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ABSTRACT Sleep is a crucial component of health and well-being. It maintains the metabolism of the
body and covers one-third of total life. The assessment of sleep quality is typically done by evaluating
the macrostructure-based sleep stages, however, it does not take into account transient phenomena like
K-complexes and transient fluctuations, which are crucial for the diagnosis of various sleep disorders. Cyclic
alternating pattern (CAP) is a recurrent physiological electroencephalogram (EEG) activity that takes place
in the brain during sleep and it is considered as a microstructure of sleep that can provide more accurate and
relevant evaluation of sleep. The traditional way of CAP phase division is done manually by sleep specialists,
which is sensitive, time-consuming, and prone to inaccuracies. Hence, there is a need for automated detection
techniques that can solve the problems. This study proposes an automated, computerized approach for
developing a machine learning model with explainable artificial intelligence (XAI) capabilities, using
wavelet-based Hjorth parameters for classifying CAP A & B phases and phases A sub-phases (A1, A2, A3).
The study utilizes SHAP (SHapley Additive exPlanations)-based feature ranking to provide insights into
the model. This study uses the publicly accessible Physionet CAP sleep database. The model is developed
using single-channel standardized EEG recordings from healthy subjects and patients with five types of sleep
disorders, namely, insomnia, nocturnal frontal lobe epilepsy (NFLE), periodic leg movement disorder (PLM),
rapid eye movement behavior disorder (RBD) and narcolepsy. The best performance is obtained using
k-nearest neighbors (KNN) and ensemble bagged trees (EbagT) classifiers. The proposed model achieved
a average classification accuracy of 91.6% for healthy subjects and 94.33%, 86.3%, 88.68%, 84.43%, and
88.5% for narcolepsy, RBD, PLM, NFLE, and insomnia subjects respectively, for classifying phases A and
B. Our model achieved a average classification accuracy of 92.85% for healthy subjects and 93.9%, 84.9%,
88.0%, 80.92%, and 89.41% for narcolepsy, RBD, PLM, NFLE, and insomnia subjects, respectively while
categorizing A subphases (A1, A2, A3). The proposed method may help sleep experts to examine a person’s
sleep quality automatically using the microstructure of sleep.

INDEX TERMS Cyclic alternating patterns (CAP), machine learning, electroencephalogram (EEG), phase
A and phase B detection, k-nearest neighbor (kNN), sleep disorders.
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I. INTRODUCTION

A good night’s sleep is essential for the healthy human
body and optimum functioning [1]. According to a recent
study poor interrupted sleep and sleep disorders all impact
various aspects of human health [1]. Every person’s mental
and physical health unquestionably depends on the quality
of sleep they receive [1]. Inadequate sleep may cause blood
sugar levels to rise to the point where a person becomes
diabetic. Improper sleep may also contribute to coronary
artery blockage, resulting in congestive heart failure, stroke,
and cardiovascular disease [2]. Inadequate sleep may lower
one’s quality of life and reduce a person’s life span [2]. Proper
sleep also aids in the re-calibration of our emotional neural
pathways, allowing us to better organize our daily activities
and deal with psychological obstacles [2]. During sleep, the
brain is doused with neurochemicals, which helps in the
consolidation of memories and the formation of a virtual
reality environment where past and current experiences and
information are integrated [2]. Recent sleep studies have
shown that quality sleep is the most effective daily activity
for rejuvenating both our brain and body health [2].

As sleep is the most important physiological process of
human life, hence the sleep quality assessment is vital. The
conventional way of sleep quality assessment is done using
the Pittsburgh sleep quality index (PSQI) [3]. PSQI evalu-
ates sleep quality using a self-report questionnaire over a
one-month period, including items related to the empirical
aspects of sleep quality. In the PSQI survey, the questions
are often asked based on sleep duration, snoring during sleep,
breathing issues while sleeping, daytime tiredness, caffeine
consumption, body-to-mass ratio index, and blood pressure.
Their responses are extremely subjective and memory-based,
leaving them vulnerable to human error. Maintaining a sleep
record or sleep journal for the prior 15 or 30 days is also part
of the diagnostic method. The type of sleep disturbance is
determined by the physician based on the patient’s replies to
sleep questionnaires and the information recorded in the sleep
diary. However, polysomnography (PSG) is now frequently
used to identify sleep problems [4].

