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Abstract: To develop agricultural risk management strategies, the early identification of water
deficits during the growing cycle is critical. This research proposes a deep learning hybrid approach
for multi-step soil moisture forecasting in the Bundaberg region in Queensland, Australia, with
predictions made for 1-day, 14-day, and 30-day, intervals. The model integrates Geospatial Interactive
Online Visualization and Analysis Infrastructure (Giovanni) satellite data with ground observations.
Due to the periodicity, transience, and trends in soil moisture of the top layer, time series datasets
were complex. Hence, the Maximum Overlap Discrete Wavelet Transform (moDWT) method was
adopted for data decomposition to identify the best correlated wavelet and scaling coefficients of the
predictor variables with the target top layer moisture. The proposed 3-phase hybrid moDWT-Lasso-
LSTM model used the Least Absolute Shrinkage and Selection Operator (Lasso) method for feature
selection. Optimal hyperparameters were identified using the Hyperopt algorithm with deep learning
LSTM method. This proposed model’s performances were compared with benchmarked machine
learning (ML) models. In total, nine models were developed, including three standalone models
(e.g., LSTM), three integrated feature selection models (e.g., Lasso-LSTM), and three hybrid models
incorporating wavelet decomposition and feature selection (e.g., moDWT-Lasso-LSTM). Compared
to alternative models, the hybrid deep moDWT-Lasso-LSTM produced the superior predictive model
across statistical performance metrics. For example, at 1-day forecast, The moDWT-Lasso-LSTM
model exhibits the highest accuracy with the highest R2 ≈ 0.92469 and the lowest RMSE ≈ 0.97808,
MAE ≈ 0.76623, and SMAPE ≈ 4.39700%, outperforming other models. The moDWT-Lasso-DNN
model follows closely, while the Lasso-ANN and Lasso-DNN models show lower accuracy with
higher RMSE and MAE values. The ANN and DNN models have the lowest performance, with higher
error metrics and lower R2 values compared to the deep learning models incorporating moDWT and
Lasso techniques. This research emphasizes the utility of the advanced complementary ML model,
such as the developed moDWT-Lasso-LSTM 3-phase hybrid model, as a robust data-driven tool for
early forecasting of soil moisture.

Keywords: soil moisture model; wavelet transform; artificial intelligence; hybrid models;
deep learning
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1. Introduction

Soil moisture, an integral component of the soil-plant-atmosphere water cycle, refers
to the water present in the soil, which is essential for maintaining plant growth [1]. It is a
key factor in determining irrigation water requirements [2]. Forecasting soil moisture is
invaluable for understanding future soil moisture trends, managing water stress conditions
affecting crops, and planning irrigation schedules while conserving limited water resources.
The Bundaberg region in Queensland, Australia, the focus of this study, is extensively used
for growing commercial crops. Thus, a soil moisture forecasting model will significantly
benefit agricultural operations in this region.

Data-driven predictive models have demonstrated superior competency in predictions
of soil moisture [3] and other hydro-meteorological variables such as precipitation [4],
drought [5,6], evapotranspiration [7] and river flow [8]. For example, Jamei et al. [9]
constructed multi-level pre-processing model frameworks using NASA’s Soil Moisture
Active Passive (SMAP) satellite datasets for multi-step (one and seven days ahead) daily
forecasting of Surface Soil Moisture (SSM) in Iran’s dry and semi-arid regions. This experi-
ment integrated Boruta Gradient Boosting Decision Tree (Boruta-GBDT) feature selection
and Multivariate Variational Mode Decomposition (MVMD) techniques with advanced
Machine Learning (ML) models, including Bidirectional Gated Recurrent Unit (Bi-GRU),
Cascaded Forward Neural Network (CFNN), Adaptive Boosting (AdaBoost), Genetic Pro-
gramming (GP), and classical Multilayer Perceptron neural network (MLP). The results
indicated that MVMD-Boruta-GBDT-CFNN outperformed all other hybrid models in one
and seven days soil moisture forecasting across all tested sites. Basak et al. [10] also em-
ployed a data-driven approach to forecast soil moisture. Their study developed and tested
two data-driven models based on Naive Accumulative Representation (NAR) and the Ad-
ditive Exponential Accumulative Representation (AEAR). The proposed NAR and AEAR
models have demonstrated their competitiveness in forecasting tasks, performing better
than several well-establishe and cutting-edge benchmark models.

Among data intelligence approaches, deep learning (DL), the latest generation of
artificial intelligence systems, has become increasingly popular and performs exceptionally
well in both industrial and scientific research [11]. The strength of DL techniques lies in
their ability to learn complex nonlinear functions of input data with low-level information,
allowing them to successfully capture and extract the detailed features from extensive
row input data sets accumulated over decades. These capabilities make DL techniques
particularly valuable for research initiatives. The LSTM algorithm is one of the DL artificial
intelligence approaches that is being utilized to forecast various hydrological and environ-
mental variables, such as water quality [12] and rainfall-runoff [13]. Several studies have
investigated the feasibility of using LSTM-based model for SM prediction.

For example, in South Louisiana in the United States, ElSaadani et al. [14] found that
among the spatial-temporal models tested, the ConvLSTM outperformed other Convolu-
tional Neural Network (CNN) and LSTM-based models in SM prediction. To improve the
SM prediction accuracy, Li et al. [15] experimented with a unique residual learning encoder-
decoder model (EDT-LSTM), using data from 13 sites across different countries. This model
demonstrated improved accuracy in forecasting moisture levels in 5 cm deep surface soil
layers for 1, 3, 5, 7 and 10 days ahead. In another study, Suebsombut et al. [16] developed
LSTM-based models to forecast SM values in Chiang Mai province, Thailand, showing
that the LSTM-based model performs well in predicting SM. Additionally, Zeynoddin and
Bonakdari [17] proposed two DL methods, Genetic and Teacher–Learner-based Algorithms
(GA and TLA), coupled with LSTM for SM forecasting in Quebec, Canada. Their results
showed that TLA-LSTM model was more computationally efficient and therefore a better
option than GA-LSTM.

To further enhance forecasting model capabilities, many researchers have recently been
developing hybrid models. It is common to combine data pre-processing techniques with
forecasting models when designing these hybridized models, as pre-processing methods
particularly work well with nonlinear and non-stationary time series data. In artificial
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intelligence model hybridization, feature selection is a popular data pre-processing method
and a variety of research studies have shown that it enhances the model’s performance. The
purpose of this process is to reduce the high dimensionality of input data by screening out
the most correlated input data sets to the target variable data set as a first step in advanced
data-driven model development. For example, Iterative Input Selection (IIS) has been used
to forecast streamflow [3], while Boruta-random forest (Boruta) has been applied to forecast
evapotranspiration [18] and soil moisture [9]. Additionally, Neighbourhood Component
Analysis (NCA) has been used to forecast wind speed [19] and agricultural drought [20].

The Lasso feature selection method, used in this study, has also been employed in
hydrological forecasting research. For instance, Alizadeh et al. [21] developed a Support
Vector Regression (SVR) based model for monthly stream flow prediction at the Karaj River
in Iran, using both Lasso and Particle Swarm Optimization-Artificial Neural Networks
(PSO-ANN) feature selection methods to identify the most correlated input variables. The
results indicated that Lasso input selection is more accurate than the PSO-ANN algorithm,
therefore improving the accuracy of the model forecast. Chu et al. [22] has also employed
the Lasso feature selection technique along with Fuzzy C-means (FCM) classification and
Deep Belief Networks (DBN) deep learning model (Lasso-FCM-DBN) to forecast streamflow
at gauge stations in the Tennessee River catchment, USA. They found that the Lasso-FCM-
DBN approach enhanced the performance of streamflow prediction compared to ANN.
However, this feature selection technique has not so far been employed with any deep
learning approach in soil moisture forecasting model development.

Along with feature selection, wavelet decomposition is a common data pre-processing
step in data intelligence model hybridization. Hydrological and water resources time
series data are inherently complex due to periodicity, transients, and trends. Wavelet
transform algorithms can decompose this complex data into sub-time series data that are
more interpretable for data-driven models. As a result, wavelet decomposed data often
improve model performance and are widely used in hydrological and water resources-
related prediction applications.

The wavelet decomposition methods widely used in recent model hybridization
works are Discrete Wavelet Transformation (DWT), Maximum Overlap Discrete Wavelet
Transform with Multi-Resolution Analysis (moDWT-MRA), Maximum Overlap Discrete
Wavelet Transform (moDWT), and (a) trous (AT) algorithm [23]. For instance, Prasad
et al. [3] employed moDWT in their hybrid IIS-moDWT-ANN model designed for forecast-
ing streamflow and it has shown better accuracy than the counterpart single and hybrid
benchmark models. Adib et al. [24] in their study for predicting one-day-ahead snow depth
(SD) at the North Fork Jocko snow telemetry (SNOTEL) station in Missoula, Montana (US),
tested different wavelet transform (WT) approaches including discrete wavelet transform
(DWT), maximal overlap discrete wavelet transform (MODWT), and multiresolution-based
MODWT (MODWT-MRA) along with autoregressive integrated moving average (ARIMA),
and artificial intelligence (AI) models. Their findings showed that hybrid ARIMA-AI mod-
els produced more accurate results than standalone ARIMA and AI models, highlighting
the wavelet technique’s capacity to enhance the model performances.

