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Abstract 

 

 

Better crop photosynthetic efficiency is important for enhancing field crop production. 

The improvement in the photosynthetic efficiency of a crop depends on its efficiency 

in the usage of resources, including CO2, water, nitrogen (N) and radiation. However, 

prolonged exposure to elevated carbon dioxide concentration (e[CO2]) and, a short 

supply of other resources may lead to a decline in photosynthesis – a process referred 

to as ‘acclimation.’ Studies have demonstrated photosynthetic acclimation at the flag 

leaf level in a variety of crops. However, progress is limited in addressing the gaps in 

knowledge about the link between leaf-level acclimation phenomena and canopy level 

performance, which is influenced by different growth and development processes and 

abiotic factors. Therefore, there is a need for crop models capable of accurately 

extrapolating the leaf-level response to canopy level, to understand the overall impact 

of changes in photosynthesis at the biochemical level and its consequence on crop 

growth, development and productivity. In this regard, the research described in this 

thesis is founded on the hypotheses, that i) primary plant responses, photosynthesis 

and stomatal conductance to e[CO2] are regulated by the interaction of different 

environmental variables ii) photosynthesis acclimation, on prolonged exposure to 

e[CO2], is associated with a change in the leaf ribulose-1,5-bisphosphate carboxylase 

oxygenase (RuBisCO) and N concentration and, iii) photosynthetic acclimation can be 

better captured when biochemical parameters are included in the crop models like 

APSIM which is based on the concepts of cross-scale modelling, facilitating crop 

growth and development.  

 

A meta-analysis of the studies reported in the literature was conducted to evaluate the 

impact of e[CO2] on two major physiological processes, photosynthesis and stomatal 

conductance in two primary functional groups of plants – C3 and C4. Within C3 and C4 

crops, more specific groups including legumes, non-legumes, flowers, trees, shrubs 

and grasses were examined to evaluate their respective responses to e[CO2] under 

different abiotic stresses. The abiotic factors like water, N and temperature were found 

to be critical in determining the photosynthetic efficiency and thus, the biomass of 

plants. Understanding the role of abiotic factors, particularly N, in the photosynthesis 
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under continuous exposure to e[CO2] is essential to predict the crop response to the 

possibility of an e[CO2] in the earth’s atmosphere, in the future. In this study, rice 

response to e[CO2] was estimated using a system dynamics modelling tool, STELLA. 

An analytical modelling framework embedding leaf-level crop system including 

RuBisCO and N dynamics and crop growth processes are developed using the 

STELLA software.  The secondary data on rice from a growth chamber experiment 

was utilised to validate the model. The simulated response strongly supported the 

occurrence of photosynthetic acclimation at both growth and biochemical levels, under 

different e[CO2], at different levels of N supply.  

 

Further, this study evaluated photosynthesis, in-depth, in determining e[CO2]-induced 

acclimation and thus, growth.  Two major parameters that were used for estimations 

are the maximum carboxylation capacity (Vc.max) and the electron transport capacity 

(Jmax). Data from the Australian Grains Free-Air CO2 Enrichment (AGFACE), 

Horsham, Victoria, Australia were analyzed and modelled to determine the changes in 

the photosynthetic response of another C3 crop, wheat, to e[CO2]. The Agriculture 

Production System Simulator coupled with the diurnal canopy photosynthesis-

stomatal conductance model (hereafter referred to as APSIMDCP) was used to validate 

the APSIMDCP model and evaluate the range of parameters associated with 

photosynthetic acclimation under e[CO2]. It was established that APSIMDCP could 

adequately link the biochemical and crop level responses, to enable extending the leaf 

level model to the canopy level. Further, it successfully simulated the photosynthetic 

acclimation responses to e[CO2] for different wheat cultivars which were characterized 

by reduction of Vc.max, Jmax and leaf N concentration. However, all cultivars were not 

equally responsive to the e[CO2], with some showing no response at all and, others 

showing responses of varying magnitude, illustrating genotypic variation in this trait. 

In summary, this study investigated the impact of e[CO2] on variation in 

photosynthesis in rice and wheat at different physiological stages of growth to predict 

the biomass and yield responses accurately.   
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Chapter 1: Literature Review 

 

 

Introduction 

 

The United Nations Food and Agriculture Organisation (FAO) has projected that 

feeding the predicted world human population of 9.1 billion in 2050, would require 

raising the current crop production by some 70%, under the prevailing environmental 

conditions (FAOSTAT, 2009). It is a challenging proposition, even under the present 

circumstances. However, with the accumulation of more convincing evidence 

suggesting that the prevailing conditions are likely to change drastically, due to climate 

change, makes the challenge even more daunting (IPCC, 2007). Climate change is 

expected to increasingly affect crop yields (Tubiello et al., 2007) and analyses of 

current global crop yield data indicate that it may already be happening (Lobell & 

Field, 2007). 

 

In the context of agriculture and food production, the primary climate change elements 

that matter most, are rising atmospheric temperatures, elevated carbon dioxide levels, 

and precipitation changes (FAOSTAT, 2009). However, in addition to the direct 

effects on plant growth and productivity, the changing climate can impact crop 

production indirectly through its effects on several other components of the 

agricultural system, including hydrologic cycles, input supplies, and even the nutrient 

cycles (Adams et al., 1998). Thus, the impacts and consequences of climate change 

would exert additional pressures on global agricultural productivity and, likely to 

threaten future global food security (Ainsworth et al., 2008). The direct biophysical 

effects of climate change on crops can raise concerns on the sustainability of the 

current productivity levels of agricultural crops (Nelson et al., 2014).  

 

Agriculture is an activity that depends heavily, on climate variables (Hansen, 2002). 

Therefore, assessing the impacts of a changing climate is necessary to address the 

future crop productivity and crop yield potential, and to develop appropriate strategies 

to correct any negative effects (Kant et al., 2012). The research described in this thesis 

has a specific focus on understanding the response to rising [CO2], written henceforth 

as e[CO2], in functionally different plant groups, represented by C3 and C4 plants. 
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Additionally, using the available secondary data, this study simulated the response of 

two major C3 plants (rice and wheat) to e[CO2] focusing on photosynthetic 

acclimation. Hence, this study would help to advance our understanding of the 

response to rising CO2, particularly focusing on downregulation of photosynthesis, to 

enable developing strategies to mitigate the negative effects of climate change on 

agricultural production. The remainder of this chapter reviews the existing relevant 

literature. 

 

1.1 Climate and agriculture 

 

Agriculture in the 21st century has to meet the demands for increasing food production 

(FAOSTAT, 2009) under depleting water resources (Haddeland et al., 2014), 

increasing greenhouse gas emission and the alarming impact of climate change (Kulak 

et al., 2013). Globally, cereals including wheat, rice, barley, and maize, constitute the 

predominant food sources for the population (FAOSTAT, 2015). These cereals 

constitute the staple food of the majority, and consequently the primary calorie source 

for humans. As far as these crops are concerned, e[CO2] in the atmosphere, by itself, 

has been found to be beneficial, because of the increase in the overall productivity, 

through increased photosynthesis. However, the combination of e[CO2] with other 

climatic factors (for example, increased temperature) is shown to reduce both the yield 

and the quality of grains produced, including declines in protein, vitamins and mineral 

concentrations (Broberg et al., 2017; Fernando et al., 2015). These observations 

indicate the complex nature of the impact of various climatic elements on plant growth 

and productivity. 

 

Globally, agricultural productivity is affected by a range of climate variables including 

precipitation, temperature and greenhouse gases (Brouder & Volenec, 2008). The 

current wave of changes in these critical climatic elements is attributed to various 

anthropogenic activities that generate greenhouse gases in excessive quantities 

(Nelson et al., 2014). Studies on the effects of atmospheric warming have produced 

varying results, with improved yields (O'Leary et al., 2015a; O’Leary et al., 2018), 

reduced yields (Ellis et al., 1995) and negligible effects (Lobell & Field, 2007; 

Pachauri et al., 2014). It is likely that geographic location and/or varying experimental 

conditions could explain part of the variation in outcomes of different studies. Hence, 
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investigating the impact of climate change parameters that would directly affect 

agricultural production, under controlled experimental conditions, is needed. Such 

knowledge would help in developing strategies to mitigate the negative impact of 

climate change on agricultural productivity, in the future (Lobell & Field, 2007). 

 

1.2 Carbon dioxide and agriculture 

 

Climate change is driven by a variety of greenhouse gases. Table 1.1 presents the 

relative contribution by each of the gases known to affect the climate, along with their 

respective sources. Of these, the rising [CO2] is documented as one of the crucial 

drivers to climate change, accounting for more than 70% of the global climate change 

(Solomon, 2007). Therefore, there has been greater attention on the impact of rising 

[CO2]  on the overall agricultural productivity  (O’Leary et al., 2018; Roudier et al., 

2011). Since the industrial revolution in 1859, there has been an exponential increase 

in fossil fuel burning as an energy source. This, together with the rapid deforestation 

has been identified as the causes of the steady increase in the a[CO2]  (IPCC, 2007; 

Qaderi & Reid, 2009). The concentration of a[CO2] has risen from ~260 µmol CO2 

mol-1 approximately 150 years ago (Houghton et al., 2001) to the present level of 407 

µmol CO2 mol-1  (Ainsworth & Long, 2005). As shown in Figure 1.1 published fw the 

a[CO2] has increased by about 25%, during 2012 -2017 period alone, and the trend is 

expected to continue (IPCC, 2014). The almost doubling of [CO2], together with 

changes in other climatic elements, may have a significant effect on plant growth and 

development.  

 

Concerns about the potentially drastic effects of climate change, resulting from 

increased atmospheric CO2, rise in temperature and altered precipitation patterns have 

prompted global research to understand the plant responses to such climatic events. 

Such studies have provided valuable information on the impact of (e[CO2]) on the 

growth and production properties in mixed populations of plants. However, there are 

suggestions that it is important to gain an understanding on how different plant 

functional groups respond to e[CO2] which will shed light on the variation in response 

at a physiological level (Leakey et al., 2009; Long et al., 2004). 
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Table 1.1: Key drivers of greenhouse gas emissions and global shares of main sources. 

Source: EDGAR v5.0 for CO2 (1970-2015); EDGAR v4.3.2 for CH4 and N2O (1970-

2012); FT2017 all. (Jos & Jeroen, 2018) 

Type 

of gas 

Share 

in GHG 

(%) 

Source driver Share in 

gas total 

(%) 

CO2 73 Coal combustion 

Oil combustion 

Natural gas combustion 

Cement clink production 

Subtotal drivers of CO2 

40 

31 

18 

4 

92 

CH4 18 Cattle stock 

Rice production 

Natural gas production (including distribution) 

Oil production (including associated gas venting) 

Coal mining 

Landfill: municipal solid waste ~ food consumption 

Wastewater 

Subtotal drivers of CH4 

21 

10 

13 

11 

11 

8 

8 

83 

N2O 6 Cattle stock (dropping on pasture, range, and paddock)* 

Synthetic fertilizers (N content) 

Animal manure applied to soils* 

Crops (share of N-fixing crops, crop residues, and histosols) 

Fossil fuel combustion 

Manure management (confined) 

Indirect: atmospheric deposition &leaching and run-off (NH3)* 

Indirect: atmospheric deposition (NHx from fuel combustion) 

Subtotal drivers of N2O, incl. other related drivers (*) 

21 

18 

4 

11 

10 

4 

12 

7 

87 

F-

gases 

3 HFC use (emission in CO2 eq) 

HFC-23 from HCFC-22 production 

SF6 use 

PFC use and by-product (emission in CO2 eq) 

Subtotal drivers of F-gases 

65 

19 

14 

2 

100 
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1.3 Plant functional type 

 

To overcome the problems arising from the vastly diverse array of plant types, 

Duckworth et al (2000) have recommended that it would be more convenient to 

classify them into smaller logical categories when modelling the response of plants to 

atmospheric changes. One such categorizing is on a functional basis, such as the 

plant’s photosynthesis biochemistry or the physiology and biochemistry of plant 

nitrogen (N) assimilation. Classification of plants, by the plant functional type (PFT), 

is a system where different species that exhibit a similar response to a given abiotic 

condition and display analogous effects on the ecosystem, are grouped together   (Díaz 

& Cabido, 1997). The PFT classification, based on function rather than on structure is 

a meaningful approach in studying plant responses to climate change. Information 

Figure 1.1: Monthly mean of CO2 measured at Mauna Loa Observatory, Hawaii. 

The red dashed line represents the monthly mean values, centred on the middle of 

each month. The black line represents the same, after correction for the average 

seasonal cycle (NOAA, 2019). 
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obtained from PFT-based studies would provide a useful framework for modelling 

ecosystem response to the effects of climate change (Díaz & Cabido, 1997) and, 

therefore, be beneficial for the climate change research community (Liu & Cheng, 

2011).  

 

The PFT classification of plants may also be considered according to phylogenetic 

characteristics or life form characteristics or more specific properties (Pla et al., 2011). 

For instance, phylogenetic groups may include evolutionary development and 

diversification of species, life-form includes different morphological characters as a 

tree, shrubs, and herbs and more specific properties may include different 

photosynthetic pathways, plant size, leaf shape-size, seasonality, and root depth 

(Duckworth et al., 2000). Among these various PFTs, the research described in this 

thesis is on the plant classification based on two distinct photosynthetic biochemical 

pathways described as C3 and C4, with a specific focus on the two cereal crops: wheat 

and rice. 

 

1.4 Photosynthetic pathways  

 

Different plants use different mechanisms in fixing a[CO2] to produce carbohydrate. 

These mechanisms belong to three distinct types of photosynthesis pathways: C3 

photosynthesis, C4 photosynthesis and crassulacean acid metabolism (CAM). C3 

photosynthesis is the most common kind of photosynthetic pathway found in around 

85% of all terrestrial plant species, including many varieties of cereals, vegetables, and 

fruit plants  (Yamori et al., 2014).  This mechanism produces 3-carbon product as the 

first product of photosynthesis  (Liu & Cheng, 2011) whereas, in C4 photosynthesis, 

4-carbon product is the initial product. Only five per cent of plant species belong to 

the C4 category (Yamori et al., 2014) which include advanced plant taxa including 

monocots, grasses, and sedges (Ehleringer & Cerling, 2002) such as sugarcane, maize, 

sorghum and millet. Plants that use the CAM photosynthesis pathway are rare 

(Ehleringer & Cerling, 2002), and include many epiphytes and succulents that grow in 

arid regions (Yamori et al., 2014). Table 1.2 provides a listing of some of the plant 

species, classified according to their photosynthetic pathway. 
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Table 1.2: List of C3, C4 and CAM species.  

C3 species Cereals: Rice, wheat, barley, rye, triticale, oat, teff, fonio, spelt 

Legumes: Dry bean, soybean, peanut, mung bean, faba bean, 

cowpea, common pea, chickpea, pigeon pea, lentil 

Fruits: Apple, banana, coconut, peach, cucumber, tomato, jackfruit, 

guava, lemon, mango 

Vegetables: Spinach, eggplants, potato, taro, yams, sweet potato, 

cassava, sugar beet, jackfruit, onion 

Oil crops: Sunflower, sesame, rapeseed, safflower 

Fibre crops: Cotton, jute, sisal 

Trees, shrubs and grasses: Lawn grasses like rye, fescue, kentucky 

bluegrass; evergreen trees and shrubs of the tropics, subtropics, the 

Mediterranean like English oak (Quercus robur), sycamore maple 

(Acer pseudoplatanus); temperate evergreen conifers like pine, 

deciduous trees, and shrubs of the temperate regions like European 

beech, weedy plants like water hyacinth, lambsquarters, bindweed, 

wild oats, eucalyptus; herbaceous plants like red campion (Silene 

dioica). All fern species (Dryopteris affinis), moss (Sphagnum 

russowii), conifer (Pinus pinea), clun mosses (Huperzia 

phlegmaria) and other non-flowering plants. 

C4 species Food crops: Maize, sorghum, sugarcane, millet  

Grasses: Crabgrass, amaranth, nutgrass, barnyard grass, four-

winged saltbush, chenopods, elephant grass (Miscanthus 

giganteus), pampas grass (Cortaderis selloana), yellowtops 

(Flaveria trinervia) 

CAM species Cactus, euphorbia, pineapple, orchid, agave, spanish moss, some 

orchids, a family of Crassulacean members 

 

Regardless of their photosynthetic pathways, plants of all species have the ability to 

sense any changes in the gaseous composition of the atmosphere (Hopkins & Huner, 

2004). The photosynthetic organs including the guard cells of stomata and the 

mesophyll cells are very sensitive to changes in the a[CO2] (Long et al., 2004). As a 

result, any change in a[CO2] influences the rate of change in [CO2] fixation which is 

directly correlated with the type of photosynthetic pathway (Yamori et al., 2014). The 

three photosynthetic pathways respond differently to changes in a[CO2]  (Ehleringer 

& Cerling, 2002) which is an important factor to note, in interpreting the findings from 

studies on climate impact on plants. In view of their abundance in the terrestrial 
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ecosystem, research that involves C3 and C4 photosynthesis pathways would be more 

relevant to the understanding of plant productivity in a changing climate.  

 

1.5 C3 and C4 Photosynthesis under e[CO2] 

 

The realisation that the a[CO2] is increasing at an alarming rate has led to a greater 

research interest to study the effects of e[CO2] on various agricultural crops. The major 

impact of e[CO2] can be envisaged as being mainly on photosynthesis, which is the 

primary physiological process that drives plant growth and crop productivity, in 

addition to influencing many other plant processes (Yin & Struik, 2009). Research on 

the impact of e[CO2] on plants, has been predominantly on C3 species, due to both 

their abundance and agricultural importance. On the other hand, studies on C4 have 

mostly involved advanced plant taxa, with a greater focus on monocots like grasses 

and sedges or on agriculturally important C4 species like maize and sorghum 

(Ehleringer & Cerling, 2002).  

 

In C3 plants, CO2 diffuses through stomata and the intercellular air spaces, eventually 

arriving at the chloroplast. In contrast, C4 photosynthesis has a biochemical CO2 

concentrating mechanism that increases [CO2], relative to the atmosphere, at the 

catalytic sites of RuBisCO in the bundle sheath (Yamori et al., 2014). Further 

description on the photosynthetic response including the mechanisms, is presented in 

section 2.6.1, under the photosynthetic response.  

 

An increase in a[CO2] stimulates net photosynthesis in plants with C3 photosynthetic 

pathway, by increasing the [CO2] gradient from the air to the leaf interior and by 

decreasing the photorespiration (Ainsworth & Long, 2005; Wang et al., 2012; Ziska et 

al., 1999). However, plants with the C4 photosynthetic pathway possess an internal 

biochemical pump for concentrating CO2 at the site of C4 fixation and, hence, expect 

to  show no response to rising a[CO2] (George Bowes, 1996; Ghannoum et al., 2000).   

 

1.6 Plant response to rising [CO2] 

 

Increase in a[CO2] directly or indirectly affects the photosynthesis and stomatal 

conductance processes and, thus, the growth and development of plants (Seneweera & 
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Conroy, 2005). Plants sense and respond to rising [CO2] through increased 

photosynthesis and decreased stomatal conductance (Ainsworth & Rogers, 2007; B. 

G. Drake et al., 1997).  

 

1.6.1 Photosynthetic response 

 

Growth and productivity of plants are directly driven by photosynthesis, which is a 

primary physiological process in plants  (Yin & Struik, 2009). Many studies have 

documented that an increase in [CO2] results in an increase in photosynthesis (B. G. 

Drake et al., 1997; Rosenthal & Tomeo, 2013) and, hence, increasing the overall crop 

productivity (Thompson, 2018). The photosynthetic rate of C3 plants increases with an 

increase in [CO2] (B. G. Drake et al., 1997; Ehleringer & Cerling, 2002; Yamori et al., 

2014). When the [CO2] is higher in the atmosphere, the ratio of CO2 to O2 increases at 

the site of carbon fixation. This increase in CO2 to O2 ratio stimulates the carboxylation 

efficiency of ribulose-1, 5-bisphosphate carboxylase-oxygenase (RuBisCO) 

increasing the overall photosynthesis (G Bowes, 1991) and at the same time suppress 

the photorespiration (Leakey et al., 2006). This has been well defined by the model of 

Farquhar et al. (1980). The model has proven the conserved properties of RuBisCO as 

a key to the photosynthetic response of C3 crops to e[CO2].  

