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A B S T R A C T

Droughts are a major challenge to the financial sustainability of wheat growers in Australia. While adaptive 
farming practices can reduce exposure to drought risk, they may fall short when unfavourable climate conditions 
occur during critical stages of crop development. This study proposes a novel crop insurance solution: a decile- 
based index insurance policy with weighted payouts that align to rainfall deficits. We integrated 40 years of crop 
simulation data from the APSIM (Agricultural Production Systems Simulator; v7.10) to model theoretical wheat 
yields across 22 farms in the Australian wheat belt. The impact of drought on farm income was assessed, and the 
effectiveness of the proposed insurance structure was evaluated in terms of income stability and financial utility. 
Results indicate that, for optimally sown crops, the average financial gain from adopting the insurance contract 
was $182 per hectare, while the average drought-related loss was $71 per hectare. The insurance proved 
effective on 95 % of farms, significantly reducing income volatility. Notably, 82 % of farms experienced 
improved income certainty in the poorest 50 % of years, and average farm income increased by 21 % over the 40- 
year period when input costs were insured annually. Given the increasing frequency and intensity of droughts 
due to climate change, this targeted approach offers a compelling solution for enhancing resilience and income 
stability in wheat production. To our knowledge, this is the first study to design a drought insurance product 
explicitly around deciles on in crop rainfall with weighted payouts for wheat.

1. Introduction

Extreme weather events significantly impact the farms’ productivity, 
leading to lower yields and income for farmers and other stakeholders in 
the local economy (Lesk et al., 2016). Climate variability affects almost 
80 % of wheat-producing regions globally (Ray et al., 2015). For 
example, droughts increase the risk of food insecurity (Lipper et al., 
2014). Dry spells during the growing season can be financially devas
tating for growers, especially at critical stages such as (i) after sowing 
when the seedling establishes itself Z0-Z3 (Zadoks et al., 1974), (ii) 
during booting and ear emergence, and (iii) during the stages just before 
grain fill, between Z7-Z8 (ProCrop, 2007). The impact of drought on 
agriculture has been the subject of extensive research (Odening and 
Shen, 2014; Mushtaq, 2018). Additionally, according to a survey by the 
National Farmers Federation, 81 % of Australian farmers reported that 

rainfall deficits and droughts were the most significant peril they faced 
(CelsiusPro, 2020).

The primary financial mechanisms farmers use to manage losses in 
the worst 10 % of years of drought in Australia include taking on more 
debt, drawing down on a loan facility, increasing earnings from off-farm, 
using insurance, drawing down farm deposits, injecting cash by selling 
non-streetwise assets (Topp, 2023; CelsiusPro, 2020). Of these, taking 
on more debt or drawing down a facility is the most popular mechanism, 
whilst insurance is the least popular (Kamal et al., 2023; CelsiusPro, 
2020). Taking on more debt has long-term consequences for the farmer’s 
balance sheet as not only does the debt need to be repaid, but an addi
tional interest rate component needs to be considered, especially if in
terest rates go up and or if the debt cannot be repaid due to dry 
conditions continuing for several seasons. The ability to pay off debt 
becomes a burden if the farmer’s balance sheet is not strong.
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Lending to the agricultural sector in 2022–23 increased by 5.3 % 
from $109.9 billion to $115.7 billion. Average finance payments as % of 
net income for all broadacre and dairy farms in 2022–23 in Australia 
stood at 8 %. In 2007–08, at the end of the drought, it stood at 55 % 
(Topp, 2023). Insurance could be an important tool growers use to help 
ease the burden of potential farm debt caused by drought. However, the 
use of insurance is not popular as there is a lack of understanding of how 
to insure losses associated with drought and dry spells using index in
surance, and the premiums are perceived as being high compared to 
other forms of insurance (Hatt et al., 2012). Several reviews (ABARES 
2012, NRAC 2012, IPART, 2016) have been conducted into options the 
Government can do to support this industry. However, progress on ini
tiatives has been slow, which does little to help farmer engagement and, 
as a result, take-up on insurance remains small.

Generally, two types of insurance are used in the market: indemnity- 
based and non-indemnity insurance (Hartell et al., 2006). 
Indemnity-based insurance requires an assessor to evaluate the damage, 
often involving an excess payment to be made with claims often delayed 
and not received at a crucial time when it is needed the most (Wang 
et al., 2023, Freshwater et al., 1986). These are the main insurance 
contracts growers use; however they do not address lost yield. A 
non-indemnity insurance contract also known as an index insurance 
contract or a weather derivative (Gine, 2010), pays a fixed amount 
regardless of the damage (Barnett and Vedenov, 2004). The triggers of 
the contract are a proxy that represents the potential damage (Turvey, 
2001). Payouts occur on confirmation of the data in the case of drought 
rainfall. Indemnity-based drought insurance is unavailable or too 
expensive in Australia (Hatt et al., 2012) hence the importance of 
developing appropriate non-indemnity-based contracts to address this 
gap.

Index Insurance can be a crucial tool for managing risks in agricul
ture (Conradt et al., 2015; Dalhaus and Finger, 2016). When combined 
with crop management strategies, insurance can enable farmers to take 
more risks and obtain higher crop yields. Optimally sowing a crop 
producers higher yields (Barratt et al., 2024) but also, opens the crop to 
yield loss events such as drought and frost. Adopting an index insurance 
policy based on low deciles of rain with weighted payouts could be a 
valuable risk management tool for farmers, especially in drought-prone 
areas. Farmers can protect themselves from accumulating debt caused 
by crop failures due to droughts using an index insurance solution 
structured to pay as conditions become drier throughout the season. This 
strategy has not yet been fully explored, and it could be a breakthrough 
for farmers.

It’s important to note that current index-based insurance designs do 
not consider multiple triggers and weighted payouts. Instead, they are 
based on the entire season and typically rely on a single index, which 
exposes farmers to various forms of basis risk. Therefore, having a cover 
where multiple payouts are triggered the drier it gets with payouts 
weighted as the conditions become more extreme, could reduce the 
temporal basis risk associated with index insurance. Making it more 
effective and affordable in managing weather risks. By using optimal 
sowing strategies, multiple triggers and weighted payouts tied to in crop 
rain events, farmers can minimise the negative impacts of drought.

To investigate the performance of the strategy, we (i) determined the 
cost and impact of droughts on the farmer, (ii) developed a novel index 
insurance policy, with two triggers and weighted payouts, and (iii) 
examined the utility of the index-based drought insurance options that 
could provide financial protection to farmers from drought risks. We 
hypothesise that given climate volatility, farmers not using a non- 
indemnity index insurance solution may face higher risk and increased 
debt from multiple periods of dry spells.

The research makes a valuable contribution to the contemporary 
literature by proposing a shift in the perception of insurance from solely 
a reactive tool for managing drought risk to also serving as a proactive 
risk management tool. The study highlights the potential of an innova
tive decile-based insurance product, which is highly targeted and cost- 

effective. When these products are integrated with optimal crop man
agement strategies, they have the potential to significantly mitigate in
come volatility during poor (e.g., drought) years and increase yield, 
thereby enhancing income in favourable years.

