
Testing Equality of Two Intercepts for the Parallel

Regression Model with Non-sample Prior Information

Budi Pratikno1 and Shahjahan Khan2

1 Department of Mathematics and Natural Science
Jenderal Soedirman University, Purwokerto, Jawa Tengah, Indonesia
2 School of Agricultural, Computational and Environmental Sciences

Centre for Sustainable Catchments, University of Southern Queensland
Toowoomba, Queensland, Australia

Email: b pratikto@yahoo.com.au and khans@usq.edu.au

Abstract

This paper proposes tests for equality of intercepts of two simple regression
models when non-sample prior information (NSPI) is available on the equality
of two slopes. For three different scenarios on the values of the slope, namely
(i) unknown (unspecified), (ii) known (specified), and (iii) suspected, we derive
the unrestricted test (UT), restricted test (RT) and pre-test test (PTT) for
testing equality of intercepts. The test statistics, their sampling distributions,
and power functions of the tests are obtained. Comparison of power function
and size of the tests reveal that the PTT has a reasonable dominance over the
UT and RT.
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1 Introduction

Inferences about population parameters could be improved using non-sample prior
information (NSPI) from trusted sources (cf Bancroft, 1944). Such information are
usually available from previous studies or expert knowledge or experience of the
researchers, and are unrelated to any sample data.

It is well known that, for any linear regression model, the inference
on the intercept parameter depends on the value of the slope param-
eter. Thus the non-sample prior information on the value of the slope
parameter would directly affect the inference on the intercept parameter.
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An appropriate statistical test on the suspected value of the slopes, after express-
ing it in the form a null hypothesis, is useful to eliminate the uncertainty on this
suspected information. Then the outcome of the preliminary test on the uncertain
NSPI on the slopes is used in the hypothesis testing on the intercepts to improve
the performance of the statistical test (cf. Khan and Saleh, 2001; Saleh, 2006, p.
55-58; Yunus and Khan, 2011a).

As an example, in any spotlight analysis the aim is to compare the mean re-
sponses of the two categorical groups at specific values of the continuous covariate.
Furthermore, we consider a response variable (η), a continuous covariate (χ) and a
categorical explanatory variable (ζ) with two categories (eg treatment and control).
If there is an association between χ and ζ, the least squares line of η on χ will be
parallel with different intercepts for two different categories of ζ. However, the two
fitted lines will not be parallel if there is no association between the two explanatory
variables because of the presence of interaction. The scenario will be different if the
two explanatory variables are associated and they also interact.

In any inference, estimation or test, on the equality of the two intercepts of
the two regression lines of Y on X for two different categories of Z, the slope of
the regression lines plays a key role. The test (also the estimation) of intercept is
directly impacted by the values of the slope. Therefore, the type of NSPI on the
value of the slopes will influence the inference on the intercepts.

The suspected NSPI on the slopes may be (i) unknown or unspecified if NSPI
is not available, (ii) known or specified if the exact value is available from NSPI,
and (iii) uncertain if the suspected value is unsure. For the three different scenarios,
three different statistical tests, namely the (i) unrestricted test (UT), (ii) restricted
test (RT) and (iii) pre-test test (PTT) are defined.

In the area of estimation with NSPI there has been a lot of work, notably Ban-
croft (1944, 1964), Hand and Bancroft (1968), and Judge and Bock (1978) intro-
duced a preliminary test estimation of parameters to estimate the parameters of
a model with uncertain prior information. Khan (2000, 2003, 2005, 2008), Khan
and Saleh (1997, 2001, 2005, 2008), Khan et al. (2002), Khan and Hoque (2003),
Saleh (2006) and Yunus (2010) covered various work in the area of improved esti-
mation using NSPI, but there is a very limited number of studies on the testing of
parameters in the presence of uncertain NSPI. Although Tamura (1965), Saleh and
Sen (1978, 1982), Yunus and Khan (2007, 2011a, 2011b), and Yunus (2010) used
the NSPI for testing hypotheses using nonparametric methods, the problem has not
been addressed in the parametric context.

