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Chickpea (Cicer arietinum L.) is one of the major pulse crops, rich in protein, and

widely consumed all over the world. Most legumes, including chickpeas, possess

noticeable amounts of raffinose family oligosaccharides (RFOs) in their seeds.

RFOs are seed oligosaccharides abundant in nature, which are non-digestible

by humans and animals and cause flatulence and severe abdominal discomforts.

So, this study aims to identify genetic factors associatedwith seed oligosaccharides

in chickpea using the mini-core panel. We have quantified the RFOs (raffinose

and stachyose), ciceritol, and sucrose contents in chickpea using high-

performance liquid chromatography. A wide range of variations for the seed

oligosaccharides was observed between the accessions: 0.16 to 15.13 mg g-1

raffinose, 2.77 to 59.43 mg g-1 stachyose, 4.36 to 90.65 mg g-1 ciceritol, and 3.57

to 54.12 mg g-1 for sucrose. Kabuli types showed desirable sugar profiles with

high sucrose, whereas desi types had high concentrations RFOs. In total, 48

single nucleotide polymorphisms (SNPs) were identified for all the targeted sugar

types, and nine genes (Ca_06204, Ca_04353, andCa_20828: Phosphatidylinositol

N-acetylglucosaminyltransferase; Ca_17399 and Ca_22050: Remorin proteins;

Ca_11152: Protein-serine/threonine phosphatase; Ca_10185, Ca_14209, and

Ca_27229: UDP-glucose dehydrogenase) were identified as potential candidate

genes for sugar metabolism and transport in chickpea. The accessions with low

RFOs and high sucrose contents may be utilized in breeding specialty chickpeas.

The identified candidate genes could be exploited in marker-assisted breeding,

genomic selection, and genetic engineering to improve the sugar profiles in

legumes and other crop species.

KEYWORDS

anti-nutritional factors (ANF), flatus potential, marker trait associations, prebiotics,
raffinose family oligosaccharides (RFOs), specialty chickpeas
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Introduction

Chickpea (Cicer arietinum L.) is one of the founder crops

domesticated between 9,000–11,000 years ago and is an

important ancient legume grown and consumed all over the

globe (Lev-Yadun et al., 2000). As a legume crop, it is often

grown as rotational crops with cereals to enhance yield because

of their ability to fixing atmospheric nitrogen (Graham and

Vance, 2003). Chickpea is rich in carbohydrates (60-65%),

protein (20-22%), fat (6%), and rich in dietary fiber, as well as

minerals (phosphorus, calcium, magnesium, iron, and zinc) and

vitamins (b-carotene, thiamin, riboflavin, and niacin) (Jukanti

et al., 2012). The major pulse grain constituents are

carbohydrates, based on their polymeric structure that can be

classified as monosaccharides (ribose, fructose, and glucose),

disaccharides (sucrose, maltose, melibiose), oligosaccharides

(raffinose, stachyose, verbascose, ajugose, and ciceritol) and

polysaccharides (Chibbar et al . , 2010). Among the

oligosaccharides, a-galacto-oligosaccharides (a-GOS) are

known as raffinose family oligosaccharides (RFOs) (Sosulski

et al., 1982). The major RFOs found in chickpea include

raffinose, stachyose, and verbascose. However, ciceritol does

not belong to the RFOs since its structure is different from a-
GOS and can rapidly undergo a hydrolysis process, so unlike

raffinose and stachyose, ciceritol does not cause flatulence in

humans and animals (Quemener and Brillouet, 1983).

RFOs are the single most deterrent factor for the rapid

adoption of legumes in mainstream food usage in humans and

animals (Delumen, 1992; Elango et al., 2022a). Humans and

animals lack the enzyme a-galactosidase to degrade a-
galactosides (RFOs), which results in the accumulation of

undigested RFOs in the large intestine of the digestive system,

which ultimately causes flatulence and abdominal discomforts

due to the production of flatulent gases by colonic bacteria

through fermenting the un-digested RFOs present in the guts

(Calloway and Murphy, 1968; Sosulski et al., 1982; Singh, 1985;

Han and Baik, 2006). Though, RFOs have been reported to have

a beneficial effect on gut microflora (Van den Ende, 2013; Su

et al., 2019), and play a role in seed germinability and biotic and

abiotic stress tolerance in crop plants (Gulewicz et al., 2002; Taji

et al., 2002; Nishizawa-Yokoi et al., 2008; Dobrenel et al., 2013;

Van den Ende, 2013; Gangl and Tenhaken, 2016; Yan et

al., 2022). However, we do not know what the right

concentration is needed to benefit humans, animals, and

plants concerning RFOs.

