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The culture of mathematical explanations and writings based on conceptual 
understanding in proof construction is on the focus of the paper. We explore 
students’ attempts to explain construction of mathematical proofs after reading 
them and write mathematical proofs after working out their own constructions. 
Two examples of proofs, by induction and by contradiction, are discussed in 
detail to highlight students’ difficulties in proving and possible ways for their 
resolving.    
INTRODUCTION 
Despite a consensus on the importance of proof in any mathematically related 
activities, from the children’s first logical reasoning in primary school to 
mathematicians’ research work,  its role in the teaching and learning of 
mathematics, in particular secondary mathematics, has traditionally been 
neglected in curricula documents for long time. However, recently this situation 
has changed dramatically. Probably the most demonstrative formal evidence took 
place in the U.S., where the status of proof has been significantly elevated in the 
Standards document (NTCM, 2000) with respect to the previous one (NTCM, 
1989). Proof has also received a much more prominent role throughout the entire 
school mathematics curriculum. Evidence of similar actions can be also seen in 
many other countries throughout the world. The conception of proof seems to be a 
bridge that connects mathematical research work and teaching of mathematics. 
Metaphors on the role of proof in mathematics that directly relate to mathematics 
education (Hanna, 2000; Hanna and Barbeau, 2008; Manin, 1992; Rav, 1999) 
emphasise the importance of the teaching of proof in school mathematics. 
Reviews of research on the teaching and learning of proof (Battista & Clements, 
1992; Tall, 1991; Yackel & Hanna, 2003) have informed and inspired more recent 
studies of proof and proving in mathematics education. Nevertheless this area is 
still not being developed to its maximum potential, and still not enough is known 
about how students can best be taught proof and proving skills. In one of the latest 
surveys on the teaching and learning of proof (Harel & Sowder, 2007) the authors 
stated that  

overall, the performance of students at the secondary and undergraduate levels of 
proof is weak… Whether the cause lies in the curriculum, the textbooks, the 
instruction, the teachers’ background, or the students themselves, it is clear that the 
status quo needs, and has needed, improvement. (p.806) 
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This paper is an attempt to investigate the links between students’ abilities in 
proof construction and their conceptual understanding of mathematical content 
they deal with. The paper is divided into two parts: the first part elaborates a 
theoretical model based on Weber’s idea (2005) to consider proof construction as 
a problem-solving task, and the second part presents examples of proofs produced 
by secondary school students as well as examples of proofs proposed to the same 
group of students to work on them; and discusses the influence they [examples] 
may have upon development of students’ conceptual understanding and structural 
knowledge.  
ABOUT THE THEORETICAL MODEL OF PROOF CONSTRUCTION 
Hanna (1995) emphasised that 

the most important challenge to mathematics educators in the context of proof  is to 
enhance its role in the classroom by finding more effective ways of using it as a 
vehicle to promote mathematical understanding. (p.42) 

We address this challenge in specific conditions, where secondary students 
possess higher order mathematical thinking and reasoning. We consider these 
questions with respect to a special group of students, who, for several years, were 
invited to sit Australian Mathematical Olympiad, which is the highest level of 
mathematics competitions for school students in Australia. Most high-profile 
students regularly participate in numerous mathematical competitions and, for 
them to achieve the best results, their training should be grounded on a 
comprehensive theoretical base, where the role of proof and proving hardly can be 
underestimated. In this paper we explore students’ attempts to explain 
construction of mathematical proofs after reading them and write mathematical 
proofs after working out their own construction. Mathematical reading provides a 
challenge to understand a text and work up a strategy resolving a given task 
(Mamona-Downs & Downs, 2005). Mathematical explanations are used to 
highlight a more general approach that can be applied and elaborated beyond a 
given task, e.g. to check writing of student’s own proof as well as reading of the 
given proofs.  Mathematical explanations allow the reorganisation of the activity 
of proof construction according to functions of proof (Balacheff, 1988; Bell, 1976; 
de Villiers, 1990, 1999; Hanna, 1990; Hanna & Jahnke, 1996; Hersh, 1993). 
Hanna noted (2000) that even for practising mathematicians understanding is 
more important than rigorous proof, i.e. “they see proofs as primarily conceptual, 
with the specific technical approach being secondary” (p.7). We consider the 
mentioned above group of students as potentially prospective candidates, at least 
some of them, to become professional mathematicians in the future. Therefore, 
we understand the role of proof in work with gifted students as transitional from 
the teaching and learning mathematics, at the one hand, to inquiry work in 
mathematics, at the other hand, i.e. the role which combine both kinds of activities. 
To analyse this we use a method of simultaneous investigation of both: (1) 
influence, which proof construction in common, and specific examples in 
particular, may have upon development of students’ abilities to understand proofs 
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in the proper way, and (2) perception of proving process by individuals, which 
may or may not contribute towards conceptual understanding of mathematical 
content. We call this method a model of mutual convergence, keeping in mind 
that mutual impact of both components of the method on each other requires 
further clarification.  
According to Weber (ibid.) proof construction is a mathematical task in which a 
desired conclusion can be deduced from some initial information (assumptions, 
axioms, definitions) by applying rules of inferences (theorems, previously 
established facts, etc). Weber (2001) noted that there are dozens of valid 
inferences in most proving situations, but only a small number of these inferences 
can be useful in constructing a proof. Our special interest was analysis of the 
situations in proof construction, where students didn’t know how to proceed (in 
the sense of both kinds of activities, students’ mathematical reading with 
explanations that followed and their own attempts in proving, including writing).  
The hypothesis was in existence of non-linear complicated dependence between 
(1) and (2), which under certain conditions may lead to a significant extension of 
learning opportunities (Weber, 2005) affordable for students as a result of proof 
construction.       
ANALYSIS OF SOME EXAMPLES AND METHODS USED IN PROOF 
CONSTRUCTION 
Below we present two examples of proof construction and discuss them with 
respect to students’ explanations either on the base of their reading or writing. We 
use Weber and Alcock (2004) terminology of procedural, syntactic and semantic 
proof productions as components of proof construction. 
Proof by mathematical induction 
Mathematical induction is an important part of knowledge on proof construction. 
Many students perceive mathematical induction as a procedural proof production. 
We observed no difficulties in students’ work with direct proofs. Therefore, 
mostly we focused on the situation, where the procedural or syntactic part of 
proof was completed, but proof itself wasn’t. The following extract (as 
mathematical reading activity) proposed to students to get their views and 
explanations, gives a good example of the case. Text in bold italic was 
unavailable for students.  
Example 1 (Euler)  
Prove that for each positive integer 3≥n , a number n2  can be represented as 