A parallelism problem can be described as a special case of two related regression
lines on the same dependent and independent variables that come from two different
categories of the respondents. If the independent data sets come from two random
samples, researchers often wish to model the regression lines that are parallel (i.e.
the slopes of the two regression lines are equal) or check whether the lines have the
same intercept on the vertical-axis. To test the parallelism of the two regression
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equations, namely

y1j = θ1 + β1x1j + e1j and y2j = θ2 + β2x2j + e2j, j=1,2, · · · ,ni,

for the two data sets: y = [y
′
1,y

′
2]

′
and x = [x

′
1,x

′
2]

′
where y1 = [y11, · · · , y1n1 ]

′
,

y2 = [y21, · · · , y2n2 ]
′
, x1 = [x11, · · · , x1n1 ]

′
and x2 = [x21, · · · , x2n2 ]

′
, we use an

appropriate two-sample t test for testing H0 : β1 = β2 (parallelism). This t statistic
is given as

t =
β̃1 − β̃2
S
(β̃1−β̃2)

,

where β̃1 and β̃2 are estimate of the slopes β1 and β2 respectively, and S
(β̃1−β̃2)

is

the standard error of the estimated difference between the two slopes (Kleinbaum
et al., 2008, p. 223). The parallelism of the two regression equations above can be
expressed as a single model in matrix form, that is,

y = XΦ+ e,

where Φ = [θ1, θ2, β1, β2]
′
, X = [X1,X2]

′
with X1 = [1, 0, x1, 0]

′
and X2 =

[0, 1, 0, x2]
′
and e = [e1, e2]

′
. The matrix form of the intercept and slope parameters

can be written, respectively, as θ = [θ1, θ2]
′
and β = [β1, β2]

′
(cf Khan, 2006).

For the model under study two independent bivariate samples are considered
such that yij ∼ N(θi + βixij , σ

2) for i = 1, 2 and j = 1, · · · , ni. See Khan (2003,
2006, 2008) for details on parallel regression models and related analyses.

To explain the importance of testing the equality of the intercepts when the
equality of slopes is uncertain, we consider the general form of the two parallel
simple regression models (PRM) as follows

Y i = θi1ni + βixij + eij , i = 1, 2, and j=1,2, · · · ,ni, (1.1)

where Y i = (Yi1, · · · , Yini)
′
is a vector of ni observable random variables, 1ni =

(1, · · · , 1)′ is an ni-tuple of 1
′
s, xij = (xi1, · · · , xini)

′
is a vector of ni indepen-

dent variables, θi and βi are unknown intercept and slope, respectively, and ei =
(ei1, · · · , eini)

′
is the vector of errors which are mutually independent and identically

distributed as normal variable, that is, ei ∼ N(0, σ2Ini) where Ini is the identity
matrix of order ni. Equation (1.1) represents two linear models with different inter-
cept and slope parameters. If β1 = β2 = β, then there are two parallel simple linear
models when θ

′
is are different.

This paper considers statistical tests with NSPI and the criteria that are used
to compare the performance of the UT, RT and PTT are the size and power of the
tests. A statistical test that has a minimum size is preferable because it will give
a smaller probability of the Type I error. Furthermore, a test that has maximum
power is preferred over any other tests because it guarantees the highest probability
of rejecting any false null hypothesis. A test that minimizes the size and maximizes
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the power is preferred over any other tests. In reality, the size of a test is fixed, and
then the choice of the best test is based on its maximum power.

This study considers testing the equality of the two intercepts when the equality
of slopes is suspected. For which we focus on three different scenarios on the slope
parameters, and define three different tests:

(i) for the UT, let ϕUT be the test function and TUT be the test statistic for testing
H0 : θ = θ0 against Ha : θ > θ0 when β = (β1, , β2)

′
is unspecified,

(ii) for the RT, let ϕRT be the test function and TRT is the test statistic for testing
H0 : θ = θ0 against Ha : θ > θ0 when β = β012 (fixed vector),

(iii) for the PTT, let ϕPTT be the test function and TPTT be the test statistic
for testing H0 : θ = θ0 against Ha : θ > θ0 following a pre-test (PT) on
the slope parameters. For the PT, let ϕPT be the test function for testing
H∗

0 : β = β01p (a suspected constant) against H∗
a : β > β012 to remove the

uncertainty. If the H∗
0 is rejected in the PT, then the UT is used to test the

intercept, otherwise the RT is used to test H0. Thus, the PTT on H0 depends
on the PT on H∗

0 , and is a choice between the UT and RT.