Food processing can eliminate RFOs at varying degrees and

significantly increase dietary fraction availability in food (Jood et al.,

1985; Egbe andAkinyele, 1990;Aguilera et al., 2009).However, these

techniques often come with trade-offs; most techniques are time-

consuming, lead to loss of nutrients, and sometimes have consumer

acceptability issues. Therefore, identifying sources of variation for

developing desirable sugar-type cultivars through crop breeding is

very important. Screening and identification of low RFOs have been
Frontiers in Plant Science 02
carried out in many economically important legume crops such as

lentil (Tahir et al., 2011), chickpea (Raja et al., 2015; Gangola et al.,

2016), pea (Peterbauer et al., 2003), soybean (Blackman et al., 1992;

Dierking andBilyeu, 2008;Obendorf andGórecki, 2012),mungbean

and urd bean (Souframanien et al., 2014), whereas, very limited

efforts have been taken toward the identification of genomic regions

associatedwithRFOs incropplants. In this context, our studyaims to

identify the genetic factors responsible for seed oligosaccharides in

chickpea through genome-wide association mapping using the

International Crops Research Institute for the Semi-Arid Tropics

(ICRISAT) mini-core collection.
Materials and methods

Plant materials

The chickpea mini-core collection consisting of 211

accessions from 24 countries (Asia, Africa, Europe, North, and

South American regions) was obtained from the genetic

resources division of International Crops Research Institute for

the Semi-Arid Tropics (ICRISAT), India (Upadhyaya and Ortiz,

2001). Field experiments were performed in a randomized

complete block design (RCBD) with three replications in the

2010 winter season at the Department of Pulses (11.0232° N

latitude, 76.9293° E longitude, 426.72 m altitude), Tamil Nadu

Agricultural University (TNAU), Coimbatore, India. Each

accession was grown in a single row in a 3 m long plot. Seeds

from each replicate of individual accessions were harvested at

physiological maturity and stored at 4°C until analysis was

performed. A standard agronomic package of practices was

followed to achieve the best crop establishment.
Sugar extraction and quantification

The seeds of each chickpea accession were grounded, and the

flours were used to extract soluble sugars. One gram offlour samples

was taken into a screw cap vial andmixedwith 10ml of 50% ethanol,

and vortexed briefly. After adding ethanol, samples were shaken

horizontallyusing awater bath shakermaintainedat 50°C for 30min

at 100 rpm.The incubatedvialwas centrifugedat4000 rpmfor5min,

then 5 ml of supernatant was taken and mixed with 7 ml of

acetonitrile (high-performance liquid chromatography (HPLC)-

grade) to precipitate the soluble proteins. The mixture (5 ml

supernatant + 7 ml acetonitrile) was incubated at room

temperature for two hours. After incubation, the mixture was

centrifuged at 3670 g for 5 min, and one ml aliquot of the

supernatant was collected. The collected supernatant was dried at

50°C and resuspendedwith 500ml 65%HPLC-grade acetonitrile and

filtered through a 0.2 mmmembrane filter and transferred to HPLC

vials. Standards of sucrose, raffinose, and stachyose were purchased

from Sigma-Aldrich, Bengaluru, India and ciceritol was purchased
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from Clearsynth, Hyderabad, India. Three different concentrations,

1.25 mg ml-1, 2.5 mg ml-1, and 5.0 mg ml-1, were prepared and

included in each batch of samples to obtain the standard curve. The

concentration of different sugars (sucrose, raffinose, stachyose, and

ciceritol)wasdeterminedusing theHPLC(Shimadzu,Kyoto, Japan),

which consisted of an LC20AD pump and a RID-10A refraction

indexdetector. Sugar concentrationsweredeterminedusing thepeak

area of the sample in comparison with standards.
Marker-trait association analyses

Weperformedgenome-wide associationmappinganalysis using

673,115 single nucleotide polymorphisms (SNPs), where the SNP

calls for 211 genotypeswere obtained fromVarshney et al. (2019).As

reported in Varshney et al. (2019), for calling SNPs, the clean reads

weremapped on to the reference genomeof chickpea genotypeCDC

Frontier using SOAP2. We then used SOAPsnp3 to calculate the

likelihood of all possible genotypes for each sample. In order to filter

out low-quality variants, the loci with sequencing depth higher than

10,000 and lower than 400,mapping times higher than 1.5, or quality

scores lower than 20, were filtered out. The loci with estimated allele

frequency not equal to 0 or 1 were determined as SNPs. After

obtaining the SNPs, we also determined the genotype of each

individual at the SNP locus by assigning the most likely genotype

from the SOAPsnp3 result of each sample. We have used the Fixed

and randommodel Circulating Probability Unification (FarmCPU)