It is important to note that DWT and moDWT-MRA can introduce errors into forecasts
due to boundary condition-related issues and provide results that are not realistically
achievable in real-world scenarios. Therefore, these methods are unsuitable for practical
applications. However, moDWT and AT wavelet transform algorithms, when applied
correctly, can resolve boundary condition related issues [23]. These boundary condition
issues, their impact to the model forecast and the remedies to overcome them will be
discussed later in detail under the theoretical overview section of this paper.

Despite these constraints, many recent hybrid forecasting model development studies,
including the examples mentioned earlier that employed wavelet transform techniques to
decompose hydrological and water resources related data, have not adequately considered
these limitations. Instead, they have used DWT and moDWT-MRA regardless of their
shortcomings. Furthermore, moDWT and AT wavelet transform algorithms, which do
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not add errors to model forecasts due to boundary condition issues, are not much used in
hydrological prediction as DWT and moDWT-MRA. Therefore, these algorithms still need
to be explored further.

In this study, time series data from satellites and ground stations are combined. The
methodology section provides detailed information about the types of data collected,
and their resolutions and sources. It is well-documented that data from satellite sensor
variables can lower the accuracy of hydrological variable predictions [25]. This issue
can be minimized by integrating ground-based and satellite-based data, as done in this
study. Ghimire et al. [26] used data from Goddard’s Online Interactive Visualization and
Analysis Infrastructure (Giovanni) combined with reanalysis data from the European Centre
for Medium-Range Weather Forecasting (ECMWF) to forecast long-term solar radiation.
Similarly, Ahmed et al. (2021b) used a combination of satellite GLDAS data, ground
Scientific Information for Landowners (SILO) data, and meteorological indices to predict
soil moisture.

Due to the high dimensionality of hydrological time series data extracted in large vol-
umes, this study require feature selection and wavelet decomposition data pre-processing
techniques. Thus, this hybridizing approach used moDWT and Lasso algorithms for
wavelet decomposition and feature selection, respectively, along with an LSTM data-driven
DL network. This methodology is novel, as there is no existing literature that explains the
use of Lasso feature selection and moDWT data decomposition techniques in SM prediction
Additionally, this study has implemented remedial procedures to overcome the boundary
condition related issues which are likely to add errors to real-world forecasts. That is
also a forward step in prediction studies that use wavelet transform data decomposition
procedures. Further, the proposed combination of algorithms, abbreviated as the moDWT-
Lasso-LSTM model, has not yet been tested in other geographic locations, thus filling this
gap in soil moisture prediction research.

The objectives in this study are threefold:

1. To develop deep learning methods for forecasting soil moisture (SM) at 10 cm depth,
integrating moDWT data decomposition methods with Lasso methods as feature
selection procedures to produce a prediction model based on LSTM utilizing satellite
data from GIOVANNI and ground data from SILO.

2. To employ the hybrid moDWT-Lasso-LSTM model in multi-step SM forecasting, i.e.,
1-day (t + 1), 14-day (t + 14) and 30-day (t + 30) SM forecasting.

3. To compare the objective model with benchmark models: LSTM, DNN, and ANN
(standalone models), Lasso-LSTM, Lasso-DNN, and Lasso-ANN (2-phase hybrid
models) and moDWT-Lasso-DNN and, moDWT-Lasso-ANN (3-phase hybrid models).

The above objectives have been established in this study to design a precise SM
forecasting model for short-, medium- and long-term SM predictions and to confirm its
comparative advantage. SM, as a major form of water resource, significantly influences
agricultural production and consequently affects food security. Similar to other forms of
water resources available globally, SM is a limited resource with growing demand due to
the expansion of agricultural activities. Under SM depleted conditions, the demand for
water storage for irrigation purposes increases, thereby restricting water availability for
other purposes like drinking and recreational activities.

Currently, agriculture accounts for an average of 70 percent of global freshwater
withdrawals [27]. Accurate SM predictions are crucial for early identification of moisture
stress in crops and actual irrigation water requirements in advance. Furthermore, precise
SM predictions can help to minimize water wastage in irrigation activities, provide early
warnings of crop production fluctuations, and conserve valuable water resources. Given
these benefits, this study aims to design a SM forecasting model using LSTM deep learning
algorithm, combined with Lasso feature selection and moDWT wavelet transform data
decomposition techniques.

Further, this study aims to apply the proposed model to multi-step SM forecasting
scenarios, including 1-day (t + 1), 14-day (t + 14) and 30-day (t + 30) multi-step SM
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forecasts. This will give an opportunity to observe its usefulness in short-, medium-
and long-term forecasting time horizons. A wide range of forecasting time horizons is
important for implementing remedial actions against SM stress conditions at different levels.
For instance, short-term SM predictions may important in taking prompt actions against
potential sudden crop failures due to moisture stress, while long-term SM predictions
are valuable for strategic planning to cope with future drought conditions, conserving
water resources, and ensuring stable crop production in the long run. In addition, by
comparing the proposed model with competitive rival models, this study aims to recognize
the performance improvement without overestimating the proposed model capabilities.
The research objectives in this study will help to make further improvement in the precision
of SM prediction and thereby adding valuable contribution to the SM prediction studies.

2. Theoretical Overview

This section describes the moDWT, Lasso, and LSTM algorithms used in the current
study to develop the model. Additionally, benchmark models were used to evaluate the
target model’s performance. These benchmarks are relatively recent machine learning
models with neural networks, similar to LSTM, and were chosen for their advanced
capabilities, making them suitable competitive benchmarks for the data-driven forecasting
algorithm used in this study.

The theoretical foundation of the single neural layer ANN machine learning model
is described in earlier research [28]. In hydrology, ANN is widely used and has proven
competent in various prediction tasks. For instance, Prasad et al. [29], developed an
ANN-CoM based multi-model ensemble strategy to forecast monthly soil moisture at
four farming locations in the Murray-Darling Basin, Australia. The ANN-CoM model,
validated against Volterra, Random Forest, M5 tree, and ELM models, demonstrated
high competency in capturing the nonlinear dynamics of soil moisture levels. Similarly,
Shirsath and Singh [30] constructed ANN and Multiple Linear Regression (MLR) models
for pan evaporation estimation, and statistical comparisons revealed that the ANN model
outperformed other models.

The DNN algorithm, an improvement over ANN, has been detailed by Le et al. [31]
and is progressively used in hydrology. It consists of multiple neural layers and falls under
the deep learning subset of machine learning. El Bilali et al. [32] developed an interpretable
ML framework to forecast daily pan evaporation using hourly climate datasets, employing
DNN along with Extra Tree, XGBoost, and SVR models. The interpretability of these models
was evaluated using SHAP, Sobol-based sensitivity analysis, and LIME, showing good
consistency with real hydro-climatic processes of evaporation in a semi-arid environment.

2.1. Decomposition Method: Maximum Overlap Discrete Wavelet Transform (moDWT)

Maximum Overlap Discrete Wavelet Transform (moDWT) decomposition method
decomposes complex time series data, characterized by multiple periodicities, transients,
and trends, into high and low frequency sub-time series, termed as wavelet and scaling
coefficients. These wavelets and scaling coefficients resulting from moDWT are defined as
follows [23]:

W(j,t) =
L−1

∑
n=1

hlXj−1,t−2j−1 lmodN (1)

V(j,t) =
L−1

∑
l=0

glXj−1,t−2j−1 lmodN (2)

where X is a time series input vector with N values; j = 1, 2,...J, and J represents the level
of decomposition at the time t; the jth level wavelet (W(j,t)) and scaling (V(j,t)) filters of
moDWT are represented as hl and gl , respectively, and L is the jth level filters’ width.

The moDWT addresses issues associated with other data decomposition algorithms
such as DWT and moDWT multi resolution analysis (moDWT-MRA). These issues arise
when the decomposition process cannot calculate the output values of coefficients accu-
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rately (without adding errors) due to the lack of necessary time series observations at
specific time points. These errors are termed boundary conditions.

For instance, DWT and moDWT-MRA require future data at certain points to calculate
detail and approximation coefficients. While historical time series data can provide this
future data, real-world scenarios do not have access to future data, leading to inaccuracies in
the calculated coefficients. Consequently, models developed using DWT and moDWT-MRA
may fail to accurately forecast soil moisture (SM) in practical implementations.

The moDWT effectively addresses these boundary condition issues by relying solely
on current and past time series data for its decomposition outputs, namely wavelet and
scaling coefficients, without requiring future data. However, moDWT cannot accurately
calculate decomposition outputs for data points at the beginning of a time series because
the necessary past data is unavailable. As a result, the wavelet and scaling coefficients
calculated for early data points are incorrect and are affected by boundary conditions.

The number of incorrect or boundary-condition-affected coefficients depends on the
decomposition level and the wavelet filter used. Higher decomposition levels and longer
wavelet filters tend to increase the total number of incorrect coefficients. The total number
of incorrect coefficients can be determined using Equation (3) [23].

