

University of Southern Queensland
Faculty of Business and Law

School of Information Systems

Key factors impacting on response time of software

vendors in releasing patches for software vulnerabilities

A Dissertation submitted by

Arjun K.C.

 For the award of

Master of Business Research

2012

ii

Abstract

Software vulnerabilities are a major problem for organizations and society given how

pervasive the use of computers and the Internet and networks has become.

Computers, the Internet and networks in general are underpinned by operating

system software and, increasingly, software applications are integrated with the

Internet. In this increasingly complex environment hackers and attackers are more

likely to take advantage of software vulnerabilities and exploit operating system

software and application software. These software exploitations can result in huge

losses to businesses which are highly reliant on computerized systems. Software

vendors are responsible for securing these vulnerabilities through software patching.

This study examines the effect of the level of criticality of software vulnerabilities,

type of software vendor and type of software on the software vendors‘ response time

in releasing software patches once software vendors have been informed of

vulnerabilities in their software.

The main theoretical support for this study is software security disclosure theory and

an economic model of software security investment. These theories provide a

framework for understanding how open source versus proprietary software vendors

respond with patches to software vulnerabilities depending on the level of criticality

of the software vulnerability and the type of software.

Empirical data was collected from four related software vulnerability databases:

SecurityFocus, Open Source Vulnerability Database, National Vulnerability

Database and Secunia. These four software vulnerability databases contain archival

data about software vulnerabilities which has been rigorously collected and screened.

This research focuses on software vulnerabilities that have been recently reported in

these software vulnerability databases from 2008 to 2010. To test the hypothesised

relationships in the proposed research model, multiple regression analysis is used as

the main statistical tool.

Analysis of the archival data confirms that software vendors release patches for

software vulnerabilities with a medium level of criticality in a shorter response time

iii

than software vulnerabilities with low and high levels of criticality once the vendor

has been informed of the software vulnerability. Open source vendors release patches

for open source software vulnerabilities 39% quicker than proprietary source vendors

release patches for proprietary software. Patches for operating system software

vulnerabilities are released 8% slower than patches for application software

vulnerabilities.

This study contributes to the existing knowledge and theory by investigating how the

different levels of criticality of software vulnerabilities, the differences between open

and proprietary source software vendors and the difference between operating system

software and application software impact on the response time of software vendors in

releasing patches once the software vendor is informed of software vulnerabilities.

The findings of this study also establish that responsible disclosure is a more

effective mechanism than full disclosure for determining the response time of

software vendors. This study contributes to practice by providing an enhanced

understanding of the software vulnerability landscape and the complex process of

software vendors‘ patching behaviour.

iv

Certificate of Dissertation

I certify that the ideas, designs, experimental work, results, analyses, software and

conclusions set out in this dissertation are entirely my own effort, except where

otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Signature of Candidate Date

ENDORSMENT

Signature of Principal Supervisor Date

Signature of Associate Supervisor Date

v

Acknowledgements

I would like to take this opportunity to thank everyone who has provided me with

assistance and support for the duration of this study. In particular, I would like to

thank the following people who helped me to make this thesis a realisation.

Firstly, I would like to express my gratitude to my Principal Supervisor Dr. Michael

Lane for his guidance and useful suggestions throughout the structure and contents of

this thesis.

Secondly, I would also like to thank Dr. Jianming Yong, my associate-supervisor,

who provided initial support during my research proposal.

 Last but not least, I wish to express my deepest sense of gratitude to my beloved

wife Dilu KC and my daughter Jasmine KC for their love, encouragement and

support and my parents for providing me the academic foundations without which

this thesis would not be possible. Similarly, sincere thanks to my loving friends

Sanjib Tiwari, Arjun Neupane and Rohini Prasad Devkota for their continuous

support, cooperation, encouragement and providing light in dark days.

vi

Table of Contents

Abstract .. ii

Certificate of Dissertation ... iv

Acknowledgements ... v

Table of Contents ... vi

List of Tables .. ix

List of Figures ... xi

List of Appendices ... xii

List of Abbreviations ... xiii

Chapter 1: Introduction ... - 1 -

1.1 Introduction .. - 1 -

1.2 Background and Significance of the Study .. - 1 -

1.3 Research Problem ... - 3 -

1.4 Justification for the Research ... - 4 -

1.4.1 Contribution to Theory and Existing Knowledge ... - 6 -

1.4.2 Contribution to Practice .. - 7 -

1.5 Methodology .. - 7 -

1.6 Structure of Dissertation ... - 9 -

1.7 Definition of Key Terms .. - 10 -

1.8 Delimitations of Scope and Key Assumptions ... - 12 -

1.9 Conclusion .. - 12 -

Chapter 2: Literature Review .. - 14 -

2.1 Introduction .. - 14 -

2.2 Information Security ... - 16 -

2.2.1 Information Security Components .. - 17 -

2.3 Software Quality ... - 19 -

2.4 Software Security Investment .. - 22 -

2.5 Software Vulnerabilities ... - 24 -

2.5.1 Classification of Software Vulnerabilities .. - 24 -

2.6 Software Vulnerability Databases and Software Vulnerability Classification - 30 -

2.6.1 SecurityFocus ... - 32 -

2.6.2 Open Source Vulnerability Database .. - 33 -

2.6.3 National Vulnerability Database ... - 35 -

vii

2.6.4 Secunia .. - 38 -

2.7 Software Vulnerability Disclosure ... - 39 -

2.7.1 Software Vulnerability Disclosure Debate ... - 39 -

2.8 Software Vulnerability Disclosure Policy .. - 41 -

2.9 Software Vendors ... - 42 -

2.9.1 Proprietary Source Software Vendor .. - 42 -

2.9.2 Open Source Software Vendors .. - 43 -

2.9.3 Debate on Open and Proprietary Source Software Vendors ... - 43 -

2.10 Software Vulnerability Disclosure and Software Patching - 45 -

2.10.1 Open Source versus Proprietary Source ... - 45 -

2.10.2 The Level of Criticality of Software Vulnerability... - 46 -

2.10.3 Operating System Software versus Application Software .. - 46 -

2.11 Theoretical Support for this Study ... - 47 -

2.12 Research Gaps .. - 48 -

2.13 Research Question and Sub Questions ... - 50 -

2.14 Conceptual Model .. - 51 -

2.15 Hypotheses ... - 52 -

2.16 Conclusion .. - 54 -

Chapter 3: Research Design and Methodology .. - 56 -

3.1 Introduction .. - 56 -

3.2 Research Paradigm ... - 56 -

3.3 Research Design ... - 57 -

3.3.1 Research Strategy ... - 58 -

3.3.2 Archival Analysis ... - 59 -

3.4 Data Collection ... - 60 -

3.4.1 Data Sources ... - 60 -

3.4.2 Sample Generation .. - 63 -

3.4.3 Measurement... - 64 -

3.5 Data Analysis ... - 66 -

3.5.1 Descriptive Statistics and the Normality of the Raw Data ... - 66 -

3.5.2 Reliability and Validity of Data .. - 67 -

3.5.3 Hypothesis Testing ... - 67 -

3.6 Conclusion .. - 71 -

Chapter 4: Data Analysis ... - 72 -

4.1 Introduction .. - 72 -

viii

4.2 Descriptive Statistics of Key Variables in the Proposed Research - 72 -

4.2.1 Type of Software Vendor ... - 72 -

4.2.2 Type of Software .. - 76 -

4.2.3 The Level of Criticality of Software Vulnerability... - 78 -

4.2.4 Response Time.. - 86 -

4.3 Testing Underlying Regression Assumptions .. - 99 -

4.4 Multiple Regression Result Analysis ... - 103 -

4.4.1 Discussion of Results of Hypothesis Tests ... - 111 -

4.6 Conclusion .. - 117 -

Chapter 5: Conclusions .. - 119 -

5.1 Introduction .. - 119 -

5.2 Summary of this Study ... - 119 -

5.2.1 Research Problem ... - 119 -

5.2.2 Research Hypotheses .. - 121 -

5.2.3 Research Methodology ... - 124 -

5.2.4 Conclusions about Descriptive Data Findings .. - 125 -

5.2.5 Conclusions Concerning Results of Research Hypotheses Tests - 129 -

5.3 Contribution of this Study .. - 130 -

5.3.1 Contribution to Theory ... - 130 -

5.3.2 Contribution to Practice .. - 132 -

5.4 Limitation of this Study .. - 133 -

5.5 Suggestions for Future Research .. - 133 -

5.6 Summary .. - 134 -

References ... - 137 -

ix

List of Tables

Table 2.1 Mapping 19 Sins and Top 10 OWASP Software Vulnerabilities into Eight

Kingdoms of Software Vulnerabilities.. - 25 -

Table 2.2 Intentional and Unintentional Software Vulnerability Taxonomy - 27 -
Table 2.3 The ‗24 Deadly Sins of Software Security‘ .. - 29 -
Table 2.4 Software Vulnerability Databases ... - 31 -
Table 2.5 Features of SecurityFocus Database ... - 33 -
Table 2.6 Features of the Open Source Vulnerability Database (OSVDB) - 34 -

Table 2.7 Classification of Software Vulnerabilities in OSVDB by Attack Type - 35 -
Table 2.8 Features of National Vulnerability Database (NVD) - 36 -
Table 2.9 Comprehensive Classification of 23 Specific Types of Software

Vulnerabilities ... - 37 -
Table 2.10 Features of Secunia Database ... - 38 -

Table 3.1 Relevant Situations for Different Research Strategies - 59 -

Table 3.2 OSVDB Data Fields, NVD Data Fields, Secunia Data Fields plus Fields

calculated for this Research .. - 62 -
Table 3.3 Number of Software Vulnerabilities Documented in OSVDB from

SecurityFocus .. - 63 -
Table 3.4 Criticality Measurement of Software Vulnerabilities - 65 -

Table 3.5 Software Vulnerability Criticality Metrics ... - 66 -

Table 4.1 Distribution of Software Vulnerabilities by Type of Software Vendor - 73 -

Table 4.2 Types of Software Vulnerability across Software Vendor Type - 75 -
Table 4.3 Distribution of Software Vulnerabilities across Type of Software - 76 -
Table 4.4 Types of Software Vulnerability across Software Type - 77 -

Table 4.5 Distribution of Software Vulnerabilities related to the Level of Criticality

Categories .. - 78 -
Table 4.6 Descriptive Statistics of the Level of Criticality of Software Vulnerability . -

78 -
Table 4.7 Level of Criticality across Software Vendor Type - 80 -

Table 4.8 Variations of Means for Level of Criticality of Software Vulnerabilities

across Software Vendor Type ... - 81 -
Table 4.9 ANOVA Analysis of Level of Criticality of Software Vulnerability across

Type of Software Vendor .. - 81 -
Table 4.10 Level of Criticality across Type of Software - 82 -

Table 4.11 Variations of Level of Criticality across Type of Software - 82 -
Table 4.12 ANOVA Analysis of Level of Criticality of Software Vulnerabilities

across Type of Software .. - 83 -
Table 4.13 Level of Criticality across Response Time ... - 83 -
Table 4.14 Types of Software Vulnerability across Level of Criticality of Software

Vulnerability ... - 85 -
Table 4.15 Distribution of Software Vulnerabilities across Response Time - 86 -
Table 4.16 Descriptive Statistics for the Response Time - 87 -

x

Table 4.17 Results of Descriptive Statistics for the Variable Response Time after Log

Transformation .. - 89 -
Table 4.18 Response Time across Software Vendor Type - 92 -
Table 4.19 Response Time across Software Type .. - 93 -

Table 4.20 Types of Software Vulnerability across Response Time - 94 -
Table 4.21 Types of Software Vulnerabilities across Response Time for Open Source

Vendor informed Software Vulnerabilities ... - 96 -
Table 4.22 Types of Software Vulnerabilities across Response Time for Proprietary

Source Vendor informed Software Vulnerabilities ... - 97 -

Table 4.23 Level of Criticality across Response Time ... - 98 -
Table 4.24 Normality Test for the Proposed Model ... - 101 -
Table 4.25 Test for any Extreme Cases which may be an Outlier < ±2 - 102 -
Table 4.26 Test for any Extreme Cases which may be an Outlier <±3 - 102 -
Table 4.27 Summary of Proposed Model Test ... - 104 -

Table 4.28 Coefficients Test of Independent Variables in the Proposed Research

Model .. - 105 -

Table 4.29 Response Time across Software Vendor Type - 110 -
Table 4.30 Response Time across Software Type .. - 110 -
Table 4.31 Summary of Hypotheses Tests and Results - 111 -

Table 5.1 Three Levels of Criticality Beta Coefficients and Level of Significance for

Three MRA ran for Hypothesis H1 ... - 122 -
Table 5.2 Supported and Unsupported Hypotheses of This Study - 123 -

xi

List of Figures

Figure 1.1 The Proposed Research Model for this Study - 8 -

Figure 2.1 Topics Reviewed in Software Vulnerability Disclosure and Software

Patching ... - 15 -
Figure 2.2 Three Classic Principles of Information Security - 17 -
Figure 2.3 Rules of Software Security in SDLC ... - 21 -
Figure 2.4 Key Factors impacting on Response Time .. - 54 -

Figure 3.1 Research Design .. - 58 -

Figure 3.2 Multiple Regression Model for this Study .. - 69 -

Figure 4.1 Top 12 Software Vendors by Number of Software Vulnerabilities in this

Study (from 2008 to 2010) .. - 73 -
Figure 4.2 Types of Software Vulnerabilities by Percentage Terms in this Study - 74 -

Figure 4.3 Box Plot for the Level of Criticality of Software Vulnerability - 79 -
Figure 4.4 Normal Q-Q Plots for the Level of Criticality of Software Vulnerability ... -

80 -
Figure 4.6 Box Plot of the Response Time ... - 88 -
Figure 4.5 Normal Q-Q Plot of the Response Time.. - 88 -

Figure 4.7 Frequency Distribution of Log (Response Time) - 90 -
Figure 4.8 Box plot of Log (Response Time) ... - 90 -

Figure 4.9 Normal Q-Q Plot of Log (Response Time) ... - 91 -
Figure 4.10 Scatter Plot of Regression Standardized Predicted Value - 99 -

Figure 4. 11 Normal P-P Plot of Regression Standardised Residual - 100 -
Figure 4. 12 Histogram of Regression Standardised Residual - 101 -
Figure 4.13 Multiple Regression Model for this Proposed Study - 103 -
Figure 4.14 The Resulting Multiple Regression Model - 107 -

Figure 5.1 Research Model and Results of Hypotheses Tests using MRA - 122 -

file://usq/staff/home/W0067217/MBSR%20Dessertation/Final%20Thesis/Revised_MBSR_Dissertation/Revised_ArjunMastersDissertationV4-1-07-12.doc%23_Toc328929864
file://usq/staff/home/W0067217/MBSR%20Dessertation/Final%20Thesis/Revised_MBSR_Dissertation/Revised_ArjunMastersDissertationV4-1-07-12.doc%23_Toc328929866
file://usq/staff/home/W0067217/MBSR%20Dessertation/Final%20Thesis/Revised_MBSR_Dissertation/Revised_ArjunMastersDissertationV4-1-07-12.doc%23_Toc328929870
file://usq/staff/home/W0067217/MBSR%20Dessertation/Final%20Thesis/Revised_MBSR_Dissertation/Revised_ArjunMastersDissertationV4-1-07-12.doc%23_Toc328929876
file://usq/staff/home/W0067217/MBSR%20Dessertation/Final%20Thesis/Revised_MBSR_Dissertation/Revised_ArjunMastersDissertationV4-1-07-12.doc%23_Toc328929883
file://usq/staff/home/W0067217/MBSR%20Dessertation/Final%20Thesis/Revised_MBSR_Dissertation/Revised_ArjunMastersDissertationV4-1-07-12.doc%23_Toc328929884
file://usq/staff/home/W0067217/MBSR%20Dessertation/Final%20Thesis/Revised_MBSR_Dissertation/Revised_ArjunMastersDissertationV4-1-07-12.doc%23_Toc328929885

xii

List of Appendices

Appendix A - The MRA Test for Three Levels (Low, Medium and High) of

Criticality of Software Vulnerabilities .. - 151 -

xiii

List of Abbreviations

NVD: National Vulnerability Database

OSVDB: Open Source Vulnerability Database

CERT: Computer Emergency Response Team

OWASP: Open Web Application Security Project

OVAL: Open Vulnerability and Assessment Language

CWE: Common Weakness Exposure

CVE: Common Vulnerability Exposure

CAPEC: Common Attack Pattern Enumeration and Classification

SDLC: Software Development Life Cycle

CASE: Computer Aided Software Design

ERP: Enterprise Resource Planning

S-SDLC: Software Security Development Life Cycle

SOAP: Simple Object Access Protocol

OSGi: Open Services Gateway Initiative

WASC: Web Application Security Consortium

XSS: Cross Site Scripting

CSRF: Cross-Site Request Forgery

- 1 -

Chapter 1: Introduction

1.1 Introduction

This chapter introduces the dissertation topic, followed by a description of the

specific project and the general research questions to be analysed in detail in later

chapters. The chapter begins with an overview of software vulnerabilities, their

impact on organisations, the general public and the economy in general; and the

consequences for software vendors, IT managers and policy makers. The importance

and motivation for releasing patches for software vulnerabilities in a timely and

responsible manner is discussed and justified. This study attempts to identify to what

extent the response time of software vendors in releasing software patches once the

software vendors are informed of software vulnerabilities is influenced by the level

of criticality of software vulnerabilities, type of software and type of software

vendor.

1.2 Background and Significance of the Study

Since the late 1980s, economies of the world have become increasingly reliant on

computerised systems and, more recently, networks. Businesses and governments

have increased their productivity substantially through the use of software

applications, the Internet and networked operating systems (Min 2009; Thong, Yap

& Raman 2012). However, significant information security risks threaten these

systems and applications. Most of these types of information security incidents are

caused by flaws in software and the poor security of computer networks which are

constantly attacked by viruses, worms and hackers (Cavusoglu & Zhang 2006). It is

estimated that there are as many as 20 flaws per thousand lines of software code

(Cavusoglu et al. 2006; Dacey & Robert 2003; Gerace & Cavusoglu 2009). This is

evident in the number of errors in design and implementation phases—which

increase incrementally over the software development life cycle (Cavusoglu et al.

2006; Dacey et al. 2003). Similarly, the added problem of design complexity or

program complexity increases the difficulty that a programmer encounters in

ensuring that the design and coding of software systems has ‗security‘ in mind. Such

- 2 -

difficulties in the software development life cycle are likely to result in potential

software vulnerabilities that can be susceptible to cyber attack (Frei, May, Fiedler &

Plattner 2006).

The CSI Computer Crime and Security Survey 2010/2011 reported that the average

loss per company from a software cyber attack was $ 234,000 between July 2008 to

June 2009; and just under $ 100,000 between July 2009 to June 2010 (Richardson

2009, 2010). Losses from software cyber attacks in the UK were estimated to be

$43.5 billion; and around $1 trillion globally in 2010 (Jackson & King 2011).

The Symantec MessageLabs Intelligence Report announced that targeted attacks

have significantly increased year by year (Albin 2011; Fossi 2011; Fossi, Mack &

Johnson 2010). In 2005, the average monthly attack rates were 0.5 percent higher in

comparison to past years and increased dramatically to 25 percent higher in 2010.

Typically 200-300 organizations worldwide are targeted each month and attacks

number 77 per day (Fossi et al. 2010). Similarly, Computer Emergency Response

Team/Coordination Centre‘s (CERT/CC) statistics reveal that the number of software

vulnerabilities catalogued by CERT increased significantly over the years from 171

in 1995 to 6,058 in 2008 (Q1-Q3) (CERT 2009) and, overall, 44,074 software

vulnerabilities were catalogued by CERT in that period of time.

Security industry and software vendors endeavour to proactively identify and patch

new software vulnerabilities by analysing identified common vulnerability exposures

(CVE) from past years. Despite these efforts, attackers are often able to exploit

software vulnerabilities. A large number of software vulnerabilities have been

identified and released publicly since the late 1990s (Arora, Telang & Xu 2008). In

general, when software vendors are informed of software vulnerabilities, users

expect software vendors to patch these vulnerabilities. However, this does not seem

to always be the case because poor software quality and resulting excessive delay in

the release of software patches has emerged as a prominent issue of concern (Arora,

Krishnan, Telang & Yang 2010a). Software vulnerabilities reported to CERT/CC are

fully disclosed after 45 days; software vulnerabilities reported to the Organization for

Internet Safety (OIS) are fully disclosed after 30 days; and software vulnerabilities

reported to the NTbugtraq are fully disclosed after 14 days after the initial reporting

- 3 -

of a software vulnerability—in spite of the existence or accessibility of software

patches or workarounds from affected software vendors (CERT 2008; Cooper 1999;

OIS 2004). Software vendors are seriously concerned about security breaches and

have attempted to strengthen their product quality to reduce software vulnerabilities.

However, the ultimate solution to fix software vulnerabilities is to apply patches

developed by software vendors in the earliest possible timeframe. Therefore, in order

to better manage the potential risks associated with software vulnerabilities it

becomes crucial to gain a better understanding of the relationship between software

vulnerabilities and the key factors which influence the response time of software

vendors in releasing software patches.

1.3 Research Problem

Software security is affected by a broad range of factors in a multifaceted

environment of software engineering (Ardi, Byers & Shahmehri 2006). When a new

software vulnerability is discovered, various parties such as software vendors, IT

managers, policy makers and researchers actively participate to solve the problems

encountered with each software vulnerability. This has been a continuous trend since

the beginning of the use of computer systems in mainstream organisations. A number

of studies classified software vulnerabilities to enable real-world benefits in

proactively addressing software vulnerabilities, including automatic assessment of

threat posed by software vulnerabilities and assessment of mitigation strategies and

techniques (Bishop 1999; Howard, LeBlanc & Viega 2010; Landwehr, Bull,

McDermott & Choi 1994; Seacord & Householder 2005; Tsipenyuk, Chess &

McGraw 2005). However, software vulnerability assessment is dynamic and the

threat environment is changing rapidly over time (Xueqi, Nannan & Hsiao 2008)

and software vulnerabilities are increasing exponentially. Previous studies examined

software security investment issues and software quality issues in an attempt to solve

the problems associated with software vulnerabilities. However, specific solutions to

prevent software vulnerabilities occurring remain under investigation (Arora et al.

2010a; Banerjee & Pandey 2009; Kannan & Telang 2005; Krishnan, Kriebel, Kekre

& Mukhopadhyay 2000).

Many studies have identified that the only way to solve a software vulnerability is to

- 4 -

inform the software vendor of the software vulnerability in order to encourage the

software vendor to decrease the response time taken to release a software patch for a

software vulnerability (Cencini, Yu & Chan 2005; Chambers & Thompson 2004).

The response time that software vendors take to release a software patch in previous

studies was estimated from the full disclosure date of a software vulnerability (Arora,

Krishnan, Telang & Yang 2005b; Arora et al. 2010a; Telang & Wattal 2005).

However, analysing the response time on the basis of the full disclosure date of

software vulnerability does not provide an accurate estimation of the response time

because software vendors are commonly informed of software vulnerabilities before

the full disclosure of software vulnerability (Whitney 2009). Scant attention has been

paid in previous research to analysing the response time of software vendors‘

patching behaviour on the basis of the vendor informed date.

To address the research problem and gaps identified in the existing literature, the

following general research question is investigated:

To what extent does the level of criticality of software vulnerabilities, type of

software vendor (Open source, Proprietary source vendor), type of software

(Operating system software, Application software) influence the response time of

software vendors in releasing patches when the software vendor is informed of

software vulnerabilities?

1.4 Justification for the Research

This research is justified on the basis that it is unique in the depth that it intends to

examine software vendors‘ response time in releasing a software patch in terms of

level of criticality, type of software vendor and type of software once a software

vendor has been informed of the software vulnerability. Patch release date is the date

on which software vendors release patches for software vulnerabilities. Similarly,

vendor informed date is the date when a researcher discloses the software

vulnerability to the vendor (OSVDB 2011b). Software vendors‘ response time is the

amount of time taken to release a software patch based on the date when the software

vendor is informed of a software vulnerability (OSVDB 2011b). One of the key

aspects of better and more secure software is minimizing the response time in

- 5 -

releasing patches for the software vulnerabilities (Arora et al. 2010).

Some of the key factors which have greater impact on the response time of software

vendors in releasing a software patch are (1) level of criticality of software

vulnerability, (2) type of software vendor and (3) type of software. The level of

criticality of a software vulnerability is the degree of security risks which are brought

to operating system software or application system software in terms of potential

security property violations (Xueqi et al. 2008). The level of criticality is associated

with the type of software vendor and type of software. Therefore type of software

vendor and type of software also make a significant difference to the response time

in releasing software patches for software vulnerabilities.

Gordon and Leob (2002) argue that the response time of software vendors in

releasing software patches is an optimization decision where software vulnerabilities

with a medium level of criticality are most optimal for software vendors in terms of

effort to develop and release patches; whereas for low and high level of criticality

vulnerabilities the effort of software vendor is less optimal to develop and release

patches. Similarly, software security disclosure theory suggests that full disclosure of

software vulnerabilities encourages software vendors to be more proactively and

timely in responding to software vulnerabilities (Swire 2004, 2006). The response

time of software vendors in releasing patches for software vulnerabilities is

determined by the date of disclosure of software vulnerability. Therefore it is also

important to understand the different types of software vulnerability disclosure in

order to identify the actual response time. Arora et al. (2010a, p. 115) defined that

‗Full disclosure of software vulnerability refers to the publication of vulnerability

information (i.e. publicly disclosed) before a patch to address the software

vulnerability has been issued by the software vendor‘. The full disclosure date of

software vulnerability is the date on which software vulnerabilities are publicly

disclosed to end users or reported to the information security advisories or reported

to the software vendors (Ozment 2007).

A gap has been identified in previous studies regarding software vendors‘ patching

behaviour for software vulnerabilities. Previous studies which analysed software

vendors‘ patching behaviour for disclosed software vulnerabilities were inconsistent

- 6 -

in their key findings (Arora et al. 2010a; Liu & Zhang 2011; Mangalaraj & Raja

2005; Schryen 2009; Schryen & Rich 2010; Telang & Wattal 2007). This might be

because the response time for disclosed software vulnerabilities was calculated from

the full disclosure date of software vulnerability. Different information security

advisories follow different timeframes to disclose software vulnerabilities

(Cavusoglu & Raghunathan 2004 ; Cooper 1999; OIS 2004; SANS 2003). To

address this inconsistency in determining the actual response time of software

vendors in releasing software patches, this research calculates the response time of

software vendors in releasing software patches on the basis of vendor informed date.

The findings from this analysis of the response time of software vendors in releasing

patches based on the vendor informed date should provide a better understanding

about how quickly software vendors release patches to current software

vulnerabilities depending on a number of key factors. These key factors are (1) the

level of criticality of the software vulnerability, (2) whether the software vendor for

the software vulnerability is an open source software vendor or proprietary source

software vendor and (3) whether the software vulnerability is an operating system

software vulnerability or an application software vulnerability.

1.4.1 Contribution to Theory and Existing Knowledge

This study seeks to confirm

1. Whether and how the level of criticality of current software vulnerabilities

influences the response time of the software vendor in releasing software

patches;

2. Whether the operating system software patches are released more quickly

than application software patches; and

3. Whether the response time of software vendors in releasing software patches

in response to software vulnerabilities is different between open source

software vendors and proprietary source software vendors.

This research contributes to existing theory and knowledge by empirically testing the

impact of three independent variables on the response time of software vendors in

releasing software patches for vendor informed software vulnerabilities in the current

threat environment faced by organizations. Software security disclosure theory and

- 7 -

the economic model of software security investment provide the theoretical basis for

this research. Software security disclosure theory is extended in this study to consider

the impact of responsible disclosure of software vulnerability which provides a more

accurate mechanism for determining the response time of software vendors in

releasing software patches. The economic model of software security investment

provides a means for explaining software vendors response time in releasing patches

in terms of the level of criticality of software vulnerabilities.

1.4.2 Contribution to Practice

This research contributes to practice by providing a better understanding of the

complex process of disclosing and releasing patches for software vulnerabilities in

the context of the level of criticality of the software vulnerability; open source versus

proprietary source software vendor; and operating system software versus application

once a software vendor has been informed of a software vulnerability. This study

also assists practitioners to decide how to more effectively undertake preventive

measures for software vulnerabilities based on the impact of the level of criticality,

the software type and the type of software vendor on the process of releasing

software patches. These findings should better inform the management of software

patching in practice. Furthermore, the findings of this study show that the responsible

disclosure of software vulnerabilities is an effective mechanism that Government and

regulators can use for encouraging software vendors to be more proactive in

releasing software patches for software vulnerabilities once informed of software

vulnerabilities.

 1.5 Methodology

This study grounded in a positivist paradigm and used a quantitative methodology to

undertake an explanatory investigation of the relationship between vendor informed

software vulnerabilities and the response time of software vendors in releasing

software patches. The data collected to test hypothesised relationships in the

proposed research model are drawn from four related and connected software

vulnerability databases: SecurityFocus, Open Source Vulnerability Database,

National Vulnerability Database and Secunia. These four software vulnerability

databases contain archival data about software vulnerabilities which has been

- 8 -

rigorously collected and screened. This research focuses on software vulnerabilities

that have been recently reported from 2008 to 2010 in the Open Source Software

Vulnerability database and other related databases listed previously in this section.

The following three hypotheses are tested in this study.

H1: Software vendors release patches for software vulnerabilities with a medium

level of criticality in a shorter response time than software vulnerabilities with low

and high levels of criticality once the vendor has been informed of the software

vulnerability.

H2: Open source vendors release patches for open source software vulnerabilities

more quickly than proprietary source vendors release patches for proprietary

software vulnerabilities once the software vendor has been informed of the software

vulnerability.

H3: Patches for operating system software vulnerabilities are released more quickly

than patches for application software vulnerabilities once the software vendor has

been informed of the software vulnerability in the proposed research model.

A multiple regression analysis is the main statistical tool used. Figure 1.1 represents

a proposed research model for this study.

Figure 1.1 The Proposed Research Model for this Study

H2

H1

H3

Level of

Criticality of

Software

Vulnerability

Type of

Software

Vendor

Type of

Software

Response

Time

- 9 -

1.6 Structure of Dissertation

This dissertation is structured as follows:

Chapter 2—Literature Review: This chapter provides an in-depth review of the

relevant literature in relation to software vulnerabilities and the patching behaviour

of software vendors. Specific research questions and a set of hypotheses are

developed and justified from the relevant literature. These form the basis of the

theoretical and conceptual model which will be tested in this research. Chapter 2

concludes with a theoretical and conceptual model for investigating the response

time of software vendors in releasing software patches once software vendors are

informed of software vulnerabilities in terms of (1) the level of criticality of software

vulnerabilities, (2) type of software vendor and (3) type of software.

Chapter 3—Research Design and Methodology: This chapter describes and justifies

the research methodology used to collect data and test the research model presented

in Chapter 2 in the context and scope of the general research questions and set of

hypotheses. The research design and appropriate research strategies employed for

this study are described in detail. Further, the sources from where the archival data

were obtained are discussed, followed by a discussion of the sample generation and

measurement of variables. Finally, data analysis using descriptive statistics and

multiple regression analysis techniques are discussed.

Chapter 4—Data Analysis: This chapter presents and discusses the key findings

from the analyses of archive data collected from four related and connected software

vulnerability databases, namely, SecurityFocus, Open Source Vulnerability

Database, National Vulnerability Database and Secunia Database, in order to provide

answers to the three specific research questions and to test the three specific

hypotheses developed for this research.

Chapter 5—Conclusion: This chapter summaries the key finding of this study in

relation to the three research questions investigated and the three hypotheses tested in

this study; and provides a number of conclusions about the research problem and

general research question addressed in this study. The contributions of this study to

- 10 -

theory and practice are discussed. Finally, the limitations of this study are

acknowledged and suggestions for future research are offered.

1.7 Definition of Key Terms

Software Vulnerability

A software vulnerability is a hole or weakness in a software application which can be

a design flaw or an implementation bug that allows an attacker to cause harm to

stakeholders of a software application (OWASP 2011).

Full Disclosure of Software Vulnerability

This study adopts the definition by Arora et al. (2010a, p. 115): ‗Full disclosure of a

software vulnerability refers to the publication of vulnerability information (i.e.

publicly disclosed) before a patch to address the vulnerability has been issued by the

software vendor‘.

Responsible Disclosure of Software Vulnerability

The following definition is used for the responsible disclosure of a software

vulnerability in this study: responsible disclosure of software vulnerability means

when a vulnerability is discovered, the researcher, information security advisories

inform the software vendor and the researchers, information security advisories and

vendors work together diligently and ethically to produce a timely patch to reduce

the risk as much as possible for the individuals and organizations (Cavusoglu &

Raghunathan 2005, 2007; Shepherd 2003; Williams, Pescatore & Proctor 2006).

Software Patching

The following definition of software patching is used in this study: software patching

is blocking the attacking paths and providing protection against the exploitation of

software vulnerabilities which are caused by software vulnerabilities (Chen, Boehm

& Sheppard 2007; Frei et al. 2006).

Vendor Informed Date

In this study, the vendor informed date is defined as: the date when researcher

disclosed the vulnerability to the vendor (OSVDB 2011b).

- 11 -

Full Disclosure Date

The following definition is used for the full disclosure date in this study: the date on

which software vulnerabilities are publicly disclosed to their users or reported to the

information security advisories or reported to the software vendors (Ozment 2007).

Response Time

The following definition is used for response time in this study: It is defined as the

amount of time taken to release a software patch based on the date when the software

vendor is informed of a software vulnerability. In this study, there are also some

instances where software vendors have released software patches before the software

vendor is informed about software vulnerabilities. In these situations, the response

time is zero or a negative number of days (source: developed for this research).

The Level of Criticality of a Software Vulnerability

The following definition is used for the level of criticality of a software vulnerability

in this study: It is the risk level assigned to each software vulnerability which

describes the extent of damage that could be caused by a specific breach of

confidentiality, integrity and availability for that software vulnerability (Liu et al.

2011).

Proprietary Source Software Vendor

This study adopts the definition by Ming-Wei and Ying-Dar (2001, p. 33)

‗Proprietary software vendors operate on a closed-source model: They develop their

own software and release that software to the public with the intention of gaining

market penetration and earning a profit‘.

Open Source Software Vendor

The following definition is used for open source vendor in this study: Vendors who

provide open source software with compilable source codes and these source codes

can be modified or redistributed often free of cost (Payne 2002; Schryen et al. 2010)

Operating System Software

The following definition is used for operating system software in this study: It is a set

of special programs that run on a computer system itself and run other programs as

well. It also controls and coordinates the use of the hardware among the various

- 12 -

system programs and application programs for various users (Bhatt 2007;

Silberschatz, Galvin & Gagne 2009).

Application Software

The following definition is used for application software in this study: It is defined as

a set of programs written in a specific programming language to solve a particular

problem. It is independent of the machine on which it is operated and intended to

support the operation of a particular task (Nithyashri 2010).

1.8 Delimitations of Scope and Key Assumptions

Software vulnerabilities are a major problem for organizations and society given the

pervasive use of computers, the Internet and networks (Farahmand, Navathe, Enslow

& Sharp 2003; Martin 2001). Although a number of software vulnerabilities are

identified and recorded in many software security databases, this research analysed

software vulnerability data obtained as a primary source from the Open Source

Vulnerability Database (OSVDB). Some of the required information for each

software vulnerability is incomplete in this database to test the research model

developed for this study. Thus, additional information for each software vulnerability

was obtained from SecurityFocus database, National Vulnerability Database (NVD),

Secunia database and vendor websites. The software vulnerabilities analysed in this

study was limited to current software vulnerabilities from 2008 to 2010 that have

been recorded in the OSVDB database and which have a vendor informed.