model (Liu et al., 2016) in the Genome Association and Prediction

Integrated Tool (GAPIT3) package (Wang and Zhang, 2021) to

identify significant marker-trait associations (MTAs). GAPIT

estimated the allelic effect for the significant SNPs identified. Sign

(+/-) of the allelic effect estimate is relative to the alphabetical order of

the nucleotides. MTAs were selected for p-value <10-5. Gene

annotations were determined from the reference genome of

chickpeas released in 2013 (Varshney et al., 2013). Genes within

the flanking regions of 50kb upstream and downstream of the

significantly called SNPs were collected first, and among them,

only the genes already annotated in the chickpea genome with

predicted function or found orthologs in other model plants were

selected as candidate genes. Distance from the SNP (bp) is calculated

as the distance from the SNP location to the start site of the upstream

ordownstreamgenes. If the SNP is locatedwithin a gene, thedistance

is calculated as the distance to the start site of the gene.
Results

Phenotypic variation and correlations
among seed oligosaccharides

We have observed wide variations for all sugars measured in

the ICRISAT chickpea mini-core collection. Among the
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morphotypes, Kabuli-type chickpeas exhibited higher sucrose

and total sugar contents. In contrast, the desi-type chickpeas

showed higher RFOs (raffinose and stachyose) and ciceritol

contents in seeds (Figure 1). Mini-core collection showed wide

seed oligosaccharide variations: 0.16 to 15.13 mg g-1, 2.77 to

59.43 mg g-1, 4.36 to 90.65 mg g-1, 3.57 to 54.12 mg g-1 for

raffinose, stachyose, ciceritol, and sucrose with an average of

4.61, 28.02, 34.48, and 23.11 mg g-1 flour sample, respectively

(Table 1). We have observed significant positive correlations

among seed oligosaccharides measured: sucrose, ciceritol, and

stachyose have strong positive correlations with total sugars;

moderate correlations were observed between sucrose and

ciceritol, and ciceritol and stachyose (Figure 2). Whereas

raffinose had a low level of positive correlations with all other

seed oligosaccharides (Figure 2).
Marker trait associations

Genome-wide association mapping identified 48 SNPs

associated with the seed oligosaccharide contents in chickpeas

(Table 2). The largest number of associated markers (12) were

detected on chromosome 4 (Table 2), and there were 16 SNPs

found to be significantly associated with raffinose content in

chickpea, which is the most associated markers compared with

other three sugars: 7 SNPs for ciceritol and stachyose

respectively, and 9 SNPs for sucrose, and 8 SNPs for total

sugar content in chickpea (Table 2; Figure 3).
Probable candidate genes

We identified 80 probable candidate genes for all the seed

oligosaccharides measured in this study (Table 2). Among them,

nine genes were recognized with annotated functions highly

associated with sugar biosynthesis and transportation. Four

genes that are important components in inositol biosynthesis:

two associated with stachyose (Ca_06204: phosphatidylinositol

N-acetylglucosaminyltransferase; Ca_04353: Type I inositol 1,4,5-

trisphosphate 5-phosphatase), and two associated with sucrose

(Ca_20828: inositol-polyphosphate phosphatase; Ca_10185:

UDP-glucose dehydrogenase) have been identified as probable

candidates for seed oligosaccharide biosynthesis in chickpeas

(Table 2). There were also three candidate genes identified

playing an important role in RFOs transportation: two of the

genes (Ca_17399 and Ca_22050) are associated with raffinose

content, and the other gene (Ca_11152) is linked with total sugar

content in chickpea seeds, and all of them encodes remorin

protein, which regulates the carbohydrate translocation in

plants. The other group of important genes identified in our

study includes Ca_14209 (associated with two traits: ciceritol

and total sugar contents) and Ca_27229 (associated with
frontiersin.org
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raffinose content), and both genes encode UDP-glucose

dehydrogenase (UGD) and likely interfere with RFOs

biosynthesis as a competitor for the upstream precursor

compound (Joët et al., 2009).

A candidate gene Ca_23689 harboring SNP Ca4_43438450

was associated with raffinose content, and GO annotation

indicates gene Ca_23689 encodes structural constituent of the

cell wall (Table 2). A precedent study has discovered that over-

expression of raffinose synthase (rfs) resulted in increased

biomass and total cellulose content in the cell wall (Unda

et al., 2017). Gene Ca_03642 was associated with chickpea

stachyose content in seed (Table 2). The GO term functional

annotation suggests that gene Ca_03642 involves intracellular

protein transport, vesicle-mediated transport, and membrane

fusion. Studies have demonstrated that stachyose is the primary

photoassimilate and transport sugar in legumes (Peterbauer

et al., 2001; Qiu et al., 2015). Another gene, Ca_09762, which
Frontiers in Plant Science 04
is predicted as involved in calcium ion transmembrane

transport, was also associated with stachyose content

(Table 2). Meanwhile, we identified another SNP locus

(Ca6_2510863) in the gene Ca_10383 associated with sucrose

content in chickpea seed, and the functional prediction of gene

Ca_10383 is ATP hydrolysis coupled proton transport. A

previous study suggested that stachyose and sucrose may also

be accumulated in the vacuole by stachyose and Sucrose/H+

antiporter mechanisms, which is an ATPase energized vacuolar

uptake process (Keller, 1992).

