheme in 

combination with the method of lines for both the h-based and mixed forms of the Richards 

equation. Fahs et al. (2009) combined a lumped MHFE method with the method of lines for a 

more accurate resolution of the Richards equation. They used the lumped MHFE approach 

(Younes et al., 2006) for approximating the flux to avoid unphysical oscillations for triangular 

meshes without additional numerical errors. Other recent developments in numerical methods and 

software for solving the Richards equation can be found in a review paper by Zha et al. (2019).

Warrick et al. (1985) presented a semi-analytical solution to the Richards equation subject to 

the van Genuchten (1980) soil hydraulic functions. Their solution has been used in many studies as 

a benchmark for verifying numerical solutions (Caviedes-Voullième et al., 2013; Phoon et al., 
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2007). Caviedes-Voullième et al. (2013) presented a finite volume method in combination with 

four temporal integration schemes to solve the 1D Richards equation. The four schemes included 

explicit mixed (EM), implicit mixed (IM), explicit pressure head (EP), and implicit pressure head 

(IP) schemes. They found that the EM and IM schemes produced accurate and conservative 

solutions, but not the EP and IP schemes. The EM scheme, furthermore, was not able to solve the 

Richards equation under saturated conditions, while the IM scheme was able to do so. Hayek 

(2016) further developed an analytical solution of the 1D Richards equation for semi-infinite soils 

using the special case of an exponential water retention curve and a power law for the hydraulic 

conductivity. Analytical and semi-analytical solutions of this type are important to test the 

accuracy of proposed numerical schemes.

In this study we focus on the use of schemes using radial basis functions (RBFs). Such a 

scheme was first proposed by Kansa (1990) for solving partial differential equations (PDEs) with a 

high level of accuracy for both gridded and scattered data. Unlike Kansa’s approach, Mai-Duy and 

Tran-Cong (2001) suggested the use of integration to construct the global RBF approximations, 

which improved the accuracy of numerical solutions. In related work, Wright and Fornberg (2006) 

presented a generalised finite difference formula based on compact radial basis function 

approximations for solving partial differential equations on irregular domains with scattered nodes. 

Šarler and Vertnik (2006) developed a meshless local RBF collocation method for the solution of 

diffusion problems. The method overcame ill-conditioning problems of the global RBF collocation 

method (Kansa, 1990) and mitigated the sensitivity problem of choosing the RBF shape parameter. 

The scheme has been used to solve several industrial problems such as thermo-driven fluid flow 

problems with a free surface (Hon et al., 2015) and turbulent molten steel flow and solidification 

(Vertnik et al., 2019). Divo and Kassab (2007) developed an efficient localised meshless 
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collocation method using the Hardy Multiquadrics RBF for solution of conjugate heat transfer 

problems. 

Schemes using compact integrated radial basis function (CIRBF) stencils were originally 

proposed by Mai-Duy and Tran-Cong (2011, 2013) for solving partial differential equations. Their 

CIRBF schemes incorporate not only nodal function values but also nodal values of derivatives 

into the local integrated radial basis function (IRBF) approximations. Ngo-Cong et al. (2017) 

presented a generalised finite difference scheme based on the CIRBF approximation to simulate 

water flow in 1D and 2D heterogeneous soils. Hoang-Trieu et al. (2013) subsequently incorporated 

the CIRBF approximation into the control volume formulation (called CV-CIRBF) for solving 

second-order differential problems in one and two dimensions, with application to natural 

convection flow. Their numerical results show that the CV-CIRBF method yields more accurate 

results than the standard finite volume method (FVM) and a point collocation CIRBF-based 

method.

In this article, we further extend the CV-CIRBF method to solve the highly nonlinear 

Richards equation governing water flow in unsaturated or variably saturated soils. Instead of using 

the nodal values of the governing equation as in Hoang-Trieu et al. (2013), the nodal second 

derivatives of a field variable are added into the local IRBF stencils when converting the radial 

basis function network-weight space into physical space. In the CIRBF scheme of Ngo-Cong et al. 