In PSG, physiological changes that occur during sleep are
recorded by a sleep specialist. It is usually done at night,
and complete night sleep is recorded [5]. PSG techniques
involve many electrodes and connected sensors to record
several physiological signals such as electroencephalogram
(EEG) for brain waves, electrocardiogram (ECG) for heart
rhythms [6], electromyogram (EMG) for muscle movements,
electrooculogram (EOG) for eye movement, thermistors for
nasal airflow and blood oxygen saturation (SpO2). Use of
many sensors, electrodes, and complexity, the PSG method
is expensive, time-consuming, and difficult for patients
and potentially problematic for doctors. For the scoring of
polysomnographic recordings, a qualified sleep specialist
is needed. Furthermore, the procedure is not only time-
consuming, but it also poses a significant risk of inaccuracies
due to human error. One of the most effective solutions to
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this problem of scoring is the use of automatic computerized
sleep analysis, which has the potential to greatly reduce the
chances of errors and increase efficiency.

Sleep is made up of non-rapid eye movement (NREM)
stages, in which a person is unconscious, and rapid eye
movement (REM) stages, during which there is high brain
activity [7]. Initially, according to Rechtschaffen and Kales
(R&K) rules [8] there are six stages of sleep, namely: Wake-
fulness (W), Non-Rapid Eye Movement (NREM), which
is subdivided into four stages of sleep (S1, S2, S3, and
S4), and Rapid Eye Movement (REM) stage. Later the new
guidelines for sleep scoring were provided by the Ameri-
can Academy of Sleep Medicine (AASM) [9]. In this, due
to similarities in features of S3 and S4, they are referred
to as slow wave sleep (SWS) or N3 sleep stage. Hence,
effectively five sleep stages are there: W, NREM (N1, N2,
N3), and REM. N1 and N2 sleep stages are referred to as
light sleep, whereas the N3 sleep stage is referred to as
deep sleep [10]. The sleep macrostructure comprises the W,
NREM, and REM phases. There are numerous studies in the
literature on the macrostructure of sleep based sleep scoring,
and researchers have built various models using computer-
aided methods and PSG for the automatic classification of
sleep stages [11], [12], [13].

These macrostructure-based sleep scoring rules, however,
neglect temporary events like K-complexes and transient
power fluctuations in frequency bands. As per the AASM
recommendations, the definition of arousal only takes into
account brief changes in brain activity. The characteristic of
phasic events like delta bursts and K-complexes is identical
to arousal; however, they are not regarded as arousal if the
EEG shows no short-term increase in frequency [14], [15].
To compensate for the limitations of macrostructure-based
sleep scoring, which often gives critical information on sleep
quality and to characterize NREM sleep, a new sleep scor-
ing technique based on microstructure has been introduced
known as Cyclic Alternating Pattern (CAP) [16].

CAP can be defined as a physiological component of
NREM sleep. It is the periodic EEG activity occurs over the
course of NREM sleep. A CAP cycle consists of a pairof
phases, commencing with a phase of activation in the EEG
signals known as phase A (high-voltage slow-event), fol-
lowed by periods of deactivation or background known as
phase B (low-voltage fast-wave) which separate two succes-
sive phases A periods with an interval less than 60-sec [17].
At least two CAP cycles are needed to make up a CAP
sequence. If the separation between two successive phases A
is less than 2 sec then they are considered as a single phase
A [18]. A CAP sequence always terminates at phase B.
Non-CAP is defined as the absence of CAP for more than
60 seconds. phase A which ends a CAP sequence counts as
non-CAP [19]. There is no upper limit to the quantity of CAP
cycles or the span of a CAP sequence [20]. In healthy young
people, the average time of a CAP sequence is approximately
150 seconds, with 6 CAP cycles [20]. A CAP sequence during
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FIGURE 1. Typical waveform of phase A subtypes (A1, A2, and A3) and phase B obtained from healthy subject.

