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Abstract 

 

Software vulnerabilities are a major problem for organizations and society given how 

pervasive the use of computers and the Internet and networks has become. 

Computers, the Internet and networks in general are underpinned by operating 

system software and, increasingly, software applications are integrated with the 

Internet.  In this increasingly complex environment hackers and attackers are more 

likely to take advantage of software vulnerabilities and exploit operating system 

software and application software. These software exploitations can result in huge 

losses to businesses which are highly reliant on computerized systems. Software 

vendors are responsible for securing these vulnerabilities through software patching. 

This study examines the effect of the level of criticality of software vulnerabilities, 

type of software vendor and type of software on the software vendors‘ response time 

in releasing software patches once software vendors have been informed of 

vulnerabilities in their software. 

 

The main theoretical support for this study is software security disclosure theory and 

an economic model of software security investment. These theories provide a 

framework for understanding how open source versus proprietary software vendors 

respond with patches to software vulnerabilities depending on the level of criticality 

of the software vulnerability and the type of software.  

 

Empirical data was collected from four related software vulnerability databases: 

SecurityFocus, Open Source Vulnerability Database, National Vulnerability 

Database and Secunia. These four software vulnerability databases contain archival 

data about software vulnerabilities which has been rigorously collected and screened. 

This research focuses on software vulnerabilities that have been recently reported in 

these software vulnerability databases from 2008 to 2010. To test the hypothesised 

relationships in the proposed research model, multiple regression analysis is used as 

the main statistical tool. 

 

Analysis of the archival data confirms that software vendors release patches for 

software vulnerabilities with a medium level of criticality in a shorter response time 
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than software vulnerabilities with low and high levels of criticality once the vendor 

has been informed of the software vulnerability. Open source vendors release patches 

for open source software vulnerabilities 39% quicker than proprietary source vendors 

release patches for proprietary software. Patches for operating system software 

vulnerabilities are released 8% slower than patches for application software 

vulnerabilities.  

 

This study contributes to the existing knowledge and theory by investigating how the 

different levels of criticality of software vulnerabilities, the differences between open 

and proprietary source software vendors and the difference between operating system 

software and application software impact on the response time of software vendors in 

releasing patches once the software vendor is informed of software vulnerabilities. 

The findings of this study also establish that responsible disclosure is a more 

effective mechanism than full disclosure for determining the response time of 

software vendors. This study contributes to practice by providing an enhanced 

understanding of the software vulnerability landscape and the complex process of 

software vendors‘ patching behaviour.  
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Chapter 1: Introduction 

 

1.1 Introduction 

This chapter introduces the dissertation topic, followed by a description of the 

specific project and the general research questions to be analysed in detail in later 

chapters. The chapter begins with an overview of software vulnerabilities, their 

impact on organisations, the general public and the economy in general; and the 

consequences for software vendors, IT managers and policy makers. The importance 

and motivation for releasing patches for software vulnerabilities in a timely and 

responsible manner is discussed and justified. This study attempts to identify to what 

extent the response time of software vendors in releasing software patches once the 

software vendors are informed of software vulnerabilities is influenced by the level 

of criticality of software vulnerabilities, type of software and type of software 

vendor. 

 

1.2 Background and Significance of the Study 

Since the late 1980s, economies of the world have become increasingly reliant on 

computerised systems and, more recently, networks. Businesses and governments 

have increased their productivity substantially through the use of software 

applications, the Internet and networked operating systems (Min 2009; Thong,  Yap 

&  Raman 2012). However, significant information security risks threaten these 

systems and applications. Most of these types of information security incidents are 

caused by flaws in software and the poor security of computer networks which are 

constantly attacked by viruses, worms and hackers (Cavusoglu &  Zhang 2006). It is 

estimated that there are as many as 20 flaws per thousand lines of software code 

(Cavusoglu et al. 2006; Dacey &  Robert 2003; Gerace &  Cavusoglu 2009). This is 

evident in the number of errors in design and implementation phases—which 

increase incrementally over the software development life cycle (Cavusoglu et al. 

2006; Dacey et al. 2003). Similarly, the added problem of design complexity or 

program complexity increases the difficulty that a programmer encounters in 

ensuring that the design and coding of software systems has ‗security‘ in mind. Such 
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difficulties in the software development life cycle are likely to result in potential 

software vulnerabilities that can be susceptible to cyber attack (Frei, May, Fiedler & 

Plattner 2006).  

 

The CSI Computer Crime and Security Survey 2010/2011 reported that the average 

loss per company from a software cyber attack was  $ 234,000 between July 2008 to 

June 2009; and just under $ 100,000 between July 2009 to June 2010 (Richardson 

2009, 2010). Losses from software cyber attacks in the UK were estimated to be 

$43.5 billion; and around $1 trillion globally in 2010 (Jackson &  King 2011).  

 

The Symantec MessageLabs Intelligence Report announced that targeted attacks 

have significantly increased year by year (Albin 2011; Fossi 2011; Fossi,  Mack &  

Johnson 2010). In 2005, the average monthly attack rates were 0.5 percent higher in 

comparison to past years and increased dramatically to 25 percent higher in 2010. 

Typically 200-300 organizations worldwide are targeted each month and attacks 

number 77 per day (Fossi et al. 2010). Similarly, Computer Emergency Response 

Team/Coordination Centre‘s (CERT/CC) statistics reveal that the number of software 

vulnerabilities catalogued by CERT increased significantly over the years from 171 

in 1995 to 6,058 in 2008 (Q1-Q3) (CERT 2009) and, overall, 44,074 software 

vulnerabilities were catalogued by CERT in that period of time. 

  

Security industry and software vendors endeavour to proactively identify and patch 

new software vulnerabilities by analysing identified common vulnerability exposures 

(CVE) from past years. Despite these efforts, attackers are often able to exploit 

software vulnerabilities. A large number of software vulnerabilities have been 

identified and released publicly since the late 1990s (Arora,  Telang &  Xu 2008). In 

general, when software vendors are informed of software vulnerabilities, users 

expect software vendors to patch these vulnerabilities. However, this does not seem 

to always be the case because poor software quality and resulting excessive delay in 

the release of software patches has emerged as a prominent issue of concern (Arora, 

Krishnan, Telang & Yang 2010a). Software vulnerabilities reported to CERT/CC are 

fully disclosed after 45 days; software vulnerabilities reported to the Organization for 

Internet Safety (OIS) are fully disclosed after 30 days; and software vulnerabilities 

reported to the NTbugtraq are fully disclosed after 14 days after the initial reporting 
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of a software vulnerability—in spite of the existence or accessibility of software 

patches or workarounds from affected software vendors (CERT 2008; Cooper 1999; 

OIS 2004). Software vendors are seriously concerned about security breaches and 

have attempted to strengthen their product quality to reduce software vulnerabilities. 

However, the ultimate solution to fix software vulnerabilities is to apply patches 

developed by software vendors in the earliest possible timeframe. Therefore, in order 

to better manage the potential risks associated with software vulnerabilities it 

becomes crucial to gain a better understanding of the relationship between software 

vulnerabilities and the key factors which influence the response time of software 

vendors in releasing software patches. 

 

1.3 Research Problem 

Software security is affected by a broad range of factors in a multifaceted 

environment of software engineering (Ardi,  Byers &  Shahmehri 2006). When a new 

software vulnerability is discovered, various parties such as software vendors, IT 

managers, policy makers and researchers actively participate to solve the problems 

encountered with each software vulnerability. This has been a continuous trend since 

the beginning of the use of computer systems in mainstream organisations. A number 

of studies classified software vulnerabilities to enable real-world benefits in 

proactively addressing software vulnerabilities, including automatic assessment of 

threat posed by software vulnerabilities and assessment of mitigation strategies and 

techniques (Bishop 1999; Howard,  LeBlanc &  Viega 2010; Landwehr, Bull, 

McDermott & Choi 1994; Seacord &  Householder 2005; Tsipenyuk,  Chess &  

McGraw 2005). However, software vulnerability assessment is dynamic and the 

threat environment is changing rapidly over time (Xueqi,  Nannan &  Hsiao 2008) 

and software vulnerabilities are increasing exponentially. Previous studies examined 

software security investment issues and software quality issues in an attempt to solve 

the problems associated with software vulnerabilities. However, specific solutions to 

prevent software vulnerabilities occurring remain under investigation (Arora et al. 

2010a; Banerjee &  Pandey 2009; Kannan &  Telang 2005; Krishnan, Kriebel, Kekre 

& Mukhopadhyay 2000).  

 

Many studies have identified that the only way to solve a software vulnerability is to 
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inform the software vendor of the software vulnerability in order to encourage the 

software vendor to decrease the response time taken to release a software patch for a 

software vulnerability (Cencini,  Yu &  Chan 2005; Chambers &  Thompson 2004). 

The response time that software vendors take to release a software patch in previous 

studies was estimated from the full disclosure date of a software vulnerability (Arora, 

Krishnan, Telang & Yang 2005b; Arora et al. 2010a; Telang &  Wattal 2005). 

However, analysing the response time on the basis of the full disclosure date of 

software vulnerability does not provide an accurate estimation of the response time 

because software vendors are commonly informed of software vulnerabilities before 

the full disclosure of software vulnerability (Whitney 2009). Scant attention has been 

paid in previous research to analysing the response time of software vendors‘ 

patching behaviour on the basis of the vendor informed date.  

 

To address the research problem and gaps identified in the existing literature, the 

following general research question is investigated:   

 

To what extent does the level of criticality of software vulnerabilities, type of 

software vendor (Open source, Proprietary source vendor), type of software 

(Operating system software, Application software) influence the response time of 

software vendors in releasing patches when the software vendor is informed of 

software vulnerabilities? 

 

1.4 Justification for the Research 

This research is justified on the basis that it is unique in the depth that it intends to 

examine software vendors‘ response time in releasing a software patch in terms of 

level of criticality, type of software vendor and type of software once a software 

vendor has been informed of the software vulnerability. Patch release date is the date 

on which software vendors release patches for software vulnerabilities. Similarly, 

vendor informed date is the date when a researcher discloses the software 

vulnerability to the vendor (OSVDB 2011b). Software vendors‘ response time is the 

amount of time taken to release a software patch based on the date when the software 

vendor is informed of a software vulnerability (OSVDB 2011b). One of the key 

aspects of better and more secure software is minimizing the response time in 
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releasing patches for the software vulnerabilities (Arora et al. 2010).  

 

Some of the key factors which have greater impact on the response time of software 

vendors in releasing a software patch are (1) level of criticality of software 

vulnerability, (2) type of software vendor and (3) type of software. The level of 

criticality of a software vulnerability is the degree of security risks which are brought 

to operating system software or application system software in terms of potential 

security property violations (Xueqi et al. 2008). The level of criticality is associated 

with the type of software vendor and type of software. Therefore type of software 

vendor and type of software also make a significant difference to the response time 

in releasing software patches for software vulnerabilities.  

 

Gordon and Leob (2002) argue that the response time of software vendors in 

releasing software patches is an optimization decision where software vulnerabilities 

with a medium level of criticality are most optimal for software vendors in terms of 

effort to develop and release patches; whereas for low and high level of criticality 

vulnerabilities the effort of software vendor is less optimal to develop and release 

patches. Similarly, software security disclosure theory suggests that full disclosure of 

software vulnerabilities encourages software vendors to be more proactively and 

timely in responding to software vulnerabilities (Swire 2004, 2006). The response 

time of software vendors in releasing patches for software vulnerabilities is 

determined by the date of disclosure of software vulnerability. Therefore it is also 

important to understand the different types of software vulnerability disclosure in 

order to identify the actual response time.  Arora et al. (2010a, p. 115) defined that 

‗Full disclosure of software vulnerability refers to the publication of vulnerability 

information (i.e. publicly disclosed) before a patch to address the software 

vulnerability has been issued by the software vendor‘. The full disclosure date of 

software vulnerability is the date on which software vulnerabilities are publicly 

disclosed to end users or reported to the information security advisories or reported 

to the software vendors (Ozment 2007).  

 

A gap has been identified in previous studies regarding software vendors‘ patching 

behaviour for software vulnerabilities. Previous studies which analysed software 

vendors‘ patching behaviour for disclosed software vulnerabilities were inconsistent 
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in their key findings (Arora et al. 2010a; Liu &  Zhang 2011; Mangalaraj &  Raja 

2005; Schryen 2009; Schryen &  Rich 2010; Telang &  Wattal 2007). This might be 

because the response time for disclosed software vulnerabilities was calculated from 

the full disclosure date of software vulnerability. Different information security 

advisories follow different timeframes to disclose software vulnerabilities 

(Cavusoglu &  Raghunathan 2004 ; Cooper 1999; OIS 2004; SANS 2003). To 

address this inconsistency in determining the actual response time of software 

vendors in releasing software patches, this research calculates the response time of 

software vendors in releasing software patches on the basis of vendor informed date. 

 

The findings from this analysis of the response time of software vendors in releasing 

patches based on the vendor informed date should provide a better understanding 

about how quickly software vendors release patches to current software 

vulnerabilities depending on a number of key factors. These key factors are (1) the 

level of criticality of the software vulnerability, (2) whether the software vendor for 

the software vulnerability is an open source software vendor or proprietary source 

software vendor and (3) whether the software vulnerability is an operating system 

software vulnerability or an application software vulnerability. 

 

1.4.1 Contribution to Theory and Existing Knowledge 

This study seeks to confirm  

1. Whether and how the level of criticality of current software vulnerabilities 

influences the response time of the software vendor in releasing software 

patches;  

2. Whether the operating system software patches are released more quickly 

than   application software patches; and  

3. Whether the response time of software vendors in releasing software patches 

in response to software vulnerabilities is different between open source 

software vendors and proprietary source software vendors.  

This research contributes to existing theory and knowledge by empirically testing the 

impact of three independent variables on the response time of software vendors in 

releasing software patches for vendor informed software vulnerabilities in the current 

threat environment faced by organizations. Software security disclosure theory and 
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the economic model of software security investment provide the theoretical basis for 

this research. Software security disclosure theory is extended in this study to consider 

the impact of responsible disclosure of software vulnerability which provides a more 

accurate mechanism for determining the response time of software vendors in 

releasing software patches. The economic model of software security investment 

provides a means for explaining software vendors response time in releasing patches 

in terms of the level of criticality of software vulnerabilities. 

 

1.4.2 Contribution to Practice 

This research contributes to practice by providing a better understanding of the 

complex process of disclosing and releasing patches for software vulnerabilities in 

the context of the level of criticality of the software vulnerability; open source versus 

proprietary source software vendor; and operating system software versus application 

once a software vendor has been informed of a software vulnerability. This study 

also assists practitioners to decide how to more effectively undertake preventive 

measures for software vulnerabilities based on the impact of the level of criticality, 

the software type and the type of software vendor on the process of releasing 

software patches. These findings should better inform the management of software 

patching in practice. Furthermore, the findings of this study show that the responsible 

disclosure of software vulnerabilities is an effective mechanism that Government and 

regulators can use for encouraging software vendors to be more proactive in 

releasing software patches for software vulnerabilities once informed of software 

vulnerabilities. 

 

 1.5 Methodology 

This study grounded in a positivist paradigm and used a quantitative methodology to 

undertake an explanatory investigation of the relationship between vendor informed 

software vulnerabilities and the response time of software vendors in releasing 

software patches. The data collected to test hypothesised relationships in the 

proposed research model are drawn from four related and connected software 

vulnerability databases: SecurityFocus, Open Source Vulnerability Database, 

National Vulnerability Database and Secunia. These four software vulnerability 

databases contain archival data about software vulnerabilities which has been 
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rigorously collected and screened. This research focuses on software vulnerabilities 

that have been recently reported from 2008 to 2010 in the Open Source Software 

Vulnerability database and other related databases listed previously in this section. 

The following three hypotheses are tested in this study.  

 

H1: Software vendors release patches for software vulnerabilities with a medium 

level of criticality in a shorter response time than software vulnerabilities with low 

and high levels of criticality once the vendor has been informed of the software 

vulnerability. 

 

H2: Open source vendors release patches for open source software vulnerabilities 

more quickly than proprietary source vendors release patches for proprietary 

software vulnerabilities once the software vendor has been informed of the software 

vulnerability.  

 

H3: Patches for operating system software vulnerabilities are released more quickly 

than patches for application software vulnerabilities once the software vendor has 

been informed of the software vulnerability in the proposed research model. 

 

A multiple regression analysis is the main statistical tool used. Figure 1.1 represents 

a proposed research model for this study. 

 

 

 

 

 

 

  

 

 

 

Figure 1.1 The Proposed Research Model for this Study 
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1.6 Structure of Dissertation 

This dissertation is structured as follows: 

 

Chapter 2—Literature Review: This chapter provides an in-depth review of the 

relevant literature in relation to software vulnerabilities and the patching behaviour 

of software vendors. Specific research questions and a set of hypotheses are 

developed and justified from the relevant literature. These form the basis of the 

theoretical and conceptual model which will be tested in this research. Chapter 2 

concludes with a theoretical and conceptual model for investigating the response 

time of software vendors in releasing software patches once software vendors are 

informed of software vulnerabilities in terms of (1) the level of criticality of software 

vulnerabilities, (2) type of software vendor and (3) type of software.  

 

Chapter 3—Research Design and Methodology: This chapter describes and justifies 

the research methodology used to collect data and test the research model presented 

in Chapter 2 in the context and scope of the general research questions and set of 

hypotheses. The research design and appropriate research strategies employed for 

this study are described in detail. Further, the sources from where the archival data 

were obtained are discussed, followed by a discussion of the sample generation and 

measurement of variables. Finally, data analysis using descriptive statistics and 

multiple regression analysis techniques are discussed. 

 

Chapter 4—Data Analysis: This chapter presents and discusses the key findings 

from the analyses of archive data collected from four related and connected software 

vulnerability databases, namely, SecurityFocus, Open Source Vulnerability 

Database, National Vulnerability Database and Secunia Database, in order to provide 

answers to the three specific research questions and to test the three specific 

hypotheses developed for this research.  

 

Chapter 5—Conclusion: This chapter summaries the key finding of this study in 

relation to the three research questions investigated and the three hypotheses tested in 

this study; and provides a number of conclusions about the research problem and 

general research question addressed in this study. The contributions of this study to 
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theory and practice are discussed. Finally, the limitations of this study are 

acknowledged and suggestions for future research are offered. 

 

1.7 Definition of Key Terms 

Software Vulnerability 

A software vulnerability is a hole or weakness in a software application which can be 

a design flaw or an implementation bug that allows an attacker to cause harm to 

stakeholders of a software application (OWASP 2011). 

 

Full Disclosure of Software Vulnerability 

This study adopts the definition by Arora et al. (2010a, p. 115): ‗Full disclosure of a 

software vulnerability refers to the publication of vulnerability information (i.e. 

publicly disclosed) before a patch to address the vulnerability has been issued by the 

software vendor‘.    

 

Responsible Disclosure of Software Vulnerability 

The following definition is used for the responsible disclosure of a software 

vulnerability in this study: responsible disclosure of software vulnerability means 

when a vulnerability is discovered, the researcher, information security advisories 

inform the software vendor and the researchers, information security advisories and 

vendors work together diligently and ethically to produce a timely patch to reduce 

the risk as much as possible for the individuals and organizations (Cavusoglu &  

Raghunathan 2005, 2007; Shepherd 2003; Williams,  Pescatore &  Proctor 2006). 

 

Software Patching 

The following definition of software patching is used in this study: software patching 

is blocking the attacking paths and providing protection against the exploitation of 

software vulnerabilities which are caused by software vulnerabilities (Chen,  Boehm 

&  Sheppard 2007; Frei et al. 2006).  

 

Vendor Informed Date 

In this study, the vendor informed date is defined as: the date when researcher 

disclosed the vulnerability to the vendor (OSVDB 2011b). 
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Full Disclosure Date 

The following definition is used for the full disclosure date in this study: the date on 

which software vulnerabilities are publicly disclosed to their users or reported to the 

information security advisories or reported to the software vendors (Ozment 2007). 

 

Response Time 

The following definition is used for response time in this study: It is defined as the 

amount of time taken to release a software patch based on the date when the software 

vendor is informed of a software vulnerability. In this study, there are also some 

instances where software vendors have released software patches before the software 

vendor is informed about software vulnerabilities. In these situations, the response 

time is zero or a negative number of days (source: developed for this research). 

 

The Level of Criticality of a Software Vulnerability  

The following definition is used for the level of criticality of a software vulnerability 

in this study: It is the risk level assigned to each software vulnerability which 

describes the extent of damage that could be caused by a specific breach of 

confidentiality, integrity and availability for that software vulnerability (Liu et al. 

2011). 

 

Proprietary Source Software Vendor 

This study adopts the definition by Ming-Wei and Ying-Dar (2001, p. 33) 

‗Proprietary software vendors operate on a closed-source model: They develop their 

own software and release that software to the public with the intention of gaining 

market penetration and earning a profit‘. 

 

Open Source Software Vendor 

The following definition is used for open source vendor in this study:  Vendors who 

provide open source software with compilable source codes and these source codes 

can be modified or redistributed often free of cost (Payne 2002; Schryen et al. 2010) 

 

Operating System Software 

The following definition is used for operating system software in this study: It is a set 

of special programs that run on a computer system itself and run other programs as 

well. It also controls and coordinates the use of the hardware among the various 
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system programs and application programs for various users (Bhatt 2007; 

Silberschatz,  Galvin &  Gagne 2009).  

 

Application Software 

The following definition is used for application software in this study: It is defined as 

a set of programs written in a specific programming language to solve a particular 

problem. It is independent of the machine on which it is operated and intended to 

support the operation of a particular task (Nithyashri 2010). 

 

1.8 Delimitations of Scope and Key Assumptions 

Software vulnerabilities are a major problem for organizations and society given the 

pervasive use of computers, the Internet and networks (Farahmand, Navathe, Enslow 

& Sharp 2003; Martin 2001). Although a number of software vulnerabilities are 

identified and recorded in many software security databases, this research analysed 

software vulnerability data obtained as a primary source from the Open Source 

Vulnerability Database (OSVDB). Some of the required information for each 

software vulnerability is incomplete in this database to test the research model 

developed for this study. Thus, additional information for each software vulnerability 

was obtained from SecurityFocus database, National Vulnerability Database (NVD), 

Secunia database and vendor websites. The software vulnerabilities analysed in this 

study was limited to current software vulnerabilities from 2008 to 2010 that have 

been recorded in the OSVDB database and which have a vendor informed. 

 

 1.9 Conclusion 

This chapter lays the foundation for this dissertation. It provides a background on 

software vulnerabilities and the significance of better management of software 

patching of software vulnerabilities in practice. This study is justified because it 

makes a significant contribution to better understanding the complex process of 

patching of software vulnerabilities in the context of the level of criticality of 

software vulnerabilities; open source versus proprietary source software vendors; and 

operating system software versus application once software vendors have been 

informed of software vulnerabilities. The method by which this research has been 
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conducted is briefly described, the structure of the dissertation is outlined with an 

overview of each subsequent chapter, and a list of key definitions used in this 

dissertation is provided. Finally, the delimitations of scope and key assumptions of 

this study are provided. 

 

The next chapter conducts an in-depth review of the relevant literature in the field of 

information security in relation to software quality, software security investment, 

software vulnerabilities and software vulnerability disclosure and patching. 
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Chapter 2: Literature Review 

 

2.1 Introduction  

This chapter provides an in-depth review of the published literature and research on 

information security and, in particular, software vulnerabilities with the purpose of 

developing a research model grounded in the existing literature. According to 

Kitchenham et al. (2009) a systematic review of literature is an aggregation of 

empirical evidence achieved by using a number of techniques in different contexts. 

Software security disclosure theory and economic model of software security 

investment provide the theoretical lens for the research model developed in this 

study. Thus, the main output of this chapter is a research model for investigating 

how, once informed of software vulnerabilities—and depending on the level of 

criticality of the software vulnerabilities and the type of software—open source 

versus proprietary software vendors respond with patches. A specific set of research 

questions and hypotheses are developed from the relevant literature as the basis for 

testing the hypothesised relationships in the proposed research model. 

 

This chapter opens with an introduction to the parent disciplines applicable to this 

study and fundamental to information security. Throughout the discussion of the 

relevant literature there are references made to a number of previous research papers 

which address problems in the field of information security. This review 

systematically analyses major concepts underpinning the process of disclosure and 

patching software vulnerabilities. Figure 2.1 depicts how the review of relevant 

literature starts with the broad field of information security, software quality and 

software security investment as the parent literatures; and then moves to a narrow 

focus of software vulnerability disclosure and software patching. Subsequently, a 

conceptual framework is developed from the relevant literature to investigate the 

following research objectives: 
 

1. whether the level of criticality of current software vulnerabilities influence the 

response time of the software vendor in releasing software patches;  
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2. whether the response time of software vendors in releasing software patches in 

response to software vulnerabilities is different between open source software 

and proprietary source software; and 

3. whether the response time of software vendors in releasing software patches in 

response to software vulnerabilities is different between operating system 

software and application software.  

Finally, the research questions and related hypotheses that test the relationships in the 

proposed research model are presented and justified in the context of the existing 

literature. 
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2.2 Information Security 

 

It is somewhat ironic that one of the first uses of the computer was to break codes 

and ciphers used to protect information during World War II. The allied effort was 

greatly assisted by the use of the first computer to break the German Enigma code, 

which subsequently helped stop the German U-Boat Wolf-Packs from savaging 

allied shipping. Now, the security of all information stored and transmitted using 

computers or other electronic devices is subject to potential compromise (Alnatheer 

&  Nelson 2009; Whitman &  Mattord 2010, 2011).  

 

Security is a broad concept which has its own language and focuses on the processes 

of attacks on information, and in preventing, detecting and recovering from attacks 

(Alnatheer et al. 2009; Whitman et al. 2011). Information security is defined as 

procedures and actions designed to prevent the unauthorised disclosure, transfer, 

modification or destruction—whether accidental or intentional—of information from 

a computer system (Alnatheer et al. 2009; Gordon et al. 2002). Information includes 

data, voice, video, images and fax (Schumacher &  Ghosh 1997). Similarly, 

information security—also termed as computer security—refers to the security of 

computer programs, procedures and associated documentation and data pertaining to 

the operation of a computer system (Sulaiman &  Kassim 2010).  

 

One of the critical aspects of the information security problem is a software problem. 

According to Pfleeger and Pfleeger (2003), information security is the preservation 

of the confidentiality, integrity and availability (CIA) of information and information 

resources. The potential weakness in software that can be subsequently exploited in 

any of these information security components (confidentiality, integrity and 

availability) tends to be software vulnerabilities (Igure &  Williams 2008). Software 

vulnerabilities enable external attacks and allow attackers to exploit their privileges 

to gain unauthorised access to information, systems and services. Therefore, software 

security is one of the critical elements in managing information security for any 

organization or individual (Grand 2005). Additionally, software also interfaces with 

other application software and operating systems and network components that allow 

the processing of transactions, sharing of information and delivery of other services. 

A breach in software security occurs when an attacker exploits a flaw in a software 
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that causes the software to work in a manner for which it was not developed; and 

attackers exploit unexpected benefits of the interfaces with other information, 

applications systems and network components, resulting in undesirable consequences 

(Grand 2005). 

2.2.1 Information Security Components 

Information security can be categorised into three classic principles (Whitman et al. 

2011) 
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Figure 2.2 represents the information security triangle consisting of confidentiality, 

integrity and availability which have a significant effect on the security of 

information in software. In this study, these three classic principles of information 

security are used to rate the criticality of a software vulnerability.  

 

Confidentiality 

Confidentiality—also referred to as privacy or secrecy—refers to the protection of 

data so that it cannot be disclosed in an unauthorised fashion (Alnatheer et al. 2009; 

Escamilla 1998; Hassler 2001). In general, most IT users recognise the need to 

ensure that the information they transmit to a recipient should arrive without being 
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read by a third party. Encryption is the most widely used technique or process to 

provide confidentiality to data and systems. 

 

In terms of software security, a software vulnerability which provides root level 

access to unauthorised information is scored as a complete loss of confidentiality and 

has a severe adverse effect on organizational operations, organizational assets, or 

individuals. Similarly, a software vulnerability which provides user level access to 

unauthorised information is scored as a partial loss of confidentiality and has a 

limited adverse effect on organizational operations, organizational assets, or 

individuals (Mell,  Scarfone &  Romanosky 2007; NVD 2011b; OSVDB 2011b; 

Whitman et al. 2011; Zevin 2004).  

 

Integrity 

In general, the data integrity component of information security aims at ensuring that 

data is not modified or altered by unauthorised system users (Escamilla 1998; 

Hassler 2001). It is possible there could be serious consequences should users of 

systems make business decisions based on flawed information. System integrity 

relates to the assurance of accuracy, completeness and performance according to 

defined specifications (Khadraoui &  Herrmann 2007). Integrity is normally provided 

in a computing system through a number of approaches. Encryption can assist in 

providing data integrity by ensuring that data packets are not intercepted, modified 

and then re-transmitted to an unsuspecting recipient. Access control, which involves 

ensuring that only authorised users can gain access to data, is another mechanism 

that can be used to provide or ensure data integrity (Escamilla 1998; Hassler 2001; 

Khadraoui et al. 2007). Restricting access to a particular system makes it potentially 

harder for an outsider to access and then modify the data.  

 

In terms of software security, a software vulnerability which provides root level 

access to modify information is scored as a complete loss of integrity and has a 

severe adverse effect on organizational operations, organizational assets, or 

individuals. Similarly, a software vulnerability which provides user-level access to 

modify information is scored as partial loss of integrity and has a limited adverse 

effect on organizational operations, organizational assets, or individuals (Mell et al. 
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2007; NVD 2011b; OSVDB 2011b; Whitman et al. 2011; Zevin 2004).  

 

Availability 

The availability goal in information security aims to protect network services and 

data from unauthorised attempts to withhold information or computer resources 

(Escamilla 1998). Lack of access to information can be a critical concern. For 

instance, if patients‘ medical records become unavailable due to a network security 

problem the consequences could be fatal. Statements about the availability of 

network and data services cannot be made with the same level of confidence as those 

relating to confidentiality and integrity (Escamilla 1998). A hardware failure 

resulting in a network traffic congestion problem could deny users access to 

resources—either of which could be a result of equipment failure, poor network 

planning or some other reason than the result of a security incident per se. A number 

of controls may, however, be implemented to increase availability. Network design, 

access control and prioritising services and users can all promote enhanced resource 

availability. 