 

The RuBisCO is not CO2 saturated at current a[CO2]. However, C3 plants are directly 

in contact with a[CO2] via stomatal pores in the epidermis which directly connects the 

mesophyll cells containing RuBisCO with intercellular airspace. So, when the [CO2] 

increases, RuBisCO tends to carboxylate and then increase  the net photosynthesis (G 

Bowes, 1991; Seneweera & Conroy, 2005). Studies have demonstrated this response 

to an increased a[CO2] in a variety of C3 plants, including rice and wheat (Long et al., 

2006).  
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The situation is different in C4 plants as they are already saturated with CO2 at the 

normal a[CO2] (Yamori et al., 2014). In contrast to C3, the RuBisCO in C4 is saturated 

with CO2 preventing further CO2 uptake under e[CO2] (G Bowes, 1991). Therefore, 

the response of C4 plants to e[CO2] is less predictable, compared to that of C3 (Long 

et al., 2006). Nonetheless, there are reports of an increase in C4 photosynthetic rates 

with an increase in a[CO2] (Ainsworth & Long, 2005; S. Seneweera et al., 2001).  

 

1.6.2 Photosynthesis acclimation 

 

Increase in photosynthesis under e[CO2] is a very well-established phenomenon. 

However, this increase does not always follow the same trend and stabilizes in the 

lower rate after extended exposure to e[CO2] (Sage et al., 1989; S. Seneweera et al., 

2011; Sharkey, 1985). This stabilization of the photosynthesis process on prolonged 

exposure to e[CO2] is known as “photosynthesis acclimation” (G Bowes, 1991; 

Makino et al., 1983; Nowak et al., 2004; S. P. Seneweera et al., 2002). A number of 

mechanisms have been suggested to explain the photosynthetic acclimation, including 

suppression of nutrient supply (B. G. Drake et al., 1997; Nakano et al., 1997; S. 

Figure 1.2: Changes in CO2 assimilation for C4 (blue colour) and C3 (orange 

colour) plant species under different CO2 concentrations (adapted from (Taiz & 

Zeiger, 2002).  
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Seneweera et al., 2011); and increase in sink activities or the accumulation of non-

structural carbohydrates (Nakano et al., 1997; Stitt & Krapp, 1999). Other explanations 

for the process of photosynthetic acclimation include lower N demand in leaves due 

to changes in N influx/efflux balance in growing tissues (S. Seneweera et al., 2011) 

and lower N in shoots due to suppression of NO3
- photo-assimilation under e[CO2] 

(Bloom et al., 2012). Thompson et al. (2017) in reviewing the findings in support of 

the various explanations suggest that photosynthetic acclimation is, likely, regulated 

by multiple processes each contributing to a different degree. Notably, differences 

have been observed between functional groups in the regulation of  photosynthetic 

acclimation to e[CO2]. In some functional groups, acclimation is driven by the 

suppression of synthesis of RuBisCO whereas in others, limited RuBP carboxylation 

regulate the photosynthetic  acclimation to e[CO2] (Chen et al., 2005).  

 

1.6.3 Stomatal conductance 

 

Stomatal conductance is related to the extent of stomatal aperture opening,  a measure 

of CO2 uptake and water loss through the stomata of a leaf  (Pietragalla & Pask, 2012). 

The major role of stomata is to balance the photosynthetic CO2 uptake against water 

loss from the leaves (Farquhar & Sharkey, 1982; Katul et al., 2003) and thus, stomatal 

conductance directly affects the photosynthetic productivity and water use efficiency 

of plants (P. L. Drake et al., 2013). 

 

Several studies have reported a decline in stomatal conductance of plants under rising 

a[CO2] (Ainsworth & Long, 2005; Ainsworth & Rogers, 2007; Farquhar & Sharkey, 

1982; Medlyn et al., 2001). However, studies have reported the variable response of 

stomatal conductance under e[CO2]. Some studies showed reduction ranging from 11 

to 40% whereas in some no change was observed. Studies have even reported an 

increase in stomatal conductance under e[CO2]. Medlyn et al. (2001) explained the 

reason behind the variability on the basis of the time of exposure to e[CO2]. She 

elaborated that the sensitivity of plants towards e[CO2] increases with an increase in 

the time of exposure. Further, the variability in the stomatal conductance is also driven 

by the ontogenetic stage stage and abiotic factors. According to Medlyn et al. (2001), 

the stomatal conductance of a leaf in its early growth stage is much higher than in a 

senescing leaf. Similarly, different abiotic factors including temperature, nutrient, 
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water, and soil also play a vital role influencing stomatal conductance under e[CO2] 

(Curtis & Wang, 1998; Maherali et al., 2003; Wullschleger et al., 2002).  

 

1.6.4 Growth response to e[CO2] 

 

Plants response to e[CO2] is highly variable. The stimulated growth of plants under 

e[CO2] has been observed since 1890 which was verified again by different 

experiments showing an average of 33% increase in growth under e[CO2]. The average 

plant growth was increases approximately by 26% across 400 experiments and the 

stimulation of growth was ranged as 58%, 35% and 41% for crop plnats, wild species 

and woody plants respectively (Poorter, 1993). However, all these growth responses 

to e[CO2] directly depends on soil N effects, type of species, their developmental stage 

and period of exposure to [CO2] (Cure & Acock, 1986; Poorter, 1993).  Some of the 

studies have documented significant growth in biomass and shortening of the growth 

cycle particularly in wheat under e[CO2] (S. Seneweera et al., 1994). Overall, the total 

above-ground biomass, leaf area, tiller number including relative growth rate, net 

assimilation rate, specific leaf area, and leaf area ratio are considered as crucial growth 

determinants under any environmental condition.  

 

1.6.5 Wheat and rice response to [CO2] 

 

Both wheat and rice are widely cultivated cereal crops and important sources of 

carbohydrate as well as important grain protein for most of the human population. 

According to the Food and Agriculture Organisation (FAO), the world wheat and rice 

production forecast for 2019 is 766.4 million tonnes and 515 million tonnes, 

respectively. It is predicted that the human population will increase to 9.1 billion by 

2050 and cereal production must be increased by 3 billion tonnes to feed the growing 

population (FAOSTAT, 2009). However, achieving the targets under changing climate 

including increasing [CO2], high temperature and reduced rainfall has become a 

challenge.  

 

Both wheat and rice fix CO2 via C3 photosynthetic pathway. Therefore, with increased 

CO2 in the atmosphere, there is a parallel increase in photosynthesis in both the species, 

resulting in an increase in both the growth and grain yield (Tui and Roy, 2008; Gerstein 
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and Otto, 2009). There are also reports of stimulation of tiller number and increase in 

above-ground biomass to be associated with increased grain yield at e[CO2] in both 

wheat (Ziska et al., 2004) and rice (De Costa et al., 2007; Shimono et al., 2009). 

However, after an extended exposure to e[CO2], the initial stimulation decreases, as a 

result of photosynthetic acclimation (Long et al., 2004; Seneweera et al., 2002, 

Seneweera et al., 2011). The mechanism of photosynthetic acclimation to e[CO2] is 

different between wheat and rice. Both species acclimate to e[CO2] but the 

physiological mechanism differs between them. As per S. P. Seneweera et al. (2002), 

in rice, photosynthesis was suppressed at e[CO2] due to suppression of synthesis of 

RuBisCO whereas for wheat, photosynthesis acclimation was caused by limited RuBP 

regeneration (Zhang et al., 2009). However, reduction in both RuBisCO content and 

RuBP regeneration were also reported in rice (Chen et al., 2005).  

 

1.7 Crop simulation 

 

Improving field crop productivity by increasing resource (water and nutrient) use 

efficiency of crops is associated with crop photosynthetic efficiency (Long et al., 

2015). Enhancing photosynthesis is directly linked with advancing crop biomass and 

yield (Long et al., 2015; Parry et al., 2010) as enhanced leaf photosynthesis leads to 

improved canopy photosynthesis (Wu et al., 2019). However, this connection between 

leaf-level photosynthesis and canopy crop performance is not straight forward as 

different factors including crop growth, development dynamics, and the dominant 

environment play a vital role. For instance, scaling up the leaf level photosynthetic 

efficiency to canopy level is difficult, because of the need to consider the canopy light 

interception effect (Wu et al., 2018). The relationship between carbon source and sink 

activity in the plant is yet another determinant of photosynthetic efficiency (Seneweera 

et al., 2002) and, therefore, needs consideration, when scaling up the effect to canopy 

level. The defoliation of plants dramatically increases the ratio of carbon sink to source 

activity increasing the photosynthetic efficiency at the whole canopy level which will 

decline during regrowth (Jeong et al., 2017; Rogers & Humphries, 2000). This change 

in photosynthetic efficiency due to the change in the relationship between carbon 

source and sink activity in the plant can also alter the occurrence of photosynthetic 

acclimation in plants under e[CO2]. Rogers and Humphries (2000) found no 
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acclimation after 89% defoliation of the canopy, which eventually increased under 

regrowth. 

 

Most of the studies reported a change in photosynthesis efficiency or acclimation 

scenario at the leaf level (e.g. Seneweera et al., 2002). Either eighth leaf or flag leaf is 

used to represent different growth stages of crops before or after panicle initiation. 

There is a lack of connection to quantify the biochemical/leaf-level photosynthetic 

manipulation to the whole canopy level. Hence, there is a need to close this gap of 

knowledge between biochemical and crop levels which can be attempted through a 

modelling approach to help accelerate progress in photosynthetic enhancement for 

crop improvement. A simulation approach connecting these two levels along with 

relevant abiotic entities can represent the bigger picture addressing the gap. Simulation 

models can act as robust tools to extrapolate the changes in different parameters with 

changing climate and time, which would be impossible to test experimentally (O'Leary 

et al., 2015b). Simulation models have been used to model different crops under 

different [CO2] to explore the resilience of crop production towards changes in [CO2] 

and other abiotic factors (Amarasingha et al., 2015; Asseng et al., 2004; O'Leary et al., 

2015b). A variety of simulation modelling approaches, ranging from simple to more 

complex, have been developed for climate change studies. With a view of providing 

predictions about food security status, addressing crop production in relation to 

climate, genotype, soil, and management factor, the Agricultural Production System 

Simulator (APSIM) was introduced (Keating et al., 2003). 

 

Since canopy photosynthesis is a key driver of crop growth, it is a major consideration 

in crop modelling (El-Sharkawy, 2011; Wu et al., 2019; Wu et al., 2016). Crop models 

like APSIM and DSSAT (Decision Support System for Agrotechnology Transfer) 

Jones et al. (2003) utilize simple linear relationships between accumulated crop canopy 

biomass and radiation interception in modelling the canopy photosynthesis.  On the 

other hand, the GECROS (Genotype by Environment Interaction on Crop Growth 

Simulator) crop model integrates photosynthesis of individual leaves in the canopy 

(Yin & Struik, 2009). These mechanical modelling approaches like in APSIM are 

useful. However, they lack biochemical approaches of photosynthesis in determining 

the canopy level responses (Wu et al., 2016). Some biochemical photosynthesis 

modelling approaches have been introduced (For example, by Farquhar et al. 1980). 



15 
 

Using them, Farquhar and von Caemmerer (1982) have successfully predicted 

responses of leaf photosynthesis which later have been subsequently upscaled to 

canopy level by De Pury and Farquhar (1997). However, these biochemical models 

lack the ability to combine the growth and development dynamics aspects of many 

crops (Wu et al., 2016). Hence, a cross-scale modelling approach connecting leaf-level 

photosynthesis to crop growth and development models via effective canopy 

modelling approaches is required (Wu et al., 2018; Wu et al., 2019).  

 

Different modelling approaches have been used to gain insight into the biochemical 

process of photosynthesis. Yin and Struik (2009) pioneered a biochemical model of 

photosynthesis with GECROS crop model through upscaling to canopy photosynthesis 

with sunshade leaf modelling approach. Similarly, Zhu et al. (2004) and Long et al. 

(2006) also used canopy photosynthesis modelling approach developed through the 

upscaling of biochemical models to explore consequences of changing RuBisCO 

kinetic properties on daily canopy photosynthesis. However, these approaches were 

limited in their capacity to make daily predictions as the simulation model lacked the 

two-way connection between the biochemical models and crop growth and 

development dynamics. 

 

1.8 Research Aims 

 

There is a large volume of research evidence showing that plants, in their growth 

phase, if exposed to e[CO2], exhibit changes in their growth properties leading to 

quantitative changes in biomass. The aim of this study was to understand the 

physiological and/or the biochemical basis of such a response to increased [CO2], 

using C3 and C4 functionally distinct plants followed by an analysis of the specific 

features of C3 crops of agricultural importance (rice and wheat), in greater detail.  

 

A supplementary study, using a set of available secondary data, aims to model the 

species-specific differences in response to e[CO2] using a crop simulation model. 

Hence, the two studies together should help to advance our understanding of the 

response to rising CO2 by plants of different functional groups, using different 

simulation techniques and tools, with the following objectives. 

 



16 
 

1. To explore the extent of physiological changes in plants representing two 

functionally different groups (C3 and C4) under e[CO2] using a meta-analysis 

approach (Chapter 2). 

 

Almost all the studies that have investigated the effect of e[CO2] on 

photosynthesis and stomatal conductance, to date, have focused either on a 

particular functional group or on individual species. Apart from the meta-

analysis by Ainsworth et al. (2007), none of the studies to my knowledge has 

explored the photosynthesis and stomatal conductance response to e[CO2] 

under different abiotic factors (water, temperature, and N). Therefore, 

exploring the extent of physiological changes in plants belonging to different 

functional groups (C3 and C4) under e[CO2] would be useful, for resolving the 

existing knowledge gap on the subject.  

 

2. To analyse and model the photosynthetic acclimation in C3 rice based on the 

changes in RuBisCO and leaf N content (Chapter 3).   

 

While it is established that photosynthesis stabilizes after extended exposure to 

e[CO2], indicating photosynthetic acclimation, little is known about the 

mechanisms driving the photosynthetic acclimation process in different crops. 

This study focuses on the linkage between RuBisCO and N as crucial factors 

driving the process of photosynthetic acclimation. Simulating the response of 

photosynthesis, RuBisCO, and radiation use efficiency using an analytical 

modelling approach should assist in a closer investigation of the photosynthetic 

acclimation process in rice, to e[CO2].  

 

3. To explore and model photosynthetic acclimation response of wheat to [CO2] 

under field experimental conditions (Chapter 4).  

 

It is proposed that prolonged exposure to e[CO2] leads to photosynthetic 

acclimation, which could lower the potential biomass and yield of plants. 

However, the photosynthetic acclimatary response to e[CO2] depends on the 

growth stage and the genetic make-up of the crop. Therefore,  this study 

focuses on the photosynthetic acclimation of wheat at the crop level in field 



17 
 

production systems which then simulate the acclimation pattern under e[CO2] 

that is likely to develop as the climate warms.  
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Chapter 2: Photosynthesis and stomatal conductance of C3 and C4 plants in 

response to elevated carbon dioxide under different abiotic stresses: A 

reassessment using meta-analysis 

 

 

Abstract 

 

An increase in atmospheric carbon dioxide concentration (a[CO2]) affects plant growth 

and development through alterations in physiological processes, including 

photosynthesis and stomatal conductance. This meta-analysis summarizes the recent 

(2007 to 2019) literature on how two major physiological processes of the C3 and C4 

functional groups of plants respond to changing [CO2], with a further examination of 

the role of abiotic (water, temperature, and nitrogen (N) stresses in such responses. 

The review demonstrated that C3 plants have a higher photosynthesis response to 

e[CO2], with legumes being more sensitive but, both processes are not significantly 

affected in C4 plants. The increase in photosynthesis among C3 plants is a consequence 

of the relatively slower rate at a[CO2] due to RuBisCO limitation, rather than RuBP 

limitation, promoting more carboxylation than photorespiration. When combined with 

abiotic stresses the impact differs depending on [CO2], type of species, and degree of 

stress. Photosynthetic rate is more related to photosynthetic pathways than crop 

thermo-tolerance level. In the case of N, photosynthesis response under variable N 

rates is weak for legumes. A change of photosynthesis up to 35% can be found for 

grasses and non-legumes. Under water stress conditions, an increase in inter-cellular 

[CO2] under e[CO2] does not limit photosynthesis even under drought up to a certain 

level. However, a decrease in stomatal conductance is observed in all functional groups 

including C4 under e[CO2] and abiotic stresses.                                                                                             
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2.1 Introduction 

 

There is increasing evidence that climate change is with us already and, is likely to 

continue, challenging all forms of life on the planet (Pasqui & Guiseppe, 2019). All 

activities that support sustenance of life on earth, including food production, will be 

affected by climate variation, whether due to natural factors, such as changes of natural 

cycles of atmospheric and oceanic mechanisms or to anthropogenic activities, leading 

to increased greenhouse gas production. Among the different components of the 

climate, atmospheric carbon dioxide concentration (a[CO2]) is projected to increase 

worldwide, impacting agriculture, in particular, because of its absolute dependence on 

the climate (O’Leary et al., 2018; Pachauri et al., 2014; Roudier et al., 2011). The 

atmospheric [CO2] has risen from around 260 µmol CO2 mol-1 approximately 150 

years ago (Tans and Keeling, 2018) to the current level of around 407 µmol CO2 mol-

1 (NOAA, 2016) affecting overall plant growth, development, and yield of different 

species (Ainsworth et al., 2008; Seneweera & Conroy, 2005; Kant et al., 2012). A great 

deal is already known about how plants, in general, respond to changes in specific 

climatic elements. However, understanding how different plant species respond to 

e[CO2] together with changes in other environmental factors, is crucial for developing 

adaptative strategies to climate change, particularly in the interest of maintaining 

optimum levels of crop production (Leakey et al., 2009).  

 

The combined effect of e[CO2] and abiotic stresses on photosynthesis and stomatal 

conductance response to e[CO2] depends on the [CO2] (Xu et al., 2013), plant species 

(Xu et al., 2013) and the severity of the abiotic stresses. Therefore, a fundamental 

understanding of the nature of the genetic and environmental factor interaction with 

CO2 is essential to develop new adaptation strategies to climate change.  There are 

arguments that due to the immense diversity of plant species in the ecosystem, 

restriction of high CO2 research to studies on a few selected species would generate 

only limited information (Leakey et al., 2004; Rogers et al., 2009; Seneweera et al., 

2005). This has generated a discussion on the relative merits of studies based on plant 

functional group diversity, instead of species diversity. Hence, categorizing them 

under small logical groups with species sharing morphological and physiological traits 

termed as a functional group of plants (Pokorny et al., 2005) would be more promising 

in efforts to understand the overall impact of abiotic stresses on plants. This study 
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evaluated C3 and C4 as two major functional plant groups, based on their respective 

photosynthetic pathways. 

 

In situations where there is a large volume of literature on a subject, emanating from 

studies that have employed varying experimental conditions, sampling and 

methodologies, with some extent of conflicting findings, a meta-analysis is a useful 

approach to combine and summarise the range of results and, to arrive at a consensus 

(White et al., 2011). A previous meta-analysis by Ainsworth (2007) documented the 

impact of e[CO2] on the two major plant physiological processes i.e. photosynthesis 

and stomatal conductance based on the relevant data from the literature spanning the 

period from 1990-2007. However, a large volume of literature has accumulated since 

then on the subject, not only extending the scope of the research, but also there are 

studies involving innovative approaches, including modelling studies. Therefore, 

another meta-analysis was conducted, accumulating the most recently published data 

that document the response of diverse plant species to e[CO2]. The analysis 

incorporated the literature on several plant groups including legumes, non-legumes, 

trees, shrubs, and grasses, of both C3 and C4 functional groups. The database that was 

created, was subsequently categorized according to different functional groups, where 

functionally similar species were grouped together, to predict their response to climatic 

change. The remainder of this chapter is organized as follows: data compilation, 

interpretation and analysis are outlined in Section 2 and then Sections 3 and 4 present 

and discuss the results, as well as suggestions for further research and conclusions. 

Specifically, this study aimed at:  

 

• Assessing the response of photosynthesis and stomatal conductance of 

different plant functional groups to e[CO2]. 