LJ = (2J − 1)(L − 1) + 1 (3)

where LJ represents the number of wavelet and scaling coefficients affected by the boundary
condition for decomposition level J and a wavelet filter of length L.

In order to improve model forecasting accuracy, it is necessary to remove all these
boundary-condition-affected, incorrect wavelet and scaling coefficients derived at the begin-
ning of the data set. High decomposition levels and lengthy wavelet filters result in more in-
correct coefficients that must be removed, reducing the number of correct coefficients avail-
able for model training. Therefore, the appropriate selection of decomposition levels and
wavelet filters is essential for enhancing model performance. Quilty and Adamowski [23]
provides detailed discussions on boundary condition issues arises due to unavailability of
future data when employing DWT and moDWT-MRA for data decomposition.

There is no standard rule for determining the optimal decomposition level and wavelet
filter type. Increasing the number of boundary-condition-affected coefficients unnecessarily
should be avoided, as it leaves an inadequate number of correct coefficients for model
training. However, Equation (4) can be used to calculate the maximum decomposition level
(J) that can be adopted [33].

J = int(log2N) (4)

2.2. Feature Selection Method: Least Absolute Shrinkage and Selection Operator (Lasso)

In this study, the Lasso algorithm [34] is employed as a feature selection technique after
decomposition of input time series variables by the moDWT algorithm. Suppose that the
dataset consists of p input variables and N observations. Let X = [x1,x2,. . . xp] ∈ R(N×p) is
the input data matrix, in which each column denotes an input variable and y = [y1,y2,. . . yN]
∈ RN is the response variable where the response value at observation j is represented by
yj and xj is a vector containing p characteristics.

The Lasso method therefore follows the work of [35]:

β = argmin||y − XT β||2 + λ
p

∑
j=1

|β j| (5)

L1 = λ
p

∑
j=1

|β j| (6)

By applying a L1 penalty for the regression coefficients, the Lasso technique degrades
least-squares by shrinking the regression coefficients (β) to zero. The variables are chosen
to be included in the model during this feature selection procedure if their coefficients
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after the shrinking step are still non-zero. This process minimizes the prediction error by
reducing the complexity of the model.

2.3. Data Driven Forecasting Model: Long Short-Term Memory Network (LSTM)

The LSTM is a unique type of Recurrent Neural Network (RNN) [36] in connection
with traditional artificial neural networks that can recognize the intrinsic characteristics of
time sequence predictors and targets, considering the recurrent patterns and tendencies
throughout long periods. Input, output, and forget gates are the main components of the
special units, or memory blocks, that the LSTMs use to operate and these memory blocks
regulate the flow of information and are continuously updated [37]. The 4 steps calculations
are described as follows [38]:

• The forget gate ft is used by the LSTM layer to determine which data should either be
discarded or retained depending on the most recent hidden layer output ht−1 and the
new input xt:

ft = σ(w f [ht−1, xt] + b f (7)

where w f stands for weight matrix; b f stands for bias vector and σ(. . . ) stands for
sigmoid logistic function.

• After the information is updated by utilizing a “input gate” it, the LSTM layer deter-
mines which signal must be kept in the newly formed cell state ct that is denoted as
the new candidate cell state Ĉt:

Ĉt = tanh(wC[ht−1, xt]) + bC (8)

it = σ(wi[ht−1, xt]) + bi (9)

where the hyperbolic tangent function is denoted by tanh(. . . ).
• The “forget gate” ft removes unwanted information from the old cell state Ct−1 to Ct

and the “input gate” it obtains a new candidate cell state Ĉt:

Ct = ft ∗ Ct−1 + it ∗ Ĉt (10)

• The cell state Ct and the “output gate” ot are then used to calculate the output ht:

ot = σ(wo[ht−1, xt] + bo) (11)

ht = ot ∗ tanh(Ct) (12)

3. Materials and Method

This section presents a detailed breakdown of the methodology employed in this study,
divided into four key areas. First, the study region is described to establish the geographical
and environmental context. Next, the data utilized in the research is presented, followed
by the design of the predictive model, which outlines the core framework and approach.
Finally, the model permanence evaluation subsection discusses the metrics used to assess
the models’ accuracy and effectiveness. Tables A1 and A2 show the lists of symbols and
prefixes used in this study, respectively.

3.1. Study Region

Figure 1 shows the study area where 1-day, 14-day and 30-day lead time soil mois-
ture forecast model was developed using this 3-phase long short-term memory network,
wavelet and Lasso regression moDWT-Lasso-LSTM model. The case study focuses on the
Bundaberg region, located at 152.32◦ E, 24.91◦ S in Wide-Bay Burnett region of Queensland
state, Australia. This region covers 6444 square km and features a subtropical climate with
warm, wet summers and mild winters. The average annual temperature is around 20 ◦C,
with an average annual rainfall of 774 mm, most of which falls in the summer.
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During the hot summer months from November to March, the average daily maxi-
mum temperature exceeds 28 ◦C, with January being the warmest month, having average
maximum and minimum temperatures of 30 ◦C and 23 ◦C, respectively. July, the coldest
month, sees average minimum and maximum temperatures of 14 ◦C and 21 ◦C, respectively.
Bundaberg experiences significant seasonal fluctuations in monthly rainfall, peaking in
February with an average of 120 mm and dropping to its lowest in September, averaging
28 mm. Humidity levels vary greatly throughout the year, while the average hourly wind
speed experiences mild seasonal variation [39,40].

Figure 1. Study site geographical location and land use of the region and surrounding areas [41].

According to the Bundaberg Regional Council’s population statistics, the region’s total
resident population reached 100,118 in 2021, with a population density of 15.54 people
per square km. The agricultural, forestry and fishing sector is valued at approximately
$1.2 billion, making it the food bowl capital in Australia, contributing 12% of Queensland’s
total agricultural production. The region’s fertile soils, favourable climate, and steady
water supply support a wide range of agricultural operations. For instance, this region
contributes to producing 50% of Australia’s macadamia nuts, representing the largest
proportion of the country’s macadamias production.

Bundaberg also leads in avocado production, allocating the largest land area for
avocado farming in Australia. In addition, this region significantly contributes to the
production of mandarin, sweet potato, passion fruit, and pastures. These factors confirms
that Bundaberg provides an ideal platform for agricultural industries, making this sector
dominant in the region. Developing an accurate forecasting model to predict soil moisture
1, 14, and 30 days in advance is strategically important for the early identification of
water deficit and surplus conditions affecting crop production. Furthermore, it will aid in
employing precision irrigation practices, thereby conserving valuable water resources for
future use and other water-demanding activities. Therefore, the Bundaberg region was
selected for this study, which aims to develop a deep learning artificial intelligence model
to forecast soil moisture.
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3.2. Data

To conduct this research, satellite and ground-based daily climatic data of 15 predictive
and target variables from 1 January 2005 to 31 December 2020, were collected for the se-
lected study site. This period comprises a total of 5844 data points. Satellite-based data,
including the target variable, soil moisture (SM) (0–10 cm depth), were obtained from the
Goddard Online Interactive Visualization and Analysis Infrastructure (Giovanni) platforms,
including the Global Land Data Assimilation System (GLDAS) and the Famine Early Warn-
ing Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), with a spatial
resolution of 0.01 degrees. Giovanni, a web interface developed by NASA, facilitates the
analysis of gridded data from various satellites and surface observations, offering simple ac-
cess to a massive amount of Earth Science remote sensing data [42]. Ground-based data for
this study were collected from the Scientific Information for Landowners (SILO) database
for the same period. This database is managed by the Queensland Government [43].
Table 1 lists the data sources and predictor variables used in this study along with their
corresponding acronyms.

Table 1. Data derived from the Satellite-based Goddard Online Interactive Visualization and Analysis
Infrastructure (GIOVANNI) Global Land Data Assimilation System (GLDAS) spectrometer satellite
and Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS)
spectrometer with Scientific Information for Land Owners (SILO) used as ground-based predictors to
develop the proposed hybrid moDWT-Lasso-LSTM and benchmark models.

Data Source Name of Predictor Variable Acronym Unit

GIOVANNI-Satellite data FLDAS Model

Soil Temperature (0–10 cm depth) ST0-10 K
Soil Temperature (10–40 cm) ST10-40 K
Soil Temperature (40–100 cm) ST40-100 K
Soil Moisture (10–40 cm) SM10-40 kgm−2

Soil Moisture (40–100 cm) SM10-40 kgm−2

Soil Moisture (100–200 cm) SM10-40 kgm−2

GLDAS Model Ground Water Storage GWS mm

SILO-Ground based data

Maximum Temperature max-temp ◦C
Minimum Temperature min-temp ◦C
Solar radiation radiation MJm−2

Relative humidity at max temp rh-tmax %
Relative humidity at max temp rh-tmin %
Mean sea level pressure mslp hPa
Rainfall rain mm
Reference Evapotranspiration ET mm

The 15 predictor variables were selected based on a correlation matrix and trial runs,
where variables were included and excluded to assess their correlation with the target
variable. These trials showed that predictor variables with a weaker correlation to the
target variable tend to reduce the forecast accuracy of all models. Therefore, to improve
forecasting accuracy, only predictor variables with a sufficiently high correlation with
the target variable were selected. Additionally, soil moisture data from other layers (i.e.,
SM10-40, SM40-100, SM100-200) that had a good correlation with the target layer (i.e.,
SM0-10) were also considered.