Given the escalating climate variability and the growing frequency of 
droughts (Budong et al., 2010), there is a pressing need for more precise 
and sustainable insurance policies. Our results show that these strategies 
have the potential to play a pivotal role in providing farmers with the 
means to achieve income stability during periods of drought.

2. Materials and methods

2.1. Study region

The research focused on individual farms in the Australian wheat 
belt (Supplementary Table 1). Wheat farms were selected from the three 
agroecological regions defined by the Grain Research and Development 
Corporation (GRDC) to ensure a diverse range of climatic conditions: 
north, south, and west (Greijdanus et al., 2014).

The northern grain region of Australia includes New South Wales 
(NSW) and Queensland (QLD) and is known for its mainly vertosol clay 
soils with a high-water holding capacity (WHC). The climate in this 
region is tropical, subtropical, and temperate, which allows farmers to 
grow both winter and summer crops. Many farmers in this region aim to 
produce high-protein wheat. Our study examined 10 farms in the 
northern region from sub-regions of QLD Central, NSW Central, NSW 
East, and QLD Southeast.

The southern grain region includes NSW, Victoria (VIC), and South 
Australia (SA) and is characterised by variable soils and a temperate 
climate. Yields in this region are highly dependent on spring rains, and 
many soil types have low WHC. As a result, growers mainly produce a 
winter crop. In the southern region, our study examined 8 farms from 
South Australia (SA), Vic Mallee, SA and Victoria (VIC) Bordertown- 
Wimmera districts, and VIC High rainfall regions.

Lastly, Western Australia (WA) is characterised by low soil fertility. 
Good winter and spring rains determine yields. In this region, the study 
examined 4 farms from the subregions of West Australia (WA) Central, 
WA Eastern, and the WA Sandplains.

2.2. Study design

Fig. 1 illustrates the schematic study design, which is centred around 
comparing the actions of farmers who have insurance with those who do 
not, particularly in relation to their sowing dates and the anticipated 
outcomes of these actions. The presence of index insurance provides 
wheat producers with the opportunity to strategically assess and manage 
risks, allowing them to develop and implement optimal crop manage
ment strategies. These strategies are specifically geared towards 
enhancing crop yield and subsequently increasing farmers’ overall 
income.

2.3. Crop simulation

We utilised the Wheat module from the Agricultural Production 
Systems sIMulator (APSIM v7.10; Keating et al., 2003) to gather reliable 
data on wheat yields. APSIM-Wheat is a widely recognized tool for 
simulating the biophysical processes involved in agricultural production 
(e.g. Barratt et al., 2024, Chenu et al., 2017; Collins et al., 2021; Ababaei 
et al., 2020; Zheng et al., 2018; Hammer et al., 2019) and is known to 
perform well when it comes to simulating wheat production, with a root 
mean square error of less than 1 t/ha across a range of environmental 
conditions (Hao et al., 2021).

Reliable simulation of wheat phenology is essential for evaluating 
risk exposure and designing insurance structures based on in-crop 
rainfall. APSIM-Wheat has undergone extensive validation for pheno
logical development across diverse Australian environments (e.g., 
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Collins et al., 2021; Zheng and Chapman, 2016). As demonstrated by 
Zheng and Chapman (2016; personal communication), the model was 
calibrated and validated using nearly 3000 heading date observations 
from 202 sites, covering 52 cultivars and multiple sowing trials. The 
validation dataset encompassed a wide range of environments and 
seasons, including National Variety Trials, Crop Variety Tests in Western 
Australia, and various time-of-sowing experiments. The resulting 
parameter set—particularly thermal time to floral initiation, photope
riod sensitivity, and vernalisation sensitivity—has since been widely 
adopted, including in this study. This allows us to confidently simulate 
crop development stages (Zadoks scale) under varying seasonal and site 
conditions, which is critical for quantifying rainfall–yield relationships 
and assessing farmers’ vulnerability to dry spells during sensitive growth 
stages.

APSIM requires daily weather data, which we obtained from the 
SILO database (Jeffrey et al., 2001) covering 1980–2019 (40 years) 
(Ritter et al., 2014). Using gridded data instead of weather station data 
reduced risk associated with rainfall and further improved the potential 
of WII in this research. Rainfall was based on a 5 km x 5 km grid to 
smooth out the rain events (Dalhaus and Finger, 2016).

Grain yield was simulated at the 22 studied locations with 10 
different sowing dates (March 11, March 27, April 10, April 26, May 10, 
May 26, Jun 11, June 27, July 11, and July 27). The optimal sowing date 
was selected for each location based on achieving the highest long-term 
average (40 years) yield. As there are wide varieties of wheat that could 
be used for consistency purposes, we used the Hartog variety. After 
determining the best sowing date for each site, we calculated income 
and lost income caused by drought, using real prices adjusted for 
inflation. This income was then compared to the average income ob
tained over 40 years for each season.

2.4. Proposed insurance structure

We assume that growers will maximise yield by adopting optimal 

sowing times (Bell et al., 2015) and seeking additional income to pur
chase insurance to help protect their crops from a dry season. The cost of 
potential losses increases as the season progresses since more investment 
is made in the crop, making it crucial to recover these costs. The rate of 
wheat development varies considerably depending on the rainfall, ge
notype and location, which affects other pedoclimatic factors. As the 
crop matures, more inputs such as fertilised and herbicides are expensed 
to enhance yield and control weeds. At the same time, rain is needed to 
help the plant mature.

Wheat crops are particularly sensitive to water stress (i) after sowing 
when the seedling establishes itself (Z0-Z3; Zadoks et al., 1974), (ii) 
during booting and ear emergence (Z4–6), and (iii) just before grain fill 
(Z7-Z8). During Z4-Z8, significant costs are expensed on inputs such as 
fertiliser to increase yield, and this is when the farmer is more financially 
exposed if the rains dry up.

The proposed insurance structures are based on in-crop rainfall 
during the season and do not take into consideration other factors. The 
rational for this is that in crop rain is essential for yield. Payouts are 
calculated per mm of rainfall, increasing as rainfall decreases. The 
payout triggers are based on rainfall deciles (White et al., 1999). Over a 
risk period, rainfall is ranked in percentiles, with a decile 1 (D1) event 
including all the readings in the bottom 10 % of the data range and a 
decile 2 (D2) at the bottom 20 %. In the insurance structure, policies are 
triggered at a D2 event and then after a D1 event. Full payout is based on 
rainfall events at the 40-year low, less 30 %, which sometimes sees it 
close to a 100-year historical low. The lower the rainfall during the 
various stages of plant development, the higher the payout from the 
insurance structure.