 

In terms of software security, a software vulnerability which provides root level 

disruption of access to information or an information system is scored as a complete 

loss of availability and has a severe adverse effect on organizational operations, 

organizational assets, or individuals. Similarly a software vulnerability which 

provides user-level disruption of access to information or an information system is 

scored as a partial loss of availability and has a limited adverse effect on 

organizational operations, organizational assets, or individuals (Mell et al. 2007; 

NVD 2011b; OSVDB 2011b; Whitman et al. 2011; Zevin 2004). 

 

2.3 Software Quality 

Computer software has become a driving force for all organizations and individuals 

(Pressman 2010). The capabilities of computer systems to safeguard the information 

and information resources are dependent on the performance of their software 

quality. Quality in the context of software involves a variety of quality attributes, for 

example, performance, security, reliability and so on. In this study, software quality 
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is investigated in relation to all kinds of software security flaws.  The International 

Organization for Standardization (ISO) defined quality as ‗the totality of features and 

characteristics of a product or service that bear on its ability to satisfy stated or 

implied needs‘ (Palvia,  Sharma &  Conrath 2001). IEEE defined software quality as 

the degree to which software possesses a desired combination of quality attributes 

such as design, performance, security, reliability and so on (IEEE 2009). Agarwal, 

Tayal and Gupta (2009, p. 89) defined software quality as a ‗Conformance to 

explicitly stated functional and performance requirements, explicitly documented 

development standards, and implicit characteristics that are expected of all 

professionally developed software‘.  This study adopts a definition of software 

quality by Kan (2003) which defines software quality as clearly defined software 

requirements (i.e. either users, owners or both) to avoid all kinds of security holes 

during software development life cycle (SDLC) phase using regular measurements of 

quality attributes such as reliability, integrity, availability, efficiency, security, 

maintainability and size of source code to protect the information security. Kan 

(2003) also added that any deviations from those requirements are considered to be a 

software vulnerability.  

 

Quality software protects users‘ information from potential software vulnerability 

exploitations. Software experts often blame software vulnerabilities on poor software 

development practices, such as improper testing, failure to control common 

programming errors, and poor understanding of the interactions between different 

components of complex software (Schneier 2001). The quality of software can be 

improved through the utilisation of superior personnel, effective use of computer 

aided software engineering (CASE) tools and early investment in planning and 

design of software (Arora et al. 2010a; Kannan et al. 2005; Krishnan et al. 2000). 

Lieberman and Fry (2001) argued that debugging is necessary and should be used to 

improve the quality of software. Banerjee and Pandey (2009) contended that to 

improve the quality of software, proper attention (such as not only thinking through a 

developer‘s perspective, but also through an attacker‘s perspective) should be given 

during the entire SDLC process because many critical functions such as access 

control, privacy, security, reliability, backup plan are entirely dependent on software 

development. They proposed 21 security rules to be implemented and obeyed by all 

stakeholders of a software development life cycle to provide better security in 
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software (see Figure 2.3). They found that practical implementation of these 21 

security rules throughout the stages of a software development life cycle resulted in 

software that is more secure and reliable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3 Rules of Software Security in SDLC 

Source: (Banerjee et al. 2009) 
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testing in the testing phase, and creating and enforcing complexity metric standards.   

 

Although researchers and software security industries have conducted many studies 

on how to improve the quality of software to reduce the occurrence of vulnerabilities 

from a number of different perspectives, software vulnerabilities are still increasing 
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software packages and services and customise them to their needs. Hence, they are 

reliant on the organisations which develop software to build security into software as 

part of the process of improving software quality.  

 

2.4 Software Security Investment 

Software vulnerabilities are a fact of life for organizations of all sizes. Unfortunately, 

some level of defects has also become the expected norm for a software purchase, 

whether for a small business payroll system, a medium business inventory control 

system, or a large business enterprise resource planning (ERP) deployment (Chelf 

2006). Researchers in the field of information security have mainly focused on the 

tools, techniques and policies that individuals and organizations can use to protect 

themselves from security breaches. However, information security is also strongly 

linked with software security (Telang et al. 2005). Costs related to software security 

have had an increasingly-significant impact on the U.S. economy (Arora, Forman, 

Nandkumar & Telang 2006b). The National Institute of Standards and Technology 

(NIST) estimated that software defects cost the U.S. economy upwards of $60 billion 

a year. NIST also found that detecting these defects earlier and with more diagnostic 

accuracy could result in as much as $22 billion in annual savings (Anonymous 2003; 

Arora,  Caulkins &  Telang 2006a; Chelf 2006). The hard truth is that software 

vulnerabilities affect both open source and proprietary source software and are very 

costly to all users and producers of software (Mell,  Bergeron &  Henning 2005).  

 

According to Kissel, Stine, Scholl, Rossman, Fahlsing and Gulick (2008), early 

integration of security in the SDLC enables software vendors to maximize return on 

investment in their security programs through early identification and mitigation of 

security vulnerabilities and mis-configurations, resulting in lower cost of security 

control implementation and vulnerability mitigation. Macro (n.d.) empirically 

analysed the software security development life cycle (S-SDLC). He found that 85% 

of software vulnerabilities are introduced in the coding phase of a software security 

development life. He argued that this occurs because of a lack of investment in 

software security. Microsoft identified that the cost of software security in USA for 

unbudgeted time to fix security problems is about 1000 man-hours; software security 

cost of training software developers in security is about $100 million; and NIST 
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identified that in the USA the cost of inadequate software testing is about $3.3 billion 

(Morana 2008).  

 

Cavusoglu, Mishra and Raghunathan (2004) designed a model focusing on ROSI 

(Return on Security Investment). They found that it is very difficult to calculate 

ROSI because of unexpected security breaches. They also found that risk analysis 

and cost effectiveness analysis tools work with high level of aggregate data (such as 

taxing, increasing possibility and scope of IT security breaches), which have limited 

value in an IT security setting. The difficulty of calculating ROSI is also proved by 

the 2010/2011 CSI Computer Crime and Security Survey. The 2010/2011 CSI 

Computer Crime and Security Survey revealed that 67.1% of respondents detected 

security breaches (Richardson 2010).  

 

Gordon and Loeb (2002) proposed that software vulnerabilities are an index of 

information security investment and developed a model that determined that there is 

a relationship between level of severity of software vulnerability and the 

effectiveness of security investment—explained as follows. When the level of 

severity of software vulnerability is low, a significant investment in security is hard 

to justify because the reduction of expected loss is low. Conversely, with a medium 

level of severity of software vulnerability, the level of security investment reduces 

expected loss more effectively. When the severity of software vulnerability is at the 

highest level, reduction of expected loss becomes more difficult to justify because of 

the significant security investment required by the software vendor. Under these 

assumptions, the model showed that the optimal level for software security 

investment peaks at a medium level of severity for software vulnerabilities (Tanaka,  

Matsuura &  Sudoh 2005). The nature of investments in software patching is a fixed 

cost which means the cost of fixing vulnerable software is almost independent of the 

number of software copies sold. Software vendors are taking advantage of this fixed 

cost nature and deliberately release a vulnerable software product, but patch the 

software later for the market (Arora et al. 2006a; Arora et al. 2008; Telang et al. 

2007) as this optimises their investment in a particular software product. 

Furthermore, currently there is little in the way of government regulation and 

legislation which discourages this type of behaviour by software vendors (Kuechler 

2007; Otter 2007; Saint-Germain 2005).  
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Although this study does not analyse the investment in software security, from the 

preceding discussion on software security investment it has been identified that 

software security investment is a key factor that influences the quality of software 

from an information security perspective and, potentially, how quickly software 

vendors response to software vulnerabilities to optimise their investment and effort 

based on the level of criticality of a software vulnerability. Similarly, the discussion 

also highlights that the reason so many software vulnerabilities exist is because of the 

lack of software security investment. In order to understand software vulnerabilities 

more fully, it is critical to understand the landscape of software vulnerabilities in 

detail.  

 

2.5 Software Vulnerabilities 

The following definitions of a software vulnerability have been identified from the 

literature.  According to Schryen (2009, p. 155), ‗When bugs on software can be 

directly used by attackers to gain access to a system or network, they are termed a 

software vulnerability‘. Telang and Wattal (2007, p. 544) provide a more detailed 

definition of a software vulnerability, namely, ‗a flaw in a software system that can 

cause it to work contrary to its documented design and could be exploited to cause 

the system to violate its documented security policy‘.  

 

This study adopts a broader and more current definition of a software vulnerability as 

a hole or a weakness in a software application which can be a design flaw or an 

implementation bug that allows an attacker to cause harm to stakeholders of a 

software application (OWASP 2011). To mitigate the risk of software vulnerabilities 

to organisations and individuals, it is important to classify software vulnerabilities 

appropriately so that they can be understood in depth. Different researchers and 

information security advisories have classified software vulnerabilities for different 

aspects of information security risk; therefore, a review of the classification of 

software vulnerabilities is discussed below.  

 

2.5.1 Classification of Software Vulnerabilities  

Tsipenyuk, Chess and  McGraw (2005) presented eight kingdoms of software 
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security vulnerabilities, and provided a mapping to 19 deadly sins of software 

security (Howard et al. (2005)) and to the top ten Open Web Application Security 

Project (OWASP (2005)) software vulnerabilities, as shown in table 2.1. A kingdom 

refers to a group of classes that share a common theme and a sin refers to software 

security defects. The main purpose of this classification is to reduce unnecessary 

levels of confusion among practitioners and software developers about common 

software coding errors that affect information security.  

 

Table 2.1 Mapping 19 Sins and Top 10 OWASP Software Vulnerabilities into Eight 

Kingdoms of Software Vulnerabilities 

Eight Kingdoms 19 Sins Top 10 Open Web 

Application Security Project 

(OWASP) Software 

Vulnerabilities 

1.Input validation 

and representation 

(1) Buffer overflows (2) command injection  (3) cross-site scripting, 

(4) format string problems (5) integer range errors (6) SQL injection 

(1) Buffer overflows (2) cross-

site scripting flaws (3) 
injection flaws (4) unvalidated 

input 

2. API abuse (7) Trusting network address information  

3.Security features (8) Failing to protect network traffic (9) failing to store and protect 
data (10) failing to use cryptographically strong random numbers, 

(11) improper file access (12) improper use of SQL (13) use of weak 

password-based systems (14) unauthenticated key exchange 

(5) Broken access control (6) 
insecure storage 

4.Time and state (15) Single race conditions (16) use of ―magic‖ URLs and hidden 

forms 

(7) Broken authentication and 

session management 

5.Errors (17) Failure to handle errors (8) Improper error handling 

6.Code quality (18) Poor usability (9) Denial of service 

7.Encapsulation (19) Information leakage  

8.Environment  (10) Insecure configuration 

management 

Source: adopted from (Tsipenyuk et al. 2005) 

 

Furthermore, Berghe, Riordan and Piessens (2005) proposed an approach for the 

creation of predictive taxonomies regarding likely software vulnerabilities, and 

presented an example based on Bugtraq software vulnerabilities data. Bugtraq is a 

high volume, full disclosure mailing list for the detailed discussion and 

announcement of computer security vulnerabilities (SecurityFocus 2010). Similarly, 

Weber, Karger and Paradkar (2005) presented a new software vulnerability 

taxonomy analysing incident reports in modern software and previously categorised 

software vulnerabilities together. The main purpose of creating a new taxonomy is to 

adequately represent software vulnerabilities in modern software. Table 2.2 shows a 

software vulnerability taxonomy. This taxonomy categorises software vulnerabilities 

in terms of intentional and inadvertent software vulnerabilities to represent both 

previously identified software vulnerabilities, as well as modern software 
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vulnerabilities—an aspect lacking in prior research on the classification of software 

vulnerabilities.  

 

Intentional refers to software flaws—which may be malicious or non-malicious—

developed intentionally to harm the system. Similarly, inadvertent refers to software 

flaws generated accidently while, for example, coding, designing, implementing and 

testing software. Although, the security of software is threatened by both intentional 

and inadvertent software vulnerabilities, inadvertent or unintentional software 

vulnerabilities can be exploited once hackers are aware these software vulnerabilities 

exist. Jarzombek (2011) reported that the most exploitable software vulnerabilities 

(which are unintentional software vulnerabilities) are attributed to non-secure coding 

practices (i.e. not defined in software testing phase). He also added that hackers are 

opting to target these unintentional software vulnerabilities in operating system 

software and application software to circumvent security controls rather than attempt 

to break or defeat network or system security. Conversely, the internal crime 

department of the United States Secret Service (USSS) investigated internal data 

breaches within the organizations in 2010. It found that 90% of data breaches were 

intentional and 10% of data breaches were unintentional (Baker, Goudie, Hutton, 

Hylender, Niemantsverdriet, Novak, Ostertag, Porter, Rosen & Sartin 2010).  

 

The intentional and unintentional software vulnerabilities taxonomy based on Weber 

et al. (2005) in Table 2.2 is mapped with OWASP top ten 2010 web-based software 

vulnerabilities. 

 

 

 

 

 

 

 

 

 



 

- 27 - 

Table 2.2 Intentional and Unintentional  Software Vulnerability Taxonomy 

 
Type of Software 

Vulnerability 

High level 

classification 

Specific classification OWASP Top Ten Software 

Vulnerability Items mapped 
 
 

Intentional 

 
 

 

 
Inadvertent 

(Unintentional) 

Malicious Trap door N/A 

Logic/Time Bomb N/A 

Non-malicious Convert Channel  N/A 

Inconsistent access paths N/A 

Validation Error Addressing errors N/A 

Poor parameter value check Cross-Site Scripting (XSS) 

Incorrect check positioning N/A 

Identification/authentication 
inadequate 

Insecure Direct Object References,  
Broken Authentication and Session 

Management 

Abstraction Error Object Reuse N/A 

Exposed Internal Representation N/A 

Asynchronous Flaws Concurrency (including 

TOCTTOU)  

N/A 

Aliasing N/A 

Subcomponent 

misuse/failure 

Resource Leak N/A 

Responsibility Misunderstanding Injection 

Functionality Error Error handling failure Cross-Site Scripting 

Other security flaw Insecure Cryptographic Storage 

Source adapted: (Weber et al. 2005) 

 

The OWASP top ten 2010 web based software vulnerabilities are: (1) Injection, (2) 

Cross-Site Scripting (XSS), (3) Broken Authentication and Session Management, (4) 

Insecure Direct Object References, (5) Cross-Site Request Forgery (CSRF), (6) 

Security Misconfiguration, (7) Insecure Cryptographic Storage, (8) Failure to 

Restrict URL Access, (9) Insufficient Transport Layer Protection and (10) 

Unvalidated Redirects and Forwards (OWASP 2010). In table 2.2, Cross-Site 

Scripting and Insecure Cryptographic Storage are partially mapped with the Weber et 

al. (2005) taxonomy where as Injection, Broken Authentication and Session 

Management,  and Insecure Direct Object References are completely mapped in the 

Weber et al. (2005) taxonomy. The other OWASP Top Ten software vulnerabilities 

which are only partially mapped or not mapped in Weber et al. (2005) taxonomy are 

design or configuration errors and considered to be out of scope. Moreover none of 

the intentional software flaws in Weber et al. (2005) taxonomy are mapped with 

OWASP Top Ten software vulnerabilities. This study examined both intentional and 

unintentional software vulnerabilities but it should be acknowledged most software 

vulnerabilities are unintentional and are a result of poor design, coding, configuration 

and testing of software and related hardware. 

 

Similarly, Engle, Whalen, Howard and Bishop (2006) described a tree-based 

classification approach to classify existing software vulnerabilities on the basis of 
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software vulnerability characteristics. This classification approach allows software 

vulnerabilities to fall into multiple classes without ambiguity. Characteristics in this 

classification of software vulnerabilities indicate attributes of a vulnerable state. 

Although classification of software vulnerabilities on the basis of characteristics 

provides more in-depth understanding and meaning of the impact of software 

vulnerabilities, this classification approach provided no guidance on which 

characteristics to use or where to derive those characteristics from. 

 

Moreover, Yu, Aravind and Supthaweesuk (2006) discussed security-related 

software vulnerabilities in SOAP (Simple Object Access Protocol) based web 

services and analysed the common pattern of attacks in the increased complexity and 

connectivity of the web services environment. However, no further software 

vulnerability classification was provided. The main purpose of analysing web related 

software vulnerabilities is to map common attack patterns for security verification 

requirements with regard to web service software systems. Similarly, the SANS Top 

20 (2007) did not list single software vulnerabilities, but it classified software 

vulnerabilities into high level in terms of client-side software vulnerabilities and 

server-side software vulnerabilities and the risks they cause.  

 

With the increasing problems in web based software and security, software 

vulnerabilities have been more broadly classified from late 2010.  Parrend and Frénot 

(2008) created a classification of Java component vulnerabilities in the OSGi (Open 

Services Gateway Initiative) platform. Similarly, security experts at Microsoft 

corporation, Howard, LeBlanc and Viega (2010) provided the ‗24 deadly sins of 

software security‘ as a comprehensive high level framework for classifying software 

vulnerabilities based on their practical knowledge and experiences (see table 2.3).   
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Table 2.3 The ‗24 Deadly Sins of Software Security‘ 

 

Web Application Sins 

1 SQL Injection 

2 Server side Cross-Site Scripting  

3 Web Client Related Vulnerabilities 

 

 

 

 

 

Implementation Sins 

4 Use of Magic URLs 

5 Buffer Overruns 

6 Format String Problems 

7 Integer Overflows 

8 C + + Catastrophes 

9 Catching All Exceptions 

10 Command Injection 

11 Failure to Handle Errors 

12 Information Leakage 

13 Race Conditions 

14 Poor Usability 

15 Not Updating Easily 

 

Cryptographic Sins 

16 Not Using Least Privileges 

17 Weak Password Systems 

18 Unauthenticated Key Exchange 

19 Random Numbers 

 

Networking Sins 

20 Wrong Algorithm 

21 Failure to Protect Network Traffic 

22 Trusting Name Resolution 

Stored Data Sins 23 Improper Use of SSL/TLS 

24 Failure to Protect Stored Data 

Source: (Howard et al. 2010) 

 

In table 2.3, 24 deadly sins are classified under five domains of software security 

defects. In this classification, sins are also referred to as software security defects. 

Although this classification of software defects is the most current and 

comprehensive classification of software defects, not all of the classified software 

defects are relevant to this proposed study. Software defects related to web 

application sins, implementation sins and cryptography sins are relevant in terms of 

their impact (the level of criticality of a software vulnerability). However, 

networking sins and stored data sins are not relevant and beyond the scope of this 

research. Networking and stored data sins are not discussed in Common Weakness 

Enumeration (CWE) and National Vulnerability Database (NVD) from where the 

level of the criticality of software vulnerabilities is obtained to test the proposed 

research hypotheses in this study. 

 

 

Furthermore, The Web Application Security Consortium (WASC) classified 46 types 

of web based software vulnerabilities with the contribution of application developers, 

security professionals, software vendors and compliance auditors to ensure a 

consistent language for web applications related issues (WASC 2010). Similarly, the 

Open Web Application Security Project (OWASP) is dedicated to improving the 

security of software applications worldwide and have categorised software 
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vulnerabilities into 165 categories. The main purpose of the categorisation of 

software vulnerabilities is to make the software consumer more aware of the impact 

of software vulnerabilities. Thus, individuals and organisations can make informed 

decisions about software exploitation risks and take appropriate action to reduce the 

risks of software exploitation to an acceptable level (OWASP 2011). The CAPEC 

(2011), CWE (2011) and OVAL (2011) classified software vulnerabilities in terms of 

attacks, weakness and vulnerabilities respectively.  

 

The review of software vulnerability classifications provided the background to how 

software vulnerabilities are classified in terms of their common characteristics and 

their nature of impact. On the basis of this review, this study empirically analysed 

software vulnerabilities classified in CWE (2011) in terms of their impact (the level 

of criticality of a software vulnerability) on the response time of software vendors in 

releasing software patches. Software vulnerability classification in CWE (2011) is 

discussed in more detail with regard to NVD database in the next section.  

Furthermore, to obtain the detailed information about the impact (i.e. the level of 

criticality of software vulnerability), software vendor type and software type, this 

study also used the classification of software vulnerabilities from the prominent 

software vulnerabilities databases SecurityFocus (2010), OSVDB (2011b), NVD 

(2011b), and Secunia (2011), which are discussed in detail in the next section.  

 

2.6 Software Vulnerability Databases and Software Vulnerability 

Classification 

Landwehr et al. (1994) observed that the history of software vulnerabilities has been 

mostly undocumented, however, knowing how systems have failed can help in 

designing a system which is less prone to being vulnerable. The software 

vulnerability database is a right step in that direction as it provides a historical record 

of software vulnerabilities that is a useful reference resource for organizations to 

proactively manage software vulnerabilities in their organisational context. 

 

A software vulnerability database serves as a repository of software vulnerability 

information collected from different sources, is organized to allow useful queries to 

be performed on the data, and can provide valuable information to system designers 
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in identifying areas of weaknesses in the design, requirements or implementation of 

software within an organisation (Venter &  Eloff 2004). A software vulnerability 

database can also be used to maintain vendor patch information, vendor and response 

security advisories, and catalogue the patches applied in response to those security 

advisories (Mell &  Tracy 2002). This information is also helpful for system 

administrators to protect the systems from information security breaches. 

 

The most prominent software vulnerability databases are listed in alphabetical order 

in Table 2.4, with a column to indicate which software vulnerability databases are 

used in this research.  

 

Table 2.4 Software Vulnerability Databases 

Database name Unique identity Databases used in 

this research 

IBM‘s Internet Security System (ISS) (IBM ISS 2009) ISS X-Force ID  

Microsoft Security Bulletin  (Microsoft 2011) Microsoft Bulletin ID  

National Vulnerability Database (NVD) (NVD 2011) CVE ID YES 

Open Source Vulnerability Database (OSVDB) 
(OSVDB 2011) 

OSVDB ID YES 

Secunia (Secunia 2011) Secunia Advisory ID YES 

SecurityTracker (SecurityGlobal 2011) Security Tracker Alert ID  

SecurityFocus (SecurityFocus 2010) Buqtraq ID YES 

US-CERT Vulnerability Notes Database (US-CERT 2011) Vulnerability Notes ID  

Vupen Security (Vupen Security 2011) Vupen ID  

Source: adapted from (Langweg &  Snekkenes 2004) 

 

All these software vulnerability databases provide the following information for each 

software vulnerability recorded:  

 A unique identity for each software vulnerability 

 A detailed description of software vulnerability 

 Full disclosure date of software vulnerability  

 Vulnerable software‘s name  

 Vulnerable software vendor‘s name 

 Severity of software vulnerability  

 Software vulnerability disclosing references 

 References to the affected software vendors and their product 

 References to related reports and to descriptions in other databases 

 Software patch release information 

 Protection links from particular software vulnerability.  
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This research is based on four major software vulnerability databases: Security 

Focus, OSVDB, NVD and Secunia. Although the unique identity for each software 

vulnerability is provided in these databases (i.e. SecurityFocus, OSVDB, NVD and 

Secunia) and is referenced in the OSVDB database, the details and classification of 

software vulnerabilities in each of these software vulnerability databases are 

described in their own way, which makes it difficult to map each software 

vulnerability into a single table.  

Therefore, the main features of each software vulnerability database are discussed in 

turn. Tables 2.5, 2.6, 2.8 and 2.10 represent the main features of SecurityFocus, 

OSVDB, NVD and Secunia software vulnerability databases respectively. The 

SecurityFocus database is a main source of software vulnerability data because it has 

been maintained since 1999 (see Table 2.5).   

 

2.6.1 SecurityFocus 

SecurityFocus is a vendor-neutral site that provides objective, timely and 

comprehensive security information to all members of the security community, from 

end users, security hobbyists and network administrators to security consultants, IT 

managers, CIOs and CSOs (Arora, Forman, Nandkumar & Telang 2010b; Arora et 

al. 2010a; Li &  Rao 2007; SecurityFocus 2010). SecurityFocus hosts the Bugtraq 

mailing list which is a high volume, full disclosure mailing list for the detailed 

discussion and announcement of computer security vulnerabilities, including all 

vendor-informed and fully-disclosed software vulnerabilities.  

 

BugTraq also serves as the cornerstone of the Internet-wide security community 

(SecurityFocus 2010).  

 The SecurityFocus Vulnerability Database provides security professionals 

with up-to-date information on vulnerabilities for all platforms and services.  

 SecurityFocus Mailing Lists allow members of the security community from 

around the world to discuss security issues. There are currently 31 mailing 

lists; most are moderated to keep posts on-topic and to eliminate spam.  
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Table 2.5 summarises main features of SecurityFocus database. 

Table 2.5 Features of SecurityFocus Database 

Unique 

Identity 
Information Discussion Exploit Solution References 

Bugtraq 

ID 
Class, CVE, Remote, 

Local, published date, 

updated date, creditor‘s 
name  and vulnerable 

software 

Discussion 

regarding 

software 
vulnerability 

Information about 

the exploits from the 

each software 
vulnerability 

Information 

about the 

solution 
provided 

Affected vendors 

and products and 

advance security 
notification 

Source: (SecurityFocus 2010) 

 

The following list provides a brief description of the main fields in the SecurityFocus 

database (SecurityFocus 2010):  

 Bugtraq id represents a unique identification of each software vulnerability 

through the Common Vulnerability Enumeration (CVE_ID) identification for 

each software vulnerability  

 Remote or local attack of software vulnerability  

 Full disclosure date of software vulnerability 

 Solution provided date for software vulnerability  

 Information about the researcher who disclosed the vulnerability and affected 

software from that particular software vulnerability  

 Discussion provides core information about the software vulnerability  

 Exploit provides exploitation details for each software vulnerability  

 Solution provides details of how software vulnerability is fixed and reference 

provides links and cross-references for the vulnerability.  

 

Overall, the SecurityFocus database provides more qualitative information than 

quantitative information about software vulnerabilities. 

 

2.6.2 Open Source Vulnerability Database 

OSVDB is an independent and open source database created by and for the software 

security community (Frei et al. 2006; OSVDB 2011b; Yu et al. 2006). The goal of 

this database is to provide accurate, detailed, current and unbiased technical 

information on software security vulnerabilities. This database promotes greater, 

more open collaboration between companies and individuals, eliminates redundant 
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work, and reduces expenses inherent with the development and maintenance of in-

house software vulnerability databases (OSVDB 2011a). The database currently 

covers 72,658 vulnerabilities, spanning 34,257 products from 4,735 researchers, over 

46 years (Frei et al. 2006; OSVDB 2011b; Yu et al. 2006). Table 2.6 summarises the 

main features of OSVDB database. 

 

 

Table 2.6 Features of the Open Source Vulnerability Database (OSVDB) 

Unique 

Identity 
Timeline Description Classification Products References Credit CVSSv2 

score 

OSVDB 

ID 

Discovery date, 

Full Disclosure 

date, Vendor 
informed date 

Description 

provided by 

CVE 

Location, 

Attack type, 

Impact, Exploit, 
Full Disclosure 

Product 

name 

Security 

advisories 

team and 
affected 

vendors 

Name of person 

or security 

advisories team or 
software vendor 

CVSSv2 

Base 

Score 

Source: (OSVDB 2011b) 

 

The following list provides a brief description of main fields of the OSVDB database 

(OSVDB 2011b):  

 The unique identity of a software vulnerability  

 Timeline provides software vulnerability discovery date (i.e. the date when 

vulnerability was discovered) 

 Full disclosure date (i.e. the date when software vulnerability was fully 

disclosed) 

 Vendor informed date (i.e. the date when software vendor was informed 

about software vulnerability)  

 Description provides core information about the software vulnerability  

 Classification provides attribution about the software vulnerability which can 

be added  

 Products provides a software vendor name, as well as the name of affected 

software  

 Reference provides links and cross-references for the software vulnerability  

 Credit provides information about the researcher who disclosed the 

vulnerability 

 Common Vulnerability Scoring System (CVSSv2) provides a base score for 

the software vulnerability. 
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Table 2.7 presents a high level of classification of software vulnerabilities by attack 

types for OSVDB software vulnerabilities. The table also provides a brief description 

of each attack type to classify the software vulnerability attack types in OSVDB 

database. 

 

 

Table 2.7 Classification of Software Vulnerabilities in OSVDB by Attack Type 

Attack Type  Description 

1. Authentication 

Management 

 A vulnerability that attacks or bypasses an authentication mechanism. Exception: If an attack uses 

SQL injection to bypass auth or add an administrative account, the attack itself is not authentication 
based, unless that is the only thing that can be done with the attack. 

2. Cryptographic  A vulnerability that attacks a cryptographic implementation (e.g., compromising an algorithm), relies 

on the presence of weak cryptography (e.g., password protection via XOR) or relies on the lack of 

cryptography (passwords stored in plaintext, information transmitted in clear text). 

3. Denial of Service  A vulnerability that results in a loss of service, functionality or capability. This includes making a 

service unresponsive, consuming resources (e.g., CPU, memory) or forcing a reboot. 

4. Information 

Disclosure 

A vulnerability that results in the disclosure of information that may be sensitive (e.g., passwords, 

credit info) or useful in conducting additional more focused attacks (e.g., usernames, installation 
path). 

5. Infrastructure A vulnerability that attacks an infrastructure device, such as a large router, firewall or another device 

supporting BGP. This does not apply to SOHO routers. Input Manipulation- A vulnerability that is 
exploited by sending manipulated and unexpected data to a service or process. This includes all types 

of overflows, memory corruption, XSS, SQLi, RFI, traversals and more. 

6. Misconfiguration A vulnerability that exploits a misconfiguration in a system or software. Misconfigurations can be as 
shipped by a vendor (e.g., version 3.3 accidentally shipped with insecure options), or by 

administrators who would reasonably configure software incorrectly (e.g., common sense or product 

documentation would lead to it). 

7. Race Condition  A vulnerability that can only be exploited during a specific 'window of attack'. Typically a race 
between two actions where the first makes a system vulnerable and the second removes the condition 

for exploit. This is frequently seen in temporary file handling, but may apply to a wide variety of 

attacks. 

8. Other  A vulnerability that cannot be defined by any other Attack Type classification. 

9. Attack Type 

Unknown 

The attack type for this vulnerability is not known. 