NREM sleep is not disrupted by a change in sleep stage if
the CAP scoring requirements are satisfied. Because CAP
sequences may span multiple successive sleep stages, they
can involve a variety of phase A and phase B activities [16],
[21]. CAP also appears as a well-defined indicator of brain
activity occurring in situations of reduced alertness (sleep,
coma), representing an instability in activities involving mus-
cular, behavioral, and autonomic systems [19]. As the depth
of sleep increases, the high amplitude and slow EEG waves
increases, while low amplitude rapid rhythms become more
prominent during REM sleep. Within phase A of CAP, there
are three further sub-phases, namely Al, A2 and A3. The
waveform of phase A subtypes (Al, A2, and A3) and phase
B were obtained using healthy subject data from the CAPSD
is shown in fig 1. The ratio of low-amplitude rapid rhythms
(EEG desynchrony) to high-voltage slow waves (EEG syn-
chrony) during phase A is used to classify phase A subtypes.
Subtype Al is distinguished by high amplitude slow waves
that span more than 80% of the whole phase A length and low
amplitude quick rhythms that cover 20% of the total phase
A duration. Subtype A2 is distinguished by a combination
of rapid and slow EEG waves. Low amplitude slow waves
in phase A2 occupy about 20-50% of the whole length of
phase A. Subtype A3 is characterized by dominating low
amplitude rapid rhythms that occupy more than 50% of the
phase A length. There are various CAP measures parameters
like CAP rate, CAP time, and indices for phases A1, A2, and
A3. The CAP rate can be defined as the ratio of CAP time
to the total time of NREM sleep, expressed in percentage.
The entire duration of all CAP sequences is called CAP time.
It increases with the increase in CAP cycles. The number of
phase A1 subtypes per hour of sleep is referred to as phase Al
index similarly phase A2 index and A3 index are defined [16].
CAP time rises as the number of CAP cycles increases. The
CAP rate varies relatively little in healthy sleepers. It has
been seen to change with age. The CAP rate does not vary
significantly in individuals who sleep well, but it does vary
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with age. It is pretty low in babies (about 13%), progressively
grows as the person ages, and reaches a relative high during
the peripubertal period (approximately 62%), then there is a
relative decrease for adults and middle age (around 37%),
and a relative increase again in the elderly stage of life
(55%). [19]. When sleep is interrupted by internal or external
events, the CAP rate increases and its changes correspond
with subjective judgments of sleep quality, with higher CAP
rate values suggesting lower sleep quality [22]. As a result,
detecting CAP phases and estimating CAP parameters is
critical for proper sleep analysis. However, detecting CAP in
humans is difficult and time-consuming procedure. Medical
professionals manually examine and annotate CAP, leading to
mistakes made by people and incorrect categorization. Hence,
automated detection of CAP sleep phases is important.
Nowadays, numerous automated approaches have been
suggested for the identifying of CAP phases. However, these
research mainly focus on the classification of phase A vs
non-phase A. There are very few studies done on A vs B
phase classification and phase A subphases classification.
The studies have done so far on A and B phase classification
and phase A subtype classification have either used a huge
number of differentiating features or obtained low classifi-
cation performance. So, there is a need for new studies on A
and B phase classification and phase A subtype classification.
It is preferable for the model to use a limited number of
features for training and testing, making it suitable for real-
time applications, while still maintaining high accuracy in
classification. In this proposed study, two classification task
has been done first is phase A and phase B classification and
the second is phase A subtypes classification. We have used
PSG recordings of healthy as well as subjects suffering from
five different disorders. The proposed model is developed
using optimal biorthogonal filter and Hjorth parameters as
features. We employed an XAl technique based on Shapley
values to rank the extracted Hjorth features which provide
insight into the classification ability. To the best of our
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TABLE 1. The total number of samples from healthy individuals used in
the CAP dataset, separated by subject.

TABLE 2. The total number of samples in the CAP dataset, separated by
specific sleep disorders.

Healthy subjects Sleep disorder types
Phase nl n2 n3 n5 nl0 nll Total Type Insomnia  Narcolepsy NFLE PLM RBD
Al 1013 550 285 1307 703 796 4654 Subject 7 4 29 9 22
3

ROmomomowmomomo s mw we

A2 1761 971 12743 3572 7350
A-phase 1915 1474 1063 1841 1307 1452 9052 A3 4800 2635 24666 8949 20620
B-phase 4788 3041 2930 4221 1821 3187 19988 A-phase 9779 5700 62993 17353 39200
Total 6703 4515 3993 6062 3128 4639 29040 B-phase 20686 11113 136540 34231 70201

Total 30465 16813 199533 51584 109401

knowledge, we are the first group to use XAl technique in
the classification of sleep CAP phases. The created model
outperformed current state-of-the-art techniques developed
for the classification of CAP phases and sub-phases. The
approach we developed is straightforward and requires min-
imal computational resources, making it suitable for use in
clinical settings.

