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Abstract: With the rapid expansion of electronic information technology and rising mate-
rial safety needs, the creation of composite materials that perform both electromagnetic
microwave absorption (EMA) and flame retardancy has arisen as a materials science re-
search hotspot. Metal-organic frameworks (MOFs) have great potential for developing
novel multifunctional composite materials due to their unique structural characteristics
and customizable functions. This work presents a comprehensive assessment of the most
recent research findings on MOF-based EMA-flame retardant dual-functional composites.
The fundamental mechanisms of EMA and flame retardancy are covered, including di-
electric loss, magnetic loss, and both condensed-phase and gas-phase flame retardancy
mechanisms. The development of composites based on Fe-MOEF, Co-MOF, Ni-MOF, and
polymetallic MOF in terms of EMA and flame retardancy is highlighted. These mate-
rials offer exceptional EMA performance and strong flame retardancy effects thanks to
their unique structural designs and component regulations. In addition, some materials
have great infrared stealth, thermal insulation, hydrophobic, and mechanical qualities.
Ultimately, the problems of MOF-based dual-functional composites and their develop-
ment possibilities are reviewed, giving valuable references for the development of new
multifunctional composite materials.

Keywords: metal-organic framework; microwave absorption; flame retardant; composite

1. Introduction

Electromagnetic microwave pollution and fire safety concerns have gotten worse due
to the quick development of electronic information technology, which poses serious risks
to public safety and human health [1-3]. On the one hand, electromagnetic radiation can
interfere with the normal operation of precision electronic devices and may also pose
potential health risks to the human body [4,5]; on the other hand, with the widespread
use of new materials and chemicals, the frequency and severity of fire accidents are con-
tinuously rising [6,7]. Therefore, developing multifunctional composite materials with
excellent electromagnetic microwave absorption (EMA) and flame retardancy properties
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holds important practical significance and application value. Particularly in the military
field, electromagnetic stealth and fireproof-explosion-proof performance are critical to the
safety of equipment; in the civilian sector, electromagnetic protection and flame-retardant
materials also have extensive application demands in areas such as electronic devices,
building materials, and transportation [8-10].

A type of innovative porous crystalline material, metal-organic frameworks (MOFs)
have a high specific surface area, variable pore size, rich functional groups, and out-
standing physical-chemical stability, which makes them very applicable in a variety of
disciplines [11-13]. MOFs use organic ligands to coordinate metal ions or clusters to create
three-dimensional (3D) network architectures. By choosing various metal centers and
organic ligands, they can flexibly modify their structure and functioning [14]. Research on
MOF materials has steadily shifted in recent years from more conventional domains like
gas adsorption, separation, and catalysis to newer application areas including EMA [15-17],
flame retardancy [18-20], sensing [21], hybrid supercapacitors [22], and more. Specifically,
metal/carbon composites made from MOFs that have been pyrolyzed not only have better
conductivity and stability but also preserve the original porous structural characteristics,
offering a valuable foundation for the creation of new functional materials [23].

In the EMA field, MOF-based materials can achieve synergistic effects of multiple loss
mechanisms due to their unique porous structure and tunable chemical composition [24-26].
Studies have shown that the metal centers in MOF materials can provide magnetic loss,
organic ligands and carbonized products can offer dielectric loss, and the porous structure
can increase multiple reflections and scattering of electromagnetic microwaves, thereby
enabling efficient EMA [27]. Xu et al. [15] constructed a 3D Co/N co-doped hybrid carbon
network by pyrolyzing acid-treated bilayer bimetallic zeolitic imidazolate frameworks
(ZIFs). The hybrid carbon network exhibited a minimum reflection loss (RLn) of —56.2 dB
and an effective absorption bandwidth (EAB) of 5.2 GHz, with a thickness of only 1.8 mm.
Zhang et al. [25] prepared a 3D sea cucumber-shaped nanomaterial by pyrolyzing bimetallic
FeCo-MOF to self-grow carbon nanotubes (CNTs). When the thickness was 1.38 mm, RLin
was —59.21 dB and EAB was 3.22 GHz.

MOF materials provide special benefits in the area of flame retardancy. The MOFs’
metal ions have the ability to encourage charring by creating a barrier that prevents heat
and oxygen from passing through [28,29]. Furthermore, MOFs’ porous structure can reduce
the emission of harmful gasses by adsorbing and catalytically breaking down combustion
products [30,31]. By grafting ferrocene aldehyde onto amino-modified ZIF-67, Cao et al. [32]
created a novel design that produces a hierarchical nanoporous flame retardant with a
yolk-shell structure. The synergistic effect of ferrocene and ZIF expedited the creation of
a dense and strong carbon layer in epoxy resin (EP) during combustion, while its porous
core structure facilitated the adsorption of hazardous and combustible components. The
LOI and UL-94 of the EP composites reached 28.3% and V-0 rating, respectively. The peak
heat release rate (pHRR) decreased by 56.5%, the peak smoke production rate (pSPR) by
55.1%, the total smoke production (TSP) by 44.6%, and the peak CO production rate (pCOP)
by 71.6%.

However, most current research is still limited to the development of single function-
alities, while multifunctionality is the key focus for the future development of materials.
Figure 1 presents the recent research progress of MOF-based composite materials with
EMA and flame-retardant functions, highlighting the rapid advancement in this field. It
is foreseeable that the research on dual-functional MOF-based composites will receive
increasing attention and reporting. Developing MOF-based multifunctional composites
with excellent EMA and flame-retardant properties is not only of significant scientific im-
portance to meet practical application needs but also provides a feasible technological path
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to address pressing environmental and safety issues. The breakthrough research on these
multifunctional materials holds strategic significance for advancing the field of materials
science. This review systematically summarizes the latest developments in the relevant
fields, offering valuable references and guidance for the design and application of future
multifunctional MOF composites.