• Evaluating the response of photosynthesis and stomatal conductance of 

different plant functional groups to e[CO2] under nutrient, water and 

temperature stressed condition. 
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2.2 Materials and methods 

 

2.2.1 Database compilation 

 

The present study is a meta-analysis of the relevant studies published from 2007 to 

2019. A comprehensive literature search was conducted including publications during 

this period, that reported data on photosynthesis and stomatal conductance under 

e[CO2]. In terms of the types of plants, the focus of the review was the two major 

functional groups i.e. C3 and C4. The broad C3 and C4 functional groups were classified 

into more specific groups including legumes, non-legumes, flowers, trees, shrubs and 

grasses.  

 

The selection of publications was carried out by a search on the Google Scholar using 

keywords such as “elevated CO2 impact on photosynthesis”, “elevated CO2 and 

stomatal conductance” “different functional groups under elevated CO2”, “C3 and C4 

under elevated CO2”. The selection of publications was governed by the following 

inclusion criteria: limited to English language publications, from the beginning of 2007 

to the end of 2019, studies with only C3 or C4 (excluding CAM plants) and, on 

experiments with photosynthesis and stomatal conductance measurements. Studies 

that generated data from all types of experiments (glasshouse, controlled environment 

chamber, open-top chamber, hydroponic, field, pot experiments and FACE) were 

included. The final database for the analysis comprised 180 studies. 

 

Quantitative information on the responses to e[CO2] from the selected literature was 

extracted and compiled into a database. The database included the name/s of the 

author/s, study location, provided facilities, month and year of the experiment, CO2 

concentration, temperature, species name with its cultivar as general information of 

the selected study. Also included were data on plant responses to various treatments 

such as N (low and high), water (drought and irrigated) and temperature (ambient and 

elevated) under e[CO2] impacting the major variables of the study i.e. photosynthesis 

and stomatal conductance. The database covered studies conducted under different 

growth and environmental conditions including FACE (Free-Air CO2 Enrichment), 

OTC (Open Top Chamber), ETC (Enclosed Top Chamber), CC (Controlled Chamber) 

and glasshouse facilities.  
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 The average a[CO2] was  400 µmol CO2 mol-1 and the average e[CO2] was 700 µmol 

CO2 mol-1 in the reviewed primary literature. The a[CO2] between 250 to 400 µmol 

CO2 mol-1  was taken and was averaged as 400 µmol CO2 mol-1. Similarly, e[CO2] 

between 650 and 750 µmol CO2 mol-1 was taken which was averaged as 700 µmol 

CO2 mol-1.  Data that were extracted included the mean photosynthesis and stomatal 

conductance responses under elevated (xe) and ambient (xa) CO2 concentrations. Data 

were extracted from the literature as numerical or graphical data. Online digitizing 

software “Web Plot Digitizer” (Rohatgi, 2018) was used to extract data from the 

graphs.   

 

Experiments with higher than 800 µmol CO2 mol-1 and lower than 300 µmol CO2 mol-

1 of CO2 concentration, and experiemnts with O3 were excluded for analysis and were 

identified as limitation of the study. However, these database were incorporated for 

discussion. Further, many reviwed literature have not mentioned about the previous 

crops and the amount of N supplied in the field during the previous cultivation which 

can effect the amount of N available in the field. Therefore, the database include only 

the amount of N that is supplied during the reviewed experiment which is also one of 

the limitations.     

 

2.2.2 Data analysis and interpretation 

 

The main consideration in the meta-analysis was the estimation of the treatment effect 

size including the magnitude of the response to an experimental treatment mean (xe) 

to the control treatment mean (xa) (Gurevitch et al., 2001). The effect of e[CO2] was 

quantified by calculating the response ratio R = xe / xa. The response ratio was then 

transformed into a log response ratio because of potential non-normal distribution that 

is evident close to zero treatment mean (xa), such as explained and used by Kimball 

(1983) in the first such meta-analysis of CO2 effects on plants. 

 

ln (R) = ln (R) 

 

Unlike in the previous meta-analyses, where the effect size was weighted using the 

reciprocal of variance (Jablonski et al., 2002) or unweighted effect sizes (X. Wang, 



28 
 

2007), in the present analysis effect size was weighted by replication, using a function 

of the sample size ‘n’ for ambient (a) and elevated (e) CO2 conditions. 

Weight = (na*ne) / (na+ne) 

 

The calculated values were analyzed using the statistical software METAWIN version 

2.1 (Rosenberg et al., 2000) and graphs were prepared using GraphPad Prism (San 

Diego, CA, USA). Mean effect sizes with 95% bootstrapped confidence intervals (95% 

CI) were generated and reported as a percentage change. Treatment effect was 

considered significant if the 95% CI did not overlap zero.  
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2.3 Results 

 

2.3.1 Overall response of photosynthesis to e[CO2] for different plant functional 

groups  

 

All plant species in the C3 photosynthetic pathway functional group showed significant 

increases in the rate of photosynthesis under e[CO2] (Figure 2.1). Among the different 

plant types, trees showed the largest positive response to e[CO2], with a mean value 

around 50%, while the least (around 18%) stimulation of the photosynthesis rate by 

e[CO2] was in legumes. The percentage increase in photosynthesis rate in non-

legumes, shrubs and grasses were approximately 30%, 35%, and 40%, respectively, 

under e[CO2]. However, in C4 functional group plants, no significant change was 

evident in the rate of photosynthesis under e[CO2] (Figure 2.1).  

 

Figure 2.1. The response of photosynthesis (red triangle) and stomatal conductance 

(black circle) to elevated carbon dioxide concentration (e[CO2]) for different plant 

functional groups. Average ambient and elevated [CO2] for all studies are 400 and 

700 µmol CO2 mol-1, respectively. The symbol represents the mean response ± 95% 

confidence interval. 
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2.3.2 Overall response of stomatal conductance to e[CO2] for different plant 

functional groups 

 

The data on stomatal conductance of the various C3 and C4 plant functional groups 

categories showed a significant negative response to e[CO2] (Figure 2.1). The highest 

decrease (-30%) in the stomatal conductance due to e[CO2] was observed in C3 

legumes while C3 shrubs had the least negative response (-10%). Other functional 

categories including C3 non-legumes, trees, and grasses also showed a 20 to 30% 

decrease in stomatal conductance. Despite the lack of response to e[CO2] in 

photosynthesis, stomatal conductance of C4 plants was reduced by 20 to 30%, on 

average, at e[CO2].  

 

2.3.3 Overall response of photosynthesis and stomatal conductance to e[CO2] under 

water stress  

 

As documented by Markelz et al. (2011), photosynthesis of different plant species in 

the C3 category, except legumes, showed an increasing trend under water-stressed 

conditions (Figure 2.2 A). An increase in photosynthesis of around 50% over the base 

level under a[CO2], was observed for C3 non-legumes, grasses, and trees under e[CO2]. 

The same species also showed an increase in photosynthesis rates under adequately- 

watered condition but, the increase was about 40 to 45% lower, compared to that in 

the water-stressed condition.   

 

The stomatal conductance of all species in both C3 and C4 categories showed a 

decreasing trend under both water-stress and adequately-watered conditions under 

e[CO2] (Figure 2.2 B). No major difference in stomatal conductance was observed in 

the crops grown under adequately-watered and water-stressed condition. Particularly, 

C3 grasses and C4 species showed no significant effect in stomatal conductance under 

e[CO2] and water stress. 
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Figure 2.2. The response of photosynthesis (A) and stomatal conductance (B) to 

elevated carbon dioxide concentration (e[CO2]) under drought and well-watered 

condition for different plant functional groups. Average ambient and elevated [CO2] 

for all studies are 400 and 700 µmol CO2 mol-1, respectively. The symbol represents 

the mean response ± 95% confidence interval. (No data presented for C4 in case of 

photosynthesis response.) 
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2.3.4 Overall response of photosynthesis and stomatal conductance to e[CO2] under 

varying levels of N supply 

 

Photosynthesis of plant species in the C3 category showed an increasing photosynthetic 

rate under a combination of e[CO2] and high N supply. Particularly, non-legumes 

showed a higher photosynthetic response to e[CO2], compared to other plant types 

(Figure 2.3 A). In contrast, within the C3 functional group, photosynthesis in legumes 

was least affected by e[CO2] under both high or low N supply. Photosynthesis in C4 

crops was not significantly affected when exposed to e[CO2] with an adequate supply 

of N (Figure 2.3 A). The stomatal conductance in all species of both C3 and C4, 

although showed a decreasing trend, was not significantly affected by either high or 

low N supply (Figure 2.3 B).   

 

2.3.5 Overall response of photosynthesis and stomatal conductance to e[CO2] under 

different temperatures  

 

Among all plant types, photosynthesis rates were increased more prominently in trees 

than in others, at high temperature (Figure 2.4 A). The elevated temperature under 

e[CO2] induced a 90% increase in photosynthesis rate in trees, while the increase was 

less than 50% at ambient temperature under e[CO2]. However, there was a decrease in 

photosynthesis rate in C4 plants at elevated temperature and e[CO2] (Figure 2.4 A). 

The percentage change in photosynthesis at ambient temperature in the C4 category 

was non-significant. For other plant types within the C3 group, an increase in the 

photosynthetic rate of around 50 to 60% in legumes and non-legumes, respectively 

and, around 20% in grasses was observed both at elevated temperature and ambient 

temperature.  

 

The stomatal conductance of C3 legumes and non-legumes showed a higher reduction 

at ambient temperature than at elevated temperature under e[CO2]. Despite the lack of 

change in the photosynthesis rate, C4 crops showed a decrease in stomatal conductance 

similar to C3 legumes and non-legumes  (Figure 2.4 B).  
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Figure 2.3. The response of photosynthesis (A) stomatal conductance (B) to 

elevated carbon dioxide concentration (e[CO2]) under high and low concentration 

of N for different plant functional groups. Average ambient and elevated [CO2] for 

all studies are 400 and 700 µmol CO2 mol-1, respectively. The symbol represents the 

mean response ± 95% confidence interval. (No data presented for Tree in case of 

photosynthesis response due to unavailability of enough data.) 
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Figure 2.4. The response of photosynthesis (A) stomatal conductance (B) to 

elevated carbon dioxide concentration (e[CO2]) under elevated and ambient 

temperatures for different plant functional groups. The average ambient and elevated 

[CO2] for all studies are 400 and 700 µmol CO2 mol-1, respectively. The symbol 

represents the mean response ± 95% confidence interval. (No data presented for Tree 

in case of stomatal conductance response.) 
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2.4. Discussion 

 

2.4.1 Overall 

 

A finding that was common to most of the studies was that plants grown under e[CO2] 

conditions, show increased growth resulting in increased biomass. The physiologic or 

biochemical basis of this overall effect is explained as the ability of plants to sense 

changes in [CO2] in the environment and respond through increased photosynthesis 

and decreased stomatal conductance (Ainsworth & Rogers, 2007; Wang et al., 2012; 

Thilakarathne et al., 2013; Maseyk et al., 2018). This increased photosynthesis is 

consequent to the enhanced CO2 fixation, under conditions of e[CO2], which in turn 

enhances the rate of carboxylation reaction in RuBisCO, thereby increasing the rate of 

photosynthesis (Ainsworth & Rogers, 2007; Xu et al., 2013). On the other hand, the 

decrease in stomatal conductance is brought about by the reduction in water loss per 

unit of carbon gain under e[CO2], with the net result of enhanced water use efficiency 

(Leakey et al., 2009; Swann et al., 2016). The changes in these physiologic phenomena 

could explain the changes in yield, biomass and overall productivity, that have been 

seen under experimental conditions of e[CO2]. However, in the real world, e[CO2] 

does not exert its effects in isolation but, in combination with several additional 

environmental factors (e.g. rainfall, plant nutrition and temperature), thereby having a 

collective influence on the overall growth and development of plants.  

 

Photosynthesis is a RuBisCO-dependent process in all functional groups. Under 

normal atmospheric conditions the RuBisCO content is low and consequently, 

photosynthesis at a[CO2], is a rather slow process (Ainsworth & Rogers, 2007; Lin et 

al., 2014). Increase in atmospheric [CO2] leads to an enhancement of RuBisCO’s 

carboxylation capacity, together with an increased CO2 concentration at the site of CO2  

fixation, both phenomena contributing to an increase in the overall photosynthesis rate 

(Ainsworth & Rogers, 2007;  Imai et al., 2007). However, the magnitude of the 

increase in photosynthesis, as a percentage of the base rate, is not the same for all 

species, even within the same functional group. Among different plant types, trees and 

grasses showed the highest photosynthesis stimulation under e[CO2]  (Ainsworth and 

Rogers, 2007). Variation in the kinetic properties and in the photosynthesis 

biochemistry of each RuBisCO may play a role in the variation in the response.  
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In C4 plants, only a minor effect on photosynthesis is observed under e[CO2], in most 

studies. This is, perhaps, due to the relatively higher basal rate of photosynthesis at 

a[CO2] due to faster dicarboxylate cycle, around 10-20 times of that in C3, in the bundle 

sheath cells. Furthermore, unlike C3 plants, those of the C4 group are near CO2 

saturation even under a[CO2] (Reich et al., 2018; Sage, 2004). However, there are 

studies that showed deviations from this general trend.  Some studies have documented 

none or little response to e[CO2]  (Taub, 2010; Ziska & Bunce, 1997), while others 

have demonstrated a significant response (Anderson et al., 2001; Wang et al., 2012). 

Despite the theoretical non-expectation, Ziska and Bunce (1997) have, indeed, 

demonstrated an increase in photosynthesis in C4 plants under e[CO2]. Such 

stimulation of photosynthesis in C4 has been attributed to changes in plant-water 

dynamics (Leakey et al., 2009), C3 like photosynthesis in immature C4 leaves (Gowik 

and Wesrhoff, 2011) or lower stomatal conductance under e[CO2] as a mechanism for 

conserving water resources and, promoting photosynthesis at later stages of plant 

growth (Taub, 2010; Ghannoum, 2009). As most of the C4 plants are already CO2 

saturated,  they avoid photorespiration (Sage and Kubien, 2012). This feature of C4 

plants enables them to perform better under e[CO2], which is likely to give them a 

competitive advantage in a future CO2 rich environment (Sage and Kubien, 2012).  

 

An important revelation by some of the studies in the meta-analysis is that it is not just 

the concentration of CO2 alone, which determines the overall change in photosynthesis 

and stomatal conductance. There are other environmental and abiotic factors that 

interact with the process. Among abiotic factors, water, nutrients, and temperature play 

a vital role in influencing the photosynthesis and stomatal conductance processes 

(Ainsworth & Rogers, 2007; Peñuelas et al., 2012; Ruiz-Vera et al., 2013). Water 

deficit (Xu et al., 2013; Zinta et al., 2014), high temperature (Xu et al., 2013; Zinta et 

al., 2014) and, insufficient nutrition (Adams et al., 2018; Seneweera et al., 2011) are 

considered critical stress factors controlling the plant growth response to e[CO2]. 

Therefore, the magnitude of the plant response to e[CO2] often depends on several 

other factors such as the temperature and the availability of other resources such as 

nutrients and water (Domec et al., 2016). This aspect is discussed in detail in the 

following sections:  
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2.4.2 Temperature 

 

Environmental temperature is a critical variable, that is subject to change diurnally and 

seasonally and, expected to alter drastically, with climate change (Urban et al., 2017). 

It is one of the abiotic factors that have a regulatory effect on the plant growth process 

and hence, the overall productivity (Xu et al., 2016). Ambient temperature fluctuations 

affect several plant physiological processes, including photosynthesis, respiration and 

transpiration – a process regulated by the opening and closing of the stomata (Urban 

et al., 2017). As such, the impact of temperature on stomatal conductance indirectly 

influences the plant water use (Urban et al., 2017).  

 

The meta-analysis showed a general consensus among studies, showing an increase in 

stimulation of photosynthesis with increasing temperature under e[CO2] (Xu et al., 

2016; Yamori et al., 2014). Extreme temperatures do affect some of the physiological 

processes of plants such as photorespiration and dark respiration (Dusenge et al., 2019; 

Walker et al., 2016). Although such stresses are experienced under a[CO2], they are 

alleviated under e[CO2] conditions (Long et al., 2004; Reddy et al., 2010). Therefore, 

e[CO2] seems to moderate the adverse effects of high temperature resulting in 

enhanced net photosynthesis (Dusenge et al., 2019).  

 

The meta-analysis also showed that most studies (for example, AbdElgawad et al., 

2015) found an increase in stimulation of photosynthesis under e[CO2] at higher 

temperatures, particularly in C3 trees. However, two studies, in particular (Wang et al., 

2008; Hamilton III et al., 2008) reported opposite effects in C4 plants, under e[CO2].  

Therefore, the effect of temperature under e[CO2] seems to be related to photosynthetic 

pathways,  not to a crop’s thermotolerance level.  

 

In C3 species, e[CO2] typically increases the heat tolerance of photosynthesis, except 

for plants grown at supra-optimal growth temperature (Wang et al., 2008). However, 

the increasing photosynthetic rate in C3 crops under e[CO2], did not change, when the 

temperature was changed, especially in legumes, non-legumes, and grasses, indicating 

a thermal tolerance (Figure 4A). The relative benefit of e[CO2] on photosynthesis 

thermo-tolerance was found to be significantly reduced in most of the C3 species when 

grown at a supra-optimal pre-stress growth temperature (Wang et al., 2008). Other 
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studies have also found a decrease in photosynthesis, above 35oC and little or slightly 

positive effects for plants grown between 25oC and 30oC (Hamilton III et al., 2008). 

Beyond 35-40oC, RuBisCO activity begins to reduce and thus reduce the 

photosynthetic rates in most of C3 plants (Wang et al., 2008). But in C4 plants, e[CO2] 

frequently decreases photosynthesis at near-optimal growth temperature as well as at 

supra-optimal growth temperature (Hamilton III et al., 2008).   

 

Moreover, some of the analysed studies have shown a negative relationship between 

temperature and stomatal conductance in some species, with increasing temperature 

resulting in decreased stomatal conductance. However, there are species, in which 

stomatal conductance increases with rising temperatures (Ameye et al., 2012). Hence, 

the response of stomatal conductance was different for different species under different 

temperatures (Ameye et al., 2012). For example, a decrease in stomatal conductance 

with rising temperature was reported in two oak species (Reynolds-Henne et al., 2010). 

An increase in stomatal conductance was reported in wheat, barley, and soybean 

(Bunce, 2000;  Wilson & Bunce, 1997); no change in stomatal conductance was 

reported in two eucalyptus species (Ameye et al., 2012). Although e[CO2] generally 

decreases stomatal conductance before and during heat stress, heat stress generally, 

either increases or has little effect on stomatal conductance (Hamilton III et al., 2008).  

 

2.4.3 Nitrogen 

 

Leaf N content has often been described as positively related to primary growth and 

productivity. Photosynthetic enzymes and pigments can account for up to 70% of the 

leaf N content (Imai et al., 2008). Increased leaf N usually supports increased 

photosynthetic capacity (Bassi et al., 2018). It has been documented that plants grown 

in e[CO2] conditions showed a decrease in photosynthetic capacity, when the N supply 

was low (Gutiérrez et al., 2013). On the other hand, some non-legumes like wheat 

showed increased photosynthesis and stomatal conductance with increased N supply 

whereas other non-legume dicots showed reduced photosynthesis and stomatal 

conductance (Cabrera-Bosquet et al., 2009). Del Pozo et al. (2007), in their studies, 

found no change in photosynthesis and stomatal conductance under e[CO2] and high 

N. However, the general consensus from the present meta-analysis pointed to an 
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increase in photosynthesis particularly, in non-legumes and grasses, under e[CO2] and 

high N.  

 

Unlike non-legumes, most legumes, in the natural ecosystem have a reduced need for 

N fertilizer because of their symbiotic relationship with N-fixing diazotrophs (Adams 

et al., 2016). This symbiosis results in increased leaf nitrogen content which helps to 

directly mitigate leaf water loss (Adams et al., 2018). However, there is much variation 

among the reported results on photosynthesis and stomatal conductance responses in 

legumes, to changes in N supply under e[CO2]. In legumes like soybean, both 

photosynthesis and stomatal conductance was unaffected (Moreira et al., 2015); in 

chickpea, photosynthesis increased but stomatal conductance decreased (Tak et al., 

2010) and similarly for common beans, photosynthesis increased and stomatal 

conductance was invariant (Jifon & Wolfe, 2002). Studies have shown reduced leaf N 

content (Taub et al., 2008) and decreased stomatal conductance and transpiration under 

e[CO2] (Li et al., 2017). But as legumes are N-fixing plants, the loss of leaf N is 

comparatively less (Ainsworth et al., 2004) which in turn favours soil water 

conservation by increasing water use efficiency more than photosynthesis (Adams et 

al., 2018; Gutiérrez et al., 2013). Hence, grain legumes appear to use N to increase 

water use efficiency more than to increase photosynthesis. Despite some of the 

variation, overall the findings lead to the conclusion that there is almost no effect of N 

fertilization, on the photosynthesis of legumes, consistent with the knowledge that 

legumes are less dependent on external N supply.  