(2017), the extra information of second derivatives at some nodal point i were implicitly calculated 

from the function values at all nodal points over a grid line passing through point i. As a result, 

this scheme (referred to as a global CIRBF scheme) yielded a fully populated system matrix 

associated with a grid line. In contrast, the present CV-CIRBF scheme produced a tridiagonal 

system matrix, which is computationally far more efficient than the global CIRBF scheme. In 

Section 3.1, we will show that calculations of internodal fluid fluxes using the global CIRBF 
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scheme (instead of the local CIRBF) can improve the solution accuracy and efficiency in solving 

the Richards equation. We note that this internodal flux treatment does not affect the tridiagonal 

system matrix produced by the present CV-CIRBF scheme. A rational function transformation 

technique (Pan and Wierenga, 1995) in combination with Picard iterations is subsequently 

employed to treat the nonlinearity of the Richards equation. Our proposed CV-CIRBF method is 

first illustrated and verified in Section 3.1 through comparisons with the semi-analytical solution 

of Warrick et al. (1985). The numerical approach is then used in Sections 3.2 and 3.3 to solve 

several unsaturated flow problems to demonstrate its performance.

2.  CONTROL VOLUME – COMPACT INTEGRATED RADIAL BASIS FUNCTION 

DISCRETISATION OF THE RICHARDS EQUATION

In this section, a control volume approach based on compact integrated radial basis function 

(CV-CIRBF) stencils is used to discretise the Richards equation governing moisture motion in 

soils. Consider  nodal points on a grid line. Each node  is surrounded by a control volume zN z  iz

. For interior nodes  with ,  is defined as . For boundary nodes i iz 2 1zi N   i  1/2 1/2,i iz z 

 and , the control volumes are  and , respectively. In the compact 1z zNz  1 3/2,z z 1/2 ,
z zN Nz z  

integrated radial basis function (CIRBF) approximation as used by Mai-Duy and Tran-Cong 

(2011, 2013), the first and second spatial derivatives of the field variable u at a nodal point z(i) are 

computed as follows:

(2)
 2 2 ( 1) 2 ( 1)

1 22 2 2

Ti i iu u uu
z z z

 
    

      

(3)
  2 ( 1) 2 ( 1)

1 2 2 2

Ti i iu u uu
z z z

 
    

      
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where ;  and  are known vectors of dimension of ;       1 1 Ti i iu u u u    1 5

 and . Readers are referred to the Appendix      1 2 11: 3 ; 4 : 5 ; 1: 3         2 4 : 5 

for further detail on the CIRBF approximation. Application of Eqs.  and  at nodal points 

 on the z-grid line yields      1 2ˆ ... z
TNz z z z

(4)
 

     
 12 2

1
2 2 2 22 2

ˆ ˆˆ , ,
m m

m m m
z zk zk zk

u uD u k k D
z z


 

  
 

(5)
 

     
 1 2

1
1 1 1 1 2

ˆ ˆˆ , ,
m m

m m m
z zk zk zk

u uD u k k D
z z


 

  
 

where ; and  are known matrices of dimension of       1 2ˆ ... z
TNu u u u 1 1 2, ,z zk zD D D 2zkD

; and  and  are the previous and current time levels for the Picard iteration, z zN N  m  1m 

respectively.

Similarly, we apply Eqs. (4) and (5) at  and         3/2 5/2 1/2ˆ ... z z
TN Nz z z z z

 

 to calculate the second and first derivatives of the         1 3/2 3/2 1/2ˆ ... z z
TN Nz z z z z 

 

function  at the surfaces of each control volume as follows:u

(6)
 

     
 12 2

1
2 2 2 22 2

ˆ ˆˆ , ,
m m

m m m
z zk zk zk

u uD u k k D
z z




   


 
  

 

(7)
 

     
 1 2

1
1 1 1 1 2

ˆ ˆˆ , ,
m m

m m m
z zk zk zk

u uD u k k D
z z




   


 
  

 

and
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(8)
 

     
 12 2

1
2 2 2 22 2

ˆ ˆˆ , ,
m m

m m m
z zk zk zk

u uD u k k D
z z




   


 
  

 

(9)
 

     
 1 2

1
1 1 1 1 2

ˆ ˆˆ , .
m m

m m m
z zk zk zk

u uD u k k D
z z




   


 
  

 

Here, we adopt the rational function transformation method proposed by Pan and Wierenga 

(1995) to transfer the pressure head  in Eq.  into a transformed function f  as follows:h