The insurance structure design builds on the structures proposed by 
Dalhaus et al. (2018) and Conradt et al. (2015) and Kapphan et al., 
(2012) Firstly, the proposed design is similar to Dalhaus et al. (2018) as 
it utilises rainfall deficit as a measure of yield . However, it differs in that 
this insurance structure focuses on insufficient in-crop rainfall over the 
season. Secondly, instead of using growing degree days like Conradt 

Fig. 1. Schematic showing potential actions by farmers regarding sowing dates and dry season index insurance and the likely outcomes of these actions.
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et al. (2015), our approach is based on the relationship between rainfall 
and yield in a drought conditions (Dalhaus et al., 2020).

Both D2 and D1 events would mean a substantial loss of yield and, 
thus, a lack of income for the farmer to cover input costs. Therefore, two 
dry season triggers in one policy, each with different payouts per mm are 
used to supplement lost income (details in 2.4). These two options cover 
the impact of a decile 2 and decile 1 event on yield. An insurance 
structure that combines triggers based on plant developmental stages 
and input costs could help the farmer become more resilient to climate 
variability.

2.5. Cost of drought

Drought is the main risk Australian farmers identify with (CelsiusPro 
2019). Understanding the cost of drought is crucial for evaluating 
whether purchased insurance structures effectively recover input costs 
as promised. It also helps to understand the amount of insurance that is 
needed to buy. To calculate this cost, the simulated average yearly in
come per season over 40 years, based on cumulative rain above the D2 
event, was subtracted from simulated income based on cumulative rain 
less than a D2 event. The cumulative rain was calculated over the 140 
days of the cropping cycle. These average numbers were then compared 
with the average insurance payouts of the proposed insurance structure 
to see if the claims helped the farmer recoup losses associated with 
drought.

2.6. Weather index insurance (WII) options

Index insurance is a non-indemnity type that does not require proof 
of loss. Before the risk period, the buyer and seller agree on the contract 
details, which pertain to a financial loss occurring once certain events 
related to the index occur. We assume that the grower will take the in
surance every year.

To calculate insurance premiums, we have considered key findings 
from studies conducted by Kotlobovskii et al. (2018), Pietola et al. 
(2011), and Turvey (2001). Kotlobovskii et al. (2018) suggested that 
using two parameters in premium calculation could reduce the level of 
risk to the underwriter, leading to lower premiums while providing 
enough cover for the farmer’s risk. Pietola et al. (2011) and Turvey 
(2012) addressed basis risk within the growing season and highlighted 
the importance of defining critical time periods of risk within the 
structure. Incorporating these findings into our design reduced premium 
value (Kotlobovskii et al., 2018) and basis risk by focusing on the most 
crucial events to yield and input cost. The risk period we have used here 
corresponds to 140 days of the season when in crop rain is most needed. 
Of the two insurance structures, cover 1 payout addresses input losses 
associated with a decile 2 event, while cover 2 addresses more advanced 
input losses associated with a decile 1 event. The policies work 
concurrently, so the drier it gets during the season, the more it pays.

The suggested amount of insurance to be bought aims to cover $300/ 
ha of production costs, which is the average production cost in Australia 
in a low rainfall environment or $300,000 for a 1000-ha farm (SAGIT, 
2022). The premium calculation involved two cumulative rainfall deficit 
options with a payout of $100,000 commencing at a strike equal to a D2 
and a $200,000 payout for strikes commencing at a D1. Structured in a 
way to meet the rising costs of inputs as the plant matures, where the 
potential for a dry spell could cause financial issues. Maximum payout 
occurred at 30 % below the historical low over the 40-year period. In 
some cases, this low approximately corresponded to a historic low over 
100 years. The strike, trigger, or attachment is the amount of rainfall 
(mm) required to initiate the insurance payout. The exit or cover length 
is the rainfall level (mm) at which the insurance pays out in full. The 
amount paid per mm is the sum insured divided by the difference be
tween the strike and exit.

2.7. Insurance premium calculations

Premium calculations for our insurance policies are based on a 
methodology called ‘return on risk’ (World Bank, 2011). This method 
considers factors such as expected loss, probable maximum loss, pay
outs, volatility costs, and contract administration expenses. To calculate 
the probable maximum loss, we use a historical burn analysis, ie the 
times over history that the policy has paid out, this determines the 
maximum loss that could occur on each site given the parameters cho
sen. The maximum loss in all sites is set at $300,000. (World Bank, 
2011). The burn analysis is a crucial part of the premium calculation 
process as it determines the historical loss the contract would have 
incurred over a predetermined period. For more information on the 
premium calculation methodology, refer to studies conducted by Hen
derson et al. (2002), World Bank (2011), Jewson and Brix (2005), and 
Spicka and Hnilica (2013).

In this research, 40 years of precipitation and seasonal phenological 
data were used to estimate the strikes i.e., decile 2 (D2) and decile 1 (D1); 
and the exit (E) for the risk period. 

E = R ∗ Rmin (1) 

where Rminis the minimal in-crop rain over the 40 years. The payout (Pa) 
associated with a dry season having an in-crop rain (R) being belowD2is 
given by, 

Pa = T2 ∗ (D2 − R)ifD1 < R ≤ D2
Pa = T2 ∗ (D2 − R)+T1 ∗ (D1 − R)ifE < R ≤ D1
Pa = T2 ∗ (D2 − E)+T1 ∗ (D1 − E)ifR ≤ E

(2) 

where T2andT1 are tick values denoting the payouts per mm of in-crop 
rainfall below the strikes, respectively, associated with D2 and D1. It 
should be noted the maximum payout in a year the risk taker can obtain 
is equal to the yearly production cost.

The yearly payouts were averaged over 5-, 10-, 15-, 20-, 25-, 30-, 35- 
and 40-years periods i.e. 1980–1984, 1980–1989, 1980 – 1994 etc) and 
then these averages were averaged and added to the premium calcula
tion. The yearly net premium to the risk taker is given by: 

NP =

∑m

i=1
μ(i∗5)

m
+ σ ∗ 0.25 (3) 

whereμ(n) is the average payout over the last n years whileσis the stan
dard deviation of payouts over the historical period and m is the number 
of 5-years periods in the historical period. The yearly gross client pre
mium is then estimated at: 

GP = 1.25 ∗ NP (4) 

The Index-based drought insurance structures were designed to 
capture extreme dry season events that would cause the most damage 
(Breustedt et al., 2008). The insurance contract premiums depended on 
the predicted losses associated with droughts over 40 years. The less it 
rained, the more the contract paid out. The contract structure consisted 
of two options. The fair premium multiplied by 1.25 was used to reflect 
market prices.

2.8. Financial benefit of index-insurance options

Five assessment criteria were examined to measure the efficiency of 
the contract on farmer’s income, with and without crop insurance (see 
Kath et al., 2019; Adeyinka et al., 2015; Vedenov and Barnett, 2004). 
The criteria correspond to (i) economic assessment by comparing crop 
income between virtual crops sown on the optimal date against the in
come of virtual crops with insurance, (ii) premium vs payouts assess
ment, (iii) assessment of the volatility of crop income using standard 
deviations, (iv) measurement of whether insurance will increase 
farmer’s revenue in extreme drought via a Conditional Tail Expectation 
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(CTE) approach; and (v) assessment of the extent to which a dry season 
contract reduces downside risk (i.e., does insurance minimise the loss in 
poor years) via a Mean Root Square Loss (MRSL) approach.