The unrestricted maximum likelihood estimator or least square estimator of
intercept and slope vectors, θ = (θ1, θ2)

′
and β = (β1, β2)

′
, are given as

θ̃ = Y − T β̃ and β̃ =
(x

′
iyi)− ( 1

ni
)[1

′
ixi1

′
iyi]

niQi

, (1.2)

where θ̃ = (θ̃1, θ̃2)
′
, β̃ = (β̃1, β̃2)

′
, T = Diag(x1, x2), niQi = x

′
ixi − ( 1

ni
)
[
1

′
ixi

]
and

θ̃i = Yi − β̃ixi for i = 1, 2.
Furthermore, the likelihood ratio (LR) test statistic for testing H0 : θ = θ0

against Ha : θ > θ0 is given by

F =
θ̃

′

H
′
D−1

22 Hθ̃

s2e
, (1.3)

where H = I2 − 1
nQ121

′
2D

−1
22 , D−1

22 = Diag(n1Q1, · · · ,n2Q2), nQ =
∑2

i=1 niQi,

niQi = x
′
ixi− 1

ni
(1

′
ixi)

2 and s2e = (n−4)−1
∑p

i=1(Y −θ̃i1ni−β̃xi)
′
(Y −θ̃i1ni−β̃xi)

(Saleh, 2006, p. 14-15). Under H0, F follows a central F distribution with (1, n−4)
degrees of freedom, and underHa it follows a noncentral F distribution with (1, n−4)
degrees of freedom and noncentrality parameter ∆2/2, where

∆2 =
θ

′
H

′
D−1

22 Hθ

σ2
=

(θ − θ0)
′
H

′
D−1

22 H(θ − θ0)

σ2

=
(θ − θ0)

′
D22(θ − θ0)

σ2
(1.4)
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and D22 = H
′
D−1

22 H. When the slopes (β) are equal to β012 (specified), the
restricted maximum likelihood estimator of the intercept and slope vectors are given
as

θ̂ = θ̃ + THβ̃ and β̂ =
1k1

′
kD

−1
22 β̃

nQ
. (1.5)

Section 2 provides the proposed three tests. Section 3 derives the distribution
of the test statistics. The power function of the tests are obtained in Section 4. An
illustrative example is given in Section 5. The comparison of the power of the tests
and concluding remarks are provided in Sections 6 and 7.

2 The Proposed Tests

To test the equality of two intercepts when the equality of the slopes is suspected,
we define three different test statistics as follows.

(i) For unspecified β , the test statistic of the UT for testing H0 : θ = θ0 against
Ha : θ > θ0, under H0, is given by

TUT =
θ̃

′

H
′
D−1

22 Hθ̃

s2ut
, (2.1)

where

s2ut = (n− 4)−1
2∑

i=1

(Y − θ̃i1ni − β̃xi)
′
(Y − θ̃i1ni − β̃xi).

The TUT follows a central F distribution with (1, n − 4) degrees of freedom
(d.f.). Under Ha, it follows a noncentral F distribution with (1, n−4) d.f. and
noncentrality parameter ∆2/2. Under the normal model we have(

θ̃ − θ

β̃ − β

)
∼ N4

[ (
0
0

)
, σ2

(
D11 −TD22

−TD22 D22

) ]
, (2.2)

where D11 = N−1 + TD22Tβ and N = Diag(n1, · · · ,n2).

(ii) For specified value of the slopes, β = β012 (fixed value), the test statistic of the
RT for testing H0 : θ = θ0 against Ha : θ > θ0 under H0, is given by

TRT =
(θ̂

′

H
′
D−1

22 Hθ̂) + (β̃
′

H
′
D−1

22 Hβ̃)

s2rt
, (2.3)
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where

s2rt = (n− 2)−1
2∑

i=1

(Y − θ̂i1ni − β̂xi)
′
(Y − θ̂i1ni − β̂xi) and β̂ = β012.