Source: adopted from (OSVDB 2011b) 

 

Although OSVDB classifies software vulnerabilities into nine types of attack as 

shown in table 2.7, the mostly commonly-found attack types are Infrastructure, 

Authentication Management, Misconfiguration, Denial of Service and Information 

Disclosure. Furthermore, these nine types of attack classifications do not 

comprehensively classify all software vulnerabilities found in the OSVDB database 

into attack types. Therefore, this study used a more comprehensive classification of 

software vulnerabilities provided by the National Vulnerability Database (NVD), 

which is described in section 6.2.3 (see Table 2.9). 

 

2.6.3 National Vulnerability Database 

NVD is the U.S. Government‘s repository of standards-based vulnerability 

management data represented using the Security Content Automation 
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Protocol (SCAP). This data enables automation of vulnerability management, 

security measurement, and compliance (Arora et al. 2010b; Arora et al. 2010a; NVD 

2011b).  

 

Table 2.8 summarises the main features of NVD database including databases of 

security checklists, security related software flaws, misconfigurations, product 

names, and impact metrics (NVD 2011b). 

 

 

Source: (NVD 2011b) 

 

The following list provides a brief description of the main fields of the NVD 

database (NVD 2011b): 

 

 CVE ID represents a unique identification of a software vulnerability  

 Overview provides general information about the software vulnerability  

 Impact provides a CVSS severity and CVSS metrics where CVSS severity 

gives the level of the criticality of software vulnerability and CVSS metrics 

gives an access vector, access complexity, authentication and impact type 

 References provide links and cross-references for the software vulnerability; 

and technical details provide the cause of software vulnerability with 

vulnerability type  

 NVD provides technical details integrating with Common Weakness 

Enumeration (CWE). 

 

 

Furthermore, to classify software vulnerabilities into comprehensive and specific 

types, this study used a standard classification of software vulnerability types: the 

Common Weakness Enumeration (CWE) classification which is cross  mapped with 

National Vulnerability Database (NVD) through the Common Vulnerability 

Exposure (CVE) entries (NVD 2011b) in OSVDB. However, the following software 

vulnerabilities ‗Other‘, ‗Not in CWE‘, ‗Insufficient Information‘ and ‗Design Error‘ 

Table 2.8 Features of National Vulnerability Database (NVD) 

Unique 

Identity 

Overview Impact References Technical 

Details 

CVE ID General description about the 

software vulnerability 

CVSS base score v2, access vector, access 

complexity, authentication and impact type 

To advisories, 

solutions and tools  

Vulnerability 

type 
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are not mapped in NVD.  

 

Table 2.9 lists and briefly describes a comprehensive classification of 23 specific 

types of software vulnerabilities developed by NVD and OSVDB and which is used 

to classify the software vulnerabilities analysed in this study.  

 

Table 2.9 Comprehensive Classification of 23 Specific Types of Software 

Vulnerabilities 

Name CWE-ID Description 

1. Authentication 

Issues 

CWE-287 Failure to properly authenticate users. 

2. Credentials 
Management 

CWE-255 Failure to properly create, store, transmit, or protect passwords and other credentials. 

3. Permissions, 

Privileges, and 
Access Control 

CWE-264 Failure to enforce permissions or other access restrictions for resources, or a privilege 

management problem. 

4. Buffer Errors CWE-119 Buffer overflows and other buffer boundary errors in which a program attempts to put more data 

in a buffer than the buffer can hold, or when a program attempts to put data in a memory area 
outside of the boundaries of the buffer. 

5. Cross-Site 

Request Forgery 

(CSRF) 

CWE-352 Failure to verify that the sender of a web request actually intended to do so. CSRF attacks can 

be launched by sending a formatted request to a victim, then tricking the victim into loading the 

request (often automatically), which makes it appear that the request came from the victim. 
CSRF is often associated with XSS, but it is a distinct issue. 

6. Cross-Site 

Scripting (XSS) 

CWE-79 Failures of a site to validate, filter, or encode user input before returning it to another user‘s web 

client. 

7. Cryptographic 
Issues 

CWE-310 An insecure algorithm or the inappropriate use of one; an incorrect implementation of an 
algorithm that reduces security; the lack of encryption (plaintext); also, weak key or certificate 

management, key disclosure, random number generator problems. 

8. Path Traversal CWE-22 When user-supplied input can contain ―..‖ or similar characters that are passed through to file 
access APIs, causing access to files outside of an intended subdirectory. 

9. Code Injection CWE-94 Causing a system to read an attacker-controlled file and execute arbitrary code within that file. 

Includes PHP remote file inclusion, uploading of files with executable extensions, insertion of 

code into executable files, and others. 

10. Format String 

Vulnerability 

CWE-134 The use of attacker-controlled input as the format string parameter in certain functions. 

11. Configuration CWE-16 A general configuration problem that is not associated with passwords or permissions. 

12. Information 
Leak / 

Disclosure 

CWE-200 Exposure of system information, sensitive or private information, fingerprinting, etc. 

13. Input Validation CWE-20 Failure to ensure that input contains well-formed, valid data that conforms to the application‘s 

specifications. Note: this overlaps other categories like XSS, Numeric Errors, and SQL 
Injection. 

14. Numeric Errors CWE-189 Integer overflow, signedness, truncation, underflow, and other errors that can occur when 

handling numbers. 

15. OS Command 

Injections 

CWE-78 Allowing user-controlled input to be injected into command lines that are created to invoke 

other programs, using system () or similar functions. 

16. Race Conditions CWE-362 The state of a resource can change between the time the resource is checked to when it is 

accessed. 

17. Resource 

Management 

Errors 

CWE-399 The software allows attackers to consume excess resources, such as memory exhaustion from 

memory leaks, CPU consumption from infinite loops, disk space consumption, etc. 

18. SQL Injection CWE-89 When user input can be embedded into SQL statements without proper filtering or quoting, 
leading to modification of query logic or execution of SQL commands. 

19. Link Following CWE-59 Failure to protect against the use of symbolic or hard links that can point to files that are not 

intended to be accessed by the application. 

20. Other No Mapping NVD is only using a subset of CWE for mapping instead of the entire CWE, and the weakness 
type is not covered by that subset. 

21. Not in CWE No Mapping The weakness type is not covered in the version of CWE that was used for mapping. 

22. Insufficient 

Information 

No Mapping There is insufficient information about the issue to classify it; details are unknown or 

unspecified. 

23. Design Error No Mapping A vulnerability is characterized as a ‗Design error‘ if there exists no errors in the 

implementation or configuration of a system, but the initial design causes a vulnerability to 

exist. 

Source: adopted from (NVD 2011a; OVAL 2011) 

http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/255.html
http://cwe.mitre.org/data/definitions/264.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/94.html
http://cwe.mitre.org/data/definitions/134.html
http://cwe.mitre.org/data/definitions/16.html
http://cwe.mitre.org/data/definitions/200.html
http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/189.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/362.html
http://cwe.mitre.org/data/definitions/399.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/59.html


 

- 38 - 

2.6.4 Secunia  

Secunia is a comprehensive and trusted source of security information on the 

Internet. Secunia provides Secunia Security Factsheets that inform users about the 

state and evolution of software vulnerabilities with respect to the product specified in 

the factsheet (Borders, Weele, Lau & Prakash 2009; Nazario 2009; Secunia 2011). 

Whenever a new vulnerability is reported, Secunia releases a Secunia Advisory after 

verification of the information. A Secunia Advisory provides details of the software 

vulnerability including a description, a risk rating, impact, recommended mitigation, 

credits, and references (Borders et al. 2009; Nazario 2009; Secunia 2011).Table 2.10 

summarises the main features of Secunia database.  

 

Table 2.10 Features of Secunia Database 

Unique 

Identity 

Description Release 

Date 

Last 

Update 

Criticality 

Level 

Impact 

Type 

Location Solution 

Status 

Type of 

Software 

Secunia 

CVSS 

Score  

Secunia 

Advisory 
ID 

Description 

of software 
vulnerability 

Full 

disclosure 
date 

Solution 

date 

Severity 

level 

Name of 

software 
vulnerability 

From 

where 
attack 

originates 

Software 

vulnerability 
patching 

information 

Operating 

system or 
Application 

software 

Severity 

score 

Source: (Secunia 2011) 

 

The following list provides a brief summary of the main fields in the Secunia 

database (Secunia 2011): 

 

 Secunia advisory id is a unique identity to represent a software vulnerability 

 Description provides general information about a software vulnerability 

 Release date is the date when a software vulnerability is fully disclosed 

 Last update date is a solution date 

 Criticality level represents the severity of software vulnerability 

 Impact type represents a cause of software vulnerability 

 Location represents the origin of attack 

 Solution status represents whether software vendor patched a software 

vulnerability or not 

 Type of software provides whether a software vulnerability originates from 

operating system software or application software  
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The four software vulnerability databases discussed previously provide detailed 

information for the useful classification of software vulnerabilities used in this study. 

However, in order to examine the response time of software vendors in releasing a 

software patch for the above classified software vulnerabilities in terms of their level 

of criticality, type of software vendor and type of software, software vulnerability 

disclosure can provide a much clearer picture of how the response time can be 

accurately determined.   

 

2.7 Software Vulnerability Disclosure 

The following definitions of a full disclosure of software vulnerability have been 

identified from the literature.  Telang and Wattal (2005, p. 1) stated that ‗Any public 

announcement about a software defect is termed as full disclosure of software 

vulnerability‘. McKinney (2008, p. 76) states that ‗ A full disclosure of software 

vulnerability is a phenomenon of openness and transparency among security 

researchers, security vendors, product vendors and other stakeholders‘. This study 

adopts the definition by Arora et al. (2010a, p. 115) that: ‗A full disclosure of 

software vulnerability refers to the publication of vulnerability information before 

the software vendor has released a patch to address the vulnerability‘.   

 

2.7.1 Software Vulnerability Disclosure Debate 

It is inevitable that software vulnerabilities are discovered in software products in 

spite of how much time and effort is spent in identifying and removing flaws during 

development of software preliminary maturity. Based on this inevitability, one can 

guess that a logical structured procedure could be pursued for disclosing software 

vulnerabilities. However, the current process for disclosing software vulnerabilities 

can range from a loosely organized effort to complete disorder (Bollinger 2004; 

SANS 2003).    

 

This lack of structure has resulted in a heated debate within the information security 

community about the socially optimal method of disclosure of a software 

vulnerability. The full disclosure movement of the late 1990s argues that by 

providing as much open detail about software vulnerabilities as possible will help 
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system administrators and software programmers to fully understand the technical 

details of software vulnerabilities in order to prevent and defend software 

vulnerabilities (Bollinger 2004; Cooper 1999). A software programmer can review 

the structure of the software vulnerability through the full technical details of a 

software vulnerability; and try to avoid similar software vulnerabilities in future 

software development. Similarly, users can take appropriate defensive security action 

such as implementing an Intrusion Detection System (IDS), shutting down a 

vulnerable service or using exploit code to scan the network for vulnerable 

applications (Bollinger 2004; SANS 2003).  

 

Moreover, full disclosure supposedly puts pressure on software vendors to issue a 

high quality software patch for newly-discovered software vulnerabilities as soon as 

possible and improve the quality of software over time. If software vendors fail to 

release a software patch and a software vulnerability is subsequently fully disclosed, 

public media coverage will negatively impact on the reputation and revenue of 

software vendors. To reduce negative public media coverage, software vendors are 

more likely to develop less vulnerable software products (Arora,  Telang &  Xu 

2004a; Bollinger 2004; SANS 2003). 

 

Although the concept of full disclosure of software vulnerabilities has a number of 

advantages, it is lacking by not providing a grace period in which software vendors 

can address those software vulnerabilities. The major problem of full disclosure of 

software vulnerabilities is that software vendors are notified at the same time as the 

vulnerability is fully disclosed. Information security is affected by the time software 

vendors take in releasing software patches to fix the software vulnerability (Arora, 

Krishnan, Nandkumar, Telang & Yang 2004b; Bollinger 2004).Thus, the concept of 

delayed or responsible disclosure was introduced, where information about the 

identification of a software vulnerability is first informed to a software vendor and 

then disclosed fully when the software vendor releases a software patch (Arora &  

Telang 2005a; Farrow 2000; Meunier 2008). 

 

A number of papers have discussed the pros and cons of non-disclosure, full 

disclosure and socially planned software vulnerability disclosure (Arora et al. 2004b; 

Arora et al. 2005b; Farrow 2000; Laakso,  Takanen &  Röning 2001; Rescorla 2003, 
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2005). A discussion on the various types of software vulnerability disclosures is 

beyond the scope of this research. However, the responsible disclosure of software 

vulnerabilities provides a vendor informed date which facilitates a more accurate 

response time by software vendors in releasing software patches to be calculated. 

This approach is used in this study to examine the effect of the level of criticality of 

software vulnerabilities on the response time of software vendors in releasing a patch 

for software vulnerability. The response time is based on the responsible disclosure 

date or vendor informed date.  

 

Full disclosure of software vulnerability has a serious effect on the software vendors‘ 

response time in releasing software patches, however, the concern is that different 

types of software vulnerability disclosures have a different impact on the software 

vendor response time in releasing software patches. To gain a better understanding of 

an actual response time, software vulnerability disclosure policy needs to be 

examined in more detail.  

 

2.8 Software Vulnerability Disclosure Policy 

Flaws in software make software products vulnerable and prone to violating software 

security policy (Arbaugh,  Fithen &  McHugh 2000). The examination of optimal 

policy for software vulnerability disclosure was demonstrated through the optimal 

timing of disclosure policy. It was shown that policy makers such as those in 

government and regulatory authorities in specific industries have the power to 

influence behaviour of software vendors and also minimise the magnitude of patch 

developing costs and loss to customers (Arora et al. 2008; Cavusoglu et al. 2007). It 

was also shown that any software vulnerability disclosure is not optimal. Software 

vendors always decide to release patches afterwards, rather than when informed of a 

software vulnerability, because this optimises their effort and investment in their 

software products (Arora et al. 2008). Does this mean that the type of software, type 

of software vendor and the level of criticality of software vulnerability also affect the 

decision of software vendors to develop and release timely patches?  

 

Information security advisories have moved away from a policy of immediate 

disclosure to having a period of grace before full disclosure. A policy of immediate 
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disclosure of software vulnerability in this study means the disclosure of software 

vulnerability when it is recognized as being a security threat. Information security 

advisories such as CERT/CC introduced their own software vulnerability disclosure 

policy to determine when to fully disclose software vulnerability. The software 

disclosure policy of CERT/CC provides a reasonable 45 days grace period for 

software vendors to release a software patch before full disclosure. Similarly, 

Organization for Internet Safety (OIS) provides a 30 day grace period for software 

vendors to release a software patch before full disclosure (Cavusoglu et al. 2004 ). In 

the same way, Russ Cooper‘s NTbugTraq policy provides a maximum of 14 days 

grace period to software vendors to release a software patch before full disclosure. 

Likewise, Rain Forest Puppy‘s ‗RFPolicy‘ provides 5 working days for software 

vendors to respond after initially being informed about software vulnerabilities. 

Failure to respond in 5 days resulted in full disclosure of software vulnerabilities 

(Cooper 1999; OIS 2004; SANS 2003).  

 

From the above discussion, a full disclosure of software vulnerability depends upon 

the policy of the individual information security advisory. There is no single standard 

policy for the full disclosure of software vulnerabilities. What this means for this 

research is that the full disclosure of a software vulnerability does not provide an 

accurate means for calculating the actual response time in releasing a software patch. 

Therefore, it is more appropriate to identify the vendor informed date and solution 

date in order to calculate the actual software vendors‘ response time in releasing 

software patches. 

 

2.9 Software Vendors 

Software is generally developed and distributed by two main types of software 

vendors: proprietary source software vendors and open source software vendors 

(Comino &  Manenti 2003; Leoncini,  Rentocchini &  Vittucci Marzetti 2010).  

 

2.9.1 Proprietary Source Software Vendor 

According to Payne (2002, p. 63), ‗Vendors who provide licensed software are often 

described as proprietary software vendors‘. This study adopts the definition of 
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proprietary source software vendors provided by Ming-Wei and Ying-Dar (2001, p. 

33): ‗Proprietary source software vendors operate on a closed-source model: They 

develop their own software and release that software to the public with the intention 

of gaining market penetration and earning a profit‘. 

2.9.2 Open Source Software Vendors 

The following definition is used for open source software vendors in this study:  

vendors who provide open source software with compilable source code and this 

source code can be modified or redistributed free of cost (Payne 2002; Schryen et al. 

2010) 

 

Both these two main types of software vendor are responsible for fixing software 

vulnerabilities through developing and releasing software patches for their vulnerable 

software products. However, the main focus of this study is to determine if there is a 

difference in the time taken in releasing software patches by open source software 

vendors versus proprietary source software vendors once software vulnerabilities 

have been informed to software vendors.   

 

2.9.3 Debate on Open and Proprietary Source Software Vendors  

There has been considerable debate about the software security of open source 

software vendors and proprietary source software vendors. Open source software 

vendors do not develop software in a controlled environment. Open source software 

is not always peer reviewed or validated for use. Users are free to examine and verify 

source code, however, the expert software programmer could embed back door 

Trojans to capture private and confidential information without the user ever 

knowing. This lack of a quality software development process results in open source 

software being viewed as having security issues (Hoepman &  Jacobs 2007; Saltis 

2009). Additionally, the reviewers of an open source software project may not 

continue on the software project for the duration of its development lifetime (i.e. 

reviewers might leave one software company and join another one). This lack of 

continuity and common direction leads to barriers to effective communication among 

reviewers and delays in resolving software vulnerabilities once the open source 

software vendors have been informed of the software vulnerability.  
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On the other hand, proponents of open source software stress the strength of having a 

large number of potential reviewers because source code of open source software is 

publicly distributed. The numbers of reviews of the source code of open source 

software maintains the maturity of software quality (Payne 2002). Similarly, 

Raymond (2001, p. 19) argued that ‗Given enough eyeballs, bugs are shallow‘. This 

strength of the open source software review process is assumed to enable easier 

identification of software vulnerabilities, and enable software vendors to be informed 

accordingly so they can more quickly release software patches once they have been 

notified of a software vulnerability.  

 

Proprietary source software vendors develop software in a controlled environment 

with a concentrated team effort in a common direction; whereas open source 

software vendors do not always develop software in a controlled environment and 

have individual users worldwide developing the software. A lack of continuity and 

common direction prevents effective communication, thus, proprietary source 

software vendors appear more secure than open source software vendors (Saltis 

2009). Additionally, the source code from proprietary source software vendors is 

viewed and edited in-depth by a dedicated software development team—eliminating 

the risk of back door Trojans and reducing the risk of occurrence of any software 

vulnerabilities. Although the source code of proprietary source software is viewed 

only by a dedicated software development team, Raymond (2001) argued that 

finding a software vulnerability in proprietary source software is not a difficult task. 

Expert software reviewers who are not in the dedicated software development team 

can find software vulnerabilities in proprietary source software without any trouble.  

 

Nonetheless, the problem is the response time of the proprietary source software 

vendor in releasing a software patch. Once software vulnerability is found in 

proprietary source software and informed to the software vendor, only the dedicated 

software development team in a controlled environment can review the source code. 

The idea is that a large number of source code reviewers, rather than a small number 

of reviewers, can resolve the informed software vulnerability. Open source software 

often has an uncountable number of reviewers compared to proprietary source 

software, which has a limited number of reviewers. 
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Both open source software vendors and proprietary source software vendors are 

equally vulnerable in the perspective of software developers and specific type of 

software development (MacCormack, Rusnak, Baldwin & Research 2006). However, 

the main concern of this study is to determine which type of software vendor is 

quicker to respond in releasing a software patch once the software vendor is 

informed of the software vulnerability.  

 

2.10 Software Vulnerability Disclosure and Software Patching 

Nizovtsev and Thursby (2007) developed a model to motivate users to disclose 

software vulnerabilities through an open community forum under the circumstance 

of instant disclosure which is socially optimal. Likewise, Telang and Wattal (2007) 

analysed the full disclosure of software vulnerability through an event study and 

demonstrated that full disclosure is one of the best possible ways to lower the stock 

prices of software vendors. Full disclosure should encourage software vendors to be 

more proactive in releasing software patches. Li and Rao (2007) identified that there 

is no change in optimal time of full disclosure, even if private information security 

advisories (e.g. iDefense, TippingPoint, ISS Inc.) participate and put pressure on 

software vendors to release software patches. However, private information security 

advisories‘ services decrease a vendor‘s willingness to release a patch promptly. 

Arora et al. (2010a; 2008) proved that larger software vendors are more responsive to 

software vulnerabilities if software vulnerabilities are fully disclosed by CERT. 

However, the study by Arora et al. (2010a; 2008) did not tested the extent to which 

the level of criticality of a software vulnerability influences the response time of 

software vendors in releasing a patch once the software vendor is informed of the 

software vulnerability.  

 

2.10.1 Open Source versus Proprietary Source 

Schryen (2009) argued that there is no significant difference in vendors‘ patching 

behaviour on fully disclosed vulnerabilities between open and proprietary source 

software. However, Arora et al. (2010a) argued that open source vendors are quicker 

to release a patch than proprietary source vendors. Both these studies analysed 

software vendor patching behaviour of fully disclosed software vulnerability and 
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both studies analysed 2003 and 2006 data from the same vulnerability database—

which is quite dated in the current threat and attack environment. It is expected that 

software vendors‘ patching behaviour is clearer if the behaviour is analysed with the 

date the vendor was informed of software vulnerabilities, rather than the date the 

software vulnerabilities are fully disclosed.  

 

2.10.2 The Level of Criticality of Software Vulnerability 

Arora et al. (2010a) argued that vendors are more responsive to critical 

vulnerabilities. However, Schryen and Rich (2010) empirically showed that a 

vendor‘s patching behaviour does not significantly differ in terms of the criticality of 

software vulnerabilities in open and proprietary source software vendors. Both these 

studies analysed software vendor patching behaviour and the level of criticality of 

software vulnerability with the full disclosure date of software vulnerability. It is 

expected that software vendors‘ response to the level of criticality of software 

vulnerabilities is more accurately measured using the vendor informed date for 

software vulnerabilities rather than using full disclosure date for software 

vulnerabilities, because the full disclosure date varies with software vulnerability 

disclosure policy across different information security advisories—as discussed in 

section 2.8.  

 

2.10.3 Operating System Software versus Application Software 

Similarly, Christey and Martin (2007) categorised software types into operating 

system and non operating system (i.e. application software) to classify software 

vulnerabilities. Lowis and Accorsi (2009) classified software vulnerabilities into 

operating system and web application to better understand their cause and effect, as 

well as to improve vulnerability management tool support. Young and Conklin 

(2010) found that most organizations are using two to three operating systems and 

are concentrating on hardening those systems, which currently leaves the door open 

for hackers and attackers in relation to application software which is poorly managed 

in terms of patching, as organizations are often using dozens, if not hundreds, of 

different types of software applications—all with potential software vulnerabilities. It 

is much more difficult to manage the patching of software applications given the 
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large number of software applications in relation to operating system software. 

Moreover, SANS institute analysed the patching behaviour of application software 

and system software by taking software vulnerabilities data from Microsoft, Adobe 

and Sun Microsystems and found software vendors are much slower in patching 

application software than patching operating system software (SANS 2009).  

 

Similarly, TippingPoint security community also analysed detected operating system 

software and application software vulnerabilities to rectify the changing dynamics in 

the software vulnerability assessment field. It also found that software vendors are 

much slower in patching application software than patching operating system 

software (TippingPoint 2009).  This situation is further exacerbated by the fact that 

most software applications interact with the Internet in some way these days 

(Rehman &  Mustafa 2009; Telang et al. 2007). This indicates there is a relationship 

between software vulnerabilities and type of software. However, previous studies 

have not concentrated on analysing software vendor patching behaviour in terms of 

the type of software and the level of criticality of vendor informed software 

vulnerabilities.   

  

2.11 Theoretical Support for this Study 

Software security disclosure theory is an extension of the theory of full disclosure 

which was first raised in the context of lock smithing in the 19
th

 century regarding 

whether weaknesses in lock systems should be kept secret in the lock smithing 

community or revealed to the public (Hobbs, Tomlinson, Fenby & Mallet 1868). 

Alfred Hobbs noted in 1853 that ‗Rogues are very keen in their profession, and know 

already much more than we can teach them’ when questioned on the wisdom of 

publishing the weaknesses of existing locks. Similarly, software security disclosure 

theory argues that full disclosure of software vulnerabilities encourages software 

vendors to be more proactive and timely in responding to software vulnerabilities; 

and makes organisations and individuals more aware of the potential risks associated 

with vulnerabilities in the software they are using (Swire 2004, 2006).  

 

Previous empirical studies on full disclosure of software vulnerability have also 

identified that when software vulnerabilities are fully disclosed, open source software 
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vendors release patches more quickly than proprietary source software vendors 

(Arora et al. 2010a; Swire 2004, 2006; Xueqi et al. 2008); software vendors are more 

responsive to severe software vulnerabilities (Arora et al. 2010a); and patches are 

released more quickly by software vendors for operating system software 

vulnerabilities than for application software (SANS 2009; TippingPoint 2009; Young 

et al. 2010). 

 

Furthermore, the economic model of software security investment developed by 

Gordon and Loeb (2002) also suggests that the response time of software vendors in 

releasing software patches is an optimisation decision where software vulnerabilities 

with a medium level of criticality are the most optimal for software vendors to 

develop and release patches; whereas for low level and high level of criticality 

software vulnerabilities the effort of software vendors is less optimal to develop and 

release patches. 

 

Therefore, this study has used the concept of software security disclosure theory 

developed by Swire (2004, 2006) and the economic model of software security 

investment developed by Gordon and Loeb (2002) as the theoretical lens for this 

study which assesses the extent of the (1) level of criticality of a software 

vulnerability, (2) type of software vendor, and (3) type of software impact on the 

response time of software vendors in releasing a patch once the software 

vulnerability has been informed to the software vendor.   

 

2.12 Research Gaps 

The review of the literature reveals the following gaps: 

 

1. Previous studies identified that the level of the criticality of software 

vulnerabilities potentially impacts on the response time of software vendors in 

releasing software patches for disclosed software vulnerabilities (Arora et al. 

2010a; Liu et al. 2011; Mangalaraj et al. 2005; Telang et al. 2007). Schryen and 

Rich (2010) did not find any significant difference in software vendors‘ patching 

behaviour for severe software vulnerabilities.  Although all the above studies 

analysed the relationship of vendors‘ patching behaviour and the level of 

criticality of software vulnerability with the full disclosure date of software 
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vulnerability, they did not analyse the relationship between the level of criticality 

of software vulnerability and software vendors‘ patch release behaviour with 

vendor informed date.  

Similarly, Gordon and Loeb‘s (2002) economic model of software security 

investment showed that software vulnerabilities with a medium level of criticality 

have the highest potential impact on the software vendors‘ patch release 

behaviour compared to low and high level of criticality of software vulnerability. 

Therefore, this study analyses the relationship between the level criticality of 

software vulnerabilities and the response time to release software patches once 

the software vendor has been informed of the software vulnerabilities.  

2. Arora et al. (2010a) argued that open source software vendors are quicker to 

release software patches for software vulnerabilities than proprietary source 

software vendors. Schryen (2009) argued that there is no significant difference in 

software vendors‘ patching behaviour on fully disclosed software vulnerabilities 

between open and proprietary source software vendor. Both studies analysed the 

software vendors‘ patching behaviour using the full disclosure date of software 

vulnerabilities. This study analyses software vendor patching behaviour using the 

vendor informed date of software vulnerabilities because response time 

calculated to release software patches is more accurate when using the date of 

vendor informed software vulnerabilities than the date of full disclosure of 

software vulnerabilities.  

3. Prior studies that concentrated on classifying software vulnerabilities into 

different types of software (Christey &  Martin 2006; Lowis et al. 2009) found 

that organisations are more proactive in hardening operating system software, 

rather than application software (Young et al. 2010). SANS Institute analysed the 

patching behaviour of three software vendors: (1) Microsoft Corporation, (2) 

Adobe Systems Incorporated and (3) Sun Microsystems, in relation to application 

software versus operating system using software vulnerabilities data (SANS 

2009). SANS found that these three software vendors released software patches 

more quickly for operating system software vulnerabilities than for application 

software. Similarly, TippingPoint security community also analysed detected 

operating system software and application software vulnerabilities to rectify the 
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changing dynamics in the software vulnerability assessment field. It also found 

that software vendors are much slower in patching application software than 

patching operating system software (TippingPoint 2009). Therefore, this study 

will address these issues and, based on software vulnerability data from 2008 to 

2010, analyse the response time of software vendors in releasing software 

patches to determine if there is a difference in the response time between 

operating system software and application software. 

 

2.13 Research Question and Sub Questions 

The general research question should focus on the specifics of the enquiry at hand 

(Zikmund 1997; McPhail 2000). Therefore, the general research question for this 

study is as follows: 

 

To what extent does the level of criticality of software vulnerabilities, type of 

software vendor (Open source, Proprietary source vendor), type of software 

(Operating system software, Application software) influence the response time of 

software vendors in releasing patches when the software vendor is informed of 

software vulnerabilities? 

 

To answer the general research question for this study, the following three specific 

research questions are addressed. 

 

RSQ1. How does the level of criticality of software vulnerabilities influence the 

response time of software vendors in releasing patches when the software vendor is 

informed of software vulnerabilities? 

 

RSQ2. Is there a difference between open and proprietary source software vendors in 

terms of their response time in releasing patches when the software vendor is 

informed of software vulnerabilities? 

 

 

RSQ3. Is there a difference between operating system software and application 

software in terms of response time of software vendors in releasing patches when the 

software vendor is informed of software vulnerabilities? 
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2.14 Conceptual Model 

The theoretical basis of the conceptual model for this study  is software security 

disclosure theory, which is an extension of the theory of full disclosure and the 

economic model of software security investment developed by Gordon and Loeb 

(2002) and (Hobbs et al. 1868; Swire 2004, 2006).  The theory of software security 

disclosure provides an explanation for why the disclosure of a software vulnerability 

will encourage software vendors to be more proactively in responding and releasing 

a patch to a software vulnerability once they informed of its existence. Previous 

studies have argued that the patching behaviour of software vendors when a software 

vulnerability is disclosed are different for the type of software (operating system 

software versus application software) and the type of software vendor (proprietary 

software vendor versus open source software vendor). The economic model of 

software investment explains how the response time of software vendors in releasing 

software patches is an optimisation decision and suggests that software 

vulnerabilities with a medium level of criticality are the most optimal for software 

vendors to develop and release quickly (Gordon et al. 2002). Conversely for low and 

high level of criticality software vulnerabilities the economic model of software 

investment suggests that the effort of software vendors is less optimal and software 

vendors develop and release patches more slowly.  