Development of MOF-based composites with EMA and
flame retardant functions
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Figure 1. Development of MOF-based dual-functional composites with EMA and flame retardant in
recent years (until January 2025).

2. The Mechanism of EMA and Flame Retardant
2.1. EMA

The EMA performance of materials is typically assessed by measuring their elec-
tromagnetic parameters, including the complex permittivity (e; = ¢ — je’') and complex
permeability (uy = p’ — ju”’) [33-35]. These parameters reflect the material’s dielectric loss
and magnetic loss capabilities, which are key to understanding its EMA mechanisms. One
of the most commonly used methods for measuring these electromagnetic parameters is
the coaxial transmission line method, widely employed for its accuracy and reproducibility.
The coaxial transmission line method involves using a vector network analyzer (VNA) to
measure the scattering parameters (S-parameters) of samples. The materials under study
are typically fabricated into toroidal samples and placed within a coaxial transmission line
fixture. S-parameters (S11 and S21) are measured over a specific frequency range, and these
values are used to calculate the material’s ¢, and p,. Based on the measured S-parameters,
analytical models such as the Nicholson-Ross—Weir (NRW) algorithm [36,37] can be used
to extract the material’s ¢; and . By analyzing these electromagnetic parameters, fur-
ther calculations can be performed to determine the material’s microwave reflection loss
(RL), a key performance indicator of EMA. RL is typically calculated using the following
equation [38—40]:

Zin =2 \/Etanh[j( @)\/ﬁ} @
—Zo

RL = 201g|§i“7
in

=7, )
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where Z;;, and Z, are the material and air impedances, respectively; f is the microwave
frequency; d is the absorber thickness; and c is the speed of light. The RL value is an
important metric for evaluating the EMA performance of materials since it represents
the degree of attenuation of the incident microwave on the material’s surface and within.
RL < —10 dB means 90% absorption efficiency. EAB refers to the frequency range when RL
is less than —10 dB. Materials with a broad frequency absorption range are often more useful
for practical applications [41]. Most research on EMA materials has focused on the 2-18 GHz
range, which is particularly interesting because it aligns with the operational frequencies
of many modern radar systems, satellite communications, and wireless networks [42].
Achieving high EMA performance within this range is critical for both civilian and military
applications, including electromagnetic compatibility and stealth technology [43].

MOF-based composite materials have significant potential in EMA, owing to their
distinctive porous structure and variable chemical composition. Controlling the synthesis
conditions of MOFs allows for exact adjustment of their pore size distribution, specific
surface area, and framework structure to fulfill the various demands of EMA [44]. MOFs’
flexible binding sites on the surface enable hybridization with a variety of materials, re-
sulting in synergistic effects of dielectric and magnetic loss that lead to wideband and
efficient EMA performance. The main mechanisms of EMA are dielectric loss and mag-
netic loss [45,46]. The primary way energy is dissipated is through dielectric loss. The
coordination bonds formed between metal elements and organic ligands in MOF materials
will be polarized under the action of an alternating electric field. This polarization pro-
cess consists of electronic polarization, ionic polarization, orientational polarization, and
interfacial polarization. Interfacial polarization is especially critical in composite materials
because the interfaces between MOFs and other components generate a significant amount
of interfacial charge [47,48]. The reciprocating movement of these charges in the electric
field causes enormous energy dissipation. It is worth mentioning that the migration of free
carriers (such as electrons and holes) under an alternating electric field generates displace-
ment currents and conduction currents, causing conductivity loss, and its loss efficiency
is positively correlated with the electrical conductivity of the material [49]. Furthermore,
the porosity of MOFs provides various reflection and scattering channels for microwave
propagation, increasing absorption path length and energy dissipation. Magnetic loss is
also an important mechanism for EMA, especially when magnetic metals (such as Fe, Co,
Ni) or their oxides are integrated with MOFs [50,51]. An applied magnetic field causes
the magnetic moments of the magnetic components to precess, dissipating microwave
energy through natural resonance and exchange resonance during this process. Moreover,
the movement of magnetic domain walls and hysteresis loss are also significant energy
dissipation pathways. At the same time, the incorporation of magnetic components can
match the impedance characteristics of the material with the wave impedance of free space,
minimizing the surface reflection of microwaves and allowing more energy to enter the
material and be absorbed [52,53].

MOF-based composites exhibit varying electromagnetic responses to electromagnetic
waves of different frequencies (1-20 GHz). In the low-frequency range (1-2 GHz), due
to the longer wavelength of microwaves, achieving high EMA performance is challeng-
ing and requires thicker or more complex material designs. Magnetic MOFs dominate
energy dissipation through magnetic resonance effects, while moderate conductivity (such
as MOF-derived carbon) aids in dielectric loss and suppresses surface reflection [54]. In
this range, material thickness and the content of magnetic components are key design
parameters. In the mid-frequency range (2-8 GHz), the synergy between dielectric loss and
magnetic loss becomes the core. The hierarchical porosity and heterogeneous interfaces
of MOFs enhance interfacial polarization, while the resonance frequencies of magnetic
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components cover this frequency band. Optimization of the conductive network (e.g.,
CNT/MOF composites) can further improve broadband EMA performance [55]. In the
high-frequency range (8-20 GHz), dielectric loss (especially interfacial polarization and re-
laxation effects) dominates. The high specific surface area and nanoscale channels of MOFs
provide abundant polarization sites, while the incorporation of conductive fillers (e.g.,
graphene, MXene) enhances high-frequency EMA through conductive loss and multiple
scattering [56].