Two SNP loci (Ca_46225454 in gene Ca_21541 and

Ca5_1870839 in gene Ca_26715) were associated with ciceritol

content in chickpea seeds (Table 2). Gene Ca_21541 is predicted

as a TPX2 (targeting protein for Xklp2) family protein. SNP

Ca_46225454 is also adjacent to a sequence fragment ortholog of

AT5G40690, which encodes for methyltransferase activity.

Ciceritol is the end product of the inositol methylation
TABLE 1 Variability of chickpea accessions for seed oligosaccharide contents.

Seed oligosaccharides Range Mean ± SD Desirable sugar profile genotypes Origin Morphotype
mg g-1

Raffinose 0.16 - 15.13 4.61 ± 3.24 ICC 6263 (0.16) Russia & CISs Kabuli

Stachyose 2.77 - 59.43 28.02 ± 11.69 ICC 13816 (2.77) Russia & CISs Kabuli

Ciceritol 4.36 - 90.65 34.48 ± 14.38 ICC 12968 (4.36) India Kabuli

Sucrose 3.57 - 54.12 23.11 ± 8.32 ICC 12654 (54.12) Ethiopia Desi

Total sugars 15.53 - 177.34 90.22 ± 29.93 – – –
FIGURE 1

Seed oligisaccharides variations among desi, kabuli, and intermediate types in the ICRISAT chickpea mini-core panel.
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process, which explains the role of the identified SNP

Ca_46225454 in ciceritol biosynthesis in chickpeas. Gene

Ca_26715 is an endochitinase A-like protein. Chitinase is

known to protect plants against abiotic and biotic stresses (de

Las Mercedes Dana et al., 2006; Karlsson and Stenlid, 2008; Xin

et al., 2021; Zhang et al., 2022). The association between

endochitinase and ciceritol content in chickpea suggests a

metabolic link between the ciceritol pathway and the pathway

leading to biotic and abiotic resistance. Two SNPs were

identified for total sugar content: SNP Ca4_17208915 in gene

Ca_05402 and Ca5_1870839 in gene Ca_26715. Gene Ca_05402

involves ATP hydrolysis coupled proton transport. Gene

Ca_26715 is predicted as an A-like endochitinase (Table 2).
Frontiers in Plant Science 05
Discussion

Breeding specialty chickpeas

Identification of germplasm lines with good nutritional

quality parameters is key for developing cultivars for different

end users. In this study, we have identified varying sugar profile

accessions that could be exploited as a base in breeding specialty

chickpeas. Especially the accessions with high sucrose (ICC

12564 and ICC 9137) and low RFOs (ICC 6263 and ICC

13816) are desirable for making delicacies like hummus, besan

laddoo, Mysore Pak, besan barfi, Puran Poli, and other

confectionaries without refined sugars and or artificial
FIGURE 2

Variation and Pearson pairwise correlations of sucrose, raffinose, ciceritol, stachyose, and total sugars in chickpea. Upper diagonal: Pearson
correlation coefficients between every two traits. Mid-diagonal: Histograms of sucrose, raffinose, ciceritol, stachyose, and total sugars. Lower
diagonal: Bivariate scatter plots of correlations between every two traits with a fitted line. **Significant at the .01 probability level. ***Significant
at the .001 probability level.
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TABLE 2 List of significant single nucleotide polymorphic associations, the genes tagged by significant single nucleotide polymorphic markers,
and candidate genes identified based on proximity to the significant markers and their description for ciceritol, raffinose, stachyose, sucrose, and
total sugars in chickpea.

Oligosaccharides Scaffold
position

Allele P
value

Minor
allele fre-
quency

Allelic
effect

Chickpea
gene ID

Distance
from the
SNP (bp)*

SNP posi-
tion to
gene loci

Functional annotation

Ciceritol Ca4_30621427 A/T 2.38E-
07

0.26 -5.54 Ca_14209 8067 Downstream UDP-glucose dehydrogenase

Ca_14210 47995 Upstream TBCC domain-containing protein
1

Ca5_34185294 C/A 7.22E-
07

0.24 7.07 Ca_01829 5411 Downstream Cryptochrome, DASH family
protein

Ca_01828 1764 Upstream Predicted membrane protein

Ca2_15589436 G/C 2.57E-
06

0.47 13.91 Ca_18544 47000 Downstream 6-phosphogluconate
dehydrogenase

Ca_18543 19728 Upstream Receptor-like protein kinase-
related

Ca4_11536839 A/G 5.22E-
06

0.43 -6.05 Ca_04384 46920 Downstream Tubby-like f-box protein 1-related

Ca_04385 15105 Upstream Trihelix transcription factor gt-2

Ca1_46225454 T/C 5.24E-
06

0.06 -9.08 Ca_21541 3116 Within the
gene

Tpx2 (targeting protein for xklp2)
protein family

Ca5_1870839 G/A 9.02E-
06

0.17 -8.41 Ca_26715 68 Within the
gene

DNA damage-binding protein 1
(DDB1)