2.8.1. An economic assessment of using insurance
An economic assessment of the insurance involved calculating the 

average gross income from 1000 ha of wheat sown at the optimal date. 
The assessment involved comparing the expected drought income 
(theoretical potential) to the average income (estimation of farmer’s 
income) for the optimal sowing date, with or without insurance. The 
farmer would purchase the insurance annually for 40 years, and pre
miums were deducted from the drought income. If the income was 
higher with insurance, the contracts could be deemed efficient.

The estimates of farm income were based on APSIM’s predicted 
“optimal” yield versus average yield multiplied by market prices for the 
wheat adjusted for inflation and insurance benefits (see Eq. 5). The yield 
is predicted from APSIM simulations and represents the yield that the 
farmer would harvest (i.e., yield that has potentially been affected by 
drought) on optimal sowing dates. Therefore, with insurance, farmer’s 
wealth (Wwith insurance) is equal to: 

Wwithinsurance = Ỹmax ∗ Price+Payout − Premium (5) 

where Ỹmax is the expected yield (sown at the optimum sowing date for 
long-term drought yield). Without insurance, farmer’s wealth would be 
equal to: 

Wwithoutinsurance = Ỹmax ∗ Price (6) 

The aim here is to demonstrate whether the wealth level with in
surance is greater than the wealth level without insurance.

2.8.2. Premium versus payout assessment
The premium versus payout assessment aggregates the premiums 

paid and payouts received by the farmer each year over the 40 years. The 
payouts are claims because the insurance pays out over the represented 
40 years. It also represents the burn or expected loss from the contract 
incurred by the insurer. If the payouts received by the farmer were equal 
to or greater than the premiums paid, then the contract was deemed to 
be efficient for the farmer. Farmers tend to look at this as a criterion 
when selecting insurance.

2.8.3. Measuring income volatility via standard deviation
The difference in the standard deviation (STDV) between wealth 

derived from drought income and normal income was examined by 
using Eq. 5. Similarly, the wealth derived from income through insur
ance, minus the premium, was calculated using the following Eq. 6.

If the use of insurance results in a decrease in the standard deviation 
of the farmer’s wealth, then the insurance can be considered beneficial. 
This is because it reduces the volatility in the farmer’s earnings.

2.8.4. Conditional tail expectation (CTE) assessment
To determine the effectiveness of insurance, we estimated the 

average income in the 50 % of the years with the lowest yield. We used 
Eq. 5, which considers both income and average income plus insurance 
payouts less premiums. Insurance is considered advantageous if the in
come with insurance minus premiums is higher than the income without 
insurance.

2.8.5. Mean root square loss (MRSL) assessment
To determine insurance efficiency based on the difference in the 

square root of average losses between using the optimum sowing date 
without insurance and then with insurance for the 50 % of years with 
the highest loss of income. The MRSL was calculated based on average 
losses, as farmers are typically concerned with below-average revenue. 
If the use of insurance results in a smaller MRSL value, it indicates that 
insurance is efficient.

3. Results and discussion

3.1. Optimal yield, drought and losses

We used APSIM-modelled data to estimate the potential gains and 
additional income a farmer could achieve by sowing optimally. This also 
helped us to calculate a drought’s impact on yield and revenue. Optimal 
sowing resulted in a gain over the average expected yield for all farms 
(Table 1). Overall, if every farm sowed optimally over the 40 seasons an 
on average per year gain of $182 173 or 182.17 kg per 1000ha of crop 
sown would be made. On average, the gain across all the farms was 
532 kg/ha. The lowest gain was 152 kg/ha in Ceduna, SA, and the 
highest was 922 kg/ha in Katanning, WA. In the case of Katanning, WA, 
the average production was 3.20t/ha, 4.12t/ha in a good year, and 
1.67t/ha in a poor year, which needs to be managed.

The modelling of optimal sowing dates and yields also reinforced the 
strong correlation between rainfall and yield, which supports using a 
precipitation-based index solution that looked at rainfall deficits. An 
insurance solution is needed in a poor year of rain, where yields are 
down. Further, it should be noted that the additional gains in yield and, 
therefore, income made through optimal sowing could be used to help 
subsidise the premium costs for drought insurance.

3.1.1. Cost of drought and Weather Index Insurance (WII)
Across 22 farms, droughts caused growers to lose an average of 

$71,419 annually (Table 2) or $71.42 per ha of 1000ha sown over 40 
seasons. This loss is typically added to the grower’s debt and repaid 
when conditions improve. The highest cost was in Dubbo, NSW, at 
$108,280. On average, as the input cost for the 1000ha was $300,000, 
the policy only recovered 36 % of the costs, with the grower being better 
off by only 10 % over the 40 years. To improve this average, the pa
rameters of the policy need to be altered. This is one positive attribute in 
using index insurance as the parameters can be changed to suit the needs 
of the grower. In contrast, in Ceduna, SA, the lowest average drought 
cost was $22,418, with only 7 % of costs recovered, but the farmers were 
better off by 47 %. The results showed the higher the average drought 
costs, the more input costs were recovered, yet the lower on average the 
benefit to the farmer was.

The average lower farmer benefit in Table 2, we theorise, has to do 
with the premium value, which results from the historical relationship 
between the rainfall and triggers and resulting payouts, similar to the 
findings of Kath et al. (2019). Testing insurance structure outcomes to 
make sure the insurance is fit for purposes is an important aspect that 
needs to be considered by buyers. Combining WII and insurtech solu
tions makes this possible. Figs. 2 and 3 below show the relationship 
between rainfall and triggers. This relationship is essential when struc
turing a parametric insurance contract. In the case of Dubbo the pre
mium for the insurance was 9.54 % or $28.63/ha compared to 5.39 % or 
$16.6/ha in Ceduna (Table 3). The premium for Dubbo is higher as there 
are more payouts at a lower value, whilst the premium for Ceduna is 
lower, and the payouts are less but higher (see Figs. 2 and 3).

As a result, any potential cover should be tailored depending on the 
rainfall data for the farm, the higher the premium, the higher the payout. 
This supports the analysis by Bucheli et al., (2020), who tested the 
risk-reducing potential of WII if the index is tailored to the individual 
farm.

3.2. Index insurance premiums

The premiums calculated for each farm are summarized in Table 3. 
The premiums are based on 1000-ha farms and a payout worth equalling 
input costs of $300,000 (or $300 per hectare). The structure was 
designed around input costs, which are closely related to the phenology 
of the plant, with payouts escalating the dryer the conditions became. As 
the season progresses, so do the costs.