The TRT follows a central F distribution with (1, n − 4) d.f.. Under Ha,
it follows a noncentral F distribution with (1, n − 4) d.f. and noncentrality
parameter ∆2/2. Again, note that(

θ̂ − θ

β̂ − β

)
∼ N4

[ (
THβ
0

)
, σ2

(
D∗

11 D∗
12

D∗
12 D22

) ]
, (2.4)

where D∗
11 = N−1 +

T121
′
2Tβ

nQ and D∗
12 = − 1

nQ121
′
2T .

(iii) When the value of the slope is suspected to be β = β012 but unsure, a pre-test
on the slope is required before testing the intercept. For the preliminary test
(PT) of H∗

0 : β = β01p against H∗
a : β > β012, the test statistic under the null

hypothesis is defined as

TPT =
β̃

′

H
′
D−1

22 Hβ̃

s2ut
, (2.5)

which follows a central F distribution with (1, n−4) d.f.. Under Ha, it follows
a noncentral F distribution with (1, n − 4) d.f. and noncentrality parameter
∆2/2. Again, note that(

θ̃ − β012
β̃ − β̂

)
∼ N4

[ (
(β̃∗ − β0)12

Hβ

)
, σ2

(
121

′
2/nQ 0
0 HD22

) ]
,(2.6)

where β̃∗12 =
121

′
2D

−1
22 β

nQ (cf. Saleh, 2006, p. 273).

Let us choose a positive number αj (0 < αj < 1, for j = 1, 2, 3) and real value
Fν1,ν2,αj (with ν1 as the numerator d.f. and ν2 as the denominator d.f.) such that

P
(
TUT > F1,n−4,α1 | θ = θ0

)
= α1, (2.7)

P
(
TRT > F1,n−4,α2 | θ = θ0

)
= α2, (2.8)

P
(
TPT > F1,n−4,α3 | β = β012

)
= α3. (2.9)

Now the test function for testing H0 : θ = θ0 against Ha : θ > θ0 is defined by

Φ =

{
1, if

(
TPT ≤ Fc,T

RT > Fb

)
or
(
TPT > Fc,T

UT > Fa

)
;

0, otherwise,
(2.10)

where Fa = Fα1,1,n−4, Fb = Fα2,1,n−4 and Fc = Fα3,1,n−4.
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3 Sampling Distribution of Test Statistics

To derive the power function of the UT, RT and PTT, the sampling distribution of
the test statistics proposed in Section 2 are required. For the power function of the
PTT the joint distribution of (TUT , TPT ) and (TRT , TPT ) is essential. Let {Nn} be
a sequence of local alternative hypotheses defined as

Nn : (θ − θ0,β − β012) =

(
λ1√
n
,
λ2√
n

)
= λ, (3.1)

where λ is a vector of fixed real numbers and θ is the true value of the intercept.
The local alternative is used only to compute the power of the tests for specific
values of the parameters. Under Nn the value of (θ − θ0) is greater than zero and
under H0 the value of (θ − θ0) is equal zero.

Following Yunus and Khan (2011b) and equation (2.1), we define the test statistic
of the UT when β is unspecified, under Nn, as

TUT
1 = TUT − n

{
(θ − θ0)

′
H

′
D−1

22 H(θ − θ0)

s2ut

}
. (3.2)

The TUT
1 follows a noncentral F distribution with noncentrality parameter which is

a function of (θ − θ0) and (1, n− 4) d.f., under Nn.
From equation (2.3) under Nn, (θ−θ0) > 0 and (β−β012) > 0, the test statistic

of the RT becomes

TRT
2 = TRT−n

{
(θ − θ0)

′
H

′
D−1

22 H(θ − θ0) + (β − β012)
′
H

′
D−1

22 H(β − β012)

s2rt

}
.