 

2.4.4 Water stress 

 

Water stress or drought is a stage when the demand for water by a plant is not met. 

Drought is one of the main environmental factors limiting plant growth and the 

productivity of many crops (Nouman et al., 2018). However, plants are able to adapt 

to drought conditions either by shortening their growth cycle or by increasing their 

water uptake by augmenting root growth (Molnár et al., 2004). Markelz et al. (2011) 

have observed a significant reduction in stomatal conductance (up to 57%) and 

photosynthesis (up to 44%) during periods of soil drying (from near field capacity to 

near the permanent wilting point). But the scenario of decreasing photosynthesis and 

stomatal conductance under drought conditions might be different under e[CO2]. 
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Many studies have documented a decrease in plant transpiration rate under water stress 

(particularly under drought), with e[CO2], which is an adaptive mechanism to 

ameliorate the adverse effects of drought stress (Ainsworth & Rogers, 2007; Kadam 

et al., 2014; Tausz‐Posch et al., 2013). Zhang et al. (2018) found that water stress 

leads to altered stomatal function to reduce water losses at e[CO2]. Under e[CO2], 

drought-induced inhibition of photosynthesis and, consequently of growth, yield, and 

net productivity have been reported (Leakey et al., 2009; Leakey et al., 2006) for C3 

non-legumes, C3 grasses and C3 trees. The drought-induced reduction in soil water or, 

soil drying, is generally slower in e[CO2] treatments, particularly in the middle and 

bottom soil layers (van der Kooi et al., 2016). This slower drying at e[CO2] is 

associated with a decrease in stomatal conductance due to the depolarization of the 

membrane potential of guard cells (Shelke et al., 2019) which lessens a  plant’s 

dependence on soil water (Markelz et al., 2011). Thus, it enables a plant at e[CO2] to 

continue to photosynthesize and grow more days into drought cycle than plants at 

a[CO2].  

 

However, the impact of drought under e[CO2] also depends on the stage of growth of 

the plant and the duration of drought. The meta-analysis shows almost no effect or a 

reduction in photosynthesis under drought (Figure 2.2). The impact of drought on 

photosynthesis or stomatal conductance is more pronounced when drought conditions 

occur for a prolonged period.  Our analysis also showed a decrease in photosynthesis 

in legumes that were exposed to prolonged or severe drought condition.  

  

It has been suggested that e[CO2] might increase the tolerance to drought by lowering 

osmotic potential and thereby maintaining high plant water potential (Miranda-

Apodaca et al., 2018). Plants grown in e[CO2] may utilize less water, use it more 

efficiently and be able to tolerate drought better under some situations Nouman et al., 

2018). Hence, soil water depletion in the root zone might occur at a low rate for plants 

growing under e[CO2] (van der Kooi et al., 2016). According to Robredo et al. (2007), 

under conditions of adequate water supply, the relative effects of CO2 enrichment on 

photosynthesis remained remarkably stable during the assay period. In contrast, under 

water shortage, photosynthesis was significantly higher under e[CO2]compared to 

under ambient [CO2]. However, over the extended assay period, the drought caused a 

dramatic reduction in photosynthesis. 
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Even during drought, plants grown under e[CO2] exhibit reduced stomatal 

conductance, as a consequence of partial stomatal closure (Robredo et al., 2007) – an 

effect of the increased intercellular [CO2]. It is well-known that stomatal conductance 

reduces with increasing [CO2] and, also it is known that stomata close in response to 

decreasing soil moisture. Hence, it is not surprising that the plants grown under e[CO2] 

in drying soil exhibit greater stomatal closure. Similarly, e[CO2] lower the stomatal 

conductance resulting in reduced water use. When the soil water content is low due to 

drought, e[CO2] tends to delay the reduction in stomatal conductance and 

photosynthesis, by increasing water use efficiency.  

 

 

2.5 Conclusion 

 

Despite some degree of variation in the findings evident in the large volume of 

literature, the overall consensus from the analysed studies is that there is an increase 

in photosynthesis and a decrease in stomatal conductance in response to e[CO2],  

particularly in the C3 functional group. However, the effect was not the same in C4 

plants. Even within the C3 functional groups, different crop categories showed 

different percentages of change in photosynthesis and stomatal conductance under 

e[CO2].  

 

In the long run, the initial stimulation of photosynthesis under e[CO2] often does not 

persist and begins to decline as photosynthesis acclimation sets-in (Ainsworth and 

Long, 2005; Warren et al., 2014). This acclimation of photosynthesis under e[CO2] is 

also found to be affected by different abiotic stresses. The reduction in leaf N content 

has been documented as one of the major reasons for the downregulation of 

photosynthesis (Leakey et al., 2009; Yin et al., 2019). Similarly, under drought stress, 

studies have shown a substantial reduction in both the capacity of RuBP regeneration 

and the carboxylation efficiency of RuBisCO (Perdomo et al., 2017). Hence, the role 

of abiotic factors might be even more crucial under prolonged exposure to e[CO2] that 

lead to photosynthetic acclimation. Therefore, the findings from this meta-analysis 

open up potential areas of research to understand the effects of e[CO2] on plants of 

different functional groups, based on photosynthetic acclimation.  
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In view of the finding that abiotic stresses directly impact the photosynthetic response 

of different plant functional groups under e[CO2], we propose some future studies to 

assess how these functional groups will react on prolonged exposure. From this study, 

we can connect the dots of photosynthetic acclimation in relation to different abiotic 

variables like N. Studies have documented the stabilization of photosynthesis in plant 

acclimation, as the [CO2] increases. Further studies are needed to assess how different 

species (rice and wheat) react under different [CO2] and if they are approaching 

photosynthetic acclimation. The studies reported in the next two chapters assess the 

photosynthetic acclimation to e[CO2], focusing on C3 crops where N availability 

appears to play a controlling factor.  
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Chapter 3: Modelling photosynthetic acclimation to elevated carbon dioxide 

concentration in rice using key  gas exchange and biochemical parameters 

 

 

Abstract  

 

The studies described in this chapter are founded on the hypothesis that photosynthetic 

acclimation to elevated carbon dioxide concentration (e[CO2]) is directly associated 

with leaf  RuBisCO content and N supply to the leaf blades. An analytical modelling 

framework, that applies leaf to canopy-level rice crop system using RuBisCO and N 

dynamics and crop growth processes, was developed by the application of a set of 

secondary data on rice from a growth chamber experiment. The rate of N uptake by 

the plants  is one of the most important factors determining the extent of RuBisCO 

synthesis and, consequently, the overall process of photosynthetic acclimation in rice. 

The photosynthetic results strongly support an acclimation at both morphological and 

biochemical levels under different N supply levels, under e[CO2]. The biochemical 

and gas exchange variation together with modeling data fully explain the ontogentic 

variation photosynthetic acclimation in rice.  

 

 

3.1 Introduction  

 

The increasing atmospheric CO2 concentration (a[CO2]) is a major determinant of  

photosynthesis of C3 plants and thus final productivity   (Bagley et al., 2015). Many 

studies, including those in the meta-analysis, presented in chapter II, have clearly 

demonstrated an enhancement of photosynthesis in C3 crops under elevated e[CO2] 

conditions (Drake et al., 1997; Kimball et al., 2002; Seneweera et al., 2002). However, 

the initial stimulation is known to diminish over time and, get stabilized at a rate lower 

than even the pre-stimulation level, indicating a down-regulation – a phenomenon 

described as acclimation of photosynthesis (Ainsworth et al., 2003; Pérez et al., 2011; 

Seneweera et al., 2002).  

 

The underlying mechanism of photosynthesis acclimation is not well understood. The 

hypotheses put forward to explain this phenomenon include reduced N supply to the 
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leaf blade (Bloom et al., 2010) or accelerated leaf senescence (Ludewig et al., 2000). 

The established positive correlation between photosynthesis and leaf N content in 

higher plants (Makino, 2011) and, in rice plants exposed to e[CO2] for extended period 

of time (Seneweera et al., 2011) lend support to the N supply hypothesis. For example,  

more than  70% of the N is invested in the above-ground part is in the leaf blades (Imai 

et al., 2008).  It must be, however, important to note that alternate hypotheses, such as 

downregulation have been proposed as a possible mechanism (Reviewed by 

Thompson et al., 2017).  

 

Leaf N concentration decreases substantially, in many species of plants when grown 

at e[CO2] for an extended period under various conditions.  It has been suggested that 

lower leaf N concentration at e[CO2] leads to altered source-sink balance, particularly, 

the inability to make new sink organs such as tillers, grains and leaves  (Bloom et al., 

2010; Taub and Wang 2008). There are several hypotheses to explain the reduction in 

leaf N concentration at e[CO2], including dilution of leaf N due to increasing growth 

(Leakey et al., 2009) or inhibition of nitrogen uptake due to the closing of stomata 

under e[CO2] (Ward et al., 2013). However, the knowledge about how plants acclimate 

to e[CO2] and, its impact on plant growth remains incomplete.   

 

RuBisCO is the rate-limiting enzyme for photosynthesis at the current atmospheric 

level of CO2 (Makino et al., 1994). The concentration of RuBisCO in leaf blades is 

determined by the balance between protein synthesis and degradation which varies 

with the growth stage of leaves (Imai et al., 2008, Seneweera et al., 2011). RuBisCO 

synthesis is rapid during leaf expansion but declines to a very low rate, after full 

expansion (Seneweera et al., 2002). It is hypothesised that N partitioning into the leaf 

blade is strongly related to RuBisCO synthesis and, thus, to maintain the  

photosynthetic rates  of the leaf blades.  

 

Despite the extensive literature that provides an insight to the short-term responses in 

photosynthesis to e[CO2] under experimental conditions, much less is known about the 

response of crops in field conditions to prolonged exposure to e[CO2]. Such unclear 

and unresolved knowledge may be advanced by systems thinking that allows 

extrapolating known responses to new untested conditions. A variety of mathematical 

models have been developed to investigate the impact of rising [CO2] on crops which 
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have improved our understanding of the crop’s response to e[CO2].  However, very 

few models have been developed to simulate the impact of e[CO2] on the biochemical 

level  of plants particularly focusing on photosynthesis acclimation using RuBisCO 

and N dynamics  parameters. Therefore, an accurate model needs to be developed to 

better understand the acclimation process and subsequent growth at e[CO2].   

 

This chapter describes a study in which the dynamics of leaf N content, RuBisCO 

content and photosynthesis rates were used to model plant growth response to e[CO2].  

The studies explored the links between leaf N and RuBisCO on photosynthetic 

acclimation to e[CO2]  using the Structural Thinking, Experiential Learning 

Laboratory with Animation (STELLA) model (ISEE Systems, 2006). In the modelling 

process, overall photosynthetic acclimation under different [CO2] with changing 

RuBisCO and N concentration was developed.  Such acclimation, theoretically, can 

occur at any CO2 concentration, but it is proposed to be largely driven by leaf RuBisCO 

and N relationship.  The specific aims of the studies were, 

 

•  To assess the impact of photosynthesis acclimation to e[CO2] in association 

with reduced RuBisCO content.  

• To explore the changes in RuBisCO content considering the reduced N uptake 

by plant or N content in the soil.  
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3.2 Material and methods 

 

 

3.2.1 Description of the data source 

 

Data from a study by Seneweera et al. (2011) and Seneweera et al. (unpublished) which 

involved growing rice plants in a hydroponic experiment conducted in a controlled 

environment, were used and analysed. The details of the controlled environment are 

summarized in Table 3.1. The hydroponic solution used in the experiment was 

prepared according to Makino et al. (1988). The concentration of NH4NO3 in the basal 

solution was of 1 mM. Half of the respective plants were supplied with three fold 

concentration of nitrogen (3 mM NH4NO3) after the emergence of flag leaf.  The basic 

plant and meteorological measurements from the experiment included photosynthesis, 

RuBisCO content, N flow including other major abiotic parameters like [CO2], 

radiation, light interception, and radiation use efficiency (RUE). For calculating the 

photosynthesis and RuBisCO content, gas exchange measurement and other 

biochemical assays were carried out on fully expanded leaves of 70 to 80 day- old 

plants. Data collection and growth conditions are detailed in Seneweera et al. (2011).  

                           

Table 3.1: Details of controlled growth chamber settings (Seneweera et al., 2011). 

Rice (O. Sativa L. cv. Notohikari) 

CO2 concentration Photoperiod Temperature Relative humidity 

390/1000 µmol CO2 mol-1   14-hour 25/20°C day and night 60% 

 

 

3.2.2 Model concept 

 

The schematic diagram (Figure 3.1) summarises the expected changes in 

photosynthesis and other components in response to changing CO2 concentration.  

Considering a baseline CO2 level of 390 µmol CO2 mol-1, the study then compared the 

respective relative responses under e[CO2] with different levels of N supply. Nine 

different processes are considered (light green box) showing the rates of change and 

resultant accumulation of critical mass variables.  Apart from photorespiration, all 

other processes were upregulated as they grow under e[CO2] with sufficient soil N 
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supply (as indicated by red arrows). However, the rate of increment slows down (as 

indicated by blue arrows) even under e[CO2] as the N supply was reduced.  

 

As documented in the literature, the initial stimulation of photosynthetic rates under 

e[CO2] is not maintained over a longer period (Seneweera et al., 2002; Seneweera et 

al., 2011; Sharkey et al., 1985). The downregulation of photosynthesis on exposure to 

e[CO2] for an extended period, is attributed either to the available soil N or to the 

amount of N supplied to the plant.  Figure 3.1 also illustrates the photosynthetic 

acclimation that occurs under reduced soil N supply. If the N supply to the growing 

leaf blades declines, the rate of photosynthesis will decline substantially, thereby 

initiating photosynthetic acclimation (Drake et al., 1997; Nakano et al., 1997; 

Seneweera et al., 2011). The unavailability of sufficient sinks to accommodate the 

increasing photo-assimilate under e[CO2] could further exacerbate the process of 

photosynthetic acclimation (Ainsworth et al., 2008). Therefore, the CO2 fertilization 

effect on plant growth will be progressively constrained by the N availability in the 

soil over time. 
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Figure 3.1: A schematic diagram showing the change in photosynthesis along with other different components as affected by changing [CO2] and 

N supply. Red arrows indicate an increase (up) or a decrease (down) in the activity. Blue arrows indicate an increase in the activity under e[CO2] 

but at lower rate with insufficient N supply and sink strength to accommodate increasing photo assimilates under e[CO2] leading to photosynthetic 

acclimation.  
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3.2.3 Model system and structure 

 

The diagrammatic representation created from a STELLA model during this research (Figure 

3.2) includes all eight major parameters described in Figure 3.1 and hence represents the 

theoretical model. Further, the model includes different abiotic factors including CO2, 

radiation, RUE, LI, N, and temperature directly affecting the different stages of crop growth. 

For simplicity, the radiation value was kept constant throughout the simulation. 

 

The first step in the modelling process involved the development of basic structures to capture 

the overall process as described in the above equations. The model was then assigned with 

initial values for stocks as well as equations and input values for flows and converters. The 

flow, stocks, converters, and connectors link the overall flow in a loop which eventually 

delivers the change in required variables (for instance RuBisCO and N) with a change in [CO2]. 

The diagrammatic representation created from a STELLA model (Figure 3.2) embeds 

dynamics of crop growth and development, leaf-level crop system including RuBisCO and N 

dynamics. The detail of the abbreviations used in the model including their units and input 

values are as listed in Table 3.2.  
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Figure 3.2: Diagrammatic representation of photosynthetic acclimation as driven by a change in RuBisCO, N and CO2 concentration. 

Table 3.2 describes the State, Rate, Weather and Intermediate variables depicted by the various symbols in this daily-time step model. 
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3.2.4 Variables used in the model 

 

State variables 

 

The model consists of seven different variables which define the current state or a condition of 

those variables. Represented by the rectangular boxes in Figure 3.2, these include leaf biomass, 

senesced biomass, soil mineral N, plant N, RuBisCO N, senesced N and thermal time. Details 

of the state variables are explained with all abbreviations, explanations, units and formulas in 

Table 3.2.  

 

Rate variables 

 

The change in the state variables over time is calculated per daily time step from the seven rate 

variables (valve symbols in Figure 3.2). These are positive when the direction of the arrow 

flows into the state variable and negative when it flows away from the state variable. The 

defined rate variables are leaf growth rate, leaf senescence rate, mineral N uptake rate, 

RuBisCO synthesis rate, RuBisCO degradation rate, N efflux rate and daily thermal time. 

Details of the rate variables are explained further in Table 3.2.  

 

Weather variables 

 

The model also includes different weather variables which affect the overall system in many 

ways. The major weather variables incorporated in the model directly impacting the overall 

system includes CO2 and temperature. For this non-water stressed study, only four weather 

variables (atmospheric CO2 levels, maximum and minimum daily temperature and daily solar 

radiation) were considered. 

 

Intermediate endogenous variables and parameters 

 

Numerous intermediate endogenous variables (circles in Figure 3.2) provide a stable system 

with designed feedbacks and feed-forward processes.  These define the variables such as light 

interception, growth response to CO2, radiation use efficiency, thermal base temperatures and 

N concentration (Table 3.2).  
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Table 3.2: Model input parameters including acronyms, explanations, units, and values as per Seneweera et al., (2011) and theoretical calculations.  
Description  Symbol  Units  Initial input values 

STATE VARIABLES 

Leaf Biomass   Accumulated leaf biomass g m-2 159 

SEN Biomass Accumulated senescent biomass g m-2  
Soil N Soil mineral N mass G N m-2 250 

Nitrogen Accumulated N mass g N m-2  

RuBisCO  Accumulated RuBisCO N mass g N m-2  

DEG SENN Degraded senescence N mass g N m-2  

Thermal time Accumulated thermal time 0C days  

RATE VARIABLES 

GR Crop growth rate g m-2 day-1 LI*RAD*RUECC*RURUE 

LSEN Leaf senescence rate g m-2 day-1 Leaf Biomass* RRLSEN 

NUR N uptake rate g m-2 day-1 NCO2*PNCONC*GR*Soil N/150 

RSR RuBisCO synthesis rate  g g-1 day-1 MIN (0.15*NUR, 0.15*Total N) 

RSEN RuBisCO senescence rate g g-1 day-1 RuBisCO * RRRSEN 
NSEN N senescence rate g m-2 day-1 N*RRNSEN 

TT Thermal time rate 0C day-1 [{(Tmax+Tmin)/2}-Tb] 

WEATHER VARIABLES 

RAD Daily radiation MJ m-2 25 

CO2 Atmospheric CO2 concentration µmol CO2 mol-1   350/450/550/650/750/850/1000 

Tmin Daily minimum temperature 0C 20 

Tmax Daily maximum temperature 0C 25 

INTERMEDIATE VARIABLES 

RUECC Radiation use efficiency as affected by CO2 g MJ-1 (-CO2_max/(350*(1-CO2_max)) *CO2*CO2_max) /  

(-CO2_max/(350*(1-CO2_max)) *CO2 + CO2_max) 

RURUE Radiation use efficiency as affected by RuBisCO g MJ-1 MIN (2, MAX (0.75, RuBisCO * 0.25)) 

NCO2 N uptake rate as affected by CO2 g m-2 day-1 MAX (0.85, MIN (2.447086/CO2^0.153630, 1)) 
RRRSEN Relative rate of RuBisCO senescence g m-2 day-1 0.006 

RRNSEN Relative rate of N senescence g m-2 day-1 0.002 

RRLSEN Relative rate of leaf senescence g m-2 day-1 0.003 

PNCONC Potential N concentration g g-1 Graphical 

ANCONC Actual N concentration g g-1 Total N / Leaf Biomass 

Total N Accumulated total N mass in crop g m-2 N in plant + RuBisCO N 

RNratio RuBisCO to N ratio g g-1 RuBisCO/N 

LI Light interception MJ m-2 0.8 

CO2max Maximum CO2 growth response (g m-2)/(g m-2)   1.2 

Tb Base temperature 0C 8 
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3.3 Results 

 

3.3.1 Photosynthesis at different developmental stages 

 

The experimental photosynthesis rate measurements (Seneweera et al., unpublished) in the flag 

leaf from initiation to the senescence stage showed that the response was similar at different 

development stages, within each CO2 concentration. Photosynthesis rate reached a peak of 

around 20 µmol m-2 s-1 at 12th to 15th day after sowing. However, from then, photosynthesis 

rate continued to decline until the senescence stage, to a stabilized rate of 5 µmol m-2 s-1, which 

was lower than the initial rate (Figure 3.3.A). This decreasing trend showed that suppression 

of photosynthesis is much greater after the full expansion of the leaf blade. The comparison 

between the ambient and elevated CO2 showed greater suppression of photosynthesis, under 

e[CO2] than under a[CO2] (Figure 3.3).  