Narrabri had the highest estimated premium at 12.26 % of the sum 
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insured or $36.78/ha, but as indicated, also the highest claim of 93 %, 
while Balaklava, WA, had the lowest premium at 1.62 % or $4.87/ha of 
the sum insured and one of the lowest claims. The average premium 
value was 6.28 % or $18.85/ha, with an average claim of 66 % in the 
worst drought in the 40-year risk period.

At Lake Bolac, NSW, for example, the historical 40-year low over a 
period of 140 days, from the optimal sowing date of 10 May until the end 

of anthesis, was 167.61 mm. The deciles were rounded down to the 
nearest 10. The entry point on cover 1 was at 280 mm, which repre
sented a D2, and on cover 2, a D1, was at 250 mm. Once the attachment 
point occurred in cover one, a payment per mm of $614 was made until 
the maximum or exit or $100,000 was achieved. Likewise, in cover 2, a 
payment of $1507 would be made if the attachment point was achieved 
up until the maximum of $200,000 was paid. The payment per mm or 
tick size was determined by an assigned amount to each risk divided by 
the difference between entry and historic low less 30 %, which in this 
case is 117.3 mm. Interestingly, the 100-year historical low was 
121 mm. The cover pays out in full at 117.3 mm. Therefore, if a similar 
event occurs, the farmer will recover all his inputs.

The average rainfall for Lake Bolac was 345 mm over the season, and 
in those years, that rain was well below the average payouts helped to 
compensate the grower. In 2006, 167.5 mm of in-crop rain fell. Farm 
income dropped from an average of $897,896 to $395,185. The insur
ance claim was $193,418. So, this year, the farmer’s total income, less 
the cost of the insurance premium, was $588,603. Likewise, in 1982, 
181 mm of rain fell. Farm income dropped from an average of $897,896 
to $505,610. The insurance claim was $164,784. So, in that year, the 
grower’s total income, less the insurance premium, was $649,970. 
Although both were below the income average, the farmer was signifi
cantly better off. Interestingly, a D2 event over the 40 years was 
recorded six times with ensuring payouts. The return period for the 
strategy was a payout of 1 every 6 years, which makes the cover more 
attractive to the grower.

3.3. Efficiency of dry-season WII options to hedge lost income

Overall, the research showed that using WII to hedge lost income 
caused by drought was efficient but more efficient on different farms. 
Bucheli et al. (2020) evaluated five special drought indexes: cumulative 
precipitation, standardised preparation, evapotranspiration soil mois
ture, and evaporative stress. They tested and found that the 
risk-reducing properties of the policies increased when the data used to 
create the index was specific to each farm. Here, we tested five measures 
of efficiency just on precipitation and found that a more tailored 
approach to the policy increased its risk-reducing qualities, but further, 
the policy was also more appropriate as it was based on conditions that 
had occurred at the farm in the past. We found that each policy 
responded differently in the tests and their risk-reducing qualities.

Table 1 
Phenological of winter wheat crop showing that sowing optimally provides a gain to the farmer against non-optimal sowing.

Farm APSIM 
ID

Grid Sow Date 
(Optimal)

Maturity Yield Expected (Average kg/ 
ha)

Yield gained for sowing optimally (above Average 
kg/ha)

Roma 230 − 26.57 148.79 10-May 27-Sep 1884 399
Dalby 55 − 27.18 151.26 26-May 13-Oct 2835 241
Dubbo 70 − 32.24 148.61 10-May 27-Sep 3651 766
Waikerie 265 − 34.18 139.98 10-May 27-Sep 1757 338
Gunnedah 105 − 30.98 150.25 10-May 27-Sep 4291 662
Gilgandra 90 − 31.71 148.66 10-May 27-Sep 3445 768
Narrabri 190 − 30.32 149.78 10-May 27-Sep 3619 717
Parkes 210 − 33.14 148.16 26-May 13-Oct 4589 798
Urana 255 − 35.33 146.03 26-May 13-Oct 2852 336
Wagga 260 − 35.16 147.46 26-May 13-Oct 4120 585
Lake Bolac 130 − 37.71 142.84 26-May 13-Oct 4056 369
S Walpeup 275 − 35.12 142.00 10-May 27-Sep 2087 338
Pinnarro 215 − 35.26 140.91 10-May 27-Sep 2070 366
Birchip 15 − 35.98 142.92 26-May 13-Oct 2090 445
Ceduna 25 − 31.9 133.42 10-May 27-Sep 653 152
Hopetoun 110 − 35.73 142.37 26-May 13-Oct 2151 476
Balaklava 5 − 34.14 138.42 10-May 27-Sep 2418 623
Roseworthy 235 − 34.53 138.69 26-May 13-Oct 2973 819
Salmon 

Gums
245 − 32.99 121.62 26-Apr 13-Sep 1391 302

Lake Grace 135 − 33.1 118.46 10-May 27-Sep 1851 623
Katanning 120 − 33.69 117.56 10-May 27-Sep 3204 922
Kellerberrin 125 − 31.62 117.72 10-May 27-Sep 2062 680

Table 2 
Summarizes the cost of a drought per farm and the ability of the insurance to 
cover the loss.

Farm Average 
cost of 
drought 
over 40 yrs

Insurance 
payouts 
averaged 
over 40 yrs

Farmer is 
better off 
by%*

Ability of 
insurance to pay 
for Inputs costs 
in worst 40 yrs 
(%)

Roma $62,424 $11,814 19 % 40 %
Dalby $65,092 $15,732 24 % 82 %
Dubbo $108,280 $11,109 10 % 40 %
Waikerie $55,495 $13,804 25 % 85 %
Gunnedah $103,210 $20,032 19 % 89 %
Gilgandra $87,529 $18,866 22 % 84 %
Narrabri $95,368 $22,040 23 % 93 %
Parkes $103,627 $14,294 14 % 77 %
Urana $105,575 $14,908 14 % 67 %
Wagga $98,999 $13,076 13 % 64 %
Lake Bolac 

(SE)
$46,513 $13,749 30 % 64 %

S Walpeup $72,522 $12,030 17 % 66 %
Pinnarro $42,465 $15,419 36 % 82 %
Birchip $98,773 $11,602 12 % 87 %
Ceduna $22,428 $10,509 47 % 83 %
Hopetoun $90,944 $11,629 13 % 61 %
Balaklava $72,122 $6399 9 % 47 %
Roseworthy $74,303 $9010 12 % 81 %
Salmon 

Gums
$23,120 $9055 39 % 57 %

Lake Grace $51,487 $10,754 21 % 37 %
Katanning $42,098 $9051 22 % 34 %
Kellerberrin $48,841 $7386 15 % 22 %
Average $71,419 $12,830 21 % 66 %

*Farmer is better off by %" is calculated by taking the average payout of in
surance divided by the average cost of drought. The ability to recover inputs is 
calculated as a percentage claimed on $300,000 of inputs in the worst drought 
over the past 40 years.
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3.3.1. Economic assessment of using two dry season index insurance 
options

The results from the economic assessment of the insurance showed 
that using two dry-season index insurance policies provided additional 
long-term income at four sites out of the 22 studied (Fig. 4 and Table 4). 
Across the 22 sites and over 40 years, the results showed an average loss 
of $6097, with the highest loss of $17,522 in Dubbo, NSW, and the 
largest gain of $2148 in Salmon Gums, WA. This indicated that the use of 
the option was helpful in some regions but not others. Kath et al. (2019)
also concluded similar results. On those farms where it was economical, 
the average annual gain in drought years was $1468. These gains and 
losses were marginal when considering each farm’s income levels over 
40 years. For example, the actual average loss over 40 years in Dubbo 
was $17,522 per annum, but when the cover was needed the most, i.e. in 
a drought, the lowest income was $90,988. The insurance claim was 
$262,981, which was sufficient to cover the inputs for the season’s crop 
and ensure the grower is ready with a budget for the next season. And 
not have to draw down on his overdraft or take up a credit facility.