(10)
0

1
0

h if h
hf

h if h


   
 

where  is a transformation constant. Rearranging Eq.  gives

(11)
0

1
0.

f if h
fh

f if h


   
 

Taking the derivative of both sides of Eq.  and using Eq. (10) to eliminate f results in

(12) 21 0
1 0.

h if hh
f if h

     

Making use of the chain rule of partial derivatives, we obtain 

(13)    *( )K h h K h f      

where . Substituting Eq.  into Eq.  gives* /K K h f  
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(14) * 0.KK f
t z
 

     
 

The vertical flux is defined as . The nonlinear term in Eq.  is now * /zq K f z K    

linearised using the Picard iteration method, which for a one-dimensional system leads to

(15)
( 1, 1) ( ) ( 1, )

*( 1, ) ( 1, 1) 0
n m n n m

n m n m KK f
t z z z

   
             

where the superscript n refers to a physical time level, and m to the Picard iteration. The specific 

moisture capacity function  is transformed as follows:  /C h d dh

(16)* .h dC C
f df


 



Application of a Taylor series expansion about the point  results in( 1, )n mf 

(17)( 1, 1) ( 1, ) *( 1, ) 2( )n m n m n mC O        

where . Substitution of Eq.  into  yields( 1, 1) ( 1, )n m n mf f    

, (18)
 

   
     * 1, 1, 1,

* 1, * 1,
n m n m n n m

n m n mC f KK K
t z z z z z t

  
  

                        

which can be rewritten in the form:

(19)
 

 
     1,* 1, 1,

* 1,
n mn m n n m

n m zqC K
t z z z t

  
 

             

The Richards equation  is now integrated over each control volume  as follows:i
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(20)

 
   

 

   
 

 

       
   

* 1, 1, 1 1, 1
1, 1 * 1, * 1,

1/2 1/2

1,
1, 1,

1/2 1/2

i

i

n m n m n m
n m n m n m

i i

n n m
n m n m

z i z i

C dz K z K z
t z z

q z q z dz
t

 

 

    
   

 


 

  

    
            


   







where the vertical fluxes at the control surfaces  and  are given by1/2iz  1/2iz 

(21)       
     

1,
1, * 1, 1/2

1/2 1/2 1/2

n m
n m n m i

z i i i

f z
q z K z K z

z


  

  


  



, (22)       
     

1,
1, * 1, 1/2

1/2 1/2 1/2

n m
n m n m i

z i i i

f z
q z K z K z

z


  

  


  



respectively, in which the internodal conductivity given by the arithmetic mean of the nodal 

values, i.e., K*(zi+1/2) = [K*(zi)+ K*(zi+1)]/2, is assumed constant over each control volume. The 

integrals in Eq.  are approximated using the midpoint rule. Application of Eq.  to all control 

volumes  on the z-axis results ini

(23)

 
         

       
   

* 1,
* 1, * 1, 1, 1 * 1, * 1,

1 1 1 1

1,
1, 1,

1/2 1/2

ˆ ˆˆ ˆ ˆ ˆ. .

ˆ ˆ

n m
n m n m n m n m n m

z z z z

n n m
n m n m

z i z i

C z I K D K D K k K k
t

q z q z z
t

 

 


     

       


 

 

 
      


   



where I is the identity matrix. The first and second spatial derivatives of  and  at the control  f

surfaces  and  are discretised by using the CIRBF scheme (Eqs. (6)-(9)) as follows:1/2iz  1/2iz 

(24)
 

     
 12 2

1
2 2 2 22 2

ˆ ˆˆ ,
m m

m m m
z zk zk zkD k k D

z z 
 




   


 
  

 
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(25)
 

     
 1 2

1
1 1 1 1 2

ˆ ˆˆ ,
m m

m m m
z zk zk zkD k k D

z z 
 




   


 
  

 

(26)
 

     
 12 2

1
2 2 2 22 2

ˆ ˆˆ ,
m m

m m m
z zk zk zkD k k D

z z 
 




   


 
  

 

(27)
 

     
 1 2

1
1 1 1 1 2

ˆ ˆˆ ,
m m

m m m
z zk zk zkD k k D

z z 
 




   


 
  

 

and

(28)
 