 

3.3.2 Change in RuBisCO content 

 

The observed RuBisCO content increased under e[CO2], during the first few days to reach a 

maximum of around 2.5 mg per leaf blade, which then declined to around 0.2 mg per leaf blade 

during senescence. The trend was similar at all developmental stages, from initiation to 

senescence of the flag leaf blade (Figure 3.3.B). Although there was an initial increase in 

RuBisCO during early stages of growth, even under a[CO2], the peak content was 

comparatively lower  (1.6 mg per leaf blade) than that under e[CO2]. However, under a[CO2] 

too, there was a decrease to reach 0.18 mg per leaf blade during senescence.   
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Figure 3.3: Observed response of (A) photosynthesis (µmol m-2 s-1) and (B) RuBisCO content (mg per leaf blade) during flag leaf development 

of rice grown at either a[CO2] of 390 µmol CO2 mol-1 (open circle) or e[CO2] of 1000 (closed circle) µmol CO2 mol-1. Values are means of four 

replicates for each CO2 treatments (Seneweera et al., (unpublished)).  

A B 
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3.3.3 The relationship between photosynthesis and RuBisCO at e[CO2]  

 

Therefore, the noteworthy observation is the similarity in the pattern of changes in 

photosynthesis and RuBisCO from leaf  emergence (Figure 3.3) of an initial rise 

reaching a peak value between the 10th and 15th day, followed by a fall under both 

a[CO2] and e[CO2]. Thus, as illustrated in Figure 3.3 there is a strong correlation 

between the photosynthesis and leaf RuBisCO content during leaf development. 

However, quantitively, there was greater suppression under e[CO2] than under a[CO2].  

  

3.3.4 Simulation performance 

 

Simulation performance - Photosynthesis 

 

The simulated canopy photosynthesis using the STELLA model (Figure 3.4.A) 

showed an increase from around 12 g m-2day-1 to around 16.5 g m-2day-1 which then 

decreased to 14 g m-2day-1 towards the maturity of the plant under a[CO2]. Similarly, 

under e[CO2], the photosynthesis rate increased from around 13.5 g m-2day-1 to around 

17.5 g m-2day-1 and then decreased to 14.5 g m-2day-1 towards maturity. This simulated 

canopy photosynthesis of rice showed a trend of the initially elevated photosynthesis 

rate declining towards the rate under a[CO2], as the plant approaches maturity. As 

depicted in figure 3.4.A, the photosynthesis continues to decrease after around 50 days 

of leaf emergence heading towards photosynthetic acclimation.  

 

Simulation performance – RuBisCO 

 

The simulated RuBisCO content, after an initial increase, showed a decreasing trend 

after flowering, closely following the trend in photosynthesis (Figure 3.4.B). With an 

initial value of 1.1 g m-2, the RuBisCO content increased to 2.4 g m-2 and 2.2 g m-2 

under a[CO2] and e[CO2] respectively. This was followed by a decrease in RuBisCO 

content, similar to photosynthesis, to 2 g m-2 and 1.8 g m-2 under a[CO2] and e[CO2] 

respectively.  
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Simulated response – RUE 

 

The radiation use efficiency (RUE) for the rice canopy was calculated as a direct linear 

function of RuBisCO (from Figure 3.4) with a minimum (0.75 g MJ-1) and maximum 

(2.0 g MJ-1) defined (Table 3.2). The simulated RUE via the RuBisCO control (Figure 

3.4.C) also depicted the acclimation trend towards maturity showing an increase from 

0.75 g MJ-1 to 1 g MJ-1 and 0.93 g MJ-1 respectively under a[CO2] and e[CO2] at around 

50 days after leaf emergence. The value then decreased exponentially as the leaf grew 

towards senescence reaching 0.85 g MJ-1 and 0.8 g MJ-1 under a[CO2] and e[CO2] 

respectively. 
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Figure 3.4: Simulated response of (A) photosynthesis (g m-2 day-1), (B) RuBisCO (g 

m-2) and (C) RUE as affected by RuBisCO (RURUE) (g MJ-1) at a[CO2] of 390 µmol 

CO2 mol-1 (open circles) and e[CO2] of 1000 µmol CO2 mol-1 ( closed circles). 
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3.3.5 Simulation performance under different [CO2] 

 

The leaf biomass, RuBisCO, and RUE via the RuBisCO control were simulated under 

different [CO2] with an increase of 100 µmol CO2 mol-1 instalments, starting from 350 

µmol CO2 mol-1 (Figure 3.5).  

 

Simulated leaf biomass showed a similar trend to the theoretical framework in Figure 

3.1. Comparison of modelled growth over different [CO2] showed a linear increase 

from 350 to 700 µmol CO2 mol-1 which stabilized thereafter.  The biomass value 

reached a peak of 1.46 g m-2 at around 700 µmol CO2 mol-1 which was 1.36 g m-2 at 

350 µmol CO2 mol-1.  

 

Similarly, simulated RuBisCO response under different [CO2] demonstrated a similar 

trend as hypothesized in Figure 3.1 and as observed from experimental data in Figure 

3.3.B. RuBisCO content continue to decrease from 1.96 g m-2 at 400 µmol CO2 mol-1 

to 1.73 g m-2 at 1000 µmol CO2 mol-1.  

 

Further the simulated RUE response under different [CO2] via the RuBisCO control 

also demonstrated a declining trend under e[CO2]. After reaching a maximum value of 

0.867 g MJ-1, the RURUE then declined substantially with increasing [CO2] 

maintaining its lowest value at 0.823 g MJ-1 at 1000 µmol CO2 mol-1.  
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Figure 3.5: Simulated (A) leaf biomass (g m-2), (B) RuBisCO (g m-2), (C) RUE as 

affected by RuBisCO (RURUE) (g MJ-1) response under different CO2 concentration 

from 390 µmol CO2 mol-1 to 1000 µmol CO2 mol-1.  
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3.4 Discussion 

 

This study investigated the change in photosynthesis and RuBisCO under e[CO2] in 

association with changes in leaf  N, leading to photosynthetic acclimation in rice, 

through a conceptual modelling approach using State and Rate variable. The observed 

overall reduction in RuBisCO content, despite an initial increase, on exposure to 

e[CO2] in the present study, under both experimental and simulated conditions is, 

indeed, a commonly observed feature associated with photosynthetic acclimation to 

e[CO2] (Imai et al., 2008; Seneweera et al., 2011; Zhang et al., 2009). It has been 

suggested that the reduction in RuBisCO content is due to the combined effect of its 

accelerated degradation and the lower protein synthesis (Donnison et al., 2007; 

Makino and Sage, 2007; Suzuki et al., 2012). RuBisCO is not saturated at a[CO2] as 

the concentration of CO2 is very low at the site of fixation. Under e[CO2] that limitation 

is overcome, leading to enhanced net photosynthesis in C3 plants (Drake et al., 1997). 

These authors showed that photosynthesis in C3 plants approximately doubles when 

exposed to e[CO2] of around 700 µmol CO2 mol-1. However, the long term 

photosynthesis response to e[CO2] is highly unpredictable, as it depends on several 

environmental conditions and abiotic factors, including nutrient availability.  

 

Nitrogen is one of the critical nutrients for plant growth. A major proportion (~80%) 

of leaf N is allocated to chloroplast and most of the N in the chloroplast is invested in 

photosynthetic proteins, with a significant proportion (15-35%) in RuBisCO synthesis 

(Evans, 1989). The amount of RuBisCO in the leaf blade was linearly related to the 

total N in the leaf blade under both a[CO2] and e[CO2] (Seneweera et al., unpublish; 

Figure 3.6). These emerging data indicate a strong correlation (R2 = 0.97) between leaf 

N content and RuBisCO content, confirming that the N availability is an important 

determinant of the RuBisCO content. Hence, this shows a strong evidence that the 

supply of N to total RuBisCO is the primary cause of acclimation in C3 plants like rice. 

 

Further, researchers have documented the relationship between photosynthesis, leaf N 

and RuBisCO where photosynthesis was linearly correlated with leaf N content under 

a wide range of conditions (Imai et al., 2008; Seneweera et al., 2011). On the other 

hand, the documented decrease in RuBisCO activity in C3 crops under e[CO2]  perhaps 

indicates a reduced demand for N for synthesis of  RuBisCO (Makino, 2003; Leakey 
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et al., 2009). However, this relationship between leaf N and photosynthesis 

relationship substantially varies among plant species (Adams et al., 2016; Evans and 

Clarke, 2019). The reduction in RuBisCO content together with leaf N is generally 

associated with the photosynthetic acclimation response (Long et al., 2006; Yin et al., 

2019). The present results also showed that in the rice leaf, there was a reduction in 

both the photosynthesis and RuBisCO after pre-anthesis stage (Figure 3.3) suggesting 

lower RuBisCO activity or lower RuBisCO concentration at e[CO2].  

 

Figure 3.6: The observed relationship between total RuBisCO and total nitrogen in 

the flag leaf blades of rice at a[CO2] of 390 µmol CO2 mol-1 (blue triangles) and e[CO2] 

of 1000 µmol CO2 mol-1 (pink triangles) (Seneweera et al., (unpublished)). 

 

The experimental evidence for changes in RuBisCO and photosynthesis in response to 

e[CO2] was supported by the findings of the simulation study using the STELLA 

modelling approach. The crop model used in the study simulated the response under 

canopy level as canopy photosynthesis is a key driver of crop growth (Wu et al., 2016). 

Different crop models have incorporated the dynamics of canopy development using 

different modelling platforms like APSIM (Wu et al., 2018; Zheng et al., 2019), 

DSSAT (Bezuidenhout et al., 2003; Liu et al., 2011), and O’LEARY-CONNOR 

(O’Leary et al., 2015). However, the relationship between leaf level and canopy level 

photosynthesis is not always straightforward, as it is dependent on the effects of 

various environmental factors such as light interception, wind speed, and temperature, 

as well as other crop growth and developmental dynamics. By using a similar concept 
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of up-scaling the leaf level photosynthetic response to canopy level by a single-layer 

sunshade leaf approach (de Pury and Farquhar, 1997), the STELLA conceptual model 

satisfactorily simulated the evolution of photosynthetic acclimation by considering 

RuBisCO and N content. The simulated response of both the photosynthesis and 

RuBisCO followed a similar trend as experimental observations, showing a decrease 

in both photosynthesis and RuBisCO as the leaf grows towards maturity.  

 

Enhanced leaf photosynthesis would lead to improved canopy photosynthesis or vice 

versa (Wu et al., 2019). For extrapolating the photosynthesis from leaf level to canopy 

level, canopy approximations through Radiation Use Efficiency (RUE) are considered 

as acceptable in photosynthesis modelling (Asseng et al., 2019; Huang et al., 2016; 

Wu et al., 2016). Several researchers have suggested that improved leaf photosynthetic 

traits including RuBisCO content would contribute to higher RUE and consequently 

to higher biomass and yield (Huang et al., 2016; Mitchell and Sheehy, 2006; Zhang et 

al., 2009). However, there is little understanding of the photosynthetic acclimation to 

RUE under field conditions. Therefore, this study simulated the response of RUE from 

the day of leaf emergence and found a decreasing trend from flowering towards 

maturity, in parallel with the downregulation of photosynthesis and RuBisCO content. 

Therefore, the present results may be explained in terms of the improved 

photosynthesis up to pre-anthesis stage being responsible for the higher RUE initially 

and the subsequent decline to be associated with the decrease in photosynthesis. 

Despite the report by Huang et al. (2016) showing a higher photosynthetic rate in rice, 

even in the later stages of growth, the overwhelming evidence supports a decline 

leading to photosynthetic acclimation.  This is supported further by the present finding 

of a high correlation between RUE value with both photosynthesis rate and RuBisCO 

content, indicating a close association among them.  

 

The photosynthetic acclimation in rice depends on RUE and light intensity, 

particularly the enhancing or diminishing of the intensity of sunlight by the canopy 

(Murchie et al., 2002).  Other factors that matter include the position of the leaf in the 

canopy, the canopy structure, and the maturity status of the leaves. Further, it can 

depend on the amounts of photosynthetic components and total leaf N. The supply and 

demand status of N can be one of the major drivers of the overall process towards or 

away from acclimation when considering the canopy response. During the pre-anthesis 
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stage, biomass production is accelerated through increased tiller production and leaf 

area. This rapid growth requires a higher supply of N for protein synthesis with the 

demand under e[CO2] being even higher (Seneweera et al., 2011; Bloom, 2015).  

 

The increasing demand for N in the early growth phase is met by continuous N uptake 

and remobilization of N from lower leaves. In the later growth stages, as the mature 

leaves senesence, the protein in the senescing leaves is degraded enabling the 

remobilization and transportation of N to the young leaves for the synthesis of new 

RuBisCO (Seneweera et al., 2002). Thus, the leaves acting as a sink during the pre-

anthesis stage now act as a source in the post-anthesis stage. In this latter stage, the 

panicles act as a major sink and other leaves including the flag leaves act as a major 

source. This change in source-sink demand and supply hence decreases the N uptake 

dramatically dropping down the overall RuBisCO synthesis limiting the rate of 

photosynthesis (Seneweera et al., 2002; Tegeder and Masclaux, 2018). The simulated 

results reflect the same trend of reduced RuBisCO and reduced photosynthesis along 

with the reduction of RUE via RuBisCO control towards the post-anthesis stage. This 

also explains the N uptake/content decreases as the leaf grows towards senescence 

promoting N efflux. 

 

Further, our simulations studies under different [CO2] also demonstrated the 

occurrence of photosynthetic acclimation after 550 µmol CO2 mol-1 at the canopy scale 

(Figure 3.5). Following the observed photosynthetic acclimation phenomenon in lower 

leaf blades (Seneweera et al., 2011), some studies have explored the mechanism of 

photosynthetic acclimation to e[CO2] using the whole canopy (Drake et al., 2016; Vico 

et al., 2019), They found that the phenomenon does occur at the canopy level too. A 

predominantly expressed explanation is that greater self-shading by larger leaf area 

prohibits the entry of light into the lower canopy and causes photosynthetic 

acclimation (Casal, 2013; Kurepin and Pheris, 2014; Mathur et al., 2018). Our 

simulated results also showed the exponential decrease in both RuBisCO and RUE 

after 550 µmol CO2 mol-1 demonstrating photosynthetic acclimation response (Long 

et al., 2006; Murchie et al., 2002). Further, increased photosynthesis under e[CO2] 

leads to an increase in biomass accumulation and subsequent changes in plant 

morphology and developmental traits (Masle 2000; Seneweera and Conroy, 2005). In 

agreement with such findings, our study clearly indicated an increase in biomass up to 
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550 µmol CO2 mol-1 which then plateaus with higher [CO2] suggesting the occurrence 

of photosynthetic acclimation. It has been suggested that photosynthesis acclimation 

may be modulated by environmental conditions and the developmental stage of the 

plant (Seneweera et al., 2002). However, there are also reports that when plants are 

exposed to 1000 µmol CO2 mol-1, acclimation of photosynthesis occur at all stages of 

leaf development (Baker and Aleen, 2005) indicating the key role of the amount of 

CO2 to which plants are exposed in the induction of photosynthetic acclimation. 

 

Temperature stresses can also influence the process of photosynthetic acclimation 

(Chapter II). Temperature-related photosynthesis acclimation is seen to follow a non-

linear bell-shaped relationship, with photosynthesis rate being highest at intermediate 

temperature but, lower at higher and lower temperatures extremes (Yamori et al., 2005; 

Yamaguchi et al., 2019). Generally,  optimum temperature increases the leaf mass per 

area leading to a higher N area (Yamaguchi et al., 2019). As a large fraction of leaf N 

is allocated to RuBisCO, the plant will then have a large amount of RuBisCO per leaf 

area leading to higher photosynthetic rates. However, both the higher and lower 

extremes of temperature decrease the rate of photosynthesis introducing 

photosynthesis acclimation leading to decreased RuBisCO content and Vc.max 

(Yamaguchi et al., 2019). The STELLA model used here did not include acclimation 

patterns under increased temperatures. This can be investigated in future studies to 

explore other traits (e.g. root growth) and trait combinations (temperature and water 

stress) that are known to affect biomass partitioning, growth and yield.  

 

3.5 Conclusion 

 

A modelling approach for investigating RuBisCO and N dynamics under e[CO2] and 

its impacts on growth and development in rice was developed using a conceptual State 

and Rate framework. The framework model presented in this study satisfactorily 

explains a model of rice leaf photosynthesis with growth, physiological changes and 

different abiotic drivers to the canopy scale. The results from the STELLA framework 

clearly showed a decrease in photosynthesis, RuBisCO content and RUE after the pre-

anthesis stage as shown by the field data.  
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A similar type of modelling framework can be adapted to other C3 crops such as wheat 

to explore the impacts e[CO2] on crop plants. However, the parameters used in this 

framework would vary depending on experimental conditions and species. Such 

variability is assumed to be minor compared to the variability of the two parameters 

determining photosynthetic capacity: particularly, capturing maximum carboxylation 

capacity (Vc.max ) and the electron transport capacity (Jmax). Studies have reported the 

reduction in Vc.max and Jmax as common features of photosynthesis acclimation (Rogers 

and Humphries, 2000; Seneweera et al., 2002). However, this study did not consider 

the biochemical components (Vc.max and Jmax) and thus had a limitation in assessing 

the potential capacity for photosynthesis at a given developmental stage. In that regard, 

the next chapter (Chapter IV) examines these biochemical parameters, Vc.max and Jmax, 

to widen the study of photosynthetic acclimation in another important C3 crop, wheat, 

using a different cross-scale modelling approach.  
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Chapter 4: Modelling the wheat response to elevated carbon dioxide 

concentration incorporating parameters of photosynthetic acclimation under  

Free-Air CO2 Enrichment (FACE)  

 

Abstract  

 

The extent and mechanisms of biomass and yield stimulation by e[CO2] under various 

agricultural conditions (e.g. nitrogen fertilizer and water availability) has to be fully 

investigated to provide more realistic predictions of future food productivity. In this 

chapter, the extent of photosynthetic acclimation in wheat at the canopy level in field 

production systems under elevated carbon dioxide concentration e[CO2] was assessed. 

The response of wheat growth and yield to e[CO2] was modelled using two different 

versions of the APSIM -Wheat model. The first was the basic APSIM-Wheat model 

(V:7.10) and the second was a modified version (APSIMDCP; that coupled a diurnal 

canopy photosynthesis-stomatal conductance model).  Data obtained from the use of 

these models were compared with the published data from the Australian Grains Free-

Air CO2 Enrichment (AGFACE) experiment, which involved biochemical and 

morphological studies on wheat grown under different environmental conditions. 

Further, the genotypic variation of photosynthetic acclimation was also investigated 

by comparing five wheat cultivars. The two key input parameters modified in 

APSIMDCP were the maximum carboxylation rate of RuBisCO (Vc.max) and the electron 

transport capacity (Jmax). Overall, the performance of APSIMDCP in simulating a wheat 

response to e[CO2] (550 µmol CO2 mol-1) was satisfactory and better than that of the 

standard version of APSIM (version 7.10), namely for biomass at maturity and grain 

yield.  