2.2. Flame Retardant

A variety of testing techniques must be used in order to assess the performance of
flame-retardant materials. The UL-94 vertical burning test, the limiting oxygen index (LOI),
the cone calorimeter test (CCT), and infrared thermal imaging analysis are examples of
common characterization techniques [57]. One important test technique for describing a
material’s flame-retardant qualities is CCT. It measures a number of crucial factors, such as
heat release rate (HRR), total heat release (THR), TSP, and CO production rate (COP), and it
models how materials would burn in a fire. These metrics fully reflect the flame-retardant
capabilities of the material. A key measure of a material’s flame-retardant properties,
LOI testing determines the minimum oxygen concentration required to sustain burning.
The ability of a material to sustain combustion generally declines as the LOI value rises.
Examining a material’s ability to extinguish itself and the behavior of molten droplets
requires the use of the UL-94 test. With V-0 being the highest, the material is assessed based
on its self-extinguishing qualities and droplet features during combustion (e.g., V-0, V-1,
V-2). The temperature distribution on the material’s surface during combustion can also
be tracked in real time using infrared thermal imaging technology, which is crucial for
assessing the material’s thermal insulation qualities and flame spread behavior. Superior
thermal insulation allows for infrared stealth capabilities, which are especially crucial in
military and aerospace applications, in addition to efficiently preventing heat transfer.

Because of their exceptional thermal stability, distinctive decomposition behavior, and
capacity to adsorb and catalytically degrade combustion products, MOF-based composite
materials have clear advantages in the field of flame retardancy [58]. Condensed-phase
and gas-phase flame retardancy are the two primary fundamental mechanisms for flame
retardancy [59,60]. At high temperatures in the condensed phase, the metal ions in the
MOF molecule break down, carbonizing the matrix material and forming a thick protective
layer that effectively prevents oxygen and heat transmission [61]. Furthermore, compos-
ite materials including MOFs can collect pyrolysis products such as hazardous CO and
carbon soot particles, resulting in much lower smoke and harmful gas emissions during
burning [62]. MOF-based materials emit non-toxic or low-toxic volatile compounds (such
as water vapor and CO;,) during high-temperature decomposition, which contributes to
gas-phase flame retardancy [63]. These gasses help reduce the amount of flammable gas
in the combustion zone. Furthermore, active metal components (such as Fe, Co, Al, etc.)
in some MOF composites can accelerate the production of hydroxyl or peroxyl radicals,
interrupting the free radical chain reactions of combustion [64,65]. Moreover, the thermal
stability and flame-retardant qualities of MOFs can be improved by functional modification
(for example, adding N, S, or P groups). Through cooperation with one-dimensional or
two-dimensional (2D) materials (e.g., CNTs [66-68], layered double hydroxides [69-71],
MXenes [72-74], etc.), MOF-based composites have been able to achieve notable increases
in smoke suppression and flame retardancy.
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3. EMA and Flame-Retardant Dual-Functional MOF Composites
3.1. Fe-MOF

In recent years, Fe-based MOFs have shown great potential in the fields of EMA and
flame retardancy due to their tunable microstructures and excellent functional proper-
ties [75,76]. Li et al. [77] used a simple one-pot solvothermal synthesis approach to develop
Fe-MOFs on the surface of in situ reduced graphene oxide (rGO), resulting in a unique
Fe-MOEF-rGO microwave absorber. When the Fe-MOF-rGO content reached 25 wt.% and
the thickness was 2.0 mm, the RL,;, reached —43.6 dB, and the EAB exceeded 5.0 GHz,
meeting the high-efficiency, lightweight, and wide-bandwidth requirements. Furthermore,
the addition of 10 wt.% Fe-MOF-rGO into EP resulted in 42.1%, 42.3%, and 17.7% reductions
in heat release capacity (HRC), pHRR, and THR, demonstrating excellent flame retardancy.

The flexible coordination between phosphate groups and metals gives metal-based
phosphates a variety of electronic structures and electronic conduction pathways, giving
them distinct dielectric responses and impedance matching characteristics. Furthermore,
metal-based phosphates demonstrate excellent high-temperature and fire-resistant perfor-
mance [78,79]. Therefore, developing metal-based phosphate/doped heteroatom carbon
composites has promise for producing highly efficient and controllable EMA and flame
retardancy. Liu et al. [80] prepared fire-resistant Fe-based phosphate-/phosphorus-doped
carbon composites by annealing phytic acid-treated MIL-101(Fe) as the precursor. By
varying the amount of phytic acid during the preparation process, they were able to obtain
the Fe,P4O1,/phosphorus-doped carbon (FepP,O1, /P-C) composite with the best EMA
performance, achieving an EAB of 5.76 GHz (d = 2.1 mm) and an RL;, of —67.6 dB
(d = 2.0 mm). Meanwhile, the Fe;P4O12/P-C composite showed good fire resistance. After
3 min of exposure to flame, composite sheets formed from the material retained their
macroscopic shape.