 

In this study, the conceptual model underpinned by on the theory of software security 

disclosure and the economic model of software security, is based on the relationships 

among four key variables identified from the previous relevant literature. The level 

of criticality of a software vulnerability, software vendor type and type of software 

are independent variables in this study. The level of criticality of software 

vulnerabilities is measured as a continuous variable on a scale of 0 to 10. The scale 

of 0 to 10 is categorised into 5 levels (very low, low, medium, high and very high). 

Software vendor type is a dummy variable (open source software vendor, proprietary 

source software vendor) and is measured as a binary variable. Similarly, type of 

software is a dummy variable (operating system software, application software) and 

is also measured as a binary variable.  The response time is the dependent variable in 

this study and is a continuous variable measured by number of days taken to release a 

software patch based on when the software vendor is informed about a software 
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vulnerability. The response time is determined on the basis of the vendor informed 

disclosure date. Type of vendor release a software patch based on the level of 

criticality of software vulnerability and type of software. Therefore, it is anticipated 

that these three independent variables are hypothesised to have a direct impact, 

although they are interrelated with each other, on the dependent variable, the 

response time of software vendors in releasing software patches in this study. To test 

proposed relationships in this model, three hypotheses have been specifically 

formulated from the three research sub questions stated previously in section 2.13.  

 

2.15 Hypotheses 

The level of criticality of software vulnerability is the risk level assigned to each 

software vulnerability which describes the extent of damage that could be caused by 

a specific breach of confidentiality, integrity and availability for that software 

vulnerability (Liu et al. 2011). The levels of criticality is categorised into 5 levels 

(very low, low, medium, high and very high) in this study. Previous studies have 

argued that the higher the level of the criticality of software vulnerabilities, the 

higher potential impact on the software vendors‘ response time in releasing software 

patches for fully disclosed software vulnerabilities (Arora et al. 2010a; Liu et al. 

2011; Mangalaraj et al. 2005; Telang et al. 2007). In contrast, Schryen and Rich 

(2010) did not find any significant difference in software vendors‘ patching 

behaviour for critical software vulnerabilities. Furthermore, Gordon and Loeb (2002) 

argued that the response time of software vendors in releasing software patches is an 

optimisation decision where medium level of criticality of software vulnerabilities 

are the most optimal for software vendors to develop and release patches promptly; 

whereas low level and high level of criticality software vulnerabilities are less 

optimal and software vendors to develop and release patches for software 

vulnerabilities with low and high levels of criticality less quickly for. Based on these 

issues in the existing literature, the following hypothesis will be tested. 

 

H1: Software vendors release patches for software vulnerabilities with a medium 

level of criticality in a shorter response time than software vulnerabilities with low 

and high levels of criticality once the vendor has been informed of the software 

vulnerability.  
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Schryen (2009) argued that there is no significant difference in vendors‘ patching 

behaviour on fully disclosed vulnerabilities between open and proprietary source 

software. However, Arora et al. (2010a) argued that open source vendors are quicker 

to release a patch than proprietary source vendors. Both studies analysed 2003 and 

2006 data from the same vulnerability database—which is dated in the current threat 

and attack environment. Both these studies also analysed software vendors‘ patching 

behaviour using the full disclosure date of software vulnerabilities. Similarly, Xueqi, 

Nannan and Hsiao (2008) argued that software vulnerabilities data and its 

relationship with the release of software patches will change over time due to the 

dynamic and rapidly-changing nature of software vulnerabilities. Therefore, this 

hypothesis will test whether the response time to release a software patch is different 

between open source vendors and proprietary source vendors based on the vendor 

informed date. Therefore, the following hypothesis will be tested. 

 

H2: Open source vendors release patches for open source software vulnerabilities 

more quickly than proprietary source vendors release patches for proprietary 

software vulnerabilities once the software vendor has been informed of the software 

vulnerability. 

 

As mentioned previously in section 2.10.3, Young and Conklin (2010) argued that 

most organizations concentrate more on hardening operating systems rather than 

application software, as organizations use two or three operating systems as opposed 

to dozens, if not hundreds, of different types of software applications—all with 

potential software vulnerabilities. Moreover, SANS and TippingPoint (2009; 2009) 

found that software vendors release patches for operating system software 

vulnerabilities more quickly than for application software. Indeed most operating 

systems have built-in mechanisms for software updates.  Based on these reasons, the 

following hypothesis developed from the existing literature will be tested. 

 

H3: Patches for operating system software vulnerabilities are released more quickly 

than patches for application software vulnerabilities once the software vendor has 

been informed of the software vulnerability. 
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Figure 2.4 represents an integrated conceptual model with the three proposed 

hypothesised relationships which will be tested in this study to investigate and 

determine the level of impact of key factors, namely, (1) the level of criticality of 

software vulnerability, (2) type of software vendor and (3) type of software, on the 

software vendors‘ response time in releasing software patches  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Key Factors impacting on Response Time  

 

2.16 Conclusion 

This chapter firstly provided a context for understanding the background and parent 

literatures surrounding software vulnerabilities and software patches by reviewing 

the relevant literature. The immediate literature focused on the issues of software 

vulnerabilities: software vulnerability classification, software vulnerability 

disclosure, software vulnerability disclosure policy and software vendors‘ patching 

behaviour. Gaps in the literature are identified in the areas of software vulnerabilities 

and software vendors‘ response time in releasing software patches in terms of (1) the 

level of criticality, (2) type of software vendor and (3) type of software. There 

appears to be no study that focuses on the influences of key factors: (1) the level of 

criticality, (2) type of software vendor and (3) type of software, on the response time 

in releasing software patches once software vendors have been informed of software 

vulnerabilities. The main theoretical support for this study is software security 

disclosure theory and the economic model of software security investment. Based on 

Level of Criticality of 

Software Vulnerability 

 

Type of Software Vendor 

1. Open Source Software 

Vendors   

2. Proprietary Source 

Software Vendors 

Type of Software 

1. Operating System Software  

2. Application Software 

 

 

Response Time 

H2 

H1 

H3 



 

- 55 - 

the relevant literature, software security disclosure theory and an economic model of 

software security investment as the theoretical lens, a research model is developed 

which can contribute a more comprehensive understanding of the relationship 

between key factors of software vulnerabilities and their impact on the response time 

of software vendors in releasing software patches once informed of software 

vulnerabilities. The relationships between the key factors of software vulnerabilities 

and response time are developed from the existing literature and are presented as 

research hypotheses. 

 

The following chapter (Chapter 3) discusses and justifies the research design and 

methodology used to collect and analyse empirical data to test the research model 

developed in this chapter.  
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Chapter 3: Research Design and Methodology 

 

3.1 Introduction  

This chapter describes the methodology used to collect and analyse empirical data to 

test the research hypotheses proposed in chapter two and developed from the general 

research question specified in chapter one. The purpose of this chapter is to describe 

and justify the methodology used to answer the main research questions of this study 

by testing the research model and research hypotheses presented in the literature 

review. This chapter provides justification for the choice of a positivist paradigm, 

research design and research strategy, and then discusses how the issues of validity 

and reliability are addressed in this study. This chapter is divided into four major 

sections. First, it discusses the research purpose and commonly-used strategies for 

collecting data to answer research problems. Second, it explores the issues of validity 

and reliability of this study. The data collection strategies adopted for this research, 

including data sources, sample generation and data measurement approaches are 

discussed next. Finally, the appropriate method of data analysis used in this research 

is outlined, justifying the choice of multiple regression analysis and the test of 

significance in the context of this study.  

 

3.2 Research Paradigm 

This study adopts the positivist research paradigm which means the object of this 

study is independent of researchers individual beliefs and biases. Knowledge is 

discovered and verified through direct observations or measurements of phenomena. 

Similarly, the facts are established by the testing of hypotheses developed from the 

existing theory through the measurement of observable social realities (Krauss 2005; 

Tuli 2011). Flowers (2009) argued that the positivism assumes the knowledge is 

valid only if theoretical models can be developed that are generalisable, can explain 

cause and effect of relationships, and predict outcomes. Similarly, positivism is 

based upon values of reason, truth and validity and there is a focus purely on facts, 

gathered through direct observation and experience and measured empirically using 

quantitative methods-surveys and experiments and statistical analysis (Eriksson &  

Kovalainen 2008; Saunders,  Lewis &  Thornhill 2009). For this study, the positivist 
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paradigm is adopted to test the impact of key factors on the software vendors‘ 

response time in releasing software patches through a series of hypothesised 

relationships using quantitative archival data. 

 

3.3 Research Design 

The research design provides an overall framework for the research process (Davis 

2005; Zikmund 2010). It is designed to guide researchers in their quest to solve the 

research problem being studied (Davis 2005). The research design process involves a 

series of decisions which need to be answered systematically based upon the context 

of the research problem. These decisions need to be made carefully as there are a 

number of potential sources of error which may affect the results of the study (Davis 

2005). For example, errors may occur during research planning, data collection, data 

analysis, or when reporting the results of the study. Thus, the purpose of a research 

design is to ensure that the researcher is aware of these potential sources of error and 

has planned sufficiently to control or limit errors in the research process, thereby 

producing accurate and useful information (Davis 2005). This research uses a 

quantitative method to undertake an explanatory investigation of the relationship 

between critical levels of software vulnerabilities, open source software vendors 

versus proprietary software vendors, operating system software versus application 

software and the response time of software vendors in releasing software patches. 

The main aspect of this research is designed within a positivist framework. This 

means that data are collected in a form that are quantitative, detached and objective 

(Leedy &  Ormrod 2001). The research design for this study is illustrated in figure 

3.1. 
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     Figure 3.1 Research Design 

 

3.3.1 Research Strategy 

Research strategy refers to a plan specifying the methods and procedures for 

collecting and analysing the required information (Zikmund 2010). There are five 

types of research strategies, experiment, survey, archival analysis, history, and case 

study (Yin 2009). Accordingly, the research strategy should be aligned with the goals 

and characteristics of the study (Yin 2009). 

 

SecurityFocus 
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Review data  

Impact of the level of criticality of 
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Data Presentation 
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Draw Conclusion 
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availability of complete field of 
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Table 3.1 explains the relevant situations for different research strategies. 

 

Table 3.1 Relevant Situations for Different Research Strategies 

Strategy  Form of Research Question  Requires Control of Behavioural 

Events  

Focuses on Contemporary 

Events  

Experiment  How, why  Yes  Yes  

Survey  Who, what, where, how many, 

how much  

No  Yes  

Archival 

analysis  

Who, what, where, how many, 

how much  

No  Yes/No  

History  How, why  No  No  

Case study  How, why  No  Yes  

Source: (Yin, 1994, p.6) 
 

The purpose of this research is to confirm:  

(1)  whether the level of criticality of current software vulnerabilities influences 

the response time of the software vendor in releasing software patches;  

(2)  whether the response time of software vendors in releasing software patches 

in response to software vulnerabilities is different between open source 

software vendor and proprietary source software vendor; and   

(3) whether the response time of software vendors in releasing software patches 

in response to software vulnerabilities is different between operating system 

software and application software.  

 

Archival data analysis strategy is considered to be appropriate for this research 

because data are obtained from software vulnerability databases.   

 

The primary approach to the collection of data for this research was to collect 

quantitative data concerning software vulnerabilities. Quantitative data were in the 

form of archive data based on factual data which already has a pre-established degree 

of validity and reliability and goes through rigorous screening processes before being 

entered into these software vulnerability databases. By being in close proximity to 

the variables being studied, richer data and description can be obtained to improve 

the quality of the research results (Yin 2009). 

 

3.3.2 Archival Analysis 

Archival analysis refers to a form of the longitudinal observation method where the 

researcher examines the accumulated documents. This analysis presents an 
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opportunity to access potentially rich data that helps to reveal current events, as well 

as historical events, and also provide a map of what decisions and actions can be 

taken, by whom, how many and where. A great strength of archival analysis lies in 

its ability to analyse historical data continually over time. However, a 

poorly-maintained database can cause problems. Internal archival and current 

documentation do not have this weakness and is useful as a source of summary data, 

although it can be difficult to come by if confidential in nature (Insights 2009; 

Jankowicz 2005; Yin 2009). 

 

3.4 Data Collection 

3.4.1 Data Sources 

The data collected to test hypothesised relationships in the proposed research model 

are primarily drawn from the software vulnerability database: Open Source 

Vulnerability Database (OSVDB), with SecurityFocus database providing the initial 

sample population for this study. SecurityFocus cross-references its software 

vulnerabilities with the Open Source Vulnerability Database (OSVDB) through the 

Bugtraq ID. Moreover, OSVDB provides both definition of software vulnerabilities 

and a dictionary of software vulnerabilities (OSVDB 2011b). This dictionary for 

each software vulnerability provides a standard identifier number (i.e. osvdb id), a 

brief description and references to related software vulnerabilities reports and 

advisories. As the data sources of OSVDB are cross referenced with trusted 

organizations such as NVD, SecurityFocus, Secunia, Nessus, Snort, Microsoft 

Bulletin, Vupen and CERT, the software vulnerabilities input in OSVDB is assumed 

to be rigorous, screened and comprehensive. National Vulnerability Database and 

Secunia provided additional information needed to conduct data analysis. National 

Vulnerability Database (NVD) cross-references its software vulnerability data with 

OSVDB through the Common Vulnerabilities Exposures (CVE) catalogue and 

Secunia cross-references its software vulnerability data with OSVDB through 

Secunia Advisory ID.  

 

This research analyses data fields such as primary software vendor, description of the 

software vulnerability, vendor informed date, full disclosure date of software 

vulnerability, and software patch release date obtained from OSVDB. The level of 
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criticality of software vulnerabilities was obtained by using a Common Vulnerability 

Scoring System Version 2.0 (CVSS V2), access vector, access complexity, 

authentication, confidentiality, integrity, availability and impact type obtained from 

National Vulnerability Database (NVD). Similarly, the type of software (Application 

software or Operating system software) for each fully disclosed software 

vulnerabilities sample constructed for this study is obtained from Secunia, This 

research also analyses software vulnerabilities under a standard classification of 

software vulnerability types provided by Common Weakness Enumeration (CWE) 

which are cross section mapped by National Vulnerability Database (NVD) with 

Common Vulnerability Exposure (CVE) entries (NVD 2011b).  The information 

contained in these databases is factual information on software vulnerabilities and 

table 3.2 shows the data fields from these databases, as well as calculated fields used 

in this research. OSVDB track a large number of security problems, but not all 

SecurityFocus vulnerabilities meet its criteria to be listed in the OSVDB.  

 

To verify the archival data obtained as a sample population from the OSVDB 

database is accurate and complete, software vulnerability data was randomly selected 

from the sample population. The OSVDB id (primary key in the OSVDB database) 

was used to track and confirm the validity of the data fields in each OSVDB software 

vulnerability with the various original data sources. The original data sources for 

each OSVDB software vulnerability are cross referenced in the OSVDB database 

(such as CVE ID, NVD, Bugtraq ID, Secunia advisory ID etc) and can be 

systematically cross checked for accuracy (OSVDB 2011b). 

 

Therefore, for the purpose of empirical analysis, this research has considered only 

the software vulnerabilities published in both OSVDB and SecurityFocus and which 

can be identified through Bugtraq ID field which is contained in SecurityFocus and 

OSVDB; CVE catalogue which is contained in NVD and linked with CVE field in 

OSVDB; and Secunia Advisory ID which is contained in Secunia and linked with 

Secunia Advisory ID in OSVDB. Additional information such as the classification of 

software vulnerabilities as open source or close source are obtained from software 

vendor websites for each vendor informed software vulnerability in this study. 
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Table 3.2 OSVDB Data Fields, NVD Data Fields, Secunia Data Fields plus Fields calculated for this Research 

 
Source: (NVD 2007; OSVDB 2011a) 

Data fields taken from Open Source Vulnerability Database (OSVDB) Additional 

Information 

obtained 

from 

National 

Vulnerability 

Database 

(NVD) 

Additional 

Information 

obtained from 

Vendors Websites 

Additional 

Information 

obtained from 

Secunia  

Calculated Fields 

for this Research 

Primary 

Vendor 

Product 

Description of Software Vulnerability Software 

Vulnerability 

Vendor 

informed Date 

Patch Release 

Date/Solution 

Available Date 

Criticality 

Score 

(CVSS V2 

Base Score) 

Type of Software 

Vendor 

Type of Software Response time (in 

days) 

(Patch Release Date 

– Software 
Vulnerability 

Vendor informed 
Date) 

Open Source 

Software Vendor 

(1) / 

Proprietary Source 

Software Vendor 

(0) 

(Dummy Variable) 

 

Operating System 

Software (1) / 

Application 

Software (0)  

(Dummy Variable) 

IBM 

 

AIX is prone to an overflow condition. Pioout command fails to 

properly sanitize unspecified user-supplied input resulting in a 

buffer overflow. With a specially crafted command-line 
argument, a local attacker can potentially cause arbitrary code 

execution. 

29/11/2007 

 

23/01/2008 

 

7.2 

 

1 1 55 

 

Microsoft 

Corporation 

 

Microsoft Windows contains a flaw that may allow an attacker to 

gain access to unauthorized privileges. The issue is triggered 
when the kernel-mode drivers in win32k.sys fail to properly 

validate pseudo-handle values in callback parameters during 

window creation, allowing a local authenticated attacker to gain 
full user privileges.  

15/06/2010 

 

10/08/2010 

 

9.3 0 1 56 

 

Apple 

computer Inc 
 

Apple Safari WebKit contains a memory corruption flaw related 

to WebKit's handling of CSS counters. The issue is triggered 
when visiting a maliciously crafted website. This may allow a 

context-dependent attacker to execute arbitrary code via a crafted 

HTML document. 

1/06/2010 

 

28/07/2010 

 

9.3 

 

0 0 57 

 

Adobe Systems 
Incorporated 

 

Adobe Flash Player before 9.0.277.0 and 10.x before 10.1.53.64, 
and Adobe AIR before 2.0.2.12610, allows attackers to cause a 

denial of service (memory corruption) or possibly execute 

arbitrary code via vectors related to SWF files, decompression of 
embedded JPEG image data, and the DefineBits and other 

unspecified tags.  

8/06/2010 
 

10/06/2010 
 

9.3 
 

0 0 2 
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3.4.2 Sample Generation 

From January 1
st
 2008 to December 30

th
 2010 the SecurityFocus database reported 

21,527 software vulnerabilities. This population is reduced to 11,758 software 

vulnerabilities which are also reported in OSVDB database. As discussed in data 

sources section (3.4.1), not all the SecurityFocus software vulnerabilities meet the 

criteria to be listed in the OSVDB. The population of 11,758 software vulnerabilities 

reported in OSVDB is further reduced to 2,714 software vulnerabilities. This 

population is reduced on the basis of the availability of a patch solution date from the 

software vendors. Then the 2,714 software vulnerabilities obtained from OSVDB 

were further reduced to 667 software vulnerabilities that had the complete relevant 

information to test the proposed hypothesized relationships in this study. The 667 

software vulnerabilities were filtered on the basis of having a vendor informed date 

in OSVDB. Moreover, the whole population of 667 software vulnerabilities with 

complete information required is taken as a sample size for this study (Anonymous 

2010; Bartlett,  Kotrlik &  Higgins 2001; Cochran 1977; Krejcie &  Morgan 1970).  

 

Table 3.3 summarises the number of software vulnerabilities documented by 

OSVDB in each year from 2008 to 2010 and the sample generation for this study 

(OSVDB 2011a).  

 

Table 3.3 Number of Software Vulnerabilities Documented in OSVDB from 

SecurityFocus  

Number of software vulnerabilities documented in OSVDB from SecurityFocus 

Years Number of Fully Disclosed 

Software Vulnerabilities 

Fully Disclosed 

Software 
Vulnerabilities 

Solution Available 

Population/Sample of Vendor informed Software 

Vulnerabilities for this Study with Complete 
Information  

2008 5,768 574 144 

2009 3,690 1199 281 

2010 2,300 941 242 

Total Data 

(From 2008 to 
2010) 

11,758 2714 667 
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3.4.3 Measurement  

In order to test the proposed hypothesis, the variables defined should be measurable. 

The following discussion describes each of the variables in the research model which 

were tested in this study. 

 

 Full Disclosure Date of Software Vulnerability is the date on which 

software vulnerabilities are fully disclosed to their users; reported to 

information security advisories; or reported to software vendors. 

 Patch Release Date is the date on which software vendors release patches for 

software vulnerabilities. 

 Vendor informed Date is the date when a researcher disclosed the 

vulnerability to the vendor. This is typically evident when a timeline is 

included. 

 Response Time is the amount of time taken to release a software patch based 

on when the software vendor is informed of a software vulnerability. It is 

measured in terms of days (ratio scale) and is calculated as following:  

Response time = (Patch Release Date) – (Vendor informed Date)  

 

 The Level of Criticality of Software Vulnerability is measured as an 

interval scale from 0 to 10. The level of criticality of software vulnerabilities 

is identified from the breach of software security in terms of confidentiality, 

integrity and availability. Confidentiality-related vulnerabilities are highly 

critical, whereas availability-related vulnerabilities are less critical. The 

criticality nature of software vulnerabilities is determined by the Common 

Vulnerability Scoring System (CVSS). The CVSS is an open, mature and 

well-established definition of the fundamental characteristics of a software 

vulnerability (Frei et al. 2006; Jones 2007; Ransbotham 2010). Despite its 

shortcomings, it is objectively examined by many interested researchers and 

security advisories and uniformly applied to all software vulnerabilities. The 

CVSS scoring system used in this study is adopted from Mell, Scarfone and 

Romanosky (2007) (see tables 3.4 and 3.5). 
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 Two types of software vendors—open source and proprietary source software 

vendors—are examined and compared in this study. Vendor informed 

software vulnerabilities are categorised into one of these two types of 

software vendors (open source software vendor, proprietary source software 

vendor) based on the descriptions of software vulnerabilities in the OSVDB 

database. A binary variable is used to measure differences between these two 

types of software vendors in relation to their response time in releasing 

patches for software vulnerabilities. 

 Vendor informed software vulnerabilities will also be classified into one of 

these two types of software (operating system software and application 

software) in this study. A binary variable will be used to measure the 

difference between these two types of software in relation to the response 

time of software vendors in releasing patches for software vulnerabilities. 

 

Table 3.4 Criticality Measurement of Software Vulnerabilities 

Rating method listing 

ID Description Possible impact metrics 

cases 

Qualitative 

level 

Impact 

score 

1 Each of confidentiality, integrity, and availability 
properties has a ‗complete‘ loss  

[C:C/I:C/A:C] High  
 

(7.0-

10.0) 
2 One of confidentiality, integrity and availability 

properties has a ‗partial‘ loss. The other two have a 

‗complete‘ loss 

[C:P/I:C/A:C],[C:C/I:P/A:C], 

[C:C/I:C/A:P] 

High 

3 One of confidentiality, integrity and availability 

properties has a ‗none‘ loss. The other two have a 

‗complete‘ loss 

[C:N/I:C/A:C],[C:C/I:N/A:C], 

[C:C/I:C/A:N] 

High 

4 One of confidentiality, integrity and availability 
properties has a ‗complete‘ loss. The other two have a 

partial loss 

[C:P/I:P/A:P],[C:P/I:C/A:P], 
[C:P/I:P/A:C] 

High 

5 One of confidentiality, integrity and availability 
properties has a ‗complete‘ loss. One of them has a 

‗partial‘ loss and one has a ‗none‘ loss 

[C:C/I:P/A:N],[C:C/I:N/A:P], 
[C:P/I:C/A:N], 

[C:P/I:N/A:C],[C:N/I:C/A:P], 

[C:N/I:P/A:C] 

Medium  
 

 

 
(4.0-6.9) 6 One of confidentiality, integrity and availability 

properties has a ‗complete‘ loss. The other two have a 

‗none‘ loss 

[C:C/I:N/A:N],[C:N/I:C/A:N], 
[C:N/I:N/A:C] 

Medium 

7 Each of confidentiality, integrity and availability 
properties has a ‗partial‘ loss 

[C:P/I:P/A:P] Medium 

8 One of confidentiality, integrity and availability 

properties has a ‗none‘ loss. The other two have a ‗none‘ 
loss 

[C:N/I:P/A:P],[C:P/I:N/A:P], 

[C:P/I:P/A:N] 

Low  

 
(0.0-3.9) 

9 One of confidentiality, integrity and availability 

properties has a ‗partial‘ loss. The other two have a 

‗none‘ loss 

[C:P/I:N/A:N],[C:N/I:P/A:N], 

[C:N/I:N/A:P] 

Low 

10 Each of confidentiality, integrity and availability 

properties has a ‗none‘ loss 

[C:N/I:N/A:N] Low 

 

Source adapted from: (Liu et al. 2011; Mell et al. 2007; NVD 2007) 
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Table 3.5 Software Vulnerability Criticality Metrics 

Metrics of scoring method 

Exploitable metric Metric value Quantitative score 

Access vector (AV) Local (L)/ Adjacent network (A)/ Network (N) 0.395/0.645/1.0 

Access complexity (AC) High (H)/ Medium (M)/ Low (L) 0.35/0.61/0.71 

Authentication (Au) None (N)/ Single (S)/ Multiple (M) 0.704/0.56/0.45 
 

Source adapted from: (Liu et al. 2011; Mell et al. 2007; NVD 2007) 

 

3.5 Data Analysis 

This section provides the justification for the statistical methods used to analyse the 

empirical data in this study. To begin with, a discussion of the descriptive statistics is 

provided, including the test for normality of the relevant variables. This is followed 

by a discussion of the reliability and validity of data. Then the appropriateness of the 

statistical tests used for testing the research model is discussed. Finally, the level of 

significance used in testing the research hypotheses is reviewed.  

 

3.5.1 Descriptive Statistics and the Normality of the Raw Data 

Descriptive statistics were used to summarise patterns in the responses (Vaus 2002). 

Descriptive statistics were also used to confirm the normality of the raw data. As a 

requirement for conducting any multivariate data analysis, the data needs to be 

representative of a normal distribution (Cooper &  Emory 1995; Davis 2005; Hair,  

Black &  Babin 2010; Zikmund 2010). The following section provides an overview 

of the descriptive statistics used to determine the shape of the distribution of the 

archive data. 

 

The mean and standard deviation measures are used to determine the centre and the 

spread of the distribution of data. Cooper and Emory (1995) advised that visual 

representations (graphs), which are superior to numerical representations of the data, 

were used to discover the shape of the distribution of data. Moreover, the shape of 

the spread of data was measured by skewness and kurtosis. Skewness indicates 

whether there is a substantial departure from a normal distribution in the data (Moore 

2009). That is, the data is collected to one side of mean, rather than symmetrically 

distributed about the mean. Kurtosis indicates the peakedness or flatness of a 
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distribution (Cooper et al. 1995; Hair et al. 2010). 

 

Tests for skewness and kurtosis were used to determine outliers within the data set. 

Outliers are extreme cases within the data that lie outside the normal range of the 

data set (Hair et al. 2010; Moore 2009; Zikmund 2010). Outliers were retained to 

ensure the generalisability of the study, except in cases where there was sufficient 

evidence to suggest that the outlier does not provide an accurate representation of the 

target population. 

 

3.5.2 Reliability and Validity of Data 

The archival data used in this study is factual data which already has a pre-

established degree of validity and reliability (MacCallum 1998; McBurney 2001). 

The SecurityFocus database, OSVDB database and NVD database are the main 

archival data sources for this study. The provenance of these software vulnerability 

databases can be checked as this archival data is published on the Internet and open 

to scrutiny by organisations and the general public. All information relating to 

software vulnerabilities goes through a rigorous screening process before being 

entered into these databases.  These software vulnerability data have been proven to 

be reliable and valid in a number of previous empirical studies published in 

information systems research journals such as Information Systems Research, 

Information Systems Frontiers, Management Science, and Information Economics 

and Policy (Arora et al. 2006a; Arora et al. 2010b; Arora et al. 2010a; Li et al. 2007). 

 

3.5.3 Hypothesis Testing 

In conducting hypothesis testing there are three important decisions that need to be 

made: (1) the type of statistical test that will be used; (2) the appropriateness of that 

statistical test; and (3) the level of significance which is considered to be appropriate 

(Cooper et al. 1995). For this study, multiple regression analysis (MRA) was 

considered the most appropriate for testing the associations between type of software 

vendor, type of software and the level of the criticality of software vulnerability 

(independent variables) and the response time (dependent variable). The acceptable 

level of significance for rejecting the null hypothesis was determined by convention 
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to be five percent. The following sections discuss and justify the use of multiple 

regression analysis and tests of significance within the context of this study. 

 

Multiple Regression Analysis (MRA) 

Regression is a statistical technique used to measure the linear association between a 

dependent and independent variables (Davis 2005; Moore 2009; Zikmund 2010). 

 

In this study, vendor informed software vulnerabilities are used as the unit of 

analysis and multiple regression extends the concept of regression to allow the 

simultaneous investigation of a set of independent variables (type of software 

vendor, type of software and the level of criticality of software vulnerability) upon a 

single dependent variable (response time).  

 

There are certain assumptions of MRA that need to be met to improve the accuracy 

of the results, namely: normal distribution of data, and multi-collinearity (Osbourne 

&  Waters 2002), as explained below: 

 

 Normal distribution of the level of criticality software vulnerabilities and 

response time of software vendors in releasing patches will be verified by 

producing the descriptive statistics. Normal Q-Q plot, box plot and histogram 

can also be used to verify these variables and are representative of a normal 

distribution. If normal distribution does not exist, data transformation can be 

undertaken to modify the data because normality is a condition of MRA 

(Osbourne et al. 2002). 

 

 Correlations between the independent variables will be analysed to determine 

whether there are any multi-collinearity problems. This will determine if 

there is a strong correlation between two or more predictors in the regression 

model. According to Nugroho and Sampurno (2010), if collinearity level is 

above 0.7 or, according to Field (2009), if VIF is more than 2, it is very likely 

that a predictor of the outcome will be regarded as insignificant and rejected 

from the model. 
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The following regression model is assumed as the model for this study:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A dependent variable is the response time. The independent variables are type of 

software vendor (Open source vendor, Proprietary source vendor); the type of 

software (Operating system software, Application software); and level of criticality 

of software vulnerability. Additionally, b1, b2 and b3 are the slope (Beta coefficient) 

for type of software vendor, the type of software and level of criticality of software 

vulnerability respectively.  