3.3.2. Premium vs payout assessment
The premium versus payout assessment for the 22 sites involved 

adding the premiums paid each year over 40 years (see Fig. 4). If the 

payouts received by the farmer were greater than the premiums paid 
over the period, then the contract was deemed efficient. Farmers look at 
this measure to gauge its worth.

At the Wagga Wagga farm in NSW, over 40 years, the enterprise paid 
$479,972 in insurance premiums and received $523,043 in payouts, 
indicating an efficient contract to the farmer, and perhaps a mispriced 
contract for the reinsurance provider. However, on the farm in Dubbo, 
NSW, the enterprise paid $1145,233 in premiums and only received 
$444,345 in payouts. This represented a loss of $17,522 per year, which 
could be argued as manageable given other input costs. This loss is the 
cost of shifting this risk from the farmer to the risk market, and it is 
regarded as the cost of the contract issuance or reinsurance profit. 
However, if we consider this cost in the context of shifting the risk, the 
contract is useful.

The sum of premiums paid were greater than the payouts over 40 
years for 18 of the 22 sites, indicating that the insurance was inefficient 
for the farmer as he did not recover his costs. However, if the test showed 
a return, then it would suggest that the policy was potentially mispriced 
as the reinsurer would be making a loss. However, dividing the cumu
lative difference by 40 years to compute the annual losses, the difference 
was marginal and manageable in all instances at a farm level, so the 
insurance is efficient. Farmers often misguidedly assess the value of 
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Fig. 2. Showing the relationship between Rainfall and Insurance Payouts at Dubbo, NSW.

19.8mm

$249,822

0.mm

50.mm

100.mm

150.mm

200.mm

250.mm

300.mm

$0

$50,000

$100,000

$150,000

$200,000

$250,000

$300,000

2019

2017

2015

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

1981

Ceduna - Rainfall v Insurance Payouts

Rain mm Payout Decile  1 - 90mm Payout Decile 2 - 110mm Total Payout
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insurance by determining if it pays for itself over time as a measure of its 
worth. The better assessment should be the return period of the insur
ance contract over time, as this is a determinant of the value of the 

premium. A premium value of 10 % may sound expensive, but if a claim 
has been made in the last 10 years, then it represents better value than 
one that cost 5 % and a claim has never been made.

Table 3 
Insurance Structures and Premiums Relevant to a Dry Season. The table shows individual structures, attachments and exits of the policies.

Farm 
Location

40 yr 
Historic 
Low (mm)

Decile 2 - Cover 1 Decile 1 - Cover 2 Sum 
Insured

Premium 
%

Premium 
/ha

Attachment 
(mm)

Exit 
(mm)

Tick Maximum 
Payout

Attachment 
(mm)

Exit 
(mm)

Tick 
(mm)

Maximum 
Payout

Roma 35 80 25 $1677 $100,000 40 25 $8861 $200,000 $300,000 8.66 % $25.98
Dalby 35 80 25 $1860 $100,000 60 25 $5634 $200,000 $300,000 9.24 % $27.71
Dubbo 60 100 42 $1724 $100,000 80 42 $5263 $200,000 $300,000 9.54 % $28.63
Waikerie 30 90 21 $1449 $100,000 70 21 $4082 $200,000 $300,000 4.85 % $14.54
Gunnedah 37 160 25 $746 $100,000 120 25 $2125 $200,000 $300,000 11.03 % $33.08
Gilgandra 38 140 27 $886 $100,000 90 27 $3179 $200,000 $300,000 11.68 % $35.05
Narrabri 15 120 10 $917 $100,000 70 10 $3385 $200,000 $300,000 12.26 % $36.78
Parkes 66 170 46 $809 $100,000 120 46 $2718 $200,000 $300,000 7.76 % $23.29
Urana 62 140 43 $1035 $100,000 90 43 $4292 $200,000 $300,000 5.09 % $15.27
Wagga 114 190 79 $907 $100,000 170 79 $2217 $200,000 $300,000 4.00 % $12.00
Lake Bolac 167 280 117 $614 $100,000 250 117 $1507 $200,000 $300,000 6.81 % $20.42
S Walpeup 54 100 37 $1608 $100,000 80 37 $4739 $200,000 $300,000 4.57 % $13.72
Pinnarro 49 140 34 $949 $100,000 110 34 $2654 $200,000 $300,000 6.49 % $19.47
Birchip 42 120 29 $1109 $100,000 100 29 $2850 $200,000 $300,000 3.50 % $10.49
Ceduna 19 110 13 $1040 $100,000 90 13 $2222 $200,000 $300,000 5.39 % $16.16
Hopetoun 31 110 31 $1269 $100,000 90 31 $2222 $200,000 $300,000 4.14 % $12.41
Balaklava 85 130 59 $1427 $100,000 120 59 $2222 $200,000 $300,000 1.62 % $4.87
Roseworthy 85 170 59 $906 $100,000 160 59 $2222 $200,000 $300,000 4.17 % $12.50
Salmon 

Gums
89 140 62 $1296 $100,000 120 62 $3500 $200,000 $300,000 1.76 % $5.29

Lake Grace 99 160 69 $1109 $100,000 120 69 $2222 $200,000 $300,000 6.27 % $18.80
Katanning 188 240 132 $928 $100,000 210 132 $2572 $200,000 $300,000 6.02 % $18.07
Kellerberrin 113 150 79 $1423 $100,000 120 79 $2222 $200,000 $300,000 3.42 % $10.26

Attachment” is the level in mm’s that triggers the start of a payout.
“Exit” is the level in mm’s the cover is paid out in full.
“Premium percentage “is the sum insured/ premium. It is the cost of the insurance.

Fig. 4. Insurance premium results showing modelled Yield (Kg), Total Premium Paid less Payout ($), Economic Assessment ($), and Average Rainfall (mm) over 40 
years at test sites.
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Even if the difference between the premium paid and payouts made 
results in a small loss, reducing the premiums can increase efficiency. 
This can be done by adjusting the option’s threshold, strike, and cover 
length, but it may also decrease the payouts. Another approach to in
crease the efficiency of a contract is to lower reinsurance costs. This can 
be handled through greater numbers of policies across large regions. 
This lowers the volatility in the loss ratios due to the spatial nature of 
weather to which reinsurers need to make a profit and thus the less 
volatility.