3.3. Predictive Model Design
3.3.1. Computers and Software

The proposed multi-stage moDWT-Lasso-LSTM model and all other benchmark mod-
els were developed using a computer configured with an Intel Core i7 @ 3.3 GHz processor
(Intel Corporation, Santa Clara, CA, USA) and 16 GB of memory loaded with freely down-
loadable deep learning libraries of Keras 2.0 [44] and TensorFlow 2.0 [45] in Python 3.1.
The moDWT data decomposition algorithm and the Lasso feature selection method are
run on a MATLAB R2019b and Python platforms, respectively. Furthermore, the study has
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adopted “matplotlib” and “seaborn” tools in the Python programming environment to
produce graphical illustrations for visualization of the result.

3.3.2. Identification of Model Inputs

Row data of all 15 predictor variables are time lagged against row data of target
variable, i.e., SM accordance with forecasting lead times t + 1, t + 14, and t + 30 respectively.
In case of lagging data for t+1 SM forecasting, all data are stacked in a way that, data of
predictor variables at each time point in the predictor data sequence are always coinciding
with I day ahead data of the target variable. Similarly, in case of t + 14 and t + 30 SM
forecasting, data of predictor variables at each time point are always coinciding with
14 and 30 days ahead target variable data respectively.

3.3.3. Data Decomposition Using moDWT for Developing Three Phase Hybrid Models

This study has adapted the moDWT as the data decomposition algorithm to decom-
pose the lagged data of all predictor variables in the development of three-phase hybrid
models: the moDWT-Lasso-ANN, the moDWT-Lasso-DNN and the moDWT-Lasso-LSTM.
However, the target variable’s data were not decomposed using moDWT, as this does not
provide additive reconstruction functions [23].

Given that there are no established rules for determining the optimal decomposition
level and wavelet filter type for a decomposition process, this study employs trial-and-error
procedures, a common practice in similar research. However, Equation (4), discussed in
the theoretical overview section, is used for calculating the maximum decomposition level,
which in this research is determined to be 9. According to the Equation (3), such higher
decomposition level increases the number of incorrect wavelet and scaling coefficients,
exacerbated when combined with longer wavelength wavelet filters. Therefore, this study
selects three different decomposition levels-2, 4 and 6-below the maximum level (9) for the
trial-and-error process.

In this study, seven commonly used wavelet filters from three different wavelet
families were employed, specifically: Haar (wavelet length of 2), db2, db4 and db6 (wavelet
lengths of 4, 8, and 12, respectively) from the Daubechies family, and f k4, f k8, and f k14
(wavelet lengths of 4, 8, and 14, respectively) from the Fejer-Korovkin family. This resulted
in 21 trials to determine the best combination of decomposition level and wavelet filter for
each three-phase hybrid model at a particular lead time. Given the three lead times (t + 1,
t + 14 & t + 30) and three 3-phase hybrid models (moDWT-Lasso-ANN, moDWT-Lasso-
DNN, and moDWT-Lasso-LSTM), a total of 189 trials were conducted.

Despite the availability of many wavelet filters from various families, the study limited
its scope to these seven filters due to time constraints and to maintain study simplicity.
The longest wavelet filter used was f k14. Wavelet filters longer than f k14 were not consid-
ered to avoid increasing the number of boundary condition-affected wavelet and scaling
coefficients. For instance, using the f k14 filter with decomposition level six results in
820 boundary condition-affected coefficients, calculated by Equation (3).

To ensure consistency across trials, 820 wavelet and scaling coefficients were removed
from the beginning of each dataset used for the standalone and two-phase hybrid models.
This standardization ensured that all trials, differentiated by wavelet filters, decomposition
levels, and forecasting model combinations, were based on the same dataset.

3.3.4. Feature Selection Using Lasso to Develop 2-Phase and 3-Phase Hybrid Models

Feature selection is conducted using the Lasso algorithm to identify the predictor
variables most correlated with the target variable for developing the 2-phase hybrid mod-
els, such as Lasso-ANN, Lasso-DNN and Lasso-LSTM. For this purpose, undecomposed
predictor variable data is used separately for each lead time scenario, and only the unde-
composed data of the selected predictor variables are fed into the 2-phase hybrid forecasting
models. Additionally, the Lasso algorithm is employed to identify the most correlated
wavelet and scaling coefficient data series derived from the original predictor variable
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data series during the data decomposition process using moDWT. This step is crucial for
developing the three-phase hybrid models (moDWT-Lasso-ANN, moDWT-Lasso-DNN,
and moDWT-Lasso-LSTM). The feature selection task is performed separately for each
model and lead time scenario.

3.3.5. Data Normalization

In this study, the data ranges for each predictor variable in the data sets prepared for
the forecasting models vary across all scenarios. Variables with larger data ranges can be
unnecessarily favoured in model forecasting over inputs with narrower ranges regardless
of their intrinsic relationship. To address this issue, data normalization is carried out using
Equation (13) to scale the data within the 0-1 range. During normalization, the training
and testing data partitions for a particular model scenario are combined. This approach
ensures that the model parameters, trained on the normalized data, can generalize to
unseen data effectively.

Xn =
(Xactual − Xmin)

(Xmax − Xmin)
(13)

where Xactual , Xmax and Xmin denote the input data for actual, maximum, and minimum
values of the target (i.e., soil moisture), respectively.

3.3.6. Hyperparameter Optimization

To construct the best forecasting model designs, the Hyperopt hyperparameter optimiza-
tion algorithm, available in the Python Hyperopt library [46], is used to identify the optimal
hyperparameters for the target and all other benchmark models for each lead time forecast
separately. The training data partitions are used in this process. In comparison to Grid search
and Random search, the Hyperopt hyperparameter optimization technique performs better
since it can speed up the model training process while improving model accuracy.

The list of hyperparameters and their search space used in hyperparameter optimiza-
tion processes are provided in Table 2. The optimal hyperparameters identified through
the hyperparameter optimization process for designing the target LSTM and all other
benchmark model architectures are detailed in Table 3.

Table 2. List of hyperparameters and their search space used in hyperparameter optimization process
ReLU and Adam stand for Rectified Linear Units and Adaptive Moment Estimation respectively.

Model Name of Model Hyperparameters Search Space for Optimal Hyperparameters

LSTM LSTM Layer 1 [50, 70, 100, 150]
LSTM Layer 2 [50, 70, 100, 150]
LSTM Layer 3 [50, 70, 100, 150]
Dense Layer [1]
Epochs [100, 200, 500]
Activation Function [ReLU]
Optimizer [Adam]
Dropout Ratio [0.1, 0.2]
Batch Size [5,10,20,30]

DNN Hidden neuron 1 [10, 20, 30]
Hidden neuron 2 [10, 15, 25]
Hidden neuron 3 [5, 10, 20]
Dense Layer [1]
Epochs [30, 50, 100, 200]
Activation Function [ReLU]
Optimizer [Adam]
Dropout Ratio [0.1, 0.2, 0.3, 0.4, 0.5]
Batch Size [3, 5, 10]

ANN Hidden neuron [10, 20, 30]
Dense Layer [1]
Epochs [30, 50, 100, 300, 1000, 2000]
Activation Function [sigmoid, tanh, ReLU]
Optimizer [Adam]
Dropout Ratio [0.3, 0.4, 0.5]
Batch Size [3,5,10]
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Table 3. List of optimal hyperparameters selected by hyperparameter optimization process for LSTM,
DNN and ANN models designing at t + 1, t + 14 and t + 30 lead times.