MOF-derived materials for EMA composites have garnered extensive attention due to
their unique structural design flexibility and excellent functional properties. Jiang et al. [81]
created a MOF-derived Fe/C/carbon foam (Fe/C/CF) 3D magnetic composite EMA mate-
rial by using carbon foam as a template and uniformly distributing Prussian blue nanocubes
throughout the carbon foam skeleton (Figure 2a). The Fe/C/CF achieved a RL, of
—66.7 dB and the maximum EAB of 6.34 GHz, as shown in Figure 2b,c. Furthermore, the
hybrid foam’s surface temperature remained nearly unchanged when heated for more
than 1 h at a constant 120 °C, demonstrating its excellent thermal insulation performance
(Figure 2f). Additionally, since heat-emitting devices are easily detectable by infrared
cameras, military equipment requires infrared stealth capability. As illustrated in Figure 2d,
the hybrid foam is the same hue as the surroundings, suggesting that the heated hand’s
infrared stealth has been achieved. Similarly, the target of military equipment concealed
with hybrid foam is undetectable to the thermal infrared camera (Figure 2e).

3.2. Co-MOF

ZIFs are a special family of crystalline materials that are a subclass of MOFs. A typical
example of one of these is ZIF-67, which has imidazole as the bridging ligand and Co ions
as the core metal. Because of its strong electrical conductivity and large number of surface
active sites, ZIF-67 has attracted a lot of interest as a precursor for EMA, catalysis, and
sensing applications [82-84].

Gu et al. [85] discovered that when melamine serves as the structural matrix, ZIF-67
particles can uniformly grow on the foam surface via hydroxyl radicals. After calcination,
they obtained a 3D hybrid foam, MZT, with EMA functionality (Figure 3a). As shown in
Figure 3b,c, the hybrid foam achieved a RL,j, of —59.82 dB at a thickness of 2.3 mm and an
EAB of 5.64 GHz at a relatively thin thickness of 2.1 mm. When the hybrid foam was placed
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on a heating platform at 70 °C, the surface temperatures recorded over 5 to 30 min were
18.3,18.5, 18.9, 19.4, 19.5, and 19.9 °C, respectively, demonstrating its excellent infrared
stealth and thermal insulation properties (Figure 3d).
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Figure 2. Fe/C/CF: (a) schematic diagram of synthesis process, (b) 3D RL diagram, (c) RL—f curve,
(d) thermal infrared image of hand, (e) infrared stealth diagram, and (f) thermal infrared image at
120 °C (reprinted with permission from [81] © 2023 Elsevier).
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Figure 3. MZT hybrid foam: (a) schematic diagram of the synthesis process, (b) 3D RL diagram,
(c¢) RL-f curve, (d) thermal infrared image at 70 °C (reprinted with permission from [85] © 2020
American Chemical Society).

Xiang et al. [86] designed a porous composite material consisting of Co-MOF-loaded
CNTs and expanded graphite (Co/CNTs/EG) (Figure 4a). At an ultra-low filler loading
of 3 wt.% and an ultra-thin thickness of 1.4 mm, the Co/CNTs/EG composite achieved
a RLpyin of —67.2 dB and an EAB of 5.1 GHz (Figure 4b,c). Figure 4(d;,d,) shows that
when the composite was blended into the EP matrix and subjected to a 20 s alcohol
lamp test (~500 °C), the pure EP was ignited, whereas the Co/CNTs/EG/EP sample held
its shape and showed no apparent flames, smoke, or dripping. Figure 4(e;—e3) shows
infrared thermal pictures of Co/CNTs/EG taken over a period of 3-9 min. These pictures
demonstrate that the Co/CNTs/EG composite effectively isolates heat and blocks infrared
radiation, showing its suitability for infrared stealth applications. Figure 4(e4) compares the
Co/CNTs/EG composite’s infrared shielding efficacy to two other materials (commercial
polyurethane foam (PU) and nickel foam (NF)), exhibiting that the Co/CNTs/EG composite
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has considerably greater thermal insulation. This highlights its immense application
potential in thermal insulation and infrared stealth technologies.
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Figure 4. Co/CNTs/EG: (a) schematic diagram of the synthesis process, (b) 3D RL diagram, and
(c¢) RL—f curve; EP (dy) and Co/CNTs/EG/EP (d;) alcohol lamp combustion test; (ej—e4) thermal
infrared images at 63.5 °C (reprinted with permission from [86] © 2021 Royal Society of Chemistry).

3D printing technology has introduced new opportunities for the design and fab-
rication of multifunctional materials, enabling the creation of complex shapes with
unprecedented possibilities. Li et al. [87] selected a polarity-induced rigid-flexible
EP/multifluorination/siloxane network as a supporting material and prepared multidi-
mensional nanofillers CoMXene (CoM) and CoNiCNT (CoNiC) through an in situ growth
and pyrolysis process of ZIF-67. Stable CoM@CoNiC-F inks were created using C-F---m
interactions. These inks were utilized to 3D print high-resolution and complex-shaped
CoM@CoNiC-F nanocomposites via direct-ink-writing technology (Figure 5a). Additionally,
the 3D-printed objects exhibited reliable photothermal-induced shape memory proper-
ties, facilitating the fabrication of 4D-printed structures with dynamic shape evolution
behavior. The composites demonstrated excellent EMA performance, with a RLyi, of
—64.78 dB and an EAB of 4.6 GHz (Figure 5b). Simulated results using CST electromagnetic
simulation software revealed that the radar cross-section (RCS) values of CoM@CoNiC-F
were significantly lower than those of a perfect electric conductor (PEC) (see Figure 5c—e),
consistent with the experimental results. The LOI value of CoM@CoNiC-F EP composites
reached 30.8%, with a UL-94 rating of V-0. As shown in Figure 5g—j, compared with pure
EP, CoM@CoNiC-F significantly reduced the pHRR, THR, pSPR, and pCOP by 70.71%,
43.11%, 71.69%, and 76.03%, respectively. Notably, the CoM@CoNiC-F nanocomposites



J. Compos. Sci. 2025, 9, 121

9of 22

exhibited advanced protective multifunctionality, including superamphiphobicity (contact
angles of 157° and 153°), long-term corrosion resistance (45 d), and mechanical durability.