     
 12 2

1
2 2 2 22 2

ˆ ˆˆ ,
m m

m m m
z zkf zkf zk

f fD f k k D
z z




   


 
  

 
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 

Substitution of these equations into Eq.  leads to a system of linear equations, which is 

solved to obtain  at each physical time step. Note that the resulting system matrix (for the 1D ̂

case) has only 3 non-zero entries on each row. At each physical time step, the Picard iteration is 

terminated when the following criterion is fulfilled
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(32)
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  
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i i
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N
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i
i

f f
TOL

f
















where  is a prescribed tolerance, presently set at .TOL 510

3.  NUMERICAL RESULTS AND DISCUSSION

In this section, the CV-CIRBF method in combination with Picard iteration and the rational 

function transformation is used to solve the Richards equation in one dimension (1D) for different 

boundary conditions (constant pressure head and constant flux), initial pressure heads (i.e., 

 and ) and soil types (relatively coarse-, medium- and fine-textured 0 800, 10000  h 50000 cm

media). We used the standard van Genuchten-Mualem (VG) model to describe the soil water 

retention curve, θ(h), and the relative hydraulic conductivity function, K(h), as follows (van 

Genuchten, 1980):

(33)   
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1

0

s r
r
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if h
hh

if h



  
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

     


(34) 

2
1

ˆ 1 1 0

0

L
s e e

s

K S S if h
K h

K if h





               
 
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where θs and θr are, respectively, the saturated and residual water contents, α and η are fitting 

parameters, Ks is the saturated hydraulic conductivity,  is effective    /e r s rS      

saturation, , and . Table 1 presents the van Genuchten-Mualem (VG) hydraulic 1 1/   ˆ 0.5L 

parameters of the three soils we considered.  For the relatively coarse-textured soil we used the 

hydraulic parameters of a loamy sand as provided by Carsel and Parrish (1988).  For the medium 

soil we took the hydraulic parameters from a study by Vogel and Hopmans (1992) on furrow 

irrigation. The soil in their study was categorized as a sand but in reality had hydraulic parameters 

more typical of a medium-textured soil as indicated by the class-pedotransfer functions of Carsel 

and Parrish (1988) and Schaap et al. (2001). And for the fine-textured soil we used the hydraulic 

parameters of a clay loam soil as categorized by Carsel and Parrish (1988).

Table 1. Van Genuchten-Mualem (VG) soil hydraulic parameters 

of the three soils  considered in this study.

van Genuchten hydraulic parameters
Soil texture θr 

(cm3/cm3)
θs 

(cm3/cm3)
α 

(cm-1)
η 

(-)
Ks 

(cm/min)
Coarse 0.057 0.410 0.1240 2.28 0.2431
Medium 0.061 0.420 0.0189 2.00 0.0270
Fine 0.095 0.410 0.0190 1.31 0.0043

θr: residual water content; θs: saturated water content; α: VG multiplier of the 
pressure head; η: VG exponent, Ks saturated hydraulic conductivity.

For all simulations we considered vertical downward infiltration into a 100-cm deep soil profile 

with the lower boundary at z=0 cm and the upper boundary at z=100 cm.  In this study we limited 

ourselves to fixed nodal spacings (Δz).

3.1 Example 1: Constant pressure head at upper and lower boundaries 

Initial and boundary conditions for this first example are ,   0, 0 800 cmh z t h   

, and . In this example, we used fixed time steps  0, 800 cm  bottomh t h  100, 0 cm toph t h
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(Δt). Internodal fluxes are known to have errors when changes in the water content are significant, 

especially for heterogeneous soils due to discontinuities in the water content at the interface of 

different soil layers. In this example, we used two different approaches to calculate the internodal 

fluxes as given by Eqs. (21) and (22):

 Approach 1: Internodal fluxes are calculated using the present local CIRBF scheme, Eq. (5).

 Approach 2: Internodal fluxes are calculated using the global CIRBF scheme (Ngo-Cong et al., 

2017), Eq. .