Time Model Layer 1 Layer 2 Layer 3 Batch Size Epochs
Neuron Activation Dropout Neurons Activation Dropout Neurons Activation Dropout

t + 1 MoDWT-Lasso-LSTM 50 ReLU 0.1 150 ReLU 0.1 50 ReLU 0.1 20 500
MoDWT-Lasso-DNN 20 ReLU 0.3 10 ReLU 0.1 5 ReLU 0.1 10 100
MoDWT-Lasso-ANN 20 ReLU 0.3 10 100
Lasso-LSTM 50 ReLU 0.1 150 ReLU 0.1 50 ReLU 0.1 20 500
Lasso-DNN 20 ReLU 0.3 10 ReLU 0.1 5 ReLU 0.1 10 100
Lasso-ANN 20 ReLU 0.3 10 100
LSTM 50 ReLU 0.1 150 ReLU 0.1 50 ReLU 0.1 30 500
DNN 20 ReLU 0.3 10 ReLU 0.1 5 ReLU 0.1 10 100
ANN 20 ReLU 0.3 10 100

t + 14 MoDWT-Lasso-LSTM 100 ReLU 0.3 150 ReLU 0.2 100 ReLU 0.1 10 500
MoDWT-Lasso-DNN 20 ReLU 0.3 10 ReLU 0.1 5 200
MoDWT-Lasso-ANN 20 ReLU 0.3 10 100
Lasso-LSTM 100 ReLU 0.3 150 ReLU 0.1 50 ReLU 0.1 30 500
Lasso-DNN 20 ReLU 0.4 10 ReLU 0.1 5 ReLU 0.1 10 100
Lasso-ANN 20 ReLU 0.3 10 100
LSTM 50 ReLU 0.1 100 ReLU 0.2 50 ReLU 0.1 10 200
DNN 20 ReLU 0.3 10 ReLU 0.1 5 ReLU 0.1 10 50
ANN 30 ReLU 0.3 10 100

t + 30 MoDWT-Lasso-LSTM 50 ReLU 0.2 100 ReLU 0.2 50 ReLU 0.1 10 200
MoDWT-Lasso-DNN 30 ReLU 0.5 20 ReLU 0.2 10 ReLU 0.1 5 300
MoDWT-Lasso-ANN 20 ReLU 0.3 10 100
Lasso-LSTM 50 ReLU 0.2 100 ReLU 0.2 50 ReLU 0.1 10 200
Lasso-DNN 20 ReLU 0.3 10 ReLU 0.1 5 ReLU 0.1 5 300
Lasso-ANN 10 ReLU 0.2 10 100
LSTM 50 ReLU 0.2 100 ReLU 0.2 50 ReLU 0.1 10 200
DNN 10 ReLU 0.5 25 ReLU 0.1 5 ReLU 0.3 3 300
ANN 20 ReLU 0.3 10 100

3.3.7. Data Partitioning and Data Feeding to Models

In this study, for all model scenarios, the first 75% of the respective data is allocated
for training purposes, while the remaining 25% is used for testing purposes. This allocation
allows both training and the testing data partitions to acquire adequate data for successful
model running. Although a total of 5844 data points were initially considered, the number
of data points finally utilized at the model running stages for each lead time scenario is
reduced due to the above explained data pre-processing steps, including data lagging,
decomposition, and removal.

In the case of t + 1 lead time SM forecasting, all models are fed with 5023 data points,
while in case of t + 14 and t + 30 lead time SM forecasting, 5010 and 4994 data points are
fed to the forecasting models. For t + 1, t + 14 and t + 30 forecasting scenarios, 3767, 3757
and 3745 data points are used in the training phase, respectively, as 75% of the total data
set is used for training. Thus, in t + 1, t + 14 and t + 30 forecasting scenarios, 1256, 1253 and
1249 data points (the last 25%) remain for testing. In t + 1 lead time case, for instance, daily
data points from 1 April 2007 to 23 July 2017 are used for training, while daily data points
from 24 July 2017 to 30 December 2007 are used for testing.

The standalone models, namely ANN, DNN, and LSTM for each lead time, are trained
and tested using original un-decomposed lagged data of predictor variables and target
variable data. In order to develop 2 phase hybrid models, namely Lasso-ANN, Lasso-DNN
and Lasso-LSTM, un-decomposed lagged data of predictor variables selected by Lasso
feature selection algorithm are used with target variable data.

In order to develop 3-phase hybrid models, namely moDWT-Lasso-ANN, moDWT-
Lasso-DNN, and moDWT-Lasso-LSTM, lagged decomposed data of predictor variables
are combined with un-decomposed target variable data. In the training phase of all model
development cases, the model can see both input and output variable data. During the
testing phase, however, the model can see only the input variable data and has no access
the target variable data in the forecasting process. As the testing phase time point range is
also historical with respect to the current time, realistically, future data of target variable
with respect to all testing phase time points are available.

For setting up a situation exactly similar to the real-world application of the model,
target variable data are not made available for the forecasting process and instead let the
model to forecast values for the target variable for each lead time with respect to each
testing phase time point using the respective historical data of input variables using the
skills developed in the training phase. The forecasted values of target variable are then
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compared with real future values of target variable available for all testing phase time
points and evaluated the accuracy using statistical and graphical tools.

Figure 2 illustrates the schematic view of the all model development process including
the 3-phase hybrid moDWT-Lasso-LSTM model for multi-step SM forecasting at t + 1,
t + 14 and t + 30 lead times.

Figure 2. Schematic view of the development of benchmark models and proposed 3-phase hybrid
moDWT-Lasso-LSTM model for multi-step SM forecasting at t + 1, t + 14 and t + 30 lead times.

3.4. Model Performance Evaluation

For ML models development, evaluating the models performance is crucial component.
It determines whether a model is suitable for certain applications, compares it with rival
models, and identifies areas for improvement [47]. As a result, for SM forecasting at selected
sites for the same datasets, the proposed moDWT-Lasso-LSTM model and other benchmark
models are evaluated considering forecasting accuracy and errors.

Pearson’s Correlation Coefficient (r)
Equation (14) is used to derive the value of r, which expresses how closely forecasted

(SMFOR) and observed (SMOBS) values are coincided. The values given for this metric are
always floating in between −1 to +1 and it equals +1 when perfectly strong and positive
correlation exist between two variables (such as the forecasted and observed SM). In
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contrast, perfectly strong and negative correlations exist between two variables gives value
of −1. The value r will be equal to zero if there is no relation between any two variables.
However, in this instance, there should be a high and positive correlation between the
estimated values by the forecasting model and observed values to consider the forecasting
model to be competent enough in prediction works, thus r value should close or equal
to +1.

r = ∑n
i=1(SMOBS − ⟨SMOBS⟩)(SMFOR − ⟨SMFOR⟩)√

∑n
i=1(SMOBS − ⟨SMOBS⟩)2

√
∑n

i=1(SMFOR − ⟨SMFOR⟩)2
(14)

Determination of Coefficient (R2)
The determination of coefficient R2 can be explained as the proportion of the variance

in the dependent variable that is predicted by the independent variables [48] and it ranges
between −∞ and +1. +1 is considered as the best value.

R2 = 1 − ∑N
i=1(SMFOR,i − SMOBS,i)2

∑N
i=1(< SMOBS > −SMOBS,i)2

(15)

Root Mean Square Error (RMSE; kgm−2)
Regression model performances are typically evaluated using the RMSE

(Equation (16)). This metric computes the average of prediction error generated by fore-
casting models, that is the average difference among the forecasted value SMFOR and the
observed value SMOBS. The value of RMSE can be anywhere between 0 and ∞, but as
model performance increases, the value of RMSE is shifting towards zero.

RMSE =

√
1
n

n

∑
i=1

(SMFOR − SMOBS)2 (16)

Mean Absolute Error (MAE; kgm−2)
The MAE (Equation (17)) measures the actual forecast errors in relation to the total

number of observations; MAE value is expected to fluctuate between 0 and ∞, however
for ideal predictive models, it becomes zero. As the value given for MAE is unaffected by
extreme outliers it provides a more reliable estimation of the model’s average error relative
to the RMSE.

MAE =
1
n

n

∑
i=1

|SMFOR − SMOBS| (17)

Mean Absolute Scaled Error (MASE)
The MASE value (Equation (18)) proposed by Hyndman and Koehler [49] is also

used to assess the forecast model’s accuracy. The major advantage of this statistical tool
is that, the result is independent of the scale of the data. This measures the accuracy of a
forecasting model in terms of the in-sample MAE value generated by one period a head
naïve forecast method. When the forecasting model performance is better than the average
one-step, naïve forecast computed in-sample, the value for MASE will be less than 1 and
contrarywise, it is greater than 1 if the forecast is inferior to the in-sample average one-step,
naïve forecast [49].

MASE =
1
N

(
∑N

i=1 |SMFOR − SMOBS|
1

N−m ∑N
i=m+1 |SMOBS − SMOBS,i−m|

)
(18)

Symmetric Mean Absolute Percentage Error (SMAPE)
The SMAPE (Equation (19)) is a modification of Mean Absolute Percentage Error

(MAPE) to avoid the issue of being infinite or undefined due to zeros in the denominator.
Like MASE, SMAPE is also a scale-independent metrics and thus ideal for comparing
performances of forecasting algorithms [49]. Smaller percentage values indicate high levels
of accuracy in the forecasting models.
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SMAPE =
200
N

N

∑
i=1

|SMFOR,i − SMOBS,i

SMFOR,i|+ |SMOBS,i , % (19)

Willmott’s Index (W I)
The WI (Equation (20)) is widely used as a flexible and logical metric with it’s value

ranging from 0 (poor model) to 1 (an ideal model).

WI = 1 − ∑n
i=n(SMOBS − SMFOR)2

∑n
i=n(|SMFOR − ⟨SMOBS⟩|+ |SMOBS − ⟨SMOBS⟩|)2

(20)

Nash-Sutcliffe Index (NS)
The NS (Equation (21)) [50] shows how closely a depicted line between the predicted

and observed values fit a 1:1 ratio. If the predicted and observed data match exactly, NS
equals 1 so here, the metric lies between −∞ < NS ≤ 0 [50].