Direct-ink-writing 3D printing
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Figure 5. COM@CoNiC-F: (a) schematic diagram of the synthesis process, (b) 3D RL diagram, (c) 2D
RCS diagram, (d,e) 3D RCS diagram, (f) vertical combustion test, (g) HRR, (h) THR, (i) SPR, and
(j) COP (reprinted with permission from [87] © 2024 Royal Society of Chemistry).

For wearable, intelligent, and portable composite phase-change materials, improving
multifunctionality is essential to meeting the challenges presented by harsh and compli-
cated settings. Li et al. [88] developed a multifunctional composite phase-change material
(PW-CMF@Co/NC) based on Co/N co-doped carbon foam by coating melamine foam
(MF) with ZIF-67, followed by high-temperature calcination and paraffin wax (PW) melting
encapsulation (Figure 6a). This material offers great promise for radiation-resistant smart
wearables and customized thermal management by combining dual-temperature thermal
management, photothermal heating, waterproofing, flame retardancy, and EMA. As shown
in Figure 6b, the PW-CMF@Co/NC composite demonstrated outstanding EMA perfor-
mance, achieving a RL,i, of —57.93 dB at 9.3 GHz with a thickness of 3 mm and an EAB
of 3.85 GHz. In CCT, the PW-CMF@Co/NC composite demonstrated outstanding flame
retardancy, with a pHRR of only 82.3 kW/m?, a THR of 10.0 MJ/m?, a pSPR of 3.8 kW /m?,
and a total smoke release (TSR) of 81.8 MJ/m? (Figure 6e,f). In a vertical burning test using
an alcohol lamp (Figure 6g), the PW-CMF@Co/NC composite showed no significant com-
bustion when exposed to flames. After 60 s, the material only exhibited slight shrinkage and
carbonization, further confirming its excellent flame retardancy. Infrared thermal imaging
was used to record the temperature variation processes of PW and PW-CMF@Co/NC com-
posites (Figure 6¢,d). The composite material exhibited a faster temperature rise compared
to PW, indicating enhanced heat transfer properties. Moreover, the foam-based composite
phase-change material maintained outstanding thermal management, structural stability,
and thermal storage stability after 300 heating—cooling cycles.
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Figure 6. PW-CMF@Co/NC: (a) schematic diagram of the synthesis process, (b) RL—f curve, (c,d) ther-

mal infrared images, (e) HRR and THR, (f) SPR and TSR, and (g) alcohol lamp vertical combustion
test (reprinted with permission from [88] © 2024 Elsevier).

3.3. Ni-MOF

In recent years, layered nanocomposites have demonstrated remarkable EMA and
infrared shielding capabilities, providing new avenues for the development of multifunc-
tional materials. Xiang et al. [89] reported the synthesis of versatile layered Ni nanopar-
ticle@porous carbon (Ni@C) nanocomposites through the simple carbonization of the
Ni-MOF precursor. The results revealed that the layered porous Ni@C nanocomposites ex-
hibited enhanced EMA performance, achieving a RLyi of —59.8 dB and an EAB of 4.5 GHz
at a loading of 25 wt.% (d = 1.5 mm). Furthermore, thermal infrared imaging and contact
angle experiments demonstrated that the layered porous Ni@C nanocomposites possessed
certain infrared shielding, thermal insulation, and waterproofing properties. Building
upon this, Xiang et al. [90] proposed a controlled assembly strategy to construct nano-
/microstructured 2D MXene-encapsulated Ni@C-layered microcubes (Ti3CNTx/Ni@C) via
the thermal decomposition of self-assembled 2D Ni-MOF templates and subsequent elec-
trostatic assembly with Ti3CNTx MXene nanosheets (Figure 7a). As shown in Figure 7d—f,
the composite material exhibited efficient EMA with a RLyi, of —65.7 dB and an EAB of
5.4 GHz at a low loading of 8 wt.% (d = 1.5 mm). Figure 7b shows that a 60 um thick
TisCNTx/Ni@C (5 wt%) film burned over an alcohol lamp emitted a red glow for 60 s
without igniting and retained its original shape. Additionally, when placed on a heat-
ing platform, the film exhibited the slowest temperature rise compared to PU and FN,
as illustrated in Figure 7c. These tests confirmed the excellent thermal stability, flame
retardancy, thermal insulation, and infrared shielding properties of the layered porous
TisCNTx/Ni@C composites. Moreover, the Ti3CNTy/Ni@C layered film demonstrated
high electrical conductivity, enabling effective conversion of electrical energy into thermal
energy, thereby exhibiting outstanding Joule heating performance.
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Figure 7. TizCNTyx/Ni@C: (a) schematic diagram of the synthesis process, (b) alcohol lamp combus-
tion test, (c) thermal infrared image at 62.0 °C, (d) 3D RL diagram, (e) 2D impedance matching plane
map, and (f) RL-f curve (reprinted with permission from [90] © 2022 Elsevier).