(3.3)
The TRT

2 also follows a noncentral F distribution with a noncentrality parameter
which is a function of (θ − θ0) and (1, n − 4) d.f., under Nn. Similarly, from the
equation (2.5) the test statistic of the PT is given by

TPT
3 = TPT − n

{
(β − β012)

′
H

′
D−1

22 H(β − β012)

s2ut

}
. (3.4)

Under Ha, the T
PT
3 follows a noncentral F distribution with a noncentrality param-

eter which is a function of (β − β012) and (p− 1, n− 4) d.f..
From equations (2.1), (2.3) and (2.5) the TUT and TPT are correlated, and the

TRT and TPT are uncorrelated. The joint distribution of the TUT and TPT , that
is, (

TUT

TPT

)
, (3.5)

is a correlated bivariate F distribution with (1, n− 4) d.f.. The probability density
function (pdf) and cumulative distribution function (cdf) of the correlated bivariate
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F distribution is found in Krishnaiah (1964), Amos and Bulgren (1972) and El-
Bassiouny and Jones (2009). Later, Johnson et al. (1995, p. 325) described a
relationship of the bivariate F distribution with the bivariate beta distribution.
This is due to the fact that the pdf of the bivariate F distribution has the same
form as the pdf of the beta distribution of the second kind.

4 Power Function and Size of Tests

The power function of the UT, RT and PTT are derived below. From equation (2.1)
and (3.2), (2.3) and (3.3), and (2.5), (2.10) and (3.4), the power function of the UT,
RT and PTT are given, respectively, as

(i) the power of the UT

πUT (λ) = P (TUT > Fα1,1,n−4 | Nn)

= 1− P

(
TUT
1 ≤ Fα1,1,n−4 −

λ
′
1H

′
D−1

22 Hλ1

s2ut

)

= 1− P

(
TUT
1 ≤ Fα1,1,n−4 −

λ
′
1D22λ1

s2ut

)
= 1− P

(
TUT
1 ≤ Fα1,1,n−4 − kutδ1

)
, (4.1)

where δ1 = λ
′
1D22λ1 and kut =

1
s2ut

.

(ii) the power of the RT

πRT (λ) = P
(
TRT > Fα1,1,n−4 | Nn

)
= P

(
TRT
2 > Fα2,1,n−4 −

(θ − θ0)
′
H

′
D−1

22 H(θ − θ0)

s2rt

)

= 1− P

(
TRT
2 ≤ Fα2,1,n−4 −

(λ
′
1H

′
D−1

22 Hλ1) + (λ
′
2H

′
D−1

22 Hλ2)

s2rt

)
= 1− P

(
TRT
1 ≤ Fα1,1,n−4 − krt(δ1 + δ2)

)
, (4.2)

where δ2 = λ
′
2D22λ2 and krt =

1
s2rt

.

The power function of the PT is

πPT (λ) = P
(
TPT > Fα3,1,n−4|Kn

)
= 1− P

(
TPT
3 ≤ Fα3,1,n−4 −

λ
′
2H

′
D−1

22 Hλ2

s2ut

)
= 1− P

(
TPT
3 ≤ Fα3,1,n−4 − kutδ2

)
. (4.3)



Testing the Equality of the Two Intercepts for the PRM 9

(iii) the power of the PTT

πPTT (λ) = P
(
TPT < Fα3,1,n−4, T

RT > Fα2,1,n−4

)
+ P

(
TPT ≥ Fα3,1,n−4, T

UT > Fα1,1,n−4

)
= (1− πPT )πRT + d1r (a, b) , (4.4)

where d1r(a, b) is bivariate F probability integral defined as

d1r(a, b) =

∫ ∝

a

∫ ∝

b
f(FPT , FUT )dFPTdFUT

= 1−
∫ a

0

∫ b

0
f(FPT , FUT )dFPTdFUT , (4.5)

where

a = Fα3,1,n−4 −
λ

′
2H

′
D−1

22 Hλ2

(s2e
= Fα3,1,n−4 − k1δ2

and

b = Fα1,1,n−4 −
(θ − θ0)

′
H

′
D−1

22 H(θ − θ0)

s2e
= Fα1,1,n−4 − k1δ1.

The integral
∫ a
0

∫ b
0 f(FPT , FUT )dFPTdFUT in equation (4.5) is the cdf of the

correlated bivariate noncentral F distribution of the UT and PT. Following
Yunus and Khan (2011c), we define the pdf and cdf of the bivariate noncentral
F (BNCF) distribution, respectively, as

f(y1, y2) =
(m
n

)m [(1− ρ2)
m+n

2

Γ(n/2)

] ∞∑
j=0

∞∑
r1=0

∞∑
r2=0

[
ρ2j
(m
n

)2j
Γ(m/2 + j)

]

×

[(
e−θ1/2(θ1/2)

r1

r1!