NS = 1 − ∑n
i=1(SMOBS − SMFOR)2

∑n
i=1(SMOBS − ⟨SMOBS⟩)2

(21)

Legate and McCabe Index (LM)
The LM (Equation (22)) is considered as a more advanced metric compared to WI and

NS. When assessing the quality of model’s fit to observed data, this index offers advantages
over the correlation based metrics such as WI, R2 and NS whereby an optimal predictive
model is expected to generate a value of 1 over the range −∞ and 1.

LM = 1 − ∑n
i=1 |SMOBS − SMFOR|

∑n
i=1 |SMOBS − ⟨SMOBS⟩|

(22)

It is noteworthy that in Equations (14)–(22), SMOBS refers to the daily observed soil
moisture (0–10 cm depth) and SMFOR is the daily forecasted soil moisture (0–10 cm depth)
whereas <SMOBS> and <SMFOR> are the mean values of SMOBS and SMFOR respectively,
i is instance of data point and N is the number of data points in the testing phase.

4. Results and Discussion

The summary of the descriptive statistics for all predictor and target variables is
presented in Table 4. Refer to Goos and Meintrup [51] for the details of the calculations and
interpretations of these statistics. These descriptive statistics provide information on the
central tendency (mean, median) and variability (standard deviation) of the data set, as well
as the shape and frequency of data distribution. The mean and median values of variables
such as radiation, rh-tmax, ET, mslp, and GWS are close together, indicating that their
distributions are nearly symmetric. Other variables have greater differences in the mean
and median values, reflecting skewnesses in their distributions. Specifically, SM, SM10-40,
SM100-200, SM40-100 and rain exhibit slightly to moderately right-skewed distributions,
indicated by the skewness values just below and above 0.5, respectively. By contrast, the
distributions of max-temp, min-temp, rh-tmin, ST40-100, ST10-40, and ST0-10 are slightly
left-skewed, indicated by the skewness values close to −0.5.

In terms of the shape of a distribution’s tails and peak, the negative kurtosis values
indicate that generally most of the variables in this study are platykurtic, meaning they
have thinner tails and flatter peaks compared to a normal distribution. The exceptions
are rh-tmax and rh-tmin with positive kurtosis values, which are leptokurtic, indicating
fatter tails and sharper peaks. Rain is extremely leptokurtic, suggesting a high frequency of
extreme values.

Table 5 summarizes the results of trial-and-error to identify the best decomposition
level and wavelet filter combination. In most cases, best suited combinations differ from
one another, with the exception of moDWT-Lasso-LSTM and moDWT-Lasso-DNN at t + 1.
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The best model forecasts are obtained using decomposition level 4 and wavelet filter “haar”
for those two cases.

Table 4. Summary of descriptive statistics values of all predictors and target variable data.

Variable Mean Median Standard Deviation Skewness Kurtosis

SM 22.6082 21.5707 3.8999 0.3591 −1.2382
max-temp 27.3613 27.7000 3.5232 −0.3439 −0.1983
min-temp 16.6750 17.3000 4.7370 −0.4436 −0.5403
radiation 18.5636 18.7000 5.9020 −0.2629 −0.6063
rh-tmax 50.4473 50.6000 11.8674 −0.0096 1.1172
rh-tmin 91.5993 96.0000 11.5819 −2.1140 5.6520
ET 3.9792 3.9000 1.3571 0.1223 −0.8611
mslp 1017.5165 1017.7000 4.9808 −0.2450 −0.1818
ST40-100 300.7142 301.8777 4.6184 −0.3690 −1.3350
ST10-40 300.8481 302.3685 5.2255 −0.3879 −1.2737
ST0-10 300.8051 302.5193 5.8458 −0.3975 −1.2068
rain 2.6492 0.0000 10.9918 9.3525 132.1285
SM10-40 80.7710 78.4010 10.3539 0.2873 −1.3730
SM100-200 253.8943 248.9959 19.3150 0.5340 −0.9635
SM40-100 150.0634 145.4409 21.7223 0.3255 −1.3311
GWS 939.5838 939.7291 14.6149 0.0610 −0.3491

Table 5. Summary of best decomposition levels and wavelet filters resulted from trial-and-error
process for 3-phase hybrid models at t + 1, t + 14 and t + 30 lead times.

Model t + 1 t + 14 t + 30
Decomposition Level Filter Decomposition Level Filter Decomposition Level Filter

moDWT-Lasso-LSTM 4 haar 4 fk4 2 fk4
moDWT-Lasso-DNN 4 haar 4 db4 4 haar
moDWT-Lasso-ANN 2 haar 4 db6 4 db4

According to decomposition level 4, each predictor variable’s time series data is split
into four wavelet coefficients and one scaling coefficient, regardless of the wavelet filter
used. Figure 3 illustrates the decomposition results for SM10-40 based on decomposition
level 4 and wavelet filter “haar”. (Notably, this is the decomposition level and wavelet
filter combinations confirm the best model performances in moDWT-Lasso-LSTM and
moDWT-Lasso-DNN at t + 1 lead time). When decomposition level 4 is used, the number of
predictor variables increased to 75 (60 wavelet coefficients (15 × 4) + 15 scaling coefficients
(15 × 1)). When decomposition level 2 is used for data decomposition, total number of
predictor variables is increased up to 45 (=15 × 2 + 15 × 1).

The Lasso feature selection algorithm is employed to identify the predictor variables
most correlated with the target variable (SM). This algorithm reduces the number of
wavelet and scaling coefficient data series used in the forecasting model training and testing.
Different wavelet and scaling coefficient data series are selected by the Lasso algorithm for
each decomposed data set derived from different combinations of decomposition levels and
wavelet filters used in 3-phase model development. Notably, the majority of the coefficient
data series selected by the Lasso algorithm are scaling coefficients of predictor variables.

Table 6 summarizes the wavelet and scaling coefficient data series selected by the
Lasso feature selection algorithm for all 3-phase hybrid models at t + 1 lead time. For the
predictor variable SM10-40, the second, third, and fourth wavelet coefficient data series (W2,
W3, W4) and the scaling coefficient data series (V) depicted in Figure 3 are selected by the
Lasso algorithm for the development of the moDWT-Lasso-LSTM and moDWT-Lasso-DNN
models at t + 1 lead time.
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Figure 3. Wavelet and scaling data series resulted from moDWT decomposition process given for the
predictor variable: SM10-40 when decomposition level 4 and wavelet filter “haar” is used at t + 1
lead time.

In developing 2-phase hybrid models (i.e., Lasso-LSTM, Lasso-DNN, and Lasso-ANN),
the number of predictor variables selected by the Lasso algorithm for t + 1, t + 14, and
t + 30 lead times are as follows:

• For t + 1 lead time: 10 predictor variables (min-temp, radiation, rh-tmax, rh-tmin, ST0-
10, rh-tmax, rh-tmin, mslp, ST40-100, ST0-10, rain, SM10-40, SM40-100, SM100-200,
and GWS).

• For t + 14 and t + 30 lead times: 12 predictor variables (max-temp, min-temp, radiation,
rh-tmin, mslp, ST40-100, ST0-10, rain, SM10-40, SM100-200, SM40-100, and GWS).

Table 7 displays the calculated values of statistical metrics to evaluate the performance
of the proposed deep moDWT-Lasso-LSTM model and other benchmark models. These
metrics include Pearson’s Correlation Coefficient (r), Coefficient of Determination (R2),
Root Mean Squared Error (RMSE; kgm−2), Mean Absolute Error (MAE; kgm−2), Mean
Absolute Scaled Error (MASE), Symmetric Mean Absolute Percentage Error (SMAPE),
Legates and McCabe Index (LM) and Willmott’s Index (WI). In general, the moDWT-
Lasso-LSTM model demonstrated superior performance in SM forecasting compared to all
the benchmark models in all different lead times. The proposed model has produced the
highest values for r, R2, LM and WI, indicating strong model performance and reliability.
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Simultaneously, it has produced the lowest values for RMSE, MAE, MASE and SMAPE,
reflecting high accuracy and minimal error.

Table 6. Summary of selected wavelet and scaling coefficients by Lasso feature selection technique at
t + 1 lead time for the 3-phase hybrid moDWT-Lasso-LSTM, moDWT-Lasso-DNN and moDWT-Lasso
ANN methods utilising LSTM, DNN and ANN predictive models, respectively.

Model Predictor Wavelet Coefficient Scaling Coefficients Wavelets/Scaling Coefficient

moDWT-Lasso-LSTM

SM10-40 W2, W3, W4 min-temp

12

SM100-200 W4 radiation

GWS W4

ST0-10
rain
SM10-40
SM100-200
GWS

moDWT-Lasso-DNN

SM10-40 W2,W3,W4 min-temp

12

SM100-200 W4 radiation

GWS W4

ST0-10
rain
SM10-40
SM100-200
GWS

moDWT-Lasso ANN

rh-tmin W2 min-temp

11SM10-40 W2

radiation
rh-tmax
ST0-10
rain
SM10-40
SM100-200
SM40-100
GWS

For the t + 1 lead time, the moDWT-Lasso-LSTM model demonstrates superior perfor-
mance across almost all metrics. It has the highest r ≈ 0.97290, indicating a very strong
correlation between predicted and actual SM values. Its R2 ≈ 0.92469 shows that over 92%
of the variance in SM is explained by the model, the highest among all models tested. The
lowest values of RMSE ≈ 0.97808 and MAE ≈ 0.76623 signify more accurate predictions.
The MASE ≈ 4.39700 and SMAPE ≈ 3.48910% are both lower than those of other models,
further emphasizing the model’s accuracy. Additionally, the values of LM ≈ 0.78021 and
WI ≈ 0.98270 are the highest, indicating superior model performance and agreement with
observed data.