 1.9 Conclusion

This chapter lays the foundation for this dissertation. It provides a background on

software vulnerabilities and the significance of better management of software

patching of software vulnerabilities in practice. This study is justified because it

makes a significant contribution to better understanding the complex process of

patching of software vulnerabilities in the context of the level of criticality of

software vulnerabilities; open source versus proprietary source software vendors; and

operating system software versus application once software vendors have been

informed of software vulnerabilities. The method by which this research has been

- 13 -

conducted is briefly described, the structure of the dissertation is outlined with an

overview of each subsequent chapter, and a list of key definitions used in this

dissertation is provided. Finally, the delimitations of scope and key assumptions of

this study are provided.

The next chapter conducts an in-depth review of the relevant literature in the field of

information security in relation to software quality, software security investment,

software vulnerabilities and software vulnerability disclosure and patching.

- 14 -

Chapter 2: Literature Review

2.1 Introduction

This chapter provides an in-depth review of the published literature and research on

information security and, in particular, software vulnerabilities with the purpose of

developing a research model grounded in the existing literature. According to

Kitchenham et al. (2009) a systematic review of literature is an aggregation of

empirical evidence achieved by using a number of techniques in different contexts.

Software security disclosure theory and economic model of software security

investment provide the theoretical lens for the research model developed in this

study. Thus, the main output of this chapter is a research model for investigating

how, once informed of software vulnerabilities—and depending on the level of

criticality of the software vulnerabilities and the type of software—open source

versus proprietary software vendors respond with patches. A specific set of research

questions and hypotheses are developed from the relevant literature as the basis for

testing the hypothesised relationships in the proposed research model.

This chapter opens with an introduction to the parent disciplines applicable to this

study and fundamental to information security. Throughout the discussion of the

relevant literature there are references made to a number of previous research papers

which address problems in the field of information security. This review

systematically analyses major concepts underpinning the process of disclosure and

patching software vulnerabilities. Figure 2.1 depicts how the review of relevant

literature starts with the broad field of information security, software quality and

software security investment as the parent literatures; and then moves to a narrow

focus of software vulnerability disclosure and software patching. Subsequently, a

conceptual framework is developed from the relevant literature to investigate the

following research objectives:

1. whether the level of criticality of current software vulnerabilities influence the

response time of the software vendor in releasing software patches;

- 15 -

2. whether the response time of software vendors in releasing software patches in

response to software vulnerabilities is different between open source software

and proprietary source software; and

3. whether the response time of software vendors in releasing software patches in

response to software vulnerabilities is different between operating system

software and application software.

Finally, the research questions and related hypotheses that test the relationships in the

proposed research model are presented and justified in the context of the existing

literature.

Figure 2.1 Topics Reviewed in Software Vulnerability Disclosure and Software

Patching

Information Security Software Quality Software Security Investment

Software Vulnerabilities

Classification of Software Vulnerability Software Vulnerability Databases and Software

Vulnerability Classification

Software Vulnerability Disclosure

Software Vulnerability Disclosure Policy

Software Vendors

Proprietary Source Software Vendor Open Source Software Vendor

Debate on Open and Proprietary Source Software Vulnerabilities

Software Vulnerability Disclosure and Software Patching

- 16 -

2.2 Information Security

It is somewhat ironic that one of the first uses of the computer was to break codes

and ciphers used to protect information during World War II. The allied effort was

greatly assisted by the use of the first computer to break the German Enigma code,

which subsequently helped stop the German U-Boat Wolf-Packs from savaging

allied shipping. Now, the security of all information stored and transmitted using

computers or other electronic devices is subject to potential compromise (Alnatheer

& Nelson 2009; Whitman & Mattord 2010, 2011).

Security is a broad concept which has its own language and focuses on the processes

of attacks on information, and in preventing, detecting and recovering from attacks

(Alnatheer et al. 2009; Whitman et al. 2011). Information security is defined as

procedures and actions designed to prevent the unauthorised disclosure, transfer,

modification or destruction—whether accidental or intentional—of information from

a computer system (Alnatheer et al. 2009; Gordon et al. 2002). Information includes

data, voice, video, images and fax (Schumacher & Ghosh 1997). Similarly,

information security—also termed as computer security—refers to the security of

computer programs, procedures and associated documentation and data pertaining to

the operation of a computer system (Sulaiman & Kassim 2010).

One of the critical aspects of the information security problem is a software problem.

According to Pfleeger and Pfleeger (2003), information security is the preservation

of the confidentiality, integrity and availability (CIA) of information and information

resources. The potential weakness in software that can be subsequently exploited in

any of these information security components (confidentiality, integrity and

availability) tends to be software vulnerabilities (Igure & Williams 2008). Software

vulnerabilities enable external attacks and allow attackers to exploit their privileges

to gain unauthorised access to information, systems and services. Therefore, software

security is one of the critical elements in managing information security for any

organization or individual (Grand 2005). Additionally, software also interfaces with

other application software and operating systems and network components that allow

the processing of transactions, sharing of information and delivery of other services.

A breach in software security occurs when an attacker exploits a flaw in a software

- 17 -

that causes the software to work in a manner for which it was not developed; and

attackers exploit unexpected benefits of the interfaces with other information,

applications systems and network components, resulting in undesirable consequences

(Grand 2005).

2.2.1 Information Security Components

Information security can be categorised into three classic principles (Whitman et al.

2011)

 Confidentiality

 Integrity

 Availability

Figure 2.2 represents the information security triangle consisting of confidentiality,

integrity and availability which have a significant effect on the security of

information in software. In this study, these three classic principles of information

security are used to rate the criticality of a software vulnerability.

Confidentiality

Confidentiality—also referred to as privacy or secrecy—refers to the protection of

data so that it cannot be disclosed in an unauthorised fashion (Alnatheer et al. 2009;

Escamilla 1998; Hassler 2001). In general, most IT users recognise the need to

ensure that the information they transmit to a recipient should arrive without being

 Confidentiality

Integrity Availability

 Figure 2.2 Three Classic Principles of Information Security

Information Security

Triangle

- 18 -

read by a third party. Encryption is the most widely used technique or process to

provide confidentiality to data and systems.

In terms of software security, a software vulnerability which provides root level

access to unauthorised information is scored as a complete loss of confidentiality and

has a severe adverse effect on organizational operations, organizational assets, or

individuals. Similarly, a software vulnerability which provides user level access to

unauthorised information is scored as a partial loss of confidentiality and has a

limited adverse effect on organizational operations, organizational assets, or

individuals (Mell, Scarfone & Romanosky 2007; NVD 2011b; OSVDB 2011b;

Whitman et al. 2011; Zevin 2004).

Integrity

In general, the data integrity component of information security aims at ensuring that

data is not modified or altered by unauthorised system users (Escamilla 1998;

Hassler 2001). It is possible there could be serious consequences should users of

systems make business decisions based on flawed information. System integrity

relates to the assurance of accuracy, completeness and performance according to

defined specifications (Khadraoui & Herrmann 2007). Integrity is normally provided

in a computing system through a number of approaches. Encryption can assist in

providing data integrity by ensuring that data packets are not intercepted, modified

and then re-transmitted to an unsuspecting recipient. Access control, which involves

ensuring that only authorised users can gain access to data, is another mechanism

that can be used to provide or ensure data integrity (Escamilla 1998; Hassler 2001;

Khadraoui et al. 2007). Restricting access to a particular system makes it potentially

harder for an outsider to access and then modify the data.

In terms of software security, a software vulnerability which provides root level

access to modify information is scored as a complete loss of integrity and has a

severe adverse effect on organizational operations, organizational assets, or

individuals. Similarly, a software vulnerability which provides user-level access to

modify information is scored as partial loss of integrity and has a limited adverse

effect on organizational operations, organizational assets, or individuals (Mell et al.

- 19 -

2007; NVD 2011b; OSVDB 2011b; Whitman et al. 2011; Zevin 2004).

Availability

The availability goal in information security aims to protect network services and

data from unauthorised attempts to withhold information or computer resources

(Escamilla 1998). Lack of access to information can be a critical concern. For

instance, if patients‘ medical records become unavailable due to a network security

problem the consequences could be fatal. Statements about the availability of

network and data services cannot be made with the same level of confidence as those

relating to confidentiality and integrity (Escamilla 1998). A hardware failure

resulting in a network traffic congestion problem could deny users access to

resources—either of which could be a result of equipment failure, poor network

planning or some other reason than the result of a security incident per se. A number

of controls may, however, be implemented to increase availability. Network design,

access control and prioritising services and users can all promote enhanced resource

availability.

In terms of software security, a software vulnerability which provides root level

disruption of access to information or an information system is scored as a complete

loss of availability and has a severe adverse effect on organizational operations,

organizational assets, or individuals. Similarly a software vulnerability which

provides user-level disruption of access to information or an information system is

scored as a partial loss of availability and has a limited adverse effect on

organizational operations, organizational assets, or individuals (Mell et al. 2007;

NVD 2011b; OSVDB 2011b; Whitman et al. 2011; Zevin 2004).

2.3 Software Quality

Computer software has become a driving force for all organizations and individuals

(Pressman 2010). The capabilities of computer systems to safeguard the information

and information resources are dependent on the performance of their software

quality. Quality in the context of software involves a variety of quality attributes, for

example, performance, security, reliability and so on. In this study, software quality

- 20 -

is investigated in relation to all kinds of software security flaws. The International

Organization for Standardization (ISO) defined quality as ‗the totality of features and

characteristics of a product or service that bear on its ability to satisfy stated or

implied needs‘ (Palvia, Sharma & Conrath 2001). IEEE defined software quality as

the degree to which software possesses a desired combination of quality attributes

such as design, performance, security, reliability and so on (IEEE 2009). Agarwal,

Tayal and Gupta (2009, p. 89) defined software quality as a ‗Conformance to

explicitly stated functional and performance requirements, explicitly documented

development standards, and implicit characteristics that are expected of all

professionally developed software‘. This study adopts a definition of software

quality by Kan (2003) which defines software quality as clearly defined software

requirements (i.e. either users, owners or both) to avoid all kinds of security holes

during software development life cycle (SDLC) phase using regular measurements of

quality attributes such as reliability, integrity, availability, efficiency, security,

maintainability and size of source code to protect the information security. Kan

(2003) also added that any deviations from those requirements are considered to be a

software vulnerability.

Quality software protects users‘ information from potential software vulnerability

exploitations. Software experts often blame software vulnerabilities on poor software

development practices, such as improper testing, failure to control common

programming errors, and poor understanding of the interactions between different

components of complex software (Schneier 2001). The quality of software can be

improved through the utilisation of superior personnel, effective use of computer

aided software engineering (CASE) tools and early investment in planning and

design of software (Arora et al. 2010a; Kannan et al. 2005; Krishnan et al. 2000).

Lieberman and Fry (2001) argued that debugging is necessary and should be used to

improve the quality of software. Banerjee and Pandey (2009) contended that to

improve the quality of software, proper attention (such as not only thinking through a

developer‘s perspective, but also through an attacker‘s perspective) should be given

during the entire SDLC process because many critical functions such as access

control, privacy, security, reliability, backup plan are entirely dependent on software

development. They proposed 21 security rules to be implemented and obeyed by all

stakeholders of a software development life cycle to provide better security in

- 21 -

software (see Figure 2.3). They found that practical implementation of these 21

security rules throughout the stages of a software development life cycle resulted in

software that is more secure and reliable.

Figure 2.3 Rules of Software Security in SDLC

Source: (Banerjee et al. 2009)

Banker (2002) and Mercuri (2003) identified that software reliabilities are affected

through administratively-controllable factors. They argued that to increase the

reliability of software and to harden software, a number of measures need to be

implemented including enforcing release control, the need for programmers to be

better trained in designing and writing secure code, incorporating more security

testing in the testing phase, and creating and enforcing complexity metric standards.

Although researchers and software security industries have conducted many studies

on how to improve the quality of software to reduce the occurrence of vulnerabilities

from a number of different perspectives, software vulnerabilities are still increasing

exponentially. To improve the quality of software, it has become essential for an

increased investment in the initial phase of the software development process.

However, most organizations these days do not build software: they tend to purchase

 Awareness

2 Accountability

3 Integrity

4 Non-repudiation

5 Accuracy

6 Authorization

7 Assessment

Evaluation

8 Flexibility

9 Un-ambiguity

10 Auditability

11 Prevention

12 Confidentiality

13 Availability

14 Access Control

15 Identification

authentication

16 Consistency

17 Privacy

18 Excellence

19 Fortification

20 Error Classification

21 Interoperability

 Software Security Rules

- 22 -

software packages and services and customise them to their needs. Hence, they are

reliant on the organisations which develop software to build security into software as

part of the process of improving software quality.

2.4 Software Security Investment

Software vulnerabilities are a fact of life for organizations of all sizes. Unfortunately,

some level of defects has also become the expected norm for a software purchase,

whether for a small business payroll system, a medium business inventory control

system, or a large business enterprise resource planning (ERP) deployment (Chelf

2006). Researchers in the field of information security have mainly focused on the

tools, techniques and policies that individuals and organizations can use to protect

themselves from security breaches. However, information security is also strongly

linked with software security (Telang et al. 2005). Costs related to software security

have had an increasingly-significant impact on the U.S. economy (Arora, Forman,

Nandkumar & Telang 2006b). The National Institute of Standards and Technology

(NIST) estimated that software defects cost the U.S. economy upwards of $60 billion

a year. NIST also found that detecting these defects earlier and with more diagnostic

accuracy could result in as much as $22 billion in annual savings (Anonymous 2003;

Arora, Caulkins & Telang 2006a; Chelf 2006). The hard truth is that software

vulnerabilities affect both open source and proprietary source software and are very

costly to all users and producers of software (Mell, Bergeron & Henning 2005).

According to Kissel, Stine, Scholl, Rossman, Fahlsing and Gulick (2008), early

integration of security in the SDLC enables software vendors to maximize return on

investment in their security programs through early identification and mitigation of

security vulnerabilities and mis-configurations, resulting in lower cost of security

control implementation and vulnerability mitigation. Macro (n.d.) empirically

analysed the software security development life cycle (S-SDLC). He found that 85%

of software vulnerabilities are introduced in the coding phase of a software security

development life. He argued that this occurs because of a lack of investment in

software security. Microsoft identified that the cost of software security in USA for

unbudgeted time to fix security problems is about 1000 man-hours; software security

cost of training software developers in security is about $100 million; and NIST

- 23 -

identified that in the USA the cost of inadequate software testing is about $3.3 billion

(Morana 2008).

Cavusoglu, Mishra and Raghunathan (2004) designed a model focusing on ROSI

(Return on Security Investment). They found that it is very difficult to calculate

ROSI because of unexpected security breaches. They also found that risk analysis

and cost effectiveness analysis tools work with high level of aggregate data (such as

taxing, increasing possibility and scope of IT security breaches), which have limited

value in an IT security setting. The difficulty of calculating ROSI is also proved by

the 2010/2011 CSI Computer Crime and Security Survey. The 2010/2011 CSI

Computer Crime and Security Survey revealed that 67.1% of respondents detected

security breaches (Richardson 2010).

Gordon and Loeb (2002) proposed that software vulnerabilities are an index of

information security investment and developed a model that determined that there is

a relationship between level of severity of software vulnerability and the

effectiveness of security investment—explained as follows. When the level of

severity of software vulnerability is low, a significant investment in security is hard

to justify because the reduction of expected loss is low. Conversely, with a medium

level of severity of software vulnerability, the level of security investment reduces

expected loss more effectively. When the severity of software vulnerability is at the

highest level, reduction of expected loss becomes more difficult to justify because of

the significant security investment required by the software vendor. Under these

assumptions, the model showed that the optimal level for software security

investment peaks at a medium level of severity for software vulnerabilities (Tanaka,

Matsuura & Sudoh 2005). The nature of investments in software patching is a fixed

cost which means the cost of fixing vulnerable software is almost independent of the

number of software copies sold. Software vendors are taking advantage of this fixed

cost nature and deliberately release a vulnerable software product, but patch the

software later for the market (Arora et al. 2006a; Arora et al. 2008; Telang et al.

2007) as this optimises their investment in a particular software product.

Furthermore, currently there is little in the way of government regulation and

legislation which discourages this type of behaviour by software vendors (Kuechler

2007; Otter 2007; Saint-Germain 2005).

- 24 -

Although this study does not analyse the investment in software security, from the

preceding discussion on software security investment it has been identified that

software security investment is a key factor that influences the quality of software

from an information security perspective and, potentially, how quickly software

vendors response to software vulnerabilities to optimise their investment and effort

based on the level of criticality of a software vulnerability. Similarly, the discussion

also highlights that the reason so many software vulnerabilities exist is because of the

lack of software security investment. In order to understand software vulnerabilities

more fully, it is critical to understand the landscape of software vulnerabilities in

detail.

2.5 Software Vulnerabilities

The following definitions of a software vulnerability have been identified from the

literature. According to Schryen (2009, p. 155), ‗When bugs on software can be

directly used by attackers to gain access to a system or network, they are termed a

software vulnerability‘. Telang and Wattal (2007, p. 544) provide a more detailed

definition of a software vulnerability, namely, ‗a flaw in a software system that can

cause it to work contrary to its documented design and could be exploited to cause

the system to violate its documented security policy‘.

This study adopts a broader and more current definition of a software vulnerability as

a hole or a weakness in a software application which can be a design flaw or an

implementation bug that allows an attacker to cause harm to stakeholders of a

software application (OWASP 2011). To mitigate the risk of software vulnerabilities

to organisations and individuals, it is important to classify software vulnerabilities

appropriately so that they can be understood in depth. Different researchers and

information security advisories have classified software vulnerabilities for different

aspects of information security risk; therefore, a review of the classification of

software vulnerabilities is discussed below.

2.5.1 Classification of Software Vulnerabilities

Tsipenyuk, Chess and McGraw (2005) presented eight kingdoms of software

- 25 -

security vulnerabilities, and provided a mapping to 19 deadly sins of software

security (Howard et al. (2005)) and to the top ten Open Web Application Security

Project (OWASP (2005)) software vulnerabilities, as shown in table 2.1. A kingdom

refers to a group of classes that share a common theme and a sin refers to software

security defects. The main purpose of this classification is to reduce unnecessary

levels of confusion among practitioners and software developers about common

software coding errors that affect information security.

Table 2.1 Mapping 19 Sins and Top 10 OWASP Software Vulnerabilities into Eight

Kingdoms of Software Vulnerabilities

Eight Kingdoms 19 Sins Top 10 Open Web

Application Security Project

(OWASP) Software

Vulnerabilities

1.Input validation

and representation

(1) Buffer overflows (2) command injection (3) cross-site scripting,

(4) format string problems (5) integer range errors (6) SQL injection

(1) Buffer overflows (2) cross-

site scripting flaws (3)
injection flaws (4) unvalidated

input

2. API abuse (7) Trusting network address information

3.Security features (8) Failing to protect network traffic (9) failing to store and protect
data (10) failing to use cryptographically strong random numbers,

(11) improper file access (12) improper use of SQL (13) use of weak

password-based systems (14) unauthenticated key exchange

(5) Broken access control (6)
insecure storage

4.Time and state (15) Single race conditions (16) use of ―magic‖ URLs and hidden

forms

(7) Broken authentication and

session management

5.Errors (17) Failure to handle errors (8) Improper error handling

6.Code quality (18) Poor usability (9) Denial of service

7.Encapsulation (19) Information leakage

8.Environment (10) Insecure configuration

management

Source: adopted from (Tsipenyuk et al. 2005)

Furthermore, Berghe, Riordan and Piessens (2005) proposed an approach for the

creation of predictive taxonomies regarding likely software vulnerabilities, and

presented an example based on Bugtraq software vulnerabilities data. Bugtraq is a

high volume, full disclosure mailing list for the detailed discussion and

announcement of computer security vulnerabilities (SecurityFocus 2010). Similarly,

Weber, Karger and Paradkar (2005) presented a new software vulnerability

taxonomy analysing incident reports in modern software and previously categorised

software vulnerabilities together. The main purpose of creating a new taxonomy is to

adequately represent software vulnerabilities in modern software. Table 2.2 shows a

software vulnerability taxonomy. This taxonomy categorises software vulnerabilities

in terms of intentional and inadvertent software vulnerabilities to represent both

previously identified software vulnerabilities, as well as modern software

- 26 -

vulnerabilities—an aspect lacking in prior research on the classification of software

vulnerabilities.

Intentional refers to software flaws—which may be malicious or non-malicious—

developed intentionally to harm the system. Similarly, inadvertent refers to software

flaws generated accidently while, for example, coding, designing, implementing and

testing software. Although, the security of software is threatened by both intentional

and inadvertent software vulnerabilities, inadvertent or unintentional software

vulnerabilities can be exploited once hackers are aware these software vulnerabilities

exist. Jarzombek (2011) reported that the most exploitable software vulnerabilities

(which are unintentional software vulnerabilities) are attributed to non-secure coding

practices (i.e. not defined in software testing phase). He also added that hackers are

opting to target these unintentional software vulnerabilities in operating system

software and application software to circumvent security controls rather than attempt

to break or defeat network or system security. Conversely, the internal crime

department of the United States Secret Service (USSS) investigated internal data

breaches within the organizations in 2010. It found that 90% of data breaches were

intentional and 10% of data breaches were unintentional (Baker, Goudie, Hutton,

Hylender, Niemantsverdriet, Novak, Ostertag, Porter, Rosen & Sartin 2010).

The intentional and unintentional software vulnerabilities taxonomy based on Weber

et al. (2005) in Table 2.2 is mapped with OWASP top ten 2010 web-based software

vulnerabilities.

- 27 -

Table 2.2 Intentional and Unintentional Software Vulnerability Taxonomy

Type of Software

Vulnerability

High level

classification

Specific classification OWASP Top Ten Software

Vulnerability Items mapped

Intentional

Inadvertent

(Unintentional)

Malicious Trap door N/A

Logic/Time Bomb N/A

Non-malicious Convert Channel N/A

Inconsistent access paths N/A

Validation Error Addressing errors N/A

Poor parameter value check Cross-Site Scripting (XSS)

Incorrect check positioning N/A

Identification/authentication
inadequate

Insecure Direct Object References,
Broken Authentication and Session

Management

Abstraction Error Object Reuse N/A

Exposed Internal Representation N/A

Asynchronous Flaws Concurrency (including

TOCTTOU)

N/A

Aliasing N/A

Subcomponent

misuse/failure

Resource Leak N/A

Responsibility Misunderstanding Injection

Functionality Error Error handling failure Cross-Site Scripting

Other security flaw Insecure Cryptographic Storage

Source adapted: (Weber et al. 2005)

The OWASP top ten 2010 web based software vulnerabilities are: (1) Injection, (2)

Cross-Site Scripting (XSS), (3) Broken Authentication and Session Management, (4)

Insecure Direct Object References, (5) Cross-Site Request Forgery (CSRF), (6)

Security Misconfiguration, (7) Insecure Cryptographic Storage, (8) Failure to

Restrict URL Access, (9) Insufficient Transport Layer Protection and (10)

Unvalidated Redirects and Forwards (OWASP 2010). In table 2.2, Cross-Site

Scripting and Insecure Cryptographic Storage are partially mapped with the Weber et

al. (2005) taxonomy where as Injection, Broken Authentication and Session

Management, and Insecure Direct Object References are completely mapped in the

Weber et al. (2005) taxonomy. The other OWASP Top Ten software vulnerabilities

which are only partially mapped or not mapped in Weber et al. (2005) taxonomy are

design or configuration errors and considered to be out of scope. Moreover none of

the intentional software flaws in Weber et al. (2005) taxonomy are mapped with

OWASP Top Ten software vulnerabilities. This study examined both intentional and

unintentional software vulnerabilities but it should be acknowledged most software

vulnerabilities are unintentional and are a result of poor design, coding, configuration

and testing of software and related hardware.

Similarly, Engle, Whalen, Howard and Bishop (2006) described a tree-based

classification approach to classify existing software vulnerabilities on the basis of

- 28 -

software vulnerability characteristics. This classification approach allows software

vulnerabilities to fall into multiple classes without ambiguity. Characteristics in this

classification of software vulnerabilities indicate attributes of a vulnerable state.

Although classification of software vulnerabilities on the basis of characteristics

provides more in-depth understanding and meaning of the impact of software

vulnerabilities, this classification approach provided no guidance on which

characteristics to use or where to derive those characteristics from.

Moreover, Yu, Aravind and Supthaweesuk (2006) discussed security-related

software vulnerabilities in SOAP (Simple Object Access Protocol) based web

services and analysed the common pattern of attacks in the increased complexity and

connectivity of the web services environment. However, no further software

vulnerability classification was provided. The main purpose of analysing web related

software vulnerabilities is to map common attack patterns for security verification

requirements with regard to web service software systems. Similarly, the SANS Top

20 (2007) did not list single software vulnerabilities, but it classified software

vulnerabilities into high level in terms of client-side software vulnerabilities and

server-side software vulnerabilities and the risks they cause.

With the increasing problems in web based software and security, software

vulnerabilities have been more broadly classified from late 2010. Parrend and Frénot

(2008) created a classification of Java component vulnerabilities in the OSGi (Open

Services Gateway Initiative) platform. Similarly, security experts at Microsoft

corporation, Howard, LeBlanc and Viega (2010) provided the ‗24 deadly sins of

software security‘ as a comprehensive high level framework for classifying software

vulnerabilities based on their practical knowledge and experiences (see table 2.3).

- 29 -

Table 2.3 The ‗24 Deadly Sins of Software Security‘

Web Application Sins

1 SQL Injection

2 Server side Cross-Site Scripting

3 Web Client Related Vulnerabilities

Implementation Sins

4 Use of Magic URLs

5 Buffer Overruns

6 Format String Problems

7 Integer Overflows

8 C + + Catastrophes

9 Catching All Exceptions

10 Command Injection

11 Failure to Handle Errors

12 Information Leakage

13 Race Conditions

14 Poor Usability

15 Not Updating Easily

Cryptographic Sins

16 Not Using Least Privileges

17 Weak Password Systems

18 Unauthenticated Key Exchange

19 Random Numbers

Networking Sins

20 Wrong Algorithm

21 Failure to Protect Network Traffic

22 Trusting Name Resolution

Stored Data Sins 23 Improper Use of SSL/TLS

24 Failure to Protect Stored Data

Source: (Howard et al. 2010)

In table 2.3, 24 deadly sins are classified under five domains of software security

defects. In this classification, sins are also referred to as software security defects.

Although this classification of software defects is the most current and

comprehensive classification of software defects, not all of the classified software

defects are relevant to this proposed study. Software defects related to web

application sins, implementation sins and cryptography sins are relevant in terms of

their impact (the level of criticality of a software vulnerability). However,

networking sins and stored data sins are not relevant and beyond the scope of this

research. Networking and stored data sins are not discussed in Common Weakness

Enumeration (CWE) and National Vulnerability Database (NVD) from where the

level of the criticality of software vulnerabilities is obtained to test the proposed

research hypotheses in this study.

Furthermore, The Web Application Security Consortium (WASC) classified 46 types

of web based software vulnerabilities with the contribution of application developers,

security professionals, software vendors and compliance auditors to ensure a

consistent language for web applications related issues (WASC 2010). Similarly, the

Open Web Application Security Project (OWASP) is dedicated to improving the

security of software applications worldwide and have categorised software

- 30 -

vulnerabilities into 165 categories. The main purpose of the categorisation of

software vulnerabilities is to make the software consumer more aware of the impact

of software vulnerabilities. Thus, individuals and organisations can make informed

decisions about software exploitation risks and take appropriate action to reduce the

risks of software exploitation to an acceptable level (OWASP 2011). The CAPEC

(2011), CWE (2011) and OVAL (2011) classified software vulnerabilities in terms of

attacks, weakness and vulnerabilities respectively.

The review of software vulnerability classifications provided the background to how

software vulnerabilities are classified in terms of their common characteristics and

their nature of impact. On the basis of this review, this study empirically analysed

software vulnerabilities classified in CWE (2011) in terms of their impact (the level

of criticality of a software vulnerability) on the response time of software vendors in

releasing software patches. Software vulnerability classification in CWE (2011) is

discussed in more detail with regard to NVD database in the next section.

Furthermore, to obtain the detailed information about the impact (i.e. the level of

criticality of software vulnerability), software vendor type and software type, this

study also used the classification of software vulnerabilities from the prominent

software vulnerabilities databases SecurityFocus (2010), OSVDB (2011b), NVD

(2011b), and Secunia (2011), which are discussed in detail in the next section.

2.6 Software Vulnerability Databases and Software Vulnerability

Classification

Landwehr et al. (1994) observed that the history of software vulnerabilities has been

mostly undocumented, however, knowing how systems have failed can help in

designing a system which is less prone to being vulnerable. The software

vulnerability database is a right step in that direction as it provides a historical record

of software vulnerabilities that is a useful reference resource for organizations to

proactively manage software vulnerabilities in their organisational context.

A software vulnerability database serves as a repository of software vulnerability

information collected from different sources, is organized to allow useful queries to

be performed on the data, and can provide valuable information to system designers

- 31 -

in identifying areas of weaknesses in the design, requirements or implementation of

software within an organisation (Venter & Eloff 2004). A software vulnerability

database can also be used to maintain vendor patch information, vendor and response

security advisories, and catalogue the patches applied in response to those security

advisories (Mell & Tracy 2002). This information is also helpful for system

administrators to protect the systems from information security breaches.

The most prominent software vulnerability databases are listed in alphabetical order

in Table 2.4, with a column to indicate which software vulnerability databases are

used in this research.

Table 2.4 Software Vulnerability Databases

Database name Unique identity Databases used in

this research

IBM‘s Internet Security System (ISS) (IBM ISS 2009) ISS X-Force ID

Microsoft Security Bulletin (Microsoft 2011) Microsoft Bulletin ID

National Vulnerability Database (NVD) (NVD 2011) CVE ID YES

Open Source Vulnerability Database (OSVDB)
(OSVDB 2011)

OSVDB ID YES

Secunia (Secunia 2011) Secunia Advisory ID YES

SecurityTracker (SecurityGlobal 2011) Security Tracker Alert ID

SecurityFocus (SecurityFocus 2010) Buqtraq ID YES

US-CERT Vulnerability Notes Database (US-CERT 2011) Vulnerability Notes ID

Vupen Security (Vupen Security 2011) Vupen ID

Source: adapted from (Langweg & Snekkenes 2004)

All these software vulnerability databases provide the following information for each

software vulnerability recorded:

 A unique identity for each software vulnerability

 A detailed description of software vulnerability

 Full disclosure date of software vulnerability

 Vulnerable software‘s name

 Vulnerable software vendor‘s name

 Severity of software vulnerability

 Software vulnerability disclosing references

 References to the affected software vendors and their product

 References to related reports and to descriptions in other databases

 Software patch release information

 Protection links from particular software vulnerability.

- 32 -

This research is based on four major software vulnerability databases: Security

Focus, OSVDB, NVD and Secunia. Although the unique identity for each software

vulnerability is provided in these databases (i.e. SecurityFocus, OSVDB, NVD and

Secunia) and is referenced in the OSVDB database, the details and classification of

software vulnerabilities in each of these software vulnerability databases are

described in their own way, which makes it difficult to map each software

vulnerability into a single table.

Therefore, the main features of each software vulnerability database are discussed in

turn. Tables 2.5, 2.6, 2.8 and 2.10 represent the main features of SecurityFocus,

OSVDB, NVD and Secunia software vulnerability databases respectively. The

SecurityFocus database is a main source of software vulnerability data because it has

been maintained since 1999 (see Table 2.5).

2.6.1 SecurityFocus

SecurityFocus is a vendor-neutral site that provides objective, timely and

comprehensive security information to all members of the security community, from

end users, security hobbyists and network administrators to security consultants, IT

managers, CIOs and CSOs (Arora, Forman, Nandkumar & Telang 2010b; Arora et

al. 2010a; Li & Rao 2007; SecurityFocus 2010). SecurityFocus hosts the Bugtraq

mailing list which is a high volume, full disclosure mailing list for the detailed

discussion and announcement of computer security vulnerabilities, including all

vendor-informed and fully-disclosed software vulnerabilities.

BugTraq also serves as the cornerstone of the Internet-wide security community

(SecurityFocus 2010).

 The SecurityFocus Vulnerability Database provides security professionals

with up-to-date information on vulnerabilities for all platforms and services.

 SecurityFocus Mailing Lists allow members of the security community from

around the world to discuss security issues. There are currently 31 mailing

lists; most are moderated to keep posts on-topic and to eliminate spam.

- 33 -

Table 2.5 summarises main features of SecurityFocus database.

Table 2.5 Features of SecurityFocus Database

Unique

Identity
Information Discussion Exploit Solution References

Bugtraq

ID
Class, CVE, Remote,

Local, published date,

updated date, creditor‘s
name and vulnerable

software

Discussion

regarding

software
vulnerability

Information about

the exploits from the

each software
vulnerability

Information

about the

solution
provided

Affected vendors

and products and

advance security
notification

Source: (SecurityFocus 2010)

The following list provides a brief description of the main fields in the SecurityFocus

database (SecurityFocus 2010):

 Bugtraq id represents a unique identification of each software vulnerability

through the Common Vulnerability Enumeration (CVE_ID) identification for

each software vulnerability

 Remote or local attack of software vulnerability

 Full disclosure date of software vulnerability

 Solution provided date for software vulnerability

 Information about the researcher who disclosed the vulnerability and affected

software from that particular software vulnerability

 Discussion provides core information about the software vulnerability

 Exploit provides exploitation details for each software vulnerability

 Solution provides details of how software vulnerability is fixed and reference

provides links and cross-references for the vulnerability.

Overall, the SecurityFocus database provides more qualitative information than

quantitative information about software vulnerabilities.

2.6.2 Open Source Vulnerability Database

OSVDB is an independent and open source database created by and for the software

security community (Frei et al. 2006; OSVDB 2011b; Yu et al. 2006). The goal of

this database is to provide accurate, detailed, current and unbiased technical

information on software security vulnerabilities. This database promotes greater,

more open collaboration between companies and individuals, eliminates redundant

- 34 -

work, and reduces expenses inherent with the development and maintenance of in-

house software vulnerability databases (OSVDB 2011a). The database currently

covers 72,658 vulnerabilities, spanning 34,257 products from 4,735 researchers, over

46 years (Frei et al. 2006; OSVDB 2011b; Yu et al. 2006). Table 2.6 summarises the

main features of OSVDB database.

Table 2.6 Features of the Open Source Vulnerability Database (OSVDB)

Unique

Identity
Timeline Description Classification Products References Credit CVSSv2

score

OSVDB

ID

Discovery date,

Full Disclosure

date, Vendor
informed date

Description

provided by

CVE

Location,

Attack type,

Impact, Exploit,
Full Disclosure

Product

name

Security

advisories

team and
affected

vendors

Name of person

or security

advisories team or
software vendor

CVSSv2

Base

Score

Source: (OSVDB 2011b)

The following list provides a brief description of main fields of the OSVDB database

(OSVDB 2011b):

 The unique identity of a software vulnerability

 Timeline provides software vulnerability discovery date (i.e. the date when

vulnerability was discovered)

 Full disclosure date (i.e. the date when software vulnerability was fully

disclosed)

 Vendor informed date (i.e. the date when software vendor was informed

about software vulnerability)

 Description provides core information about the software vulnerability

 Classification provides attribution about the software vulnerability which can

be added

 Products provides a software vendor name, as well as the name of affected

software

 Reference provides links and cross-references for the software vulnerability

 Credit provides information about the researcher who disclosed the

vulnerability

 Common Vulnerability Scoring System (CVSSv2) provides a base score for

the software vulnerability.

- 35 -

Table 2.7 presents a high level of classification of software vulnerabilities by attack

types for OSVDB software vulnerabilities. The table also provides a brief description

of each attack type to classify the software vulnerability attack types in OSVDB

database.

Table 2.7 Classification of Software Vulnerabilities in OSVDB by Attack Type

Attack Type Description

1. Authentication

Management

 A vulnerability that attacks or bypasses an authentication mechanism. Exception: If an attack uses

SQL injection to bypass auth or add an administrative account, the attack itself is not authentication
based, unless that is the only thing that can be done with the attack.

2. Cryptographic A vulnerability that attacks a cryptographic implementation (e.g., compromising an algorithm), relies

on the presence of weak cryptography (e.g., password protection via XOR) or relies on the lack of

cryptography (passwords stored in plaintext, information transmitted in clear text).