Il. DATA ACQUISITION

The experimental dataset used in this study were taken from
the CAP sleep database [23] (CAPSD) in the MIT-BIH
database. The database is accessible to the public and con-
tains sleep recordings of 108 individuals obtained from the
Sleep Disorders Center of the Ospedale Maggiore of Parma,
Italy. These recordings include 16 healthy individuals and
92 patients who have various sleep disorders from which
9 patients suffering from insomnia, 5 with narcolepsy, 40 with
nocturnal frontal lobe epilepsy (NFLE), 10 with periodic
leg movement (PLM), 22 with REM behavious disorder
(RBD), and 4 with sleep-disordered breathing (SBD). The
PSG recordings included at least three EEG channels, namely
F3 or F4, C3 or C4, and Al and A2, two EOG channels,
two EMG channels, an ECG, and respiration signals along
with some additional traces of bipolar EEG signals. The
EEG recording with these channels was sampled at various
sampling frequencies (100 Hz, 128 Hz, 200 Hz, and 512 Hz).
Table 1 represents the number of samples collected from six
healthy individuals, identified as nl, n2, n3, n5, nl10, and
nll. Table 2 represents the number of disordered subjects and
samples in each phase that were included in the study who are
affected by sleep disorders.

lll. METHODOLOGY
The proposed method starts with the collecting PSG record-
ings from 77 subjects and extracting the electroencephalog-
raphy (EEG) data from the recordings. The EEG data is then
normalized and filtered to remove noise and other artifacts.
The labeled A&B phases and Al, A2, and A3 subphases
are then segmented using windows of two seconds duration.
Each EEG epoch of 2-sec duration or 1024 samples is then
processed using an optimal frequency-localized orthogonal
wavelet filter bank (OWFB), which breaks down each epoch
into six separate frequency bands.
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The labelled A&B phases and Al, A2, and A3 subphases
are then segmented using two-second windows. An optimal
frequency-localized OWFB is used to process each EEG
epoch, which has a duration of 2 seconds or 1024 samples.

The Hjorth parameters were computed from decomposed
subbands and used as discriminating features for the classi-
fication of the phases. After feature extraction, XAl - based
feature ranking technique is applied to evaulate discriminat-
ing ability of extracted features [24]. A number of machine
learning classifiers are employed to differentiate the features
and choose the best classifier that performs well. To create
a strong model and reduce the risk of overfitting, we use a
ten-fold cross-validation approach during development.

A. DATA PREPROCESSING

Normal EEGs vary greatly and have a wide range of phys-
iological differences [25]. Different characteristics, such as
position, amplitude, frequency, shape, continuity, synchro-
nization, symmetry, and reactivity of EEG waves, can be
used to classify them [25]. However, frequency is the most
often approach used for classifying EEG waveforms. The
brain waves that are commonly referred to as delta have
a frequency range of 0.5 to 4Hz, while theta waves range
from 4 to 7Hz. Alpha waves fall within the range of 8 to
12Hz, sigma waves range from 12 to 16Hz, and beta waves
range from 13 to 30Hz. These are the most widely studied
waveforms [25]. As the relevant information lies in the range
of frequency limited to the values under 35 Hz, EEG signals
are filtered using a bandpass filter with an infinite impulse
response (IIR), Butterworth filter of fourth order in order
to eliminate noise artifacts and retain the relevant informa-
tion [26], [27]. In accordance with AASM guidelines [9], the
lower and upper cut-off frequencies for the filter are set to
0.5 Hz and 35 Hz respectively. After the filtering process,
the signal is normalized so that the amplitude is reduced in
a consistent manner over the range of O to 1.