Comparatively, the moDWT-Lasso-DNN and moDWT-Lasso-ANN models also per-
form well, with high r and R2 values but slightly higher RMSE, MAE, MASE, and SMAPE
values than the moDWT-Lasso-LSTM model. Traditional models such as Lasso-DNN and
DNN show significantly lower performance, evidenced by lower r and R2 values and
higher error metrics. For example, the standalone ANN model (r ≈ 0.95478) had the
lowest correlation with the observed SM values, indicating that it was the least effective in
capturing the relationship between the predictor variables and observed SM. This demon-
strates the efficacy of the hybrid models, especially the moDWT-Lasso-LSTM, in short-term
SM forecasting.

For the t + 14 lead time, the moDWT-Lasso-LSTM model again outperforms other
models, though the performance metrics show slight degradation compared to the t + 1
lead time. It achieves an r ≈ 0.96012 and an R2 ≈ 0.89224, indicating strong predictive
power. The RMSE ≈ 1.18054 and MAE ≈ 0.96482, both are the lowest among all models,
further highlighting accurate predictions. The MASE ≈ 0.79649 and SMAPE ≈ 4.01170%,
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which, although slightly higher than the t + 1 lead time, remain the best among the models.
The LM ≈ 0.72280 and WI ≈ 0.97491 also exhibit good model reliability and consistency.

Table 7. Values scored in the testing phase for statistical metrics used to evaluate the proposed hybrid
moDWT-Lasso-LSTM and benchmark models for lead times t + 1, t + 14 and t + 30. The best values
scored for relevant statistical metrics are boldfaced.

t + 1
Model r R2 RMSE MAE MASE SMAPE (%) LM WI

moDWT-Lasso-LSTM 0.97290 0.92469 0.97808 0.76623 4.39700 3.48910 0.78021 0.98270
moDWT-Lasso-DNN 0.97243 0.90801 1.05142 0.83664 4.80102 4.28050 0.76069 0.97023
moDWT-Lasso ANN 0.96755 0.87927 1.25829 0.99296 5.69808 4.32120 0.71597 0.97211
Lasso-LSTM 0.96916 0.86992 1.24185 0.99203 5.69274 4.29820 0.71543 0.97145
Lasso-DNN 0.96398 0.78780 1.49764 1.22490 7.02904 5.26880 0.64963 0.95672
Lasso-ANN 0.96310 0.86976 1.30536 1.02215 5.86556 4.45690 0.70762 0.96990
LSTM 0.96728 0.89932 1.08161 0.85262 4.89270 3.76450 0.75543 0.97789
DNN 0.96628 0.66048 1.70606 1.38637 7.95562 5.81720 0.60344 0.93937
ANN 0.95478 0.81781 1.58090 1.25067 7.17693 5.51210 0.62531 0.95712

t + 14
r R2 RMSE MAE MASE SMAPE (%) LM WI

moDWT-Lasso-LSTM 0.96012 0.89224 1.18054 0.96482 0.79649 4.01170 0.72280 0.97491
moDWT-Lasso-DNN 0.96149 0.87398 1.19683 0.94721 0.78195 4.13590 0.72846 0.97264
moDWT-Lasso ANN 0.95139 0.85932 1.29359 1.06966 0.88304 4.67810 0.69336 0.96854
Lasso-LSTM 0.93999 0.87467 1.34597 1.05395 0.87006 4.30280 0.69719 0.96878
Lasso-DNN 0.95380 0.88453 1.20330 0.96490 0.79655 4.73540 0.72340 0.97344
Lasso-ANN 0.95167 0.85824 1.30455 1.06954 0.88293 4.65450 0.69340 0.96818
LSTM 0.94245 0.86700 1.36678 1.05309 0.86935 4.71900 0.69744 0.96750
DNN 0.95413 0.77293 1.48918 1.18204 0.97581 5.06000 0.66115 0.95493
ANN 0.93540 0.77400 1.59018 1.28029 1.05692 5.54800 0.63298 0.95122

t + 30
r R2 RMSE MAE MASE SMAPE (%) LM WI

moDWT-Lasso-LSTM 0.96497 0.91564 1.13674 0.91126 0.45417 3.98600 0.73774 0.97849
moDWT-Lasso-DNN 0.95820 0.88818 1.15259 0.95784 0.47738 4.31100 0.72481 0.97516
moDWT-Lasso ANN 0.95528 0.88467 1.22855 1.00449 0.50063 4.44910 0.71140 0.97286
Lasso-LSTM 0.95051 0.88685 1.22393 0.96703 0.48196 4.22980 0.72169 0.97307
Lasso-DNN 0.95665 0.85161 1.26631 0.99443 0.49562 4.30100 0.71429 0.96852
Lasso-ANN 0.93237 0.81717 1.46481 1.22684 0.61145 5.34670 0.64752 0.95895
LSTM 0.95436 0.87888 1.20148 0.97581 0.48634 4.32890 0.71917 0.97277
DNN 0.95139 0.77771 1.47242 1.15331 0.57480 4.91300 0.66865 0.95562
ANN 0.93926 0.83699 1.40469 1.16230 0.57928 5.09100 0.66607 0.96294

The moDWT-Lasso-DNN model shows comparable performance but has slightly
lower r and R2 values and higher error metrics. Other models, such as Lasso-LSTM and
Lasso-DNN, demonstrate relatively good performance but still fall short of the moDWT-
based models, highlighting the advantage of the wavelet transform in enhancing forecasting
accuracy over a 14-day horizon. Specifically, the Lasso-LSTM model, with an r score of
approximately 0.93999, performs somewhat lower compared to its moDWT-enhanced
counterpart. Meanwhile, the ANN model shows the lowest performance for a 14-day lead
time, with r ≈ 0.93540 and R2 ≈ 0.77400.

For the t + 30 lead time, the moDWT-Lasso-LSTM model continues to show the best
performance, with an r ≈ 0.96497 and an R2 ≈ 0.91564. Its values of RMSE ≈ 1.13674 and
MAE ≈ 0.91126 are the lowest among all models, indicating accurate long-term predictions.
The MASE ≈ 0.45417 and SMAPE ≈ 3.98600% are also the lowest. Additionally, the values
of LM ≈ 0.73774 and WI ≈ 0.97849 reflect high model agreement and reliability even for
extended forecasts.
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Other models, including the moDWT-Lasso-DNN and moDWT-Lasso-ANN, perform
well but with slightly higher error metrics and lower correlation coefficients compared to
the moDWT-Lasso-LSTM. Traditional models such as DNN and ANN show significantly
lower performance, with higher RMSE, MAE, MASE, and SMAPE values, indicating less
accurate predictions. This further underscores the superiority of the proposed model in
long-term SM forecasting.

For instance, the heatmap (Figure 4) shows that the moDWT-Lasso-LSTM model
consistently performs better in both RMSE and SMAPE across all leading times, suggesting
its robustness in reducing relative error. On the other hand, the DNN and ANN models
exhibit the highest SMAPE values, particularly at the t + 14 and t + 30 horizons, with values
exceeding 5.5%. This indicates that these models may not handle longer-term predictions
compared to others.

Moreover, Figure 5 splays three radar charts representing the MAE for all models
across three forecasting horizons. The charts illustrate that the moDWT-Lasso-LSTM model
is consistently closest to the center, indicating the lowest MAE and the best short-term
(t + 1) and long-term (t + 30) prediction performance. At the mid-term (t + 14), the moDWT-
Lasso-LSTM continues to outperform the other models, with moDWT-Lasso-DNN showing
slight improvement. These radar charts effectively highlight the comparative strength of
each model across different forecasting horizons, emphasizing the superior performance of
the hybrid moDWT-Lasso-LSTM model.

To further affirm the superiority of the proposed moDWT-Lasso-LSTM model in terms
of prediction competency over the other benchmark models, the absolute forecasting errors
(i.e., |FE| = |observed SM − forecasted SM|; kgm−2) of the proposed model and all
benchmark models are compared (Figure 6). The distribution of |FE| during the testing
phase, including the upper, median, and lower quartiles for each model for t + 1, t + 14,
and t + 30 lead time SM forecasting, is illustrated in the box plots in Figure 6. According to
these box plots, the multi-step moDWT-Lasso-LSTM model exhibits the fewest quartiles
for |FE| across all lead times. These results indicate a narrow error distribution for the
moDWT-Lasso-LSTM model compared to the benchmark models, further demonstrating
its suitability for SM forecasting.