3. Denial of Service A vulnerability that results in a loss of service, functionality or capability. This includes making a

service unresponsive, consuming resources (e.g., CPU, memory) or forcing a reboot.

4. Information

Disclosure

A vulnerability that results in the disclosure of information that may be sensitive (e.g., passwords,

credit info) or useful in conducting additional more focused attacks (e.g., usernames, installation
path).

5. Infrastructure A vulnerability that attacks an infrastructure device, such as a large router, firewall or another device

supporting BGP. This does not apply to SOHO routers. Input Manipulation- A vulnerability that is
exploited by sending manipulated and unexpected data to a service or process. This includes all types

of overflows, memory corruption, XSS, SQLi, RFI, traversals and more.

6. Misconfiguration A vulnerability that exploits a misconfiguration in a system or software. Misconfigurations can be as
shipped by a vendor (e.g., version 3.3 accidentally shipped with insecure options), or by

administrators who would reasonably configure software incorrectly (e.g., common sense or product

documentation would lead to it).

7. Race Condition A vulnerability that can only be exploited during a specific 'window of attack'. Typically a race
between two actions where the first makes a system vulnerable and the second removes the condition

for exploit. This is frequently seen in temporary file handling, but may apply to a wide variety of

attacks.

8. Other A vulnerability that cannot be defined by any other Attack Type classification.

9. Attack Type

Unknown

The attack type for this vulnerability is not known.

Source: adopted from (OSVDB 2011b)

Although OSVDB classifies software vulnerabilities into nine types of attack as

shown in table 2.7, the mostly commonly-found attack types are Infrastructure,

Authentication Management, Misconfiguration, Denial of Service and Information

Disclosure. Furthermore, these nine types of attack classifications do not

comprehensively classify all software vulnerabilities found in the OSVDB database

into attack types. Therefore, this study used a more comprehensive classification of

software vulnerabilities provided by the National Vulnerability Database (NVD),

which is described in section 6.2.3 (see Table 2.9).

2.6.3 National Vulnerability Database

NVD is the U.S. Government‘s repository of standards-based vulnerability

management data represented using the Security Content Automation

- 36 -

Protocol (SCAP). This data enables automation of vulnerability management,

security measurement, and compliance (Arora et al. 2010b; Arora et al. 2010a; NVD

2011b).

Table 2.8 summarises the main features of NVD database including databases of

security checklists, security related software flaws, misconfigurations, product

names, and impact metrics (NVD 2011b).

Source: (NVD 2011b)

The following list provides a brief description of the main fields of the NVD

database (NVD 2011b):

 CVE ID represents a unique identification of a software vulnerability

 Overview provides general information about the software vulnerability

 Impact provides a CVSS severity and CVSS metrics where CVSS severity

gives the level of the criticality of software vulnerability and CVSS metrics

gives an access vector, access complexity, authentication and impact type

 References provide links and cross-references for the software vulnerability;

and technical details provide the cause of software vulnerability with

vulnerability type

 NVD provides technical details integrating with Common Weakness

Enumeration (CWE).

Furthermore, to classify software vulnerabilities into comprehensive and specific

types, this study used a standard classification of software vulnerability types: the

Common Weakness Enumeration (CWE) classification which is cross mapped with

National Vulnerability Database (NVD) through the Common Vulnerability

Exposure (CVE) entries (NVD 2011b) in OSVDB. However, the following software

vulnerabilities ‗Other‘, ‗Not in CWE‘, ‗Insufficient Information‘ and ‗Design Error‘

Table 2.8 Features of National Vulnerability Database (NVD)

Unique

Identity

Overview Impact References Technical

Details

CVE ID General description about the

software vulnerability

CVSS base score v2, access vector, access

complexity, authentication and impact type

To advisories,

solutions and tools

Vulnerability

type

- 37 -

are not mapped in NVD.

Table 2.9 lists and briefly describes a comprehensive classification of 23 specific

types of software vulnerabilities developed by NVD and OSVDB and which is used

to classify the software vulnerabilities analysed in this study.

Table 2.9 Comprehensive Classification of 23 Specific Types of Software

Vulnerabilities

Name CWE-ID Description

1. Authentication

Issues

CWE-287 Failure to properly authenticate users.

2. Credentials
Management

CWE-255 Failure to properly create, store, transmit, or protect passwords and other credentials.

3. Permissions,

Privileges, and
Access Control

CWE-264 Failure to enforce permissions or other access restrictions for resources, or a privilege

management problem.

4. Buffer Errors CWE-119 Buffer overflows and other buffer boundary errors in which a program attempts to put more data

in a buffer than the buffer can hold, or when a program attempts to put data in a memory area
outside of the boundaries of the buffer.

5. Cross-Site

Request Forgery

(CSRF)

CWE-352 Failure to verify that the sender of a web request actually intended to do so. CSRF attacks can

be launched by sending a formatted request to a victim, then tricking the victim into loading the

request (often automatically), which makes it appear that the request came from the victim.
CSRF is often associated with XSS, but it is a distinct issue.

6. Cross-Site

Scripting (XSS)

CWE-79 Failures of a site to validate, filter, or encode user input before returning it to another user‘s web

client.

7. Cryptographic
Issues

CWE-310 An insecure algorithm or the inappropriate use of one; an incorrect implementation of an
algorithm that reduces security; the lack of encryption (plaintext); also, weak key or certificate

management, key disclosure, random number generator problems.

8. Path Traversal CWE-22 When user-supplied input can contain ―..‖ or similar characters that are passed through to file
access APIs, causing access to files outside of an intended subdirectory.

9. Code Injection CWE-94 Causing a system to read an attacker-controlled file and execute arbitrary code within that file.

Includes PHP remote file inclusion, uploading of files with executable extensions, insertion of

code into executable files, and others.

10. Format String

Vulnerability

CWE-134 The use of attacker-controlled input as the format string parameter in certain functions.

11. Configuration CWE-16 A general configuration problem that is not associated with passwords or permissions.

12. Information
Leak /

Disclosure

CWE-200 Exposure of system information, sensitive or private information, fingerprinting, etc.

13. Input Validation CWE-20 Failure to ensure that input contains well-formed, valid data that conforms to the application‘s

specifications. Note: this overlaps other categories like XSS, Numeric Errors, and SQL
Injection.

14. Numeric Errors CWE-189 Integer overflow, signedness, truncation, underflow, and other errors that can occur when

handling numbers.

15. OS Command

Injections

CWE-78 Allowing user-controlled input to be injected into command lines that are created to invoke

other programs, using system () or similar functions.

16. Race Conditions CWE-362 The state of a resource can change between the time the resource is checked to when it is

accessed.

17. Resource

Management

Errors

CWE-399 The software allows attackers to consume excess resources, such as memory exhaustion from

memory leaks, CPU consumption from infinite loops, disk space consumption, etc.

18. SQL Injection CWE-89 When user input can be embedded into SQL statements without proper filtering or quoting,
leading to modification of query logic or execution of SQL commands.

19. Link Following CWE-59 Failure to protect against the use of symbolic or hard links that can point to files that are not

intended to be accessed by the application.

20. Other No Mapping NVD is only using a subset of CWE for mapping instead of the entire CWE, and the weakness
type is not covered by that subset.

21. Not in CWE No Mapping The weakness type is not covered in the version of CWE that was used for mapping.

22. Insufficient

Information

No Mapping There is insufficient information about the issue to classify it; details are unknown or

unspecified.

23. Design Error No Mapping A vulnerability is characterized as a ‗Design error‘ if there exists no errors in the

implementation or configuration of a system, but the initial design causes a vulnerability to

exist.

Source: adopted from (NVD 2011a; OVAL 2011)

http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/255.html
http://cwe.mitre.org/data/definitions/264.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/94.html
http://cwe.mitre.org/data/definitions/134.html
http://cwe.mitre.org/data/definitions/16.html
http://cwe.mitre.org/data/definitions/200.html
http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/189.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/362.html
http://cwe.mitre.org/data/definitions/399.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/59.html

- 38 -

2.6.4 Secunia

Secunia is a comprehensive and trusted source of security information on the

Internet. Secunia provides Secunia Security Factsheets that inform users about the

state and evolution of software vulnerabilities with respect to the product specified in

the factsheet (Borders, Weele, Lau & Prakash 2009; Nazario 2009; Secunia 2011).

Whenever a new vulnerability is reported, Secunia releases a Secunia Advisory after

verification of the information. A Secunia Advisory provides details of the software

vulnerability including a description, a risk rating, impact, recommended mitigation,

credits, and references (Borders et al. 2009; Nazario 2009; Secunia 2011).Table 2.10

summarises the main features of Secunia database.

Table 2.10 Features of Secunia Database

Unique

Identity

Description Release

Date

Last

Update

Criticality

Level

Impact

Type

Location Solution

Status

Type of

Software

Secunia

CVSS

Score

Secunia

Advisory
ID

Description

of software
vulnerability

Full

disclosure
date

Solution

date

Severity

level

Name of

software
vulnerability

From

where
attack

originates

Software

vulnerability
patching

information

Operating

system or
Application

software

Severity

score

Source: (Secunia 2011)

The following list provides a brief summary of the main fields in the Secunia

database (Secunia 2011):

 Secunia advisory id is a unique identity to represent a software vulnerability

 Description provides general information about a software vulnerability

 Release date is the date when a software vulnerability is fully disclosed

 Last update date is a solution date

 Criticality level represents the severity of software vulnerability

 Impact type represents a cause of software vulnerability

 Location represents the origin of attack

 Solution status represents whether software vendor patched a software

vulnerability or not

 Type of software provides whether a software vulnerability originates from

operating system software or application software

- 39 -

The four software vulnerability databases discussed previously provide detailed

information for the useful classification of software vulnerabilities used in this study.

However, in order to examine the response time of software vendors in releasing a

software patch for the above classified software vulnerabilities in terms of their level

of criticality, type of software vendor and type of software, software vulnerability

disclosure can provide a much clearer picture of how the response time can be

accurately determined.

2.7 Software Vulnerability Disclosure

The following definitions of a full disclosure of software vulnerability have been

identified from the literature. Telang and Wattal (2005, p. 1) stated that ‗Any public

announcement about a software defect is termed as full disclosure of software

vulnerability‘. McKinney (2008, p. 76) states that ‗ A full disclosure of software

vulnerability is a phenomenon of openness and transparency among security

researchers, security vendors, product vendors and other stakeholders‘. This study

adopts the definition by Arora et al. (2010a, p. 115) that: ‗A full disclosure of

software vulnerability refers to the publication of vulnerability information before

the software vendor has released a patch to address the vulnerability‘.

2.7.1 Software Vulnerability Disclosure Debate

It is inevitable that software vulnerabilities are discovered in software products in

spite of how much time and effort is spent in identifying and removing flaws during

development of software preliminary maturity. Based on this inevitability, one can

guess that a logical structured procedure could be pursued for disclosing software

vulnerabilities. However, the current process for disclosing software vulnerabilities

can range from a loosely organized effort to complete disorder (Bollinger 2004;

SANS 2003).

This lack of structure has resulted in a heated debate within the information security

community about the socially optimal method of disclosure of a software

vulnerability. The full disclosure movement of the late 1990s argues that by

providing as much open detail about software vulnerabilities as possible will help

- 40 -

system administrators and software programmers to fully understand the technical

details of software vulnerabilities in order to prevent and defend software

vulnerabilities (Bollinger 2004; Cooper 1999). A software programmer can review

the structure of the software vulnerability through the full technical details of a

software vulnerability; and try to avoid similar software vulnerabilities in future

software development. Similarly, users can take appropriate defensive security action

such as implementing an Intrusion Detection System (IDS), shutting down a

vulnerable service or using exploit code to scan the network for vulnerable

applications (Bollinger 2004; SANS 2003).

Moreover, full disclosure supposedly puts pressure on software vendors to issue a

high quality software patch for newly-discovered software vulnerabilities as soon as

possible and improve the quality of software over time. If software vendors fail to

release a software patch and a software vulnerability is subsequently fully disclosed,

public media coverage will negatively impact on the reputation and revenue of

software vendors. To reduce negative public media coverage, software vendors are

more likely to develop less vulnerable software products (Arora, Telang & Xu

2004a; Bollinger 2004; SANS 2003).

Although the concept of full disclosure of software vulnerabilities has a number of

advantages, it is lacking by not providing a grace period in which software vendors

can address those software vulnerabilities. The major problem of full disclosure of

software vulnerabilities is that software vendors are notified at the same time as the

vulnerability is fully disclosed. Information security is affected by the time software

vendors take in releasing software patches to fix the software vulnerability (Arora,

Krishnan, Nandkumar, Telang & Yang 2004b; Bollinger 2004).Thus, the concept of

delayed or responsible disclosure was introduced, where information about the

identification of a software vulnerability is first informed to a software vendor and

then disclosed fully when the software vendor releases a software patch (Arora &

Telang 2005a; Farrow 2000; Meunier 2008).

A number of papers have discussed the pros and cons of non-disclosure, full

disclosure and socially planned software vulnerability disclosure (Arora et al. 2004b;

Arora et al. 2005b; Farrow 2000; Laakso, Takanen & Röning 2001; Rescorla 2003,

- 41 -

2005). A discussion on the various types of software vulnerability disclosures is

beyond the scope of this research. However, the responsible disclosure of software

vulnerabilities provides a vendor informed date which facilitates a more accurate

response time by software vendors in releasing software patches to be calculated.

This approach is used in this study to examine the effect of the level of criticality of

software vulnerabilities on the response time of software vendors in releasing a patch

for software vulnerability. The response time is based on the responsible disclosure

date or vendor informed date.

Full disclosure of software vulnerability has a serious effect on the software vendors‘

response time in releasing software patches, however, the concern is that different

types of software vulnerability disclosures have a different impact on the software

vendor response time in releasing software patches. To gain a better understanding of

an actual response time, software vulnerability disclosure policy needs to be

examined in more detail.

2.8 Software Vulnerability Disclosure Policy

Flaws in software make software products vulnerable and prone to violating software

security policy (Arbaugh, Fithen & McHugh 2000). The examination of optimal

policy for software vulnerability disclosure was demonstrated through the optimal

timing of disclosure policy. It was shown that policy makers such as those in

government and regulatory authorities in specific industries have the power to

influence behaviour of software vendors and also minimise the magnitude of patch

developing costs and loss to customers (Arora et al. 2008; Cavusoglu et al. 2007). It

was also shown that any software vulnerability disclosure is not optimal. Software

vendors always decide to release patches afterwards, rather than when informed of a

software vulnerability, because this optimises their effort and investment in their

software products (Arora et al. 2008). Does this mean that the type of software, type

of software vendor and the level of criticality of software vulnerability also affect the

decision of software vendors to develop and release timely patches?

Information security advisories have moved away from a policy of immediate

disclosure to having a period of grace before full disclosure. A policy of immediate

- 42 -

disclosure of software vulnerability in this study means the disclosure of software

vulnerability when it is recognized as being a security threat. Information security

advisories such as CERT/CC introduced their own software vulnerability disclosure

policy to determine when to fully disclose software vulnerability. The software

disclosure policy of CERT/CC provides a reasonable 45 days grace period for

software vendors to release a software patch before full disclosure. Similarly,

Organization for Internet Safety (OIS) provides a 30 day grace period for software

vendors to release a software patch before full disclosure (Cavusoglu et al. 2004). In

the same way, Russ Cooper‘s NTbugTraq policy provides a maximum of 14 days

grace period to software vendors to release a software patch before full disclosure.

Likewise, Rain Forest Puppy‘s ‗RFPolicy‘ provides 5 working days for software

vendors to respond after initially being informed about software vulnerabilities.

Failure to respond in 5 days resulted in full disclosure of software vulnerabilities

(Cooper 1999; OIS 2004; SANS 2003).

From the above discussion, a full disclosure of software vulnerability depends upon

the policy of the individual information security advisory. There is no single standard

policy for the full disclosure of software vulnerabilities. What this means for this

research is that the full disclosure of a software vulnerability does not provide an

accurate means for calculating the actual response time in releasing a software patch.

Therefore, it is more appropriate to identify the vendor informed date and solution

date in order to calculate the actual software vendors‘ response time in releasing

software patches.

2.9 Software Vendors

Software is generally developed and distributed by two main types of software

vendors: proprietary source software vendors and open source software vendors

(Comino & Manenti 2003; Leoncini, Rentocchini & Vittucci Marzetti 2010).

2.9.1 Proprietary Source Software Vendor

According to Payne (2002, p. 63), ‗Vendors who provide licensed software are often

described as proprietary software vendors‘. This study adopts the definition of

- 43 -

proprietary source software vendors provided by Ming-Wei and Ying-Dar (2001, p.

33): ‗Proprietary source software vendors operate on a closed-source model: They

develop their own software and release that software to the public with the intention

of gaining market penetration and earning a profit‘.

2.9.2 Open Source Software Vendors

The following definition is used for open source software vendors in this study:

vendors who provide open source software with compilable source code and this

source code can be modified or redistributed free of cost (Payne 2002; Schryen et al.

2010)

Both these two main types of software vendor are responsible for fixing software

vulnerabilities through developing and releasing software patches for their vulnerable

software products. However, the main focus of this study is to determine if there is a

difference in the time taken in releasing software patches by open source software

vendors versus proprietary source software vendors once software vulnerabilities

have been informed to software vendors.

2.9.3 Debate on Open and Proprietary Source Software Vendors

There has been considerable debate about the software security of open source

software vendors and proprietary source software vendors. Open source software

vendors do not develop software in a controlled environment. Open source software

is not always peer reviewed or validated for use. Users are free to examine and verify

source code, however, the expert software programmer could embed back door

Trojans to capture private and confidential information without the user ever

knowing. This lack of a quality software development process results in open source

software being viewed as having security issues (Hoepman & Jacobs 2007; Saltis

2009). Additionally, the reviewers of an open source software project may not

continue on the software project for the duration of its development lifetime (i.e.

reviewers might leave one software company and join another one). This lack of

continuity and common direction leads to barriers to effective communication among

reviewers and delays in resolving software vulnerabilities once the open source

software vendors have been informed of the software vulnerability.

- 44 -

On the other hand, proponents of open source software stress the strength of having a

large number of potential reviewers because source code of open source software is

publicly distributed. The numbers of reviews of the source code of open source

software maintains the maturity of software quality (Payne 2002). Similarly,

Raymond (2001, p. 19) argued that ‗Given enough eyeballs, bugs are shallow‘. This

strength of the open source software review process is assumed to enable easier

identification of software vulnerabilities, and enable software vendors to be informed

accordingly so they can more quickly release software patches once they have been

notified of a software vulnerability.

Proprietary source software vendors develop software in a controlled environment

with a concentrated team effort in a common direction; whereas open source

software vendors do not always develop software in a controlled environment and

have individual users worldwide developing the software. A lack of continuity and

common direction prevents effective communication, thus, proprietary source

software vendors appear more secure than open source software vendors (Saltis

2009). Additionally, the source code from proprietary source software vendors is

viewed and edited in-depth by a dedicated software development team—eliminating

the risk of back door Trojans and reducing the risk of occurrence of any software

vulnerabilities. Although the source code of proprietary source software is viewed

only by a dedicated software development team, Raymond (2001) argued that

finding a software vulnerability in proprietary source software is not a difficult task.

Expert software reviewers who are not in the dedicated software development team

can find software vulnerabilities in proprietary source software without any trouble.

Nonetheless, the problem is the response time of the proprietary source software

vendor in releasing a software patch. Once software vulnerability is found in

proprietary source software and informed to the software vendor, only the dedicated

software development team in a controlled environment can review the source code.

The idea is that a large number of source code reviewers, rather than a small number

of reviewers, can resolve the informed software vulnerability. Open source software

often has an uncountable number of reviewers compared to proprietary source

software, which has a limited number of reviewers.

- 45 -

Both open source software vendors and proprietary source software vendors are

equally vulnerable in the perspective of software developers and specific type of

software development (MacCormack, Rusnak, Baldwin & Research 2006). However,

the main concern of this study is to determine which type of software vendor is

quicker to respond in releasing a software patch once the software vendor is

informed of the software vulnerability.

2.10 Software Vulnerability Disclosure and Software Patching

Nizovtsev and Thursby (2007) developed a model to motivate users to disclose

software vulnerabilities through an open community forum under the circumstance

of instant disclosure which is socially optimal. Likewise, Telang and Wattal (2007)

analysed the full disclosure of software vulnerability through an event study and

demonstrated that full disclosure is one of the best possible ways to lower the stock

prices of software vendors. Full disclosure should encourage software vendors to be

more proactive in releasing software patches. Li and Rao (2007) identified that there

is no change in optimal time of full disclosure, even if private information security

advisories (e.g. iDefense, TippingPoint, ISS Inc.) participate and put pressure on

software vendors to release software patches. However, private information security

advisories‘ services decrease a vendor‘s willingness to release a patch promptly.

Arora et al. (2010a; 2008) proved that larger software vendors are more responsive to

software vulnerabilities if software vulnerabilities are fully disclosed by CERT.

However, the study by Arora et al. (2010a; 2008) did not tested the extent to which

the level of criticality of a software vulnerability influences the response time of

software vendors in releasing a patch once the software vendor is informed of the

software vulnerability.

2.10.1 Open Source versus Proprietary Source

Schryen (2009) argued that there is no significant difference in vendors‘ patching

behaviour on fully disclosed vulnerabilities between open and proprietary source

software. However, Arora et al. (2010a) argued that open source vendors are quicker

to release a patch than proprietary source vendors. Both these studies analysed

software vendor patching behaviour of fully disclosed software vulnerability and

- 46 -

both studies analysed 2003 and 2006 data from the same vulnerability database—

which is quite dated in the current threat and attack environment. It is expected that

software vendors‘ patching behaviour is clearer if the behaviour is analysed with the

date the vendor was informed of software vulnerabilities, rather than the date the

software vulnerabilities are fully disclosed.

2.10.2 The Level of Criticality of Software Vulnerability

Arora et al. (2010a) argued that vendors are more responsive to critical

vulnerabilities. However, Schryen and Rich (2010) empirically showed that a

vendor‘s patching behaviour does not significantly differ in terms of the criticality of

software vulnerabilities in open and proprietary source software vendors. Both these

studies analysed software vendor patching behaviour and the level of criticality of

software vulnerability with the full disclosure date of software vulnerability. It is

expected that software vendors‘ response to the level of criticality of software

vulnerabilities is more accurately measured using the vendor informed date for

software vulnerabilities rather than using full disclosure date for software

vulnerabilities, because the full disclosure date varies with software vulnerability

disclosure policy across different information security advisories—as discussed in

section 2.8.

2.10.3 Operating System Software versus Application Software

Similarly, Christey and Martin (2007) categorised software types into operating

system and non operating system (i.e. application software) to classify software

vulnerabilities. Lowis and Accorsi (2009) classified software vulnerabilities into

operating system and web application to better understand their cause and effect, as

well as to improve vulnerability management tool support. Young and Conklin

(2010) found that most organizations are using two to three operating systems and

are concentrating on hardening those systems, which currently leaves the door open

for hackers and attackers in relation to application software which is poorly managed

in terms of patching, as organizations are often using dozens, if not hundreds, of

different types of software applications—all with potential software vulnerabilities. It

is much more difficult to manage the patching of software applications given the

- 47 -

large number of software applications in relation to operating system software.

Moreover, SANS institute analysed the patching behaviour of application software

and system software by taking software vulnerabilities data from Microsoft, Adobe

and Sun Microsystems and found software vendors are much slower in patching

application software than patching operating system software (SANS 2009).

Similarly, TippingPoint security community also analysed detected operating system

software and application software vulnerabilities to rectify the changing dynamics in

the software vulnerability assessment field. It also found that software vendors are

much slower in patching application software than patching operating system

software (TippingPoint 2009). This situation is further exacerbated by the fact that

most software applications interact with the Internet in some way these days

(Rehman & Mustafa 2009; Telang et al. 2007). This indicates there is a relationship

between software vulnerabilities and type of software. However, previous studies

have not concentrated on analysing software vendor patching behaviour in terms of

the type of software and the level of criticality of vendor informed software

vulnerabilities.

2.11 Theoretical Support for this Study

Software security disclosure theory is an extension of the theory of full disclosure

which was first raised in the context of lock smithing in the 19
th

 century regarding

whether weaknesses in lock systems should be kept secret in the lock smithing

community or revealed to the public (Hobbs, Tomlinson, Fenby & Mallet 1868).

Alfred Hobbs noted in 1853 that ‗Rogues are very keen in their profession, and know

already much more than we can teach them’ when questioned on the wisdom of

publishing the weaknesses of existing locks. Similarly, software security disclosure

theory argues that full disclosure of software vulnerabilities encourages software

vendors to be more proactive and timely in responding to software vulnerabilities;

and makes organisations and individuals more aware of the potential risks associated

with vulnerabilities in the software they are using (Swire 2004, 2006).

Previous empirical studies on full disclosure of software vulnerability have also

identified that when software vulnerabilities are fully disclosed, open source software

- 48 -

vendors release patches more quickly than proprietary source software vendors

(Arora et al. 2010a; Swire 2004, 2006; Xueqi et al. 2008); software vendors are more

responsive to severe software vulnerabilities (Arora et al. 2010a); and patches are

released more quickly by software vendors for operating system software

vulnerabilities than for application software (SANS 2009; TippingPoint 2009; Young

et al. 2010).

Furthermore, the economic model of software security investment developed by

Gordon and Loeb (2002) also suggests that the response time of software vendors in

releasing software patches is an optimisation decision where software vulnerabilities

with a medium level of criticality are the most optimal for software vendors to

develop and release patches; whereas for low level and high level of criticality

software vulnerabilities the effort of software vendors is less optimal to develop and

release patches.

Therefore, this study has used the concept of software security disclosure theory

developed by Swire (2004, 2006) and the economic model of software security

investment developed by Gordon and Loeb (2002) as the theoretical lens for this

study which assesses the extent of the (1) level of criticality of a software

vulnerability, (2) type of software vendor, and (3) type of software impact on the

response time of software vendors in releasing a patch once the software

vulnerability has been informed to the software vendor.

2.12 Research Gaps

The review of the literature reveals the following gaps:

1. Previous studies identified that the level of the criticality of software

vulnerabilities potentially impacts on the response time of software vendors in

releasing software patches for disclosed software vulnerabilities (Arora et al.

2010a; Liu et al. 2011; Mangalaraj et al. 2005; Telang et al. 2007). Schryen and

Rich (2010) did not find any significant difference in software vendors‘ patching

behaviour for severe software vulnerabilities. Although all the above studies

analysed the relationship of vendors‘ patching behaviour and the level of

criticality of software vulnerability with the full disclosure date of software

- 49 -

vulnerability, they did not analyse the relationship between the level of criticality

of software vulnerability and software vendors‘ patch release behaviour with

vendor informed date.

Similarly, Gordon and Loeb‘s (2002) economic model of software security

investment showed that software vulnerabilities with a medium level of criticality

have the highest potential impact on the software vendors‘ patch release

behaviour compared to low and high level of criticality of software vulnerability.

Therefore, this study analyses the relationship between the level criticality of

software vulnerabilities and the response time to release software patches once

the software vendor has been informed of the software vulnerabilities.

2. Arora et al. (2010a) argued that open source software vendors are quicker to

release software patches for software vulnerabilities than proprietary source

software vendors. Schryen (2009) argued that there is no significant difference in

software vendors‘ patching behaviour on fully disclosed software vulnerabilities

between open and proprietary source software vendor. Both studies analysed the

software vendors‘ patching behaviour using the full disclosure date of software

vulnerabilities. This study analyses software vendor patching behaviour using the

vendor informed date of software vulnerabilities because response time

calculated to release software patches is more accurate when using the date of

vendor informed software vulnerabilities than the date of full disclosure of

software vulnerabilities.

3. Prior studies that concentrated on classifying software vulnerabilities into

different types of software (Christey & Martin 2006; Lowis et al. 2009) found

that organisations are more proactive in hardening operating system software,

rather than application software (Young et al. 2010). SANS Institute analysed the

patching behaviour of three software vendors: (1) Microsoft Corporation, (2)

Adobe Systems Incorporated and (3) Sun Microsystems, in relation to application

software versus operating system using software vulnerabilities data (SANS

2009). SANS found that these three software vendors released software patches

more quickly for operating system software vulnerabilities than for application

software. Similarly, TippingPoint security community also analysed detected

operating system software and application software vulnerabilities to rectify the

- 50 -

changing dynamics in the software vulnerability assessment field. It also found

that software vendors are much slower in patching application software than

patching operating system software (TippingPoint 2009). Therefore, this study

will address these issues and, based on software vulnerability data from 2008 to

2010, analyse the response time of software vendors in releasing software

patches to determine if there is a difference in the response time between

operating system software and application software.

2.13 Research Question and Sub Questions

The general research question should focus on the specifics of the enquiry at hand

(Zikmund 1997; McPhail 2000). Therefore, the general research question for this

study is as follows:

To what extent does the level of criticality of software vulnerabilities, type of

software vendor (Open source, Proprietary source vendor), type of software

(Operating system software, Application software) influence the response time of

software vendors in releasing patches when the software vendor is informed of

software vulnerabilities?

To answer the general research question for this study, the following three specific

research questions are addressed.

RSQ1. How does the level of criticality of software vulnerabilities influence the

response time of software vendors in releasing patches when the software vendor is

informed of software vulnerabilities?

RSQ2. Is there a difference between open and proprietary source software vendors in

terms of their response time in releasing patches when the software vendor is

informed of software vulnerabilities?

RSQ3. Is there a difference between operating system software and application

software in terms of response time of software vendors in releasing patches when the

software vendor is informed of software vulnerabilities?

- 51 -

2.14 Conceptual Model

The theoretical basis of the conceptual model for this study is software security

disclosure theory, which is an extension of the theory of full disclosure and the

economic model of software security investment developed by Gordon and Loeb

(2002) and (Hobbs et al. 1868; Swire 2004, 2006). The theory of software security

disclosure provides an explanation for why the disclosure of a software vulnerability

will encourage software vendors to be more proactively in responding and releasing

a patch to a software vulnerability once they informed of its existence. Previous

studies have argued that the patching behaviour of software vendors when a software

vulnerability is disclosed are different for the type of software (operating system

software versus application software) and the type of software vendor (proprietary

software vendor versus open source software vendor). The economic model of

software investment explains how the response time of software vendors in releasing

software patches is an optimisation decision and suggests that software

vulnerabilities with a medium level of criticality are the most optimal for software

vendors to develop and release quickly (Gordon et al. 2002). Conversely for low and

high level of criticality software vulnerabilities the economic model of software

investment suggests that the effort of software vendors is less optimal and software

vendors develop and release patches more slowly.

In this study, the conceptual model underpinned by on the theory of software security

disclosure and the economic model of software security, is based on the relationships

among four key variables identified from the previous relevant literature. The level

of criticality of a software vulnerability, software vendor type and type of software

are independent variables in this study. The level of criticality of software

vulnerabilities is measured as a continuous variable on a scale of 0 to 10. The scale

of 0 to 10 is categorised into 5 levels (very low, low, medium, high and very high).

Software vendor type is a dummy variable (open source software vendor, proprietary

source software vendor) and is measured as a binary variable. Similarly, type of

software is a dummy variable (operating system software, application software) and

is also measured as a binary variable. The response time is the dependent variable in

this study and is a continuous variable measured by number of days taken to release a

software patch based on when the software vendor is informed about a software

- 52 -

vulnerability. The response time is determined on the basis of the vendor informed

disclosure date. Type of vendor release a software patch based on the level of

criticality of software vulnerability and type of software. Therefore, it is anticipated

that these three independent variables are hypothesised to have a direct impact,

although they are interrelated with each other, on the dependent variable, the

response time of software vendors in releasing software patches in this study. To test

proposed relationships in this model, three hypotheses have been specifically

formulated from the three research sub questions stated previously in section 2.13.

2.15 Hypotheses

The level of criticality of software vulnerability is the risk level assigned to each

software vulnerability which describes the extent of damage that could be caused by

a specific breach of confidentiality, integrity and availability for that software

vulnerability (Liu et al. 2011). The levels of criticality is categorised into 5 levels

(very low, low, medium, high and very high) in this study. Previous studies have

argued that the higher the level of the criticality of software vulnerabilities, the

higher potential impact on the software vendors‘ response time in releasing software

patches for fully disclosed software vulnerabilities (Arora et al. 2010a; Liu et al.

2011; Mangalaraj et al. 2005; Telang et al. 2007). In contrast, Schryen and Rich

(2010) did not find any significant difference in software vendors‘ patching

behaviour for critical software vulnerabilities. Furthermore, Gordon and Loeb (2002)

argued that the response time of software vendors in releasing software patches is an

optimisation decision where medium level of criticality of software vulnerabilities

are the most optimal for software vendors to develop and release patches promptly;

whereas low level and high level of criticality software vulnerabilities are less

optimal and software vendors to develop and release patches for software

vulnerabilities with low and high levels of criticality less quickly for. Based on these

issues in the existing literature, the following hypothesis will be tested.

H1: Software vendors release patches for software vulnerabilities with a medium

level of criticality in a shorter response time than software vulnerabilities with low

and high levels of criticality once the vendor has been informed of the software

vulnerability.

- 53 -

Schryen (2009) argued that there is no significant difference in vendors‘ patching

behaviour on fully disclosed vulnerabilities between open and proprietary source

software. However, Arora et al. (2010a) argued that open source vendors are quicker

to release a patch than proprietary source vendors. Both studies analysed 2003 and

2006 data from the same vulnerability database—which is dated in the current threat

and attack environment. Both these studies also analysed software vendors‘ patching

behaviour using the full disclosure date of software vulnerabilities. Similarly, Xueqi,

Nannan and Hsiao (2008) argued that software vulnerabilities data and its

relationship with the release of software patches will change over time due to the

dynamic and rapidly-changing nature of software vulnerabilities. Therefore, this

hypothesis will test whether the response time to release a software patch is different

between open source vendors and proprietary source vendors based on the vendor

informed date. Therefore, the following hypothesis will be tested.

H2: Open source vendors release patches for open source software vulnerabilities

more quickly than proprietary source vendors release patches for proprietary

software vulnerabilities once the software vendor has been informed of the software

vulnerability.

As mentioned previously in section 2.10.3, Young and Conklin (2010) argued that

most organizations concentrate more on hardening operating systems rather than

application software, as organizations use two or three operating systems as opposed

to dozens, if not hundreds, of different types of software applications—all with

potential software vulnerabilities. Moreover, SANS and TippingPoint (2009; 2009)

found that software vendors release patches for operating system software

vulnerabilities more quickly than for application software. Indeed most operating

systems have built-in mechanisms for software updates. Based on these reasons, the

following hypothesis developed from the existing literature will be tested.

H3: Patches for operating system software vulnerabilities are released more quickly

than patches for application software vulnerabilities once the software vendor has

been informed of the software vulnerability.

- 54 -

Figure 2.4 represents an integrated conceptual model with the three proposed

hypothesised relationships which will be tested in this study to investigate and

determine the level of impact of key factors, namely, (1) the level of criticality of

software vulnerability, (2) type of software vendor and (3) type of software, on the

software vendors‘ response time in releasing software patches

Figure 2.4 Key Factors impacting on Response Time

2.16 Conclusion

This chapter firstly provided a context for understanding the background and parent

literatures surrounding software vulnerabilities and software patches by reviewing

the relevant literature. The immediate literature focused on the issues of software

vulnerabilities: software vulnerability classification, software vulnerability

disclosure, software vulnerability disclosure policy and software vendors‘ patching

behaviour. Gaps in the literature are identified in the areas of software vulnerabilities

and software vendors‘ response time in releasing software patches in terms of (1) the

level of criticality, (2) type of software vendor and (3) type of software. There

appears to be no study that focuses on the influences of key factors: (1) the level of

criticality, (2) type of software vendor and (3) type of software, on the response time

in releasing software patches once software vendors have been informed of software

vulnerabilities. The main theoretical support for this study is software security

disclosure theory and the economic model of software security investment. Based on

Level of Criticality of

Software Vulnerability

Type of Software Vendor

1. Open Source Software

Vendors

2. Proprietary Source

Software Vendors

Type of Software

1. Operating System Software

2. Application Software

Response Time

H2

H1

H3

- 55 -

the relevant literature, software security disclosure theory and an economic model of

software security investment as the theoretical lens, a research model is developed

which can contribute a more comprehensive understanding of the relationship

between key factors of software vulnerabilities and their impact on the response time

of software vendors in releasing software patches once informed of software

vulnerabilities. The relationships between the key factors of software vulnerabilities

and response time are developed from the existing literature and are presented as

research hypotheses.