 

The significance of each variable with response time in patching software 

vulnerability is tested using the t-test with the null hypothesis (H0) and alternative 

hypotheses (Ha1, Ha2, Ha3) as follows: 

 

H0: b0 = 0 

Ha1: b1 ≠ 0 

Ha2: b2 ≠ 0 

Ha3: b3 ≠ 0 

 

H0 is rejected if t-calculated is less than –tn, α/2 or more than tn, α/2. Here, tn, α/2 is 

the tabulated value of t-statistics with n-degrees of freedom and α-level of 

b3 

 

b1 

 

b2 

 

Level of Criticality of 

Software Vulnerability 

 

Type of Software Vendor 

1. Open Source Software 

Vendors   

2. Proprietary Source 

Software Vendors 

Type of Software 

1. Operating System Software  

2. Application Software 

 

 

       

      Response Time 

Figure 3.2 Multiple Regression Model for this Study 
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significance of a two-tailed distribution. Alternatively, if the calculated t-statistics 

lies within the range of the tabulated value, then H0 is accepted.  

 

Tests of significance 

After determining the acceptance and rejection of null hypothesis, it is necessary to 

test the fitted regression for reality and linearity. This is done by the analysis of 

variance with the determination of the squared correlation coefficient (r
2
), which is 

the ratio of the sum of squares accounted for by regression (QR) to that accounted for 

by total (QT) as follows (Kumar 2010): 

 

r
2 

= QR/ QT 

 

Where    QR = [ΣY(X-XAV)]2/ Σ(X-XAV)2 

    QT = ΣY
2
- (ΣY)

2
/n 

 

Here, 

 X= independent variable; Y= dependent variable 

n= sample size; XAV = average of X  

 

According to Chaulagain (2006, p. 33) there are two kinds of significance—practical 

and statistical. If the regression is not practically significant, it is of little use to test 

its statistical significance. If, however, it is practically significant, then a test of the 

hypothesis must be made in order to test for statistical significance. Practical 

significance is measured by the squared correlation coefficient, r2. A larger 

correlation coefficient indicates a better fit of the regression equation. If r
2
< 0.25, 

then the regression is very doubtful for practical use and a further test for statistical 

significance is meaningless (ibid). But, if r
2
> 0.25, then the regression should be 

tested further for statistical significance. Statistical significance is tested by 

estimating the error in the regression equation (Anderson,  Sweeney &  Williams 

2010): 

 

y= b0+ b1, b2, b3 x+ e 
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Where, 

e = error in estimating the regression equation. 

 

The level of significance used to test the null hypothesis indicates the probability at 

which the results will be accepted or rejected based upon chance. The 

commonly-accepted level of significance for rejecting the null hypothesis is five 

percent (Davis 2005; Zikmund 2010). This study follows conventional hypotheses. 

However, bearing this mind, it is important to consider the statistical significance.  

 

3.6 Conclusion 

This chapter described the main research methodology used in the study. The overall 

research design adopted quantitative research methods using archival data. A brief 

justification was provided for the appropriateness of archival data analysis in this 

study, followed by a detailed description of the process of data collection from the 

four predominant databases. The total sample population of vendor informed 

software vulnerabilities was generated from 2008 to 2010 archival data. Data 

analysis included descriptive analysis and multiple regression analysis. Descriptive 

analysis tests the normality, linearity and homoscedasticity; and multiple regression 

analysis tests the relationship between dependent and independent variables 

established as hypotheses for this proposed study. The following chapter provides 

detailed results of the data analysis. 
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Chapter 4: Data Analysis 

 

4.1 Introduction 

The purpose of this chapter is to analyse and discuss the results of descriptive 

statistics and multiple regression analysis. This chapter is organized in the following 

way: First, it discusses the results of descriptive statistics in relation to the 

characteristics of each of the variables used in this study. Second, it discusses the 

results of testing the proposed research model using multiple regression analysis. 

Finally, this chapter discusses the hypothesised relationships in the proposed research 

model in relation to the existing literature and concludes by summarising the main 

findings from the descriptive and multivariate statistical data analysis.  

4.2 Descriptive Statistics of Key Variables in the Proposed Research 

This section presents and discusses the results of the descriptive statistics (mean, 

standard deviations, and correlations) for the explanatory variables used in the 

proposed research model for this study. As discussed in chapter 3, the total 

population/sample size for this study is 667 software vulnerabilities. On the basis of 

this population/sample size, each of the variables is discussed in turn in relation to 

the results of descriptive statistical analyses. 

4.2.1 Type of Software Vendor 

Type of software vendor is an independent variable and measured as a binary 

variable. Open source software vendors are coded as 1, with proprietary software 

vendors coded as the reference category of 0.  

 

Table 4.1 presents the distribution for proprietary source software vendors and open 

source software vendors across the total population of 667 software vulnerabilities. 

Table 4.1 shows that 418 (62.7%) software vulnerabilities in the total sample 

population are in proprietary source vendor software and 249 (37.3%) software 

vulnerabilities are in open source vendor software.  
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Table 4.1 Distribution of Software Vulnerabilities by Type of Software Vendor 

Type of Software Vendor Frequency Percent Cumulative Percentage 

Proprietary Source Software Vendor 418 62.7 62.7 

Open Source Software Vendor 249 37.3 100.0 

Total 667 100.0  

 

 

Top 12 Software Vendors and Informed Software Vulnerabilities (from 2008 to 

2010) 

 

Figure 4.1 presents the top 12 software vendors in the total sample population of 

software vulnerabilities for this study and their proportion of informed software 

vulnerabilities from 2008 to 2010.  

 

 

Figure 4.1 Top 12 Software Vendors by Number of Software Vulnerabilities in this 

Study (from 2008 to 2010)  

(Source: developed for this research) 

 

The top 12 software vendors were selected on the basis that the numbers of software 

vulnerabilities informed to the software vendors were 10 or above in the sample 

population used for this research. The reason for choosing 12 software vendors is 

that more than half (341) informed software vulnerabilities from the total sample 

population of 667 are reported for these software vendors. Microsoft Corporation has 

the highest number of informed software vulnerabilities, numbering 60; followed by 
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Adobe Systems Incorporated and Apple Computer Inc with 49 each respectively. 

Cisco System Inc has the lowest number (10) of informed software vulnerabilities in 

these top 12 software vendors. Among these top 12 software vendors, 10 software 

vendors are proprietary source and 2 are open source. This indicates that most of 

these software vendors with the highest number of informed software vulnerabilities 

are proprietary source software vendors in the total sample population for this study. 

 

Types of Software Vulnerabilities and Their Proportion 

Figure 4.2 presents a pie chart of 21 different types of software vulnerabilities 

identified in the total sample population of 667 software vulnerabilities from 2008 to 

2010 for this study.  

 

 
 

Figure 4.2 Types of Software Vulnerabilities by Percentage Terms in this Study  

(Source: developed for this research) 

 

Figure 4.2 shows that buffer error is the most common software vulnerability (30%) 

in the total sample population of 667 software vulnerabilities, followed by cross site 

scripting (XSS) (17%), numeric errors and resource management errors (7%), SQL 

injection, path traversal, input validation, code injection (6%), insufficient 
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information and permission, privileges and access control (4%), authentication issues 

(2%), and CSRF, other design errors and OS command injection (1%).  The 

following software vulnerabilities configuration, credentials management, 

cryptographic issues, format string vulnerability and link following had a less than 

(1%) occurrence in the total sample population of 667 for this study.  

 

Type of Software Vulnerability across Software Vendor Type 

Table 4.2 shows the distribution of the 21 most commonly identified types of 

software vulnerabilities across proprietary source software vendors and open source 

software vendors. 

 

Table 4.2 Types of Software Vulnerability across Software Vendor Type 

Types of Software Vulnerability * Software Vendor Type  

Types of Software Vulnerability 

Software Vendor Type 

Total 

Proprietary Source Software 

Vendor 

Open Source Software 

Vendor 

 Authentication Issues 6 (1.4%) 5 (2.0%) 11 (1.6%) 

Buffer Errors 160 (38.3%) 37 (14.9%) 197 (29.5%) 

Code Injection 36 (8.6%) 5 (2.0%) 41 (6.1%) 

Configuration 0 (0.0%) 1 (0.4%) 1 (0.1%) 

Credentials Management 2 (0.5%) 0 (0.0%) 2 (0.3%) 

Cryptographic Issues 2 (0.5%) 1 (0.4%) 3 (0.4%) 

CSRF 8 (1.9%) 0 (0.0%) 8 (1.2%) 

Design Errors 3 (0.7%) 1 (0.4%) 4 (0.6%) 

Format String Vulnerability 2 (0.5%) 0 (0.0%) 2 (0.3%) 

Information Leak/Disclosure 8 (1.9%) 1 (0.4%) 9 (1.3%) 

Input Validation 29 (6.9%) 11 (4.4%) 40 (6.0%) 

Insufficient Information 9 (2.2%) 15 (6.0%) 24 (3.6%) 

Link Following 0 (0.0%) 1 (0.4%) 1 (0.1%) 

Numeric Errors 30 (7.2%) 19 (7.6%) 49 (7.3%) 

OS Command Injections 4 (1.0%) 0 (0.0%) 4 (0.6%) 

Other 4 (1.0%) 4 (1.6%) 8 (1.2%) 

Path Traversal 12 (2.9%) 25 (10.0%) 37 (5.5%) 

Permissions, Privileges, and Access Control 18 (4.3%) 8 (3.2%) 26 (3.9%) 

Resource Management Errors 35 (8.4%) 10 (4.0%) 45 (6.7%) 

SQL Injection 8 (1.9%) 31 (12.4%) 39 (5.8%) 

XSS 42 (10.0%) 74 (29.7%) 116 (17.4%) 

Total 418 249 667 

 

Buffer errors, Cross Site Scripting (XSS), code injection, input validation, numeric 

errors, resource management errors and SQL injection are the most common 

software vulnerabilities in both types of software vendors.  

 

Although distribution of software vulnerabilities in open source software vendors 

and proprietary source software vendors is not equal, from table 4.2 it can be 

established that proprietary source software vendors have a higher occurrence of 

software vulnerability buffer errors (38.28 %) compared to open source software 

vendors (14.86 %). Similarly, proprietary source software vendors have a higher 
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occurrence of the following software vulnerabilities: code injection (8.61 %), 

resource management errors (8.37 %) and input validation (6.94 %), compared to 

open source software vendors of code injection (2.01 %), resource management 

errors (4.02 %), and input validation (4.42 %). In contrast, open source software 

vendors have a higher occurrence of Cross Site Scripting (XSS) (29.72 %) compared 

to proprietary source software vendors (10.05 %).  

 

Likewise, open source software vendors have a higher occurrence of the following 

software vulnerabilities: SQL injection (12.45 %), path traversal (10.04 %) and 

insufficient information (6.02 %), compared to proprietary source software vendors 

with SQL injection (1.91 %), path traversal (2.87 %) and insufficient information 

(2.15 %). The software vulnerability numeric errors are almost equally distributed in 

both types of software vendors with (7.63 %) occurrence in open source software 

vendors and (7.18 %) occurrence in proprietary source software vendors. 

4.2.2 Type of Software 

Type of software is an independent variable in the proposed research model for this 

study and is measured as a binary scale. Operating system software is represented 

as 1 and application software is represented as the reference category 0. Table 4.3 

presents the distribution for operating system software and application software 

across the total sample population of 667 software vulnerabilities. 

 

Table 4.3 Distribution of Software Vulnerabilities across Type of Software 

Type Of Software Frequency Percent Cumulative Percentage 

Application Software 611 91.6 91.6 

Operating System Software 56 8.4 100.0 

Total 667 100.0  

 

Table 4.3 shows that 56 (8.4%) software vulnerabilities are classified as operating 

system software and 611 (91.6%) software vulnerabilities are classified as 

application software. 

Types of Software Vulnerability across Software Type  

Operating system software and application software are affected by different types of 

software vulnerabilities (Telang et al. 2007). Table 4.4 shows how both operating 
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system software and application software are affected proportionately by the 21 most 

common types of software vulnerabilities in the total sample population of 667 

software vulnerabilities in this study (NVD 2011a; OVAL 2011).  

 

Table 4.4 Types of Software Vulnerability across Software Type 

Types of Software Vulnerability * Software Type  

Types of Software Vulnerability 
Software Type 

Total Application Software Operating System Software 

 Authentication Issues  11 (1.8%) 0 (0.00%) 11 (1.6%) 

Buffer Errors  178 (29.1%) 19 (33.9%) 197 (29.5%) 

Code Injection  31 (5.1%) 10 (17.9%) 41 (6.1%) 

Configuration  1 (0.2%) 0 (0.0%) 1 (0.1%) 

Credentials Management  2 (0.3%) 0 (0.0%) 2 (0.3%) 

Cryptographic Issues  3 (0.5%) 0 (0.0%) 3 (0.4%) 

CSRF  5 (0.8%) 3 (5.4%) 8 (1.2%) 

Design Errors  4 (0.7%) 0 (0.0%) 4 (0.6%) 

Format String Vulnerability  2 (0.3%) 0 (0.0%) 2 (0.3%) 

Information Leak/Disclosure  9 (1.5%) 0 (0.0%) 9 (1.3%) 

Input Validation  39 (6.4%) 1 (1.8%) 40 (6.0%) 

Insufficient Information  21 (3.4%) 3 (5.4%) 24 (3.6%) 

Link Following  0 (0.0%) 1 (1.8%) 1 (0.1%) 

Numeric Errors  42 (6.9%) 7 (12.5%) 49 (7.3%) 

OS Command Injections  3 (0.5%) 1 (1.8%) 4 (0.6%) 

Other  7 (1.1%) 1 (1.8%) 8 (1.2%) 

Path Traversal  37 (6.1%) 0 (0.0%) 37 (5.5%) 

Permissions, Privileges, and Access Control  22 (3.6%) 4 (7.1%) 26 (3.9%) 

Resource Management Errors  39 (6.4%) 6 (10.7%) 45 (6.7%) 

SQL Injection  39 (6.4%) 0 (0.0%) 39 (5.8%) 

XSS  116 (19.0%) 0 (0.0%) 116 (17.4%) 

Total  611 (100%) 56 (100%) 667 (100%) 

 

Buffer errors, code injection, CSRF and input validation are the most common 

software vulnerabilities in these two different software types.  

 

Table 4.4 shows that the distribution of these different software vulnerabilities is not 

equal across application software and operating system software. From the table it 

can be identified that cross site scripting, SQL injection and path traversal have the 

highest occurrence in application software by (19%), (6.4%) and (6.1%) respectively, 

with no occurrence in operating system software in the total sample population for 

this study. Similarly, application software has a higher occurrence of the software 

vulnerability input validation (6.4 %) compared to occurrence of input validation 

(1.8%) in operating system software.  

 

In contrast, it can be identified that operating system software has the highest 

occurrence of the following software vulnerabilities: buffer errors (33.9%), code 

injection (17.9%), numeric errors (12.5%), resource management errors (10.7%) and 

CSRF (5.4%) compared to application software with the occurrence of buffer errors 
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(29.1%), code injection (5.1%), numeric errors (6.9%), resource management errors 

(6.4%) and CSRF (0.8%). 

4.2.3 The Level of Criticality of Software Vulnerability 

The level of criticality of software vulnerabilities is an independent variable and 

measured as an interval scale from 0 to 10. Table 4.5 presents the distribution of the 

level of criticality of software vulnerabilities across the sample population of 667 

software vulnerabilities.  

 

Table 4.5 Distribution of Software Vulnerabilities related to the Level of Criticality 

Categories 

Categorization Of Level Of Criticality Frequency Percent Cumulative Percentage 

Very Low              (0-2) 0 0 0 

Low                     (2.1- 4) 14 2.1 2.1 

Medium              (4.1 – 6) 195 29.2 31.3 

High                    (6.1 – 8) 139 20.8 52.1 

Very High           (8.1- 10) 319 47.8 100 

Total 667 100.0  

 

As shown in table 4.5, the level of criticality of software vulnerabilities is categorised 

into five classes: very low (0-2), low (2.1 to 4), medium (4.1 to 6), high (6.1 to 8) 

and very high (8.1 to 10). In the total sample population of 667 software 

vulnerabilities there are no software vulnerabilities which are considered to have a 

very low level of criticality. However, in the total sample population of 667 software 

vulnerabilities 68% are of a high or a very high level of criticality, 29% are a 

medium level of criticality and 2% are a low level of criticality.  

 

Table 4.6 summarizes the results of the descriptive statistics for the level of 

criticality of software vulnerability.  

 

Table 4.6 Descriptive Statistics of the Level of Criticality of Software Vulnerability 

Descriptive Statistics 

Categorization of Level of Criticality 

N Valid 667 

Missing 0 

Mean 4.1439 

Median 4.0000 

Std. Deviation .91384 

Skewness -.454 

Kurtosis -1.273 

 

Table 4.6 shows that for the variable level of criticality the Mean is 4.14, Median is 

4.00 and the Standard Deviation is 0.91384 in the total sample population of 667 of 
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software vulnerabilities. This indicates that this variable is considered to be normally 

distributed because mean and median are almost the same. The standard deviation is 

less than 1 which means the variable, the level of criticality of software vulnerability, 

is closely spread. Similarly, skewness and kurtosis present the shape of the 

distribution for the variable, the level of criticality of software vulnerability. If the 

value of skewness and kurtosis are zero, the observed distribution is exactly normal.  

From table 4.6, it can be observed that the value of skewness -0.45 and the value of 

kurtosis -1.27 are close to 0, which represents a normal distribution. However, the 

negative value of skewness indicated that the distribution for the variable, the level 

of criticality of software vulnerability, is negatively skewed and the negative value of 

kurtosis indicated that the distribution for the variable, the level of criticality of 

software vulnerability, is flatter. 

 

Figure 4.3 box plot graph and figure 4.4 Normal Q-Q plot graph indicate that the 

variable, the level of criticality of software vulnerabilities, is representative of a 

normal distribution. Figure 4.3 shows that the distribution of the variable, the level of 

criticality, is normal because the horizontal line in the box known as median line is in 

the middle of the box. Similarly, figure 4.4 shows that the distribution of the 

variable, the level of criticality, is normal because the data points are on or around 

the straight line.  

 

 
Figure 4.3 Box Plot for the Level of Criticality of Software Vulnerability 
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Figure 4.4 Normal Q-Q Plots for the Level of Criticality of Software Vulnerability 

 

Level of Criticality across Software Vendor Type 

Table 4.7 shows distribution of the different levels of criticality for software 

vulnerabilities across the type of software vendor.  

 

Table 4.7 Level of Criticality across Software Vendor Type 

Level of Criticality * Software Vendor Type  

Level of Criticality 

Software Vendor Type 

Total 

 

Proprietary Source Software Vendor  Open Source Software Vendor 

 Low  6 (1.4%) 8 (3.2%) 14 (2.1%) 

Medium  75 (17.9%) 120 (48.2%) 195 (29.2%) 

High  75 (17.9%) 64 (25.7%) 139 (20.8%) 

Very High  262 (62.7%) 57 (22.9%) 319 (47.8%) 

Total  418 (100%) 249 (100%) 667 (100%) 

 

Table 4.7 shows that in the total sample population, a very high level of criticality for 

software vulnerabilities has greater representation for proprietary source software 

vendors (62.7%) compared to open source software vendors (22.9%). In contrast, 

high, medium and low level of criticality of software vulnerabilities have higher 

representation for open source software vendors (25.7%, 48.2% and 3.2% 

respectively) compared to proprietary source software vendors (with 17.9%, 17.9% 

and 1.4 respectively).  
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Table 4.8 shows the variations of the mean values of the level of criticality across 

software vendor type.  

 

Table 4.8 Variations of Means for Level of Criticality of Software Vulnerabilities 

across Software Vendor Type 

Descriptives 

Level of Criticality 

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

Minimum Maximum Lower Bound Upper Bound 

Proprietary Source Software 
vendor 

418 4.4187 .83067 .04063 4.3388 4.4985 2.00 5.00 

Open Source Software Vendor 249 3.6827 .86121 .05458 3.5752 3.7902 2.00 5.00 

Total 667 4.1439 .91384 .03538 4.0745 4.2134 2.00 5.00 

 

As shown in table 4.8, the mean value of level of criticality of software vulnerability 

for open source software vendors is 3.6827; and for proprietary source software 

vendors is 4.4187. These mean values indicate that software vulnerabilities for open 

source software vendors are less critical overall than software vulnerabilities for 

proprietary source software vendors in the total sample population for this study. 

 

Table 4.9 shows the results of a one-way ANOVA analysis of the level of criticality 

of software vulnerability across type of software vendor.  

 

Table 4.9 ANOVA Analysis of Level of Criticality of Software Vulnerability across 

Type of Software Vendor 

ANOVA 

Level of Criticality 

 Sum of Squares df Mean Square F Sig. 

Between Groups 84.513 1 84.513 119.153 .000 

Within Groups 471.670 665 .709   

Total 556.183 666    

 

Table 4.9 shows that there is a statistically significant difference between open 

source software vendor and proprietary source software vendor as determined by 

one-way ANOVA (F (1,665) = 119.153, p = 0.000 in terms of the level of criticality 

of software vulnerabilities. 

 

 

Level of Criticality across Type of Software  

Table 4.10 shows the distribution of different levels of criticality for software 

vulnerabilities across the type of software. 
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Table 4.10 Level of Criticality across Type of Software 

Level of Criticality * Software Type 

Level of Criticality 

Software Type 

Total 
Application Software 

Count/Percentage 
Operating System Software 

Count/Percentage 

 Low  13 (2.1%) 1 (1.8%) 14 (2.1%) 

Medium  192 (31.4%) 3 (5.4%) 195 (29.2%) 

High  123 (20.1%) 16 (28.6%) 139 (20.8%) 

Very High  283 (46.3%) 36 (64.3%) 319 (47.8%) 

Total  611 (100%) 56 (100%) 667 (100%) 

 

Table 4.10 shows that high to very high levels of criticality of software 

vulnerabilities in the total sample population are more representative in operating 

system software (64.3% and 28.6% respectively) compared to application software 

(46.3% and 20.1% respectively). In contrast, low level of criticality of software 

vulnerabilities in application software (2.1%) compares similarly to operating system 

software (1.8%).  

 

Table 4.11 shows the variations of the mean value of the level of criticality across 

type of software.  

 

Table 4.11 Variations of Level of Criticality across Type of Software 

Descriptives 

Level of Criticality 

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

Minimum Maximum Lower Bound Upper Bound 

Application Software 611 4.1064 .92336 .03736 4.0330 4.1797 2.00 5.00 

Operating System Software 56 4.5536 .68542 .09159 4.3700 4.7371 2.00 5.00 

Total 667 4.1439 .91384 .03538 4.0745 4.2134 2.00 5.00 

 

As shown in table 4.11, the mean value of level of criticality of software 

vulnerability for operating system software is 4.5536; and for application software is 

4.1064. These mean values indicate that the level of criticality of software 

vulnerabilities in operating system software is slightly higher than the level of 

criticality of software vulnerabilities in application software in the total sample 

population for this study. 

 

Table 4.12 shows the results of a one-way ANOVA analysis of the level of criticality 

of software vulnerability across type of software.  
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Table 4.12 ANOVA Analysis of Level of Criticality of Software Vulnerabilities 

across Type of Software 

ANOVA 

Level of Criticality 

 Sum of Squares df Mean Square F Sig. 

Between Groups 10.259 1 10.259 12.496 .000 

Within Groups 545.924 665 .821   

Total 556.183 666    

 

Table 4.12 shows that there is a statistically significant difference between operating 

system software and application software as determined by one-way ANOVA (F 

(1,665) = 12.496, p = 0.000 with the level of criticality of software vulnerability. 

  

Level of Criticality of Software Vulnerabilities across Response Time  

Table 4.13 shows the level of criticality of software vulnerabilities across response 

time to release patches for vendor informed software vulnerabilities. 

 

 

Table 4.13 Level of Criticality across Response Time  

Level of Criticality * Response Time  

Level of 

Criticality  

Categorization of Response Time 

Total 

-1500 to 0 

Count / 

Percentage 

1 to 100 

Count / 

Percentage 

101 to 200 

Count / 

Percentage 

201 to 300 

Count / 

Percentage 

301 to 400 

Count / 

Percentage 

401 to 500 

Count / 

Percentage 

501 to 2500 

Count / 

Percentage 

  Low  2 (14.3%) 8 (57.1%) 0 (0.0%) 3 (21.4%) 0 (0.0%) 1 (7.1%) 0 (0.0%) 14 (100.0%)  

Medium  17 (8.7%) 147 (75.4%) 18 (9.2%) 7 (3.6%) 1 (0.5%) 3 (1.5%) 2 (1.0%) 195 (100.0%) 

High  10 (7.2%) 88 (63.3%) 19 (13.7%) 13 (9.4%) 3 (2.2%) 4 (2.9%) 2 (1.4%) 139 (100.0%) 

Very High  9 (2.8%) 134 (42.0%) 101 (31.7%) 30 (9.4%) 14 (4.4%) 7 (2.2%) 24 (7.5%) 319 (100.0%) 

Total  38 (5.7%) 377 (56.5%) 138 (20.7%) 53 (7.9%) 18 (2.7%) 15 (2.2%) 28 (4.2%) 667 (100.0%) 

 

 

Table 4.13 indicates that of 14 software vulnerabilities with a low level of criticality 

in the total sample population of 667 software vulnerabilities, 8 (57.1%) had a 

software patch released between (1 to 100 days), while 3 (21%) had a software patch 

released between (201 to 300 days) and 1 (7%) had a software patch released 

between (401 to 500 days). However, 2 (14.3%) low level criticality software 

vulnerabilities had software patches released before the vendor informed date, hence, 

the response time in days is zero or a negative number of days. 

 

There are 195 medium level criticality software vulnerabilities in the total sample 

population of 667 software vulnerabilities for this study. The majority—147 

(75.4%)—of medium level criticality software vulnerabilities had a software patch 

released between (1 to 100 days). Eighteen (9.2%) medium level criticality software 
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vulnerabilities had a software patch released between (101 to 200 days), 7 (3.6%) 

medium level criticality software vulnerabilities had a software patch released 

between (201 to 300 days) and 3 (1.5%) medium level criticality software 

vulnerabilities had a software patch released between (401 to 500 days). However, 

17 (8.7%) medium level criticality software vulnerabilities had a software patch 

released before the vendor informed date. 

 

Similarly, there are 139 high level criticality software vulnerabilities in the total 

sample population of 667 vendor informed software vulnerabilities for this study. 

The majority of high level criticality software vulnerabilities—88 (63.3%)—had a 

software patch released between (1 to 100 days); 19 (13.7%) high level criticality 

software vulnerabilities had a software patch released in (101 to 200 days); 13 

(9.4%) high level criticality software vulnerabilities had a software patch released 

between (201 to 300 days); 3 (2.2%) high level criticality software vulnerabilities 

had a software patch released between (301 to 400 days); 4 (2.9%) high level 

criticality software vulnerabilities had a software patch released between (401 to 500 

days); and 2 (1.4%) very high level criticality software vulnerabilities had a software 

patch released between (501 to 2500 days). However, only 10 (8.7%) high level 

criticality software vulnerabilities had a software patch released before the vendor 

informed date. 

 

Furthermore, there are 319 very high level criticality software vulnerabilities in the 

total sample population of 667 software vulnerabilities for this study: 134 (42.0%) 

very high level criticality software vulnerabilities had a software patch released 

between (1 to 100 days); 101 (31.7%) very high level criticality software 

vulnerabilities had a software patch released between (101 to 200 days); 30 (9.4%) 

very high level criticality software vulnerabilities had a software patch released 

between (201 to 300 days); 14 (4.4%) high level criticality software vulnerabilities 

had a software patch released between (301 to 400 days); 7 (2.2%) high level 

criticality software vulnerabilities had a software patch released between (401 to 500 

days); and 24 (7.5%) very high level criticality software vulnerabilities had a 

software patch released between (501 to 2500 days). However, only 9 (2.8%) very 

high level criticality software vulnerabilities had a software patch released before the 

vendor informed date. 
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Types of Software Vulnerability across Level of Criticality of Software 

Vulnerability 

 

Table 4.14 shows the distribution of types of software vulnerabilities across different 

levels of criticality.  

 

Table 4.14 Types of Software Vulnerability across Level of Criticality of Software 

Vulnerability 

Types of Software Vulnerability * Level of Criticality 

Types of Software Vulnerability 
Level of Criticality 

Total Low Medium High Very High 

 Authentication Issues 0 (0%) 4 (2.1%) 4 (2.9%) 3 (0.9%) 11 (1.6%)  

Buffer Errors 0 (0%) 4 (2.1%) 20 (14.4%) 173 (54.2%) 197 (29.5%) 

Code Injection 0 (0%) 2 (1.0%) 4 (2.9%) 35 (11.0%) 41 (6.1%) 

Configuration 0 (0%) 1 (0.5%) 0 (0%) 0 (0%) 1 (0.1%) 

Credentials Management 0 (0%) 0 (0%) 2 (1.4%) 0 (0%) 2 (0.3%) 

Cryptographic Issues 0 (0%) 2 (1.0%) 0 (0%) 1 (0.3%) 3 (0.4%) 

CSRF 0 (0%) 1 (0.5%) 6 (4.3%) 1 (0.3%) 8 (1.2%) 

Design Errors 0 (0%) 3 (1.5%) 0 (0%) 1 (0.3%) 4 (0.6%) 

Format String Vulnerability 0 (0%) 1 (0.5%) 0 (0%) 1 (0.3%) 2 (0.3%) 

Information Leak/Disclosure 1 (7.1%)  6 (3.1%) 2 (1.4%) 0 (0%) 9 (1.3%) 

Input Validation 1 (7.1%) 15 (7.7%) 8 (5.8%) 16 (5.0%) 40 (6.0%) 

Insufficient Information 1 (7.1%) 5 (2.6%) 8 (5.8%) 10 (3.1%) 24 (3.6%) 

Link Following 1 (7.1%) 0 (0%) 0 (0%) 0 (0%) 1 (0.1%) 

Numeric Errors 0 (7.1%) 3 (1.5%) 11 (7.9%) 35 (11.0%) 49 (7.3%) 

OS Command Injections 0 (7.1%) 0 (0%) 1 (0.9%) 3 (0.9%) 4 (0.6%) 

Other 2 (14.3%) 4 (2.1%) 2 (1.4%) 0 (0%) 8 (1.2%) 

Path Traversal 1 (7.1%) 12 (6.2%) 21 (15.1%) 3 (0.9%)  37 (5.5%) 

Permissions, Privileges, and Access Control 0 (0%) 8 (4.1%) 15 (10.8%) 3 (0.9%) 26 (3.9%) 

Resource Management Errors 1 (7.1%) 4 (2.1%) 6 (4.3%) 34 (10.7%) 45 (6.7%) 

SQL Injection 0 (0%) 11 (5.6%) 28 (20.1%) 0 (0%) 39 (5.8%) 

XSS 6 (42.9%) 109 (55.9%) 1 (0.7%) 0 (0%) 116 (17.4%) 

Total 14 (2.1%) 195 (29.2%) 139 (20.8%) 319 (47.8%) 667 (100%) 

 

 

Buffer errors are the most representative critical software vulnerability in the total 

sample population of 667 software vulnerabilities for this study. One hundred and 

seventy-three buffer error software vulnerabilities are of a very high level of 

criticality, 20 are of a high level of criticality and 4 are of a medium level of 

criticality.  