Further, it could be argued that using increased technology in 
monitoring conditions could create further efficiencies in the cover. 
Growers may not take out a dry season contract every year as the 
forecast is more positive, and perhaps the farmer has a healthy subsoil 
moisture profile to help commence the season. Opting only to take it out 
when forecasts dictate suggests an additional management strategy. 
Anecdotally, this seems to be the case.

3.3.3. Measuring income volatility via standard deviation
One of the main reasons why farmers use insurance is to reduce the 

volatility of their earnings. A small standard deviation suggests that 
income is not volatile as the values are closer to the mean income. The 
larger standard deviation suggests that there is more variance in the 
results, and, in this case, the insurance is not doing its job in reducing the 
volatility in the earnings. Having a low value in the standard deviation 
helps maintain a constant cash flow, which is particularly important for 
farms heavily reliant on borrowing, as interest rates can be an additional 
cost factor. According to Topp (2023) this has been a problem in the 
past. Debt has been an issue in the past and will continue to be if growers 
do not find a means to finance drought. The differences in the STDV 
between drought income for crops sown optimally with and without 
insurance indicated that 21 sites out of the 22 showed that by using 
insurance, the volatility in earnings was reduced if a dry season contract 
was purchased annually for 40 years (see Fig. 5 and Supplementary 
Table 3).

The differences in STDV ranged from the lowest of − 0.101389 at 
Pinaroo in WA to − 0.016684 at Salmon Gums in WA. Reducing earnings 
volatility is one aspect credit providers look for in a farming operation 
when providing finance. This means that there is a steady cash flow 
where loan repayments can be made, providing comfort to financiers 
should loans be required to bridge gaps in income caused by droughts. 
Fund access is an important tool growers use in drought (Topp, 2023).

Table 4 
Shows the results of an economic assessment of the structure comparing a 
farmer’s income with/without insurance. Note that a negative result is positive.

Farm Economic assessment Result

Roma $16,321 no
Dalby $11,369 no
Dubbo $17,612 no
Waikerie $741 no
Gunnedah $13,492 no
Gilgandra $16,183 no
Narrabri $13,492 no
Parkes $8991 no
Urana $362 no
Wagga -$1077 yes
Lake Bolac $6674 no
Walpeup $1694 no
Pinnaroo $4049 no
Birchup -$1115 yes
Ceduna $6173 no
Hopetown $607 no
Balaklava -$2093 yes
Roseworthy $3291 no
Salmon Gums -$2483 yes
Lake Grace $9625 no
Katanning $9016 no
Kellerberrin $3303 no

Fig. 5. Potential benefit of insurance based on Standard Deviation (STDV). The blue coloured names represent a positive effect. In all cases it shows a benefit.
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3.3.4. Assessing benefits during extreme drought events via conditional tail 
expectation

In terms of the average income in 50 % of the years with the greatest 
difference between incomes with and without drought, the results 
showed that only three farms out of the 22 were not better off (Fig. 6 and 
Supplementary Table 3)

Wagga Wagga achieved the best outcome, showing a difference of – 
$15,529, indicating that the insurance effectively maintains income in 
the poorest years. Dubbo was the lowest at + $6691, albeit the differ
ences were small. According to Kath et al. (2018), using rainfall index 
insurance was effective in Tully, QLD. However, the study also suggests 
that the effectiveness of index insurance may be limited to specific re
gions and may not work consistently in a wider range of environments. 
Therefore, it is important to investigate the factors determining why 
index-based insurance is effective in some regions but not in others. We 
suspect that part of this discussion involves the temporal and spatial 
dispersion properties of rainfall and the way it is measured. This study 
used 5 km x 5 km gridded data sets to focus more on the farm’s rain 
events. Plus, it helped reduce the “basis” risk of using one data source, a 
weather station. This provided a more even distribution of rainfall across 
all the farms, which helped account for the different parameters of each 
contract and the more robust results on the effectiveness of each cover.

3.3.5. Mean root square loss (MRSL) assessment
Based on the MRSL analysis, related to the average losses in 50 % of 

the highest loss years over 40 years without insurance and with insur
ance, the results showed, once again, that the insurance was efficient. A 
negative change in variability implied that the contract was risk- 
reducing and, therefore, beneficial. Out of the 22 test farms, all but 
three had negative values, indicating that the insurance was efficient 
(Fig. 7 and Supplementary Table 3).

Where the MRSL is blue, it implies that the contract reduces risk. In 

the case of Wagga NSW, the result was − 0.0177, and so the contract 
helped reduce the farmer’s risk, whereas in Katanning WA, the result of 
0.04086 suggests that no reduction in risk was observed.

Vendenov and Barnett’s (2004) study on the efficiency of weather- 
based index insurance for corn measured by MRSL showed that the 
use of contracts reduced risk exposure for the grower by 54.4 % on 
average. The results of this study showed that 86.363 % of the contracts 
were efficient, based on MRSL analysis. Further, Kath et al. (2019) found 
that the MRSL test for efficiency for using weather-based index insur
ance for wheat contracts differed between the regions analysed. In 
contrast, this research showed higher efficiencies across most regions, 
which may have had to do with the insurance structure.

3.3.6. Summary of the financial efficiency across all farms
In summary, an efficiency test was assigned a “yes” if it was efficient 

or a “no” if it wasn’t (Table 5). A score of 6 suggested that the cover was 
highly efficient, whilst a score of 1 suggested that it was still efficient but 
not as effective as the others.

The farm at Wagga Wagga received the highest score in efficiency, 
where 6 of the efficiency tests concluded a benefit to the farmer. 
Birchup, Balaklava, and Salmon Gum farms scored 5 in providing a 
benefit towards the farmer. A key question that arose from the research 
was why different farms received more benefits than others. More 
research needs to be done on this, but we theorise that with Wagga 
Wagga, Birchup, Balaklava and Salmon Gums, it had more to do with the 
volatility in the rainfall and how these played a part in the payouts. As 
an example, all four had little payouts in the last 10 years and volatile 
rainfall, which resulted in low premium values.

Further, it is worth highlighting a few important aspects concerning 
the efficiency of the structures. The importance of the design enabled the 
contract to be more efficient. First, utilising two phenologically aligned 
contracts meant that the cover focused more on how the plant behaved 

Fig. 6. Potential insurance benefits based on income in the poorest years (Certainty Tail Expectations). The blue coloured names represent a positive effect.
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to moisture. Secondly, as the cover was weighted, payouts could escalate 
and cover inputs sooner the drier the season became. (Vedenov and 
Barnett, 2004) suggested that optimal weather derivatives require 
complicated combinations of weather variables to achieve reasonable 
fits between weather and yield. This study aligns with this; however, the 

strategy is simple.
We found that using multiple attachment levels at D2 and D1 of the 

one index and then weighting the payouts so that the drier it gets, the 
more it pays, showed for greater gains in efficiency. Following on from 
Pietola et al. (2011), whose structure covered 38 % of the hedge, we 

Fig. 7. Potential benefit of insurance based on Mean Root Square Loss (MRSL). The blue coloured names represent a positive effect.