The following chapter (Chapter 3) discusses and justifies the research design and

methodology used to collect and analyse empirical data to test the research model

developed in this chapter.

- 56 -

Chapter 3: Research Design and Methodology

3.1 Introduction

This chapter describes the methodology used to collect and analyse empirical data to

test the research hypotheses proposed in chapter two and developed from the general

research question specified in chapter one. The purpose of this chapter is to describe

and justify the methodology used to answer the main research questions of this study

by testing the research model and research hypotheses presented in the literature

review. This chapter provides justification for the choice of a positivist paradigm,

research design and research strategy, and then discusses how the issues of validity

and reliability are addressed in this study. This chapter is divided into four major

sections. First, it discusses the research purpose and commonly-used strategies for

collecting data to answer research problems. Second, it explores the issues of validity

and reliability of this study. The data collection strategies adopted for this research,

including data sources, sample generation and data measurement approaches are

discussed next. Finally, the appropriate method of data analysis used in this research

is outlined, justifying the choice of multiple regression analysis and the test of

significance in the context of this study.

3.2 Research Paradigm

This study adopts the positivist research paradigm which means the object of this

study is independent of researchers individual beliefs and biases. Knowledge is

discovered and verified through direct observations or measurements of phenomena.

Similarly, the facts are established by the testing of hypotheses developed from the

existing theory through the measurement of observable social realities (Krauss 2005;

Tuli 2011). Flowers (2009) argued that the positivism assumes the knowledge is

valid only if theoretical models can be developed that are generalisable, can explain

cause and effect of relationships, and predict outcomes. Similarly, positivism is

based upon values of reason, truth and validity and there is a focus purely on facts,

gathered through direct observation and experience and measured empirically using

quantitative methods-surveys and experiments and statistical analysis (Eriksson &

Kovalainen 2008; Saunders, Lewis & Thornhill 2009). For this study, the positivist

- 57 -

paradigm is adopted to test the impact of key factors on the software vendors‘

response time in releasing software patches through a series of hypothesised

relationships using quantitative archival data.

3.3 Research Design

The research design provides an overall framework for the research process (Davis

2005; Zikmund 2010). It is designed to guide researchers in their quest to solve the

research problem being studied (Davis 2005). The research design process involves a

series of decisions which need to be answered systematically based upon the context

of the research problem. These decisions need to be made carefully as there are a

number of potential sources of error which may affect the results of the study (Davis

2005). For example, errors may occur during research planning, data collection, data

analysis, or when reporting the results of the study. Thus, the purpose of a research

design is to ensure that the researcher is aware of these potential sources of error and

has planned sufficiently to control or limit errors in the research process, thereby

producing accurate and useful information (Davis 2005). This research uses a

quantitative method to undertake an explanatory investigation of the relationship

between critical levels of software vulnerabilities, open source software vendors

versus proprietary software vendors, operating system software versus application

software and the response time of software vendors in releasing software patches.

The main aspect of this research is designed within a positivist framework. This

means that data are collected in a form that are quantitative, detached and objective

(Leedy & Ormrod 2001). The research design for this study is illustrated in figure

3.1.

- 58 -

 Figure 3.1 Research Design

3.3.1 Research Strategy

Research strategy refers to a plan specifying the methods and procedures for

collecting and analysing the required information (Zikmund 2010). There are five

types of research strategies, experiment, survey, archival analysis, history, and case

study (Yin 2009). Accordingly, the research strategy should be aligned with the goals

and characteristics of the study (Yin 2009).

SecurityFocus

 (Initial population)

OSVDB

(Reduced population)

Review data

Impact of the level of criticality of

software vulnerability on response time

Impact of type of software vendors on response

time
Impact of type of software on response

time

Data Presentation

Data Analysis/ Interpretations

Draw Conclusion

NVD

(Additional information)

Further reduced on the

availability of complete field of

information for data analysis

Secunia

- 59 -

Table 3.1 explains the relevant situations for different research strategies.

Table 3.1 Relevant Situations for Different Research Strategies

Strategy Form of Research Question Requires Control of Behavioural

Events

Focuses on Contemporary

Events

Experiment How, why Yes Yes

Survey Who, what, where, how many,

how much

No Yes

Archival

analysis

Who, what, where, how many,

how much

No Yes/No

History How, why No No

Case study How, why No Yes

Source: (Yin, 1994, p.6)

The purpose of this research is to confirm:

(1) whether the level of criticality of current software vulnerabilities influences

the response time of the software vendor in releasing software patches;

(2) whether the response time of software vendors in releasing software patches

in response to software vulnerabilities is different between open source

software vendor and proprietary source software vendor; and

(3) whether the response time of software vendors in releasing software patches

in response to software vulnerabilities is different between operating system

software and application software.

Archival data analysis strategy is considered to be appropriate for this research

because data are obtained from software vulnerability databases.

The primary approach to the collection of data for this research was to collect

quantitative data concerning software vulnerabilities. Quantitative data were in the

form of archive data based on factual data which already has a pre-established degree

of validity and reliability and goes through rigorous screening processes before being

entered into these software vulnerability databases. By being in close proximity to

the variables being studied, richer data and description can be obtained to improve

the quality of the research results (Yin 2009).

3.3.2 Archival Analysis

Archival analysis refers to a form of the longitudinal observation method where the

researcher examines the accumulated documents. This analysis presents an

- 60 -

opportunity to access potentially rich data that helps to reveal current events, as well

as historical events, and also provide a map of what decisions and actions can be

taken, by whom, how many and where. A great strength of archival analysis lies in

its ability to analyse historical data continually over time. However, a

poorly-maintained database can cause problems. Internal archival and current

documentation do not have this weakness and is useful as a source of summary data,

although it can be difficult to come by if confidential in nature (Insights 2009;

Jankowicz 2005; Yin 2009).

3.4 Data Collection

3.4.1 Data Sources

The data collected to test hypothesised relationships in the proposed research model

are primarily drawn from the software vulnerability database: Open Source

Vulnerability Database (OSVDB), with SecurityFocus database providing the initial

sample population for this study. SecurityFocus cross-references its software

vulnerabilities with the Open Source Vulnerability Database (OSVDB) through the

Bugtraq ID. Moreover, OSVDB provides both definition of software vulnerabilities

and a dictionary of software vulnerabilities (OSVDB 2011b). This dictionary for

each software vulnerability provides a standard identifier number (i.e. osvdb id), a

brief description and references to related software vulnerabilities reports and

advisories. As the data sources of OSVDB are cross referenced with trusted

organizations such as NVD, SecurityFocus, Secunia, Nessus, Snort, Microsoft

Bulletin, Vupen and CERT, the software vulnerabilities input in OSVDB is assumed

to be rigorous, screened and comprehensive. National Vulnerability Database and

Secunia provided additional information needed to conduct data analysis. National

Vulnerability Database (NVD) cross-references its software vulnerability data with

OSVDB through the Common Vulnerabilities Exposures (CVE) catalogue and

Secunia cross-references its software vulnerability data with OSVDB through

Secunia Advisory ID.

This research analyses data fields such as primary software vendor, description of the

software vulnerability, vendor informed date, full disclosure date of software

vulnerability, and software patch release date obtained from OSVDB. The level of

- 61 -

criticality of software vulnerabilities was obtained by using a Common Vulnerability

Scoring System Version 2.0 (CVSS V2), access vector, access complexity,

authentication, confidentiality, integrity, availability and impact type obtained from

National Vulnerability Database (NVD). Similarly, the type of software (Application

software or Operating system software) for each fully disclosed software

vulnerabilities sample constructed for this study is obtained from Secunia, This

research also analyses software vulnerabilities under a standard classification of

software vulnerability types provided by Common Weakness Enumeration (CWE)

which are cross section mapped by National Vulnerability Database (NVD) with

Common Vulnerability Exposure (CVE) entries (NVD 2011b). The information

contained in these databases is factual information on software vulnerabilities and

table 3.2 shows the data fields from these databases, as well as calculated fields used

in this research. OSVDB track a large number of security problems, but not all

SecurityFocus vulnerabilities meet its criteria to be listed in the OSVDB.

To verify the archival data obtained as a sample population from the OSVDB

database is accurate and complete, software vulnerability data was randomly selected

from the sample population. The OSVDB id (primary key in the OSVDB database)

was used to track and confirm the validity of the data fields in each OSVDB software

vulnerability with the various original data sources. The original data sources for

each OSVDB software vulnerability are cross referenced in the OSVDB database

(such as CVE ID, NVD, Bugtraq ID, Secunia advisory ID etc) and can be

systematically cross checked for accuracy (OSVDB 2011b).

Therefore, for the purpose of empirical analysis, this research has considered only

the software vulnerabilities published in both OSVDB and SecurityFocus and which

can be identified through Bugtraq ID field which is contained in SecurityFocus and

OSVDB; CVE catalogue which is contained in NVD and linked with CVE field in

OSVDB; and Secunia Advisory ID which is contained in Secunia and linked with

Secunia Advisory ID in OSVDB. Additional information such as the classification of

software vulnerabilities as open source or close source are obtained from software

vendor websites for each vendor informed software vulnerability in this study.

- 62 -

Table 3.2 OSVDB Data Fields, NVD Data Fields, Secunia Data Fields plus Fields calculated for this Research

Source: (NVD 2007; OSVDB 2011a)

Data fields taken from Open Source Vulnerability Database (OSVDB) Additional

Information

obtained

from

National

Vulnerability

Database

(NVD)

Additional

Information

obtained from

Vendors Websites

Additional

Information

obtained from

Secunia

Calculated Fields

for this Research

Primary

Vendor

Product

Description of Software Vulnerability Software

Vulnerability

Vendor

informed Date

Patch Release

Date/Solution

Available Date

Criticality

Score

(CVSS V2

Base Score)

Type of Software

Vendor

Type of Software Response time (in

days)

(Patch Release Date

– Software
Vulnerability

Vendor informed
Date)

Open Source

Software Vendor

(1) /

Proprietary Source

Software Vendor

(0)

(Dummy Variable)

Operating System

Software (1) /

Application

Software (0)

(Dummy Variable)

IBM

AIX is prone to an overflow condition. Pioout command fails to

properly sanitize unspecified user-supplied input resulting in a

buffer overflow. With a specially crafted command-line
argument, a local attacker can potentially cause arbitrary code

execution.

29/11/2007

23/01/2008

7.2

1 1 55

Microsoft

Corporation

Microsoft Windows contains a flaw that may allow an attacker to

gain access to unauthorized privileges. The issue is triggered
when the kernel-mode drivers in win32k.sys fail to properly

validate pseudo-handle values in callback parameters during

window creation, allowing a local authenticated attacker to gain
full user privileges.

15/06/2010

10/08/2010

9.3 0 1 56

Apple

computer Inc

Apple Safari WebKit contains a memory corruption flaw related

to WebKit's handling of CSS counters. The issue is triggered
when visiting a maliciously crafted website. This may allow a

context-dependent attacker to execute arbitrary code via a crafted

HTML document.

1/06/2010

28/07/2010

9.3

0 0 57

Adobe Systems
Incorporated

Adobe Flash Player before 9.0.277.0 and 10.x before 10.1.53.64,
and Adobe AIR before 2.0.2.12610, allows attackers to cause a

denial of service (memory corruption) or possibly execute

arbitrary code via vectors related to SWF files, decompression of
embedded JPEG image data, and the DefineBits and other

unspecified tags.

8/06/2010

10/06/2010

9.3

0 0 2

- 63 -

3.4.2 Sample Generation

From January 1
st
 2008 to December 30

th
 2010 the SecurityFocus database reported

21,527 software vulnerabilities. This population is reduced to 11,758 software

vulnerabilities which are also reported in OSVDB database. As discussed in data

sources section (3.4.1), not all the SecurityFocus software vulnerabilities meet the

criteria to be listed in the OSVDB. The population of 11,758 software vulnerabilities

reported in OSVDB is further reduced to 2,714 software vulnerabilities. This

population is reduced on the basis of the availability of a patch solution date from the

software vendors. Then the 2,714 software vulnerabilities obtained from OSVDB

were further reduced to 667 software vulnerabilities that had the complete relevant

information to test the proposed hypothesized relationships in this study. The 667

software vulnerabilities were filtered on the basis of having a vendor informed date

in OSVDB. Moreover, the whole population of 667 software vulnerabilities with

complete information required is taken as a sample size for this study (Anonymous

2010; Bartlett, Kotrlik & Higgins 2001; Cochran 1977; Krejcie & Morgan 1970).

Table 3.3 summarises the number of software vulnerabilities documented by

OSVDB in each year from 2008 to 2010 and the sample generation for this study

(OSVDB 2011a).

Table 3.3 Number of Software Vulnerabilities Documented in OSVDB from

SecurityFocus

Number of software vulnerabilities documented in OSVDB from SecurityFocus

Years Number of Fully Disclosed

Software Vulnerabilities

Fully Disclosed

Software
Vulnerabilities

Solution Available

Population/Sample of Vendor informed Software

Vulnerabilities for this Study with Complete
Information

2008 5,768 574 144

2009 3,690 1199 281

2010 2,300 941 242

Total Data

(From 2008 to
2010)

11,758 2714 667

- 64 -

3.4.3 Measurement

In order to test the proposed hypothesis, the variables defined should be measurable.

The following discussion describes each of the variables in the research model which

were tested in this study.

 Full Disclosure Date of Software Vulnerability is the date on which

software vulnerabilities are fully disclosed to their users; reported to

information security advisories; or reported to software vendors.

 Patch Release Date is the date on which software vendors release patches for

software vulnerabilities.

 Vendor informed Date is the date when a researcher disclosed the

vulnerability to the vendor. This is typically evident when a timeline is

included.

 Response Time is the amount of time taken to release a software patch based

on when the software vendor is informed of a software vulnerability. It is

measured in terms of days (ratio scale) and is calculated as following:

Response time = (Patch Release Date) – (Vendor informed Date)

 The Level of Criticality of Software Vulnerability is measured as an

interval scale from 0 to 10. The level of criticality of software vulnerabilities

is identified from the breach of software security in terms of confidentiality,

integrity and availability. Confidentiality-related vulnerabilities are highly

critical, whereas availability-related vulnerabilities are less critical. The

criticality nature of software vulnerabilities is determined by the Common

Vulnerability Scoring System (CVSS). The CVSS is an open, mature and

well-established definition of the fundamental characteristics of a software

vulnerability (Frei et al. 2006; Jones 2007; Ransbotham 2010). Despite its

shortcomings, it is objectively examined by many interested researchers and

security advisories and uniformly applied to all software vulnerabilities. The

CVSS scoring system used in this study is adopted from Mell, Scarfone and

Romanosky (2007) (see tables 3.4 and 3.5).

- 65 -

 Two types of software vendors—open source and proprietary source software

vendors—are examined and compared in this study. Vendor informed

software vulnerabilities are categorised into one of these two types of

software vendors (open source software vendor, proprietary source software

vendor) based on the descriptions of software vulnerabilities in the OSVDB

database. A binary variable is used to measure differences between these two

types of software vendors in relation to their response time in releasing

patches for software vulnerabilities.

 Vendor informed software vulnerabilities will also be classified into one of

these two types of software (operating system software and application

software) in this study. A binary variable will be used to measure the

difference between these two types of software in relation to the response

time of software vendors in releasing patches for software vulnerabilities.

Table 3.4 Criticality Measurement of Software Vulnerabilities

Rating method listing

ID Description Possible impact metrics

cases

Qualitative

level

Impact

score

1 Each of confidentiality, integrity, and availability
properties has a ‗complete‘ loss

[C:C/I:C/A:C] High

(7.0-

10.0)
2 One of confidentiality, integrity and availability

properties has a ‗partial‘ loss. The other two have a

‗complete‘ loss

[C:P/I:C/A:C],[C:C/I:P/A:C],

[C:C/I:C/A:P]

High

3 One of confidentiality, integrity and availability

properties has a ‗none‘ loss. The other two have a

‗complete‘ loss

[C:N/I:C/A:C],[C:C/I:N/A:C],

[C:C/I:C/A:N]

High

4 One of confidentiality, integrity and availability
properties has a ‗complete‘ loss. The other two have a

partial loss

[C:P/I:P/A:P],[C:P/I:C/A:P],
[C:P/I:P/A:C]

High

5 One of confidentiality, integrity and availability
properties has a ‗complete‘ loss. One of them has a

‗partial‘ loss and one has a ‗none‘ loss

[C:C/I:P/A:N],[C:C/I:N/A:P],
[C:P/I:C/A:N],

[C:P/I:N/A:C],[C:N/I:C/A:P],

[C:N/I:P/A:C]

Medium

(4.0-6.9) 6 One of confidentiality, integrity and availability

properties has a ‗complete‘ loss. The other two have a

‗none‘ loss

[C:C/I:N/A:N],[C:N/I:C/A:N],
[C:N/I:N/A:C]

Medium

7 Each of confidentiality, integrity and availability
properties has a ‗partial‘ loss

[C:P/I:P/A:P] Medium

8 One of confidentiality, integrity and availability

properties has a ‗none‘ loss. The other two have a ‗none‘
loss

[C:N/I:P/A:P],[C:P/I:N/A:P],

[C:P/I:P/A:N]

Low

(0.0-3.9)

9 One of confidentiality, integrity and availability

properties has a ‗partial‘ loss. The other two have a

‗none‘ loss

[C:P/I:N/A:N],[C:N/I:P/A:N],

[C:N/I:N/A:P]

Low

10 Each of confidentiality, integrity and availability

properties has a ‗none‘ loss

[C:N/I:N/A:N] Low

Source adapted from: (Liu et al. 2011; Mell et al. 2007; NVD 2007)

- 66 -

Table 3.5 Software Vulnerability Criticality Metrics

Metrics of scoring method

Exploitable metric Metric value Quantitative score

Access vector (AV) Local (L)/ Adjacent network (A)/ Network (N) 0.395/0.645/1.0

Access complexity (AC) High (H)/ Medium (M)/ Low (L) 0.35/0.61/0.71

Authentication (Au) None (N)/ Single (S)/ Multiple (M) 0.704/0.56/0.45

Source adapted from: (Liu et al. 2011; Mell et al. 2007; NVD 2007)

3.5 Data Analysis

This section provides the justification for the statistical methods used to analyse the

empirical data in this study. To begin with, a discussion of the descriptive statistics is

provided, including the test for normality of the relevant variables. This is followed

by a discussion of the reliability and validity of data. Then the appropriateness of the

statistical tests used for testing the research model is discussed. Finally, the level of

significance used in testing the research hypotheses is reviewed.

3.5.1 Descriptive Statistics and the Normality of the Raw Data

Descriptive statistics were used to summarise patterns in the responses (Vaus 2002).

Descriptive statistics were also used to confirm the normality of the raw data. As a

requirement for conducting any multivariate data analysis, the data needs to be

representative of a normal distribution (Cooper & Emory 1995; Davis 2005; Hair,

Black & Babin 2010; Zikmund 2010). The following section provides an overview

of the descriptive statistics used to determine the shape of the distribution of the

archive data.

The mean and standard deviation measures are used to determine the centre and the

spread of the distribution of data. Cooper and Emory (1995) advised that visual

representations (graphs), which are superior to numerical representations of the data,

were used to discover the shape of the distribution of data. Moreover, the shape of

the spread of data was measured by skewness and kurtosis. Skewness indicates

whether there is a substantial departure from a normal distribution in the data (Moore

2009). That is, the data is collected to one side of mean, rather than symmetrically

distributed about the mean. Kurtosis indicates the peakedness or flatness of a

- 67 -

distribution (Cooper et al. 1995; Hair et al. 2010).

Tests for skewness and kurtosis were used to determine outliers within the data set.

Outliers are extreme cases within the data that lie outside the normal range of the

data set (Hair et al. 2010; Moore 2009; Zikmund 2010). Outliers were retained to

ensure the generalisability of the study, except in cases where there was sufficient

evidence to suggest that the outlier does not provide an accurate representation of the

target population.

3.5.2 Reliability and Validity of Data

The archival data used in this study is factual data which already has a pre-

established degree of validity and reliability (MacCallum 1998; McBurney 2001).

The SecurityFocus database, OSVDB database and NVD database are the main

archival data sources for this study. The provenance of these software vulnerability

databases can be checked as this archival data is published on the Internet and open

to scrutiny by organisations and the general public. All information relating to

software vulnerabilities goes through a rigorous screening process before being

entered into these databases. These software vulnerability data have been proven to

be reliable and valid in a number of previous empirical studies published in

information systems research journals such as Information Systems Research,

Information Systems Frontiers, Management Science, and Information Economics

and Policy (Arora et al. 2006a; Arora et al. 2010b; Arora et al. 2010a; Li et al. 2007).

3.5.3 Hypothesis Testing

In conducting hypothesis testing there are three important decisions that need to be

made: (1) the type of statistical test that will be used; (2) the appropriateness of that

statistical test; and (3) the level of significance which is considered to be appropriate

(Cooper et al. 1995). For this study, multiple regression analysis (MRA) was

considered the most appropriate for testing the associations between type of software

vendor, type of software and the level of the criticality of software vulnerability

(independent variables) and the response time (dependent variable). The acceptable

level of significance for rejecting the null hypothesis was determined by convention

- 68 -

to be five percent. The following sections discuss and justify the use of multiple

regression analysis and tests of significance within the context of this study.

Multiple Regression Analysis (MRA)

Regression is a statistical technique used to measure the linear association between a

dependent and independent variables (Davis 2005; Moore 2009; Zikmund 2010).

In this study, vendor informed software vulnerabilities are used as the unit of

analysis and multiple regression extends the concept of regression to allow the

simultaneous investigation of a set of independent variables (type of software

vendor, type of software and the level of criticality of software vulnerability) upon a

single dependent variable (response time).

There are certain assumptions of MRA that need to be met to improve the accuracy

of the results, namely: normal distribution of data, and multi-collinearity (Osbourne

& Waters 2002), as explained below:

 Normal distribution of the level of criticality software vulnerabilities and

response time of software vendors in releasing patches will be verified by

producing the descriptive statistics. Normal Q-Q plot, box plot and histogram

can also be used to verify these variables and are representative of a normal

distribution. If normal distribution does not exist, data transformation can be

undertaken to modify the data because normality is a condition of MRA

(Osbourne et al. 2002).

 Correlations between the independent variables will be analysed to determine

whether there are any multi-collinearity problems. This will determine if

there is a strong correlation between two or more predictors in the regression

model. According to Nugroho and Sampurno (2010), if collinearity level is

above 0.7 or, according to Field (2009), if VIF is more than 2, it is very likely

that a predictor of the outcome will be regarded as insignificant and rejected

from the model.

- 69 -

The following regression model is assumed as the model for this study:

A dependent variable is the response time. The independent variables are type of

software vendor (Open source vendor, Proprietary source vendor); the type of

software (Operating system software, Application software); and level of criticality

of software vulnerability. Additionally, b1, b2 and b3 are the slope (Beta coefficient)

for type of software vendor, the type of software and level of criticality of software

vulnerability respectively.

The significance of each variable with response time in patching software

vulnerability is tested using the t-test with the null hypothesis (H0) and alternative

hypotheses (Ha1, Ha2, Ha3) as follows:

H0: b0 = 0

Ha1: b1 ≠ 0

Ha2: b2 ≠ 0

Ha3: b3 ≠ 0

H0 is rejected if t-calculated is less than –tn, α/2 or more than tn, α/2. Here, tn, α/2 is

the tabulated value of t-statistics with n-degrees of freedom and α-level of

b3

b1

b2

Level of Criticality of

Software Vulnerability

Type of Software Vendor

1. Open Source Software

Vendors

2. Proprietary Source

Software Vendors

Type of Software

1. Operating System Software

2. Application Software

 Response Time

Figure 3.2 Multiple Regression Model for this Study

- 70 -

significance of a two-tailed distribution. Alternatively, if the calculated t-statistics

lies within the range of the tabulated value, then H0 is accepted.

Tests of significance

After determining the acceptance and rejection of null hypothesis, it is necessary to

test the fitted regression for reality and linearity. This is done by the analysis of

variance with the determination of the squared correlation coefficient (r
2
), which is

the ratio of the sum of squares accounted for by regression (QR) to that accounted for

by total (QT) as follows (Kumar 2010):

r
2

= QR/ QT

Where QR = [ΣY(X-XAV)]2/ Σ(X-XAV)2

 QT = ΣY
2
- (ΣY)

2
/n

Here,

 X= independent variable; Y= dependent variable

n= sample size; XAV = average of X

According to Chaulagain (2006, p. 33) there are two kinds of significance—practical

and statistical. If the regression is not practically significant, it is of little use to test

its statistical significance. If, however, it is practically significant, then a test of the

hypothesis must be made in order to test for statistical significance. Practical

significance is measured by the squared correlation coefficient, r2. A larger

correlation coefficient indicates a better fit of the regression equation. If r
2
< 0.25,

then the regression is very doubtful for practical use and a further test for statistical

significance is meaningless (ibid). But, if r
2
> 0.25, then the regression should be

tested further for statistical significance. Statistical significance is tested by

estimating the error in the regression equation (Anderson, Sweeney & Williams

2010):

y= b0+ b1, b2, b3 x+ e

- 71 -

Where,

e = error in estimating the regression equation.

The level of significance used to test the null hypothesis indicates the probability at

which the results will be accepted or rejected based upon chance. The

commonly-accepted level of significance for rejecting the null hypothesis is five

percent (Davis 2005; Zikmund 2010). This study follows conventional hypotheses.

However, bearing this mind, it is important to consider the statistical significance.

3.6 Conclusion

This chapter described the main research methodology used in the study. The overall

research design adopted quantitative research methods using archival data. A brief

justification was provided for the appropriateness of archival data analysis in this

study, followed by a detailed description of the process of data collection from the

four predominant databases. The total sample population of vendor informed

software vulnerabilities was generated from 2008 to 2010 archival data. Data

analysis included descriptive analysis and multiple regression analysis. Descriptive

analysis tests the normality, linearity and homoscedasticity; and multiple regression

analysis tests the relationship between dependent and independent variables

established as hypotheses for this proposed study. The following chapter provides

detailed results of the data analysis.

- 72 -

Chapter 4: Data Analysis

4.1 Introduction

The purpose of this chapter is to analyse and discuss the results of descriptive

statistics and multiple regression analysis. This chapter is organized in the following

way: First, it discusses the results of descriptive statistics in relation to the

characteristics of each of the variables used in this study. Second, it discusses the

results of testing the proposed research model using multiple regression analysis.

Finally, this chapter discusses the hypothesised relationships in the proposed research

model in relation to the existing literature and concludes by summarising the main

findings from the descriptive and multivariate statistical data analysis.

4.2 Descriptive Statistics of Key Variables in the Proposed Research

This section presents and discusses the results of the descriptive statistics (mean,

standard deviations, and correlations) for the explanatory variables used in the

proposed research model for this study. As discussed in chapter 3, the total

population/sample size for this study is 667 software vulnerabilities. On the basis of

this population/sample size, each of the variables is discussed in turn in relation to

the results of descriptive statistical analyses.

4.2.1 Type of Software Vendor

Type of software vendor is an independent variable and measured as a binary

variable. Open source software vendors are coded as 1, with proprietary software

vendors coded as the reference category of 0.

Table 4.1 presents the distribution for proprietary source software vendors and open

source software vendors across the total population of 667 software vulnerabilities.

Table 4.1 shows that 418 (62.7%) software vulnerabilities in the total sample

population are in proprietary source vendor software and 249 (37.3%) software

vulnerabilities are in open source vendor software.

- 73 -

Table 4.1 Distribution of Software Vulnerabilities by Type of Software Vendor

Type of Software Vendor Frequency Percent Cumulative Percentage

Proprietary Source Software Vendor 418 62.7 62.7

Open Source Software Vendor 249 37.3 100.0

Total 667 100.0

Top 12 Software Vendors and Informed Software Vulnerabilities (from 2008 to

2010)

Figure 4.1 presents the top 12 software vendors in the total sample population of

software vulnerabilities for this study and their proportion of informed software

vulnerabilities from 2008 to 2010.

Figure 4.1 Top 12 Software Vendors by Number of Software Vulnerabilities in this

Study (from 2008 to 2010)

(Source: developed for this research)

The top 12 software vendors were selected on the basis that the numbers of software

vulnerabilities informed to the software vendors were 10 or above in the sample

population used for this research. The reason for choosing 12 software vendors is

that more than half (341) informed software vulnerabilities from the total sample

population of 667 are reported for these software vendors. Microsoft Corporation has

the highest number of informed software vulnerabilities, numbering 60; followed by

- 74 -

Adobe Systems Incorporated and Apple Computer Inc with 49 each respectively.

Cisco System Inc has the lowest number (10) of informed software vulnerabilities in

these top 12 software vendors. Among these top 12 software vendors, 10 software

vendors are proprietary source and 2 are open source. This indicates that most of

these software vendors with the highest number of informed software vulnerabilities

are proprietary source software vendors in the total sample population for this study.

Types of Software Vulnerabilities and Their Proportion

Figure 4.2 presents a pie chart of 21 different types of software vulnerabilities

identified in the total sample population of 667 software vulnerabilities from 2008 to

2010 for this study.

Figure 4.2 Types of Software Vulnerabilities by Percentage Terms in this Study

(Source: developed for this research)

Figure 4.2 shows that buffer error is the most common software vulnerability (30%)

in the total sample population of 667 software vulnerabilities, followed by cross site

scripting (XSS) (17%), numeric errors and resource management errors (7%), SQL

injection, path traversal, input validation, code injection (6%), insufficient

- 75 -

information and permission, privileges and access control (4%), authentication issues

(2%), and CSRF, other design errors and OS command injection (1%). The

following software vulnerabilities configuration, credentials management,

cryptographic issues, format string vulnerability and link following had a less than

(1%) occurrence in the total sample population of 667 for this study.

Type of Software Vulnerability across Software Vendor Type

Table 4.2 shows the distribution of the 21 most commonly identified types of

software vulnerabilities across proprietary source software vendors and open source

software vendors.

Table 4.2 Types of Software Vulnerability across Software Vendor Type

Types of Software Vulnerability * Software Vendor Type

Types of Software Vulnerability

Software Vendor Type

Total

Proprietary Source Software

Vendor

Open Source Software

Vendor

 Authentication Issues 6 (1.4%) 5 (2.0%) 11 (1.6%)

Buffer Errors 160 (38.3%) 37 (14.9%) 197 (29.5%)

Code Injection 36 (8.6%) 5 (2.0%) 41 (6.1%)

Configuration 0 (0.0%) 1 (0.4%) 1 (0.1%)

Credentials Management 2 (0.5%) 0 (0.0%) 2 (0.3%)

Cryptographic Issues 2 (0.5%) 1 (0.4%) 3 (0.4%)

CSRF 8 (1.9%) 0 (0.0%) 8 (1.2%)

Design Errors 3 (0.7%) 1 (0.4%) 4 (0.6%)

Format String Vulnerability 2 (0.5%) 0 (0.0%) 2 (0.3%)

Information Leak/Disclosure 8 (1.9%) 1 (0.4%) 9 (1.3%)

Input Validation 29 (6.9%) 11 (4.4%) 40 (6.0%)

Insufficient Information 9 (2.2%) 15 (6.0%) 24 (3.6%)

Link Following 0 (0.0%) 1 (0.4%) 1 (0.1%)

Numeric Errors 30 (7.2%) 19 (7.6%) 49 (7.3%)

OS Command Injections 4 (1.0%) 0 (0.0%) 4 (0.6%)

Other 4 (1.0%) 4 (1.6%) 8 (1.2%)

Path Traversal 12 (2.9%) 25 (10.0%) 37 (5.5%)

Permissions, Privileges, and Access Control 18 (4.3%) 8 (3.2%) 26 (3.9%)

Resource Management Errors 35 (8.4%) 10 (4.0%) 45 (6.7%)

SQL Injection 8 (1.9%) 31 (12.4%) 39 (5.8%)

XSS 42 (10.0%) 74 (29.7%) 116 (17.4%)

Total 418 249 667

Buffer errors, Cross Site Scripting (XSS), code injection, input validation, numeric

errors, resource management errors and SQL injection are the most common

software vulnerabilities in both types of software vendors.

Although distribution of software vulnerabilities in open source software vendors

and proprietary source software vendors is not equal, from table 4.2 it can be

established that proprietary source software vendors have a higher occurrence of

software vulnerability buffer errors (38.28 %) compared to open source software

vendors (14.86 %). Similarly, proprietary source software vendors have a higher

- 76 -

occurrence of the following software vulnerabilities: code injection (8.61 %),

resource management errors (8.37 %) and input validation (6.94 %), compared to

open source software vendors of code injection (2.01 %), resource management

errors (4.02 %), and input validation (4.42 %). In contrast, open source software

vendors have a higher occurrence of Cross Site Scripting (XSS) (29.72 %) compared

to proprietary source software vendors (10.05 %).

Likewise, open source software vendors have a higher occurrence of the following

software vulnerabilities: SQL injection (12.45 %), path traversal (10.04 %) and

insufficient information (6.02 %), compared to proprietary source software vendors

with SQL injection (1.91 %), path traversal (2.87 %) and insufficient information

(2.15 %). The software vulnerability numeric errors are almost equally distributed in

both types of software vendors with (7.63 %) occurrence in open source software

vendors and (7.18 %) occurrence in proprietary source software vendors.

4.2.2 Type of Software

Type of software is an independent variable in the proposed research model for this

study and is measured as a binary scale. Operating system software is represented

as 1 and application software is represented as the reference category 0. Table 4.3

presents the distribution for operating system software and application software

across the total sample population of 667 software vulnerabilities.

Table 4.3 Distribution of Software Vulnerabilities across Type of Software

Type Of Software Frequency Percent Cumulative Percentage

Application Software 611 91.6 91.6

Operating System Software 56 8.4 100.0

Total 667 100.0

Table 4.3 shows that 56 (8.4%) software vulnerabilities are classified as operating

system software and 611 (91.6%) software vulnerabilities are classified as

application software.

Types of Software Vulnerability across Software Type

Operating system software and application software are affected by different types of

software vulnerabilities (Telang et al. 2007). Table 4.4 shows how both operating

- 77 -

system software and application software are affected proportionately by the 21 most

common types of software vulnerabilities in the total sample population of 667

software vulnerabilities in this study (NVD 2011a; OVAL 2011).

Table 4.4 Types of Software Vulnerability across Software Type

Types of Software Vulnerability * Software Type

Types of Software Vulnerability
Software Type

Total Application Software Operating System Software

 Authentication Issues 11 (1.8%) 0 (0.00%) 11 (1.6%)

Buffer Errors 178 (29.1%) 19 (33.9%) 197 (29.5%)

Code Injection 31 (5.1%) 10 (17.9%) 41 (6.1%)

Configuration 1 (0.2%) 0 (0.0%) 1 (0.1%)

Credentials Management 2 (0.3%) 0 (0.0%) 2 (0.3%)

Cryptographic Issues 3 (0.5%) 0 (0.0%) 3 (0.4%)

CSRF 5 (0.8%) 3 (5.4%) 8 (1.2%)

Design Errors 4 (0.7%) 0 (0.0%) 4 (0.6%)

Format String Vulnerability 2 (0.3%) 0 (0.0%) 2 (0.3%)

Information Leak/Disclosure 9 (1.5%) 0 (0.0%) 9 (1.3%)

Input Validation 39 (6.4%) 1 (1.8%) 40 (6.0%)

Insufficient Information 21 (3.4%) 3 (5.4%) 24 (3.6%)

Link Following 0 (0.0%) 1 (1.8%) 1 (0.1%)

Numeric Errors 42 (6.9%) 7 (12.5%) 49 (7.3%)

OS Command Injections 3 (0.5%) 1 (1.8%) 4 (0.6%)

Other 7 (1.1%) 1 (1.8%) 8 (1.2%)

Path Traversal 37 (6.1%) 0 (0.0%) 37 (5.5%)

Permissions, Privileges, and Access Control 22 (3.6%) 4 (7.1%) 26 (3.9%)

Resource Management Errors 39 (6.4%) 6 (10.7%) 45 (6.7%)

SQL Injection 39 (6.4%) 0 (0.0%) 39 (5.8%)

XSS 116 (19.0%) 0 (0.0%) 116 (17.4%)

Total 611 (100%) 56 (100%) 667 (100%)

Buffer errors, code injection, CSRF and input validation are the most common

software vulnerabilities in these two different software types.