2272 yxn +=  where x  and y  are both odd numbers. 
Proof 
The beginning of this proof is syntactic. 
We prove this statement by induction. For 3=n  it is true. Assume that the 
property is true for a certain n, i.e. 2272 yxn += , where x  and y  are both odd 
numbers.  
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Semantic part of proof begins here. Direct application of induction doesn’t 
work and informal interpretation of the components of inductive process needs 
to be done.  
Then, for pairs  

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ +=−= yxByxA 7

2
1,

2
1  and ( ) ( )

⎭
⎬
⎫

⎩
⎨
⎧ −=+= yxDyxC 7

2
1,

2
1  we have  

221 72 BAn +=+  and 221 72 DCn +=+ , respectively.  
The first gap within semantic part of proof is below. Since it depends on 
understanding of a certain concept or theorem and may lead to (in)correct 
application in the construction of proof we call this gap as a conceptual one. 

A  and B  are either odd or even simultaneously. Indeed, if ( ) lyxA =−=
2
1  is odd,  

then ( ) ( ) lyylyyxB 74147
2
17

2
1

+=++=+=  must be odd. If A  is even, then B  is  

even, respectively.  The same property is valid for C  and D .  
Another conceptual gap follows. 

Moreover, if ( )yxA −=
2
1  is odd, then ( )yxC +=

2
1  is even, and vice versa. This  

means that both numbers are odd in one of the pairs Q.E.D.  
Our observations show that students may fail to provide explanations of proof 
construction because of limited understanding of the relationships between 
mathematical objects involved. 
Proof by contradiction 
Proof by contradiction is a complex activity, where students may experience 
significant difficulties. The following example was supposed for students’ own 
attempts to construct a proof and provide explanations in writing. 
Example 2 
Natural numbers from 1 to 99 (not necessarily distinct) are written on 99 cards. It 
is given that the sum of the numbers on any subset of cards (including the set of all 
cards) is not divisible by 100. Prove that all the cards contain the same number. 
Analysis of Example 2 and students’ writings 
The first part of proof construction (syntactic one) is easy to follow – to assume 
the opposite, which means that at least two cards contain distinct numbers, e.g. 

9998 nn ≠  using standard notation, where in  is a number written on the card i . The 
next step is to identify and apply a method (technique) that leads to a 
contradiction. The main idea of the semantic part of proof is to investigate 
different remainders ix  of innn +++ ...21  upon division by 100, which guarantees 
the result that all ix  must be distinct for 99,,2,1 K=i . After that, making 
comparison of the sum 999721 nnnn ++++ L  (just one of the two distinct numbers 
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needs to be omitted) with another sum having the same remainder (conceptual gap) 
gives three possible results, each of which leads to a contradiction.  
Our observations show that students may have difficulty with their own approach 
and explanations of proof construction due to lack of understanding of which 
mathematical objects can be used. Consequently, some invalid conceptual gaps 
(we call them pseudo-conceptual gaps) within semantic part of proof may appear 
in writing. It leads to the vague construction of a proof, where actual information 
about mathematical objects may be replaced with desirable property.  
CONCLUDING REMARKS 
We observed that in writing their own explanations on proof construction students 
are more aware about the gaps between different parts of proof, i.e. syntactic and 
semantic ones, than in the case of explanations based on reading. It can be 
connected with students’ perception of mathematical reading as more 
instructional and prescriptive part of learning activities than writing. At the same 
time representation of formal mathematical concepts as components of proof 
makes reading more beneficial than writing, if students can identify some 
conceptual gaps properly (those gaps that often constitute the style and culture of 
formal mathematical texts used in textbooks and monographs). We suggest that 
focusing teacher’s actions on such transitional and conceptual gaps within proof 
construction will influence the ways in which students attempt to construct proofs. 
In other words, transitions between different parts of proof in Weber’s terms 
together with local components of semantic part of proof are the places, where 
significant learning potential can be accumulated. It may lead to further positive 
impact on development of conceptual understanding and optimization of learning 
process in the context of proof construction.       
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