The CAPSD contains annotations of phase A subtype
as MCAP-A1, MCAP-A2, and MCAP-A3 along with their
duration, provided by expert sleep scorers according to the
rules outlined in Terzano’s reference atlas [16]. The anno-
tation of phase B is not directly provided in the database.
We used the annotations to separate the CAP phase A
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FIGURE 2. Flow diagram of the proposed study.

subtypes recording from the EEG signal during NREM
sleep. After separation, each subtype signal is segmented into
epochs of 2-sec duration each and labeled them as Al, A2,
and A3. On combining the A1, A2, and A3 signals, a phase
A signal is generated and we labeled it as “phase A”. With
the help of the duration of phase A provided in the CAP sleep
database, we calculate phase B initiation and its duration.
The phase A at which the CAP sequence is terminated is not
considered in the CAP sequence, but it contains all of the
characteristics of phase A. Thus, we utilized that phase A for
the classification of phase A&B and the phase A subtype.

B. ORTHOGONAL FILTER BANK AND WAVELET
DECOMPOSITION

EEG signals are often non-stationary, which means that their
statistical properties change over time. This can make it
challenging to analyze EEG signals using traditional tech-
niques based on the Fourier transform, which assumes that
the signal is stationary. In contrast, wavelet-based techniques
are well-suited for analyzing non-stationary signals because
they allow for the representation of a signal in both time and
frequency domains and can capture local features in the signal
that may vary over time [28], [29], [30]. There are many
different wavelet filter banks that have been proposed and
studied in the literature, covering a wide range of applications
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[28], [31], [32], [33], [34]. Among the various wavelet filter
banks available, the OWFB has the ability to preserve the
energy of the original signal during the decomposition pro-
cess [35], [36], [37]. The OWFB with minimum frequency
spread is used in the research study. It is a type of digital
filter designed to have a specific frequency response. The
frequency spread is a measure of the width of the filter’s
frequency response, and it is calculated by considering both
the transition band and the pass/stopband of the filter [38].
The frequency spread design criterion is helpful because it
takes into account the entire frequency spectrum of the filter
rather than just the edge frequencies, which can be influ-
enced by ripple amplitude specifications [39]. This makes
the frequency spread a more comprehensive measure of the
compactness of the filter, and it can be used to design filters
with sharper roll-off and better performance. The equirip-
ple filter method and the band-energy minimization method
are other approaches that can be used to design filters with
sharp roll-off, but they may not consider the entire frequency
spectrum in the same way as the frequency-spread (band-
width) approach [38], [39]. There are two ways to improve
the bandwidth: using symbolic methods or solving a con-
strained optimization problem. This problem can be trans-
formed into a convex optimization problem, specifically a
semidefinite programming (SDP) problem, that enforces non-
negativity constraints during optimization [40], [41], [42].
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The importance of this technique is that it generates more
precise and detailed data, encompassing all local and global
minima [43], [44]. Wavelet decomposition is a technique
used to decompose a signal into its frequency components.
Itinvolves the application of a wavelet transform to the signal,
which decomposes the signal into a series of subbands or
“detail” coefficients, each of which corresponds to a dif-
ferent frequency range. In this study, we used a five-level
wavelet decomposition, which resulted in six sub-bands with
frequency ranges of 0-1 Hz, 1-2 Hz, 2-4 Hz, 4-8 Hz, 8-16 Hz,
and 16-32 Hz. The subband with the lowest frequency range,
between 0 and 1 Hz, is designated as the approximation
coefficient. The other subbands, which have higher frequen-
cies, are referred to as detailed coefficients. The Figure 3 in
the study illustrates the subbands resulting from the wavelet
decomposition of epoches of Al, A2, and A3 subtype. These
figures illustrate different frequency components of the signal
for each subtype and may be used to identify patterns and
trends in the data that may be indicative of certain conditions
or events.

C. FEATURE EXTRACTION

In this study, we calculated 18 discriminating features for
CAP phase A&B classification and phase A subtype classi-
fication, by computing Hjorth parameters (activity, mobility,
and complexity) from each subband. The Hjorth parameters
are a set of statistical features that can be used to characterize
and extract features from time series data [45]. They are
derived from the mean, variance, and autocovariance of the
time series data. They are also widely used in EEG signal
processing applications because they provide a robust and
reliable way to characterize the dynamic properties of the sig-
nals. They are particularly useful for identifying patterns and
trends in the data that may be indicative of certain conditions
or events [45]. The Hjorth parameters are mathematically
defined as follows:

The signal power is represented by the Hjorth activity
parameter. It is the time-domain variance of a signal. It can be
used to represent the frequency domain surface power spec-
trum. For any given time series x(t), activity is represented
as the variance of signal x(t) and mathematically it can be
expressed as in equation 1.