Table 4.4 shows that the distribution of these different software vulnerabilities is not

equal across application software and operating system software. From the table it

can be identified that cross site scripting, SQL injection and path traversal have the

highest occurrence in application software by (19%), (6.4%) and (6.1%) respectively,

with no occurrence in operating system software in the total sample population for

this study. Similarly, application software has a higher occurrence of the software

vulnerability input validation (6.4 %) compared to occurrence of input validation

(1.8%) in operating system software.

In contrast, it can be identified that operating system software has the highest

occurrence of the following software vulnerabilities: buffer errors (33.9%), code

injection (17.9%), numeric errors (12.5%), resource management errors (10.7%) and

CSRF (5.4%) compared to application software with the occurrence of buffer errors

- 78 -

(29.1%), code injection (5.1%), numeric errors (6.9%), resource management errors

(6.4%) and CSRF (0.8%).

4.2.3 The Level of Criticality of Software Vulnerability

The level of criticality of software vulnerabilities is an independent variable and

measured as an interval scale from 0 to 10. Table 4.5 presents the distribution of the

level of criticality of software vulnerabilities across the sample population of 667

software vulnerabilities.

Table 4.5 Distribution of Software Vulnerabilities related to the Level of Criticality

Categories

Categorization Of Level Of Criticality Frequency Percent Cumulative Percentage

Very Low (0-2) 0 0 0

Low (2.1- 4) 14 2.1 2.1

Medium (4.1 – 6) 195 29.2 31.3

High (6.1 – 8) 139 20.8 52.1

Very High (8.1- 10) 319 47.8 100

Total 667 100.0

As shown in table 4.5, the level of criticality of software vulnerabilities is categorised

into five classes: very low (0-2), low (2.1 to 4), medium (4.1 to 6), high (6.1 to 8)

and very high (8.1 to 10). In the total sample population of 667 software

vulnerabilities there are no software vulnerabilities which are considered to have a

very low level of criticality. However, in the total sample population of 667 software

vulnerabilities 68% are of a high or a very high level of criticality, 29% are a

medium level of criticality and 2% are a low level of criticality.

Table 4.6 summarizes the results of the descriptive statistics for the level of

criticality of software vulnerability.

Table 4.6 Descriptive Statistics of the Level of Criticality of Software Vulnerability

Descriptive Statistics

Categorization of Level of Criticality

N Valid 667

Missing 0

Mean 4.1439

Median 4.0000

Std. Deviation .91384

Skewness -.454

Kurtosis -1.273

Table 4.6 shows that for the variable level of criticality the Mean is 4.14, Median is

4.00 and the Standard Deviation is 0.91384 in the total sample population of 667 of

- 79 -

software vulnerabilities. This indicates that this variable is considered to be normally

distributed because mean and median are almost the same. The standard deviation is

less than 1 which means the variable, the level of criticality of software vulnerability,

is closely spread. Similarly, skewness and kurtosis present the shape of the

distribution for the variable, the level of criticality of software vulnerability. If the

value of skewness and kurtosis are zero, the observed distribution is exactly normal.

From table 4.6, it can be observed that the value of skewness -0.45 and the value of

kurtosis -1.27 are close to 0, which represents a normal distribution. However, the

negative value of skewness indicated that the distribution for the variable, the level

of criticality of software vulnerability, is negatively skewed and the negative value of

kurtosis indicated that the distribution for the variable, the level of criticality of

software vulnerability, is flatter.

Figure 4.3 box plot graph and figure 4.4 Normal Q-Q plot graph indicate that the

variable, the level of criticality of software vulnerabilities, is representative of a

normal distribution. Figure 4.3 shows that the distribution of the variable, the level of

criticality, is normal because the horizontal line in the box known as median line is in

the middle of the box. Similarly, figure 4.4 shows that the distribution of the

variable, the level of criticality, is normal because the data points are on or around

the straight line.

Figure 4.3 Box Plot for the Level of Criticality of Software Vulnerability

- 80 -

Figure 4.4 Normal Q-Q Plots for the Level of Criticality of Software Vulnerability

Level of Criticality across Software Vendor Type

Table 4.7 shows distribution of the different levels of criticality for software

vulnerabilities across the type of software vendor.

Table 4.7 Level of Criticality across Software Vendor Type

Level of Criticality * Software Vendor Type

Level of Criticality

Software Vendor Type

Total

Proprietary Source Software Vendor Open Source Software Vendor

 Low 6 (1.4%) 8 (3.2%) 14 (2.1%)

Medium 75 (17.9%) 120 (48.2%) 195 (29.2%)

High 75 (17.9%) 64 (25.7%) 139 (20.8%)

Very High 262 (62.7%) 57 (22.9%) 319 (47.8%)

Total 418 (100%) 249 (100%) 667 (100%)

Table 4.7 shows that in the total sample population, a very high level of criticality for

software vulnerabilities has greater representation for proprietary source software

vendors (62.7%) compared to open source software vendors (22.9%). In contrast,

high, medium and low level of criticality of software vulnerabilities have higher

representation for open source software vendors (25.7%, 48.2% and 3.2%

respectively) compared to proprietary source software vendors (with 17.9%, 17.9%

and 1.4 respectively).

- 81 -

Table 4.8 shows the variations of the mean values of the level of criticality across

software vendor type.

Table 4.8 Variations of Means for Level of Criticality of Software Vulnerabilities

across Software Vendor Type

Descriptives

Level of Criticality

N Mean

Std.

Deviation

Std.

Error

95% Confidence Interval for

Mean

Minimum Maximum Lower Bound Upper Bound

Proprietary Source Software
vendor

418 4.4187 .83067 .04063 4.3388 4.4985 2.00 5.00

Open Source Software Vendor 249 3.6827 .86121 .05458 3.5752 3.7902 2.00 5.00

Total 667 4.1439 .91384 .03538 4.0745 4.2134 2.00 5.00

As shown in table 4.8, the mean value of level of criticality of software vulnerability

for open source software vendors is 3.6827; and for proprietary source software

vendors is 4.4187. These mean values indicate that software vulnerabilities for open

source software vendors are less critical overall than software vulnerabilities for

proprietary source software vendors in the total sample population for this study.

Table 4.9 shows the results of a one-way ANOVA analysis of the level of criticality

of software vulnerability across type of software vendor.

Table 4.9 ANOVA Analysis of Level of Criticality of Software Vulnerability across

Type of Software Vendor

ANOVA

Level of Criticality

 Sum of Squares df Mean Square F Sig.

Between Groups 84.513 1 84.513 119.153 .000

Within Groups 471.670 665 .709

Total 556.183 666

Table 4.9 shows that there is a statistically significant difference between open

source software vendor and proprietary source software vendor as determined by

one-way ANOVA (F (1,665) = 119.153, p = 0.000 in terms of the level of criticality

of software vulnerabilities.

Level of Criticality across Type of Software

Table 4.10 shows the distribution of different levels of criticality for software

vulnerabilities across the type of software.

- 82 -

Table 4.10 Level of Criticality across Type of Software

Level of Criticality * Software Type

Level of Criticality

Software Type

Total
Application Software

Count/Percentage
Operating System Software

Count/Percentage

 Low 13 (2.1%) 1 (1.8%) 14 (2.1%)

Medium 192 (31.4%) 3 (5.4%) 195 (29.2%)

High 123 (20.1%) 16 (28.6%) 139 (20.8%)

Very High 283 (46.3%) 36 (64.3%) 319 (47.8%)

Total 611 (100%) 56 (100%) 667 (100%)

Table 4.10 shows that high to very high levels of criticality of software

vulnerabilities in the total sample population are more representative in operating

system software (64.3% and 28.6% respectively) compared to application software

(46.3% and 20.1% respectively). In contrast, low level of criticality of software

vulnerabilities in application software (2.1%) compares similarly to operating system

software (1.8%).

Table 4.11 shows the variations of the mean value of the level of criticality across

type of software.

Table 4.11 Variations of Level of Criticality across Type of Software

Descriptives

Level of Criticality

N Mean

Std.

Deviation

Std.

Error

95% Confidence Interval for

Mean

Minimum Maximum Lower Bound Upper Bound

Application Software 611 4.1064 .92336 .03736 4.0330 4.1797 2.00 5.00

Operating System Software 56 4.5536 .68542 .09159 4.3700 4.7371 2.00 5.00

Total 667 4.1439 .91384 .03538 4.0745 4.2134 2.00 5.00

As shown in table 4.11, the mean value of level of criticality of software

vulnerability for operating system software is 4.5536; and for application software is

4.1064. These mean values indicate that the level of criticality of software

vulnerabilities in operating system software is slightly higher than the level of

criticality of software vulnerabilities in application software in the total sample

population for this study.

Table 4.12 shows the results of a one-way ANOVA analysis of the level of criticality

of software vulnerability across type of software.

- 83 -

Table 4.12 ANOVA Analysis of Level of Criticality of Software Vulnerabilities

across Type of Software

ANOVA

Level of Criticality

 Sum of Squares df Mean Square F Sig.

Between Groups 10.259 1 10.259 12.496 .000

Within Groups 545.924 665 .821

Total 556.183 666

Table 4.12 shows that there is a statistically significant difference between operating

system software and application software as determined by one-way ANOVA (F

(1,665) = 12.496, p = 0.000 with the level of criticality of software vulnerability.

Level of Criticality of Software Vulnerabilities across Response Time

Table 4.13 shows the level of criticality of software vulnerabilities across response

time to release patches for vendor informed software vulnerabilities.

Table 4.13 Level of Criticality across Response Time

Level of Criticality * Response Time

Level of

Criticality

Categorization of Response Time

Total

-1500 to 0

Count /

Percentage

1 to 100

Count /

Percentage

101 to 200

Count /

Percentage

201 to 300

Count /

Percentage

301 to 400

Count /

Percentage

401 to 500

Count /

Percentage

501 to 2500

Count /

Percentage

 Low 2 (14.3%) 8 (57.1%) 0 (0.0%) 3 (21.4%) 0 (0.0%) 1 (7.1%) 0 (0.0%) 14 (100.0%)

Medium 17 (8.7%) 147 (75.4%) 18 (9.2%) 7 (3.6%) 1 (0.5%) 3 (1.5%) 2 (1.0%) 195 (100.0%)

High 10 (7.2%) 88 (63.3%) 19 (13.7%) 13 (9.4%) 3 (2.2%) 4 (2.9%) 2 (1.4%) 139 (100.0%)

Very High 9 (2.8%) 134 (42.0%) 101 (31.7%) 30 (9.4%) 14 (4.4%) 7 (2.2%) 24 (7.5%) 319 (100.0%)

Total 38 (5.7%) 377 (56.5%) 138 (20.7%) 53 (7.9%) 18 (2.7%) 15 (2.2%) 28 (4.2%) 667 (100.0%)

Table 4.13 indicates that of 14 software vulnerabilities with a low level of criticality

in the total sample population of 667 software vulnerabilities, 8 (57.1%) had a

software patch released between (1 to 100 days), while 3 (21%) had a software patch

released between (201 to 300 days) and 1 (7%) had a software patch released

between (401 to 500 days). However, 2 (14.3%) low level criticality software

vulnerabilities had software patches released before the vendor informed date, hence,

the response time in days is zero or a negative number of days.

There are 195 medium level criticality software vulnerabilities in the total sample

population of 667 software vulnerabilities for this study. The majority—147

(75.4%)—of medium level criticality software vulnerabilities had a software patch

released between (1 to 100 days). Eighteen (9.2%) medium level criticality software

- 84 -

vulnerabilities had a software patch released between (101 to 200 days), 7 (3.6%)

medium level criticality software vulnerabilities had a software patch released

between (201 to 300 days) and 3 (1.5%) medium level criticality software

vulnerabilities had a software patch released between (401 to 500 days). However,

17 (8.7%) medium level criticality software vulnerabilities had a software patch

released before the vendor informed date.

Similarly, there are 139 high level criticality software vulnerabilities in the total

sample population of 667 vendor informed software vulnerabilities for this study.

The majority of high level criticality software vulnerabilities—88 (63.3%)—had a

software patch released between (1 to 100 days); 19 (13.7%) high level criticality

software vulnerabilities had a software patch released in (101 to 200 days); 13

(9.4%) high level criticality software vulnerabilities had a software patch released

between (201 to 300 days); 3 (2.2%) high level criticality software vulnerabilities

had a software patch released between (301 to 400 days); 4 (2.9%) high level

criticality software vulnerabilities had a software patch released between (401 to 500

days); and 2 (1.4%) very high level criticality software vulnerabilities had a software

patch released between (501 to 2500 days). However, only 10 (8.7%) high level

criticality software vulnerabilities had a software patch released before the vendor

informed date.

Furthermore, there are 319 very high level criticality software vulnerabilities in the

total sample population of 667 software vulnerabilities for this study: 134 (42.0%)

very high level criticality software vulnerabilities had a software patch released

between (1 to 100 days); 101 (31.7%) very high level criticality software

vulnerabilities had a software patch released between (101 to 200 days); 30 (9.4%)

very high level criticality software vulnerabilities had a software patch released

between (201 to 300 days); 14 (4.4%) high level criticality software vulnerabilities

had a software patch released between (301 to 400 days); 7 (2.2%) high level

criticality software vulnerabilities had a software patch released between (401 to 500

days); and 24 (7.5%) very high level criticality software vulnerabilities had a

software patch released between (501 to 2500 days). However, only 9 (2.8%) very

high level criticality software vulnerabilities had a software patch released before the

vendor informed date.

- 85 -

Types of Software Vulnerability across Level of Criticality of Software

Vulnerability

Table 4.14 shows the distribution of types of software vulnerabilities across different

levels of criticality.

Table 4.14 Types of Software Vulnerability across Level of Criticality of Software

Vulnerability

Types of Software Vulnerability * Level of Criticality

Types of Software Vulnerability
Level of Criticality

Total Low Medium High Very High

 Authentication Issues 0 (0%) 4 (2.1%) 4 (2.9%) 3 (0.9%) 11 (1.6%)

Buffer Errors 0 (0%) 4 (2.1%) 20 (14.4%) 173 (54.2%) 197 (29.5%)

Code Injection 0 (0%) 2 (1.0%) 4 (2.9%) 35 (11.0%) 41 (6.1%)

Configuration 0 (0%) 1 (0.5%) 0 (0%) 0 (0%) 1 (0.1%)

Credentials Management 0 (0%) 0 (0%) 2 (1.4%) 0 (0%) 2 (0.3%)

Cryptographic Issues 0 (0%) 2 (1.0%) 0 (0%) 1 (0.3%) 3 (0.4%)

CSRF 0 (0%) 1 (0.5%) 6 (4.3%) 1 (0.3%) 8 (1.2%)

Design Errors 0 (0%) 3 (1.5%) 0 (0%) 1 (0.3%) 4 (0.6%)

Format String Vulnerability 0 (0%) 1 (0.5%) 0 (0%) 1 (0.3%) 2 (0.3%)

Information Leak/Disclosure 1 (7.1%) 6 (3.1%) 2 (1.4%) 0 (0%) 9 (1.3%)

Input Validation 1 (7.1%) 15 (7.7%) 8 (5.8%) 16 (5.0%) 40 (6.0%)

Insufficient Information 1 (7.1%) 5 (2.6%) 8 (5.8%) 10 (3.1%) 24 (3.6%)

Link Following 1 (7.1%) 0 (0%) 0 (0%) 0 (0%) 1 (0.1%)

Numeric Errors 0 (7.1%) 3 (1.5%) 11 (7.9%) 35 (11.0%) 49 (7.3%)

OS Command Injections 0 (7.1%) 0 (0%) 1 (0.9%) 3 (0.9%) 4 (0.6%)

Other 2 (14.3%) 4 (2.1%) 2 (1.4%) 0 (0%) 8 (1.2%)

Path Traversal 1 (7.1%) 12 (6.2%) 21 (15.1%) 3 (0.9%) 37 (5.5%)

Permissions, Privileges, and Access Control 0 (0%) 8 (4.1%) 15 (10.8%) 3 (0.9%) 26 (3.9%)

Resource Management Errors 1 (7.1%) 4 (2.1%) 6 (4.3%) 34 (10.7%) 45 (6.7%)

SQL Injection 0 (0%) 11 (5.6%) 28 (20.1%) 0 (0%) 39 (5.8%)

XSS 6 (42.9%) 109 (55.9%) 1 (0.7%) 0 (0%) 116 (17.4%)

Total 14 (2.1%) 195 (29.2%) 139 (20.8%) 319 (47.8%) 667 (100%)

Buffer errors are the most representative critical software vulnerability in the total

sample population of 667 software vulnerabilities for this study. One hundred and

seventy-three buffer error software vulnerabilities are of a very high level of

criticality, 20 are of a high level of criticality and 4 are of a medium level of

criticality.

Similarly, SQL injection is the second most representative software vulnerability. Of

the 116 SQL injection software vulnerabilities, none are of a very high level of

criticality, 1 has a high level of criticality, 109 have a medium level of criticality and

6 have a low level of criticality. Likewise, numeric errors are the third most

representative software vulnerability. Of 49 numeric errors software vulnerabilities,

35 numeric errors are of a very high level of criticality, 11 are of a high level of

criticality and 3 are of a medium level of criticality.

- 86 -

Similarly, resource management errors are the fourth most representative software

vulnerability. Of the 45 resource management error software vulnerabilities, 34 are

of a very high level of criticality, 6 are of a high level of criticality, 4 are of a

medium level of criticality and 1 is a low level of criticality. Code injection is the

fifth most representative software vulnerability. Of 41 code injection software

vulnerabilities 35 are of a very high level of criticality, 4 are of a high level of

criticality and 2 are of a medium level of criticality.

Similarly, input validation is the sixth most representative software vulnerability. Of

40 input validation software vulnerabilities, 16 are of a very high level of criticality,

8 are of a high level of criticality, 15 are of a medium level of criticality and 1 is of

low level of criticality.

4.2.4 Response Time

The response time is the dependent variable in the proposed research model in this

study. As defined in chapter 1, response time is the amount of time taken to release a

software patch based on when the software vendor is informed of a software

vulnerability.

This variable is measured in days as a ratio scale. Table 4.15 shows the distribution

of response time for the total sample population of 667 software vulnerabilities.

Table 4.15 Distribution of Software Vulnerabilities across Response Time

Response Time

Response days Frequency Percent Cumulative Percent

-1500 to 0 38 5.7 5.7

1 to 100 377 56.5 62.2

101 to 200 138 20.7 82.9

201 to 300 53 7.9 90.9

301 to 400 18 2.7 93.6

401 to 500 15 2.2 95.8

501 to 2500 28 4.2 100.0

Total 667 100.0

In table 4.15 the response time has been categorised into seven different categories

(-1500 to 0, 1 to 100, 101 to 200, 201 to 300, 301 to 400, 401 to 500, 501 to 2500).

In the total sample population of 667 software vulnerabilities for this study, software

vendors had released software patches for 56.5 % software vulnerabilities between 1

to 100 days; and released software patches for 20.7% software vulnerabilities

- 87 -

between 101 to 200 days. Table 4.15 also shows that software vendors released

software patches for 90% software vulnerabilities between 1 to 500 days. However,

there are few instances of the release of software patches for software vulnerabilities

that take less than 1 day (software patch released before the vendor is informed of the

software vulnerability) and more than 500 days.

Table 4.16 summarizes the results of descriptive statistics for the variable response

time in days.

Table 4.16 Descriptive Statistics for the Response Time

Descriptive Statistics

Response Time Statistic Std. Error

Mean 110.55 7.410

95% Confidence Interval for Mean Lower Bound 96.00

Upper Bound 125.10

5% Trimmed Mean 90.28

Median 48.00

Std. Deviation 191.364

Skewness 2.967 .095

Kurtosis 28.814 .189

Table 4.16 shows that for the response time, the mean is 110.55 days, median is

48.00 days and the standard deviation is 191.364 days. Similarly, skewness and

kurtosis are 2.967 and 28.814 respectively, which present the shape of the

distribution of the variable response time. From table 4.16 it can be observed that

there is a large difference between mean and median; there is also a variation

between mean and standard deviation. Likewise, skewness and kurtosis are not close

to zero. This indicates that the distribution of the variable response time is not

representative of a normal distribution (Field 2009; Hair et al. 2010).

Similarly, figure 4.5 normal Q-Q plot and figure 4.6 box plot show that the

distribution of the variable response time is not representative of a normal

distribution. From the normal Q-Q plot, it can be observed that the data points are

highly deviated from the normal line. Likewise, from the box plot it can be observed

that there are many outliers in the data set for the variable response time, which are

illustrated with a circle and an asterisk (*) sign; and, also, median line is not in the

middle of the box in the box plot graph. This also confirms that the variable response

time is not representative of normal distribution.

- 88 -

Figure 4.6 Box Plot of the Response Time

From the above descriptive statistics, normal Q-Q plot and box plot graphs for the

response time indicate that the variable is peaked with severe kurtosis and a number

of outliers, therefore, a natural log transformation is an appropriate technique to

make the variable response time more representative of normal distribution

(McCluskey & Lalkhen 2007).

Figure 4.5 Normal Q-Q Plot of the Response Time

- 89 -

Assumptions for conducting data transformation (Hair et al. 2010) in this study are as

follows:

 to correct violations of the statistical assumptions underlying the multivariate

techniques (Multiple regression analysis) which are normality, linearity and

homoscedasticity; and

 to improve the relationship (correlation) between variables.

Table 4.17 summarizes the descriptive statistics after the transformation of the

variable response time. Table 4.17 shows that the statistical value of the mean is very

close to the median, and the standard deviation (.719) is within 3 times the upper and

lower bound of mean value. Similarly, skewness and kurtosis are very close to zero.

This indicates that the transformed variable response time is now much more

representative of a normal distribution.

Table 4.17 Results of Descriptive Statistics for the Variable Response Time after Log

Transformation

Descriptive Statistics

Log(Response Time) Statistic Std. Error

Mean 1.64 .028

95% Confidence Interval for Mean Lower Bound 1.58

Upper Bound 1.69

5% Trimmed Mean 1.66

Median 1.73

Std. Deviation .719

Skewness -.498 .096

Kurtosis -.416 .191

Figure 4.7 shows a histogram of the variable response time after a natural log

transformation.

- 90 -

Figure 4.7 Frequency Distribution of Log (Response Time)

In figure 4.7, the mean 1.64 and standard deviation 0.719 on the top right corner

shows that the data points (i.e. the variable response time) are distributed very close

to mean. This suggests that the data in the variable response time is much more

representative of normal distribution.

Figure 4.8 shows the box plot of the variable response time after a natural log

transformation.

Figure 4.8 Box plot of Log (Response Time)

- 91 -

In Figure 4.8, the 25
th

, 50
th

 and 75
th

 percentiles are symmetrically arranged in the box

plot. Similarly, the straight line inside the box plot indicates that the median is very

close to mean. This also shows that after a natural log transformation, the variable

response time is much more representative of a normal distribution.

Figure 4.9 shows a normal Q-Q plot of the variable response time after a natural log

transformation.

Figure 4.9 Normal Q-Q Plot of Log (Response Time)

In figure 4.9, the transformation of the variable response time now is close to the

normal straight line which indicates the transformed variable is much closer to a

normal distribution.

Response Time across Software Vendor Type

Table 4.18 shows the distribution of different categories of response time across

software vendor type.

- 92 -

Table 4.18 Response Time across Software Vendor Type

Response Time * Software Vendor Type

Response Time
Software Vendor Type

Total Proprietary Source Software vendor Open Source Software Vendor

 -1500 to 0 12 (2.9%) 26 (10.4%) 38 (5.7%)

1 to 100 183 (43.8%) 194 (77.9%) 377 (56.5%)

101 to 200 116 (27.8%) 22 (8.8%) 138 (20.7%)

201 to 300 50 (12.0%) 3 (1.2%) 53 (7.9%)

301 to 400 17 (4.1%) 1 (0.4%) 18 (2.7%)

401 to 500 13 (3.1%) 2 (0.8%) 15 (2.2%)

501 to 2500 27 (6.5%) 1 (0.4%) 28 (4.2%)

 Total 418 (100%) 249 (100%) 667 (100%)

Table 4.18 shows that 56% of vendor informed software vulnerabilities software

patches were released between (1 to 100 days) in the total sample population of 677

vendor informed software vulnerabilities.

Open source software vendors have a response time of between (1 to 100 days) to

release a software patch for 77.9% of open source vendor informed software

vulnerabilities. Open source software vendors have a response time of between (101

and 200 days) to release a software patch for 8.8% of open source vendor informed

software vulnerabilities. Software vulnerabilities which have software patches

released above 200 days account for only 7 open source vendor informed software

vulnerabilities. Software vulnerabilities which have negative response times for

releasing software patches account for 10.4% of open source vendor informed

software vulnerabilities.

In contrast, proprietary source software vendors have a response time of between (1

to 100 days) to release software patches for 43.8% of proprietary source vendor

informed software vulnerabilities. Proprietary source software vendors have a

response time of between (101 to 200 days) to release a software patch for 27.8% of

proprietary source vendor informed software vulnerabilities. Proprietary source

software vendors have a response time of between (201 to 300 days) to release a

software patch for 12% of proprietary source vendor informed software

vulnerabilities. Software vulnerabilities which have software patches released above

300 days account for only 57 (13.7%) of proprietary source vendor informed

software vulnerabilities. Software vulnerabilities which have negative response

times for releasing software patches account for 2.9% of proprietary source vendor

informed software vulnerabilities.

- 93 -

Overall, open source software vendors have released software patches for 86.7% of

open source vendor informed software vulnerabilities between (1 to 200 days);

compared to proprietary source software vendors who released software patches for

71.6% of proprietary source vendor informed software vulnerabilities between (1 and

200 days). This finding lends support for the notion that software patches for open

source software are released quicker than for proprietary source software.

Response Time across Software Type

Table 4.19 shows the distribution of different categories of response time to release

software patches for vendor informed software vulnerabilities across software type.

Table 4.19 Response Time across Software Type

Response Time * Software Type

Response Time
Software Type

Total Application Software Operating system software

 -1500 to 0 36 (5.9%) 2 (3.6%) 38 (5.7%)

1 to 100 353 (57.8%) 24 (42.9%) 377 (56.5%)

101 to 200 127 (20.8%) 11 (19.6%) 138 (20.7%)

201 to 300 43 (7.0%) 10 (17.9%) 53 (7.9%)

301 to 400 14 (2.3%) 4 (7.1%) 18 (2.7%)

401 to 500 13 (2.1%) 2 (3.6%) 15 (2.2%)

501 to 2500 25 (4.1%) 3 (5.4%) 28 (4.2%)

Total 611 (100%) 56 (100%) 667 (100%)

Table 4.19 shows that while the overall percentages are similar for each category of

response time, the comparative percentages of vendor informed software

vulnerabilities for application software and operating system software are different.

For 57.8% of application software vulnerabilities, software patches are released in 1

to 100 days, 20.8% in 101 to 200 days and 2% in above 500 days; whereas 5.9% of

software patches for application software vulnerabilities have negative response

times as the software patch is released before the vendor informed date (0 to -500

days).

In contrast, 42.9% of operating system related software vulnerabilities software

patches have been released in 1 to 100 days, 19.6% in 101 to 200 days, 17.9% in

201 to 300 days, 7.1% in 301 to 400 days, 3.69% in 401 to 500 days, and 5.4% in

above 500 days. For software patches for operating system software vulnerabilities

3.6% have negative response times as the software patch is released before the

vendor informed date (0 to -500 days).

- 94 -

Overall, for 78.6% of application software vulnerabilities, software patches are

released in 1 to 200 days compared to 62.5% for operating system software

vulnerabilities for which software patches are released in 1 to 200 days. This would

suggest that software patches for application software vulnerabilities are overall

released slightly quicker than software patches for operating system software

vulnerabilities.

Types of Software Vulnerability across Response Time

Table 4.20 shows the distribution of the different types of software vulnerabilities

across the different categories of response time.

Table 4.20 Types of Software Vulnerability across Response Time

Types of Software Vulnerability * Response Time

Types of Software

Vulnerability

Response Time

Total

-1500
 to

 0

1
 to

 100

101
 to

200

201
to

300

301
 to

400

401
to

500

501
 to

2500

 Authentication Issues 1(9.1%) 6 (54.5%) 1 (9.1%) 1 (9.1%) 2 (18.2%) 0 (0.0%) 0 (0.0%) 11 (100.0%)

Buffer Errors 4 (2.0%) 87 (44.2%) 57 (28.9%) 20 (10.2%) 7 (3.6%) 2 (1.0%) 20 (10.2%) 197 (100.0%)

Code Injection 2 (4.9%) 11 (26.8%) 18 (43.9%) 5 (12.2%) 4 (9.8%) 0 (0.0%) 1 (2.4%) 41 (100.0%)

Configuration 0 (0.0%) 1 (100.0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (100.0%)

Credentials Management 0(0.0%) 2 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (100.0%)

Cryptographic Issues 0 (0.0%) 2 (66.7%) 1 (33.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (100.0%)

CSRF 0 (0.0%) 6 (75.0%) 1 (12.5%) 0 (0.0%) 1 (12.5%) 0 (0.0%) 0 (0.0%) 8 (100.0%)

Design Errors 1 (25.0%) 2 (50.0%) 0 (0.0%) 1 (25.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 4 (100.0%)

Format String Vulnerability 0 (0.0%) 2 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (100.0%)

Information Leak/Disclosure 1 (11.1%) 5 (55.6%) 1 (11.1%) 2 (22.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 9 (100.0%)

Input Validation 6 (15.0%) 23 (57.5%) 2 (5.0%) 4 (10.0%) 1 (2.5%) 3 (7.5%) 1 (2.5%) 40 (100.0%)

Insufficient Information 1 (4.2%) 9 (37.5%) 8 (33.3%) 3 (12.5%) 1 (4.2%) 1 (4.2%) 1 (4.2%) 24 (100.0%)

Link Following 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%)

Numeric Errors 3 (6.1%) 26 (53.1%) 12 (24.5%) 2 (4.1%) 1 (2.0%) 3 (6.1%) 2 (4.1%) 49 (100.0%)

OS Command Injections 0 (0.0%) 4 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 4 (100.0%)

Other 2 (25.0%) 4 (50.0%) 0 (0.0%) 2 (25.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 8 (100.0%)

Path Traversal 2 (5.4%) 30 (81.1%) 2 (5.4%) 1 (2.7%) 0 (0.0%) 1 (2.7%) 1 (2.7%) 37 (100.0%)

Permissions, Privileges, and

Access Control

1 (3.8%) 19 (73.1%) 0 (0.0%) 2 (7.7%) 1 (3.8%) 3 (11.5%) 0 (0.0%) 26 (100.0%)

Resource Management Errors 2 (4.4%) 17 (37.8%) 19 (13.8%) 5 (42.2%) 0 (0.0%) 1 (2.2%) 1 (2.2%) 45 (100.0%)

SQL Injection 5 (12.8%) 34 (87.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 39 (100.0%)

XSS 7 (6.0%) 86 (74.1%) 16 (11.6%) 5 (4.3%) 0 (0.0%) 1 (0.9%) 1 (0.9%) 116 (100.0%)

Total 38 (5.7%) 377 (56.5%) 138 (20.7%) 53 (7.9%) 18 (2.7%) 15 (2.2%) 28 (4.2%) 667 (100%)

From the total sample population of 667 (100%) software vulnerabilities, table 4.20

shows that the most commonly released software patches for vendor informed

software vulnerabilities are buffer errors 197 (29.5%), followed by cross site

scripting (XSS) 116 (17.4%), numeric errors 49 (7.3%), resource management errors

45 (6.7%) and code injection 41 (6.1%) across the different response time categories.

- 95 -

Only 4 (2.0%) of buffer errors software vulnerabilities are patched before vendor

informed date and hence have a negative response time; whereas 87 (44.2%) of

buffer errors software vulnerabilities have software patches released in (1 to 100

days), 57 (28.9%) in (101 to 200 days), 20 (10.2%) in (201 to 300 days), 7 (3.6%) in

(301 to 400 days), 2 (1.0%) in (401 to 500 days) and 20 (10.2 %) in (above 501

days).

Similarly, only 7 (6.0%) of cross site scripting (XSS) software vulnerabilities are

patched before vendor informed date and hence have a negative response time;

whereas 86 (74.1%) of cross site scripting (XSS) software vulnerabilities have

software patches released in (1 to 100 days), 16 (11.6%) in (101 to 200 days), 5

(4.3%) in (201 to 300 days), none in (301 to 400 days), 1 (0.9%) in (401 to 500 days)

and 1 (0.9 %) in above 501 days.

Only 3 (6.1%) of numeric software vulnerabilities are patched before vendor

informed date and hence have a negative response time; whereas 26 (53.1%) of

numeric software vulnerabilities have software patches released in (1 to 100 days),

12 (24.5%) in (101 to 200 days), 2 (4.1%) in (201 to 300 days), 1 (2.0%) in (301 to

400 days), 3 (6.1%) in (401 to 500 days) and 2 (4.1%) in above 501 days.

Only 2 (4.4%) of resource management software vulnerabilities are patched before

vendor informed date and hence have a negative response time; whereas 17 (37.8%)

of resource management software vulnerabilities have software patches released in (1

to 100 days), 19 (13.8%) in (101 to 200 days), 5 (42.2%) in (201 to 300 days), none

in (301 to 400 days), 1 (2.2%) in (401 to 500 days) and 1 (2.2 %) in above 501 days.

Only 2 (4.9%) of code injection software vulnerabilities are patched before vendor

informed date and hence have a negative response time; whereas 11 (26.8%) of code

injection software vulnerabilities have software patches released in (1 to 100 days),

18 (43.9%) in (101 to 200 days), 5 (12.2%) in (201 to 300 days), 4 (9.8%) in (301 to

400 days), none in (401 to 500 days) and 1 (2.4 %) in above 501 days.

- 96 -

Types of Software Vulnerabilities across Response Time for Open Source

Vendor informed Software Vulnerabilities

Table 4.21 shows the distribution of different types of software vulnerabilities across

the different categories of response time for open source vendor informed software

vulnerabilities.