)( (
m
n

)r1
Γ(m/2 + j + r1)

)(
y
m/2+j+r1−1
1

)]

×

[(
e−θ2/2(θ2/2)

r2

r2!

)( (
m
n

)r2
Γ(m/2 + j + r2)

)(
y
m/2+j+r2−1
2

)]

× Γ(qrj)
[
(1− ρ2) +

m

n
y1 +

m

n
y2

]−(qrj)
, and (4.6)

F (a, b) = P (Y1 < a, Y2 < b) =

∫ a

0

∫ b

0
f(y1, y2)dy1dy2, (4.7)

where m is the numerator and n is the denominator degrees of freedom of the
F variable. Setting a = b = d, Schuurmann et al. (1975) presented the critical
values of d in a table of multivariate F distribution.
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From equation (4.4), it is clear that the cdf of the BNCF distribution is involved
in the expression of the power function of the PTT. Using equation (4.7), we evaluate
the cdf of the BNCF distribution and use it in the calculation of the power function
of the PTT. The relevant R codes are written, and the R package is used for the
computation of the power and size and other graphical analyses.

Furthermore, the size of the UT, RT and PTT are given, respectively, as

(i) the size of the UT

αUT = P
(
TUT > Fα1,1,n−4 | H0 : θ = θ0

)
= 1− P

(
TUT ≤ Fα1,1,n−4 | H0 : θ = θ0

)
= 1− P

(
TUT
1 ≤ Fα1,1,n−4

)
, (4.8)

(ii) the size of the RT

αRT = P
(
TRT > Fα2,1,n−4 | H0 : θ = θ0

)
= 1− P

(
TRT ≤ Fα2,1,n−4 | H0 : θ = θ0

)
= 1− P

(
TRT
2 ≤ Fα2,1,n−4 − krtδ2

)
. (4.9)

The size of the PT is given by

αPT (λ) = P
(
TPT > Fα3,1,n−4|H0

)
= 1− P

(
TPT
3 ≤ Fα3,1,n−4

)
. (4.10)

(iii) The size of the PTT

αPTT = P
(
TPT ≤ a, TRT > d | H0

)
+ P

(
TPT > a, TUT > h | H0

)
= P

(
TPT < Fα3,1,n−4

)
P
(
TRT > Fα2,1,n−4

)
+ d1r (a, h)

= (1− αPT )αRT + d1r (a, h) , (4.11)

where h = Fα1,1,n−4.

5 A Simulation Example

For a simulation example we generated random data using R package (2013). Each
of the two independent samples (xij , i = 1, 2, j = 1, · · · , ni) were generated from
the uniform distribution between 0 and 1. The errors (ei, i = 1, 2) are generated
from the normal distribution with µ = 0 and σ2 = 1. In each case ni = n = 100
random variates were generated. The dependent variable (y1j) was computed from
the equation y1j = θ01 + β11x1j + e1 for θ01 = 3 and β11 = 2. Similarly, define
y2j = θ02+β12x2j+e2 for θ02 = 3.6 and β12 = 2, respectively. For the computation of
the power function of the tests (UT, RT and PTT) we set α1 = α2 = α3 = α = 0.05.
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The graphs for the power function of the three tests are produced using the formulas
in equations (4.1), (4.2) and (4.4). The graphs for the size of the three tests are
produced using the formulas in equations (4.8), (4.9) and (4.11). The graphs of the
power and size of the tests are presented in the Figures 1 and 2.

Figure 1: The power function of the UT, RT and PTT against δ1 for some selected
ρ, d.f. and noncentrality parameters.