Activity = Variance(x(t)) (1)

The Hjorth mobility is a metric of a signal’s mean fre-
quency. It is proportional to the standard deviation of the
signal’s power spectrum. Mobility is defined for any signal
x(t) as the square root of the variance of the signal’s first
derivative divided by the variance of the signal x(t). It is given
by equation 2.

Variance( d’é?) )

Mobility = 2

Variance(x(t))

The Hjorth complexity parameter is a measure of the differ-
ence in frequency. It measures how closely the shape of a sig-
nal resembles that of a pure sinusoidal signal. The parameter’s
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value ranges between O and 1, with higher values indicating
greater similarity to the reference signal. This metric provides
a useful estimate of a signal’s bandwidth. The complexity of
a signal x(t) is defined as the ratio of the mobility of the
first derivative of x(t) to the mobility of x(t), as shown in
equation 3.

Mobility(&)

Complexity =
OMPIEXIY = Mobility(x(1)

3)

D. MODEL CLASSIFICATION AND VALIDATION STRATEGY
Using single-channel EEG data, three Hjorth parameters
are extracted from each of the six subbands to produce
18 time-domain features. After we finished extracting fea-
tures from the data, multiple supervised machine-learning
classifiers were employed to classify these features. These
classifiers included K-nearest neighbor (KNN), support vec-
tor machines (SVM), ensemble bagged trees (EbagT), and
ensemble boosted trees (EboostT). The model was developed
by utilizing ten-fold cross-validation (CV) to evaluate the
performance of machine learning models. This allows us to
estimate the performance of the model on new data, and avoid
overfitting issues. It is challenging to anticipate in advance
which algorithm will perform optimally for a new dataset.
We have utilized a trial-and-error approach to select the
optimal algorithm among various classifiers. We selected the
classifier which yielded the best classification performance
and then fine-tuned its hyperparameters to further improve its
performance. We implemented these algorithms and devel-
oped the model using the Statistics and Machine Learning
Toolbox in MATLAB R2022b [46]. This toolbox provides
a range of functions and tools for statistical analysis and
machine learning tasks, such as importing and preprocessing
data, fitting statistical models, making predictions, and eval-
uating model performance [46]. Through our simulations,
we found that the ensemble bagged trees (EBT) and k-nearest
neighbors (kNN) classifiers performed the best among all of
the classifiers used.

IV. RESULTS
The performance of the developed model was evaluated using
EEG recordings of 77 subjects acquired from the C4-A1 EEG
channels for phase A&B (binary classification) and phase
A subphases classification (three class classification). The
database used to develop the model comprises recordings
of healthy people and those with sleep disorders such as
insomnia, NFLE, narcolepsy, SDB, PLM, and RBD. We used
each subject’s data independently to categorize the CAP. The
database contains annotations for phase A and its belonging
sleep stage. The phase A at which the CAP sequence is termi-
nated is not considered in the CAP sequence, but it contains
all of the characteristics of phase A. Thus, we utilized that
phase A for the classification of phase A&B and the phase A
subtype.

The entire experiment and training were carried out
using MATLAB R2022b [46], which was installed on the
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FIGURE 3. The waveform of subbands derived from the wavelet decomposition of CAP subphase A1, A2, and A3 for a 2-second epoch.

Windows 10 operating system. The system has a 2.10 GHz
Intel(R) Xeon(R) Silver 4216 CPU and 32 GB of RAM. The
performance of the classification was measured using vari-
ous metrics such as average classification accuracy (ACA),
precision (Pcn), recall (Rcl), Fl-score (F1), Cohen’s Kappa
(«) value, and area under the curve (AUC). It is challenging
to predict which technique would perform optimally for our
feature sets in advance, so we trained all classifiers using
an iterative approach. After selecting the classifier with the
best overall performance, we tweaked its hyperparameters to
improved its performance even more. We determined that the
KNN and EbagT algorithms had the greatest classification
performance for the majority of classification tasks after a
large number of simulations.