The CV-CIRBF formulation was verified by comparing results with the semi-analytical 

solution (Celia et al., 1990). Performance was assessed based on relative error norms between the 

numerical solutions and the semi-analytical solution of Warrick et al. (1985) at three marks 

(Fig. 1) corresponding to =0.25, 0.5 and 0.75 where  and  is the *
eS    *

0 0/ 1e e e eS S S S   0eS

initial effective saturation. Table 2 shows comparisons of the relative error norm, Ne(z), the total 

number of iterations, and the total CPU time required to obtain the converged solution with 

TOL=10-5. The relative error norm, Ne(z), is calculated as

 (35)   
3 3

2 2

1 1
/k k k

k k
Ne z z z z

 

  

where  and  are the numerical and semi-analytical values at the k-th mark, respectively. The kz kz

time step was set at 0.5 minutes for all cases. For the purpose of CPU time comparisons, all related 

computations were carried out on a single 3.10 GHz processor machine with 8 GB RAM. 

The CV-CIRBF methods yielded more accurate solutions than the FDM of Celia et al. 

(1990), with Approach 2 solutions being slightly more accurate than those of Approach 1. 
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Approach 2 was also more efficient than Approach 1 in terms of the total number of iterations and 

the total CPU time. Since Approach 2 outperformed Approach 1 in terms of accuracy and 

efficiency, we will use here further only the CV-CIRBF method with Approach 2. For a given grid 

size, Approach 2 was slower than the FDM. However, Approach 2 achieved a given level of 

accuracy with a much coarser grid and hence was more efficient. For instance, Approach 2 with a 

grid of 21 nodes produced better results in 4.16 s than the FDM with a grid of 61 nodes in 5.1 s. 

Figure 1a shows the influence of the time step on the CV-CIRBF results for the medium-textured 

soil using and a grid of 51 nodes. The Warrick semi-analytical  = 0.5,1,10, 30 mint

solution (Phoon et al., 2007; Warrick et al., 1985) and the finite difference method (FDM) results 

of Celia et al. (1990) are also depicted for comparison purposes. Distributions of the pressure head 

for different grid sizes  and are described in Fig. 1b. The results indicate  21, 51zN  =0.5 mint

that the present method yields more accurate solutions when refining the grid and time step sizes 

and that the CV-CIRBF solutions are more accurate than those based on the FDM scheme.

Table 2. Example 1: Comparisons of the relative error norm (Ne), total number of iterations, 

and total CPU time required to obtain converged solutions with TOL=10-5 between the FDM 

and CV-CIRBF using Approaches 1 and 2. The time step was set at 0.5 minutes for all cases. 

FDM, App.1 and App. 2 stand for the finite difference method of Celia et al. (1990), 

Approach 1 and Approach 2, respectively.

Ne(z) Number of iterations CPU time (seconds)
Grid FDM App. 1 App. 2 FDM App. 1 App. 2 FDM App. 1 App. 2
21 2.25E-01 4.63E-02 4.20E-02 4735 7947 4737 3.86 6.27 4.16
31 1.91E-01 5.91E-02 5.91E-02 4788 7451 4789 4.03 6.66 4.37
41 1.80E-01 7.77E-02 7.77E-02 4847 7537 4846 4.28 7.21 4.69
51 1.58E-01 9.53E-02 9.53E-02 4937 7591 4898 4.73 7.95 5.22
61 1.44E-01 9.82E-02 9.81E-02 5104 7638 4929 5.10 8.34 5.42
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Figure 1. Calculated pressure head (h) distributions versus depth (z) obtained with the CV-CIRBF 

method using different time steps  (a) and nodal spacings (b), compared with the semi-t

analytical solution of Warrick et al. (1985) (a, b) and the finite difference solution (FDM) of Celia 

et al. (1990) (b). Calculations are for the medium-textured soil subject to ponded infiltration.

Figure 2 compares similar pressure head distributions versus depth, now at four different 

times, with results obtained using both the semi-analytical solution of Warrick et al. (1985) and the 

HYDRUS-1D software of Šimůnek et al. (2008). Results show a slightly better performance of the 

CV-CIRBF scheme as compared to HYDRUS-1D.  Calculations in Fig. 2 were obtained for an 

initial condition of -800 cm.  Results for more extreme initial conditions of -10,000 cm and -

50,000 cm are shown in Fig. 3 assuming nodal spacings of 5 and 2 cm (i.e., Nz values of 21 and 

51, respectively).  The distributions indicate only a marginal effect of nodal spacing on the CV-

CIRBF results, but with the HYDRUS-1D distributions depending far more on the number of 

finite element nodes.   
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Figure 2. Calculated pressure head (h) distributions versus depth at selected times as 

obtained with the CV-CIRBF scheme, the HYDRUS-1D numerical solution (Šimůnek 

et al., 2008) and the semi-analytical solution of Warrick et al. (1985).  Results are for 

the medium-textured soil subject to ponded infiltration.