Table 4.21 Types of Software Vulnerabilities across Response Time for Open Source

Vendor informed Software Vulnerabilities

Types of Software Vulnerability * Response Time for Open Source Vendor informed Software Vulnerabilities

Types of Software

Vulnerability

Response Time for Open Source Vendor informed Software Vulnerabilities

Total

-1500

to

0

1

to

100

101

to

200

201

 to

300

301

 to

400

401

to

500

501

 to

2500

 Authentication Issues 0 (.0%) 4 (80.0%) 0 (.0%) 0 (.0%) 1 (20.0%) 0 (.0%) 0 (.0%) 5 (100.0%)

Buffer Errors 3 (8.1%) 28 (75.7%) 6 (16.2%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 37 (100.0%)

Code Injection 0 (.0%) 3 (60.0%) 2 (40.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 5 (100.0%)

Configuration 0 (.0%) 1 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 1 (100.0%)

Cryptographic Issues 0 (.0%) 1 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 1 (100.0%)

Design Errors 0 (.0%) 1 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 1 (100.0%)

Information Leak/Disclosure 0 (.0%) 1 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 1 (100.0%)

Input Validation 0 (.0%) 11(100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 11 (100.0%)

Insufficient Information 0 (.0%) 6 (40.0%) 5 (33.3%) 3 (20.0%) 0 (.0%) 0 (.0%) 1 (6.7%) 15 (100.0%)

Link Following 0 (.0%) 1 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 1 (100.0%)

Numeric Errors 3 (15.8%) 12 (63.2%) 3 (15.8%) 0 (.0%) 0 (.0%) 1 (5.3%) 0 (.0%) 19 (100.0%)

Other 1 (25.0%) 3 (75.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 4 (100.0%)

Path Traversal 0 (.0%) 24 (96.0%) 0 (.0%) 0 (.0%) 0 (.0%) 1 (4.0%) 0 (.0%) 25 (100.0%)

Permissions, Privileges, and
Access Control

1 (12.5%) 7 (87.5%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 8 (100.0%)

Resource Management Errors 0 (.0%) 9 (90.0%) 1 (10.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 10 (100.0%)

SQL Injection 0 (.0%) 31(100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 31 (100.0%)

XSS 2 (2.7%) 67 (90.5%) 5 (6.8%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 74 (100.0%)

Total 10 (4.0%) 210(84.3%) 22 (8.8%) 3 (1.2%) 1 (.4%) 2 (.8%) 1 (.4%) 249(100.0%)

In the total sample population of 667 software vulnerabilities, 249 software

vulnerabilities are in the open source software vendor category in this study. Table

4.21 shows the distribution of response times of open source vendor informed

software vulnerabilities. The most common open source vendor informed software

vulnerabilities in the following order are Cross Site Scripting (XSS) 74; followed by

buffer errors 37; SQL injection 31; path traversal 25; and numeric errors 19.

For the 74 Cross Site Scripting (XSS) software vulnerabilities, 97% of software

patches are released in 1 to 200 days. For 37 buffer errors software vulnerabilities,

92% of software patches are released in 1 to 200 days. For 31 SQL injection software

- 97 -

vulnerabilities, 100% of software patches are released in 1 to 100 days. For 25 path

traversal software vulnerabilities, 96% of software patches are released in 1 to 100

days. For 19 numeric errors software vulnerabilities, 79% of software patches are

released in 1 to 200 days.

Overall, for 249 software vulnerabilities in the open source software vendor

category, 84% of software patches are released in 1 to 100 days.

Types of Software Vulnerabilities across Response Time for Proprietary Source

Vendor informed Software Vulnerabilities

Table 4.22 shows the distribution of different types of software vulnerabilities across

the different categories of response time for proprietary source vendor informed

software vulnerabilities.

Table 4.22 Types of Software Vulnerabilities across Response Time for Proprietary

Source Vendor informed Software Vulnerabilities

Types of Software Vulnerability * Response Time for Proprietary Source Vendor informed Software Vulnerabilities

Types of Software

Vulnerability

Response Time for Proprietary Source Vendor informed Software Vulnerabilities

Total

-1500

to
0

1

to
100

101

to
200

201

 to
300

301

to
400

401

to
500

501

 to
 2500

 Authentication Issues 0 (.0%) 3 (50.0%) 1 (16.7%) 1 (16.7%) 1 (16.7%) 0 (.0%) 0 (.0%) 6 (100.0%)

Buffer Errors 0 (.0%) 60 (37.5%) 51 (31.9%) 20(12.5%) 7 (4.4%) 2 (1.3%) 20(12.5%) 160(100.0%)

Code Injection 1 (2.8%) 9 (25.0%) 16 (44.4%) 5 (13.9%) 4 (11.1%) 0 (.0%) 1 (2.8%) 36 (100.0%)

Credentials Management 0 (.0%) 2 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 2 (100.0%)

Cryptographic Issues 0 (.0%) 1 (50.0%) 1 (50.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 2 (100.0%)

CSRF 0 (.0%) 6 (75.0%) 1 (12.5%) 0 (.0%) 1 (12.5%) 0 (.0%) 0 (.0%) 8 (100.0%)

Design Errors 0 (.0%) 2 (66.7%) 0 (.0%) 1 (33.3%) 0 (.0%) 0 (.0%) 0 (.0%) 3 (100.0%)

Format String Vulnerability 0 (.0%) 2 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 2 (100.0%)

Information Leak/Disclosure 0 (.0%) 5 (62.5%) 1 (12.5%) 2 (25.0%) 0 (.0%) 0 (.0%) 0 (.0%) 8 (100.0%)

Input Validation 3 (10.3%) 15 (51.7%) 2 (6.9%) 4 (13.8%) 1 (3.4%) 3 (10.3%) 1 (3.4%) 29 (100.0%)

Insufficient Information 0 (.0%) 4 (44.4%) 3 (33.3%) 0 (.0%) 1 (11.1%) 1 (11.1%) 0 (.0%) 9 (100.0%)

Numeric Errors 0 (.0%) 14 (46.7%) 9 (30.0%) 2 (6.7%) 1 (3.3%) 2 (6.7%) 2 (6.7%) 30 (100.0%)

OS Command Injections 0 (.0%) 4 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 4 (100.0%)

Other 1 (25.0%) 1 (25.0%) 0 (.0%) 2 (50.0%) 0 (.0%) 0 (.0%) 0 (.0%) 4 (100.0%)

Path Traversal 0 (.0%) 8 (66.7%) 2 (16.7%) 1 (8.3%) 0 (.0%) 0 (.0%) 1 (8.3%) 12 (100.0%)

Permissions, Privileges, and

Access Control

0 (.0%) 12 (66.7%) 0 (.0%) 2 (11.1%) 1 (5.6%) 3 (16.7%) 0 (.0%) 18 (100.0%)

Resource Management Errors 1 (2.9%) 9 (25.7%) 18 (51.4%) 5 (14.3%) 0 (.0%) 1 (2.9%) 1 (2.9%) 35 (100.0%)

SQL Injection 0 (.0%) 8 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 8 (100.0%)

XSS 1 (2.4%) 23 (54.8%) 11 (26.2%) 5 (11.9%) 0 (.0%) 1 (2.4%) 1 (2.4%) 42 (100.0%)

Total 7 (1.7%) 188(45.0%) 116(27.8%) 50(12.0%) 17 (4.1%) 13 (3.1%) 27 (6.5%) 418(100.0%)

In the total sample population of 667 software vulnerabilities, 418 software

vulnerabilities are in the proprietary source software vendor category in this study.

Table 4.22 shows the distribution of response times of proprietary source software

vendors for vendor informed software vulnerabilities. The most common proprietary

- 98 -

source software vulnerabilities in the following order are buffer errors 160; followed

by Cross Site Scripting (XSS) 42; code injection 36; resource management errors 35;

and input validation 29.

For the 160 buffer errors software vulnerabilities, the breakup of response times in

releasing software patches shows that 86% of software patches are released in 1 to

400 days. For 42 Cross Site Scripting (XSS) software vulnerabilities, 93% of

software patches are released in 1 to 300 days. For 36 code injection software

vulnerabilities, 94% of software patches are released in 1 to 400 days. For 35

resource management software vulnerabilities, 91% of software patches are released

in 1 to 300 days. For 29 input validation software vulnerabilities, 72% of software

patches are released in 1 to 300 days.

Overall, for the 418 software vulnerabilities in proprietary source software vendor

category, 84% of software patches are released in 1 to 300 days.

Level of Criticality across Response Time

Table 4.23 shows the mean value for the response time across the different levels of

criticality of software vulnerabilities. Table 4.23 shows that software vendors have

the longest response time in releasing a software patch for software vulnerabilities

with a very high level of criticality, and have the shortest response time for software

vulnerabilities with a medium level of criticality. Software vendors have also taken a

longer response time to release a software patch for low level of criticality software

vulnerabilities compared to medium level and high level of criticality software

vulnerabilities.

Table 4.23 Level of Criticality across Response Time

Level of Criticality across Response Time

Level of Criticality
N Mean Std. Deviation Std. Error

95% Confidence Interval for Mean

Minimum Maximum Lower Bound Upper Bound

Low 14 97.31 135.840 36.305 18.88 175.74 0 413

Medium 195 55.42 195.267 13.983 27.84 83.00 -1050 2225

High 139 83.54 138.459 11.744 60.32 106.76 -716 577

Very High 319 156.60 200.107 11.204 134.56 178.64 -697 1173

Total 667 110.55 191.364 7.410 96.00 125.10 -1050 2225

Table 4.23, shows that software vendors‘ response time in releasing software patches

for low level of criticality software vulnerabilities is slower than medium and high

- 99 -

level of criticality of software vulnerabilities. Similarly, software vendors‘ response

time in releasing software patches for medium level of criticality software

vulnerabilities is the quickest and software vendors‘ response time in releasing

software patches for very high level of criticality software vulnerabilities is the

slowest.

4.3 Testing Underlying Regression Assumptions

In order to ensure the assumptions of multiple regression analysis have been met, it is

necessary to check whether the conditions of normality, linearity and

homoscedasticity are met.

Figure 4.10 shows the relationship between the regression standard residuals and the

regression standardised predicted values.

Figure 4.10 Scatter Plot of Regression Standardized Predicted Value

- 100 -

Figure 4.10 shows that there is no clear relationship between the regression standard

residuals and the regression standardised predicted values, which means the scatter

plot of residuals against predicted values is consistent with the assumption of

linearity.

Similarly, figure 4.11 shows the normal P-P plot of regression standardised residuals

and figure 4.12 shows the histogram of regression standardised residual.

Figure 4. 11 Normal P-P Plot of Regression Standardised Residual

- 101 -

Figure 4. 12 Histogram of Regression Standardised Residual

Similarly, figure 4.11 (Normal plot of regression standardised residuals) and figure

4.12 (Histogram of regression standardised residual) for the dependent variable

(Response time) also indicate a relatively normal distribution because the most

observed residual points lie on the normal distribution line and regression standard

residuals appears to follow a bell-shaped curve respectively.

Table 4.24 shows the normality test for the proposed regression model.

Table 4.24 Normality Test for the Proposed Model

Model Summaryb

Model R

R

Square

Adjusted R

Square

Std. Error of the

Estimate

Change Statistics

Durbin-

Watson

R Square

Change

F

Change df1 df2

Sig. F

Change

1 .552a .304 .301 .601 .304 94.253 3 646 .000 1.362

a. Predictors: (Constant), Type of Software, Type of Software Vendor, Level of Criticality

b. Dependent Variable: Log (Response Time)

To meet the assumptions of the normality of the regression model, the residuals

terms should be uncorrelated or independent for any two observations. This

assumption is tested using a Durbin-Watson test. Table 4.24 shows the value of the

Durbin-Watson test for the regression model. The closer the value of the Durbin-

- 102 -

Watson test is to 2, the better the multiple regression models meets the assumptions

of independent errors; and for this proposed regression model the value is 1.362—

which meets the assumption of linearity.

Table 4.25 and table 4.26 below show the residual statistics for any extreme cases

which may be an outlier, < ±2 and <±3 respectively, in the multiple regression

analysis in the proposed model.

Table 4.25 Test for any Extreme Cases which may be an Outlier < ±2

Casewise Diagnosticsb

Case Number Std. Residual Log (Response Time) Predicted Value Residual Status

43 2.207 3 1.26 1.325

59 -3.061 0 1.84 -1.839

60 -3.061 0 1.84 -1.839

105 -2.123 0 1.58 -1.275

109 -2.166 1 2.26 -1.301

130 -2.352 0 1.41 -1.412

134 -2.472 0 1.96 -1.485

135 -2.472 0 1.96 -1.485

136 -3.007 0 1.81 -1.806

154 -3.061 0 1.84 -1.839

159 2.115 3 1.47 1.270

161 2.483 2 .98 1.491

211 2.229 3 1.26 1.339

215 -2.513 0 1.99 -1.509

216 -2.513 0 1.99 -1.509

284 -3.307 0 1.99 -1.987

305 2.062 2 1.00 1.239

425 -2.106 0 1.26 -1.265

465 2.949 3 1.58 1.771

492 -2.106 0 1.26 -1.265

544 -2.560 0 1.84 -1.538

547 -2.806 0 1.99 -1.685

567 2.271 2 1.06 1.364

591 -2.259 0 1.62 -1.357

667 -2.218 0 1.63 -1.332

a. Missing Case

b. Dependent Variable: Log (Response Time

Table 4.26 Test for any Extreme Cases which may be an Outlier <±3

Casewise Diagnosticsa

Case Number Std. Residual Log (Response Time) Predicted Value Residual

59 -3.061 0 1.84 -1.839

60 -3.061 0 1.84 -1.839

136 -3.007 0 1.81 -1.806

154 -3.061 0 1.84 -1.839

284 -3.307 0 1.99 -1.987

a. Dependent Variable: Log (Response Time)

Residual statistics in the multiple regression analysis should also be examined for

any extreme cases. In a normal sample, it is expected that 95% of cases will have

standardized residuals within ±2 (Field 2009). With a sample of 667 software

vulnerabilities, it is reasonable to expect about 5% (33 cases) to have standardised

- 103 -

residuals outside these limits. From the case-wise diagnostics (table 4.25) produced

by SPSS, there are 25 (3.75%) cases that are outside the limits. Therefore, the

research sample is within the expected normal range, with very few outlier cases. In

addition to that, if 99% of cases should have standardised residuals within ±3, it is

expected that only 1% of cases should be outside of these limits. From table 4.26, it

is clear that 5 (0.75 %) cases lie outside the limits. This gives no real cause for

concern of any possible outliers that may influence regression parameters because

none of the cases have a standardised residual greater than 3.5. Therefore, the above

sample appears to confirm what is expected for a reasonably accurate model.

Subsequently, the value of R
2

=0.301 and the level of significant of 0.000 in table

4.24 indicates that the multiple regression model is highly significant and reasonably

accurate as well.

4.4 Multiple Regression Result Analysis

Figure 4.13 shows the multiple regression model that was formulated to test the

proposed hypotheses listed in chapter 2, section 2.15.

In figure 4.13, dependent variable is the response time of a software vendor in

releasing a software patch for a software vulnerability. The independent variables

are:

Figure 4.13 Multiple Regression Model for this Proposed Study

H1 +

H2 +

H3 +

Level of Criticality of

Software Vulnerability

Type of Software Vendor

3. Open Source Software

Vendors

4. Proprietary Source

Software Vendors

Type of Software

1. Operating System Software

2. Application Software

 Response Time

- 104 -

(1) Level of criticality of software vulnerability;

(2) Software vendor type (Open source software vendor, Proprietary source

software vendor); and

(3) The type of software (Operating system software, Application software).

Table 4.27 provides a summary of the results of multiple regression analysis. This

table shows that all three independent variables (the level of criticality, type of

software and type of software vendor) together explain 30 percent of the variance

(R
2
) in the dependent variable (response time). The value of adjusted R

2
is 0.301, F

(3,646) value is 94.253 and the level of significance P<0.000.

Table 4.28 provides the approximate parameters of the multiple regression model

tested. As shown in table 4.27, the overall goodness of fit of the multiple regression

model was assessed using the F-value and was found to be statistically significant at

p<0.05 (F (3,646) = 94.253, p<0.05, R
2 =

 0.304, R
2
adj = 0.301) (Rokkan & Buvik

2003). The goodness of fit of the multiple regression model is very important

because with multiple regression analysis it is mandatory that all the predictors

(constant and independent variables) be taken into account simultaneously to

establish the statistical significance of the overall model (Brown & Churchill 2009).

Table 4.27 Summary of Proposed Model Test

Model Summaryb

Model R
R

Square
Adjusted R

Square
Std. Error of the

Estimate

Change Statistics

R Square
Change

F
Change df1 df2

Sig. F
Change

1 .552a .304 .301 .601 .304 94.253 3 646 .000

a. Predictors: (Constant), Level of Criticality, Type of Software, Type of Software Vendor

b. Dependent Variable: Log (Response Time)

- 105 -

Table 4.28 Coefficients Test of Independent Variables in the Proposed Research

Model

Coefficientsa

Model

Unstandardized

Coefficients

Standardized

Coefficients

t Sig.

Correlations

Collinearity

Statistics

B Std. Error Beta Zero-order Partial Part Tolerance VIF

 Constant (b0) 1.223 .097 12.653 .000

Type of Software Vendor (Svt) -.574 .052 -.387(***) -10.946 .000 -.487 -.396 -.359 .862 1.159

Type of Software (Ts) .211 .086 .082(**) 2.467 .014 .140 .097 .081 .983 1.017

Level of Criticality (Csv) .082 .011 .256(***) 7.191 .000 .410 .272 .236 .852 1.174

a. Dependent Variable: Log (Response Time)

R
2

= 0.304 R
2

adj=0.301 F (3,646) = 94.253

Predictors: (Constant), Type of Software, Type of Software Vendor, Level of

Criticality

Dependent Variable: Log (Response Time)

** = Significant at p<0.05 (two tailed), *** Significant at p<0.01 (one tailed)

Table 4.28 also shows the tolerance value and variance inflation factor (VIF) for

each independent variable used to check for multi-collinearity among the three

independent variables. According to O‘Brien (2007), a value of tolerance less than

0.20 and a value of VIF 10 or above indicates a multi-collinearity problem. However,

in this regression analysis, the value of tolerance for each independent variable is

greater than 0.20 and the value of VIF for each independent variable is smaller than

10. This indicates that there are no multi-collinearity problems in this multiple

regression analysis.

The multiple regression model was tested using F-statistic and found to be significant

in this study (see table 4.27). The value of R
2

adj=0.301 which is interpreted as 30% of

the variance in the response time in days can be explained with the multiple

regression model and the rest of the other variables have an additional impact on the

response time. Similarly, the value of R
2

= 0.304 which is referred to as a coefficient

of multiple determination can also be interpreted as follows (Brown et al. 2009, p.

604): it means that 30% of the variation in the dependent variable, the response time,

is associated with variation in independent variables (type of software vendor, type

of software and the level of the criticality of software vulnerability). Though table

- 106 -

4.28 shows that the type of software adds very little to improving the fitness of the

multiple regression line, it can be inferred that there is an association between the

type of software and the response time in releasing software patches.

Analysis of the relationship between the three independent variables and the

dependent variable from table 4.28 shows:

 A strong positive relationship between the level of criticality of software

vulnerabilities; and the response time indicates that software vendors increase

their response time to release software patches with the increase in the level

of criticality of a software vulnerability at the 0.01 significance level (one–

tailed).

However, for a single positive result it is not possible to show whether the

longer response time for both high and low level of criticality of software

vulnerability and shorter response time for medium level of criticality of

software vulnerability is supported as stated in H1. Therefore, the level of

criticality has split into three levels—low, medium and high—and a multiple

regression model (MRA) was run for each level to determine the actual

relationship between each level of software vulnerability and the software

vendor response time (see Appendix A).

The MRA test for each level of criticality shows that high level and low level

of criticality of software vulnerability have a positive relationship with the

response time. This indicates the longer response time to release software

patches for high level and low level of criticality of software vulnerability at

the 0.01 significance level (one–tailed) for high level; and at the 0.754

insignificance level for low level. The result shows insignificance for low

level of criticality because the number of vendor informed software

vulnerabilities with low level of criticality is only 14 in the total sample

population of 667 software vulnerabilities (see Table 4.5 sub section 4.2.3).

Similarly, the distribution of low level of criticality to the type of software is:

1 for operating system software and 13 for application software (see Table

4.10 sub section 4.2.3). Further, the distribution of low level of criticality to

- 107 -

the type of software vendor is: 6 for proprietary source software vendor and 8

for open source software vendor (see Table 4.7 sub section 4.2.3).

Conversely, medium level of criticality of software vulnerability has a

negative relationship with the response time at the 0.01 significance level

(one–tailed). This indicates a shorter response time to release software

patches for medium level of criticality of software vulnerability (see

Appendix A).

 A strong negative relationship between type of software vendor and the

response time indicates that proprietary source software vendors take a longer

response time to release a software patch than open source software vendors

at the 0.01significance level (one–tailed).

 A positive relationship between type of software and the response time

indicates that releasing patches for application software vulnerabilities is

quicker than releasing patches for operating system software at the 0.05

significance level (two–tailed).

The resulting multiple regression model developed from this research is shown in

figure 4.14:

b3= 0.26

b1= - 0.39

b2= 0.08

Level of Criticality of

Software Vulnerability

Type of Software Vendor

1. Open Source Software

Vendors

2. Proprietary Source

Software Vendors

Type of Software

1. Operating System Software

2. Application Software

 Response Time

Figure 4.14 The Resulting Multiple Regression Model

- 108 -

To summarize the multiple regression model shown in figure 4.14, the individual

beta coefficients corresponding to the predictor variables (independent variables) in

the regression model can be interpreted as the average change in the appropriate

predictor variable while holding the other predictor variables constant or unchanged.

The following interpretations of the individual beta coefficient in relation to the

hypothesis are summarized as follows:

The Level of Criticality of Software Vulnerability

H1: Software vendors release patches for software vulnerabilities with a medium

level of criticality in a shorter response time than software vulnerabilities with low

and high levels of criticality once the vendor has been informed of the software

vulnerability.

b3 = 0.256 indicates that, on average, an increase of 0.256 in the response time can be

expected with a unit increase in the level of criticality of a vendor informed software

vulnerability if type of software vendor and type of software are kept unchanged (i.e.

constant). This indicates that software vendors increase their response time to release

software patches with the increase in the level of criticality of a software

vulnerability.

As per test of H1, MRA was run individually for low, medium and high levels of

criticality of software vulnerabilities and identified beta coefficient for low level (bl =

0.12), medium level (bm = -0.18) and high level (bh = 0.22) of criticality of software

vulnerabilities (see Appendix A for full results of these three MRA).

Where bl is beta coefficient for low level of criticality of software vulnerability, bm is

beta coefficient for medium level of criticality of software vulnerability and bh is beta

coefficient for high level of criticality of software vulnerability.

The beta coefficient for low level of criticality (bl = 0.12) indicates that, on average,

an increase of 0.12 in the response time can be expected with a unit increase in the

level of criticality toward the lowest level of criticality of vendor informed software

vulnerabilities if type of software vendor and type of software are kept unchanged

(i.e. constant).

- 109 -

The beta coefficient for medium level of criticality (bm = -0.18) indicates that, on

average, a decrease of 0.18 in the response time can be expected with a unit decrease

in the level of criticality toward the medium level of criticality of vendor informed

software vulnerabilities if type of software vendor and type of software are kept

unchanged (i.e. constant).

The beta coefficient for high level of criticality (bh = 0.22) indicates that, on average,

an increase of 0.22 in the response time can be expected with a unit increase in the

level of criticality toward the highest level of criticality of vendor informed software

vulnerabilities if type of software vendor and type of software are kept unchanged

(i.e. constant).

Table 4.23 (sub section 4.2.4) shows the variation of response time mean values

across the levels of criticality. Table 4.23 shows that the response time is longer for

software vulnerabilities with very high, high and low level of criticality; and shorter

for software vulnerabilities with a medium level of criticality.

Open Source versus Proprietary Source Software Vendor

H2: Open source software vendors release patches for open source software

vulnerabilities more quickly than proprietary source vendors release patches for

proprietary software vulnerabilities once the software vulnerability has been

informed to the software vendor.

b1 = -0.387 indicates that open source software vendors are 39% quicker in releasing

software patches for vendor informed software vulnerabilities than proprietary source

software vendors if type of software and the level of criticality of software

vulnerability are kept unchanged (i.e. constant).

Table 4.29 shows the average response time to release a software patch for

proprietary source software vendors versus open source software vendors.

- 110 -

Table 4.29 Response Time across Software Vendor Type

The mean value presented in table 4.29 shows that, overall, open source software

vendors have a shorter response time in releasing a software patch compared to

proprietary source software vendors.

Operating System Software versus Application Software

H3: Patches for operating system software vulnerabilities are released more quickly

than patches for application software vulnerabilities once the software vulnerability

has been informed to software vendors.

b2 = 0.082 indicates that patches for operating system software vulnerabilities are

released 8% slower than patches of application software if type of software vendor

and the level of criticality of software vulnerability are kept unchanged (i.e.

constant).

Table 4.30 shows the average response time to release a software patch for

application software versus operating system software.

Table 4.30 Response Time across Software Type

The mean value presented in table 4.30 shows that the response time to release

patches for operating system software vulnerabilities is longer than the response time

to release software patches for application software vulnerabilities for vendor

informed software vulnerabilities.

From table 4.30 it can be noted that the number of operating system software

vulnerabilities is 56 compared to 611 application software vulnerabilities in the total

sample population of 667 software vulnerabilities. The number of operating system

Group Statistics

 Software Vendor Type N Mean Std. Deviation Std. Error Mean

Response Time Proprietary Source Software Vendor 418 155.95 216.860 10.607

Open Source Software vendor 249 34.33 99.799 6.325

Group Statistics

 Software Type N Mean Std. Deviation Std. Error Mean

Response Time Application Software 611 105.64 193.421 7.825

Operating System Software 56 164.10 159.120 21.263

- 111 -

software vulnerabilities is less than 10% of the total sample population. Therefore,

results of the hypothesis test H3 in this study should be treated with caution as the

results may be unreliable.

4.4.1 Discussion of Results of Hypothesis Tests

The beta coefficient, the level of significance and other descriptive statistics

discussed in this chapter determine the acceptance or rejection of hypotheses

investigated in this study. Table 4.31 shows the summary of the hypotheses tested in

the proposed research model.

Table 4.31 Summary of Hypotheses Tests and Results

Hypotheses Results

H1: Software vendors release patches for software vulnerabilities with a medium level of criticality in a
shorter response time than software vulnerabilities with low and high levels of criticality once the

vendor has been informed of the software vulnerability

Supported

H2: Open source software vendors release patches for open source software vulnerabilities more
quickly than proprietary source vendors release patches for proprietary software vulnerabilities once the

software vulnerability has been informed to software vendor

Supported

H3: Patches for operating system software vulnerabilities are released more quickly than patches for
application software vulnerabilities once the software vulnerability has been informed to software

vendor

Not Supported

The Level of Criticality of Software Vulnerability

Hypothesis H1 states:

H1: Software vendors release patches for software vulnerabilities with a medium

level of criticality in a shorter response time than software vulnerabilities with low

and high levels of criticality once the vendor has been informed of the software

vulnerability: (Supported)

The beta coefficient (b3 = 0.256) indicates that, on average, an increase of 0.256 in

the response time can be expected with a unit increase in the level of criticality of a

vendor informed software vulnerability if type of software vendor and type of

software are kept unchanged (i.e. constant).

The beta coefficient for low level of criticality (bl = 0.12) indicates that, on average,

an increase of 0.12 in the response time can be expected with a unit increase in the

level of criticality toward the lowest level of criticality of a vendor informed software

vulnerabilities if type of software vendor and type of software are kept unchanged

- 112 -

(i.e. constant).

The beta coefficient for medium level of criticality (bm = -0.18) indicates that, on

average, a decrease of 0.18 in the response time can be expected with a unit decrease

in the level of criticality toward the medium level of criticality of a vendor informed

software vulnerabilities if type of software vendor and type of software are kept

unchanged (i.e. constant).

The beta coefficient for high level of criticality (bh = 0.22) indicates that, on average,

an increase of 0.22 in the response time can be expected with a unit increase in the

level of criticality toward the highest level of criticality of a vendor informed

software vulnerabilities if type of software vendor and type of software are kept

unchanged (i.e. constant).

Table 4.13 (sub section 4.2.3) shows that 75% of medium level criticality software

vulnerabilities have software patches released in (1 to 100 days), 77% of high level

criticality software vulnerabilities have software patches released in (1 to 200 days),

73% of very high level criticality software vulnerabilities have software patches

released in (1 to 200 days) and 78% of low criticality software vulnerabilities have

software patches released in (1 to 300 days). The results show that software vendors

take a shorter response time to release patches for software vulnerabilities with a

medium level of criticality than for software vulnerabilities with low and high levels

of criticality once the vendor has been informed of the software vulnerabilities.

Similarly, Table 4.23 (sub section 4.2.4) shows that the medium level of criticality of

software vulnerabilities have the shortest response time. From medium to very high

level of criticality of software vulnerability, software vendors are increasing the

response time with the increase in the level of criticality of software vulnerability.

Similarly, for medium level to low level of criticality of software vulnerability,

software vendors are increasing the response time with the decrease in the level of

criticality of software vulnerability. This also suggests that software vendors release

patches for software vulnerabilities with a medium level of criticality in a shorter

response time than software vulnerabilities with low and high levels of criticality

once the vendor has been informed of the software vulnerability.

- 113 -

Similarly, as shown in table 4.13 (sub section 4.2.3) and table 4.23 (sub section

4.2.4), software vendors are taking a shorter response time to release software

patches for the software vulnerabilities with a medium level of criticality compared

with low and high level of criticality software vulnerabilities. This finding can be

explained by the existing literature because, in reality, low level of criticality

software vulnerabilities are not considered a high priority, while it may be more

difficult to develop and release a patch for very high criticality software

vulnerabilities (Gordon et al. 2002; Tanaka et al. 2005). Gordon‘s economic model

of software security investment suggests that the response time of software vendors

in releasing software patches is an optimisation decision where medium level of

criticality of software vulnerabilities are the most optimal for software vendors to

develop and release patches; whereas low level and high level of criticality software

vulnerabilities are less optimal to develop and release patches for software

vulnerabilities (Gordon et al. 2002). Furthermore, currently there is little in the way

of government regulation and legislation which discourages this type of behaviour by

software vendors (Kuechler 2007; Otter 2007; Saint-Germain 2005)

The proposed hypothesis H1 in this study worked in the opposite way to what was

predicted in the previous literature which identified that software vendors more

quickly release software patches for highly critical software vulnerabilities (Arora et

al. 2010a; Liu et al. 2011; Mangalaraj et al. 2005; Telang et al. 2007). In these

studies the response time for releasing software patches was calculated from the full

disclosure date of software vulnerabilities and software vulnerabilities are fully

disclosed after the grace period provided to the software vendor to release software

patches (Arora et al. 2005a; Farrow 2000; Meunier 2008). However, in this study the

response time to release a software patch is calculated from the vendor informed

date.

Similarly, previous studies identified that software vendors usually know of a

software vulnerability before its full disclosure and they are provided a grace period

to release a patch for software vulnerability before full disclosure (Cavusoglu et al.

2004 ; Cooper 1999; OIS 2004; SANS 2003). Once a full disclosure of software

vulnerability occurs, most responsible software vendors release a software patch on

or before the day of full disclosure. This indicates that there is little or no influence

- 114 -

of full disclosure of software vulnerabilities on the response time to release a

software patch. However, vendor informed dates for software vulnerabilities can

provide a more accurate response time of software vendors in releasing a software

patch to a software vulnerability. This can then be used to determine whether the

software vendor is actually influenced to release a software patch to a software

vulnerability by the level of criticality of that software vulnerability.

Open Source Software Vendor versus Proprietary Source Software Vendor

Hypothesis H2 states:

H2: Open source software vendors release patches for open source software

vulnerabilities more quickly than proprietary source vendors release patches for

proprietary software vulnerabilities once the software vulnerability has been

informed to software vendor: (Supported)

The beta coefficient (b1 = -0.387) for the variable software vendor type which is a

binary variable indicates that open source software vendors release software patches

39% quicker than proprietary source software vendors for vendor informed software

vulnerabilities. Similarly, the mean value of response time to release software

patches by software vendor type in table 4.29 (section 4.4) provides further evidence

for findings regarding H2 which indicate that open source software vendors release

patches for open source software vulnerabilities more quickly than proprietary source

software vendors once software vulnerabilities has been informed to software

vendors.

Similarly, table 4.21 (sub section 4.2.4) shows that open source software vendor

response time to release software patches for 84% software vulnerabilities is between

(1 to 100 days). In contrast, table 4.22 (sub section 4.2.4) shows that proprietary

source software vendor response time to release software patches for 84% of

software vulnerabilities is between (1 to 300 days). This shows that open source

software vendors‘ response time to release software patches for open source software

vulnerabilities is quicker than proprietary source software vendors‘ response time to

release software patches for proprietary source software vulnerabilities.

- 115 -

Further, table 4.7 (sub section 4.2.3) shows that 48% of software vulnerabilities with

medium level criticality were found in open source software vendors; whereas 18%

of software vulnerabilities with medium level criticality were found in proprietary

source software vendors. Similarly, 48% of software vulnerabilities with high and

very high level criticality were found in open source software vendors; whereas 81%

of software vulnerabilities with high and very high level criticality were found in

proprietary source software vendors. From the discussion of H1 it has been shown

that software vendors release patches for software vulnerabilities with a medium

level of criticality in a shorter response time than software vulnerabilities with low

and high levels of criticality once the vendor has been informed of the software

vulnerability. This also explains why open source software vendors are quicker in

releasing a software patch compared to proprietary source software vendors once a

software vulnerability has been informed to the software vendor.

Schryen (2009) did not find any significant difference in vendors‘ patching

behaviour between open source software vendors and proprietary source software

vendors for fully disclosed software vulnerabilities. However, Arora et al. (2010a)

found that open source software vendors release software patches quicker than

proprietary source software vendors for fully disclosed software vulnerabilities.

Based on the previous literature, this research supports the findings of Arora et al.

(2010a) that open source software vendors release patches for open source software

vulnerabilities quicker than proprietary source software vendors release patches for

proprietary source software vulnerabilities.

Therefore, hypothesis H2 developed in this study that open source vendors release

software patches for open source software vulnerabilities more quickly than

proprietary source software vendors release software patches for proprietary software

vulnerabilities once the software vulnerability has been informed to software vendor

is supported.

- 116 -

Operating System Software versus Application Software

Hypothesis H3 states:

H3: Patches for operating system software vulnerabilities are released more quickly

than patches for application software vulnerabilities once the software vulnerability

has been informed to software vendors: (Not supported)

The beta coefficient (b2 = 0.082) for the variable type of software which is a binary

variable indicates that software patches for operating system software vulnerabilities

are released 8% slower than patches for application software once software

vulnerability has been informed to software vendors. Similarly, the mean value of

response time for application and operating system software in table 4.30 section 4.4

shows that software vendor release patches for operating system are slower than

application software once software vulnerabilities has been informed to software

vendors.

Similarly, table 4.4 (sub section 4.2.2) shows that buffer errors, SQL injection and

cross site scripting (XSS) are the mostly commonly found software vulnerabilities in

application software; and table 4.20 shows that software vendors‘ response time to

release software patches for most buffer errors, SQL injection and cross site scripting

(XSS) software vulnerabilities in application software is between (1 to 100 days). In

contrast table 4.4 (sub section 4.2.2) shows that buffer errors, code injection,

resource management errors and numeric errors are the most common software

vulnerability in operating system software; and table 4.20 (sub section 4.2.4) shows

that software vendors‘ response time to release software patches for most buffer

errors, code injection, resource management errors and numeric errors software

vulnerabilities in operating software is between (1 to 300 days). This also provides

further explanation for why software vendors‘ response time to release software

patches for application software is quicker than response time to release software

patches for operating system software.

Moreover, table 4.10 (sub section 4.2.3) shows that 90% of operating system

software has a high level of criticality and 5% of operating system software has a

medium level of criticality compared to 66% of application software with a high

- 117 -

level of criticality, and 31% of application software with a medium level of

criticality. As the result of H1 shows, software vendors take a longer response time

in releasing a software patch for a highly critical software vulnerability compared to

medium critical software vulnerability. It can be concluded that this is one of the

main reasons why operating system software is patched more slowly than application

software. This result is also supported by Gordon‘s economic model of software

security investment which contends software vendors release patches for operating

system software vulnerabilities much slower because the optimisation of investment

in software security is higher for software with a high level of criticality (Gordon et

al. 2002).

Previous empirical research by SANS and TippingPoint (2009; 2009) found that

software vendors patch operating system software vulnerabilities more quickly than

application software vulnerabilities. However, these empirical studies analysed the

patching behaviour of a limited number of software vendors with their software

vulnerabilities.