 

Similarly, SQL injection is the second most representative software vulnerability. Of 

the 116 SQL injection software vulnerabilities, none are of a very high level of 

criticality, 1 has a high level of criticality, 109 have a medium level of criticality and 

6 have a low level of criticality. Likewise, numeric errors are the third most 

representative software vulnerability. Of 49 numeric errors software vulnerabilities, 

35 numeric errors are of a very high level of criticality, 11 are of a high level of 

criticality and 3 are of a medium level of criticality. 



- 86 - 

 

Similarly, resource management errors are the fourth most representative software 

vulnerability. Of the 45 resource management error software vulnerabilities, 34 are 

of a very high level of criticality, 6 are of a high level of criticality, 4 are of a 

medium level of criticality and 1 is a low level of criticality. Code injection is the 

fifth most representative software vulnerability. Of 41 code injection software 

vulnerabilities 35 are of a very high level of criticality, 4 are of a high level of 

criticality and 2 are of a medium level of criticality.  

 

Similarly, input validation is the sixth most representative software vulnerability. Of 

40 input validation software vulnerabilities, 16 are of a very high level of criticality, 

8 are of a high level of criticality, 15 are of a medium level of criticality and 1 is of 

low level of criticality. 

 

4.2.4 Response Time  

The response time is the dependent variable in the proposed research model in this 

study. As defined in chapter 1, response time is the amount of time taken to release a 

software patch based on when the software vendor is informed of a software 

vulnerability.  

 

This variable is measured in days as a ratio scale. Table 4.15 shows the distribution 

of response time for the total sample population of 667 software vulnerabilities. 

 

Table 4.15 Distribution of Software Vulnerabilities across Response Time 

Response Time  

Response days Frequency Percent Cumulative Percent 

-1500 to 0 38 5.7 5.7 

1 to 100 377 56.5 62.2 

101 to 200 138 20.7 82.9 

201 to 300 53 7.9 90.9 

301 to 400 18 2.7 93.6 

401 to 500 15 2.2 95.8 

501 to 2500 28 4.2 100.0 

Total 667 100.0  

 

In table 4.15 the response time has been categorised into seven different categories  

(-1500 to 0, 1 to 100, 101 to 200, 201 to 300, 301 to 400, 401 to 500, 501 to 2500). 

In the total sample population of 667 software vulnerabilities for this study, software 

vendors had released software patches for 56.5 % software vulnerabilities between 1 

to 100 days; and released software patches for 20.7% software vulnerabilities 
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between 101 to 200 days.  Table 4.15 also shows that software vendors released 

software patches for 90% software vulnerabilities between 1 to 500 days. However, 

there are few instances of the release of software patches for software vulnerabilities 

that take less than 1 day (software patch released before the vendor is informed of the 

software vulnerability) and more than 500 days.  

 

Table 4.16 summarizes the results of descriptive statistics for the variable response 

time in days.  

 

Table 4.16 Descriptive Statistics for the Response Time  

Descriptive Statistics 

Response Time Statistic Std. Error 

Mean 110.55 7.410 

95% Confidence Interval for Mean Lower Bound 96.00  

Upper Bound 125.10  

5% Trimmed Mean 90.28  

Median 48.00  

Std. Deviation 191.364  

Skewness 2.967 .095 

Kurtosis 28.814 .189 

 

Table 4.16 shows that for the response time, the mean is 110.55 days, median is 

48.00 days and the standard deviation is 191.364 days. Similarly, skewness and 

kurtosis are 2.967 and 28.814 respectively, which present the shape of the 

distribution of the variable response time. From table 4.16 it can be observed that 

there is a large difference between mean and median; there is also a variation 

between mean and standard deviation. Likewise, skewness and kurtosis are not close 

to zero. This indicates that the distribution of the variable response time is not 

representative of a normal distribution (Field 2009; Hair et al. 2010).  

 

Similarly, figure 4.5 normal Q-Q plot and figure 4.6 box plot show that the 

distribution of the variable response time is not representative of a normal 

distribution.  From the normal Q-Q plot, it can be observed that the data points are 

highly deviated from the normal line. Likewise, from the box plot it can be observed 

that there are many outliers in the data set for the variable response time, which are 

illustrated with a circle and an asterisk (*) sign; and, also, median line is not in the 

middle of the box in the box plot graph. This also confirms that the variable response 

time is not representative of normal distribution. 
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Figure 4.6 Box Plot of the Response Time 

 

From the above descriptive statistics, normal Q-Q plot and box plot graphs for the 

response time indicate that the variable is peaked with severe kurtosis and a number 

of outliers, therefore, a natural log transformation is an appropriate technique to 

make the variable response time more representative of normal distribution 

(McCluskey &  Lalkhen 2007).   

Figure 4.5 Normal Q-Q Plot of the Response Time 
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Assumptions for conducting data transformation (Hair et al. 2010) in this study are as 

follows: 

 

 to correct violations of the statistical assumptions underlying the multivariate 

techniques (Multiple regression analysis) which are normality, linearity and 

homoscedasticity; and 

 to improve the relationship (correlation) between variables.  

 

Table 4.17 summarizes the descriptive statistics after the transformation of the 

variable response time. Table 4.17 shows that the statistical value of the mean is very 

close to the median, and the standard deviation (.719) is within 3 times the upper and 

lower bound of mean value. Similarly, skewness and kurtosis are very close to zero. 

This indicates that the transformed variable response time is now much more 

representative of a normal distribution.  

 

Table 4.17 Results of Descriptive Statistics for the Variable Response Time after Log 

Transformation 

  

Descriptive Statistics 

Log(Response Time) Statistic Std. Error 

Mean 1.64 .028 

95% Confidence Interval for Mean Lower Bound 1.58  

Upper Bound 1.69  

5% Trimmed Mean 1.66  

Median 1.73  

Std. Deviation .719  

Skewness -.498 .096 

Kurtosis -.416 .191 

 

 

 

Figure 4.7 shows a histogram of the variable response time after a natural log 

transformation.  
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Figure 4.7 Frequency Distribution of Log (Response Time) 

 

In figure 4.7, the mean 1.64 and standard deviation 0.719 on the top right corner 

shows that the data points (i.e. the variable response time) are distributed very close 

to mean. This suggests that the data in the variable response time is much more 

representative of normal distribution. 

 

Figure 4.8 shows the box plot of the variable response time after a natural log 

transformation. 

 

 
Figure 4.8 Box plot of Log (Response Time) 
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In Figure 4.8, the 25
th

, 50
th

 and 75
th

 percentiles are symmetrically arranged in the box 

plot. Similarly, the straight line inside the box plot indicates that the median is very 

close to mean. This also shows that after a natural log transformation, the variable 

response time is much more representative of a normal distribution. 

 

Figure 4.9 shows a normal Q-Q plot of the variable response time after a natural log 

transformation. 

 

 

Figure 4.9 Normal Q-Q Plot of Log (Response Time) 

 

In figure 4.9, the transformation of the variable response time now is close to the 

normal straight line which indicates the transformed variable is much closer to a 

normal distribution.  

 

Response Time across Software Vendor Type 

Table 4.18 shows the distribution of different categories of response time across 

software vendor type.  
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Table 4.18 Response Time across Software Vendor Type 

Response Time * Software Vendor Type  

Response Time  
Software Vendor Type 

Total Proprietary Source Software vendor Open Source Software Vendor 

 -1500 to 0 12 (2.9%) 26 (10.4%) 38 (5.7%) 

1 to 100 183 (43.8%) 194 (77.9%) 377 (56.5%) 

101 to 200 116 (27.8%) 22 (8.8%) 138 (20.7%) 

201 to 300 50 (12.0%) 3 (1.2%) 53 (7.9%) 

301 to 400 17 (4.1%) 1 (0.4%) 18 (2.7%) 

401 to 500 13 (3.1%) 2 (0.8%) 15 (2.2%) 

501 to 2500 27 (6.5%) 1 (0.4%) 28 (4.2%) 

 Total 418 (100%) 249 (100%) 667 (100%) 

 

Table 4.18 shows that 56% of vendor informed software vulnerabilities software 

patches were released between (1 to 100 days) in the total sample population of 677 

vendor informed software vulnerabilities.  

 

Open source software vendors have a response time of between (1 to 100 days) to 

release a software patch for 77.9% of open source vendor informed software 

vulnerabilities. Open source software vendors have a response time of between (101 

and 200 days) to release a software patch for 8.8% of open source vendor informed 

software vulnerabilities. Software vulnerabilities which have software patches 

released above 200 days account for only 7 open source vendor informed software 

vulnerabilities. Software vulnerabilities which have negative response times for 

releasing software patches account for 10.4% of open source vendor informed 

software vulnerabilities.  

 

In contrast, proprietary source software vendors have a response time of between (1 

to 100 days) to release software patches for 43.8% of proprietary source vendor 

informed software vulnerabilities. Proprietary source software vendors have a 

response time of between (101 to 200 days) to release a software patch for 27.8% of 

proprietary source vendor informed software vulnerabilities. Proprietary source 

software vendors have a response time of between (201 to 300 days) to release a 

software patch for 12% of proprietary source vendor informed software 

vulnerabilities. Software vulnerabilities which have software patches released above 

300 days account for only 57 (13.7%) of proprietary source vendor informed 

software vulnerabilities.  Software vulnerabilities which have negative response 

times for releasing software patches account for 2.9% of proprietary source vendor 

informed software vulnerabilities. 
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Overall, open source software vendors have released software patches for 86.7% of 

open source vendor informed software vulnerabilities between (1 to 200 days); 

compared to proprietary source software vendors who released software patches for 

71.6% of proprietary source vendor informed software vulnerabilities between (1 and 

200 days). This finding lends support for the notion that software patches for open 

source software are released quicker than for proprietary source software. 

 

Response Time across Software Type 

Table 4.19 shows the distribution of different categories of response time to release 

software patches for vendor informed software vulnerabilities across software type.  

 

Table 4.19 Response Time across Software Type 

Response Time * Software Type  

Response Time  
Software Type 

Total Application Software Operating system software 

 -1500 to 0  36 (5.9%) 2 (3.6%) 38 (5.7%) 

1 to 100  353 (57.8%) 24 (42.9%)  377 (56.5%) 

101 to 200  127 (20.8%) 11 (19.6%) 138 (20.7%) 

201 to 300  43 (7.0%) 10 (17.9%) 53 (7.9%) 

301 to 400  14 (2.3%) 4 (7.1%) 18 (2.7%) 

401 to 500  13 (2.1%) 2 (3.6%) 15 (2.2%) 

501 to 2500  25 (4.1%) 3 (5.4%) 28 (4.2%) 

Total  611 (100%) 56 (100%) 667 (100%) 

 

 

Table 4.19 shows that while the overall percentages are similar for each category of 

response time, the comparative percentages of vendor informed software 

vulnerabilities for application software and operating system software are different.  

 

For 57.8% of application software vulnerabilities, software patches are released in 1 

to 100 days, 20.8% in 101 to 200 days and 2% in above 500 days; whereas 5.9% of 

software patches for application software vulnerabilities have negative response 

times as the software patch is released before the vendor informed date (0 to -500 

days).  

 

In contrast, 42.9% of operating system related software vulnerabilities software  

patches have been released in 1 to 100 days, 19.6% in 101 to 200 days, 17.9% in  

201 to 300 days, 7.1% in 301 to 400 days, 3.69% in 401 to 500 days, and 5.4% in 

above 500 days.  For software patches for operating system software vulnerabilities 

3.6% have negative response times as the software patch is released before the 

vendor informed date (0 to -500 days). 
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Overall, for 78.6% of application software vulnerabilities, software patches are 

released in 1 to 200 days compared to 62.5% for operating system software 

vulnerabilities for which software patches are released in 1 to 200 days. This would 

suggest that software patches for application software vulnerabilities are overall 

released slightly quicker than software patches for operating system software 

vulnerabilities. 

 

Types of Software Vulnerability across Response Time  

Table 4.20 shows the distribution of the different types of software vulnerabilities 

across the different categories of response time.  

 

Table 4.20 Types of Software Vulnerability across Response Time  

Types of Software Vulnerability * Response Time  

Types of Software 

Vulnerability 

Response Time  

Total 

-1500 
 to 

 0 

1 
 to 

 100 

101 
 to  

200 

201  
to  

300 

301 
 to  

400 

401  
to  

500 

501 
 to  

2500 

 Authentication Issues 1(9.1%) 6 (54.5%) 1 (9.1%) 1 (9.1%) 2 (18.2%) 0 (0.0%) 0 (0.0%) 11 (100.0%) 

Buffer Errors 4 (2.0%) 87 (44.2%) 57 (28.9%) 20 (10.2%) 7 (3.6%) 2 (1.0%) 20 (10.2%) 197 (100.0%) 

Code Injection 2 (4.9%) 11 (26.8%) 18 (43.9%) 5 (12.2%) 4 (9.8%) 0 (0.0%) 1 (2.4%) 41 (100.0%) 

Configuration 0 (0.0%) 1 (100.0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (100.0%) 

Credentials Management 0(0.0%) 2 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (100.0%) 

Cryptographic Issues 0 (0.0%) 2 (66.7%) 1 (33.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (100.0%) 

CSRF 0 (0.0%) 6 (75.0%) 1 (12.5%) 0 (0.0%) 1 (12.5%) 0 (0.0%) 0 (0.0%) 8 (100.0%) 

Design Errors 1 (25.0%) 2 (50.0%) 0 (0.0%) 1 (25.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 4 (100.0%) 

Format String Vulnerability 0 (0.0%) 2 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (100.0%) 

Information Leak/Disclosure 1 (11.1%) 5 (55.6%) 1 (11.1%) 2 (22.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 9 (100.0%) 

Input Validation 6 (15.0%) 23 (57.5%) 2 (5.0%) 4 (10.0%) 1 (2.5%) 3 (7.5%) 1 (2.5%) 40 (100.0%) 

Insufficient Information 1 (4.2%) 9 (37.5%) 8 (33.3%) 3 (12.5%) 1 (4.2%) 1 (4.2%) 1 (4.2%) 24 (100.0%) 

Link Following 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 

Numeric Errors 3 (6.1%) 26 (53.1%) 12 (24.5%) 2 (4.1%) 1 (2.0%) 3 (6.1%) 2 (4.1%) 49 (100.0%) 

OS Command Injections 0 (0.0%) 4 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 4 (100.0%) 

Other 2 (25.0%) 4 (50.0%) 0 (0.0%) 2 (25.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 8 (100.0%) 

Path Traversal 2 (5.4%) 30 (81.1%) 2 (5.4%) 1 (2.7%) 0 (0.0%) 1 (2.7%) 1 (2.7%) 37 (100.0%) 

Permissions, Privileges, and 

Access Control 

1 (3.8%) 19 (73.1%) 0 (0.0%) 2 (7.7%) 1 (3.8%) 3 (11.5%) 0 (0.0%) 26 (100.0%) 

Resource Management Errors 2 (4.4%) 17 (37.8%) 19 (13.8%) 5 (42.2%) 0 (0.0%) 1 (2.2%) 1 (2.2%) 45 (100.0%) 

SQL Injection 5 (12.8%) 34 (87.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 39 (100.0%) 

XSS 7 (6.0%) 86 (74.1%) 16 (11.6%) 5 (4.3%) 0 (0.0%) 1 (0.9%) 1 (0.9%) 116 (100.0%) 

Total 38 (5.7%) 377 (56.5%) 138 (20.7%) 53 (7.9%) 18 (2.7%) 15 (2.2%) 28 (4.2%) 667 (100%) 

 

 

From the total sample population of 667 (100%) software vulnerabilities, table 4.20 

shows that the most commonly released software patches for vendor informed 

software vulnerabilities are buffer errors 197 (29.5%), followed by cross site 

scripting (XSS) 116 (17.4%), numeric errors 49 (7.3%), resource management errors 

45 (6.7%) and code injection 41 (6.1%) across the different response time categories.  
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Only 4 (2.0%) of buffer errors software vulnerabilities are patched before vendor 

informed date and hence have a negative response time; whereas 87 (44.2%) of 

buffer errors software vulnerabilities have software patches released in (1 to 100 

days), 57 (28.9%) in (101 to 200 days), 20 (10.2%) in (201 to 300 days), 7 (3.6%) in 

(301 to 400 days), 2 (1.0%) in (401 to 500 days) and 20 (10.2 %) in (above 501 

days).  

 

Similarly, only 7 (6.0%) of cross site scripting (XSS) software vulnerabilities are 

patched before vendor informed date and hence have a negative response time; 

whereas 86 (74.1%) of cross site scripting (XSS) software vulnerabilities have 

software patches released in (1 to 100 days), 16 (11.6%) in (101 to 200 days), 5 

(4.3%) in (201 to 300 days), none in (301 to 400 days), 1 (0.9%) in (401 to 500 days) 

and 1 (0.9 %) in above 501 days.   

 

Only 3 (6.1%) of numeric software vulnerabilities are patched before vendor 

informed date and hence have a negative response time; whereas 26 (53.1%) of 

numeric software vulnerabilities have software patches released in (1 to 100 days), 

12 (24.5%) in (101 to 200 days), 2 (4.1%) in (201 to 300 days), 1 (2.0%) in (301 to 

400 days), 3 (6.1%) in (401 to 500 days) and 2 (4.1%) in above 501 days.   

 

Only 2 (4.4%) of resource management software vulnerabilities are patched before 

vendor informed date and hence have a negative response time; whereas 17 (37.8%) 

of resource management software vulnerabilities have software patches released in (1 

to 100 days), 19 (13.8%) in (101 to 200 days), 5 (42.2%) in (201 to 300 days), none 

in (301 to 400 days), 1 (2.2%) in (401 to 500 days) and 1 (2.2 %) in above 501 days.  

 

Only 2 (4.9%) of code injection software vulnerabilities are patched before vendor 

informed date and hence have a negative response time; whereas 11 (26.8%) of code 

injection software vulnerabilities have software patches released in (1 to 100 days), 

18 (43.9%) in (101 to 200 days), 5 (12.2%) in (201 to 300 days), 4 (9.8%) in (301 to 

400 days), none in (401 to 500 days) and 1 (2.4 %) in above 501 days. 
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Types of Software Vulnerabilities across Response Time for Open Source 

Vendor informed Software Vulnerabilities 

 

Table 4.21 shows the distribution of different types of software vulnerabilities across 

the different categories of response time for open source vendor informed software 

vulnerabilities. 

 

Table 4.21 Types of Software Vulnerabilities across Response Time for Open Source 

Vendor informed Software Vulnerabilities 

Types of Software Vulnerability * Response Time for Open Source Vendor informed Software Vulnerabilities 

Types of Software 

Vulnerability 

Response Time for Open Source Vendor informed Software Vulnerabilities 

Total 

-1500  

to  

0 

1  

to  

100 

101  

to  

200 

201 

 to  

300 

301 

 to  

400 

401  

to  

500 

501 

 to  

2500 

 Authentication Issues 0 (.0%) 4 (80.0%) 0 (.0%) 0 (.0%) 1 (20.0%) 0 (.0%) 0 (.0%) 5 (100.0%) 

Buffer Errors 3 (8.1%) 28 (75.7%) 6 (16.2%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 37 (100.0%) 

Code Injection 0 (.0%) 3 (60.0%) 2 (40.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 5 (100.0%) 

Configuration 0 (.0%) 1 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 1 (100.0%) 

Cryptographic Issues 0 (.0%) 1 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 1 (100.0%) 

Design Errors 0 (.0%) 1 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 1 (100.0%) 

Information Leak/Disclosure 0 (.0%) 1 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 1 (100.0%) 

Input Validation 0 (.0%) 11(100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 11 (100.0%) 

Insufficient Information 0 (.0%) 6 (40.0%) 5 (33.3%) 3 (20.0%) 0 (.0%) 0 (.0%) 1 (6.7%) 15 (100.0%) 

Link Following 0 (.0%) 1 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 1 (100.0%) 

Numeric Errors 3 (15.8%) 12 (63.2%) 3 (15.8%) 0 (.0%) 0 (.0%) 1 (5.3%) 0 (.0%) 19 (100.0%) 

Other 1 (25.0%) 3 (75.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 4 (100.0%) 

Path Traversal 0 (.0%) 24 (96.0%) 0 (.0%) 0 (.0%) 0 (.0%) 1 (4.0%) 0 (.0%) 25 (100.0%) 

Permissions, Privileges, and 
Access Control 

1 (12.5%) 7 (87.5%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 8 (100.0%) 

Resource Management Errors 0 (.0%) 9 (90.0%) 1 (10.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 10 (100.0%) 

SQL Injection 0 (.0%) 31(100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 31 (100.0%) 

XSS 2 (2.7%) 67 (90.5%) 5 (6.8%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 74 (100.0%) 

Total 10 (4.0%) 210(84.3%) 22 (8.8%) 3 (1.2%) 1 (.4%) 2 (.8%) 1 (.4%) 249(100.0%) 

 

 

In the total sample population of 667 software vulnerabilities, 249 software 

vulnerabilities are in the open source software vendor category in this study. Table 

4.21 shows the distribution of response times of open source vendor informed 

software vulnerabilities. The most common open source vendor informed software 

vulnerabilities in the following order are Cross Site Scripting (XSS) 74; followed by 

buffer errors 37; SQL injection 31; path traversal 25; and numeric errors 19. 

 

For the 74 Cross Site Scripting (XSS) software vulnerabilities, 97% of software 

patches are released in 1 to 200 days. For 37 buffer errors software vulnerabilities, 

92% of software patches are released in 1 to 200 days. For 31 SQL injection software 
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vulnerabilities, 100% of software patches are released in 1 to 100 days. For 25 path 

traversal software vulnerabilities, 96% of software patches are released in 1 to 100 

days. For 19 numeric errors software vulnerabilities, 79% of software patches are 

released in 1 to 200 days. 

 

Overall, for 249 software vulnerabilities in the open source software vendor 

category, 84% of software patches are released in 1 to 100 days. 

Types of Software Vulnerabilities across Response Time for Proprietary Source 

Vendor informed Software Vulnerabilities 

 

Table 4.22 shows the distribution of different types of software vulnerabilities across 

the different categories of response time for proprietary source vendor informed 

software vulnerabilities. 

 

Table 4.22 Types of Software Vulnerabilities across Response Time for Proprietary 

Source Vendor informed Software Vulnerabilities 

Types of Software Vulnerability * Response Time for Proprietary Source Vendor informed Software Vulnerabilities 

Types of Software 

Vulnerability 

Response Time for Proprietary Source Vendor informed Software Vulnerabilities 

Total 

-1500  

to  
0 

1  

to  
100 

101  

to  
200 

201 

 to  
300 

301  

to  
400 

401  

to  
500 

501 

 to 
 2500 

 Authentication Issues 0 (.0%) 3 (50.0%) 1 (16.7%) 1 (16.7%) 1 (16.7%) 0 (.0%) 0 (.0%) 6 (100.0%) 

Buffer Errors 0 (.0%) 60 (37.5%) 51 (31.9%) 20(12.5%) 7 (4.4%) 2 (1.3%) 20(12.5%) 160(100.0%) 

Code Injection 1 (2.8%) 9 (25.0%) 16 (44.4%) 5 (13.9%) 4 (11.1%) 0 (.0%) 1 (2.8%) 36 (100.0%) 

Credentials Management 0 (.0%) 2 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 2 (100.0%) 

Cryptographic Issues 0 (.0%) 1 (50.0%) 1 (50.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 2 (100.0%) 

CSRF 0 (.0%) 6 (75.0%) 1 (12.5%) 0 (.0%) 1 (12.5%) 0 (.0%) 0 (.0%) 8 (100.0%) 

Design Errors 0 (.0%) 2 (66.7%) 0 (.0%) 1 (33.3%) 0 (.0%) 0 (.0%) 0 (.0%) 3 (100.0%) 

Format String Vulnerability 0 (.0%) 2 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 2 (100.0%) 

Information Leak/Disclosure 0 (.0%) 5 (62.5%) 1 (12.5%) 2 (25.0%) 0 (.0%) 0 (.0%) 0 (.0%) 8 (100.0%) 

Input Validation 3 (10.3%) 15 (51.7%) 2 (6.9%) 4 (13.8%) 1 (3.4%) 3 (10.3%) 1 (3.4%) 29 (100.0%) 

Insufficient Information 0 (.0%) 4 (44.4%) 3 (33.3%) 0 (.0%) 1 (11.1%) 1 (11.1%) 0 (.0%) 9 (100.0%) 

Numeric Errors 0 (.0%) 14 (46.7%) 9 (30.0%) 2 (6.7%) 1 (3.3%) 2 (6.7%) 2 (6.7%) 30 (100.0%) 

OS Command Injections 0 (.0%) 4 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 4 (100.0%) 

Other 1 (25.0%) 1 (25.0%) 0 (.0%) 2 (50.0%) 0 (.0%) 0 (.0%) 0 (.0%) 4 (100.0%) 

Path Traversal 0 (.0%) 8 (66.7%) 2 (16.7%) 1 (8.3%) 0 (.0%) 0 (.0%) 1 (8.3%) 12 (100.0%) 

Permissions, Privileges, and 

Access Control 

0 (.0%) 12 (66.7%) 0 (.0%) 2 (11.1%) 1 (5.6%) 3 (16.7%) 0 (.0%) 18 (100.0%) 

Resource Management Errors 1 (2.9%) 9 (25.7%) 18 (51.4%) 5 (14.3%) 0 (.0%) 1 (2.9%) 1 (2.9%) 35 (100.0%) 

SQL Injection 0 (.0%) 8 (100.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 0 (.0%) 8 (100.0%) 

XSS 1 (2.4%) 23 (54.8%) 11 (26.2%) 5 (11.9%) 0 (.0%) 1 (2.4%) 1 (2.4%) 42 (100.0%) 

Total 7 (1.7%) 188(45.0%) 116(27.8%) 50(12.0%) 17 (4.1%) 13 (3.1%) 27 (6.5%) 418(100.0%) 

 

In the total sample population of 667 software vulnerabilities, 418 software 

vulnerabilities are in the proprietary source software vendor category in this study. 

Table 4.22 shows the distribution of response times of proprietary source software 

vendors for vendor informed software vulnerabilities. The most common proprietary 
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source software vulnerabilities in the following order are buffer errors 160; followed 

by Cross Site Scripting (XSS) 42; code injection 36; resource management errors 35; 

and input validation 29. 

 

For the 160 buffer errors software vulnerabilities, the breakup of response times in 

releasing software patches shows that 86% of software patches are released in 1 to 

400 days. For 42 Cross Site Scripting (XSS) software vulnerabilities, 93% of 

software patches are released in 1 to 300 days. For 36 code injection software 

vulnerabilities, 94% of software patches are released in 1 to 400 days. For 35 

resource management software vulnerabilities, 91% of software patches are released 

in 1 to 300 days. For 29 input validation software vulnerabilities, 72% of software 

patches are released in 1 to 300 days. 

 

Overall, for the 418 software vulnerabilities in proprietary source software vendor 

category, 84% of software patches are released in 1 to 300 days. 

 

Level of Criticality across Response Time  

Table 4.23 shows the mean value for the response time across the different levels of 

criticality of software vulnerabilities. Table 4.23 shows that software vendors have 

the longest response time in releasing a software patch for software vulnerabilities 

with a very high level of criticality, and have the shortest response time for software 

vulnerabilities with a medium level of criticality. Software vendors have also taken a 

longer response time to release a software patch for low level of criticality software 

vulnerabilities compared to medium level and high level of criticality software 

vulnerabilities. 

 

Table 4.23 Level of Criticality across Response Time  

Level of Criticality across Response Time  

Level of Criticality 
N Mean Std. Deviation Std. Error 

95% Confidence Interval for Mean 

Minimum Maximum Lower Bound Upper Bound 

Low 14 97.31 135.840 36.305 18.88 175.74 0 413 

Medium 195 55.42 195.267 13.983 27.84 83.00 -1050 2225 

High 139 83.54 138.459 11.744 60.32 106.76 -716 577 

Very High 319 156.60 200.107 11.204 134.56 178.64 -697 1173 

Total 667 110.55 191.364 7.410 96.00 125.10 -1050 2225 

 

Table 4.23, shows that software vendors‘ response time in releasing software patches 

for low level of criticality software vulnerabilities is slower than medium and high 
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level of criticality of software vulnerabilities. Similarly, software vendors‘ response 

time in releasing software patches for medium level of criticality software 

vulnerabilities is the quickest and software vendors‘ response time in releasing 

software patches for very high level of criticality software vulnerabilities is the 

slowest.  

 

4.3 Testing Underlying Regression Assumptions  

In order to ensure the assumptions of multiple regression analysis have been met, it is 

necessary to check whether the conditions of normality, linearity and 

homoscedasticity are met.  

 

Figure 4.10 shows the relationship between the regression standard residuals and the 

regression standardised predicted values.  

 

 

Figure 4.10 Scatter Plot of Regression Standardized Predicted Value 
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Figure 4.10 shows that there is no clear relationship between the regression standard 

residuals and the regression standardised predicted values, which means the scatter 

plot of residuals against predicted values is consistent with the assumption of 

linearity. 