The CV-CIRBF numerical approach was also used to study infiltration in more coarse- and 

fine-textured soils whose hydraulic parameters are presented in Table 1. Figures 4 and 5 show the 

CV-CIRBF and HYDRUS results at different times for the coarser and finer soils, respectively, 

using initial pressure heads (h0) of -800 and -50,000 cm. Similarly as the results shown in Figs. 2 

and 3, the CV-CIRBF calculations agreed well with the HYDRUS-1D results, with HYDRUS-1D 

again showing more of an effect of nodal spacing on the computed pressure head distributions.
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Figure 3. Calculated pressure head (h) distributions versus depth at selected times for initial 

conditions of -10,000 cm (a) and -50,000 cm (b) as obtained with the CV-CIRBF and HYDRUS-1D 

numerical solutions assuming 21 and 51 nodes (grid spacings of 5 and 2 cm, respectively). 

Calculations are for the medium-textured soil subject to ponded infiltration.
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Figure 4. Calculated pressure head (h) distributions versus depth at selected times for initial 

conditions of -800 cm (a) and -50,000 cm (b) as obtained with the CV-CIRBF and HYDRUS-1D 

numerical solutions assuming 21 and 51 nodes (grid spacings of 5 and 2 cm, respectively). 

Calculations are for the coarse-textured soil subject to ponded infiltration. 
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Figure 5. Calculated pressure head (h) distributions versus depth at selected times for initial 

conditions of -800 cm (a) and -50,000 cm (d) as obtained with the CV-CIRBF and HYDRUS-1D 

numerical solutions assuming 21 and 51 nodes (grid spacings of 5 and 2 cm, respectively). 

Calculations are for the fine-textured soil subject to ponded infiltration.

3.2 Example 2: Constant flux at upper boundary and constant pressure head at lower boundary

In this example, we apply a constant flux at the upper boundary (qA) and again a constant 

pressure head at the lower boundary (hC). The constant flux at the upper boundary was set at half 

of the saturated hydraulic conductivity, i.e., qA = 0.5Ks. Figure 6 shows the influence of the time 

step (∆t) on the CV-CIRBF results for infiltration in the medium-textured soil, in comparison also 

with the HYDRUS-1D solutions, assuming an initial pressure heads of -800 cm. The CV-CIRBF 

result became closer to the HYDRUS-1D result with reducing the time step size. We note that an 

adaptive time-stepping scheme was used to obtain the HYDRUS-1D result.
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Figure 6. Calculated pressure head (h) distributions versus depth at time t=780 min for initial 

conditions of -800 cm as obtained with the CV-CIRBF and HYDRUS-1D numerical solutions 

assuming 51 nodes (grid spacings of 2 cm). Calculations are for the medium-textured soil subject to 

constant infiltration.

Figure 7 presents the CV-CIRBF and HYDRUS-1D results for infiltration into the medium-

textured soil assuming initial pressure heads (h0) of -800 and -50,000 cm, again for 21 and 51 

nodes (grid spacings of 5 and 2 cm, respectively). For the calculations here we now used an 

adaptive time-stepping scheme to improve the computational efficiency and robustness.  

Following Kirkland et al. (1992), the time step (Δt) was increased by 10% when the number of 

Picard iterations at the previous time step was less than 4, and decreased by 10% when the number 

of iterations was greater than 8.  The plots in Fig. 7 again show excellent agreement between the 

CV-CIRBF and HYDRUS-1D results, especially for the finer nodal spacing, with the CV-CIRBF 

distributions being less affected by the number of nodes as compared to HYDRUS-1D (especially 

for infiltration in the drier soil). Our CV-CIRBF solver produced a mass-conservative solution as 

demonstrated in Fig. 8 showing the mass balance measure (MB) versus time t. The mass balance 

measure is defined as MB=m1/m2 with m1 and m2 being the total additional mass in the domain and 

the total net flux into the domain, respectively. Except for some minor deviations at early times, 
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MB values were always at or very close to 1.00.  Results for the coarse- and fine-textured soils 

were found to be very similar and are not further shown here.
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Figure 7. Calculated pressure head (h) distributions versus depth at time t=780 min for initial 

conditions of -800 cm (a) and -50,000 cm (d) as obtained with the CV-CIRBF and HYDRUS-1D 

numerical solutions assuming 21 and 51 nodes (grid spacings of 5 and 2 cm, respectively). 