This research has analysed the patching behaviour of 160 software vendors with 667

software vulnerabilities and found that software vendors patch operating system

software vulnerabilities slower than application software vulnerabilities. This result

might be unreliable to generalize as a whole because in the total sample population

of 667 software vulnerabilities, 611 software vulnerabilities are application software

vulnerabilities and 56 software vulnerabilities are operating system software

vulnerabilities. Therefore, this hypothesis needs further investigation in future

research where operating system software vulnerabilities are more representative in

the sample population.

4.6 Conclusion

This chapter presented and discussed the results of the quantitative analysis

generated from the statistical tests. The results and findings in relation to the

statistical tests were discussed. The statistical tests included descriptive statistics,

multi-collinearity, one way ANOVA and multiple regression analysis.

- 118 -

The descriptive statistics revealed that the three key factors (1) type of software, (2)

type of software vendor and (3) the level of criticality of software vulnerability have

a significant impact on the response time in releasing software patches.

The ANOVA analysis showed that there is a significant difference between the open

source software vendor and proprietary source software vendor with the level of

criticality of a software vulnerability. Similarly, there is also a significant difference

between the operating system software and application software with the level of

criticality of a software vulnerability.

Further, the mean difference of the response time in releasing a software patch

revealed that (1) there is a difference between open source and proprietary source

software vendors in releasing a software patch; and (2) there is a difference between

operating system software and application software vendors in releasing a software

patch.

The multiple regression model was used to test the research hypotheses formulated

from the conceptual and theoretical model developed in chapter 2 (literature review).

The hypothesis testing showed that the level of criticality of software vulnerabilities

and the type of software have a positive relationship with the response time; and type

of software vendor has a strong negative relationship with the response time.

Although, the hypothesis testing showed that the level of criticality has a positive

relationship, a single positive result it is not possible to show whether the longer

response time for both high and low level of criticality of software vulnerability and

shorter response time for medium level of criticality of software vulnerability is

supported as stated in H1. Therefore, the level of criticality has been split into three

levels—low, medium and high. The MRA test for each level of criticality shows that

high level and low level of criticality of software vulnerability have a positive

relationship with the response time. Conversely, medium level of criticality of

software vulnerability has a negative relationship with the response time.

The next chapter is the concluding chapter of this study and provides an overall

summary of this study including the research problem, hypotheses test results, a

discussion on the theoretical and practical contributions of the findings of this

research, limitations of the study, and suggestions for future research.

- 119 -

Chapter 5: Conclusions

5.1 Introduction

This chapter reports on the main conclusions of this empirical research regarding the

patching behaviour of software vendors for informed software vulnerabilities in

terms of the level of criticality of software vulnerabilities, the type of software

vendor and the type of software. This chapter begins with a summary of the research

problem, the general research question, the three specific research questions

addressed in this research, the three research hypotheses that were tested and the

research methodology used in this study. The key findings and conclusions regarding

the results of the descriptive data analysis, one way ANOVAs and research

hypotheses tests using multiple regression analysis are then summarized. The key

contributions of this study to theory and practice are then discussed; and the

limitations of this study are acknowledged. Finally, this chapter provides some

suggestions for future research regarding the key factors impacting on the response

time of software vendors in releasing patches for vendor informed software

vulnerabilities.

5.2 Summary of this Study

This section provides a summary of the research problem and general research

question investigated in this study, the research hypotheses tested, and the research

method used in this study. The key findings of descriptive data analyses and

hypotheses testing are then summarized.

5.2.1 Research Problem

Previous studies analysed the influence of the level of criticality of software

vulnerabilities on software vendors‘ patching behaviour on the basis of the full

disclosure date (Arora et al. 2010a; Liu et al. 2011; Mangalaraj et al. 2005; Telang et

al. 2007). Arora et al. (2010a) also argued that open source software vendors are

quicker than proprietary source software vendors in releasing software patches for

software vulnerabilities on the basis of full disclosure date. Conversely, Schryen

- 120 -

(2009) argued that there is no significant difference between open source software

vendors and proprietary source software vendors in releasing software patches for

software vulnerabilities on the basis of full disclosure date. Furthermore, previous

studies argued that software vendors release software patches for operating system

software vulnerabilities quicker than application software vulnerabilities on the basis

of the full disclosure date (SANS 2009; TippingPoint 2009). All the above studies

based their analysis of software vendors‘ patching behaviour on the full disclosure

date of software vulnerability and paid little attention to analysing software vendors‘

patching behaviour on the basis of vendor informed date. To address the identified

gaps in the literature, this study investigated the following general research question:

To what extent does the level of criticality of software vulnerabilities, type of

software vendor (Open source, Proprietary source vendor), and type of software

(Operating system software, Application software) influence the response time of

software vendors in releasing patches when the software vendor is informed of

software vulnerabilities?

To answer the general research question for this research, the following three specific

research questions are addressed:

RSQ1. How does the level of criticality of software vulnerabilities influence the

response time of software vendors in releasing patches when the software vendor is

informed of software vulnerabilities?

RSQ2. Is there a difference between open and proprietary source software vendors in

terms of their response time in releasing patches when the software vendor is

informed of software vulnerabilities?

RSQ3. Is there a difference between operating system software and application

software in terms of response time of software vendors in releasing patches when the

software vendor is informed of software vulnerabilities?

- 121 -

5.2.2 Research Hypotheses

The three hypotheses were formulated from the three research questions above after

being justified and grounded in the existing relevant literature on software

vulnerabilities and software vendors‘ behavior in releasing software patches. The

three hypotheses are as follows:

H1: Software vendors release patches for software vulnerabilities with a medium

level of criticality in a shorter response time than software vulnerabilities with low

and high levels of criticality once the vendor has been informed of the software

vulnerability.

H2: Open source vendors release patches for open source software vulnerabilities

more quickly than proprietary source vendors release patches for proprietary

software vulnerabilities once the software vendor has been informed of the software

vulnerability.

H3: Patches for operating system software vulnerabilities are released more quickly

than patches for application software vulnerabilities once the software vendor has

been informed of the software vulnerability.

These three hypotheses together test the effect of the level of criticality of software

vulnerabilities, type of software vendor and type of software on the response time of

software vendors in releasing patches once the vendor is informed of the software

vulnerabilities.

A research model showing the results of hypotheses testing using multiple regression

analysis is presented in figure 5.1.

- 122 -

** = Significant at p<0.05 (two tailed), *** Significant at p<0.01 (one tailed)

In order to test hypothesis H1, the sample population for this study was split on three

levels of criticality of software vulnerabilities (Low, Medium, High) in order to

determine if software vendors released patches for medium level software

vulnerabilities quicker than for low and high level software vulnerabilities once

informed of the software vulnerability. Table 5.1 shows the beta coefficients, as well

as corresponding significance level, for each level of criticality from each of the

three MRAs conducted to test H1 hypothesis (full details of the three MRAs

conducted for H1 hypothesis are available in Appendix A).

Table 5.1 Three Levels of Criticality Beta Coefficients and Level of Significance for

Three MRA ran for Hypothesis H1

Level of Criticality Beta Coefficients Significance Level

Low Level of Criticality (H1l) bl = 0.121(*)(NS) 0.754

Medium Level of Criticality (H1m) bm = -0.181 (***) 0.004

High Level of Criticality (H1h) bh = 0.222 (***) 0.000

* (NS) Insignificant, *** Significant at p<0.01 (one tailed)

Source: Developed for this research

Figure 5.1 Research Model and Results of Hypotheses Tests using MRA

Source: Developed for this research

H1 (***)

b3 = 0.256

 H2 (***)

 b1 = -0.39

H3 (**)

b2 = 0.08

Level of Criticality of

Software Vulnerability

Response Time

Type of Software Vendor

5. Open Source Software

Vendors

6. Proprietary Source
Software Vendors

Type of Software

 1. Operating System Software

2. Application Software

8% slower

39% quicker

R2= 0.304

H1l (*NS) (bl = 0.121)

H1m (***) (bm = -0.181)

H1h (***) (bh = 0.222)

- 123 -

Table 5.2 provides a summary of the hypotheses which were supported or not

supported in this study. A discussion of each hypothesis is presented in the next

section.

Table 5.2 Supported and Unsupported Hypotheses of This Study

Hypotheses Relationship investigated Supported?

H1 High level and low level of criticality of software vulnerability have a positive relationship

with the response time

 Medium level of criticality of software vulnerability has a negative relationship with the

response time

Yes

H2 A strong negative relationship between type of software vendor and the response time Yes

H3 A positive relationship between type of software and the response time No

Source: Developed for this Research

5.2.2 Summary of Results of Research Hypothesis Testing

H1: The beta coefficient (b3 = 0.256) (figure 5.1) indicates the overall impact of the

level of criticality of software vulnerabilities on response time of software

vendors in releasing patches for vendor informed software vulnerabilities.

However, this result did not distinguish between the response time for software

vulnerabilities with high or low level of criticality and the response time for

medium level of criticality of software vulnerability as stated in H1.

Therefore, in order to test the hypothesis H1 appropriately, the sample

population of 667 software vulnerabilities was split into three levels of criticality

(low, medium and high). A MRA was run for a subset of the sample population

for each level of criticality to determine the actual relationship between each of

the three levels of criticality of software vulnerabilities and the software

vendors‘ response time (see Appendix A). Table 5.1 shows the beta coefficients

for each level of criticality of software vulnerabilities after running each

individual MRA. The beta coefficient (bl = 0.12) for software vulnerabilities

with a low level of criticality indicates that an increase towards the lowest level

of criticality increases the response time. However, this relationship is

statistically insignificant. Moreover, the beta coefficient (bh = 0.22) for high

level of criticality indicates that an increase towards the highest level of

criticality increases the response time. In contrast, the beta coefficient (bm = -

0.18) for medium level of criticality indicates that a decrease towards the

medium level of criticality decreases the response time.

- 124 -

Therefore, one of the key findings of this study is that the results of three MRAs

for H1 hypothesis test provides support for the argument that software vendors

release patches for software vulnerabilities with a medium level of criticality in a

shorter response time than software vulnerabilities with low and high levels of

criticality: (Supported)

H2: Open source software vendors are 39% quicker than proprietary source software

vendors in releasing software patches when informed of software vulnerabilities.

Another key finding of this study is that the results of the H2 hypothesis test

provided support for the argument that open source vendors release patches for

open source software vulnerabilities more quickly than proprietary source

vendors release patches for proprietary software vulnerabilities once the

software vendor has been informed of the software vulnerability: (Supported).

H3: The results of H3 hypothesis test did not provide support for the argument that

software patches for operating system software are released quicker than those

for application software (Not supported). Conversely, the results suggest that

software patches for operating system software are released 8% slower than for

application software when the software vendor is informed of a software

vulnerability, which is contrary to predictions in the existing literature (Not

supported).

5.2.3 Research Methodology

This is explanatory research which uses a quantitative approach to test the research

model to examine the relationship between the independent variables: level of

criticality of software vulnerability; type of software vendor; and type of software, as

well as the dependent response time of software vendors‘ in releasing patches for

software vulnerabilities once informed of the software vulnerability. The sample

population of 667 vendor informed software vulnerabilities was archival data

obtained from four related software vulnerability databases SecurityFocus, Open

Source Vulnerability Database, National Vulnerability Database and Secunia. These

four software vulnerability databases contain archival data about software

- 125 -

vulnerabilities which has been rigorously collected and screened.

The software vulnerability data obtained from these four databases over the time

period 2008 to 2010 did not provide all the required information to test the proposed

hypotheses. Therefore, a sub set of those software vulnerabilities which have all the

required information was selected as the sample population for this study. The total

sample population of vendor informed software vulnerabilities was analysed using

descriptive statistics, one way ANOVAs and multiple regression analysis. The results

from the data analysis together with the existing literature were used to explain the

main findings of this study.

5.2.4 Conclusions about Descriptive Data Findings

This study analyzed software vulnerabilities data with a vendor informed date in

contrast to previous studies which analysed software vulnerabilities data with a full

disclosure date (Arora et al. 2010a; Liu et al. 2011; Mangalaraj et al. 2005; Telang et

al. 2007). The descriptive data findings regarding the total sample population of 667

vendor informed software vulnerabilities for this study are summarised below.

Descriptive Data Analysis Findings about Type of Software Vendor and

Software Vulnerabilities

 The majority of software vulnerabilities are found in the software of

proprietary source software vendors in this study. In the total sample

population of 667 software vulnerabilities, 418 (62.7%) software

vulnerabilities are in proprietary source vendor software and 249 (37.3%)

software vulnerabilities are in open source vendor software (refer to table 4.1

subsection 4.2.1).

 Buffer errors (160, 38%) is the most common software vulnerability category

for the software of proprietary source software vendors in this study (refer to

table 4.2 subsection 4.2.1).

 Cross site scripting (XSS) (74, 30%) is the most common software

vulnerability category in the software of open source software vendors in this

study (refer to table 4.2 subsection 4.2.1).

- 126 -

Descriptive Data Analysis Findings about Type of Software and Software

Vulnerabilities

 Most software vulnerabilities in this study are found in application software.

In the total sample population of 667 software vulnerabilities, 56 (8.4%)

software vulnerabilities are classified as operating system software, compared

to 611 (91.6%) software vulnerabilities classified as application software

(refer to table 4.3 subsection 4.2.2).

 Buffer errors (178, 29%), cross site scripting (XSS) (116, 19%) and SQL

injection (39, 6%) are the most commonly found categories of software

vulnerabilities in application software (611) in this study (refer to table 4.4

subsection 4.2.2).

 Buffer errors (19, 34%), code injection (10, 18%), numeric errors (7, 13%)

and resource management errors (6, 11%) are the most commonly found

categories of software vulnerabilities in operating system software (56) in this

study (refer to table 4.4 subsection 4.2.2).

Descriptive Data Analysis Findings about Level of Criticality and Software

Vulnerabilities

 Almost half of the software vulnerabilities (319, 48%) are of a very high level

of criticality in this study (refer to table 4.5 subsection 4.2.3).

 The majority of the software vulnerabilities (262, 63%) in the software of

proprietary source software vendors are of a very high level of criticality in

this study (refer to table 4.7 subsection 4.2.3).

 Almost half of the software vulnerabilities (120, 48%) in the software of open

source software vendors are of a medium level of criticality in this study

(refer to table 4.7 subsection 4.2.3).

 Software vulnerabilities in the software of open source software vendors are

overall less critical than software vulnerabilities in the software of proprietary

source software vendors in this study. The average level of criticality of

software vulnerability for open source software vendors is 3.68, whereas the

average level of criticality of software vulnerability for proprietary source

software vendors is 4.42 (refer to table 4.8 subsection 4.2.3).

- 127 -

 In terms of the level of impact, the following categories of software

vulnerabilities: buffer errors, numeric errors, resource management errors

and code injection mostly have a very high level of criticality, while cross site

scripting (XSS) and SQL injection mostly have a medium level criticality in

this study (refer to table 4.14 subsection 4.2.3).

 There were 192 (31%) software vulnerabilities in application software with a

medium level of criticality, 406 (66%) with high levels (i.e. high and very

high) of criticality and 13 (2.1%) with a low level of criticality in this study

(refer to table 4.10 subsection 4.2.3).

 There were 3 (5%) software vulnerabilities in operating system software with

a medium level of criticality, 52 (93%) with high levels (i.e. high and very

high) of criticality and 1 (1.8%) with a low level of criticality in this study

(refer to table 4.10 subsection 4.2.3).

 Overall operating system software vulnerabilities are more critical than

application software vulnerabilities in this study. The average level of

criticality of software vulnerabilities for operating system software is 4.55,

whereas the average level of criticality of software vulnerabilities for

application software is 4.1 (refer to table 4.11 subsection 4.2.3).

Descriptive Data Findings about Response Time and Software Vulnerabilities

 Software vendors release patches for the majority of software vulnerabilities

(377, 57%) between 1 to 100 days in this study (refer to table 4.15 subsection

4.2.4).

 For the majority of software vulnerabilities in open source software (194,

78%), the software vendor response in releasing a software patch was

between 1 to 100 days (refer to table 4.18 subsection 4.2.4).

 For the majority of software vulnerabilities in proprietary source software

(349, 84%), the software vendor response in releasing a software patch was

between 1 to 300 days (refer to table 4.18 subsection 4.2.4).

 Open source software vendors are quicker in releasing a software patch

compared to proprietary source software vendors once informed of a software

vulnerability. The average response time of open source software vendors to

release a software patch for a software vulnerability is 34 days, whereas the

- 128 -

average response time of proprietary source software vendors to release a

software patch for a software vulnerability is 156 days (refer to table 4.29

subsection 4.4).

 Software vendors release patches for software vulnerabilities with a medium

level of criticality in a shorter response time than software vulnerabilities

with low and high levels of criticality once the vendor has been informed of

the software vulnerability. The average response time in releasing a software

patch for software vulnerabilities with a medium level of criticality is 55

days, whereas the average response time in releasing a software patch for

software vulnerabilities with low, high and very high levels of criticality are

97 days, 84 days and 157 days respectively (refer to table 4.23 subsection

4.2.4).

 Software patches for application software vulnerabilities overall are released

quicker compared to operating system software vulnerabilities once software

vulnerabilities have been informed to the software vendor. The average

response time to release a software patch for application software

vulnerabilities is 105 days, whereas the average response time to release a

software patch for operating system software vulnerabilities is 164 days (refer

to table 4.30 subsection 4.4).

 The percentage of software patches released between 1 to 200 days for

application software vulnerabilities (480, 78%) is greater when compared to

operating system software (35, 62%) (refer to table 4.19 subsection 4.2.4).

From the summary of the above descriptive statistics, it is concluded that open

source software vendors are quicker than proprietary source software vendors in

releasing software patches when informed of software vulnerabilities. Similarly,

software vendors release patches for software vulnerabilities with a medium level of

criticality in a shorter response time than software vulnerabilities with low and high

levels of criticality. In contrast, software patches for operating system software are

released more slowly than application software when the software vendor is

informed of a software vulnerability.

- 129 -

The descriptive data findings with regard to the type of software might be unreliable

and should be treated with caution because the distribution of software vulnerabilities

across the two types of software is unequal (i.e. the proportion of operating system

software vulnerabilities is less than 10% of the total sample population of 667).

5.2.5 Conclusions Concerning Results of Research Hypotheses Tests

The result of the research hypotheses tests shows that all the independent variables,

namely, (1) the level of criticality of software vulnerability, (2) type of software

vendor, and (3) type of software have a significant effect on the dependent variable,

response time.

Hypothesis H1: The key finding from the results of the three MRAs performed to test

hypothesis H1 show that software vendors release patches for software

vulnerabilities with a medium level of criticality in a shorter response time than

software vulnerabilities with low and high levels of criticality once the vendor has

been informed of the software vulnerability. This finding provides further support for

Gordon and Loeb‘s (2002) economic model of software security investment that

argued the response time of software vendors in releasing software patches is an

optimisation decision. Software vulnerabilities with a medium level of criticality are

the most optimal for software vendors to develop and release patches. In contrast, for

software vulnerabilities with low level and high level of criticality it is less optimal

to develop and release patches (Gordon et al. 2002). Moreover, this finding

contradicts the findings of Arora et al. (2010a) and Schryen and Rich (2010). Arora

et al. (2010a) argued that software vendors are more responsive and patch highly

critical software vulnerabilities quicker than less critical software vulnerabilities.

Conversely, Schryen and Rich (2010) did not find any significant difference in

software vendors‘ patching behaviour for highly critical software vulnerabilities

compared to less critical software vulnerabilities.

Hypothesis H2: The key finding from the results of Hypothesis H2 test show that

open source software vendors release software patches more quickly than proprietary

source software vendors once informed of the software vulnerability. This finding

provides further support for Arora et al.‘s (2010a) study which found that open

- 130 -

source vendors are quicker to release a patch than proprietary source vendors. This

finding contradicts the finding of Schryen‘s (2009) study that found there is no

significant difference in vendor patching behaviour for fully disclosed software

vulnerabilities between open source software and proprietary source software.

Hypothesis H3: The key finding from the results of Hypothesis H3 test show that

software vendors‘ response to release patches for application software vulnerabilities

is quicker than operating system software vulnerabilities in this study. This finding

contradicts the findings of SANS (2009) and TippingPoint (2009). Both these studies

argued software vendors‘ response to release patches for operating system software

vulnerabilities is quicker than for application software vulnerabilities. However, this

finding in relation to H3 might be unreliable since the distribution of software

vulnerabilities between two types of software is unequal (i.e. the proportion of

operating system software vulnerabilities is less than 10% of the sample population).

5.3 Contribution of this Study

This study has made several contributions to theory and practice as follows.

5.3.1 Contribution to Theory

This research contributed to theory and existing knowledge by:

 Identifying that software vulnerabilities with a medium level of criticality

influence the response time of software vendors in releasing patches quicker

than software vulnerabilities with low and high levels of criticality once the

software vendor is informed of the software vulnerabilities (Gordon et al.

2002; Swire 2004, 2006). Most of the previous studies which investigated the

impact of the level of criticality of software vulnerabilities on the response

time of software vendors in releasing software patches identified that the

higher the level of criticality of a software vulnerability the more responsive

software vendors are in releasing software patches for disclosed software

vulnerabilities (Arora et al. 2010a; Liu et al. 2011; Mangalaraj et al. 2005;

Telang et al. 2007). Furthermore, this study identified that analysing the

impact of level of criticality of software vulnerabilities on the software

vendor‘s response time in releasing software patches based on the date of full

- 131 -

disclosure date is not accurate measure of the response time as most software

patches are released before the full disclosure date. Therefore the findings of

this study also show that the vendor informed date for a software

vulnerability disclosure is a much more accurate measure of the response

time than the full disclosure date of software vulnerabilities.

 This study confirmed that open source software vendors are quicker than

proprietary source software vendors in terms of their response time in

releasing patches once the software vendor is informed of software

vulnerabilities. In previous studies, Arora et al. (2010a) argued that open

source software vendors are quicker to release software patches for software

vulnerabilities than for proprietary source software vendors. Conversely

Schryen (2009) argued that there is no significant difference in software

vendors patching behaviour for fully disclosed software vulnerabilities

between open and proprietary source software vendor. Both studies analysed

the software vendors patching behaviour on fully disclosed software

vulnerabilities. The findings in this study show that the response time for

open source software vendors in releasing software patches is quicker

compared to proprietary source software vendor on the basis of responsible

disclosure date of software vulnerability (Hobbs et al. 1868; Swire 2004,

2006).

 This study do not confirm that the response time of software vendors in

releasing patches for operating system software is quicker than application

software once the software vendor is informed of software vulnerabilities.

Previous studies found that software vendors released software patches more

quickly for operating system software vulnerabilities than for application

software (SANS 2009; TippingPoint 2009). The findings in this study show

that the vendors‘ response time in releasing software patches for application

software vulnerabilities is quicker compared to operating system software

vulnerabilities on the basis of responsible disclosure of software vulnerability

(Hobbs et al. 1868; Swire 2004, 2006). However this finding may not be

reliable because operating system software was not sufficiently represented in

the sample population.

 This study established empirical support for responsible disclosure (vendor

informed date) as a more accurate mechanism for determining the response

- 132 -

time of software vendors in releasing patches for software vulnerabilities.

Previous studies have used the full (public) disclosure date as a mechanism

for determining how quickly software vendors respond in releasing patches

for software vulnerabilities. However the full disclosure date is not an

accurate measure of the response time of software vendors as most software

vendors release patches on or before the full disclosure date as software

vendors are given a grace period by security advisories to develop and release

a software patch (Arora et al. 2010a).

Thereby, the results of this study indicate that software vendors are more responsive

in releasing patches to software vulnerabilities with medium level of criticality than

software vulnerabilities with a high and low level of criticality. Open source software

vendors take a shorter response time than proprietary source software vendors to

release a software patch for a vendor informed software vulnerability. Application

software patches are released more quickly than operating system software patches

once the vendor is informed of a software vulnerability.

Furthermore, from the empirical investigation of vendor informed software

vulnerabilities, this study also contributes to existing knowledge and theory by

establishing that full disclosures of software vulnerability have little or no effect on

the response time of software vendors in releasing software patches because most

software vendors release software patches on or before the date of full disclosure of a

software vulnerability. Therefore, this study confirms that responsible disclosure of

software vulnerabilities is a more effective mechanism for encouraging software

vendors to release software patches, rather than inconsistent full disclosure of

software vulnerabilities from different information security advisories.

5.3.2 Contribution to Practice

The findings of this study can be used by both practitioners and policy makers (i.e.

information security advisories) to better understand the software vulnerability

landscape and the complex process of software vendors‘ patching behaviour in

response to software vulnerabilities. The findings of this study should also assist

practitioners in deciding how to more effectively undertake preventive measures for

- 133 -

different categories of software vulnerabilities based on the level of criticality, the

software type and the type of software vendor. The findings of this study suggest that

responsible disclosure of software vulnerabilities (vendor informed date) is a more

effective mechanism that government and industry regulatory bodies can use in

encouraging software vendors to release software patches.

5.4 Limitation of this Study

As with all research, this research has some limitations. One limitation of this study

is that only 667 software vulnerabilities provided the complete information required

to test the research hypothesis, although the total population of software vulnerability

reported from 2008 to 2010 in the OSVDB database was 11,758. Some of the

categories of software vulnerabilities have a low representation in the sample

population of 667 software vulnerabilities used in this study. For instance, of the 667

software vulnerabilities, there were only 14 with a low level of criticality and, of

these, only one was a operating system software vulnerability with the other 13 being

application software vulnerabilities. Therefore, any interpretation of the impact of

software vulnerabilities with low level of criticality on the response time of software

vendors in releasing a patch once informed of a software vulnerability should be

treated with caution. Similarly, the number of software vulnerabilities in operating

system software was less than 10 percent (56) in the sample population of 667.

Therefore, the finding that patches for software vulnerabilities in application

software are released quicker than for software vulnerabilities in operating system

software also needs to be treated with caution.

5.5 Suggestions for Future Research

In this study, the research model confirms that independent variables explain 30% of

the variation in the dependent variable, response time. This finding suggests that

there are other key factors that could impact on the response time of software

vendors in releasing software patches. The research model in this study determined

the impact of (1) level of criticality of software vulnerability, (2) type of software

vendor and (3) type of software on the response time of a software vendor in

releasing a software patch once informed of a software vulnerability. This

- 134 -

study found that software vendors are slower in releasing software patches for high

level of criticality of software vulnerabilities compared to medium level of criticality

of software vulnerabilities. To address this gap, future research should identify the

motivational factors that encourage software vendors to release software patches

once they are informed about software vulnerabilities with high levels of criticality.

The losses incurred from the exploitation of software vulnerabilities with a high level

of criticality are not tolerable to individuals or organizations. Another important area

identified as worthy of further research is the role of government and industry in

regulating and legislating the responsibility and liability of software vendors in

relation to software vulnerabilities in their software products. Such legislation should

encourage software vendors to be more proactive in developing and releasing patches

for software vulnerabilities with higher levels of criticality. In addition, it has also

been identified that the representation of operating system software vulnerabilities in

this study was very low (i.e. less than 10% of total sample population). To be more

confident in the findings achieved from this study, future research should replicate

this study with a more equal representation of both operating system software and

application software.

5.6 Summary

This chapter provided a summary of the key findings of this study, followed by the

main contributions of the key findings to theory and practice, acknowledgment of the

limitations of the study, and directions for future research.

This study developed a research model which is underpinned by software security

disclosure theory (Swire 2004, 2006) and Gordon and Loeb‘s (2002) economic

model of software security investment to investigate the following general research

question: ‗To what extent does the level of criticality of software vulnerabilities, type

of software vendor (Open source, Proprietary source vendor), and type of software

(Operating system software, Application software) influence the response time of

software vendors in releasing patches when the software vendor is informed of

software vulnerabilities‘. This general research question is broken down into three

specific research questions (see subsection 5.2.1). To answer these three research

questions, three hypotheses (see subsection 5.2.1) were formulated for this study.

- 135 -

The following major conclusions were drawn from the result of three research

hypotheses tests:

 Software vendors release patches for software vulnerabilities with a medium

level of criticality in a shorter response time than software vulnerabilities

with low and high levels of criticality once the vendor has been informed of

the software vulnerability

 Open source software vendors release patches for open source software

vulnerabilities more quickly than proprietary source vendors release patches

for proprietary software vulnerabilities once the software vendor has been

informed of the software vulnerability

 Patches for operating system software vulnerabilities are released slower than

patches for application software vulnerabilities once the software

vulnerability has been informed to the software vendor.

This study contributes to theory by investigating the impact of key factors: (1) the

level of criticality of software, (2) type of software vendor (open source software

vendor, proprietary source software vendor, and (3) type of software (operating

system software, application software) on software vendors‘ response time in

releasing a software patch once informed of a software vulnerability. Similarly, the

study contributes to existing theory by establishing an experimental support for

responsible disclosure (vendor inform date) as a more precise mechanism for

determining the response time of software vendors in releasing patches for software

vulnerabilities.

This study further contributes to practice by helping both practitioners and policy

makers enhance their decision-making when undertaking preventive measures for

different categories of software vulnerabilities based on the level of criticality of

software vulnerability, the software type and the software vendor type. Similarly,

government and industry regulatory bodies can adopt a responsible disclosure of

software vulnerability (vendor inform date) which is recognised as a more effective

disclosure of software vulnerability to encourage software vendors to release

software patches.

- 136 -

As with all research, this study has some limitations. The sample population was

restricted to 667 software vulnerabilities that had complete information to test the

research hypothesis, although 11,758 software vulnerabilities were reported from

2008 to 2010 in the OSVDB database. A larger sample population which is more

representative of operating system software vulnerabilities would provide further

confirmation of the key findings of this research. The research model in this study

confirmed the significance of three independent variables which explain 30 percent

of the variance in the dependent variable response time of software vendors in

releasing software patches. Future research could also extend the research model by

identifying and including other key factors to explain more of the variance in the

dependent variable response time. Similarly, determining the role of government and

industry in regulating and legislating the responsibility and liability of software

vendors in relation to software vulnerabilities in their software products is worthy of

future research.

- 137 -

References

Agarwal, BB, Tayal, SP & Gupta, M 2009, Software Engineering and Testing,

illustrated edn, Jones & Bartlett Learning, Burlington, MA.

Albin, E 2011, 'A Comparative Analysis of the Snort and Suricata Intrusion-

Detection Systems', MS thesis, US Naval Postgraduate School.

Alnatheer, M & Nelson, K 2009, 'Proposed Framework for Understanding

Information Security Culture and Practices in the Saudi Context', paper presented to

7th Australian Information Security Management Conference, Kings Perth Hotel,

Perth, 1-3 December, 2009.

Anderson, DR, Sweeney, DJ & Williams, TA 2010, Statistics for business and

economics, 2nd edn, Cengage Learning EMEA, Hampshire, UK.

Anonymous 2003, Building a better bug-trap, The Economist, viewed 15th October

2011, <http://www.economist.com/node/1841081?Story_id=1841081>.

Anonymous 2010, The Survey Systems : Sample Size Calculator, Creative Research

Systems, viewed 11 July 2011, <http://www.surveysystem.com/sscalc.htm#one>.

Arbaugh, WA, Fithen, WL & McHugh, J 2000, 'Windows of vulnerability: a case

study analysis', Computer, vol. 33, no. 12, pp. 52-9.

Ardi, S, Byers, D & Shahmehri, N 2006, 'Towards a structured unified process for

software security', paper presented to International Workshop on Software

Engineering for Secure Systems, Shanghai, China, 2006.

Arora, A & Telang, R 2005a, 'Economics of software vulnerability disclosure',

Security & Privacy, IEEE, vol. 3, no. 1, pp. 20-5.

Arora, A, Telang, R & Xu, H 2004a, Optimal policy for software vulnerability

disclosure, Working paper, Carnegie Mellon University, Pittsburgh.

Arora, A, Caulkins, JP & Telang, R 2006a, 'Research note-Sell first, fix later: Impact

of patching on software quality', Management Science, vol. 52, no. 3, pp. 465-71.

Arora, A, Telang, R & Xu, H 2008, 'Optimal policy for software vulnerability

disclosure', Management Science, vol. 54, no. 4, pp. 642-56.

Arora, A, Krishnan, R, Telang, R & Yang, Y 2005b, 'An empirical analysis of

vendor response to software vulnerability disclosure', paper presented to Workshop

on Information Systems and Economics (WISE), University of California, Irvine,

CA, 2005.

Arora, A, Forman, C, Nandkumar, A & Telang, R 2006b, 'Competitive and strategic

effects in the timing of patch release', paper presented to the Fifth Workshop on the

Economics of Information Security, Cambridge, England, 2006.

http://www.economist.com/node/1841081?Story_id=1841081%3e
http://www.surveysystem.com/sscalc.htm#one>

- 138 -

Arora, A, Krishnan, R, Telang, R & Yang, Y 2010a, 'An empirical analysis of

software vendors' patch release behavior: Impact of vulnerability disclosure',

Information Systems Research, vol. 21, no. 1, pp. 115-32.

Arora, A, Forman, C, Nandkumar, A & Telang, R 2010b, 'Competition and patching

of security vulnerabilities: An empirical analysis', Information Economics and

Policy, vol. 22, no. 2, pp. 164-77.

Arora, A, Krishnan, R, Nandkumar, A, Telang, R & Yang, Y 2004b, 'Impact of

vulnerability disclosure and patch availability-an empirical analysis', paper presented

to Third Workshop on the Economics of Information Security (WEIS), Cambridge,

UK, 2004.

Baker, W, Goudie, M, Hutton, A, Hylender, C, Niemantsverdriet, J, Novak, C,

Ostertag, D, Porter, C, Rosen, M & Sartin, B 2010, Verizon 2010 Data Breach

Investigations Report, Verizon Business, viewed 15 March 2012,

<http://www.verizonbusiness.com/resources/reports/rp_2010-data-breach-

report_en_xg.pdf>.

Banerjee, C & Pandey, SK 2009, 'Software Security Rules: SDLC Perspective',

International Journal of Computer Science and Information Security (IJCSIS), vol. 6,

no. 1, pp. 123-8.

Bartlett, JE, Kotrlik, JW & Higgins, CC 2001, 'Organizational Research:

Determining Appropriate Sample Size in Survey Research Appropriate Sample Size

in Survey Research', Information Technology, Learning, and Performance Journal,

vol. 19, no. 1, pp. 43-50.

Berghe, CV, Riordan, J & Piessens, F 2005, 'A vulnerability taxonomy methodology

applied to web services', paper presented to 10th Nordic Workshop on Secure IT

Systems (NordSec), Tartu, Estonia, 2005.

Bhatt 2007, Introduction To Operating Systems: Concepts And Practice, 2nd edn,

PHI Learning Pvt. Ltd., New Delhi, India.

Bishop, M 1999, 'Vulnerabilities Analysis', paper presented to Second International

Symposium on Recent Advances in Intrusion Detection (RAID), Davis, California,

September, 1999.

Bollinger, J 2004, 'Economies of disclosure', ACM SIGCAS Computers and Society,

vol. 34, no. 3, pp. 1-3.

Borders, K, Weele, EV, Lau, B & Prakash, A 2009, 'Protecting Confidential Data on

Personal Computers with Storage Capsules', paper presented to the 18th USENIX

Security Symposium, Montreal, Canada, August, 2009.

Brown, JW & Churchill, RV 2009, Complex variables and applications, 8th edn,

McGraw-Hill Higher Education, Dearborn, Michigan.

CAPEC 2011, The Common Attack Pattern Enumeration and Classification : A

http://www.verizonbusiness.com/resources/reports/rp_2010-data-breach-report_en_xg.pdf%3e
http://www.verizonbusiness.com/resources/reports/rp_2010-data-breach-report_en_xg.pdf%3e

- 139 -

Community Knowledge Resource for Building Secure Software, The MITRE

Corporation, viewed 16th October 2011,

<http://capec.mitre.org/community/index.html>.

Cavusoglu, H & Raghunathan, S 2004 'Optimal Timing Decisions for Application of

Security Patches', Working paper, Tulane University, New Orleans, Louisiana.

Cavusoglu, H & Raghunathan, S 2005, 'Emerging issues in responsible vulnerability

disclosure ', paper presented to Fourth Workshop of Economics and Information

Security, Cambridge, MA, USA.