 

 

4.1 Introduction 

 

Elevated  carbon dioxide (e[CO2]) alters the metabolic process of plants  through 

increased photosynthetic rates and a reduction of stomatal conductance, which could 

result in  higher biomass and grain yield (Ainsworth and Long, 2005; Ainsworth and 

Rogers, 2007; Ahmed et al., 2019; Kruijt et al., 2008; Varga et al., 2015). However, it 
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has also been shown that prolonged exposure of plants to e[CO2] reverses the initial 

gain by a photosynthesis down-regulation, also known as photosynthetic acclimation. 

Lower N supply to the growing leaf blade and reduced RuBisCO content are associated 

with the photosynthetic acclimation in rice (Chapter III).  Advancing field crop 

productivity can be achieved through improved crop photosynthetic efficiency, 

particularly fine-tuning the photosynthesis biochemistry (Long et al., 2015; Wu et al., 

2018). Further, the extent and the mechanisms of biomass and yield stimulation by 

e[CO2] under various agricultural conditions (e.g. adequate N fertilizer and water 

availability) are yet to be fully investigated to gain the necessary knowledge, to enable 

more accurate predictions of future global food production. 

 

Process-based crop simulation models help to simplify the complex and dynamic soil-

plant-environment inter-relationships. They are useful tools to represent important 

individual processes of crop growth and development (e.g. photosynthesis, respiration, 

phenology, assimilate partitioning, etc.) within the soil-plant-environment nexus, 

which would be practically impossible to test experimentally (O’Leary et al., 2015). 

Such models have been used to investigate crop behaviour under different climatic 

scenarios (Asseng et al., 2004; Asseng et al., 2013; Amarasingha et al., 2015; Christy 

et al., 2018). The connection between leaf-level photosynthetic enhancement under 

changing environmental conditions (i.e. e[CO2]) and crop performance is not straight 

forward as it is influenced by genetic factors, leaf-level biochemical processes, crop 

growth and development dynamics, and environmental conditions. Integrating 

biochemical-based canopy photosynthesis into crop models could potentially help in 

addressing the existing knowledge gaps.  

 

Mechanistic biochemical photosynthesis models; as introduced by de Pury and 

Farquhar (1997), Farquhar et al. (1980) and Farquhar and von Caemmerer (1982) have 

been incorporated into many vegetation growth models to explore the biological 

functionality of crop models (Humphries and Long, 1995; Long et al., 2006; Yin and 

van Laar, 2005; Zhu et al., 2004). Crop models that incorporate both source- and sink-

limited crop growth provide an effective framework for examining the relationship of 

photosynthesis with crop growth, development and yield simulation (Wu et al., 2016; 

Wu et al., 2018). The Agricultural Production System Simulator (APSIM) crop model 

(Holzworth et al., 2014; Keating et al., 2003) is one such example.  



86 
 

 

APSIM is a farming systems simulation framework that has been designed to allow 

field- and farm-scale decision-making in the face of climatic risk, climate change or 

changes in policy (Holzworth et al., 2014; Keating et al., 2003; O’Leary et al., 2015). 

The APSIM crop models simulate crop growth, development, and yield on a daily 

time-line basis, using different crop management and biophysical modules, all driven 

by meteorological data (rainfall, solar radiation, maximum and minimum 

temperatures). The APSIM models have been extensively tested at the experimental 

crop and farm level under various environmental conditions (e.g. Carberry et al., 2013; 

Gaydon et al., 2017; Hochman et al., 2009; Holzworth et al., 2011; Zhang et al., 2012). 

The response of crop growth and resource use to e[CO2] in APSIM is simulated 

through changes to radiation use efficiency (RUE), transpiration efficiency (TE) and 

leaf critical N concentration (CNC) for crop growth (Reyenga et al., 1999). The 

dynamic response of RUE to varying e[CO2] is a non-linear relationship expressed by 

the ratio of light-limited photosynthetic response at the elevated CO2 to that at 350 

µmol CO2 mol-1. The responses of TE and leaf CNC to increased CO2 are assumed to 

be linear models (Holzworth et al., 2014; Keating et al., 2003).  

 

The capability of APSIM coupled to an hourly diurnal canopy photosynthesis 

simulation model (i.e. the diurnal canopy photosynthesis-stomatal conductance model) 

for simulating canopy CO2 assimilation and biomass accumulation of wheat was tested 

by Wu et al. (2019) using a cross-scale modelling approach. Wu et al. (2019) simulated 

three photosynthetic manipulation targets related to leaf CO2 capture and light-energy 

efficiencies [maximum carboxylation rate of RuBisCO (Vc.max), electron transport 

capacity (Jmax) and mesophyll conductance (gm) for CO2] and the response of crop 

growth and yield to various levels of water availability in a typical Australian 

production system.  

 

The cross-scale model (hereinafter referred to as APSIMDCP) has been shown to 

represent the known responses of varying levels of Vc.max, Jmax and gm, and to predict 

satisfactorily, the responses of biomass and yield across a wide range of water and N 

treatments under ambient CO2 (i.e. 370 µmol CO2 mol-1) compared to the standard 

version of APSIM  (Wu et al., 2019), making it a preferable model for use in further 

studies of the biochemical photosynthetic changes and impacts on crop yield in field 
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production systems, especially under e[CO2]. Thus, the main objective of this study 

was to assess the extent of photosynthetic acclimation in wheat at the crop level against 

observed field crops in a semi-arid environment using Free-Air CO2 Enrichment 

(FACE) experimental data. Specifically, this study aimed at: 

 

• Parameterising of APSIMDCP with photosynthetic measurements obtained 

from the AGFACE experiment. 

• Evaluating the performance of APSIMDCP in simulating the response of wheat 

growth and yield to e[CO2]. 

• Assessing any photosynthetic acclimation pattern under e[CO2] in wheat using 

APSIMDCP. 

• Exploring any genotypic variation of photosynthetic acclimation pattern under 

e[CO2] among five wheat cultivars using APSIMDCP. 

 

 

4.2 Materials and methods 

 

4.2.1 Australian Grain Free-Air CO2 Enrichment (AGFACE) data 

 

Growth and morphological data for wheat grown under different environmental 

conditions from the AGFACE experiment at Horsham, Australia (36°45'07'', 

142°06'52'', 128 m above sea level) (Mollah et al., 2009; Fitzgerald et al. 2016) were 

used in this study. The FACE [CO2] was maintained by injecting pure CO2 into the air 

from the octagonal FACE ring (Mollah et al., 2009). Morphological and growth data 

included maximum tillering/initiation of stem elongation (DC: Decimal code; DC31), 

anthesis (DC65) and maturity (DC90) under ambient CO2 (a[CO2]; 365 µmol CO2 mol-

1) and e[CO2] (550 µmol CO2 mol-1) during the 2007-2009 period. These data were 

used for investigating the responses of wheat biomass and yield under a[CO2] and 

e[CO2] and for validating APSIMDCP in the AGFACE experimental conditions. Details 

of the AGFACE experimental settings is provided in O’Leary et al., (2015). Wheat 

was planted at two different sowing dates each year during the 2007-2009 period under 

different irrigation and N treatments (Tables 4.1 and 4.2). The agronomic design 

comprised a complete randomized block experimental design of four replicates. Data 
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were extracted for wheat cultivar “Yitpi” grown during three consecutive cropping 

years (2007-2009). 

 

For the biochemical analysis, gas exchange data measured in the AGFACE conducted 

in the year 2010 were used (Seneweera et al., (unpublished)). Leaf gas exchange 

measurements were carried out in AGFACE for seven different wheat cultivars, out of 

which data from five cultivars (H45, Hartog, Drysdale, and Silverstar and Yitpi) were 

used. The measurements were done at 365, 550 and 700 µmol CO2 mol-1 deriving the 

linear slopes of photosynthesis versus intercellular [CO2] (Ci) which were then used 

to estimate apparent maximum carboxylation efficiency of Ribulose 1.5-bisphosphate 

carboxylase/oxygenase (RuBisCO) (Vc.max) as described by Farquhar et al., 1980.  The 

maximum electron transfer capacity (Jmax) was estimated from the same A/Ci response 

measurements as described by von Caemmerer and Farquhar 1981. The Michaelis-

Menten constant used for CO2 and O2 were Kc = 335 µbar and Ko = 304 mbar 

respectively, and the CO2 compensation point, Γ*= 31 µbar. 
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Table 4.1: Details of experimental settings including plant density, row spacing, sowing depth, sowing rate and surface residue type in the 

AGFACE experiment during the 2007-2009 period. TOS1 and TOS2 refer to times of sowing 1 and 2, respectively.  

 TOS 1 TOS 2 

2007 2008 2009 2007 2008 2009 

Sowing date 18th June 4th June 23rd June 23rd August 5th August 19th August 

Plant density (plant/m2) 123 141 103 90 143 93 

Row spacing (mm) 214 214 195 214 214 195 

Sowing depth (mm) 30 30 50 30 30 50 

Sowing rate (kg/ha) 75 75 75 75 75 75 

Surface residue type Millet Canola Canola Millet Canola Canola 

 

Table 4.2: Total amounts of irrigation and nitrogen (N) as applied in the AGFACE experiment during the 2007-2009 period. Different growth 

settings were involved: ambient [CO2] (365 µmol CO2 mol-1) and elevated [CO2] (550 µmol CO2 mol-1) (A/E), sowing dates (T1 and T2), with N 

(+N), without N (-N), with irrigation (+I), and without irrigation (-I). The detail of the amount of irrigation and N applied as per date is stated in a 

Supplementary Table 3. 

Settings 
Irrigation (mm) N (kg N/ha) 

 

Irrigation (mm) N (kg N/ha) 

 

Irrigation (mm) N (kg N/ha) 

 2007 2008 2009 

A/E_T1-N-I 48 0 10 0 0 0 

A/E_T1+N-I 48 138 10 53 0 53 

A/E_TI-N+I 96 0 40 0 70 0 

A/E_T1+N+I 96 138 40 53 70 53 

A/E_T2-N-I 48 0 25 0 0 0 

A/E_T2+N-I 48 138 25 53 0 53 

A/E_T2-N+I 96 0 80 0 60 0 

A/E_T2+N+I 96 138 80 53 60 53 
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4.2.2 The APSIMDCP model 

 

The APSIMDCP model is a cross-scale model which connects the hourly diurnal canopy 

photosynthesis-stomatal conductance (DCP) module to the standard daily APSIM-

wheat model (Wu et al., 2019). Canopy-level photosynthesis and transpiration are 

simulated within DCP using a single-layer sunlit and shade leaf modelling approach 

(Hammer and Wright, 1994; de Pury and Farquhar 1997). The APSIMDCP modelling 

approach involves converting daily environmental variables (solar radiation, 

temperature and air vapour pressure deficit) to hourly values over the daylight period 

(from sunrise to sunset), summing hourly values to obtain daily canopy CO2 

assimilation, partitioning canopy leaf area (which is simulated using the crop model) 

into sunlit and shaded leaf fractions on the basis of solar geometry and canopy 

architecture, and calculating potential daily (24 h) biomass increment and transpiration 

demand for a crop under defined management practices (Wu et al. 2018; Wu et al., 

2019). Daily canopy-leaf N status is predicted with the APSIM-wheat model and used 

to determine the photosynthetic physiology of the leaf fractions. For a given level of 

absorbed light, canopy leaf N status and plant water availability, canopy 

photosynthesis and transpiration are calculated for each leaf fraction on an hourly 

basis; and then integrated to the daily time step to drive subsequent canopy growth and 

changes in soil water. A comprehensive description and list of the DCP model 

equations and parameters can be found in Wu et al. 2018 and Wu et al., 2019.  

 

4.2.3 Parameterisation of APSIMDCP 

 

The AGFACE database included leaf gas exchange and biochemical measurements at 

different crop stages under ambient and elevated [CO2]. Given the number of 

parameters in DCP (Table 4.3) and the availability of AGFACE experimental data to 

proceed with any new parameterisation, relevant parameters related to Vc.max and Jmax 

in APSIMDCP were modified using AGFACE data for 550 µmol CO2 mol-1and 700. 

µmol CO2 mol-1. Reduction in Vc.max and Jmax have been shown as common features of 

photosynthetic acclimation to e[CO2] (Ainsworth and Long 2005; Rogers and 

Humphries 2000; Seneweera et al., 2002;). Vc.max and Jmax values were calculated using 

the following equations (de Pury and Farquhar, 1997): 
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𝑃𝑠𝑖𝑉𝑐 =
𝑉𝑐.𝑚𝑎𝑥

𝑁0−𝑁𝑏
      (4.1) 

𝑃𝑠𝑖𝐽 =
𝐽𝑚𝑎𝑥

𝑁0−𝑁𝑏
      (4.2) 

 

where PsiVc is the slope of the linear relationship between Vc.max per leaf area at 25°C 

and specific leaf N (N0); and PsiJ is the slope of the linear relationship between Jmax 

per leaf area at 25°C and N0. Nb represents the minimum value of N at or below which 

CO2 assimilation rate is zero. The Michaelis-Menton constant for CO2 and O2 were 

taken as Kc= 335 µbar, Ko = 304,000 µbar respectively.  Nb value was taken as 25 

mmol N m-2 (de Pury and Farquhar, 1997; Wu et al., 2018). Values for Vc.max, Jmax and 

No used in the equations are presented in Table 4.4. 
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Table 4.3: Description, symbols, units and values of different parameters in default 

APSIMDCP under ambient CO2 (370 µmol CO2 mol-1) (Wu et al., 2019). 

Symbol Description Units APSIMDCP 

Kc P25 Michaelis Menten constant of RuBisCO 

carboxylation at 25°C 

µbar 273.42 

Kc Ea Michaelis Menten constant of RuBisCO 

carboxylation at 25°C fitted constant 

µbar 93720 

Ko Michaelis Menten constant of RuBisCO 

oxygenation at 25°C 

µbar 165820 

Ko Ea Michaelis Menten constant of RuBisCO 

oxygenation at 25°C fitted constant 

µbar 33600 

Ci Intercellular CO2 µbar 259 

Ca Ambient CO2 partial pressure µbar 370 

Ci/Ca The ratio of Ci to Ca  0.7 

Oc Oxygen partial pressure  µbar 210000 

B Biomass conversion coefficient g biomass (g CO2)-1 0.41 

Vc.max Ea Vc.max fitted constant µmol CO2 m-1 s-1 65330 

Vc.max/Vo.max Ratio of Vc.max to Vo.max - 4.59 

Vc.max/Vo.max Ea Vc.max/Vo.max fitted constant - 35713.2 

JTMin Minimum temperature of Jmax µmol CO2 m-1 s-1 0 

JTOpt The optimum temperature of Jmax µmol CO2 m-1 s-1 30 

JTMax Maximum temperature of Jmax µmol CO2 m-1 s-1 45 

gm P25 Mesophyll conductance at 25°C molCO2 m-2 s-1 bar-1 0.55 

gmTMin Minimum temperature of gm molCO2 m-2 s-1 bar-1 0 

gmTOpt Optimum temperature of gm molCO2 m-2 s-1 bar-1 29.24 

gm TMax Maximum temperature of gm molCO2 m-2 s-1 bar-1 42 

Rd Ea Leaf day respiration fitted constant  46390 

Psi Vc The slope of the linear relationship between 

Vc.max per leaf area at 25°C and specific leaf 

nitrogen 

mmol CO2 mol-1 N s-1 1.1 

Psi J The slope of the linear relationship between 

Jmax per leaf area at 25°C and specific leaf 

nitrogen 

mmol CO2 mol-1 N s-1 1.85 

Psi gm The slope of the linear relationship between 

gm per leaf area at 25°C and specific leaf 

nitrogen 

mol CO2 s-1 bar-1 mmol-1 

N 

0.005296 

SLN ratio top The ratio of the specific leaf nitrogen at the 

top of the canopy to that of the canopy 

average 

- 1.3 

Canopy UO Canopy wind speed m s-1 1.5 
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Table 4.4: Maximum carboxylation efficiency of ribulose 1,5-bisphosphate 

carboxylase (RuBisCO) (Vc.max), maximum electron transfer capacity (Jmax), and leaf 

N content on an area basis (No; mmol N m-2) of wheat cultivar Yitpi grown under 

e[CO2] (550 and 700 µmol CO2 mol-1). Data are means of n = 4 replicates (Seneweera 

et al., unpublish). 

[CO2]  

(µmol CO2 mol-1) 

Vc.max  

(µmol CO2 m
-2 s-1) 

Jmax  

(µmol CO2 m
-2 s-1) 

No  

(mmol N m-2) 

550 61 262 128.52 

700 53 235 128.52 

 

 

4.2.4 Simulation configurations 

 

In this study, APSIMDCP (used with APSIM-wheat v.7.10) was parameterised using 

wheat field experimental data from the AGFACE and then analysed for its 

performance in predicting biomass and yield responses to different [CO2]. Weather 

data (maximum and minimum temperatures, solar radiation, and rainfall) for 2007-

2009 were recorded on-site or nearby (O'Leary et al. 2015). Similarly, soil data were 

also extracted from the AGFACE database as measured on the site. The values of soil 

parameters are listed in Supplementary Table 4. Large soil mineral N content was 

measured at the site during 2007-2009. They were also considered in the model 

configuration (Supplementary Table 1, 2 and 3) 

 

4.2.5 Assessing the photosynthetic acclimation in wheat 

 

The responses of biomass at DC31, DC65 and DC90, and final grain yield to e[CO2] 

using APSIMs and APSIMDCP were first compared against the observed data and 

corresponding results for six crop models (APSIM-Wheat, APSIM-N wheat, CAT-

Wheat, CROPSYST, OLEARY-CONNER, SALUS) as reported in O’Leary et al. 

(2015). 

 

To assess the impact of increasing [CO2] beyond 550 µmol CO2 mol-1 and examine for 

any occurrence of photosynthetic acclimation, the simulations were also carried out 

under 700 µmol CO2 mol-1. APSIMDCP was parameterised using AGFACE 
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biochemical measurements for 700 µmol CO2 mol-1. The responses of biomass at 

DC31, DC65 and DC90, and final grain yield to e[CO2] were then assessed. 

 

Given the availability of biochemical measurements under [CO2] of 550 and 700 µmol 

CO2 mol-1 for four additional wheat cultivars (H45, Drysdale, Hartog, and Silverstar) 

from the 2010 AGFACE experiment, we investigated the photosynthetic acclimation 

response across this genetic variability. Similar to Yitpi cultivar, both APSIMs and 

APSIMDCP were parameterised based on the AGFACE biochemical measurements for 

550 and 700 µmol CO2 mol-1 for all the selected four cultivars. Table 4.5 lists Vc.max 

and Jmax values of four different cultivars under different e[CO2] (550, and 700 µmol 

CO2 mol-1).  

 

Table 4.5: Maximum carboxylation efficiency of ribulose 1,5-bisphosphate 

carboxylase (RuBisCO) (Vc.max), maximum electron transfer capacity (Jmax) for four 

different wheat cultivars grown under a[CO2] (384 µmol CO2 mol-1) and e[CO2] (550 

and 700 µmol CO2 mol-1). Data are means of n = 4 replicates (Seneweera et al., 

unpublish).  

Cultivars [CO2]  

(µmol CO2 mol-1) 

Vc.max  

(µmol CO2 m
-2 s-1) 

Jmax  

(µmol CO2 m
-2 s-1) 

H45 550 58 248 

 700 55 251 

Drysdale 550 66 315 

 700 63 294 

Hartog 550 67 290 

 700 64 311 

Silverstar 550 62 295 

 700 62 298 
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4.3 Results 

 

The values of PsiVc and PsiJ under 365, 550 and 700 µmol CO2 mol-1, along with 

Ci/Ca values are presented in Table 4.5. From 365 to 700 µmol CO2 mol-1 PsiVc 

decreased, whereas Ci/Ca increased. Similar to the latter, PsiJ increased with an 

increase in CO2, from 365 to 550 µmol CO2 mol-1.  

 

Table 4.6: List of parameters used for the parameterisation of wheat crop under 

APSIMDCP. Both PsiVc and PsiJ values under 550 and 700 µmol CO2 mol-1 were 

calculated as per the AGFACE database. For Ci/Ca values Onoda et al., (2005) and 

Inomata et al., (2018). 