3.4. Polymetallic MOF

Polymetallic MOFs have received a lot of attention as new functional materials because
of their adjustable structures and diverse functions. Composite materials designed based
on polymetallic MOFs exhibit excellent EMA, flame retardancy, thermal insulation, and
mechanical properties, making them a hot research topic in the development of novel
high-performance materials [50,91-93].

As shown in Figure 8a, Li et al. [94] developed a multifunctional CoC@FeNiG-F
nanocomposite using an in situ growth and multiphase synergy strategy by combining
ZIF-67 and FeNi-MOF. The CoC@FeNiG-F nanocomposite demonstrated exceptional EMA
performance, achieving a RLyi, of —75.19 dB with an EAB of 3.95 GHz at a thickness
of 2.4 mm (Figure 8b). The combustion behavior of CoC@FeNiG-F-incorporated EP was
investigated through LOI and UL-94 vertical burning tests. As shown in Figure 8c, the
CoC@FeNiG-F composite achieved a LOI of 31.2% and a UL-94 V-0 rating. CCT further
revealed significant reductions in pHRR, THR, pSPR, and pCOP by 68.77%, 36.53%, 48.39%,
and 56.14%, respectively, compared to pure EP (Figure 8d—g). Additionally, the composite
material exhibited outstanding mechanical properties (80.3 MPa), superamphiphobicity
(contact angles of 153° and 151° for water and oil, respectively), long-term corrosion
resistance (45 d), and mechanical durability, highlighting its potential for advanced multi-
functional applications.

The innovative synthesis methods for trimetallic MOFs have opened new pathways
for the study of composite materials. Guo et al. [95] employed a liquid nitrogen directional
freezing strategy to load spindle-shaped trimetallic MOFs onto the pore walls of aerogels.
After carbonization, they obtained a 3D carbon aerogel composite derived from trimetallic
MOFs, named CCNT-FeCoNi/C (Figure 9a). As illustrated in Figure 9b—d, the CCNT-
FeCoNi/C composite exhibited remarkable EMA performance. At a loading of 5 wt.%,
the composite achieved a RLy,j, of —61.55 dB (d = 2.42 mm) and a maximum EAB of
7.2 GHz (d = 2.82 mm). To assess its flame retardancy, a burning test was conducted using
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an alcohol lamp. As shown in Figure 9f, the shape of the composite aerogel remained
nearly unchanged during the 30 s burning test, demonstrating the excellent flame-retardant
properties of CCNT-FeCoNi/C. Furthermore, as shown in Figure 9e, the composite aerogel
exhibited thermal insulation properties when placed on a hot platform at 100 °C, further
highlighting its multifunctional potential for advanced applications.
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Figure 8. CoC@FeNiG-F: (a) schematic diagram of synthesis process, (b) 3D RL diagram, (c) vertical
combustion test, (d) HRR, (e) THR, (f) SPR, and (g) COP ([94] free © 2023 Wiley).
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Figure 9. CCNT-FeCoNi/C: (a) schematic diagram of synthesis process and SEM diagram, (b) 3D RL
diagram, (c) 2D RL plane map, (d) RL—f curve, (e) thermal infrared image at 100 °C, and (f) alcohol
lamp combustion test (reprinted with permission from [95] © 2024 Elsevier).

Using a multidimensional design strategy, Li et al. [96] successfully developed a novel
EMA material by combining carboxylated CNTs with graphene oxide (GO) and loading
Co/Ni-MOF onto the surface of GO using its rich functional groups. This resulted in the
EMA composite CNT-rGO-Co/Ni-MOF (Figure 10a). As shown in Figure 10b—d, CNT-
rGO-Co/Ni-MOF exhibited remarkable EMA properties, achieving a significant RL,;, of
—43.0 dB and an EAB greater than 4.0 GHz at 25 wt.% loading (d = 1.5 mm). When 10 wt.%
of CNT-rGO-Co/Ni-MOF was added to EP, the composite material did not ignite within
60 s, in stark contrast to pure EP, which rapidly ignited (Figure 10e). Additionally, as shown
in Figure 10f, compared to pure EP, the HRC, pHRR, and THR of EP/CNT-rGO-Co/Ni-
MOF were reduced by 59.2%, 52.6%, and 20.8%, respectively, demonstrating excellent
flame retardancy.

In the research of high-performance composites, using renewable resources as scaf-
fold templates to fabricate novel composites has become a green and efficient strategy.
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Peng et al. [97] used a renewable wood-based porous carbon (WPC) scaffold as a template
and its highly ordered internal cells as micro-reactors to fabricate an ultralight, flame-
retardant, heat-insulating, and cyclically stable CoFe-MOF@Ti3C,Tx MXene@sodium algi-
nate@WPC (MMSW) composite material (Figure 11a). As shown in Figure 11b,c, MMSW
achieved a RL i of —58.2 dB and an EAB of 5.8 GHz (d = 2.0 mm). By varying the thick-
ness of MMSW from 1.5 to 6.0 mm, the peak RL exceeded —20 dB in the 6-18 GHz range.
Compared to tissue paper, MMSW maintained its shape after being heated by an alcohol
lamp for 90 s, demonstrating excellent flame retardancy (Figure 11f,g). Moreover, as shown
in Figure 11d,e, a tissue paper placed on MMSW remained intact after 90 s, indicating that
MMSW possesses excellent thermal stability and heat insulation properties. Additionally,
MMSW displayed excellent Joule heating performance, showing high electric-thermal
conversion efficiency after continuous voltage application.
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Figure 10. CNT-rGO-Co/Ni-MOF: (a) schematic diagram of synthesis process and SEM diagram,
(b) 3D RL diagram, (c) 2D RL plane map, (d) RL—f curve, (e) alcohol lamp combustion test, and
(f) HRR (reprinted with permission from [96] © 2024 American Chemical Society).