Figure 4. Heatmap of the Root Mean Square Error (RMSE) and Symmetric Mean Absolute Percentage
Error (SMAPE) for the moDWT-Lasso-LSTM model and other benchmark models at t + 1, t + 14 and
t + 30 lead time SM forecasting.
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Figure 5. Redar plots for the Mean Absolute Error (MAE) for the moDWT-Lasso-LSTM model and
other benchmark models at t + 1, t + 14 and t + 30 lead time SM forecasting.

Figure 6. Box plot of forecast errors in the testing phase generated by the moDWT-Lasso-LSTM
hybrid model and other benchmark models at t + 1, t + 14 and t + 30 lead time SM forecasting.

Figure 7 shows the stem plots for the Nash-Sutcliffe Coefficient (NS) calculated for the
target moDWT-Lasso-LSTM model and benchmark models during the testing phase for
t + 1, t + 14, and t + 30 lead times SM forecasting. These graphs present that the moDWT-
Lasso-LSTM model exhibits the highest values of NS for all lead times. Additionally, scatter
plots for the t + 30 lead time are provided for all the models tested (Figure 8). In comparison
to the scatter plots of other forecasting models, data points for the moDWT-Lasso-LSTM
model are more uniformly distributed along the 45-degree line, with fewer outliers and
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deviations. This indicates a strongly positive correlation between observed and forecasted
SM values for the moDWT-Lasso-LSTM model.

Figure 7. Stem plots of the Nash-Sutcliffe Coefficient (NS) for the hybrid moDWT-Lasso-LSTM model
and the benchmark models in testing phase at t + 1, t + 14 and t + 30 lead time SM forecasting.

Figure 8. Scatter plots of moDWT-Lasso-LSTM model and other benchmark models in testing phase
at t+30 lead time SM forecasting.

The results consistently show that the moDWT-Lasso-LSTM model outperforms all
other benchmark models across different lead times, demonstrating its robustness and
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reliability in SM forecasting. The use of the wavelet transform (moDWT) combined with
Lasso feature selection and the LSTM model significantly enhances prediction accuracy.
This hybrid approach effectively captures the temporal dependencies and intricate patterns
in the data, leading to superior performance metrics. Furthermore, the decrease in model
performance with increasing lead time is expected due to the complexity and variability of
SM dynamics over longer periods. However, the moDWT-Lasso-LSTM model’s ability to
maintain relatively high accuracy and low error metrics even at t + 30 lead time indicates
its potential for practical applications in agricultural and environmental monitoring.

5. Conclusions and Future Work

Agricultural decision-making increasingly relies on reliable information regarding
climatic and hydrological variables. For instance, farmers commonly use rainfall forecasts
to make decisions about crop establishment, crop harvesting, fertilizer application, and
land preparation activities. The proposed model is designed to forecast soil moisture
(SM), which is a critical hydrological variable. Accurate SM information is essential for
determining the need and timing for irrigation, as well as the precise quantity of irrigation
water required on a particular day. If sufficient moisture is available in the soil, irrigation
can be skipped; if moisture is inadequate, only the deficit should be compensated through
irrigation. Reliable SM information greatly aids in such decision-making.

Furthermore, SM forecasts are crucial for fertilizer application. Adequate soil moisture
is essential for dissolving nutrients in fertilizers and making them available to plants. This
process enhances the plant’s ability to absorb essential nutrients, maximizing fertilizer
use efficiency while reducing waste. In areas without access to irrigation water, where
farming relies entirely on rainfall, knowing the moisture levels in soils in advance can
significantly impact activities like land preparation, planting, and fertilizer application.
This is particularly relevant as many farmers are transitioning towards precision agriculture
to reduce production costs, minimize waste, and conserve resources and inputs.

In this context, this study has developed a multi-step wavelet 3-phase hybrid deep
learning SM forecasting (moDWT-Lasso-LSTM) model. This model employs Lasso regres-
sion optimization and moDWT decomposition algorithms to forecast SM in Bundaberg,
Queensland, Australia. Daily input data from 1 January 2005 to 31 December 2020, were
obtained from NASA’s Global Land Data Assimilation System (GLDAS), the Land Data As-
similation System (FLDAS), and the ground database SILO. To achieve an accurate model,
the extracted data were decomposed using moDWT, and features were selected using the
Lasso algorithm for 1 (t + 1), 14 (t + 14), and 30 (t + 30) days ahead forecasts. Incorporating
LSTM, moDWT, and Lasso, the proposed deep learning multi-step moDWT-Lasso-LSTM
hybrid model was created. Its performance was evaluated using statistical score mea-
sures and compared with eight other models: moDWT-Lasso-DNN, moDWT-Lasso-ANN,
Lasso-LSTM, Lasso-DNN, Lasso-ANN, LSTM, DNN, and ANN.

In comparison to other benchmark models, The moDWT-Lasso-LSTM hybrid model
demonstrates superior performance in forecasting SM across various lead times, with
particularly notable improvements for t + 1 and t + 30. According to the statistical metrics
discussed in Table 7, the moDWT-Lasso-DNN model shows performance very similar to
that of the moDWT-Lasso-LSTM model for the t + 14 lead time. Visualizing the results
using box plots of |FE| and stem plots of NS, the moDWT-Lasso-LSTM model consistently
outperforms the moDWT-Lasso-DNN and all other benchmark models. Consequently, the
moDWT-Lasso-LSTM model proves to be more effective in predicting SM than the other
benchmark models.

When considering model complexity, the moDWT-Lasso-LSTM, while offering high
accuracy, is relatively complex due to the use of deep learning techniques combined with
wavelet based feature selection. These types of models require substantial computational
resources and longer training times compared to simpler models. In contrast, models like
Lasso-LSTM and Lasso-DNN, although still complex, have fewer parameters and generally
shorter training times. On the other hand, standalone model such as LSTM and DNN
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offer a balance between performance and complexity but still require considerable compu-
tational power compared to the basic models. Overall, while more complex models like
the hybrid moDWT-Lasso variants provide improved accuracy, they come with increased
computational costs and training times.

Despite the efficacy of the proposed model, the present research considers only
1-day, 14-day, and 30-day ahead SM forecasting. Therefore, the number of lead times
used in this study may not impose a limitation on longer-term applications of the proposed
model. However, it is important to note that increasing the lead time can potentially cause
significant changes in model performance. Future researchers could conduct new studies
to assess the forecasting capability of the model with extended lead times. Additionally,
future research could develop an SM prediction tool to generate long-term forecasts, such
as several months ahead, which could be significantly more important for irrigation, water
resource management, and strategic planning than shorter-duration forecasts.

As this study uses satellite data, the inputs to the model are continuously recorded,
enabling the methodology to be further implemented for operational use in agriculture and
other industries with real-time access to historical input data. Unlike discrete wavelet meth-
ods used in earlier studies, the wavelet transform data decomposition procedure adopted
here does not require future data to calculate the wavelet and scaling coefficients [23]. This
advantage allows the proposed model to be practically implemented in real-time, utilizing
accessible historical input data.

Due to time and resource constraints, this methodology has not been tested across
the entire Queensland or Australian region. Therefore, it should be tested in other regions
to examine the geographical consistency of the proposed model. Additionally, while this
model was developed to forecast SM in the topsoil layer (0-10 cm depth), future researchers
could examine the methodology’s effectiveness in forecasting SM in deeper soil layers.

For methodological improvements over the present moDWT technique coupled with
Lasso feature selection or LSTM model, future studies might adopt alternative decomposi-
tion methods such as the atrous (AT) algorithm [23] that can address issues related to using
future data in model design. Moreover, the moDWT-Lasso-LSTM model could be applied
to predict important drought indices such as the Palmer Drought Severity Index (PDSI),
Standardized Precipitation Index (SPI), and Standardized Precipitation and Evaporation
Index (SPEI), which are time-series methods where data splitting through multi-resolution
analysis can be utilized.
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Appendix A

Table A1 shows the list of symbols used in this study.

Table A1. List of Symbols.

Symbol Description

ReLU Rectified Linear Unit
SMOBS Observed Soil Moisture
SMFOR Forecasted Soil Moisture
r Pearson’s Correlation Coefficient
R2 Determination of Coefficient
RMSE Root Mean Square Error
MAE Mean Absolute Error
MASE Mean Absolute Scaled Error
SMPE Symmetric Mean Absolute Percentage Error
WI Willmott’s Index
NS Nash-Sutcliffe Index
LM Legate and McCabe Index

Table A2 shows the list of prefixes used in this study.

Table A2. List of Prefixes.

Symbol Description

ML Machine Learning
SSM Surface Soil Moisture
EWT Empirical Wavelet Transform
SM Soil Moisture
DL Deep Learning
LSTM Long Short-Term Memory
DWT Discrete Wavelet Transformation
moDWT Maximum Overlap Discrete Wavelet Transform
Lasso Least Absolute Shrinkage and Selection Operator
FLDAS Famine Early Warning Systems Network Land Data Assimilation System
GIOVANNI Goddard Online Interactive Visualization and Analysis Infrastructure
GLDAS Global Land Data Assimilation System
SILO Scientific Information for Landowners
ANN Artificial Neural Network
DNN Deep Neural Network
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