A. CAP PHASE A&B CLASSIFICATION PERFORMANCE

The EEG recording of 6 healthy subjects is used to extract
9052 epochs of A&B phase of two seconds durations each.
Hjorth parameters were then computed for these epochs to
create a feature set. This feature set was applied to numerous
classifiers. For this classification task the EbagT classifier
was found to have the best performance for classifying A and
B phases The confusion matrix and performance parameters
obtained for this classification task on healthy subjects are
shown in Table 3. The maximum ACA obtained for A and B
phase classification was 94.33%. In the tables AP denotes “A
phase” and BP denotes “B Phase” of CAP.
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TABLE 3. Performance parameters and confusion matrix obtained for
Phase A&B classification in healthy subjects.

Predictied class Per-Class metrics

True class AP BP | Pen Rel F1
AP 89.6% 10.4% | 0.87 0.9 0.88
BP 6.1%  939% | 0.95 0.94 0.95

Overall metrics ACA =92.55%  kappa=  0.828

TABLE 4. Performance parameters and confusion matrix obtained for
Phase A&B classification in insomnia patients.

Predictied class Per-Class metrics

True class AP BP | Pen Rel F1
AP 789% 21.1% 0.84 0.79 0.81
BP 7.0% 93.0% 0.9 0.93 0.92

Overall metrics ACA =88.48%  kappa= 0.731

The CAP sleep database consists of seven EEG record-
ings from patients with insomnia. These recordings have an
average length of 575 minutes and were sampled at 512 Hz.
A total of 30465 2-second epochs containing A&B phases
were extracted from these recordings. The KNN classifier
yielded the best ACA for the classification task. The maxi-
mum ACA for A&B phase classification of insomnia patients
was 88.48%, as shown in Table 4.
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TABLE 5. Performance parameters and confusion matrix obtained for
Phase A&B classification in narcolepsy patients.

Predictied class Per-Class metrics
True class AP BP | Pen Rcl F1

AP 89.0% 11.0% | 0.94 0.89 0.91
BP 29%  97.1% | 0.95 0.97 0.96

ACA=943% kappa= 0.872

Overall metrics

TABLE 6. Performance parameters and confusion matrix obtained for
Phase A&B classification in NFLE patients.

Predictied class Per-class metrics

True class AP BP | Pen Rcl F1
AP 754%  24.6% 0.8 0.75 0.78
BP 8.5% 91.5% | 0.89 0.92 0.9

Overall metrics ACA=864% kappa= 0.681

TABLE 7. Performance parameters and confusion matrix obtained for
Phase A&B classification in PLM patients.

Predictied class Per-class metrics
True class AP BP | Pen Rel F1

AP 79.8%  20.2% | 0.86 0.8 0.83
BP 6.8%  93.2% 0.9 0.93 0.92

ACA =88.7%  kappa= 0.742

Overall metrics

The CAP sleep database consists of EEG recordings from
five individuals diagnosed with narcolepsy, each recording
has a sampling rate of 512 Hz and an average length of
494 minutes. Four of these recordings were used to extract
16183 (2-second) epochs containing A&B phases. The KNN
classifier was found to be the best for this classification
task. The maximum ACA for A&B phase classification in
narcolepsy patients was 94.3%, as shown in Table 5.

The EEG recording of 29 NFLE patients is used to extract
204533 epochs of A&B phase of two seconds duration. The
average duration of these recordings is 505 min. The optimal
performance was obtained using the EbagT classifier for
the classification task considered in the study. The confu-
sion matrix obtained along with the performance parameters
corresponding to NFLE patients for classification is shown
in Table 6. The maximum ACA obtained for A&B phase
classification is 86.4%.

The CAP sleep database comprises nine EEG recordings
from PLM patients, with an average duration of 431 min-
utes and a sampling frequency of 512 Hz. A total of 51584
(2-second) epochs containing A&B phases were extracted
from these recordings. The KNN classifier provided the
best ACA for the classification tasks. The maximum ACA
for A&B phase classification in PLM patients was 88.7%,
as shown in Table 7.

The CAP sleep database includes 22 EEG recordings from
RBD patients, with an average duration of 514 minutes and a
sampling frequency of 512 Hz. A total of 109401 (2-second)
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TABLE 8. Performance parameters and confusion matrix obtained for
Phase A&B classification in RBD patients.