Molybdenum carbide (MoC) integrated into carbon matrices is renowned for its strong
interfacial polarization functionality, making it a promising ultra-light microwave absorber.
As shown in Figure 12a, Zhang et al. [98] synthesized ZnMo-HZIF foam materials using a
solvent-free ball milling method by controlling the milling time. The multifunctional MoC-
incorporated carbon matrix (MoC-C) was then synthesized by impregnation deposition
thermal reduction from MF and ZnMo-HZIF. The target sample exhibited excellent EMA
performance. At a 15 wt.% loading and 2.5 mm thickness, it achieved a RLy, of —47.56 dB
and an EAB of 4.4 GHz, covering almost the entire X-band (Figure 12b,c). To evaluate the
sample’s EMA capability in practical scenarios, CST simulation software was used to model
the RCS of a PEC plate coated with a uniform absorber. As shown in Figure 12d,e, the RCS
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value of the MoC-C remained below —10 dB-m? across the entire detection angle range,
demonstrating the superior EMA capability compared to other samples. In Figure 12f, MoC-
C and pure MF were exposed to an alcohol lamp flame for 20 s. Pure MF quickly shrank, and
its structural integrity was severely compromised, while MoC-C showed minimal shrinkage
and carbonization, maintaining its original shape. This indicates that the incorporation
of ZnMo-HZIF significantly enhanced the flame retardancy of the MF-based material. To
test the thermal insulation stability of MoC-C, its infrared thermal imaging temperature
was compared with several commercial insulating materials, including NF, high-density
polyurethane foam (HPU), and polystyrene foam (PS). After exposure to a heating platform
set at 150 °C and 200 °C for 10 min, as shown in Figure 12h, MoC-C maintained a lower
temperature than NF, HPU, and PS throughout the heating process, demonstrating its
excellent thermal insulation performance. Figure 12g shows that when an infrared camera
captured the heated aircraft model, MoC-C displayed outstanding stealth capability under
infrared radiation. Additionally, MoC-C exhibited excellent hydrophobicity and resistance
to chemical corrosion, further enhancing its multifunctional properties.
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Figure 11. MMSW: (a) schematic diagram of synthesis process and SEM diagram, (b) 3D RL diagram,
(c) RL—A curve, and (d-g) alcohol lamp combustion test (reprinted with permission from [97] © 2024 Elsevier).
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Figure 12. MoC-C: (a) schematic diagram of synthesis process, (b) 3D RL diagram, (c) 2D impedance
matching plane map, (d) 3D RCS diagram, (e) 2D RCS diagram, (f) alcohol lamp combustion test,
and (g,h) thermal infrared image (reprinted with permission from [98] © 2024 Wiley).
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4. Conclusions and Prospects

This review systematically summarizes the research progress of MOF-based EMA
flame-retardant dual-functional composites, with the EMA and flame-retardant perfor-
mance of all discussed materials collected in Table 1. To provide a more intuitive comparison
of the performance of different materials across various parameters, Figure 13 presents a
comprehensive comparison of these materials in terms of EMA levels, flame retardancy,
and other key properties. Additionally, the following main conclusions can be drawn:
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Figure 13. Radar chart of EMA—flame retardancy levels of all MOF-based dual-functional composites.

(1) Through the rational design of the structure and composition of MOFs, synergistic
enhancement of both EMA and flame-retardant properties can be achieved. The selection
of metal centers plays a key role in the material’s performance. Typical magnetic metals
(such as Fe, Co, and Ni) can provide a certain degree of magnetic loss capability while also
exhibiting excellent dielectric loss characteristics, demonstrating outstanding impedance
matching performance. Polymetallic MOFs further enhance performance through the
synergistic effect of multiple components.

(2) The EMA performance of MOF-based composites is mainly influenced by the
following factors: the pore structure of MOFs provides abundant interfacial polarization
sites and multiple reflection channels; the introduction of metal centers and conductive
components enhances the material’s magnetic loss and dielectric loss capabilities; rational
structural design contributes to the optimization of impedance matching. Reported MOF-
based composites have achieved RL values ranging from —40 dB to —75 dB and EAB values
from 3 GHz to 7 GHz.