Symbol Description Units CO2 concentration 

365 550 700 

PsiVc Slope of linear relationship between 

Vc.max per leaf area at 250C and specific 

leaf nitrogen 

mmol CO2 mol-1 N s-1 1.1 0.59 0.52 

PsiJ The slope of the linear relationship 

between Jmax per leaf area at 250C and 

specific leaf nitrogen 

mmol CO2 mol-1 N s-1 1.85 2.54 2.28 

Ci/Ca Ratio of Ci to Ca - 0.7 0.74 0.83 

 

4.3.1 Biomass and yield responses to e[CO2] 

 

Multi-year crop simulations were conducted for wheat to assess the likely impact on 

biomass at different growth stages. Both APSIMs and APSIMDCP tended to over 

simulate the biomass at DC31 but DC65 and DC90 are considered satisfactory (Table 

4.7; Figure 4.1). However, both models simulated well the response to e[CO2] with 

similar slopes to the observed data (Figures 4.1 and 4.2). The observed increase in 

wheat biomass at DC31, DC65, and DC90 to e[CO2] (550 µmol CO2 mol-1) was 21%, 

23%, and 28%, respectively (Figure 4.1). In comparison, the simulated response to 

e[CO2] using APSIMs revealed an increase of 25%, 21%, and 20% at DC31, DC65, 

and DC90, respectively and when using APSIMDCP the corresponding simulated 

responses were 19%, 27% and 26%, respectively (Figure 4.1).  
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For grain yield response to e[CO2], APSIMDCP showed slightly better performance 

compared to APSIMs. The simulated responses were 18% and 28% using APSIMs and 

APSIMDCP, respectively, where the observed response was 25% (Figure 4.2). APSIMs 

slightly under simulated the yield whereas APSIMDCP was closer to the observed 

response of the yield. The RMSE between observed and simulated yield ranged 

between 185 to 250 kg ha-1 across three different APSIMs and APSIMDCP settings 

(Table 4.6). As in the biomass, APSIMDCP showed the highest R2 value with the lowest 

RMSE under both a[CO2] and e[CO2]. 
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Table 4.7: Statistics for biomass at DC31, DC65, DC90, (DC: Decimal code) and grain yield of wheat. The Coefficient of Determination (R2), 

root mean square error (RMSE, kg ha-1) and mean absolute error (MAE, kg ha-1) calculations were conducted for different APSIM settings including 

APSIMs and APSIMDCP. 

 Biomass at DC31 Biomass at DC65 Biomass at DC90 Yield 

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

a[CO2] 365 µmol CO2 mol-1 

APSIMs 0.31 311 1471 0.83 348 1508 0.77 560 2558 0.59 221 949 

APSIMDCP 0.46 269 1276 0.80 310 1320 0.82 472 2124 0.58 186 782 

e[CO2] 550 µmol CO2 mol-1 

APSIMs 0.28 406 1918 0.77 361 1501 0.71 610 2620 0.51 247 999 

APSIMDCP 0.50 319 1502 0.78 396 1677 0.77 630 2687 0.53 259 1072 
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Figure 4.1: Response of wheat (kg ha-1) biomass at DC31, DC65, and DC90 under e[CO2] (550 µmol CO2 mol-1) using APSIMs and 

APSIMDCP. The simulated response to e[CO2] (orange dots and orange fitted lines) compared to the observed response to e[CO2] (blue 

dots and blue fitted lines). The 1:1 line (dashed line) is the line of zero response to e[CO2]. a[CO2] = 365 µmol CO2 mol-1. 
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Figure 4.2: Response of yield (kg ha-1) to e[CO2] (550 µmol CO2 mol-1) using APSIMs and APSIMDCP. The 

simulated response to e[CO2] (orange dots and orange fitted lines) compared to the observed response to e[CO2] 

(blue dots and blue fitted lines). The 1:1 line (dashed line) is the line of zero response to e[CO2]. a[CO2] = 365 

µmol CO2 mol-1.  
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4.3.2 Comparison of APSIMDCP performance to reported results 

 

The performance of APSIMDCP was compared against reported results for six different 

crop models. For the biomass at DC31, the APSIMs simulated value was close enough 

to APSIM-Wheat 7.4 and was the same as the model CAT-Wheat. The APSIMs was 

found simulating around the observed range whereas other models were either under 

or over simulating. However, the APSIMDCP simulated the response quite close to the 

slope of the observed data. For biomass at DC65, all the models as used in O’Leary et 

al. (2015) along with APSIMs was found simulating the values around the same range. 

However, only of the models among the six models used, CROPSYST and the 

APSIMDCP was found over simulating the response.  

 

Further, for the yield value, APSIMDCP simulated the value close enough to the 

observed response whereas APSIMs under simulated the response. All other models 

reported simulated within the range of observed value except the APSIM-Wheat 7.4 

which under simulated as APSIMs. 

 

Table 4.8: Comparison of slope values of biomass DC31, Biomass DC65, and LAI 

DC65 for different crop models under e[CO2]: 550 µmol CO2 mol-1. 

 Biomass  Biomass  Yield Source  

DC31 DC65   

Observed  1.21 1.23 1.26 O’Leary et al. (2015) 

APSIM-Wheat (v7.4) 1.29 1.22 1.19 O’Leary et al. (2015) 

APSIM-N wheat 1.18 1.21 1.28 O’Leary et al. (2015) 

CAT-Wheat 1.25 1.20 1.20 O’Leary et al. (2015) 

CROPSYST 1.40 1.28 1.27 O’Leary et al. (2015) 

OLEARY-CONNER 1.45 1.24 1.21 O’Leary et al. (2015) 

SALUS 1.09 1.16 1.25 O’Leary et al. (2015) 

APSIMs (v7.10) 1.25 1.20 1.18 This study 

APSIMDCP 1.19 1.27 1.28 This study 
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4.3.3 Assessment of photosynthetic acclimation patterns 

 

In agreement with O’Leary et al. (2015), the photosynthetic response of wheat biomass 

and yield were found to be linear to an increase in [CO2] from 365 to 550 µmol CO2 

mol-1. However, modelling the response to e[CO2] under a 700 µmol CO2 mol-1 

revealed variable results in terms of photosynthetic acclimation.  

 

4.3.4 Simulation performance: Biomass 

 

The biomass at different growth stages showed increases under 550 µmol CO2 mol-1 

as explained above (Figure 4.1). However, the increasing trend was substantially 

reduced as it moved from 550 to 700 µmol CO2 mol-1 showing an increase of only 9% 

to 11% with APSIMs and less than 1% to 5% with APSIMDCP (Table 4.9). The rate of 

increase in biomass was reduced by around 56%, 55%, and 52% at DC31, DC65, and 

DC90 under APSIMs as [CO2] increased from 550 to 700 µmol CO2 mol-1. Further, 

the rate of increase in biomass was substantially reduced by 95%, 93%, and 81% at DC31, 

DC65, and DC90 under APSIMDCP as [CO2] increased from 550 to 700 µmol CO2 mol-1. 

 

4.3.5 Simulation performance: Yield 

 

Similarly, the yield response also decreased as compared to the increment under 550 

µmol CO2 mol-1 (as in Table 4.9). The increment under 700 µmol CO2 mol-1 was only 

9% and 11% which was 50% and 61% lower than the increment under 550 µmol CO2 

mol-1 under APSIMs and APSIMDCP respectively. 

 

4.3.6 Simulation performance: Slope comparison 

 

Both APSIMs and APSIMDCP simulated the responses within the observed value range 

up to 550 µmol CO2 mol-1 (Table 4.9; Figure 4.3). After the increment of [CO2] from 

550 to 700 µmol CO2 mol-1, the response of both biomass and yield under APSIMs 

continue to rise linearly. But the incorporation of DCP within APSIMs i.e. APSIMDCP 

showed a fall of biomass particularly at DC90 and yield value as [CO2] increases from 

550 to 700 µmol CO2 mol-1, pointing to acclimation.  
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Table 4.9: Comparison of response to CO2 slopes of observed (AGFACE database) 

and simulated data under APSIMs and APSIMDCP under different CO2 concentration 

compared to ambient levels.  

 550/365 700/550 

Biomass at DC31 Observed 1.20 NA1 

APSIMs 1.25 1.11 

APSIMDCP 1.19 0.99 

Biomass at DC65 Observed 1.23 NA 

APSIMs 1.20 1.09 

APSIMDCP 1.27 0.98 

Biomass at DC90 Observed 1.28 NA 

APSIMs 1.19 1.09 

APSIMDCP 1.27 0.95 

Yield Observed 1.25 NA 

APSIMs 1.18 1.09 

APSIMDCP 1.28 0.89 

1 NA: not applicable. 
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Figure 4.3: Comparisons of the responses of biomass and yield at different e[CO2] 

(550 and 700 µmol CO2 mol-1) using APSIMs and APSIMDCP. The slope values 

represent e[CO2] values against a[CO2] values. Observed values were from the 

AGFACE experiment with two CO2 concentration (350 µmol CO2 mol-1 (ambient) and 

500 µmol CO2 mol-1 (elevated). 
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4.3.7 Simulations using different genotypes 

 

Genotypic variation of photosynthetic acclimation to e[CO2] was assessed only with 

biomass at DC90 and with yield response (Figure 4.4 and 4.5) as the acclimation 

response was predominant at maturity with Yitpi. The response of APSIMs to the 

increasing [CO2] was linear in case of all genotypes similar to Yitpi except Silverstar. 

No photosynthetic acclimation was observed without the integration of Vc.max and Jmax 

values even under increasing [CO2] with APSIMs. 

 

With the incorporation of biochemical parameters, the APSIMDCP successfully traced 

photosynthetic acclimation responses under e[CO2] after 550 µmol CO2 mol-1 in all 

the cultivars. However, the range of rise and fall in both the biomass and yield in 

different cultivars were found to be different. Among all the cultivars Yitpi showed a 

decrease in biomass by almost 6% as [CO2] continue to rise after 550 µmol CO2 mol-

1. The cultivars Drysdale and Hartog almost showed a similar trend of rise and fall in 

biomass as [CO2] increases. Both the cultivars showed a decrease in biomass value by 

0.8% as [CO2] increased above 550 µmol CO2 mol-1. Similarly, for H45 the biomass 

decreased by around 1.7% with increasing [CO2]. However, the cultivar Silverstar was 

the only one showing increased biomass by around 1.6% as [CO2] rose above 550 

µmol CO2 mol-1. The increment is, however, substantially low compared to the 

increase in biomass as [CO2] rises from 365 to 550 µmol CO2 mol-1.  

 

A similar photosynthetic acclimation pattern was observed for all the cultivars when 

yield response is considered. Yitpi showed a substantial decrease in yield by around 

11% as [CO2] increases from 550 to 700 µmol CO2 mol-1 showing the highest decrease 

among the cultivars. This was then followed by cultivar Hartog with a decrease in yield 

by 10% as [CO2] increased from 550 to 700 µmol CO2 mol-1. Furthermore, the cultivar 

H45 showed only a decrease of around 0.85% and for Drysdale and Silverstar showed 

a linear increase up to 550 µmol CO2 mol-1 which stabilizes thereafter.  

 

However, all other cultivars showed an acclimation response but at different rates. 

Yitpi showed the highest acclimation response in both biomass and yield whereas the 

Silverstar showed the least. 
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Figure 4.4: Comparisons of the responses of biomass (DC90) at different [CO2] (365, 550 and 700 µmol CO2 mol-1) for five different wheat 

cultivars (Drysdale, H45, Hartog, Silverstar, and Yitpi) using APSIMs (blue line) and APSIMDCP (orange line). The slope value represent e[CO2] 

values against a[CO2] values.  
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Figure 4.5: Comparisons of the responses of yield at different [CO2] (365, 550 and 700 µmol CO2 mol-1) for five different wheat cultivars 

(Drysdale, H45, Hartog, Silverstar, and Yitpi) using APSIMs (blue line) and APSIMDCP (orange line). The slope value represents e[CO2] values to 

a[CO2] values.  
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4.4 Discussion 

 

The observed response of wheat as per AGFACE to e[CO2] over three years, in 

biomass and yield, was robust and consistent. The response was considered as 

substantial (O’Leary et al., 2015), but it was not indicative of a photosynthetic 

acclimation scenario until the [CO2] reached 550 µmol CO2 mol-1 and passes early 

growth phases (DC31 and DC65). The simulated response using either APSIMs 

(version 7.10) or APSIM-Wheat (version 7.4) was similar (Table 4.8; O’Leary et al., 

2015). The response to e[CO2] (550 µmol CO2 mol-1) of around 18-25% in biomass 

and yield using APSIMs was either under- or over-simulating as compared to 19-28% 

when APSIMs was upgraded to APSIMDCP. The value under APSIMDCP was found to 

be closer to the observed response, than the response under APSIMs (Figure 4.1, 4.2). 

 

Several studies have shown strong evidence of photosynthesis acclimation when 

grown under e[CO2] for an extended period (e.g Drake et al., 1997; Leakey et al., 2009; 

Nakano et al., 1997; Sage et al., 1989; von Caemmerer et al., 2001). In the present 

study, APSIMs did not simulate the acclimation response of wheat even at [CO2] of 

more than 500 µmol CO2 mol-1. However, with APSIMDCP, increase in [CO2] from 

550 to 700 µmol CO2 mol-1 showed a decreasing trend in both biomass at maturity and 

yield in the cultivar Yitpi, indicating photosynthetic acclimation to e[CO2] (700 µmol 

CO2 mol-1). Also, the present results clearly showed a genetic variability in 

photosynthetic acclimation to e[CO2] (700 µmol CO2 mol-1), with a greater 

acclimation response in cultivar Yitpi, compared to cultivar Silverstar which showed 

the least response. Further, the photosynthetic acclimation to e[CO2] was found 

predominantly at a later stage of the development which was characterised by lower 

Vc.max and Jmax value.  Therefore, the simulation studies using APSIMDCP provided 

evidence to conclude that the magnitude of photosynthetic acclimation is dependent 

on both the genotype and the phenological stage of the plant.  Therefore, the present 

findings offer a potentially useful approach, namely, either the use of cultivars that 

resist photosynthetic acclimation or breeding for that characteristic, to meet the 

challenge of sustaining current productivity levels of agricultural crops.  
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The APSIMDCP model consists of various parameters, incorporating biochemical 

components of wheat (Wu et al., 2019). Because the present study was based on 

measured data from AGFACE, the lack of various parameters within the default DCP 

script was a major limitation of the study.  Hence, the focus only on a few major 

parameters including specific leaf N (SLN), Vc.max, Jmax, Ci/Ca, and [CO2] to modify 

the default DCP as APSIMDCP. Vc.max and Jmax, considered as a crucial parameter for 

photosynthesis model (Farquhar et al., 1980; von Caemmerer et al., 2000) utilizes SLN 

as an input (de Pury and Farquhar, 1997). Thus, SLN is recognised as one of the major 

parameters in the default DCP script. In that regard, the study selected SLN, Vc.max, 

and Jmax as the major input parameters for modifying the default DCP as per the 

AGFACE database. SLN acts as a key driver of both crop-level RUE and leaf-level 

photosynthesis (Evans, 1989; Sinclair and Horie, 1989; Thilakarathne et al., 2015).  

 

One approach to modelling leaf-level photosynthesis that incorporates SLN is to 

associate some key photosynthetic parameters with SLN. This approach is applicable 

for driving the biochemical photosynthesis models with crop physiological attributes, 

which can be done by establishing relationships between biochemical photosynthesis 

model parameters and SLN. This approach allows SLN, which is often related to 

canopy-level RUE, to be linked to leaf-level models, and thus facilitates effective links 

across these scales. To incorporate the effects of SLN on photosynthetic physiology, 

this model assumed that at the reference temperature of 25°C, the Vc.max and Jmax were 

all zero below a minimum SLN and increased linearly with a slope of PsiVc and PsiJ 

respectively. The respective PsiVc and PsiJ value were calculated, based on equations 

as described by Pury and Farquhar, 1997.  

 

For Ci/Ca value, the literature suggests that the ratio would be stable with Ca between 

100 to 400 µmol CO2 mol-1 (Wu et al., 2018). Further, Ainsworth and Long (2005) 

reported that Ci/Ca does not appear to change under elevated Ca. However, other 

studies reported the value of Ci/Ca to vary in the range from 0.6 to 0.9 for C3 crops 

under different [CO2] (Tan et al., 2017). In this study, we adopted the Ci/Ca ratios of 

0.7, 0.74 and 0.83 for 365, 550, and 700 µmol CO2 mol-1 respectively, which are 

similar to those adopted by Inomata et al. (2018), Onada et al. (2005) and Wu et al. 

(2019), in their studies. After modifying these parameters, APSIMDCP simulated 

biomass and yield for the diverse validation set of AGFACE database for wheat and 
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showed some difference from the values simulated by APSIMs. There was a slight loss 

in precision and predictive capability for both biomass (DC31 and DC90) and yield 

and a little increment in the bias of prediction of biomass (DC65) when simulated 

under APSIMDCP. The overall response between observed and simulated values of 

biomass and yield across a range of N and water supply for wheat indicated a robust 

predictive capability of the APSIMDCP model.  

 

The photosynthesis response to temperature variation by different C3 or C4 crops is 

mostly simulated effectively (Bernacchi et al., 2002; Wu et al., 2018; Wu et al., 2019). 

Parameters like Kc, Ko, Vomax/Vc.max are usually assumed to be similar among the C3 

species, in simulating the temperature response (von Caemmerer et al., 2013). Wu et 

al., (2019) also adopted these values from N tabacum (Bernacchi et al., 2002) 

considering it to be similar among C3 species. Though this study’s focus was on the 

[CO2] response to photosynthesis, rather than to temperature, we adopted the same 

default value for running the simulation except for the available measured data at the 

AGFACE site. The major aim of the study was to validate the default DCP model to 

different [CO2] as no studies were known to date to simulate the response of different 

[CO2] to leaf photosynthesis, particularly by using models like APSIMDCP. 

 

Variability in photosynthetic rate has been recognised, both within and among the 

plant functional groups (Evans et al., 2002).  Such variability may account for part of 

the photosynthesis response to e[CO2] and, may also contribute to variability in growth 

and yield responses. Thus, the study continued simulating the impact of four other 

wheat cultivars (H45, Hartog, Silverstar and Drysdale) to evaluate the genetic 

variability in photosynthesis acclimation to e[CO2]. While all four cultivars, when 

tested at e[CO2] (700 µmol CO2 mol-1), showed a photosynthetic acclimation pattern 

in the post-anthesis stage, albeit with variation in magnitude, among the cultivars.  

 

It has been demonstrated that reduction of Vc.max and Jmax as a common feature of 

photosynthesis acclimation to e[CO2] (Ainsworth and Long 2005; Rogers and 

Humphries 2000; Seneweera et al., 2002). Other studies also verified this by showing 

a reduction in Vc.max and Jmax by 13% and 17% respectively under e[CO2] (Turnbull et 

al., 1998). In the same study, RuBisCO content was reduced by 40%. Thus, the 

findings of the present study also suggest that the acclimation of photosynthesis to 
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e[CO2] mainly occurs as a result of the rapid degradation of key enzyme RuBisCO 

(chapter III). The reduction of RuBisCO content together with a reduction in leaf N 

and Vc.max is generally associated with photosynthesis acclimation responses (Bowes 

et al. 1996; Long et al., 2006; Moore et al., 1999; Nakano et al., 1997). As per the 

AGFACE database, four out of five cultivars showed a reduction in Vc.max and No 

suggesting lower RuBisCO activity or lower RuBisCO concentration per given N 

content at e[CO2]. 

 

Studies have suggested that resource availability regulates the effect of e[CO2] on total 

biomass production and yield. Availability of N is a critical determinant of the overall 

growth and production mechanism under e[CO2]. Particularly, in C3 plants 

photosynthetic acclimation is more pronounced at low N supply as the available N in 

the soil declines overtime at e[CO2] in comparison to a[CO2] as explained by 

progressive N limitation phenomenon (Luo et al., 2004).  