Calculations are for the medium-textured soil subject to constant infiltration.
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Figure 8. Calculated mass balance measure (MB) versus 

time t obtained with the CV-CIRBF scheme.
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3.3 Example 3: Flow in a layered soil with a constant flux at upper boundary and zero-flux at 

lower boundary

This example considers infiltration into a layered soil assuming a constant flux at the top 

boundary, a zero-flux at the bottom boundary, and different initial pressure heads as shown in 

Table 3. For the three-layered soil profile we used Berino loamy fine sand from 0 to 50 cm and 90 

to 100 cm, and Glendale clay loam from 50 to 90 cm. The VG hydraulic parameters of the two 

soils are given in Table 4. Figure 9 presents the FDM and CV-CIRBF results for infiltration 

assuming an initial pressure head of -200 cm and a flux of 0.3 cm/h at the top boundary. The CV-

CIRBF yielded more accurate solution than the FDM using a grid of 51 nodes. The CV-CIRBF 

solution using 101 nodes was almost the same as the FVM solution of McBride et al. (2006) who 

used a conventional finite-volume-based CFD code (Fig. 9b). Figure 10 similarly shows excellent 

agreement between the CV-CIRBF results and those of McBride et al. (2006) for qA = 0.3 and 1.25 

cm/h, assuming again an initial condition (h0) of -200 cm, but also for the far more extreme case 

where h0 = -50,000 cm.

Table 3. Flow in a layered soil: initial and boundary conditions, and elapsed times. 

Note that h0 is the initial pressure head and qA is the vertical flux at the top 

boundary.

Case
h0

(cm)
qA

(cm/h)
Elapsed Time

(h)
1 -200 0.3 4
2 -50000 0.3 12
3 -200 1.25 3.8
4 -50000 1.25 6
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Table 4. Flow in a layered soil: van Genuchten soil hydraulic parameters (McBride et al., 2006).

van Genuchten hydraulic parameters
Soil θr 

(cm3/cm3)
θs 

(cm3/cm3)
α 

(cm-1)
η 

(-)
Ks 

(cm/min)
Berino loamy fine sand 0.0286 0.3658 0.0280 2.2390 0.3757
Glendale clay loam 0.1060 0.4686 0.0104 1.3954 0.0091

θr: residual water content; θs: saturated water content; α: VG multiplier of the 
pressure head; η: VG exponent, Ks saturated hydraulic conductivity.
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Figure 9. Calculated pressure head (a) and volumetric water content (b) distributions versus depth for Case 

1 as obtained with the CV-CIRBF and FDM schemes, and the FVM solution of McBride et al. (2006) 

assuming 51 and 101 nodes (grid spacings of 2 and 1 cm, respectively).
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Figure 10. Calculated volumetric water content distributions versus depth for all cases as obtained with the 

CV-CIRBF scheme, and FVM solution of McBride et al. (2006) using 101 nodes (grid spacing of 1 cm) for 

the flux of 0.3 cm/h (a) and 1.25 cm/h (b) at the top boundary.

4.  CONCLUSIONS

We successfully developed a control volume technique based on a compact integrated radial 

basis function approximation (CV-CIRBF) for solving the nonlinear Richards equation governing 

water flow in unsaturated and variably saturated soils. Performance of the proposed method 

appears satisfactory as demonstrated with ponded and constant flux infiltration in a one-

dimensional vertical soil profile. The local CIRBF stencil was constructed based on information 

associated with three nodal points, which produced a tridiagonal system matrix similarly as with 

the conventional control volume method. Results showed that our calculation of internodal fluid 

fluxes using the global CIRBF scheme was more accurate than the approach used earlier for the 

local CIRBF scheme. The CV-CIRBF outperformed the FDM scheme used by Celia et al. (1990), 