Ca7_11316700 A/G 9.64E-
06

0.28 -6.74 Ca_09363 20294 Downstream AhpC/TSA antioxidant enzyme
(AhpC-TSA_2)

Ca_09362 7497 Upstream CAMP-response element binding
protein-related

Raffinose Ca5_42575153 T/A 1.16E-
07

0.24 -1.99 Ca_11357 12497 Downstream F-box only protein 6

Ca_11356 6613 Upstream Squamosa promoter-binding-like
protein 10-related

Ca7_19222249 T/C 3.54E-
07

0.19 -1.43 Ca_12328 7908 Downstream Ap2-like ethylene-responsive
transcription factor ail6-related

Ca_12329 6606 Upstream Tetratricopeptide repeat

Ca1_36822662 G/A 3.61E-
07

0.15 -2.30 Ca_21700 29080 Downstream Ulp1 protease family

Ca_27229 17117 Upstream Udp-glucose dehydrogenase

Ca6_14474273 T/C 9.04E-
07

0.12 -1.77 Ca_05217 5850 Downstream Protein-serine/threonine
phosphatase

Ca_05218 16903 Upstream Cotton fibre expressed protein

Ca6_56636684 T/A 1.66E-
06

0.12 -2.37 Ca_17399 1462 Downstream Remorin family protein

Ca_17400 1515 Upstream RNAse P Rpr2/Rpp21/SNM1
subunit domain (Rpr2)

Ca6_26580794 T/C 2.85E-
06

0.25 -1.33 Ca_16690 13777 Downstream Dof domain, zinc finger (zf-Dof)

Ca_16691 18135 Upstream WUSCHEL-related homeobox 2

Ca4_16178393 G/A 2.89E-
06

0.16 -1.59 Ca_05494 6388 Downstream Zinc finger protein jagged-related

Ca_05493 4880 Upstream Protein istr-1, isoform a

Ca6_18000446 T/G 3.06E-
06

0.37 -2.07 Ca_06421 12470 Downstream Serine/threonine-protein kinase
srk2e

Ca_06422 25071 Upstream Myb family transcription factor

Ca7_32073468 C/A 3.55E-
06

0.13 -1.75 Ca_10064 24292 Downstream NB-ARC domain (NB-ARC)/
Leucine Rich Repeat (LRR_3)

Ca_10063 2431 Upstream Phospholipid-transporting
ATPase tat-1

Ca2_16716210 T/C 4.40E-
06

0.12 -1.60 Ca_22049 1280 Downstream Protein-serine/threonine
phosphatase

Ca_22050 13224 Upstream Remorin family protein

Ca5_12255667 T/C 0.21 -1.34 Ca_17088 9464 Downstream Anion exchange protein

(Continued)
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TABLE 2 Continued

Oligosaccharides Scaffold
position

Allele P
value

Minor
allele fre-
quency

Allelic
effect

Chickpea
gene ID

Distance
from the
SNP (bp)*

SNP posi-
tion to
gene loci

Functional annotation

4.58E-
06

Ca_17087 3021 Upstream Myb-like DNA-binding protein

Ca5_42575149 T/A 5.24E-
06

0.19 -1.93 Ca_11357 12493 Downstream F-box only protein 6

Ca_11356 6617 Upstream Squamosa promoter-binding-like
protein 10-related

Ca6_44267477 T/C 6.50E-
06

0.05 -2.52 Ca_24232 23675 Downstream Aldo-keto reductase family

Ca_24233 62720 Upstream Transposon protein, putative,
CACTA, En/Spm sub-class

Ca4_9041839 G/C 6.76E-
06

0.20 -1.86 Ca_08396 21870 Downstream Thioredoxin-like protein

Ca_08397 112 upstream Geraniol 8-hydroxylase

Ca4_43438450 G/A 7.70E-
06

0.06 -2.06 Ca_23689 97 Within the
gene

Pollen proteins Ole e I like

Ca1_41085856 T/A 8.75E-
06

0.15 -1.91 Ca_18474 11499 Downstream Disease resistance protein rpp13-
related

Ca_18475 9169 Upstream Transposon protein, putative,
CACTA, En/Spm sub-class

Stachyose Ca2_35864450 G/A 2.00E-
07

0.12 -7.18 Ca_09762 5676 Within the
gene

Armadillo repeat-containing
protein 8

Ca4_6044239 C/T 4.87E-
07

0.29 5.04 Ca_03642 543 Within the
gene

Syntaxin 16

Ca8_14016267 C/A 2.07E-
06

0.09 -8.60 Ca_22742 9720 Downstream RNA-binding protein

Ca_22743 50107 Upstream Mza15-related

Ca4_47554909 T/G 5.72E-
06

0.10 -7.21 Ca_10834 21050 Downstream Uncharacterized conserved
protein

Ca_10833 7624 Upstream Histone deacetylase complex

Ca2_19532676 T/C 6.21E-
06

0.07 -7.19 Ca_25228 65339 Downstream N-acyl-aliphatic-L-amino acid
amidohydrolase