Testing the Equality of the Two Intercepts for the PRM 12

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 (i) δ2 = 1.5 , ρ = 0.1 , m = 5 , n = 25

 δ1

S
iz

e

Size of the tests

UT
RT
PTT

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 (ii) δ2 = 1.5 , ρ = 0.9 , m = 5 , n = 25

 δ1

S
iz

e

Size of the tests

UT
RT
PTT

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 (iii) δ2 = 1.5 , ρ = 0.5 , m = 5 , n = 25

 δ1

S
iz

e

Size of the tests

UT
RT
PTT

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 (iv) δ2 = 2 , ρ = 0.5 , m = 5 , n = 25

 δ1

S
iz

e

Size of the tests

UT
RT
PTT

Figure 2: The size of the UT, RT and PTT against δ1 for some selected ρ and δ2.
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6 Analyses of power and size

From Figure 1, as well as from equation (4.1), it is evident that the power of the
UT does not depend on δ2 and ρ, but it increases as the value of δ1 increases. The
form of the power curve of the UT is concave, starting from a very small value of
near zero (when δ1 is also near 0), it approaches 1 as δ1 grows larger. The power of
the UT increases rapidly as the value of δ1 becomes larger. The minimum power of
the UT is approximately 0.05 for δ1 = 0.

The shape of the power curve of the RT is also concave for all values of δ1 and δ2.
The power of the RT increases as the values of δ1 and/or δ2 increase (see graphs in
Figure 1(i) and 1(ii), and equation (4.2)). Moreover, the power of the RT is always
larger than that of the UT for all values of δ1 and/or δ2. The minimum power of
the RT is approximately 0.2 for δ1 = 0 and δ2 = 0. The maximum power of the RT
is 1 for reasonably larger values of δ1. The power of the RT reaches 1 much faster
than that of the UT as δ1 increases.

The power of the PTT depends on the values of δ1, δ2 and ρ (see Figure 1 and
equation (4.4)). Like the power of the RT, the power of the PTT increases as the
values of δ1 increase. Moreover, the power of the PTT is always larger than that of
the UT and RT for the values of δ1 from around 0.7 to 1.5. The minimum power of
the PTT is around 0.18 for δ1 = 0 (see Figure 1(i)), and it decreases as the value of
δ2 becomes larger. The gap between the power curves of the RT and PTT is much
less than that between the UT and RT and/or UT and PTT. The power curve of
the PTT tends to lie between the power curves of the UT and RT. However, the
power of the PTT is identical for fixed value of ρ, regardless of its sign.

Figure 2 and equation (4.8) show that the size of the UT does not depend on
δ2. It is a constant and remains unchanged for all values of δ1 and δ2. The size of
the RT increases as the value of δ2 increases (see equation (4.7)). Moreover, the size
of the RT is always larger than that of the UT. The size of the UT and RT do not
depend on ρ.

The size of the PTT is closer to that of the UT for larger values of δ2 > 2. The
difference (or gap) between the size of the RT and PTT increases significantly as
the value of δ2 and ρ increases. The size of the UT is αUT = 0.05 for all values of
δ1 and δ2. For all values of δ1 and δ2, the size of the RT is larger than that of the
UT, αRT > αUT . For all the values of ρ, αPTT ≤ αRT . Thus, the size of the RT is
always larger than that of the UT and PTT.

7 Concluding Remarks

Based on the analyses of the power for the three tests, the power of the RT is always
higher than that of the UT for all values of δ1 and δ2. Also, the power of the PTT is
always larger than that of the UT for all values δ1 (see the curves on interval values
of 0.7 < δ1 < 1.5 for given simulated data), δ2 and ρ.
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For smaller values of δ1 (see Figure 1) the PTT has higher power than the UT
and RT. But for larger values of δ1 the RT has higher power than the PTT and
UT. Thus when the NSPI is reasonably accurate (that is δ1 is small) the PTT over
performs the UT and RT with higher power.

Since the size of the RT is the highest, and the PTT has larger size than UT,
in terms of the size the UT is the best among the three tests. However, the UT
performs the worst in terms of the power. Thus the PTT ensures higher power than
the UT and lower size than the RT, and hence a better choice, especially when the
NSPI on the slope parameters is reasonably accurate to be close to the true values.

The size of the PTT goes down as either the correlation coefficient (ρ) becomes
larger (see graphs (i)-(ii) in Figure 2) or the value of δ2 increases (see graphs (iii)-(iv)
in Figure 2).

The extension of the work for testing one subset of the multiple re-
gression model when NSPI is available on another subset is underway.
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