especially when a coarser grid was used (Example 1). The proposed numerical solutions agreed 

well with the semi-analytical solution of Warrick et al. (1985), as well as with HYDRUS-1D 

results, for different boundary conditions (constant pressure heads or fluxes), initial pressure heads 
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(  and ) and a range of soil textural classes exhibiting contrasting 0 800, 10000h    50000 cm

hydraulic behaviour. The HYDRUS-1D results closely duplicated the CV-CIRBF results only 

when relatively small nodal spacing were used in the HYDRUS-1D finite element solutions, with 

the CV-CIRBF being far less dependent upon the nodal spacing. The CV-CIRBF scheme was also 

used successfully to simulate flow in a layered soil profile, with its solutions being in excellent 

agreement with the standard FVM solutions of McBride et al. (2006). Finally, we acknowledge 

that in this study we limited ourselves to constant nodal spacing (Δz).  Extending the solutions to 

irregular grid systems is relatively straightforward and has not been further addressed in this paper.
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APPENDIX: COMPACT INTEGRATED RADIAL BASIS FUNCTION 

APPROXIMATION

The field variable  can be approximated over a compact integrated radial basis function u

(CIRBF) stencil corresponding to three nodal points  as follows (Mai-Duy and Tran- 1, , 1i i i 

Cong, 2013):
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where  are radial basis function (RBF) weights that need to be determined; are    1

1

ik

k i
w
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 

   kG z

known RBFs; ; and  and  are integration constants,              1 0 1;H z G z dz H z H z dz   1c 2c

which are also unknown. The RBFs are defined as  where    kG z         2 2k k kG z z z a  

 is the RBF width determined presently as , in which  is a positive factor, and   ka   'ka g ' g

the grid size. The influence of  on the CIRBF solution accuracy was investigated in previously '

published papers (Hoang-Trieu et al., 2013; Mai-Duy and Tran-Cong, 2011; Mai-Duy and Tran-

Cong, 2013; Ngo-Cong et al., 2017). Based on our numerical experiments, the value of  was '

chosen to be 20 for the calculations in this paper. We used the nodal function values and the nodal 

second derivatives as extra information to construct the stencil approximations for the first and 

second derivatives. Application of Eq. (A.38) at three nodal points  and Eq. (A.36) at  1, , 1i i i 

two nodal points  leads to the following system: 1, 1i i 



27

(A.39)
 

 

 
     

     
   

 
     

     
   

 
     

     
   

 
     

     
   

 
     

     
   

1 1
1 1 1 10 0 0

1 1
0 0 0

12
1 1

1 1 1 10 0 02

1 112
1 1 10 0 0

2 1 1
1 1 10 0 0

1

1

1

0 0

0 0

i i i
i i i i

i i i
i i i i

i
i i i

i i i i

i i ii
i i i

i i i
i i i

C

H z H z H z z
u H z H z H z z
u H z H z H z z
z

G z G z G zu
z G z G z G z

 
   

 


 

   

 
  

 
  

 
   
   
            

       
  

w
c

 
 
 

 

or

(A.40)
   1 12 2

1
2 2

Ti iw u uC u
c z z

 
     

         
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Eq. (A.40) into Eqs. (A.36) and (A.37), and applying them at nodal point , expressions for first i

and second derivatives of the field variable  in physical space can be obtained:u
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where  and  are known vectors of dimension of ;    1 5      1 2 11: 3 ; 4 : 5 ; 1: 3       

and . Equations  and  were solved with the Picard iteration method, with the extra  2 4 : 5 

information of the second derivatives obtained from the previous iteration. 

Instead of using Picard iteration, the extra information of the second derivatives in  and  

can be implicitly calculated using the function values at all nodes on a grid line as shown in Ngo-

Cong et al. (2017). The values of the second and first derivatives of u against z at the nodal points 

on the z-grid line are then given by

(A.45)
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Highlights

 A new control volume scheme was developed to solve the nonlinear Richards equation.
 The scheme was constructed using compact integrated radial basis function stencils.
 Different initial and boundary conditions and soil textural classes were investigated.
 Results were in good agreement with Warrick’s semi-analytical solutions.
 Results were less dependent on the grid spacing than those of HYDRUS-1D.