Ca_24535 57346 Upstream Ulp1 protease family, C-terminal
catalytic domain

Ca3_23073125 T/C 6.86E-
06

0.14 -5.57 Ca_06204 14903 Downstream Phosphatidylinositol n-
acetylglucosaminyltransferase
subunit p-like protein

Ca_06203 7050 Upstream U3 small nucleolar RNA-
associated protein 20

Ca4_11202747 T/A 8.39E-
06

0.14 -6.06 Ca_04352 12894 Downstream Small subunit ribosomal protein
S1

Ca_04353 7468 Upstream Type I inositol 1,4,5-
trisphosphate 5-phosphatase 1

Sucrose Ca8_11491206 C/A 2.70E-
06

0.35 -3.97 Ca_16815 6142 Downstream Transposon protein, CACTA, En/
Spm sub-class, expressed

Ca_16814 6618 Upstream Prostaglandin-E synthase

Ca3_11428639 G/A 3.56E-
06

0.20 -5.45 Ca_19377 35461 Downstream Aquaporin tip1-3

Ca_19378 133058 Upstream Two-component sensor histidine
kinase

Ca5_14173812 G/A 3.96E-
06

0.11 -5.06 Ca_20828 30851 Downstream Multiple inositol-polyphosphate
phosphatase/2,3-
bisphosphoglycerate 3-
phosphatase

Ca_20829 30444 Upstream Calmodulin-binding protein

Ca6_2510863 G/A 6.24E-
06

0.06 -5.58 Ca_10383 2361 Within the
gene

FI03258P

Ca7_44816569 T/A 0.10 5.91 Ca_15705 21617 Downstream Zinc knuckle (zf-CCHC)

(Continued)
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sweetening agents. The low RFO lines could be exploited in

human and animal food and feed industries. Stachyose and

raffinose are considered the most undesirable oligosaccharides

present in chickpea. The low stachyose and raffinose accessions

ICC 13816 and ICC 6263 can be used in breeding programs as a

unique germplasm resource to develop chickpea varieties with

improved nutrient utilization and digestibility. The chickpea

mini-core collection also shows a considerable amount of

variation for ciceritol among accessions. It is believed that

these compounds play an important role in protecting plants
Frontiers in Plant Science 08
and seeds against drought stress (Keller and Ludlow, 1993).

Ciceritol, a new trisaccharide do not correlate with flatulence,

was found high in chickpea accessions reported by Quemener

and Brillouet (1983) and Xiaoli et al. (2008). Further research

indicated that ciceritol also plays an important role in improving

gut health by enhancing the growth of Lactobacillus,

Enterococcus, and Bifidobacterium spp in addition to the

production of short-chain fatty acids and is used as a potential

source of prebiotics (Zhang et al., 2017). Therefore, increasing

ciceritol relatively decreases the flatus potential of chickpea.
TABLE 2 Continued

Oligosaccharides Scaffold
position

Allele P
value

Minor
allele fre-
quency

Allelic
effect

Chickpea
gene ID

Distance
from the
SNP (bp)*

SNP posi-
tion to
gene loci

Functional annotation

7.12E-
06

Ca_15706 24202 Upstream Camp-response element binding
protein-related

Ca3_21765752 C/T 7.67E-
06

0.08 5.43 Ca_09529 17032 Downstream Ethanolamine-phosphate
cytidylyltransferase

Ca_09530 8554 Upstream GRAS family transcription factor

Ca1_10947431 T/C 8.62E-
06

0.22 3.13 Ca_02666 9994 Downstream WRKY transcription factor 65-
related

Ca_02665 4707 Upstream Cyclin-B1-4

Ca2_33431205 T/A 9.25E-
06

0.06 -6.88 Ca_10185 2477 Downstream Udp-glucose dehydrogenase

Ca_10184 44823 Upstream Lipase containing protein

Ca6_46242693 T/A 9.41E-
06

0.19 -3.29 Ca_13883 34784 Downstream Unknown

Ca_13884 20164 Upstream Phospholipase A(2)/
Phospholipase A2

Total Sugar Ca7_11316700 A/G 1.34E-
06

0.28 -15.00 Ca_09363 20294 Downstream AhpC/TSA antioxidant enzyme
(AhpC-TSA_2)