(3) The flame-retardant mechanism of MOF-based composites mainly includes the fol-
lowing: the catalytic promotion of charring by the metal centers to form a dense protective
layer; the porous structure facilitating the adsorption and catalytic decomposition of toxic
gases; and the introduction of functional groups such as P and N further enhancing the
flame-retardant effect. Some materials have achieved V-0 flame-retardant performance and
a LOI of over 30%.
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Table 1. EMA and flame-retardant performance of MOF-based dual-functional composites.
S 1 Struct Loading RLpin/d EAB/d Main Flame-Retardant and Advantages/ Ref
ample ructure (wt.%) (dB/mm) (GHz/mm) Thermal Insulation Results Disadvantages :
Alcohol lamp burning 20 s . .
Heterostructure . S Lightweight, easy to
Fe-MOF-rGO composed of 2D rGO 25 —43.6/2.0 5.0/2.0 without deformation; FIRC, pEIRR prepare/high-proportion [77]
P
d 3D Fe-MOF and THR decreased by 42.1%, requirements
an e 42.3% and 17.7%, respectively. q
Complex network High-temperature fire
Fe,P401p/P-C structure composed of 30 _67.6/2.0 576/2.1 Alcohol lamp burning 180 s rzessi;i;:;/igis ;e;; d [80]
€24 octahedral Fe;P4O1; and e . . without deformation. p Iil proce
igh-proportion
layered carbon .
requirements
3D porous structure Lightweight, easy to
composed of Fe/C B - Thermal insulation and infrared prepare/long-term stability
Fe/C/CF nanocubes and carbon 66.7/418  634/4.08 stealth. and weather resistance to (811
foam be proven
. . . . Lightweight/requires precise
MZT Highly orc:‘?vredkSD pore 20 _59.82/2.3 5.64/2.1 Thermal 1nsu1at11(:}r: and infrared control of calcining [85]
networ stealth. conditions
3D porous structure of Alcohol lamp burning 20's Lightweight, low
Co/CNTs/EG urchin-like Co/CNTs 3 —672/14  51/14 without deformation; thermal proportion/long-term [86]
istributed in . . . stability and weather
insulation and infrared stealth. .
honeycomb EG resistance to be proven
Multiphase structure LOI was 30.8%; UL-94 V-0 rating;
P dof2D PHRR, THR, pSPR, and pCOP Shape memory and 4D
CoM@CoNiC-F composed o - —6478/23  46/17 decreased by 70.71%, 43.11%, printing capability /complex  [87]
CoMXene and 1D o o . -
CoNiCNT 71.69%, and 76.03%, respectively. preparation process
O (Heat flux was 35 kW /m?.)
Alcohol lamp burning 60 s
3D porous carbon foam without deformation; heat Efficient photothermal
p p
structure with conduction function; pHRR, THR, conversion capability,
PW-CMF@Co/NC  polyhedron growth, and - —57.93/3.0  3.85/3.0 PSPR, and TSR were 82.3 kW /m?, excellent thermal storage [88]
the surface covered with 10.0MJ/m?, 3.8 kW/m?, and stability /practical
dense carbon nanotubes 81.8 MJ/m?. (Heat flux was application limitations
50 kW/m?.)
Laminated porous . .
. . . Lightweight,
Ni@C Struc;‘i?e f‘;%“figgn 25 _59.8/15  45/15 Thermal ms‘;ﬁ;‘ﬁﬂ and infrared hydrophobic/mechanical ~ [89]
assem :ll%e ts ' strength may be insufficient
" La:yered porousd ¢ Alcohol lamp burning 60 s Lightweight, low
TizCNT, /Ni@C structure composed o 8 —65.7/1.5 54/1.5 without deformation; thermal proportion/MXene easy to [90]
2D MXene sheets and
Ni@C microcubes insulation and infrared stealth. stack and agglomerate
CoC@FeNiG-F composed of 1D CNTs, - —75.19/24  3.95/24 decreased by 68.77%, 36.53%, nano éﬁzf:tlgjjfgm lex [94]
2D rGO, and 3D carbon 48.39%, and 56.14%, respectively. 8 X p
skeleton (Heat flux was 35 kW /m?.) preparation process
3D porous aerogel Alcohol lamp burning 30 s Lightweight, low
CCNT-FeCoNi/C structure of FeCoNi alloy 5 —61.55/2.42 7.2/2.82 without deformation; thermal proportion/complex [95]
grown on the surface insulation and infrared stealth. preparation process
Multidimensional Alcohol lamp burning 60 s Lightweight,
CNT-rGO-Co/Ni- heterogeneous without deformation; HRC, pHRR, multi-mechanism
structures composed of 25 —43.0/1.5 4.0/15 ’ S - - . [96]
MOF and THR decreased by 59.2%, synergies/high-proportion
Cg) ]}IiT?—g/igrl;d 52.6%, and 20.8%. requirements
. Lightweight, excellent Joule
Highly ordered cellular . .
MMSW porous carbon foam - —58.2/2.0 5.8/2.0 lzllcl(:)hol laF“P -bﬁrmngl?o s vinthout Fhermalh ical [97]
tructure eformation; thermal insulation. properties/ mechanica
s strength may be insufficient
3D foam structure Alcohol lamp burning 20 s Lightweight, green
MoC-C containing a large 15 —47.56/2.5 44/25 without deformation; tlglermal re agraﬁorﬁm’echanical [98]
number of bubbles and ’ ’ o . . . / Prep . .~
hierarchical pores insulation and infrared stealth. strength may be insulfficient

Figure 14 visually illustrates the challenges and development directions that research

on MOF-based dual-functional composites still faces. In-depth studies on the structure—

performance relationships of materials are needed to establish synergistic enhancement

mechanisms for EMA and flame-retardant properties, providing theoretical guidance for

the rational design of materials. New synthesis strategies and processing techniques

should be developed to improve the scalability of material preparation and enhance their



J. Compos. Sci. 2025, 9, 121

17 of 22

References

practical application performance. Environmentally friendly and sustainable preparation
methods need to be explored to reduce material costs and increase their economic feasibility
and practicality. Expanding the application fields of MOF-based composites, such as in
smart wearable devices and aerospace materials, will facilitate the further integration
and optimization of material functionalities. In conclusion, MOF-based dual-functional
composites show a wide range of potential applications. It is anticipated that new high-
performance, versatile, and innovative composites will be created via ongoing technical
advancement and thorough study, offering practical answers to the problems of fire safety
and electromagnetic pollution.
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Figure 14. Perspective view of MOF-based dual-functional composites.
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