 

Similarly, figure 4.11 shows the normal P-P plot of regression standardised residuals 

and figure 4.12 shows the histogram of regression standardised residual.  

 

 

Figure 4. 11 Normal P-P Plot of Regression Standardised Residual 
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Figure 4. 12 Histogram of Regression Standardised Residual 

 

Similarly, figure 4.11 (Normal plot of regression standardised residuals) and figure 

4.12 (Histogram of regression standardised residual) for the dependent variable 

(Response time) also indicate a relatively normal distribution because the most 

observed residual points lie on the normal distribution line and regression standard 

residuals appears to follow a bell-shaped curve respectively.  

Table 4.24 shows the normality test for the proposed regression model. 

 

Table 4.24 Normality Test for the Proposed Model  

Model Summaryb 

Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

Durbin-

Watson 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .552a .304 .301 .601 .304 94.253 3 646 .000 1.362 

a. Predictors: (Constant), Type of Software, Type of Software Vendor, Level of Criticality 

b. Dependent Variable: Log (Response Time) 
 

 

To meet the assumptions of the normality of the regression model, the residuals 

terms should be uncorrelated or independent for any two observations. This 

assumption is tested using a Durbin-Watson test. Table 4.24 shows the value of the 

Durbin-Watson test for the regression model. The closer the value of the Durbin-
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Watson test is to 2, the better the multiple regression models meets the assumptions 

of independent errors; and for this proposed regression model the value is 1.362—

which meets the assumption of linearity. 

Table 4.25 and table 4.26 below show the residual statistics for any extreme cases 

which may be an outlier, < ±2 and <±3 respectively, in the multiple regression 

analysis in the proposed model.  

 

Table 4.25 Test for any Extreme Cases which may be an Outlier < ±2 

Casewise Diagnosticsb 

Case Number Std. Residual Log (Response Time)  Predicted Value Residual Status 

43 2.207 3 1.26 1.325  

59 -3.061 0 1.84 -1.839  

60 -3.061 0 1.84 -1.839  

105 -2.123 0 1.58 -1.275  

109 -2.166 1 2.26 -1.301  

130 -2.352 0 1.41 -1.412  

134 -2.472 0 1.96 -1.485  

135 -2.472 0 1.96 -1.485  

136 -3.007 0 1.81 -1.806  

154 -3.061 0 1.84 -1.839  

159 2.115 3 1.47 1.270  

161 2.483 2 .98 1.491  

211 2.229 3 1.26 1.339  

215 -2.513 0 1.99 -1.509  

216 -2.513 0 1.99 -1.509  

284 -3.307 0 1.99 -1.987  

305 2.062 2 1.00 1.239  

425 -2.106 0 1.26 -1.265  

465 2.949 3 1.58 1.771  

492 -2.106 0 1.26 -1.265  

544 -2.560 0 1.84 -1.538  

547 -2.806 0 1.99 -1.685  

567 2.271 2 1.06 1.364  

591 -2.259 0 1.62 -1.357  

667 -2.218 0 1.63 -1.332  

a. Missing Case 

b. Dependent Variable: Log (Response Time  

    
 

 

 

Table 4.26 Test for any Extreme Cases which may be an Outlier <±3 

Casewise Diagnosticsa 

Case Number Std. Residual Log (Response Time) Predicted Value Residual 

59 -3.061 0 1.84 -1.839 

60 -3.061 0 1.84 -1.839 

136 -3.007 0 1.81 -1.806 

154 -3.061 0 1.84 -1.839 

284 -3.307 0 1.99 -1.987 

a. Dependent Variable: Log (Response Time)  

 

Residual statistics in the multiple regression analysis should also be examined for 

any extreme cases. In a normal sample, it is expected that 95% of cases will have 

standardized residuals within ±2 (Field 2009). With a sample of 667 software 

vulnerabilities, it is reasonable to expect about 5% (33 cases) to have standardised 
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residuals outside these limits. From the case-wise diagnostics (table 4.25) produced 

by SPSS, there are 25 (3.75%) cases that are outside the limits. Therefore, the 

research sample is within the expected normal range, with very few outlier cases. In 

addition to that, if 99% of cases should have standardised residuals within ±3, it is 

expected that only 1% of cases should be outside of these limits. From table 4.26, it 

is clear that 5 (0.75 %) cases lie outside the limits. This gives no real cause for 

concern of any possible outliers that may influence regression parameters because 

none of the cases have a standardised residual greater than 3.5. Therefore, the above 

sample appears to confirm what is expected for a reasonably accurate model. 

Subsequently, the value of R
2 

=0.301 and the level of significant of 0.000 in table 

4.24 indicates that the multiple regression model is highly significant and reasonably 

accurate as well. 

 

4.4 Multiple Regression Result Analysis 

Figure 4.13 shows the multiple regression model that was formulated to test the 

proposed hypotheses listed in chapter 2, section 2.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figure 4.13, dependent variable is the response time of a software vendor in 

releasing a software patch for a software vulnerability. The independent variables 

are:  

Figure 4.13 Multiple Regression Model for this Proposed Study 

H1 + 

H2 + 

H3 + 

Level of Criticality of 

Software Vulnerability 

 

Type of Software Vendor 

3. Open Source Software 

Vendors   

4. Proprietary Source 

Software Vendors 

Type of Software 

1. Operating System Software  

2. Application Software 

 

 

      

      Response Time 
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(1) Level of criticality of software vulnerability;  

(2) Software vendor type (Open source software vendor, Proprietary source 

software vendor); and  

(3) The type of software (Operating system software, Application software).  

 

Table 4.27 provides a summary of the results of multiple regression analysis. This 

table shows that all three independent variables (the level of criticality, type of 

software and type of software vendor) together explain 30 percent of the variance 

(R
2
) in the dependent variable (response time). The value of adjusted R

2 
is 0.301, F 

(3,646) value is 94.253 and the level of significance P<0.000. 

 

 

 

Table 4.28 provides the approximate parameters of the multiple regression model 

tested. As shown in table 4.27, the overall goodness of fit of the multiple regression 

model was assessed using the F-value and was found to be statistically significant at 

p<0.05 (F (3,646) = 94.253, p<0.05, R
2 =

 0.304, R
2
adj = 0.301) (Rokkan &  Buvik 

2003). The goodness of fit of the multiple regression model is very important 

because with multiple regression analysis it is mandatory that all the predictors 

(constant and independent variables) be taken into account simultaneously to 

establish the statistical significance of the overall model (Brown &  Churchill 2009). 

 

Table 4.27 Summary of Proposed Model Test 

Model Summaryb 

Model R 
R 

Square 
Adjusted R 

Square 
Std. Error of the 

Estimate 

Change Statistics 

R Square 
Change 

F 
Change df1 df2 

Sig. F 
Change 

1 .552a .304 .301 .601 .304 94.253 3 646 .000 

a. Predictors: (Constant), Level of Criticality, Type of Software, Type of Software Vendor 

b. Dependent Variable:  Log (Response Time)  
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Table 4.28 Coefficients Test of Independent Variables in the Proposed Research 

Model 

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

Correlations 

Collinearity 

Statistics 

B Std. Error Beta Zero-order Partial Part Tolerance VIF 

 Constant (b0) 1.223 .097  12.653 .000      

Type of Software Vendor (Svt) -.574 .052 -.387(***) -10.946 .000 -.487 -.396 -.359 .862 1.159 

Type of Software (Ts) .211 .086 .082(**) 2.467 .014 .140 .097 .081 .983 1.017 

Level of Criticality (Csv) .082 .011 .256(***) 7.191 .000 .410 .272 .236 .852 1.174 

a. Dependent Variable: Log (Response Time)  

 

R
2 

= 0.304    R
2

adj=0.301  F (3,646) = 94.253 

 

Predictors: (Constant), Type of Software, Type of Software Vendor, Level of 

Criticality 

Dependent Variable: Log (Response Time)  

** = Significant at p<0.05 (two tailed), *** Significant at p<0.01 (one tailed) 

 

Table 4.28 also shows the tolerance value and variance inflation factor (VIF) for 

each independent variable used to check for multi-collinearity among the three 

independent variables. According to O‘Brien (2007), a value of tolerance less than 

0.20 and a value of VIF 10 or above indicates a multi-collinearity problem. However, 

in this regression analysis, the value of tolerance for each independent variable is 

greater than 0.20 and the value of VIF for each independent variable is smaller than 

10. This indicates that there are no multi-collinearity problems in this multiple 

regression analysis. 

 

The multiple regression model was tested using F-statistic and found to be significant 

in this study (see table 4.27). The value of R
2

adj=0.301 which is interpreted as 30% of 

the variance in the response time in days can be explained with the multiple 

regression model and the rest of the other variables have an additional impact on the 

response time. Similarly, the value of R
2 

= 0.304 which is referred to as a coefficient 

of multiple determination can also be interpreted as follows (Brown et al. 2009, p. 

604): it means that 30% of the variation in the dependent variable, the response time, 

is associated with variation in independent variables (type of software vendor, type 

of software and the level of the criticality of software vulnerability). Though table 
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4.28 shows that the type of software adds very little to improving the fitness of the 

multiple regression line, it can be inferred that there is an association between the 

type of software and the response time in releasing software patches. 

 

Analysis of the relationship between the three independent variables and the 

dependent variable from table 4.28 shows: 

 

 A strong positive relationship between the level of criticality of software 

vulnerabilities; and the response time indicates that software vendors increase 

their response time to release software patches with the increase in the level 

of criticality of a software vulnerability at the 0.01 significance level (one–

tailed). 

However, for a single positive result it is not possible to show whether the 

longer response time for both high and low level of criticality of software 

vulnerability and shorter response time for medium level of criticality of 

software vulnerability is supported as stated in H1. Therefore, the level of 

criticality has split into three levels—low, medium and high—and a multiple 

regression model (MRA) was run for each level to determine the actual 

relationship between each level of software vulnerability and the software 

vendor response time (see Appendix A). 

The MRA test for each level of criticality shows that high level and low level 

of criticality of software vulnerability have a positive relationship with the 

response time. This indicates the longer response time to release software 

patches for high level and low level of criticality of software vulnerability at 

the 0.01 significance level (one–tailed) for high level; and at the 0.754 

insignificance level for low level. The result shows insignificance for low 

level of criticality because the number of vendor informed software 

vulnerabilities with low level of criticality is only 14 in the total sample 

population of 667 software vulnerabilities (see Table 4.5 sub section 4.2.3). 

Similarly, the distribution of low level of criticality to the type of software is: 

1 for operating system software and 13 for application software (see Table 

4.10 sub section 4.2.3). Further, the distribution of low level of criticality to 
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the type of software vendor is: 6 for proprietary source software vendor and 8 

for open source software vendor (see Table 4.7 sub section 4.2.3). 

Conversely, medium level of criticality of software vulnerability has a 

negative relationship with the response time at the 0.01 significance level 

(one–tailed). This indicates a shorter response time to release software 

patches for medium level of criticality of software vulnerability (see 

Appendix A). 

 A strong negative relationship between type of software vendor and the 

response time indicates that proprietary source software vendors take a longer 

response time to release a software patch than open source software vendors 

at the 0.01significance level (one–tailed). 

 A positive relationship between type of software and the response time 

indicates that releasing patches for application software vulnerabilities is 

quicker than releasing patches for operating system software at the 0.05 

significance level (two–tailed). 

 

The resulting multiple regression model developed from this research is shown in 

figure 4.14: 
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Figure 4.14 The Resulting Multiple Regression Model 
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To summarize the multiple regression model shown in figure 4.14, the individual 

beta coefficients corresponding to the predictor variables (independent variables) in 

the regression model can be interpreted as the average change in the appropriate 

predictor variable while holding the other predictor variables constant or unchanged. 

The following interpretations of the individual beta coefficient in relation to the 

hypothesis are summarized as follows:  

 

The Level of Criticality of Software Vulnerability 

H1: Software vendors release patches for software vulnerabilities with a medium 

level of criticality in a shorter response time than software vulnerabilities with low 

and high levels of criticality once the vendor has been informed of the software 

vulnerability. 

 

b3 = 0.256 indicates that, on average, an increase of 0.256 in the response time can be 

expected with a unit increase in the level of criticality of a vendor informed software 

vulnerability if type of software vendor and type of software are kept unchanged (i.e. 

constant). This indicates that software vendors increase their response time to release 

software patches with the increase in the level of criticality of a software 

vulnerability.  

 

As per test of H1, MRA was run individually for low, medium and high levels of 

criticality of software vulnerabilities and identified beta coefficient for low level (bl = 

0.12), medium level (bm = -0.18) and high level (bh = 0.22) of criticality of software 

vulnerabilities (see Appendix A for full results of these three MRA).  

 

Where bl is beta coefficient for low level of criticality of software vulnerability, bm is 

beta coefficient for medium level of criticality of software vulnerability and bh is beta 

coefficient for high level of criticality of software vulnerability. 

 

The beta coefficient for low level of criticality (bl = 0.12) indicates that, on average, 

an increase of 0.12 in the response time can be expected with a unit increase in the 

level of criticality toward the lowest level of criticality of vendor informed software 

vulnerabilities if type of software vendor and type of software are kept unchanged 

(i.e. constant). 
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The beta coefficient for medium level of criticality (bm = -0.18) indicates that, on 

average, a decrease of 0.18 in the response time can be expected with a unit decrease 

in the level of criticality toward the medium level of criticality of vendor informed 

software vulnerabilities if type of software vendor and type of software are kept 

unchanged (i.e. constant). 

 

The beta coefficient for high level of criticality (bh = 0.22) indicates that, on average, 

an increase of 0.22 in the response time can be expected with a unit increase in the 

level of criticality toward the highest level of criticality of vendor informed software 

vulnerabilities if type of software vendor and type of software are kept unchanged 

(i.e. constant). 

 

Table 4.23 (sub section 4.2.4) shows the variation of response time mean values 

across the levels of criticality. Table 4.23 shows that the response time is longer for 

software vulnerabilities with very high, high and low level of criticality; and shorter 

for software vulnerabilities with a medium level of criticality.  

 
 

Open Source versus Proprietary Source Software Vendor 

H2: Open source software vendors release patches for open source software 

vulnerabilities more quickly than proprietary source vendors release patches for 

proprietary software vulnerabilities once the software vulnerability has been 

informed to the software vendor. 

 

b1 = -0.387 indicates that open source software vendors are 39% quicker in releasing 

software patches for vendor informed software vulnerabilities than proprietary source 

software vendors if type of software and the level of criticality of software 

vulnerability are kept unchanged (i.e. constant).  

 

Table 4.29 shows the average response time to release a software patch for 

proprietary source software vendors versus open source software vendors. 
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Table 4.29 Response Time across Software Vendor Type 

 

 

 

The mean value presented in table 4.29 shows that, overall, open source software 

vendors have a shorter response time in releasing a software patch compared to 

proprietary source software vendors. 

 

Operating System Software versus Application Software 

H3: Patches for operating system software vulnerabilities are released more quickly 

than patches for application software vulnerabilities once the software vulnerability 

has been informed to software vendors. 

 

b2 = 0.082 indicates that patches for operating system software vulnerabilities are 

released 8% slower than patches of application software if type of software vendor 

and the level of criticality of software vulnerability are kept unchanged (i.e. 

constant). 

 

Table 4.30 shows the average response time to release a software patch for 

application software versus operating system software. 

 

Table 4.30 Response Time across Software Type 

 

 

 

 

The mean value presented in table 4.30 shows that the response time to release 

patches for operating system software vulnerabilities is longer than the response time 

to release software patches for application software vulnerabilities for vendor 

informed software vulnerabilities. 

 

From table 4.30 it can be noted that the number of operating system software 

vulnerabilities is 56 compared to 611 application software vulnerabilities in the total 

sample population of 667 software vulnerabilities. The number of operating system 

Group Statistics 

 Software Vendor Type  N Mean Std. Deviation Std. Error Mean 

Response Time  Proprietary Source Software Vendor 418 155.95 216.860 10.607 

Open Source Software vendor 249 34.33 99.799 6.325 

Group Statistics 

 Software Type  N Mean Std. Deviation Std. Error Mean 

Response Time Application Software 611 105.64 193.421 7.825 

Operating System Software 56 164.10 159.120 21.263 
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software vulnerabilities is less than 10% of the total sample population. Therefore, 

results of the hypothesis test H3 in this study should be treated with caution as the 

results may be unreliable. 

 

4.4.1 Discussion of Results of Hypothesis Tests 

The beta coefficient, the level of significance and other descriptive statistics 

discussed in this chapter determine the acceptance or rejection of hypotheses 

investigated in this study. Table 4.31 shows the summary of the hypotheses tested in 

the proposed research model. 

 

Table 4.31 Summary of Hypotheses Tests and Results 

Hypotheses Results 

H1: Software vendors release patches for software vulnerabilities with a medium level of criticality in a 
shorter response time than software vulnerabilities with low and high levels of criticality once the 

vendor has been informed of the software vulnerability 

Supported 

H2: Open source software vendors release patches for open source software vulnerabilities more 
quickly than proprietary source vendors release patches for proprietary software vulnerabilities once the 

software vulnerability has been informed to software vendor 

Supported 

H3: Patches for operating system software vulnerabilities are released more quickly than patches for 
application software vulnerabilities once the software vulnerability has been informed to software 

vendor 

Not Supported 

 

The Level of Criticality of Software Vulnerability 

 

Hypothesis H1 states: 

H1: Software vendors release patches for software vulnerabilities with a medium 

level of criticality in a shorter response time than software vulnerabilities with low 

and high levels of criticality once the vendor has been informed of the software 

vulnerability: (Supported) 

 

The beta coefficient (b3 = 0.256) indicates that, on average, an increase of 0.256 in 

the response time can be expected with a unit increase in the level of criticality of a 

vendor informed software vulnerability if type of software vendor and type of 

software are kept unchanged (i.e. constant).  

 

The beta coefficient for low level of criticality (bl = 0.12) indicates that, on average, 

an increase of 0.12 in the response time can be expected with a unit increase in the 

level of criticality toward the lowest level of criticality of a vendor informed software 

vulnerabilities if type of software vendor and type of software are kept unchanged 
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(i.e. constant). 

 

The beta coefficient for medium level of criticality (bm = -0.18) indicates that, on 

average, a decrease of 0.18 in the response time can be expected with a unit decrease 

in the level of criticality toward the medium level of criticality of a vendor informed 

software vulnerabilities if type of software vendor and type of software are kept 

unchanged (i.e. constant). 

 

The beta coefficient for high level of criticality (bh = 0.22) indicates that, on average, 

an increase of 0.22 in the response time can be expected with a unit increase in the 

level of criticality toward the highest level of criticality of a vendor informed 

software vulnerabilities if type of software vendor and type of software are kept 

unchanged (i.e. constant). 

 

Table 4.13 (sub section 4.2.3) shows that 75% of medium level criticality software 

vulnerabilities have software patches released in (1 to 100 days), 77% of high level 

criticality software vulnerabilities have software patches released in (1 to 200 days), 

73% of very high level criticality software vulnerabilities have software patches 

released in (1 to 200 days) and 78% of low criticality software vulnerabilities have 

software patches released in (1 to 300 days). The results show that software vendors 

take a shorter response time to release patches for software vulnerabilities with a 

medium level of criticality than for software vulnerabilities with low and high levels 

of criticality once the vendor has been informed of the software vulnerabilities. 

 

Similarly, Table 4.23 (sub section 4.2.4) shows that the medium level of criticality of 

software vulnerabilities have the shortest response time. From medium to very high 

level of criticality of software vulnerability, software vendors are increasing the 

response time with the increase in the level of criticality of software vulnerability. 

Similarly, for medium level to low level of criticality of software vulnerability, 

software vendors are increasing the response time with the decrease in the level of 

criticality of software vulnerability. This also suggests that software vendors release 

patches for software vulnerabilities with a medium level of criticality in a shorter 

response time than software vulnerabilities with low and high levels of criticality 

once the vendor has been informed of the software vulnerability. 
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Similarly, as shown in table 4.13 (sub section 4.2.3) and table 4.23 (sub section 

4.2.4), software vendors are taking a shorter response time to release software 

patches for the software vulnerabilities with a medium level of criticality compared 

with low and high level of criticality software vulnerabilities. This finding can be 

explained by the existing literature because, in reality, low level of criticality 

software vulnerabilities are not considered a high priority, while it may be more 

difficult to develop and release a patch for very high criticality software 

vulnerabilities (Gordon et al. 2002; Tanaka et al. 2005). Gordon‘s economic model 

of software security investment suggests that the response time of software vendors 

in releasing software patches is an optimisation decision where medium level of 

criticality of software vulnerabilities are the most optimal for software vendors to 

develop and release patches; whereas low level and high level of criticality software 

vulnerabilities are less optimal to develop and release patches for software 

vulnerabilities (Gordon et al. 2002). Furthermore, currently there is little in the way 

of government regulation and legislation which discourages this type of behaviour by 

software vendors (Kuechler 2007; Otter 2007; Saint-Germain 2005) 

 

The proposed hypothesis H1 in this study worked in the opposite way to what was 

predicted in the previous literature which identified that software vendors more 

quickly release software patches for highly critical software vulnerabilities (Arora et 

al. 2010a; Liu et al. 2011; Mangalaraj et al. 2005; Telang et al. 2007). In these 

studies the response time for releasing software patches was calculated from the full 

disclosure date of software vulnerabilities and software vulnerabilities are fully 

disclosed after the grace period provided to the software vendor to release software 

patches (Arora et al. 2005a; Farrow 2000; Meunier 2008). However, in this study the 

response time to release a software patch is calculated from the vendor informed 

date.  

 

Similarly, previous studies identified that software vendors usually know of a 

software vulnerability before its full disclosure and they are provided a grace period 

to release a patch for software vulnerability before full disclosure (Cavusoglu et al. 

2004 ; Cooper 1999; OIS 2004; SANS 2003). Once a full disclosure of software 

vulnerability occurs, most responsible software vendors release a software patch on 

or before the day of full disclosure. This indicates that there is little or no influence 
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of full disclosure of software vulnerabilities on the response time to release a 

software patch. However, vendor informed dates for software vulnerabilities can 

provide a more accurate response time of software vendors in releasing a software 

patch to a software vulnerability. This can then be used to determine whether the 

software vendor is actually influenced to release a software patch to a software 

vulnerability by the level of criticality of that software vulnerability.   

 

Open Source Software Vendor versus Proprietary Source Software Vendor 

 

Hypothesis H2 states: 

H2: Open source software vendors release patches for open source software 

vulnerabilities more quickly than proprietary source vendors release patches for 

proprietary software vulnerabilities once the software vulnerability has been 

informed to software vendor: (Supported) 

 

The beta coefficient (b1 = -0.387) for the variable software vendor type which is a 

binary variable indicates that open source software vendors release software patches 

39% quicker than proprietary source software vendors for vendor informed software 

vulnerabilities. Similarly, the mean value of response time to release software 

patches by software vendor type in table 4.29 (section 4.4) provides further evidence 

for findings regarding H2 which indicate that open source software vendors release 

patches for open source software vulnerabilities more quickly than proprietary source 

software vendors once software vulnerabilities has been informed to software 

vendors.  

 

Similarly, table 4.21 (sub section 4.2.4) shows that open source software vendor 

response time to release software patches for 84% software vulnerabilities is between 

(1 to 100 days). In contrast, table 4.22 (sub section 4.2.4) shows that proprietary 

source software vendor response time to release software patches for 84% of 

software vulnerabilities is between (1 to 300 days). This shows that open source 

software vendors‘ response time to release software patches for open source software 

vulnerabilities is quicker than proprietary source software vendors‘ response time to 

release software patches for proprietary source software vulnerabilities. 
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Further, table 4.7 (sub section 4.2.3) shows that 48% of software vulnerabilities with 

medium level criticality were found in open source software vendors; whereas 18% 

of software vulnerabilities with medium level criticality were found in proprietary 

source software vendors. Similarly, 48% of software vulnerabilities with high and 

very high level criticality were found in open source software vendors; whereas 81% 

of software vulnerabilities with high and very high level criticality were found in 

proprietary source software vendors. From the discussion of H1 it has been shown 

that software vendors release patches for software vulnerabilities with a medium 

level of criticality in a shorter response time than software vulnerabilities with low 

and high levels of criticality once the vendor has been informed of the software 

vulnerability. This also explains why open source software vendors are quicker in 

releasing a software patch compared to proprietary source software vendors once a 

software vulnerability has been informed to the software vendor.  

 

Schryen (2009) did not find any significant difference in vendors‘ patching 

behaviour between open source software vendors and proprietary source software 

vendors for fully disclosed software vulnerabilities. However, Arora et al. (2010a) 

found that open source software vendors release software patches quicker than 

proprietary source software vendors for fully disclosed software vulnerabilities. 

Based on the previous literature, this research supports the findings of Arora et al. 

(2010a) that open source software vendors release patches for open source software 

vulnerabilities quicker than proprietary source software vendors release patches for 

proprietary source software vulnerabilities. 

 

Therefore, hypothesis H2 developed in this study that open source vendors release 

software patches for open source software vulnerabilities more quickly than 

proprietary source software vendors release software patches for proprietary software 

vulnerabilities once the software vulnerability has been informed to software vendor 

is supported. 
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Operating System Software versus Application Software 

 

Hypothesis H3 states: 

H3: Patches for operating system software vulnerabilities are released more quickly 

than patches for application software vulnerabilities once the software vulnerability 

has been informed to software vendors: (Not supported) 

 

The beta coefficient (b2 = 0.082) for the variable type of software which is a binary 

variable indicates that software patches for operating system software vulnerabilities 

are released 8% slower than patches for application software once software 

vulnerability has been informed to software vendors. Similarly, the mean value of 

response time for application and operating system software in table 4.30 section 4.4 

shows that software vendor release patches for operating system are slower than 

application software once software vulnerabilities has been informed to software 

vendors. 

 

Similarly, table 4.4 (sub section 4.2.2) shows that buffer errors, SQL injection and 

cross site scripting (XSS) are the mostly commonly found software vulnerabilities in 

application software; and table 4.20 shows that software vendors‘ response time to 

release software patches for most buffer errors, SQL injection and cross site scripting 

(XSS) software vulnerabilities in application software is between (1 to 100 days). In 

contrast table 4.4 (sub section 4.2.2) shows that buffer errors, code injection, 

resource management errors and numeric errors are the most common software 

vulnerability in operating system software; and table 4.20 (sub section 4.2.4) shows 

that software vendors‘ response time to release software patches for most buffer 

errors, code injection, resource management errors and numeric errors software 

vulnerabilities in operating software is between (1 to 300 days). This also provides 

further explanation for why software vendors‘ response time to release software 

patches for application software is quicker than response time to release software 

patches for operating system software. 

 

Moreover, table 4.10 (sub section 4.2.3) shows that 90% of operating system 

software has a high level of criticality and 5% of operating system software has a 

medium level of criticality compared to 66% of application software with a high 



- 117 - 

 

level of criticality, and 31% of application software with a medium level of 

criticality. As the result of H1 shows, software vendors take a longer response time 

in releasing a software patch for a highly critical software vulnerability compared to 

medium critical software vulnerability. It can be concluded that this is one of the 

main reasons why operating system software is patched more slowly than application 

software. This result is also supported by Gordon‘s economic model of software 

security investment which contends software vendors release patches for operating 

system software vulnerabilities much slower because the optimisation of investment 

in software security is higher for software with a high level of criticality (Gordon et 

al. 2002). 

 

Previous empirical research by SANS and TippingPoint (2009; 2009) found that 

software vendors patch operating system software vulnerabilities more quickly than 

application software vulnerabilities. However, these empirical studies analysed the 

patching behaviour of a limited number of software vendors with their software 

vulnerabilities.  

 

This research has analysed the patching behaviour of 160 software vendors with 667 

software vulnerabilities and found that software vendors patch operating system 

software vulnerabilities slower than application software vulnerabilities. This result 

might be unreliable to generalize as a whole because in the total sample population 

of 667 software vulnerabilities, 611 software vulnerabilities are application software 

vulnerabilities and 56 software vulnerabilities are operating system software 

vulnerabilities. Therefore, this hypothesis needs further investigation in future 

research where operating system software vulnerabilities are more representative in 

the sample population.  

 

4.6 Conclusion 

This chapter presented and discussed the results of the quantitative analysis 

generated from the statistical tests. The results and findings in relation to the 

statistical tests were discussed. The statistical tests included descriptive statistics, 

multi-collinearity, one way ANOVA and multiple regression analysis.  
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The descriptive statistics revealed that the three key factors (1) type of software, (2) 

type of software vendor and (3) the level of criticality of software vulnerability have 

a significant impact on the response time in releasing software patches.  

 

The ANOVA analysis showed that there is a significant difference between the open 

source software vendor and proprietary source software vendor with the level of 

criticality of a software vulnerability. Similarly, there is also a significant difference 

between the operating system software and application software with the level of 

criticality of a software vulnerability.  

 

Further, the mean difference of the response time in releasing a software patch 

revealed that (1) there is a difference between open source and proprietary source 

software vendors in releasing a software patch; and (2) there is a difference between 

operating system software and application software vendors in releasing a software 

patch. 

 

The multiple regression model was used to test the research hypotheses formulated 

from the conceptual and theoretical model developed in chapter 2 (literature review). 

The hypothesis testing showed that the level of criticality of software vulnerabilities 

and the type of software have a positive relationship with the response time; and type 

of software vendor has a strong negative relationship with the response time. 

Although, the hypothesis testing showed that the level of criticality has a positive 

relationship, a single positive result it is not possible to show whether the longer 

response time for both high and low level of criticality of software vulnerability and 

shorter response time for medium level of criticality of software vulnerability is 

supported as stated in H1. Therefore, the level of criticality has been split into three 

levels—low, medium and high. The MRA test for each level of criticality shows that 

high level and low level of criticality of software vulnerability have a positive 

relationship with the response time. Conversely, medium level of criticality of 

software vulnerability has a negative relationship with the response time.  