Table 5 
Summary of the financial efficiency analysis across all farms.

Farm Gains Optimal 
Sow

Premiums v 
Payouts

Economic 
Assessment

Standard Deviation 
(STDV)

Conditional Tail Expectation 
(CTE)

Mean Root Square Loss 
(MRSL)

Rating***

Roma y* n** n y n n 2
Dalby y n n y y y 4
Dubbo y n n y n n 2
Waikerie y n n y y y 3
Gunnedah y n n y y y 3
Gilgandra y n n y y y 4
Narrabri y n n y y y 4
Parkes y n n y y y 3
Urana y n n y y y 4
Wagga 

Wagga
y y y y y y 6

Lake Bolac y n n y y y 3
Walpeup y n n y y y 3
Pinnaroo y n n y y y 3
Birchup y y y y y y 5
Ceduna y n n y y y 3
Hopetown y n n y y y 3
Balaklava y y y y y y 5
Roseworthy y n n y y y 3
Salmon Gums y y y y y y 5
Lake Grace y n n y y y 3
Katanning y n n y n n 3
Kellerberrin y n n y y y 3

*y stands for Yes a “y” says the measure was positive.
**n stands for No a “n” says the measure was not positive.
*** the rating shows that number of “y” obtained over all the tests, 6 = a good cover.
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found our approach in the worst year of drought covered, on average, 
66 % of the $300,0000 worth of inputs recovered. Further, structuring 
the cover around optimal sow dates like Lebolis et al. (2014a) and 
Dalhaus and Finger (2016) helped reduce basis risk and increased the 
payouts when needed the most.

Targeting the structure enabled premium levels to better align with 
the contract’s risk and return period. The results show that a targeted 
approach reduced the premium levels, which increased the contract’s 
efficiency.

Overall, six assessments were carried out to test if the targeted WII 
could provide benefits (Table 5) to farmers. Gains were made on all 
farms, some rated higher than others. Wagga Wagga had the highest 
rating of 6 and Roma the lowest at 2. We suggest that the positive results 
came down to the design of the cover.

3.3.7. Limitations and further work
Despite the promise of index insurance in managing climate risks 

across agriculture, several limitations must be acknowledged. A key 
challenge is basis risk, the mismatch between payouts and actual losses. 
Farmers may experience significant damage yet receive no payout if 
environmental triggers (e.g. temperature or rainfall thresholds) are not 
met at the designated reference station. In some cases, basis risk may 
result from a lack of high-resolution, data, especially in remote farming. 
Limited access to historical yield and climate data also reduces the 
precision of risk modelling and pricing, and therefore, modelled yield 
data could be considered as more generalised and not farm-specific.

The research used modelled yield data from APSIM and not actual 
data. Although the model, developed by Keating et al. (2003) and 
updated by Holzworth et al. (2014), is a widely recognised tool for 
simulating biophysical processes, this may pose a challenge to the 
research. However, the variances in income due to drought appeared 
realistic, and the use of insurance proved beneficial. While APSIM is a 
robust and widely used tool, its simulations may not fully capture the 
actual rainfall and temperature variations and yield outcomes experi
enced in real-world conditions. As a result, there is a risk that the esti
mates of agricultural losses used in the design of the insurance structures 
may be skewed or not entirely representative of actual on-ground im
pacts. This limitation could influence the accuracy and effectiveness of 
the resulting parametric insurance models in reflecting real financial 
risk exposure. These approximations, though useful for initial model
ling, highlight the importance of region-specific validation to ensure 
that the insurance products are well-calibrated to local risk profiles. 
Further in the validation of the insurance structure and premium values, 
there is a need to value the losses of drought over time. The 40 years of 
modelled data provide seasonal yield penalties caused by drought, 
which was essential to arrive at market realistic premiums. The 
modelled data provides for multi-decade examples of yield that in 
Australia cannot be sourced.

Various field tests have been used with farmers, and anecdotally, the 
yields seem relevant. The model has been verified to actual production 
(Barratt et al., 2024). Furthermore, throughout the research, we stand
ardised the cost of inputs per hectare to provide a constant cost plus used 
a common variety for consistency. Understandably, this varies according 
to region and rainfall. This may alter the results slightly.

Finally, upon the conclusions of the research, we found some irreg
ularities in the index structures related to rainfall patterns that are worth 
discussing. Firstly, the premiums are calculated before an event, while 
the payouts are calculated after an event. The precipitation index is 
meant to cover the entire growing period. The attachment levels for the 
insurance have been set based on specific rainfall events occurring over 
the entire season. This raises the question: what if a significant rain 
event occurred just before the contract expired, resulting in no payout 
and leaving the farmers at a loss? This is a basis risk issue that is beyond 
the scope of this paper. The aim is to test the novel index structure to see 
if the farmer would be better off implementing a “like” cover for drought 
annually. The policies are based on a cumulative approach over the 

growing season but since rain may fall at different times during the 
growing season, this can affect the outcomes. Therefore, a project for the 
future would be to research testing structures that cover risk at different 
crop growth stages with different payouts, such as covering emergence, 
establishment, and growth, to capture more targeted events.

It’s important to note that index insurance is not designed to fully 
compensate losses but rather to stabilise income. Farmers and aqua
culture operators still bear residual risk in extreme or compounding 
events. Furthermore, the financial efficiency of index insurance depends 
on regular use and relatively frequent triggering events. Infrequent yet 
severe events may result in underinsurance if coverage is not maintained 
consistently, while annual premiums may outweigh benefits in lower- 
risk settings.

4. Conclusion

The long-term impact of drought on a farmer’s financial position can 
be significant, especially in a high-interest-rate environment. We have 
shown that purchasing index insurance policies annually can effectively 
mitigate the income loss caused by drought. Furthermore, it has been 
found that a structure that combines two triggers with weighted payouts 
in a single policy over the season can offer even greater benefits. It’s 
important to note that yield loss occurs gradually throughout the season, 
as the lack of rain leads to reduced productivity for the farming enter
prise. Therefore, integrating index insurance policies into the farm 
management contract can be highly advantageous for the farmer.

The optimally sown crop provides additional income, which enables 
compensation for the insurance premiums. In a drought, the insurance 
helps to increase his income. This is of value to the farmer and the local 
community and aids in reducing government handouts during droughts. 
Considering the increased climate variability and occurrence of 
droughts, more targeted insurance polices could play a critical role in 
helping farmers achieve income stability during droughts.

It’s crucial to note that the field of index insurance is constantly 
evolving, and future research and testing will be instrumental in further 
improving its effectiveness. For example, using separate index insurance 
structures from emergence through grain fill could yield additional 
benefits to growers, but this needs to be tested, and work is planned for a 
future date.
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