Cavusoglu, H & Zhang, J 2006, 'Economics of security patch management', paper

presented to Fifth Workshop on the Economics of Information Security, Cambridge,

UK, 26-28 June, 2006.

Cavusoglu, H & Raghunathan, S 2007, 'Efficiency of Vulnerability Disclosure

Mechanisms to Disseminate Vulnerability Knowledge', Software Engineering, IEEE

Transactions on, vol. 33, no. 3, pp. 171-85.

Cavusoglu, H, Mishra, B & Raghunathan, S 2004, 'A model for evaluating IT

security investments', Communications of the ACM, vol. 47, no. 7, pp. 87-92.

Cencini, A, Yu, K & Chan, T 2005, Software Vulnerabilities: Full-, Responsible-,

and Non-Disclosure, University of Washington, viewed 18 September 2011,

<http://www.cs.washington.edu/education/courses/csep590/05au/whitepaper_turnin/

software_vulnerabilities_by_cencini_yu_chan.pdf>.

CERT 2008, CERT Policy, Carnegie Mellon University Institute of Software

Engineering, viewed 25 December 2010,

<http://www.cert.org/kb/vul_disclosure.html>.

CERT 2009, CERT Statistics (Historical):Cataloged vulnerabilities, Carnegie

Mellon University Institute of Software Engineering, viewed 30 December 2010,

<http://www.cert.org/stats/>.

Chambers, JT & Thompson, JW 2004, Vulnerability disclosure framework, National

Infrastructure Advisory Council, viewed 18 August 2011,

<http://www.dhs.gov/interweb/assetlibrary/vdwgreport.pdf>.

Chaulagain, NP 2006, Impacts of Climate Change on Water Resources of Nepal The

Physical and Socioeconomic Dimensions, PhD thesis, der Universität Flensburg,

Germany.

Chelf, B 2006, Measuring software quality : A Study of Open Source Software,

Coverity Inc., viewed 24 November 2011,

<http://www.coverity.com/library/pdf/open_source_quality_report.pdf>.

Chen, Y, Boehm, B & Sheppard, L 2007, 'Measuring security investment benefit for

off the shelf software systems-a stakeholder value driven approach', vol. 15, no. 5,

pp. 25-7.

http://capec.mitre.org/community/index.html%3e
http://www.cs.washington.edu/education/courses/csep590/05au/whitepaper_turnin/software_vulnerabilities_by_cencini_yu_chan.pdf%3e
http://www.cs.washington.edu/education/courses/csep590/05au/whitepaper_turnin/software_vulnerabilities_by_cencini_yu_chan.pdf%3e
http://www.cert.org/kb/vul_disclosure.html%3e
http://www.cert.org/stats/%3e
http://www.dhs.gov/interweb/assetlibrary/vdwgreport.pdf%3e
http://www.coverity.com/library/pdf/open_source_quality_report.pdf%3e

- 140 -

Christey, S & Martin, RA 2006, The preliminary list of vulnerability examples for

researchers (PLOVER), The MITRE Corporation, viewed 15 September 2011,

<http://cve.mitre.org/docs/plover/plover.html>.

Christey, S & Martin, RA 2007, Vulnerability type distributions in CVE, The MITRE

Corporation, viewed 22 October 2011, <http://cwe.mitre.org/documents/vuln-

trends/index.html>.

Cochran, WG 1977, Sampling Techniques, 3rd edn, John Wiley and Sons Inc., New

York.

Comino, S & Manenti, FM 2003, Open source vs closed source software: Public

policies in the software market, Industrial Organization, viewed 25th July 2011,

<http://opensource.mit.edu/papers/cominomanenti.pdf.>.

Cooper, DR & Emory, CW 1995, Business Research Methods, 5th edn, Irwin

McGraw-Hill, Boston, MA.

Cooper, R 1999, NTBugtraq disclosure policy : Technical report, NTBugTraq,

viewed 12 July 2011,

<http://ntbugtraq.ntadvice.com/default.asp?sid=1&pid=47&aid=48 >.

CWE 2011, Common Weakness Enumuration : A Community-Developed Dictionary

of Software Weakness Types, The MITRE Corporation, viewed 17th October 2011,

<http://cwe.mitre.org/top25/>.

Dacey & Robert, F 2003, Effective Patch Management is Critical to Mitigating

Software Vulnerabilities, GAO-03-1138T, United States General Accounting office

(GAO), Washington, D.C.

Davis, D 2005, Business research for decision making, 6th edn, Duxbury Press,

Thomson, Belmont, CA, USA.

Engle, S, Whalen, S, Howard, D & Bishop, M 2006, Tree approach to vulnerability

classification, Technical Report CSE-2006-10, Department of Computer Science,

University of California, Davis, CA.

Eriksson, P & Kovalainen, A 2008, Qualitative Methods in Business Research, 1st

edn, SAGE Publications Ltd., London.

Escamilla, T 1998, Intrusion detection: network security beyond the firewall,

illustrated edn, John Wiley, New York.

Farahmand, F, Navathe, SB, Enslow, PH & Sharp, GP 2003, 'Managing

vulnerabilities of information systems to security incidents', paper presented to 5th

international conference on Electronic commerce (ICEC), NY, USA, 2003.

Farrow, R 2000, 'The Pros and Cons of Posting Vulnerability', The Network

Magazine, 5th October 2000, pp. 1-4.

http://cve.mitre.org/docs/plover/plover.html%3e
http://cwe.mitre.org/documents/vuln-trends/index.html%3e
http://cwe.mitre.org/documents/vuln-trends/index.html%3e
http://opensource.mit.edu/papers/cominomanenti.pdf.%3e
http://ntbugtraq.ntadvice.com/default.asp?sid=1&pid=47&aid=48
http://cwe.mitre.org/top25/%3e

- 141 -

Field, AP 2009, Discovering statistics using SPSS, 3rd edn, SAGE publications Ltd,

London, UK.

Flowers, P 2009, Research Philosophies – Importance and Relevance, Leading

Learning and Change, Cranfield School of Management, viewed 28 June 2012,

<http://www.networkedcranfield.com/cell/Assigment%20Submissions/research%20p

hilosophy%20-%20issue%201%20-%20final.pdf>.

Fossi, M 2011, Symantec Internet security threat ReportTrends for 2010, Symantec

Corporation, viewed 19 October 2011,

<http://msisac.cisecurity.org/resources/reports/documents/SymantecInternetSecurity

ThreatReport2010.pdf>.

Fossi, M, Mack, T & Johnson, E 2010, Symantec Announces October 2010

MessageLabs Intelligence Report, Symantec Corporation, viewed 18 December

2010,

<http://www.symantec.com/about/news/release/article.jsp?prid=20101026_01>.

Frei, S, May, M, Fiedler, U & Plattner, B 2006, Large-scale vulnerability analysis,

ACM, viewed 15 January 2011,

<http://portal.acm.org/citation.cfm?id=1162666.1162671>.

Gerace, T & Cavusoglu, H 2009, 'The critical elements of the patch management

process', Commun. ACM, vol. 52, no. 8, pp. 117-21.

Gordon, LA & Loeb, MP 2002, 'The economics of information security investment',

ACM Transactions on Information and System Security (TISSEC), vol. 5, no. 4, pp.

438-57.

Grand, CHL 2005, Software Security Assurance: A Framework for Software

Vulnerability Management and Audit, CHL Global Associates and Ounce Labs,

viewed 14 October 2011, <https://buildsecurityin.us-

cert.gov/swa/downloads/SoftwareSecurityAssuranceFrameworkMgtAudit.pdf>.

Hair, JF, Black, WC & Babin, BJ 2010, Multivariate data analysis: a global

perspective, 7th edn, Pearson Education, NJ.

Hassler, V 2001, Security Fundamentals for E-Commerce, Artech House, viewed 10

September 2011, <www.artechhouse.com/getblob.aspx?strname=has-ch02.pdf>.

Hobbs, A, Tomlinson, C, Fenby, JB & Mallet, R 1868, Locks and Safes : The

Construction of Locks, revised edn, Virtue and Co., London.

Hoepman, JH & Jacobs, B 2007, 'Increased security through open source',

Communications of the ACM, vol. 50, no. 1, pp. 79-83.

Howard, M, LeBlanc, D & Viega, J 2005, 19 deadly sins of software security,

McGraw-Hill Osborne Media, New York.

Howard, M, LeBlanc, D & Viega, J 2010, 24 deadly sins of software security :

http://www.networkedcranfield.com/cell/Assigment%20Submissions/research%20philosophy%20-%20issue%201%20-%20final.pdf%3e
http://www.networkedcranfield.com/cell/Assigment%20Submissions/research%20philosophy%20-%20issue%201%20-%20final.pdf%3e
http://msisac.cisecurity.org/resources/reports/documents/SymantecInternetSecurityThreatReport2010.pdf%3e
http://msisac.cisecurity.org/resources/reports/documents/SymantecInternetSecurityThreatReport2010.pdf%3e
http://www.symantec.com/about/news/release/article.jsp?prid=20101026_01%3e
http://portal.acm.org/citation.cfm?id=1162666.1162671%3e
http://www.artechhouse.com/getblob.aspx?strname=has-ch02.pdf%3e

- 142 -

programming flaws and how to fix them, illustrated edn, McGraw-Hill Professional,

San Francisco.

IEEE 2009, IEEE Standard for a Software Quality Metrics Methodology, The

Institute of Electrical and Electronics Engineers Inc., viewed 12 November 2011,

<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159>.

Igure, V & Williams, R 2008, 'Taxonomies of attacks and vulnerabilities in computer

systems', Communications Surveys & Tutorials, IEEE, vol. 10, no. 1, pp. 6-19.

Insights, A 2009, Researching in Organisations - Research Design, Acumen

Insights, viewed 22 July 2011, <http://www.acumen-insights.com/>.

Jackson, M & King, P 2011, Cybercrime in 2011: Sector by Sector Risk Break

Down, SC Magazine UK, SC TV, SC Webcasts, viewed 7 May 2011,

<http://www.scwebcasts.tv/>.

Jankowicz, AD 2005, Business research projects, 4th edn, Cengage Learning

EMEA, Bedford Row, London, UK.

Jarzombek, J 2011, Software Assurance : Building in Security as a Requisite Enabler

for Highly Reliable, Safety-Critical Software-Intensive Systems, U.S. Department of

Homeland Security, viewed 25 June 2012,

<http://www.omg.org/news/meetings/tc/agendas/va/SysA_pdf/Jarzombek.pdf>.

Jones, JR 2007, 'Estimating software vulnerabilities', Security & Privacy, IEEE, vol.

5, no. 4, pp. 28-32.

Kan, SH 2003, Metrics and models in software quality engineering, 2nd edn, Pearson

Education, India.

Kannan, K & Telang, R 2005, 'Market for Software Vulnerabilities? Think Again',

Management Science, vol. 51, no. 5, pp. 726-40.

Khadraoui, D & Herrmann, F 2007, Advances in Enterprise Information Technology

Security, illustrated edn, Idea Group Inc (IGI), Hersbey, USA.

Kissel, R, Stine, K, Scholl, M, Rossman, H, Fahlsing, J & Gulick, J 2008,

Information Security : Security Considerations in the System Development Life

Cycle, NIST SP 800-64, Revision 2, National Institute of Standards and Technology

(NIST), U.S. Department of Commerce, Gaithersburg, MD.

Kitchenham, B, Pearl Brereton, O, Budgen, D, Turner, M, Bailey, J & Linkman, S

2009, 'Systematic literature reviews in software engineering - A systematic literature

review', Information and Software Technology, vol. 51, no. 1, pp. 7-15.

Krauss, SE 2005, 'Research paradigms and meaning making: A primer', The

Qualitative Report, vol. 10, no. 4, pp. 758-70.

Krejcie, RV & Morgan, DW 1970, 'Determining sample size for research activities',

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159%3e
http://www.acumen-insights.com/%3e
http://www.scwebcasts.tv/%3e
http://www.omg.org/news/meetings/tc/agendas/va/SysA_pdf/Jarzombek.pdf%3e

- 143 -

Educucational and Psychological Measurement, vol. 30, no. 3, pp. 607-10.

Krishnan, MS, Kriebel, CH, Kekre, S & Mukhopadhyay, T 2000, 'An empirical

analysis of productivity and quality in software products', Management Science, vol.

46, no. 6, pp. 745-59.

Kuechler, WL 2007, 'Business applications of unstructured text', Communications of

the ACM, vol. 50, no. 10, pp. 86-93.

Kumar, R 2010, Research methodology: A step-by-step guide for beginners, 3rd edn,

Sage Publications Ltd, London, UK.

Laakso, M, Takanen, A & Röning, J 2001, 'Introducing constructive vulnerability

disclosures', paper presented to the 13th First Conference Computer Security

Incident Handling & Response, Toulouse, 17-22 June, 2001.

Landwehr, CE, Bull, AR, McDermott, JP & Choi, WS 1994, 'A taxonomy of

computer program security flaws', ACM Computing Surveys (CSUR), vol. 26, no. 3,

pp. 211-54.

Langweg, H & Snekkenes, E 2004, 'A classification of malicious software attacks',

paper presented to the 23rd IEEE Intternational Conference on Performance,

Computing, and Communications, 15-17 April, 2004.

Leedy, P & Ormrod, J 2001, Practical Research:Planning and Design, 7th edn, vol.

7, NJ.

Leoncini, R, Rentocchini, F & Vittucci Marzetti, G 2010, Coexistence and Market

Tipping in a Diffusion Model of Open Source vs. Proprietary Software, SSRN,

viewed 15th July 2011, <http://ssrn.com/paper=1140783>.

Li, P & Rao, H 2007, 'An examination of private intermediaries‘ roles in software

vulnerabilities disclosure', Information Systems Frontiers, vol. 9, no. 5, pp. 531-9.

Lieberman, H & Fry, C 2001, 'Will software ever work?', Communications of the

ACM, vol. 44, no. 3, pp. 122-4.

Liu, Q & Zhang, Y 2011, 'VRSS: A new system for rating and scoring

vulnerabilities', Computer Communications, vol. 34, no. 3, pp. 264-73.

Lohmeyer, DF, McCrory, J & Pogreb, S 2002, 'Managing information security',

McKinsey Quarterly, vol. 2, no. 2, pp. 12-6.

Lowis, L & Accorsi, R 2009, 'On a Classification Approach for SOA Vulnerabilities',

paper presented to IEEE Workshop Security Aspects of Process and Services

Engineering (SAPSE), Freiburg, Germany, 20-24 July, 2009.

MacCallum, R 1998, 'Commentary on quantitative methods in I/O research', To

appear in The Industrial-Organizational Psychologist, vol. 35, no. 4, pp. 19-30.

http://ssrn.com/paper=1140783%3e

- 144 -

MacCormack, AD, Rusnak, J, Baldwin, CY & Research, HBSDo 2006, 'Exploring

the structure of complex software designs: An empirical study of open source and

proprietary code', Management Science, vol. 52, no. 7, p. 1015.

Macro, M n.d., Building Security Into The Software Life Cycle : A Business Case,

Foundstone Professional Services , a Division of McAfee, viewed 24 0ctober 2011,

<http://www.blackhat.com/presentations/bh-usa-06/bh-us-06-Morana-R3.0.pdf>.

Mangalaraj, GA & Raja, M 2005, 'Software Vulnerability Disclosure and its Impact

on Exploitation: An Empirical Study', paper presented to Proceedings of AMCIS

National Conference, Omaha, NE, August, 2005.

Martin, RA 2001, 'Managing vulnerabilities in networked systems', Computer, vol.

34, no. 11, pp. 32-8.

McBurney, D 2001, Research Methods, 5th edn, Wadsworth Thomson Learning,

Belmont, CA.

McCluskey, A & Lalkhen, AG 2007, 'Statistics II: Central tendency and spread of

data', Continuing Education in Anaesthesia, Critical Care & Pain, vol. 7, no. 4, p.

127.

McKinney, D 2008, 'New Hurdles for Vulnerability Disclosure', IEEE Security &

Privacy, vol. 6, no. 2, pp. 76-8.

Mell, P & Tracy, MC 2002, Procedures for Handling Security Patches:

Recommendations of the National Institute of Standards and Technology, NIST SP

800-40, National Institute of Standards and Technology, Gaithersburg, MD.

Mell, P, Bergeron, T & Henning, D 2005, Computer Security : Creating a Patch and

Vulnerability Management Program, NIST SP800-40, Version 2, National Institute

of Standards and Technology (NIST), U.S. Department of Commerce, Gaithersburg,

MD.

Mell, P, Scarfone, K & Romanosky, S 2007, CVSS : A complete guide to the

common vulnerability scoring system, version 2.0, First - Forum of Incident

Response and Security Teams, viewed 23 August 2011, <http://www.first.org/

cvss/cvss-guide.pdf>.

Meunier, P 2008, Classes of Vulnerabilities and Attacks, CS03, Wiley Handbook of

Science and Technology for Homeland Security, USA.

Min, H 2009, 'Application of a decision support system to strategic warehousing

decisions', International Journal of Physical Distribution & Logistics Management,

vol. 39, no. 4, pp. 270-81.

Ming-Wei, W & Ying-Dar, L 2001, 'Open source software development: an

overview', Computer, vol. 34, no. 6, pp. 33-8.

Moore, DS 2009, The Basic Practice of Statistics, 5th edn, W. H. Freeman and

http://www.blackhat.com/presentations/bh-usa-06/bh-us-06-Morana-R3.0.pdf%3e
http://www.first.org/

- 145 -

Company, NY, USA.

Morana, M 2008, Software Security Frameworks, Foundstone Professional Services,

viewed 15 November 2011, <http://www.slideshare.net/marco_morana/software-

security-business-case-presentation>.

Nazario, J 2009, 'PhoneyC: a virtual client honeypot', paper presented to the 2nd

USENIX conference on Large-scale exploits and emergent threats, Boston, MA, 21

April, 2009.

Nithyashri 2010, System Software, 2nd edn, McGraw-Hill Education, New Delhi,

India.

Nizovtsev, D & Thursby, M 2007, 'To disclose or not? An analysis of software user

behavior', Information Economics and Policy, vol. 19, no. 1, pp. 43-64.

Nugroho, RF & Sampurno, RD 2010, 'Analisis Pengaruh Return On Equity, Insider

Ownership, Investment Opportunity Set, Firm Size, Cash Flow, Dan Debt Ratio

Terhadap Dividend Payout Ratio ', Undergraduate thesis, Diponegoro University.

NVD 2007, National Vulnerability Database : NVD Common Vulnerability Scoring

System Support v2, National Institute of Standards and Technology, viewed 15

March 2011, <http://nvd.nist.gov/cvss.cfm>.

NVD 2011a, National Vulnerability Database : Common Weakness Enumeration,

National Institute of Standards and Technology, viewed 15th November 2011,

<http://nvd.nist.gov/cwe.cfm#cwes>.

NVD 2011b, National Vulnerability Database : About NVD, National Institute of

Standards and Technology, viewed 10 July 2011, <http://nvd.nist.gov/about.cfm>.

O‘brien, RM 2007, 'A caution regarding rules of thumb for variance inflation

factors', Quality & Quantity, vol. 41, no. 5, pp. 673-90.

OIS 2004, Guidelines for Security Vulnerability Reporting and Response, Version

2.0, Organization for Internet Safety, viewed 20 November 2011,

<http://www.symantec.com/security/OIS_Guidelines%20for%20responsible%20disc

losure.pdf>.

Osbourne, JW & Waters, E 2002, Four Assumptions of Multiple Regression That

Researchers Should Always Test, Practical Assessment, Research & Evaluation,

viewed 18 July 2011, <http://pareonline.net/getvn.asp?v=8&n=2>.

OSVDB 2011a, The Open Source Vulnerability Database : Browsing Vulnerabilities

with Bugtraq ID references, Open Source Vulnerability Database, viewed 25 March

2011, <http://osvdb.org/browse/by_reference_type/BID>.

OSVDB 2011b, The Open Source Vulnerability Database, Open Source

Vulnerability Database, viewed 10 July 2011, <http://osvdb.org/>.

http://www.slideshare.net/marco_morana/software-security-business-case-presentation%3e
http://www.slideshare.net/marco_morana/software-security-business-case-presentation%3e
http://nvd.nist.gov/cvss.cfm%3e
http://nvd.nist.gov/cwe.cfm#cwes>
http://nvd.nist.gov/about.cfm%3e
http://www.symantec.com/security/OIS_Guidelines%20for%20responsible%20disclosure.pdf%3e
http://www.symantec.com/security/OIS_Guidelines%20for%20responsible%20disclosure.pdf%3e
http://pareonline.net/getvn.asp?v=8&n=2%3e
http://osvdb.org/browse/by_reference_type/BID%3e
http://osvdb.org/%3e

- 146 -

Otter, T 2007, 'Data protection law: The Cinderella of the software industry?',

Computer Law & Security Review, vol. 23, no. 1, pp. 67-72.

OVAL 2011, Open Vulnerability and Assessement Language : The Standard for

Determining Vulnerability and Configuration Issues on Computer Systems, The

MITRE Corporation, viewed 18th October 2011, <http://oval.mitre.org/>.

OWASP 2005, Category:Vulnerability, The Open Web Application Security Project,

viewed 25 July 2011, <https://www.owasp.org/index.php/Category:Vulnerability>.

OWASP 2010, OWASP Top 10 Application Security Risks - 2010, The Open Web

Application Security Project, viewed 25 June 2012,

<https://www.owasp.org/index.php/Top_10_2010-Main>.

OWASP 2011, Category:Vulnerability, The Open Web Application Security Project,

viewed 14 February 2011,

<https://www.owasp.org/index.php/Category:Vulnerability>.

Ozment, A 2007, 'Improving vulnerability discovery models', paper presented to

ACM workshop on Quality of protection, NY, USA, 2007.

Palvia, SC, Sharma, RS & Conrath, DW 2001, 'A socio-technical framework for

quality assessment of computer information systems', Industrial Management &

Data Systems, vol. 101, no. 5, pp. 237-51.

Parrend, P & Frénot, S 2008, 'Classification of component vulnerabilities in Java

service oriented programming (SOP) platforms', PhD thesis, National Institute of

Applied Sciences of Lyon.

Payne, C 2002, 'On the security of open source software', Information Systems

Journal, vol. 12, no. 1, pp. 61-78.

Pfleeger, CP & Pfleeger, SL 2003, Security in Computing, 3 edn, Prentice Hall PTR,

Upper Saddle River, NJ.

Pressman, RS 2010, Software engineering: a practitioner's approach, 7th edn,

McGraw-Hill Higher Education, CA.

Ransbotham, S 2010, 'An Empirical Analysis of Exploitation Attempts based on

Vulnerabilities in Open Source Software', paper presented to Workshop on the

Economics of Information Security (WEIS), June 2010.

Raymond, ES 2001, The Cathedral and The Bazaar Musings on Linux and open

source by accidental revolutionary 2nd edn, O'Reily Media, Inc., CA, USA.

Rehman, S & Mustafa, K 2009, 'Research on software design level security

vulnerabilities', ACM SIGSOFT Software Engineering Notes, vol. 34, no. 6, pp. 1-5.

Rescorla, E 2003, 'Security holes... who cares', paper presented to the 12th USENIX

Security Symposium (SSYM), CA, USA, 2003.

http://oval.mitre.org/%3e
http://www.owasp.org/index.php/Category:Vulnerability%3e
http://www.owasp.org/index.php/Top_10_2010-Main%3e
http://www.owasp.org/index.php/Category:Vulnerability%3e

- 147 -

Rescorla, E 2005, 'Is finding security holes a good idea?', Security & Privacy, IEEE,

vol. 3, no. 1, pp. 14-9.

Richardson, R 2009, CSI Computer Crime and Security Survey 2009, Computer

Security Institute, viewed 18 June 2012,

<http://gocsi.com/sites/default/files/pdf_survey/CSI%20Survey%202009%20Compr

ehensive%20Edition.pdf>.

Richardson, R 2010, Computer Crime and Security Survey 2010/2011, Compputer

Security Institute, viewed 18 June 2012, <http://gocsi.com/survey>.

Rokkan, AI & Buvik, A 2003, 'Inter-firm cooperation and the problem of free riding

behavior: An empirical study of voluntary retail chains', Journal of Purchasing and

Supply Management, vol. 9, no. 5-6, pp. 247-56.

Saint-Germain, R 2005, 'Information security management best practice based on

ISO/IEC 17799', Information Management Journal, vol. 39, no. 4, pp. 60-6.

Saltis, S 2009, Open Source vs. Closed Source (Proprietary) Software, coreDNA,

viewed 17th October 2011,

<http://www.coredna.com/files/openvsclosed.coredna.pdf>.

SANS 2003, Vulnerability Disclosure : How do we define Responsible Disclosure ?,

SANS Institute, viewed 15 th October 2011,

<http://www.sans.org/reading_room/whitepapers/threats/define-responsible-

disclosure_932>.

SANS 2007, Top 20 Internet Security Problems, Threats and Risks, SANS Institute,

viewed 1st November 2010, <http://www.sans.org/top20/2007/>.

SANS 2009, Top Cyber Security Risks : Application vs. Operating System Patching,

SANS Institute, viewed 25 June 2011, <http://www.sans.org/top-cyber-security-

risks/patching.php>.

Saunders, M, Lewis, P & Thornhill, A 2009, Research methods for business students,

5th edn, Financial Times Prentice Hall, Harlow.

Schechter, SE & Smith, MD 2003, 'How Much Security is Enough to Stop a Thief?',

paper presented to the Financial Cryptography Conference, Cosier, Guadeloupe, 27-

30 January, 2003.

Schneier, B 2001, Bug secrecy vs. full disclosure, ZDNet, viewed 25 July 2011,

<http://www.zdnet.co.uk/news/it-strategy/2001/11/21/bug-secrecy-vs-full-

disclosure-2116962/>.

Schryen, G 2009, 'A Comprehensive and Comparative Analysis of the Patching

Behavior of Open Source and Closed Source Software Vendors', paper presented to

Fifth International Conference on IT Security Incident Management and IT Forensics

(IMF), Stuttgart, 15-17 September, 2009.

http://gocsi.com/sites/default/files/pdf_survey/CSI%20Survey%202009%20Comprehensive%20Edition.pdf%3e
http://gocsi.com/sites/default/files/pdf_survey/CSI%20Survey%202009%20Comprehensive%20Edition.pdf%3e
http://gocsi.com/survey%3e
http://www.coredna.com/files/openvsclosed.coredna.pdf%3e
http://www.sans.org/reading_room/whitepapers/threats/define-responsible-disclosure_932%3e
http://www.sans.org/reading_room/whitepapers/threats/define-responsible-disclosure_932%3e
http://www.sans.org/top20/2007/%3e
http://www.sans.org/top-cyber-security-risks/patching.php%3e
http://www.sans.org/top-cyber-security-risks/patching.php%3e
http://www.zdnet.co.uk/news/it-strategy/2001/11/21/bug-secrecy-vs-full-disclosure-2116962/%3e
http://www.zdnet.co.uk/news/it-strategy/2001/11/21/bug-secrecy-vs-full-disclosure-2116962/%3e

- 148 -

Schryen, G & Rich, E 2010, 'Increasing Software Security through Open Source or

Closed Source Development? Empirics Suggest that We have Asked the Wrong

Question', paper presented to 43rd Hawaii International Conference on System

Sciences (HICSS), Honolulu, HI, 5-8 January, 2010.

Schumacher, HJ & Ghosh, S 1997, 'A fundamental framework for network security',

Journal of Network and Computer Applications, vol. 20, no. 3, pp. 305-22.

Seacord, RC & Householder, AD 2005, A structured approach to classifying security

vulnerabilities, CMU/SEI-2005-TN-003, CarnegieMellon Software Engineering

Institute, Pittsburgh, PA.

Secunia 2011, Methodology : Secunia Security Factsheets, Secunia, viewed 14

November 2011, <http://secunia.com/resources/methodology.pdf>.

SecurityFocus 2010, About SecurityFocus, SecuirtyFocus, viewed 10 July 2011,

<http://www.securityfocus.com/about>.

Shepherd, S 2003, Vulnerability Disclosure: How Do We Define Responsible

Disclosure?, GIAC SEC Practical Repository, SANS Inst, viewed 12 October 2011,

<http://www.sans.org/reading_room/whitepapers/threats/define-responsible-

disclosure_932>.

Silberschatz, A, Galvin, PB & Gagne, G 2009, Operating system concepts, 8th edn,

Wiley, Boston, MA.

Sulaiman, NA & Kassim, M 2010, 'An Approach Using RUP Test Discipline Process

for Shared Banking Services (SBS) System', paper presented to Second International

Conference on Computer Research and Development (ICCRD), Kuala Lumpur, 7-10

May, 2010.

Swire, PP 2004, ' A Model for When Disclosure Helps Security: What Is Different

about Computer and Network Security', Journal on Telecommunications and High

Technology Law, vol. 3, no. 1, p. 163.

Swire, PP 2006, 'A Theory of Disclosure for Security and Competitive Reasons:

Open Source, Proprietary Software, and Government Systems', Houston Law

Review, vol. 42, no. 5, pp. 101-48.

Tanaka, H, Matsuura, K & Sudoh, O 2005, 'Vulnerability and information security

investment: An empirical analysis of e-local government in Japan', Journal of

Accounting and Public Policy, vol. 24, no. 1, pp. 37-59.

Telang, R & Wattal, S 2005, 'Impact of software vulnerability announcements on the

market value of software vendors–an empirical investigation', paper presented to the

Fourth Workshop on the Economics of Information Security (WEIS), Cambridge,

MA, February, 2005.

Telang, R & Wattal, S 2007, 'An empirical analysis of the impact of software

vulnerability announcements on firm stock price', IEEE Transactions on Software

http://secunia.com/resources/methodology.pdf%3e
http://www.securityfocus.com/about%3e
http://www.sans.org/reading_room/whitepapers/threats/define-responsible-disclosure_932%3e
http://www.sans.org/reading_room/whitepapers/threats/define-responsible-disclosure_932%3e

- 149 -

Engineering, vol. 33, no. 8, pp. 544-57.

Thong, JYL, Yap, C-S & Raman, KS 2012, 'Engagement of External Expertise in

Information Systems Implementation', Journal of Management Information Systems,

vol. 11, no. 2, pp. 209-31.

TippingPoint 2009, The Top Cyber Security Risks, TippingPoint, viewed 15 July

2011, <www.dunkel.de/pdf/200909_TopCyberSecurityRisks.pdf>.

Tsipenyuk, K, Chess, B & McGraw, G 2005, 'Seven pernicious kingdoms: A

taxonomy of software security errors', Security & Privacy, IEEE, vol. 3, no. 6, pp.

81-4.

Tuli, F 2011, 'The Basis of Distinction Between Qualitative and Quantitative

Research in Social Science: Reflection on Ontological, Epistemological and

Methodological Perspectives', Ethiopian Journal of Education and Sciences, vol. 6,

no. 1, pp. 97-108.

Vaus, DD 2002, Survey in Social Research, 5th edn, Allen & Unwin, Crows Nest,

NSW, Australia.

Venter, H & Eloff, J 2004, 'Vulnerability forecasting—a conceptual model',

Computers & Security, vol. 23, no. 6, pp. 489-97.

WASC 2010, Threat Classification : The WASC Threat Classification v2.0, Web

Application Security Consortium, viewed 15th November 2011,

<http://projects.webappsec.org/w/page/13246978/Threat%20Classification>.

Weber, S, Karger, PA & Paradkar, A 2005, 'A software flaw taxonomy: aiming tools

at security', paper presented to Software Engineering for Secure Systems – Building

Trustworthy Applications (SESS), St. Louis, Missouri, USA, 2005.

Whitman, ME & Mattord, HJ 2010, Management of Information Security, 3rd edn,

Cengage Learning, Boston, MA.

Whitman, ME & Mattord, HJ 2011, Principles of Information Security, 4th edn,

Cengage Learning, Boston, MA.

Whitney, W 2009, Protection or Sabotage? An Ethical Analysis of Software

Vulnerability Disclosure, CSC 300, viewed 20 November 2011, <http://true-

reality.net/csc300/resources/Resources/Reference/Term-

Papers/termpaper_whitney.pdf>.

Williams, AT, Pescatore, J & Proctor, PE 2006, Responsible Vulnerability

Disclosure: Guidance for Researchers, Vendors and End Users, G00144061,

Gartner, Inc., Stamford, CT.

Xueqi, C, Nannan, H & Hsiao, MS 2008, 'A New Security Sensitivity Measurement

for Software Variables', paper presented to IEEE Conference on Technologies for

Homeland Security, Waltham, MA, 12-13 May, 2008.

http://www.dunkel.de/pdf/200909_TopCyberSecurityRisks.pdf%3e
http://projects.webappsec.org/w/page/13246978/Threat%20Classification%3e
http://true-reality.net/csc300/resources/Resources/Reference/Term-Papers/termpaper_whitney.pdf%3e
http://true-reality.net/csc300/resources/Resources/Reference/Term-Papers/termpaper_whitney.pdf%3e
http://true-reality.net/csc300/resources/Resources/Reference/Term-Papers/termpaper_whitney.pdf%3e

- 150 -

Yin, RK 2009, Case study research: Design and methods, 4th edn, vol. 5, Sage

Publications, London, UK.

Young, DK & Conklin, W 2010, 'Re-examining the Information Systems Security

Problem from a Systems Theory Perspective', paper presented to American

Conference on Information Systems (AMCIS), Lima, Peru, 8 January, 2010.

Yu, WD, Aravind, D & Supthaweesuk, P 2006, 'Software Vulnerability Analysis for

Web Services Software Systems', paper presented to 11th IEEE Symposium on

Computers and Communications (ISCC), Washington, DC, USA, 26-29 June, 2006.

Zevin, S 2004, Standards for Security Categorization of Federal Information and

Information Systems, National Institute of Standards and Technology, Gaithersburg,

MD.

Zikmund, WG 2010, Business research methods, 8th edn, South-Western Cengage

Learning, Mason, Ohio, USA.

- 151 -

Appendix A - The MRA Test for Three Levels (Low,

Medium and High) of Criticality of

Software Vulnerabilities

- 152 -

The MRA Test for Three Levels (Low, Medium and High) of Criticality of

Software Vulnerabilities

Coefficient Test for Low Level of Criticality

Coefficientsa

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.

Correlations
Collinearity

Statistics

B Std. Error Beta

Zero-

order Partial Part Tolerance VIF

1 (Constant) 1.240 1.393 .890 .408

Low Level of

Criticality

.179 .544 .121(*)(NS) .328 .754 .124 .133 .104 .734 1.363

Type of Software

Vendor

-.928 .473 -.645 -

1.963

.097 -.576 -.625 -

.620

.926 1.080

Type of Software .441 .892 .188 .495 .638 .075 .198 .156 .694 1.441

a. Dependent Variable: Log (Response Time)

* (NS) Insignificant

Coefficient Test for Medium Level of Criticality

Coefficientsa

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.

Correlations
Collinearity

Statistics

B Std. Error Beta

Zero-

order Partial Part Tolerance VIF

1 (Constant) 2.919 .437 6.674 .000

Medium Level of

Criticality

-.273 .095 -.181 (***) -2.885 .004 -.221 -.205 -

.180

.992 1.008

Type of Software
Vendor

-.673 .092 -.458 -7.282 .000 -.464 -.468 -
.455

.986 1.014

Type of Software .874 .441 .124 1.982 .049 .088 .143 .124 .994 1.007

a. Dependent Variable: Log (Response Time)

*** Significant at p<0.01 (one tailed)

Coefficient Test for High Level of Criticality

Coefficientsa

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.

Correlations
Collinearity

Statistics

B Std. Error Beta

Zero-

order Partial Part Tolerance VIF

1 (Constant) .800 .228 3.509 .000

High Level of

Criticality

.127 .025 .222 (***) 5.046 .000 .298 .233 .215 .941 1.063

Type of Software
Vendor

-.478 .065 -.321 -
7.309

.000 -.378 -.328 -
.311

.940 1.064

Type of Software .182 .087 .089 2.094 .037 .096 .099 .089 .999 1.001

a. Dependent Variable: Log (Response Time)

*** Significant at p<0.01 (one tailed)