Ca_09362 7497 Upstream CAMP-response element binding
protein-related

Ca4_22983648 T/C 2.57E-
06

0.38 18.76 Ca_14460 14194 Downstream Myb/SANT-like DNA-binding
domain

Ca_14459 67448 Upstream F26K24.5 protein

Ca4_17208915 C/T 3.26E-
06

0.06 -19.82 Ca_05402 453 Within the
gene

V-type H+-transporting ATPase
subunit B

Ca5_1870839 G/A 4.21E-
06

0.17 -17.79 Ca_26715 68 Within the
gene

DNA damage-binding protein 1

Ca4_14043315 G/A 4.99E-
06

0.37 10.93 Ca_04629 7392 Downstream Homeobox-leucine zipper protein
hdg2

Ca_04630 2011 Upstream MKIAA1688 protein

Ca6_22947128 A/T 5.86E-
06

0.47 15.57 Ca_11153 5645 Downstream Peroxisomal targeting signal type
2 receptor

Ca_11152 4258 Upstream Protein-serine/threonine
phosphatase

Ca4_30621427 A/T 7.43E-
06

0.26 -9.89 Ca_14209 8067 Downstream UDP-glucose dehydrogenase

Ca_14210 47995 Upstream TBCC domain-containing protein
1

Ca5_30294813 T/C 9.18E-
06

0.36 -10.88 Ca_04706 2728 Downstream Nipped-b-like protein delangin
scc2-related

Ca_04707 9082 Upstream Aquaporin transporter
*Distance from the SNP (bp) is calculated as the distance from the SNP location to the start site of the upstream or downstream genes. If the SNP is located within a gene, the distance is
calculated as the distance to the start site of the gene.
Probable candidate genes involved in seed oligosaccharides metabolism and transport are bolded and italicized.
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FIGURE 3

Manhattan and quantile-quantile (Q-Q) plots of raffinose, stachyose, ciceritol, sucrose, and total sugars in chickpea. Manhattan and Q-Q plots of the
seed oligosaccharides from a to e are as follows: raffinose (A), stachyose (B), ciceritol (C), sucrose (D), and total sugars (E). Negative log10 transformed
P values (y-axis) are plotted against the physical single nucleotide polymorphism (SNP) position on each chromosome (x-axis). Each circle represents a
SNP, and the corresponding SNPs were mentioned trait wise. The dotted red line represents the genome-wide significance threshold as determined by
Bonferroni correction at.05. Regions with negative log10 P values above the threshold contain quantitative trait loci candidates.
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Seed oligosaccharide candidates

There are four genes - two associated with stachyose

(Ca_06204: phosphatidylinositol N-acetylglucosaminyltransferase;

Ca_04353: Type I inositol 1,4,5-trisphosphate 5-phosphatase) and

two associated with sucrose (Ca_20828: inositol-polyphosphate

phosphatase; Ca_10185:UDP-glucose dehydrogenase) – have been

recognized as indispensably involved in various signaling pathways

in plants viamediating the phospholipidation and phosphatization

of Myo-inositol and its derivatives like sucrose and RFOs. Studies

reported the crosstalk linkage between inositol signaling and sugar

metabolism in plants (Saddhe et al., 2021; Lou et al., 2007; Yang

et al., 2007). In 2008, Ananieva et al. (2008) discovered the in-vitro

interactions between the myo-inositol polyphosphate 5-phosphatase

(5PTase13) and the sucrose nonfermenting-1-related kinase

(SnRK1.1) and identified 5PTase13 regulated SnRK1 activity

under different sugar conditions. Plant SnRK1 is known for its

key role at the interface among sugar metabolism, stress signaling,

and other physiological developmental processes like seed

germination and seedling growth (Radchuk et al., 2006; Baena-

González et al., 2007; Jossier et al., 2009; Hulsmans et al., 2016;

Elango et al., 2022b). SnRK1 has been identified in higher plants and

two other subfamilies – SnRK2 and SnRK3 (Halford and Hey,

2009). Purcell et al. (1998) demonstrated that SnRK1 plays an

essential role in the regulation of Suc synthase expression in potatoes

(Solanum tuberosum), and later Tiessen et al. (2003) recognized that

SnRK1 also regulates starch biosynthesis. The same finding about

SnRK1’s role involved in starch synthesis was also identified in

pollen grains of barley (Hordeum vulgare) (Zhang et al., 2001). Our

findings indicate that in chickpea, the stachyose and sucrose

biosynthesis is mediated by various kinds of inositol-

polyphosphate phosphatase, potentially through their regulation of

SnRK families. Additionally, the genes involved in the RFO

biosynthetic pathway have been identified in soybean (Glycine

max) and common bean (Phaseolus vulgaris). de Koning et al.