 

 

4.5 Conclusion 

 

This study investigated the extent of photosynthetic acclimation in wheat at the crop 

level and field production systems under e[CO2]. The results presented in this chapter 

are driven by the APSIMDCP model output which was adequately tested against 

AGFACE data, including a variety of morphological and biochemical parameters. The 

study showed that both APSIMs and APSIMDCP were useful models for studying the 

response of wheat. However, several limitations exist in the analysis, due to the 

unavailability of some measurements for all the parameters required by the DCP 

model. Focusing on the major component for determining the photosynthetic 

acclimation, Vc.max and Jmax, the study explored the acclimation responses with 

measured SLN. All the cultivars showed different responses to increase in [CO2] as 

reported by the decreasing value of Vc.max and Jmax under e[CO2]. Therefore, the study 

successfully traced the photosynthetic acclimation response of five different wheat 

cultivars at different growth stages and further demonstrated that better predictive 

capacity of  APSIMDCP compared to APSIMs.  
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Supplementary Table 1:  List of dates including the amount of irrigation (mm) and 

N (kg N ha-1) applied for different settings under sowing date 1 (Time of sowing: 

TOS1) as per AGFACE database (2007-2009). 

AT1-N-I AT1+N-I AT1-N+I AT1+N+I 

Date of 

application Quantity  

Date of 

application Quantity  

Date of 

application Quantity  

Date of 

application Quantity  

Irrigation (mm) 

17-Sep-07 10 17-Sep-07 10 17-Sep-07 10 17-Sep-07 10 

8-Oct-07 10 8-Oct-07 10 24-Sep-07 10 24-Sep-07 10 

16-Oct-07 8 16-Oct-07 8 2-Oct-07 10 2-Oct-07 10 

17-Oct-07 10 17-Oct-07 10 8-Oct-07 10 8-Oct-07 10 

18-Oct-07 10 18-Oct-07 10 16-Oct-07 8 16-Oct-07 8 

3-Oct-08 10 3-Oct-08 10 17-Oct-07 10 17-Oct-07 10 

2009 0 2009 0 18-Oct-07 10 18-Oct-07 10 

        14-Nov-07 8 14-Nov-07 8 

        15-Nov-07 10 15-Nov-07 10 

        16-Nov-07 10 16-Nov-07 10 

        8-Sep-08 5 8-Sep-08 5 

        9-Sep-08 5 9-Sep-08 5 

        10-Sep-08 5 10-Sep-08 5 

        11-Sep-08 5 11-Sep-08 5 

        25-Sep-08 20 25-Sep-08 20 

        6-Oct-09 5 6-Oct-09 5 

        7-Oct-09 5 7-Oct-09 5 

        22-Oct-09 15 22-Oct-09 15 

        23-Oct-09 15 23-Oct-09 15 

        3-Nov-09 15 3-Nov-09 15 

        4-Nov-09 15 4-Nov-09 15 

Nitrogen (kgN/ha) 

    31-Jul-07 46     31-Jul-07 46 

    5-Oct-07 46     5-Oct-07 46 

    5-Nov-07 46     5-Nov-07 46 

    22-Jul-08 53     22-Jul-08 53 

    21-Aug-09 53     21-Aug-09 53 
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Supplementary Table 2:  List of dates including the amount of irrigation (mm) and 

N (kg N ha-1) applied for different settings under sowing date 2 (TOS2) as per 

AGFACE database (2007-2009). 

 

 

 

AT2-N-I   AT2+N-I   AT2-N+I   AT2+N+I   

Date of 

application Quantity  

Date of 

application Quantity  

Date of 

application Quantity  

Date of 

application Quantity  

Irrigation (mm)  

17-Sep-07 10 17-Sep-07 10 17-Sep-07 10 17-Sep-07 10 

8-Oct-07 10 8-Oct-07 10 24-Sep-07 10 24-Sep-07 10 

16-Oct-07 8 16-Oct-07 8 2-Oct-07 10 2-Oct-07 10 

17-Oct-07 10 17-Oct-07 10 8-Oct-07 10 8-Oct-07 10 

18-Oct-07 10 18-Oct-07 10 16-Oct-07 8 16-Oct-07 8 

16-Oct-08 7 16-Oct-08 7 17-Oct-07 10 17-Oct-07 10 

17-Oct-08 8 17-Oct-08 8 18-Oct-07 10 18-Oct-07 10 

26-Oct-08 10 26-Oct-08 10 14-Nov-07 8 14-Nov-07 8 

2009 0 2009 0 15-Nov-07 10 15-Nov-07 10 

        16-Nov-07 10 16-Nov-07 10 

        4-Dec-07 10 4-Dec-07 10 

        8-Sep-08 10 8-Sep-08 10 

        24-Sep-08 20 24-Sep-08 20 

        16-Oct-08 15 16-Oct-08 15 

        17-Oct-08 15 17-Oct-08 15 

        25-Oct-08 20 25-Oct-08 20 

        22-Oct-09 15 22-Oct-09 15 

        23-Oct-09 15 23-Oct-09 15 

        3-Nov-09 15 3-Nov-09 15 

        4-Nov-09 15 4-Nov-09 15 

Nitrogen (kgN/ha) 

    5-Oct-07 46     5-Oct-07 46 

    9-Nov-07 46     9-Nov-07 46 

    4-Dec-07 46     4-Dec-07 46 

    30-Sep-08 53     30-Sep-08 53 

    30-Sep-09 53     30-Sep-09 53 
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Supplementary Table 3: List of total amounts of irrigation (mm) and N (kg N ha-1) 

applied under different setting in three consecutive years (2007-2009) as per AGFACE 

database (2007-2009). 

Observed Irrigation  N Irrigation  N Irrigation  N 

2007 2008 2009 

AT1-N-I 48.00 0.00 10.00 0.00 0.00 0.00 

AT1+N-I 48.00 138.00 10.00 53.00 0.00 53.00 

AT1-N+I 96.00 0.00 40.00 0.00 70.00 0.00 

AT1+N+I 96.00 138.00 40.00 53.00 70.00 53.00 

   

AT2-N-I 48.00 0.00 25.00 0.00 0.00 0.00 

AT2+N-I 48.00 138.00 25.00 53.00 0.00 53.00 

AT2-N+I 96.00 0.00 80.00 0.00 60.00 0.00 

AT2+N+I 96.00 138.00 80.00 53.00 60.00 53.00 

 

 

  



122 
 

Supplementary Table 4: List of values of soil parameters used in APSIM as per 

AGFACE setting in Horsham from O'Leary et al. (2015).  

LL: Lower limit; DUL: Drain upper limit; SAT: Saturated soil; BD: Bulk Density; 

APSIM KL: APSIM rate constant ; APSIM XF: APSIM exploration factor 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

Depth 

(cm) 

Air dry 

(g/cm3) 

Crop LL 

(g/cm3) 

DUL 

(g/cm3) 

SAT 

(g/cm3) 

BD 

(g/cm3) 

pH APSIM 

KL 

APSIM 

XF 

10 0.15 0.20 0.39 0.46 1.14 8.4 0.06 1.00 

20 0.18 0.23 0.40 0.47 1.30 8.4 0.06 1.00 

40 0.25 0.27 0.42 0.48 1.37 8.9 0.04 1.00 

60 0.27 0.30 0.43 0.47 1.40 9.0 0.02 0.80 

80 0.28 0.33 0.45 0.47 1.40 9.0 0.02 0.80 

100 0.30 0.35 0.45 0.47 1.40 9.0 0.02 0.60 

120 0.32 0.36 0.45 0.47 1.40 9.0 0.02 0.60 

140 0.33 0.37 0.45 0.47 1.40 9.1 0.02 0.20 

160 0.34 0.37 0.45 0.47 1.40 9.1 0.02 0.20 

180 0.34 0.37 0.45 0.47 1.40 9.1 0.02 0.20 
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Chapter 5: General discussion and conclusions 

 

5.1 General discussion 

 

In the interest of sustaining food security for the increasing human population, in a 

situation of drastic climate change forecasts, the effects of increasing [CO2] and 

temperature on plant growth and productivity is a major concern. Elevated [CO2] 

(e[CO2]) causes increased photosynthesis and plant growth, which leads to greater 

production of carbohydrates and biomass (Ainsworth et al., 2008; Leakey et al., 2009). 

Photosynthesis is recognised as a major determinant for overall crop productivity as it 

is the entry point for carbon assimilation. Therefore, assessment of the impact of 

exposure to increasing [CO2] on photosynthesis is significant in understanding the 

impact of e[CO2] on crop growth and development (Bagley et al., 2015). A notable 

feature of the increased photosynthesis response to e[CO2] is its short-lived nature and 

the rapid return to a photosynthesis decline phase, which is being attributed to several 

processes (Thompson et al., 2017), perhaps as a physiological adaptive mechanism. 

The phenomenon of the decline in photosynthesis over time is referred to as 

photosynthetic acclimation (Ainsworth et al., 2007; Long et al., 2004; Rodrigues et al., 

2016; Seneweera et al., 2011). The present research was an effort to gain an insight to 

the physiology and the biochemistry of the process of photosynthetic acclimation in 

agricultural crops exposed to e[CO2].   

 

While acknowledging the complex nature of the regulation of photosynthesis, this 

study focused on a few selected aspects, namely N and water use, temperature effects, 

as well as the relationship between single leaf productivity and canopy productivity. 

Knowledge about the efficiency of N and water usage by crops is imperative for a 

better understanding of photosynthesis regulation (Long et al., 2006; Zhu et al., 2010). 

Indeed, the critical role of the availability of these resources and, the impact of 

temperature, in determining the overall productivity and growth of a plant, are well 

documented, including Chapter 2 of this thesis. Another complex aspect of the subject 

is the relationship between single-leaf and the whole crop because the rate of 

photosynthesis at the leaf-level, by itself, may not necessarily correlate with the overall 

productivity as it may be subjected to modulation by many factors (Hammer et al., 

2006; Long et al., 2006; Sinclair et al., 2004). Hence, bridging the knowledge gap on 



124 
 

the link between the leaf and crop level production is needed to help accelerate the 

progress in photosynthesis enhancement for crop improvement in a future CO2-rich 

environment. The use of modelling tools has been recognized as an excellent approach 

for this purpose (Wu et al., 2019). 

 

The study incorporated three different modelling techniques including system 

dynamics model comprising state and rate variables, STELLA, and a cross-scale 

modelling approach like APSIMDCP that connects leaf and crop level dynamics along 

with major abiotic factors involved. Using different secondary data from published 

experiments, this study re-investigated the change in photosynthesis of different 

functional group species under e[CO2] followed by a further assessment that provokes 

the process of photosynthesis to move towards acclimation. Further, the study assessed 

the change in RuBisCO content and change in N concentration throughout the growth 

stage of the leaf which was upscaled to canopy level through simulation. The key 

findings from each study to investigate a few selected aspects of physiological 

response to e[CO2] are discussed below, followed by the conclusion and some 

suggestions for future research. 

 

Chapter II: The exploration of the extent of physiological changes in two functional 

groups of plants (C3 and C4), under e[CO2], using a meta-analysis of recent studies. 

 

Increasing [CO2] has significant implications on the productivity of agricultural crops 

(Ainsworth et al., 2008; Drake et al., 1997). Plants respond to rising [CO2] through 

increased photosynthesis and decreased stomatal conductance, eventually increasing 

the overall productivity of the crops (Ainsworth et al., 2007). The change in these 

physiological parameters has been well explained in regard to changing [CO2] 

focusing particularly on certain species (Long et al., 2006; Rogers et al., 2004). 

However, the impact of e[CO2] on major functional groups including both C3 and C4 

is very limited and not up to date.  Therefore, this chapter compared the change in 

physiological parameters, photosynthesis and stomatal conductance, among and 

within the C3 and the C4 crops under e[CO2].  

 

Many studies have documented an increase in photosynthesis and a decrease in 

stomatal conductance particularly in C3 crops (Ainsworth et al., 2007; Long et al., 
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2006; Rogers et al., 2004). However, an interspecific variation within a functional 

group was observed in response to e[CO2]. Within the C3 group, trees and grasses 

showed a higher increase in photosynthesis as e[CO2] increases the carboxylation and 

reduces the photorespiration (Ainsworth et al., 2007). In contrast, other groups within 

C3 showed comparatively lower stimulation as photosynthesis become limited by the 

capacity of RuBP regeneration, and a further increase in photosynthesis under e[CO2] 

results only from the repression of photorespiration (Long et al., 2004). However, no 

change in photosynthesis was found for C4 species under e[CO2], yet stomatal 

conductance decreased at e[CO2]. .  

 

Further, the study investigated the change in physiological processes under different 

abiotic stresses including water, temperature, and N. The unavailability or sometimes, 

the excess availability of these abiotic stresses was found affecting the affinity of 

RuBisCO for CO2, hence obstructing the physiological process. Thus, the meta-

analysis depicted that the change in photosynthesis and stomatal conductance under 

e[CO2] is directly attributed to the abiotic stresses. The optimal availability of the 

abiotic factors was found necessary along with e[CO2] to promote the growth and 

development of crops. Under the unavailability of required abiotic factors, the major 

physiological process may follow the decline or may stabilize introducing 

the‘photosynthetic acclimation’ phenomena.  

 

Chapter III: To model the photosynthetic acclimation in rice based on biochemical 

processes.  

 

N is an essential macronutrient for plant growth affecting the overall crop productivity 

(Imai et al., 2008). Particularly, in the rice plant, about 70% of N is allocated in the 

leaf blades supporting photosynthesis (Mae and Ohira, 1982). The most abundant 

protein, RuBisCO, constitutes 12-35% of total leaf N participating actively in the 

photosynthesis process (Kumar et al., 2002; Makino et al., 2003). In this chapter, the 

links between nitrogen (N) and RuBisCO are explored by hypothesizing that the 

photosynthesis acclimation to elevated [CO2] (e[CO2]) is associated with reduced 

RuBisCO contents that are directly related to the N supply into the leaf blades. An 

analytical modelling framework applying leaf to a canopy-level rice crop system using 

RuBisCO and N dynamics and crop growth processes were developed using the 
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STELLA software and secondary data of rice from a growth chamber experiment. The 

N influx is one of the most important factors determining the extent of RuBisCO 

synthesis and eventually the overall process of photosynthetic acclimation in rice. The 

change in photosynthesis, RuBisCO, and radiation use efficiency (RUE) were assessed 

over the growth period from transplantation to maturity. The results strongly support 

an acclimation response on both morphological and biochemical levels under different 

N rates and [CO2]. Such an analytical approach should guide the incorporation of 

nutrient limitation under e[CO2], and resulting impact on crop growth, into more 

complex crop models. 

 

Chapter IV: To simulate photosynthetic acclimation in wheat to e[CO2] under filed 

experimental conditions.  

 

Photosynthesis is central for progressing field crop productivity. However, the 

occurrence of photosynthetic acclimation under e[CO2] continues to drag the 

productivity behind under different environmental and growth conditions. This chapter 

continued exploring photosynthetic acclimation response with another C3 crop, wheat, 

by developing a cross-scale modelling approach connecting the leaf-level biochemical 

parameters with a canopy level dynamic. The response of wheat growth and yield to 

e[CO2] was modelled using two different versions of the APSIM -Wheat model. The 

first was the basic daily time step APSIM-Wheat model (V:7.10) and the second was 

a modified version (APSIMDCP; that coupled an hourly daytime diurnal canopy 

photosynthesis-stomatal conductance model).  These models were compared to data 

published from the Australian Grains Free-Air CO2 Enrichment (AGFACE) 

experiment data which involved biochemical and morphological data for wheat grown 

under different environmental conditions. This chapter simulated major photosynthetic 

manipulation targets including Vc.max, Jmax and their responses under variable [CO2] 

(365, 550, 700 µmol CO2 mol-1).  

 

Additionally, the genotypic variation of photosynthetic acclimation pattern under 

e[CO2] in five wheat cultivars was investigated. The two key input parameters 

modified in APSIMDCP were the maximum carboxylation rate of RuBisCO (Vc.max) 

and the electron transport capacity (Jmax). Overall, the performance of APSIMDCP in 

simulating a wheat response to e[CO2] (550 µmol CO2 mol-1) was satisfactory and 
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better than that of the standard version of APSIM (version 7.10), namely for biomass 

at maturity and grain yield. Simulations under increased CO2 showed a clear picture 

of photosynthetic acclimation for the majority of wheat cultivars assessed under the 

AGFACE experimental conditions. The down-regulation of photosynthesis in wheat 

above 550 µmol CO2 mol-1 was found to be driven by the reduction in RuBisCO 

content and/or total activity supporting the primary thesis of this study that the supply 

and flux of N is a primary determinant of acclimation to e[CO2] in wheat and rice C3 

crops. The study by Gesch et al. 2003 revealed that rice cultivars have different 

capacity of carboxylation to e[CO2]. In that regard, the different magnitude of Vc.max 

and Jmax values suggest different capacities of carboxylation and electron transport in 

the cultivars assessed.  This paves the way for genetic selection in these variables. 

 

5.2 Conclusions and Future directions 

 

• This study was intended to understand the effect of e[CO2] on photosynthesis, 

which is a major physiological process in plants, through a meta-analysis of 

relevant studies reported in the 2007 to 2019 period and, using modelling 

approaches. The consensus that could be arrived at, from the meta-analysis, is 

that plants respond to e[CO2], with an increase in photosynthesis and decreased 

stomatal conductance, particularly in the C3 functional group. Photosynthesis 

and stomatal conductance response are not the same in C4 functional group 

plants. Also, within the C3 functional groups, different crop categories showed 

different percentages of change in photosynthesis and stomatal conductance 

under e[CO2]. Furthermore, the meta-analysis revealed the role of abiotic 

factors as critical determinants of photosynthesis and stomatal conductance 

under e[CO2].  

• The study found that different modelling approaches (STELLA state and rate 

modelling and APSIMDCP) can assist in understanding crop response to 

variations in the key environmental factors (CO2, RUE, N).  The capacity of 

these models to capture the photosynthetic attributes makes them a valuable 

tool, which when combined with reliable climate predictions can also evaluate 

photosynthetic responses of plants, in future climatic conditions. 
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• The study analysed several data sets generated from field and laboratory 

experimental observations, with the major focus on C3 rice and wheat. It would 

be useful, in future studies, to build on the present findings, by evaluating the 

acclimation trends among different functional groups and, among different 

species within functional groups. That would require complex experimentation 

which is beyond the scope of the present research. The analysis of the effect of 

e[CO2] on different crops including cereals, legume crops, and oil crops will 

give insight into the inter-species variation in the response to rising [CO2].  

 

• The study also illustrated the important role of different abiotic factors in 

determining the rate of photosynthesis under increasing [CO2]. Hence, it is 

highly recommended that studies are conducted, either lab-based or FACE 

experiments, with different abiotic stress factors along with e[CO2] to observe 

the real-life impact on the photosynthesis and, consequently, on the overall 

productivity of crops.  

 

• A positive correlation between the rate of photosynthesis and N content in the 

leaves of a plant was noted. RuBisCO, accounting for 12-35% of total leaf N, 

was reported to attribute the photosynthetic capacity of the plants which may 

vary as per the N availability. However, the study has not included the details 

on the role of eight small subunits (SSUs) and eight large subunits (LSUs) of 

RuBisCO which are the products of the nuclear rbcS genes and the chloroplast 

rbcL genes respectively. It is further recommended to extend the knowledge 

on the effect of the level of N supply on the relationships between the levels of 

rbcS and rbcL mRNAs and the amount of RuBisCO synthesized during leaf 

development.  

 

• Studies have identified the role of N and RuBisCO in the overall 

photosynthesis process. However, the synthesis and degradation of RuBisCO 

along with the influx and efflux of N play an important role when quantifying 

the  photosynthetic acclimation response in detail. Hence, it is highly 

recommended to explore the RuBisCO synthesis and degradation and N influx 

and efflux dynamics in future studies.  
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• The study incorporated data from different FACE and glasshouse experiments 

regarding photosynthesis, RuBisCO content, and N. The collected database 

mostly includes a single or just two N concentrations. It is highly recommended 

to conduct studies that cause greater variation in N concentration so that a more 

robust impact of N under e[CO2] can be observed.   

 

• This study incorporated different crop modelling tools including STELLA, 

APSIMS, and APSIMDCP simulating the impact under different CO2 and N 

concentration on growth and yield. It observed the efficiency of the models in 

representing the photosynthetic acclimation scenarios using different variables 

directly correlated with the photosynthetic capacity of crops. In the future, 

other approaches should also be considered, such as the Structural Equation 

Modelling (SEM) approachto investigate the relationship between different 

variables. The SEM modelling approach has been used in a wide range of areas 

including ecological to medical but its use on physiological variables are very 

limited. This is an area worthy of future exploration.  
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