 

The next chapter is the concluding chapter of this study and provides an overall 

summary of this study including the research problem, hypotheses test results, a 

discussion on the theoretical and practical contributions of the findings of this 

research, limitations of the study, and suggestions for future research. 
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Chapter 5: Conclusions 

 

5.1 Introduction 

This chapter reports on the main conclusions of this empirical research regarding the 

patching behaviour of software vendors for informed software vulnerabilities in 

terms of the level of criticality of software vulnerabilities, the type of software 

vendor and the type of software. This chapter begins with a summary of the research 

problem, the general research question, the three specific research questions 

addressed in this research, the three research hypotheses that were tested and the 

research methodology used in this study. The key findings and conclusions regarding 

the results of the descriptive data analysis, one way ANOVAs and research 

hypotheses tests using multiple regression analysis are then summarized. The key 

contributions of this study to theory and practice are then discussed; and the 

limitations of this study are acknowledged. Finally, this chapter provides some 

suggestions for future research regarding the key factors impacting on the response 

time of software vendors in releasing patches for vendor informed software 

vulnerabilities. 

 

5.2 Summary of this Study 

This section provides a summary of the research problem and general research 

question investigated in this study, the research hypotheses tested, and the research 

method used in this study. The key findings of descriptive data analyses and 

hypotheses testing are then summarized.  

 

5.2.1 Research Problem 

Previous studies analysed the influence of the level of criticality of software 

vulnerabilities on software vendors‘ patching behaviour on the basis of the full 

disclosure date (Arora et al. 2010a; Liu et al. 2011; Mangalaraj et al. 2005; Telang et 

al. 2007). Arora et al. (2010a) also argued that open source software vendors are 

quicker than proprietary source software vendors in releasing software patches for 

software vulnerabilities on the basis of full disclosure date. Conversely, Schryen 
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(2009) argued that there is no significant difference between open source software 

vendors and proprietary source software vendors in releasing software patches for 

software vulnerabilities on the basis of full disclosure date. Furthermore, previous 

studies argued that software vendors release software patches for operating system 

software vulnerabilities quicker than application software vulnerabilities on the basis 

of the full disclosure date (SANS 2009; TippingPoint 2009). All the above studies 

based their analysis of software vendors‘ patching behaviour on the full disclosure 

date of software vulnerability and paid little attention to analysing software vendors‘ 

patching behaviour on the basis of vendor informed date. To address the identified 

gaps in the literature, this study investigated the following general research question: 

 

To what extent does the level of criticality of software vulnerabilities, type of 

software vendor (Open source, Proprietary source vendor), and type of software 

(Operating system software, Application software) influence the response time of 

software vendors in releasing patches when the software vendor is informed of 

software vulnerabilities? 

 

To answer the general research question for this research, the following three specific 

research questions are addressed: 

 

RSQ1. How does the level of criticality of software vulnerabilities influence the 

response time of software vendors in releasing patches when the software vendor is 

informed of software vulnerabilities? 

 

RSQ2. Is there a difference between open and proprietary source software vendors in 

terms of their response time in releasing patches when the software vendor is 

informed of software vulnerabilities? 

 

RSQ3. Is there a difference between operating system software and application 

software in terms of response time of software vendors in releasing patches when the 

software vendor is informed of software vulnerabilities? 
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5.2.2 Research Hypotheses 

The three hypotheses were formulated from the three research questions above after 

being justified and grounded in the existing relevant literature on software 

vulnerabilities and software vendors‘ behavior in releasing software patches. The 

three hypotheses are as follows: 

 

H1: Software vendors release patches for software vulnerabilities with a medium 

level of criticality in a shorter response time than software vulnerabilities with low 

and high levels of criticality once the vendor has been informed of the software 

vulnerability.  

 

H2: Open source vendors release patches for open source software vulnerabilities 

more quickly than proprietary source vendors release patches for proprietary 

software vulnerabilities once the software vendor has been informed of the software 

vulnerability. 

 

H3: Patches for operating system software vulnerabilities are released more quickly 

than patches for application software vulnerabilities once the software vendor has 

been informed of the software vulnerability. 

 

These three hypotheses together test the effect of the level of criticality of software 

vulnerabilities, type of software vendor and type of software on the response time of 

software vendors in releasing patches once the vendor is informed of the software 

vulnerabilities.  

 

A research model showing the results of hypotheses testing using multiple regression 

analysis is presented in figure 5.1.  

 

 

 

 

 

 

 



- 122 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

** = Significant at p<0.05 (two tailed), *** Significant at p<0.01 (one tailed) 

 

 

 

In order to test hypothesis H1, the sample population for this study was split on three 

levels of criticality of software vulnerabilities (Low, Medium, High) in order to 

determine if software vendors released patches for medium level software 

vulnerabilities quicker than for low and high level software vulnerabilities once 

informed of the software vulnerability. Table 5.1 shows the beta coefficients, as well 

as corresponding significance level, for each level of criticality from each of the 

three MRAs conducted to test H1 hypothesis (full details of the three MRAs 

conducted for H1 hypothesis are available in Appendix A). 

 

Table 5.1 Three Levels of Criticality Beta Coefficients and Level of Significance for 

Three MRA ran for Hypothesis H1 

Level of Criticality Beta Coefficients Significance Level 

Low Level of Criticality         (H1l)           bl  = 0.121(*)(NS) 0.754 

Medium Level of Criticality   (H1m)     bm = -0.181 (***) 0.004 

High Level of Criticality        (H1h)         bh = 0.222 (***) 0.000 

* (NS) Insignificant, *** Significant at p<0.01 (one tailed) 

Source: Developed for this research 

 

Figure 5.1 Research Model and Results of Hypotheses Tests using MRA 

Source: Developed for this research 
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Table 5.2 provides a summary of the hypotheses which were supported or not 

supported in this study. A discussion of each hypothesis is presented in the next 

section. 

 

Table 5.2 Supported and Unsupported Hypotheses of This Study 

Hypotheses Relationship investigated Supported? 

H1  High level and low level of criticality of software vulnerability have a positive relationship 

with the response time 

 Medium level of criticality of software vulnerability has a negative relationship with the 

response time 

Yes 

H2 A strong negative relationship between type of software vendor and the response time Yes 

H3 A positive relationship between type of software and the response time No 

Source: Developed for this Research 

 

5.2.2 Summary of Results of Research Hypothesis Testing 

H1: The beta coefficient (b3 = 0.256) (figure 5.1) indicates the overall impact of the 

level of criticality of software vulnerabilities on response time of software 

vendors in releasing patches for vendor informed software vulnerabilities. 

However, this result did not distinguish between the response time for software 

vulnerabilities with high or low level of criticality and the response time for 

medium level of criticality of software vulnerability as stated in H1.  

 

Therefore, in order to test the hypothesis H1 appropriately, the sample 

population of 667 software vulnerabilities was split into three levels of criticality 

(low, medium and high). A MRA was run for a subset of the sample population 

for each level of criticality to determine the actual relationship between each of 

the three levels of criticality of software vulnerabilities and the software 

vendors‘ response time (see Appendix A). Table 5.1 shows the beta coefficients 

for each level of criticality of software vulnerabilities after running each 

individual MRA. The beta coefficient (bl = 0.12) for software vulnerabilities 

with a low level of criticality indicates that an increase towards the lowest level 

of criticality increases the response time. However, this relationship is 

statistically insignificant. Moreover, the beta coefficient (bh = 0.22) for high 

level of criticality indicates that an increase towards the highest level of 

criticality increases the response time. In contrast, the beta coefficient (bm = -

0.18) for medium level of criticality indicates that a decrease towards the 

medium level of criticality decreases the response time. 
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Therefore, one of the key findings of this study is that the results of three MRAs 

for H1 hypothesis test provides support for the argument that software vendors 

release patches for software vulnerabilities with a medium level of criticality in a 

shorter response time than software vulnerabilities with low and high levels of 

criticality: (Supported) 

 

H2: Open source software vendors are 39% quicker than proprietary source software 

vendors in releasing software patches when informed of software vulnerabilities. 

 

Another key finding of this study is that the results of the H2 hypothesis test 

provided support for the argument that open source vendors release patches for 

open source software vulnerabilities more quickly than proprietary source 

vendors release patches for proprietary software vulnerabilities once the 

software vendor has been informed of the software vulnerability: (Supported). 

 

H3: The results of H3 hypothesis test did not provide support for the argument that 

software patches for operating system software are released quicker than those 

for application software (Not supported). Conversely, the results suggest that 

software patches for operating system software are released 8% slower than for 

application software when the software vendor is informed of a software 

vulnerability, which is contrary to predictions in the existing literature (Not 

supported). 

 

5.2.3 Research Methodology 

This is explanatory research which uses a quantitative approach to test the research 

model to examine the relationship between the independent variables: level of 

criticality of software vulnerability; type of software vendor; and type of software, as 

well as the dependent response time of software vendors‘ in releasing patches for 

software vulnerabilities once informed of the software vulnerability. The sample 

population of 667 vendor informed software vulnerabilities was archival data 

obtained from four related software vulnerability databases SecurityFocus, Open 

Source Vulnerability Database, National Vulnerability Database and Secunia. These 

four software vulnerability databases contain archival data about software 
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vulnerabilities which has been rigorously collected and screened.  

The software vulnerability data obtained from these four databases over the time 

period 2008 to 2010 did not provide all the required information to test the proposed 

hypotheses. Therefore, a sub set of those software vulnerabilities which have all the 

required information was selected as the sample population for this study. The total 

sample population of vendor informed software vulnerabilities was analysed using 

descriptive statistics, one way ANOVAs and multiple regression analysis. The results 

from the data analysis together with the existing literature were used to explain the 

main findings of this study. 

 

5.2.4 Conclusions about Descriptive Data Findings 

This study analyzed software vulnerabilities data with a vendor informed date in 

contrast to previous studies which analysed software vulnerabilities data with a full 

disclosure date (Arora et al. 2010a; Liu et al. 2011; Mangalaraj et al. 2005; Telang et 

al. 2007). The descriptive data findings regarding the total sample population of 667 

vendor informed software vulnerabilities for this study are summarised below. 

 

Descriptive Data Analysis Findings about Type of Software Vendor and 

Software Vulnerabilities 

 The majority of software vulnerabilities are found in the software of 

proprietary source software vendors in this study. In the total sample 

population of 667 software vulnerabilities, 418 (62.7%) software 

vulnerabilities are in proprietary source vendor software and 249 (37.3%) 

software vulnerabilities are in open source vendor software (refer to table 4.1 

subsection 4.2.1). 

 Buffer errors (160, 38%) is the most common software vulnerability category 

for the software of proprietary source software vendors in this study (refer to 

table 4.2 subsection 4.2.1). 

 Cross site scripting (XSS) (74, 30%) is the most common software 

vulnerability category in the software of open source software vendors in this 

study (refer to table 4.2 subsection 4.2.1). 
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Descriptive Data Analysis Findings about Type of Software and Software 

Vulnerabilities 

 Most software vulnerabilities in this study are found in application software. 

In the total sample population of 667 software vulnerabilities, 56 (8.4%) 

software vulnerabilities are classified as operating system software, compared 

to 611 (91.6%) software vulnerabilities classified as application software 

(refer to table 4.3 subsection 4.2.2). 

 Buffer errors (178, 29%), cross site scripting (XSS) (116, 19%) and SQL 

injection (39, 6%) are the most commonly found categories of software 

vulnerabilities in application software (611) in this study (refer to table 4.4 

subsection 4.2.2). 

 Buffer errors (19, 34%), code injection (10, 18%), numeric errors (7, 13%) 

and resource management errors (6, 11%) are the most commonly found 

categories of software vulnerabilities in operating system software (56) in this 

study (refer to table 4.4 subsection 4.2.2). 

 

Descriptive Data Analysis Findings about Level of Criticality and Software 

Vulnerabilities 

 Almost half of the software vulnerabilities (319, 48%) are of a very high level 

of criticality in this study (refer to table 4.5 subsection 4.2.3). 

 The majority of the software vulnerabilities (262, 63%) in the software of 

proprietary source software vendors are of a very high level of criticality in 

this study (refer to table 4.7 subsection 4.2.3). 

 Almost half of the software vulnerabilities (120, 48%) in the software of open 

source software vendors are of a medium level of criticality in this study 

(refer to table 4.7 subsection 4.2.3). 

 Software vulnerabilities in the software of open source software vendors are 

overall less critical than software vulnerabilities in the software of proprietary 

source software vendors in this study. The average level of criticality of 

software vulnerability for open source software vendors is 3.68, whereas the 

average level of criticality of software vulnerability for proprietary source 

software vendors is 4.42 (refer to table 4.8 subsection 4.2.3). 
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 In terms of the level of impact, the following categories of software 

vulnerabilities: buffer errors, numeric errors, resource management errors 

and code injection mostly have a very high level of criticality, while cross site 

scripting (XSS) and SQL injection mostly have a medium level criticality in 

this study (refer to table 4.14 subsection 4.2.3).  

 There were 192 (31%) software vulnerabilities in application software with a 

medium level of criticality, 406 (66%) with high levels (i.e. high and very 

high) of criticality and 13 (2.1%) with a low level of criticality in this study 

(refer to table 4.10 subsection 4.2.3). 

 There were 3 (5%) software vulnerabilities in operating system software with 

a medium level of criticality, 52 (93%) with high levels (i.e. high and very 

high) of criticality and 1 (1.8%) with a low level of criticality in this study 

(refer to table 4.10 subsection 4.2.3). 

 Overall operating system software vulnerabilities are more critical than 

application software vulnerabilities in this study. The average level of 

criticality of software vulnerabilities for operating system software is 4.55, 

whereas the average level of criticality of software vulnerabilities for 

application software is 4.1 (refer to table 4.11 subsection 4.2.3). 

 

Descriptive Data Findings about Response Time and Software Vulnerabilities 

 Software vendors release patches for the majority of software vulnerabilities 

(377, 57%) between 1 to 100 days in this study (refer to table 4.15 subsection 

4.2.4). 

 For the majority of software vulnerabilities in open source software (194, 

78%), the software vendor response in releasing a software patch was 

between 1 to 100 days (refer to table 4.18 subsection 4.2.4). 

 For the majority of software vulnerabilities in proprietary source software 

(349, 84%), the software vendor response in releasing a software patch was 

between 1 to 300 days (refer to table 4.18 subsection 4.2.4). 

 Open source software vendors are quicker in releasing a software patch 

compared to proprietary source software vendors once informed of a software 

vulnerability. The average response time of open source software vendors to 

release a software patch for a software vulnerability is 34 days, whereas the 
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average response time of proprietary source software vendors to release a 

software patch for a software vulnerability is 156 days (refer to table 4.29 

subsection 4.4). 

 Software vendors release patches for software vulnerabilities with a medium 

level of criticality in a shorter response time than software vulnerabilities 

with low and high levels of criticality once the vendor has been informed of 

the software vulnerability. The average response time in releasing a software 

patch for software vulnerabilities with a medium level of criticality is 55 

days, whereas the average response time in releasing a software patch for 

software vulnerabilities with low, high and very high levels of criticality are 

97 days, 84 days and 157 days respectively (refer to table 4.23 subsection 

4.2.4).  

 Software patches for application software vulnerabilities overall are released 

quicker compared to operating system software vulnerabilities once software 

vulnerabilities have been informed to the software vendor. The average 

response time to release a software patch for application software 

vulnerabilities is 105 days, whereas the average response time to release a 

software patch for operating system software vulnerabilities is 164 days (refer 

to table 4.30 subsection 4.4). 

 The percentage of software patches released between 1 to 200 days for 

application software vulnerabilities (480, 78%) is greater when compared to 

operating system software (35, 62%) (refer to table 4.19 subsection 4.2.4). 

 

From the summary of the above descriptive statistics, it is concluded that open 

source software vendors are quicker than proprietary source software vendors in 

releasing software patches when informed of software vulnerabilities. Similarly, 

software vendors release patches for software vulnerabilities with a medium level of 

criticality in a shorter response time than software vulnerabilities with low and high 

levels of criticality. In contrast, software patches for operating system software are 

released more slowly than application software when the software vendor is 

informed of a software vulnerability. 
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The descriptive data findings with regard to the type of software might be unreliable 

and should be treated with caution because the distribution of software vulnerabilities 

across the two types of software is unequal (i.e. the proportion of operating system 

software vulnerabilities is less than 10% of the total sample population of 667). 

 

5.2.5 Conclusions Concerning Results of Research Hypotheses Tests 

The result of the research hypotheses tests shows that all the independent variables, 

namely, (1) the level of criticality of software vulnerability, (2) type of software 

vendor, and (3) type of software have a significant effect on the dependent variable, 

response time.  

 

Hypothesis H1: The key finding from the results of the three MRAs performed to test 

hypothesis H1 show that software vendors release patches for software 

vulnerabilities with a medium level of criticality in a shorter response time than 

software vulnerabilities with low and high levels of criticality once the vendor has 

been informed of the software vulnerability. This finding provides further support for 

Gordon and Loeb‘s (2002) economic model of software security investment that 

argued the response time of software vendors in releasing software patches is an 

optimisation decision. Software vulnerabilities with a medium level of criticality are 

the most optimal for software vendors to develop and release patches. In contrast, for 

software vulnerabilities with low level and high level of criticality it is less optimal 

to develop and release patches (Gordon et al. 2002). Moreover, this finding 

contradicts the findings of Arora et al. (2010a) and Schryen and Rich (2010). Arora 

et al. (2010a) argued that software vendors are more responsive and patch highly 

critical software vulnerabilities quicker than less critical software vulnerabilities. 

Conversely, Schryen and Rich (2010) did not find any significant difference in 

software vendors‘ patching behaviour for highly critical software vulnerabilities 

compared to less critical software vulnerabilities. 

 

Hypothesis H2: The key finding from the results of Hypothesis H2 test show that 

open source software vendors release software patches more quickly than proprietary 

source software vendors once informed of the software vulnerability. This finding 

provides further support for Arora et al.‘s (2010a) study which found that open 
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source vendors are quicker to release a patch than proprietary source vendors. This 

finding contradicts the finding of Schryen‘s (2009) study that found there is no 

significant difference in vendor patching behaviour for fully disclosed software 

vulnerabilities between open source software and proprietary source software. 

 

Hypothesis H3: The key finding from the results of Hypothesis H3 test show that 

software vendors‘ response to release patches for application software vulnerabilities 

is quicker than operating system software vulnerabilities in this study. This finding 

contradicts the findings of SANS (2009) and TippingPoint (2009). Both these studies 

argued software vendors‘ response to release patches for operating system software 

vulnerabilities is quicker than for application software vulnerabilities. However, this 

finding in relation to H3 might be unreliable since the distribution of software 

vulnerabilities between two types of software is unequal (i.e. the proportion of 

operating system software vulnerabilities is less than 10% of the sample population). 

 

5.3 Contribution of this Study 

This study has made several contributions to theory and practice as follows. 

5.3.1 Contribution to Theory 

This research contributed to theory and existing knowledge by: 

 Identifying that software vulnerabilities with a medium level of criticality 

influence the response time of software vendors in releasing patches quicker 

than software vulnerabilities with low and high levels of criticality once the 

software vendor is informed of the software vulnerabilities (Gordon et al. 

2002; Swire 2004, 2006). Most of the previous studies which investigated the 

impact of the level of criticality of software vulnerabilities on the response 

time of software vendors in releasing software patches identified that the 

higher the level of criticality of a software vulnerability the more responsive 

software vendors are in releasing software patches for disclosed software 

vulnerabilities (Arora et al. 2010a; Liu et al. 2011; Mangalaraj et al. 2005; 

Telang et al. 2007). Furthermore, this study identified that analysing the 

impact of level of criticality of software vulnerabilities on the software 

vendor‘s response time in releasing software patches based on the date of full 
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disclosure date is not accurate measure of the response time as most software 

patches are released before the full disclosure date. Therefore the findings of 

this study also show that the vendor informed date for a software 

vulnerability disclosure is a much more accurate measure of the response 

time than the full disclosure date of software vulnerabilities. 

 This study confirmed that open source software vendors are quicker than 

proprietary source software vendors in terms of their response time in 

releasing patches once the software vendor is informed of software 

vulnerabilities. In previous studies, Arora et al. (2010a) argued that open 

source software vendors are quicker to release software patches for software 

vulnerabilities than for proprietary source software vendors. Conversely 

Schryen (2009) argued that there is no significant difference in software 

vendors patching behaviour for fully disclosed software vulnerabilities 

between open and proprietary source software vendor. Both studies analysed 

the software vendors patching behaviour on fully disclosed software 

vulnerabilities. The findings in this study show that the response time for 

open source software vendors in releasing software patches is quicker 

compared to proprietary source software vendor on the basis of responsible 

disclosure date of software vulnerability (Hobbs et al. 1868; Swire 2004, 

2006).  

 This study do not confirm that the response time of software vendors in 

releasing patches for operating system software is quicker than application 

software once the software vendor is informed of software vulnerabilities. 

Previous studies found that software vendors released software patches more 

quickly for operating system software vulnerabilities than for application 

software (SANS 2009; TippingPoint 2009). The findings in this study show 

that the vendors‘ response time in releasing software patches for application 

software vulnerabilities is quicker compared to operating system software 

vulnerabilities on the basis of responsible disclosure of software vulnerability 

(Hobbs et al. 1868; Swire 2004, 2006). However this finding may not be 

reliable because operating system software was not sufficiently represented in 

the sample population.  

 This study established empirical support for responsible disclosure (vendor 

informed date) as a more accurate mechanism for determining the response 
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time of software vendors in releasing patches for software vulnerabilities. 

Previous studies have used the full (public) disclosure date as a mechanism 

for determining how quickly software vendors respond in releasing patches 

for software vulnerabilities. However the full disclosure date is not an 

accurate measure of the response time of software vendors as most software 

vendors release patches on or before the full disclosure date as software 

vendors are given a grace period by security advisories to develop and release 

a software patch (Arora et al. 2010a).  

 

Thereby, the results of this study indicate that software vendors are more responsive 

in releasing patches to software vulnerabilities with medium level of criticality than 

software vulnerabilities with a high and low level of criticality. Open source software 

vendors take a shorter response time than proprietary source software vendors to 

release a software patch for a vendor informed software vulnerability. Application 

software patches are released more quickly than operating system software patches 

once the vendor is informed of a software vulnerability.  

 

Furthermore, from the empirical investigation of vendor informed software 

vulnerabilities, this study also contributes to existing knowledge and theory by 

establishing that full disclosures of software vulnerability have little or no effect on 

the response time of software vendors in releasing software patches because most 

software vendors release software patches on or before the date of full disclosure of a 

software vulnerability. Therefore, this study confirms that responsible disclosure of 

software vulnerabilities is a more effective mechanism for encouraging software 

vendors to release software patches, rather than inconsistent full disclosure of 

software vulnerabilities from different information security advisories. 

 

5.3.2 Contribution to Practice 

The findings of this study can be used by both practitioners and policy makers (i.e. 

information security advisories) to better understand the software vulnerability 

landscape and the complex process of software vendors‘ patching behaviour in 

response to software vulnerabilities. The findings of this study should also assist 

practitioners in deciding how to more effectively undertake preventive measures for 
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different categories of software vulnerabilities based on the level of criticality, the 

software type and the type of software vendor. The findings of this study suggest that 

responsible disclosure of software vulnerabilities (vendor informed date) is a more 

effective mechanism that government and industry regulatory bodies can use in 

encouraging software vendors to release software patches. 

 

5.4 Limitation of this Study 

As with all research, this research has some limitations. One limitation of this study 

is that only 667 software vulnerabilities provided the complete information required 

to test the research hypothesis, although the total population of software vulnerability 

reported from 2008 to 2010 in the OSVDB database was 11,758. Some of the 

categories of software vulnerabilities have a low representation in the sample 

population of 667 software vulnerabilities used in this study. For instance, of the 667 

software vulnerabilities, there were only 14 with a low level of criticality and, of 

these, only one was a operating system software vulnerability with the other 13 being 

application software vulnerabilities. Therefore, any interpretation of the impact of 

software vulnerabilities with low level of criticality on the response time of software 

vendors in releasing a patch once informed of a software vulnerability should be 

treated with caution. Similarly, the number of software vulnerabilities in operating 

system software was less than 10 percent (56) in the sample population of 667. 

Therefore, the finding that patches for software vulnerabilities in application 

software are released quicker than for software vulnerabilities in operating system 

software also needs to be treated with caution. 

 

5.5 Suggestions for Future Research 

In this study, the research model confirms that independent variables explain 30% of 

the variation in the dependent variable, response time. This finding suggests that 

there are other key factors that could impact on the response time of software 

vendors in releasing software patches. The research model in this study determined 

the impact of (1) level of criticality of software vulnerability, (2) type of software 

vendor and (3) type of software on the response time of a software vendor in 

releasing a software patch once informed of a software vulnerability. This 
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study found that software vendors are slower in releasing software patches for high 

level of criticality of software vulnerabilities compared to medium level of criticality 

of software vulnerabilities. To address this gap, future research should identify the 

motivational factors that encourage software vendors to release software patches 

once they are informed about software vulnerabilities with high levels of criticality. 

The losses incurred from the exploitation of software vulnerabilities with a high level 

of criticality are not tolerable to individuals or organizations. Another important area 

identified as worthy of further research is the role of government and industry in 

regulating and legislating the responsibility and liability of software vendors in 

relation to software vulnerabilities in their software products. Such legislation should 

encourage software vendors to be more proactive in developing and releasing patches 

for software vulnerabilities with higher levels of criticality. In addition, it has also 

been identified that the representation of operating system software vulnerabilities in 

this study was very low (i.e. less than 10% of total sample population). To be more 

confident in the findings achieved from this study, future research should replicate 

this study with a more equal representation of both operating system software and 

application software.  

 

5.6 Summary 

This chapter provided a summary of the key findings of this study, followed by the 

main contributions of the key findings to theory and practice, acknowledgment of the 

limitations of the study, and directions for future research.  

 

This study developed a research model which is underpinned by software security 

disclosure theory (Swire 2004, 2006) and Gordon and Loeb‘s (2002) economic 

model of software security investment to investigate the following general research 

question: ‗To what extent does the level of criticality of software vulnerabilities, type 

of software vendor (Open source, Proprietary source vendor), and type of software 

(Operating system software, Application software) influence the response time of 

software vendors in releasing patches when the software vendor is informed of 

software vulnerabilities‘. This general research question is broken down into three 

specific research questions (see subsection 5.2.1). To answer these three research 

questions, three hypotheses (see subsection 5.2.1) were formulated for this study. 
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The following major conclusions were drawn from the result of three research 

hypotheses tests: 

 

 Software vendors release patches for software vulnerabilities with a medium 

level of criticality in a shorter response time than software vulnerabilities 

with low and high levels of criticality once the vendor has been informed of 

the software vulnerability 

 Open source software vendors release patches for open source software 

vulnerabilities more quickly than proprietary source vendors release patches 

for proprietary software vulnerabilities once the software vendor has been 

informed of the software vulnerability  

 Patches for operating system software vulnerabilities are released slower than 

patches for application software vulnerabilities once the software 

vulnerability has been informed to the software vendor. 

 

This study contributes to theory by investigating the impact of key factors: (1) the 

level of criticality of software, (2) type of software vendor (open source software 

vendor, proprietary source software vendor, and (3) type of software (operating 

system software, application software) on software vendors‘ response time in 

releasing a software patch once informed of a software vulnerability. Similarly, the 

study contributes to existing theory by establishing an experimental support for 

responsible disclosure (vendor inform date) as a more precise mechanism for 

determining the response time of software vendors in releasing patches for software 

vulnerabilities. 

 

This study further contributes to practice by helping both practitioners and policy 

makers enhance their decision-making when undertaking preventive measures for 

different categories of software vulnerabilities based on the level of criticality of 

software vulnerability, the software type and the software vendor type. Similarly, 

government and industry regulatory bodies can adopt a responsible disclosure of 

software vulnerability (vendor inform date) which is recognised as a more effective 

disclosure of software vulnerability to encourage software vendors to release 

software patches. 
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As with all research, this study has some limitations. The sample population was 

restricted to 667 software vulnerabilities that had complete information to test the 

research hypothesis, although 11,758 software vulnerabilities were reported from 

2008 to 2010 in the OSVDB database. A larger sample population which is more 

representative of operating system software vulnerabilities would provide further 

confirmation of the key findings of this research. The research model in this study 

confirmed the significance of three independent variables which explain 30 percent 

of the variance in the dependent variable response time of software vendors in 

releasing software patches. Future research could also extend the research model by 

identifying and including other key factors to explain more of the variance in the 

dependent variable response time. Similarly, determining the role of government and 

industry in regulating and legislating the responsibility and liability of software 

vendors in relation to software vulnerabilities in their software products is worthy of 

future research. 
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The MRA Test for Three Levels (Low, Medium and High) of Criticality of 

Software Vulnerabilities 

 

 

 

Coefficient Test for Low Level of Criticality 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Correlations 
Collinearity 

Statistics 

B Std. Error Beta 

Zero-

order Partial Part Tolerance VIF 

1 (Constant) 1.240 1.393  .890 .408      

Low Level of 

Criticality 

.179 .544 .121(*)(NS) .328 .754 .124 .133 .104 .734 1.363 

Type of Software 

Vendor 

-.928 .473 -.645 -

1.963 

.097 -.576 -.625 -

.620 

.926 1.080 

Type of Software .441 .892 .188 .495 .638 .075 .198 .156 .694 1.441 

a. Dependent Variable: Log (Response Time) 

* (NS) Insignificant 

 

 

 

Coefficient Test for Medium Level of Criticality 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Correlations 
Collinearity 

Statistics 

B Std. Error Beta 

Zero-

order Partial Part Tolerance VIF 

1 (Constant) 2.919 .437  6.674 .000      

Medium Level of 

Criticality 

-.273 .095 -.181 (***) -2.885 .004 -.221 -.205 -

.180 

.992 1.008 

Type of Software 
Vendor 

-.673 .092 -.458 -7.282 .000 -.464 -.468 -
.455 

.986 1.014 

Type of Software .874 .441 .124 1.982 .049 .088 .143 .124 .994 1.007 

a. Dependent Variable: Log (Response Time) 

*** Significant at p<0.01 (one tailed)  

 

 

 

Coefficient Test for High Level of Criticality 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Correlations 
Collinearity 

Statistics 

B Std. Error Beta 

Zero-

order Partial Part Tolerance VIF 

1 (Constant) .800 .228  3.509 .000      

High Level of 

Criticality 

.127 .025 .222 (***) 5.046 .000 .298 .233 .215 .941 1.063 

Type of Software 
Vendor 

-.478 .065 -.321 -
7.309 

.000 -.378 -.328 -
.311 

.940 1.064 

Type of Software .182 .087 .089 2.094 .037 .096 .099 .089 .999 1.001 

a. Dependent Variable: Log (Response Time) 

*** Significant at p<0.01 (one tailed) 