(2021) identified three galactinol synthase (GolS) genes in common

bean, named PvGolS1, PvGolS2, and PvGolS3. GolS crosslinks

between inositol and RFO biosynthesis, and GolS are the primary

checkpoint for RFO biosynthesis via inositols (Sengupta et al., 2015).
We also found that three candidate genes encode for remorin

protein – two genes (Ca_17399 and Ca_22050) are associated

with raffinose content, and the other gene (Ca_11152) is linked

with total sugar content in chickpea seeds. RFOs serve as a major

transport form of carbohydrates in the vascular system in plants

(Ayre et al., 2003; Johnson et al., 2020; Ren et al., 2021). Remorin

is a kind of plant-specific membrane-bound protein and has

been identified in Arabidopsis thaliana, Nicotiana tabacum,

Medicago truncatula, and Lycopersicon esculentum (Watson

et al., 2003; Bariola et al., 2004; Marmagne et al., 2004;

Mongrand et al., 2004; Sazuka et al., 2004; Nelson et al., 2006;
Frontiers in Plant Science 10
Valot et al., 2006). In Arabidopsis, 16 genes have been identified

in the REM family, and among them, REM1.2, REM1.3, and

REM1.4 from the REM1 subfamily were found to exist

ubiquitously in the majority of the tissues (Huang et al., 2019).

Previous studies demonstrated that remorin proteins are

localized in the plasma membrane and plasmodesmata of

phloem companion cells and regulate photoassimilate

translocation via reducing plasmodesmata permeability in the

symplastic system in rice (Oryza sativa) (Gui et al., 2014). As an

example, in rice, over-expressed remorin gene gsd1-D in the

dominant mutant (grain setting defect1-Dominant) showed a

grain setting-deficient phenotype of reduced grain setting rate,

reversible accumulation of carbohydrate in leaves, and reduced

synthesis of soluble sugar concentration in phloem exudates

(Gui et al., 2014).

Three candidate genes are also identified as UDP-glucose

dehydrogenase (UGD) – gene Ca_14209 is simultaneously

associated with two traits (ciceritol and total sugar contents).

The other two genes are Ca_27229 (associated with raffinose

content) and Ca_10185 (associated with sucrose content). UGD

is a key enzyme in carbohydrate metabolism and has been

identified in soybean (Glycine max), maize (Zea mays L.),

cotton (Gossypium hirsutum), and Arabidopsis (Arabidopsis

thaliana) (Kärkönen et al., 2005; Kohlberger et al., 2018; Jia

et al., 2021). The overexpression of UDG-coding gene PeUGDH4

in Arabidopsis leads to a significant increase in hemicellulose

synthesis (Yang et al., 2020), indicating its critical role in plant

cell wall synthesis. UGD converts UDP-glucose to UDP-

glucuronic acid, providing the precursor for hemicellulose and

pectin biosynthesis - the two confound components in the

primary cell wall matrix (Oka and Jigami, 2006). And later,

UGD has also been identified to be highly involved in the

secondary cel l wal l construction in Moso bamboo

(Phyllostachys edulis) (Yang et al., 2020). Besides being

incorporated into the cell wall, the remainder forms of

carbohydrates can be small molecule oligosaccharides such as

RFOs. The RFOs biosynthesis pathways started with UDP-

galactose being converted to UDP-galacturonic acid (UDP-

GalA) by UG4E UDP-glucose 4′-epimerase; or alternatively

UDP-glucose being converted to myo-inositol (Karner et al.,

2004; Joët et al., 2009). Then both UDP-GAL and myo-inositol

can be the precursors of the galactinol biosynthesis by galactinol

synthase GolS (Keller and Pharr, 1996). Galactinol is believed to

be the only known galactosyl donor to RFOs (Sprenger and

Keller, 2000). In summary, the cell wall polysaccharide (CWP)

and RFOs biosynthesis pathways are interconnected but also

competitive for the upstream precursor UDP-glucose. The

increase in UGD activity could lead to the increased

production of CWP; however, at the same time, it could

diminish RFOs and other carbohydrates production.
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Conclusion

The present study identified potential candidate genes

regulating the biosynthesis and transport of seed oligosaccharides

in chickpea. We have identified 48 SNPs associated with five sugar

types. Nine genes (Ca_06204, Ca_04353, and Ca_20828:

Phosphatidylinositol N-acetylglucosaminyltransferase; Ca_17399

and Ca_22050: Remorin proteins; Ca_11152: Protein-serine/

threonine phosphatase; Ca_10185, Ca_14209, and Ca_27229:

UDP-glucose dehydrogenase) were identified as potential candidate

genes for sugar metabolism and transport in chickpea. The

accessions with low RFOs and high sucrose contents may be

utilized in breeding specialty chickpeas. The identified candidates

could be exploited in marker-assisted breeding, genomic selection,

and genetic engineering to improve the sugar profiles in legumes

and other crop species.
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