Predictied class Per-class metrics

True class AP BP | Pen Rel F1
AP 74.8%  252% | 0.81 0.75 0.78
BP 9.8%  90.2% | 0.87 0.9 0.88

Overall metrics ACA =84.6% kappa= 0.66

TABLE 9. Performance parameters and confusion matrix obtained for
Phase A&B classification in combined 77 subjects.

Predictied class Per-class metrics

True class AP BP | Pen Rel F1
AP 713% 28.7% | 0.77 0.71 0.74
BP 103% 89.7% | 0.86 0.9 0.88

Overall metrics ACA =83.6% kappa= 0.62

TABLE 10. Performance parameters and confusion matrix obtained for
Phase A subtype classification in healthy subjects.

Predictied class Per-class metrics

True class Al A2 A3 | Pen Rcl F1
Al 94.5% 4.5% 1.1% 0.95 0.94 0.95
A2 12.8%  82.7% 4.4% 0.82 0.83 0.82

A3 1.7% 26%  95.7% 0.96 0.96 0.96

ACA =9285%  kappa=  0.882

Overall metrics

epochs containing A&B phases were extracted from these
recordings. The KNN classifier provided the best ACA for the
classification task. The maximum ACA for A&B phase clas-
sification in RBD patients was 84.6%, as shown in Table 8.

After individually analyzing the classification of phase
A&B in sleep-disordered patients and healthy subjects,
we combined the data from all 77 subjects and extracted
a total of 436836 epochs of 2-sec duration corresponding
to phase A&B. The EbagT classifier was found to be the
most effective, in achieving a maximum ACA of 84.6%. This
model accurately predicted 102696 out of 144077 Phase-A,
and 262461 out of 292759 Phase-B, resulting pcn, recall
values and AUC of 77.0%, 71.0%, and 90.0%, respectively.
The performance parameters and confusion matrix for this
classification task is shown in Table 9.

B. PHASE A SUBTYPE CLASSIFICATION PERFORMANCE
We analyzed the EEG recordings of 6 healthy subjects and
extracted 29040 samples for the classification of Phase A
subphases. After preprocessing the signals and extracting
features, we found that the KNN classifier performed the
best with a maximum ACA of 92.85%. The model was able
to accurately predict 4396 out of 4654 Al phases, 1283 out
of 1551 A2 phases, and 2726 out of 2847 A3 phases, achiev-
ing high precision (95.0%) and recall values (94.0%). The
performance parameters and confusion matrix for this classi-
fication task are shown in Table 10.
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TABLE 11. Performance parameters and confusion matrix obtained for
Phase A subtype classification in insomnia patients.

Predictied Per-class metrics
True Al A2 A3 | Pen Rcl Fl1
Al 88.3% 6.2% 5.5% 0.9 0.88 0.89
A2 8.7% 79.8% 11.5% 0.8 0.8 0.8
A3 3.4% 3.0% 93.7% 0.92 0.94 0.93
Overall metrics ACA =8941%  kappa= 8.82

TABLE 12. Performance parameters and confusion matrix obtained for
Phase A subtype classification in narcolepsy patients.

Predictied Per-class metrics
True Al A2 A3 \ Pcn Rcl F1

Al 94.5%  3.9% 1.6% 0.95 0.95 0.95
A2 84%  862%  5.4% 0.85 0.86 0.86
A3 1.2% 25%  96.3% | 0.97 0.96 0.97

ACA =93.9%

Overall metrics kappa= 0.9

EEG recordings of 7 patients with insomnia disorder were
analyzed to classify Phase A subphases. A total of 30465 sam-
ples were extracted from these recordings and preprocessed.
The KNN classifier was determined to be the most effective,
achieving an ACA of 89.41% for the classification of Phase
A subtypes. The model showed high pcn (90.0%) and recall
(94.0%), correctly predicting 2841 out of 3218 Al-phases,
1406 out of 1761 A2 phases, and 4496 out of 4800 A3 phases.
The performance parameters and confusion matrix for this
classification task are shown in Table 11.

For the classification of Phase A subphases in narcolepsy
patients, we analyzed EEG recordings from 5 patients. A total
of 16813 samples were extracted from these recordings and
processed through signal preprocessing and feature extrac-
tion. After trying various classifiers, we found that the KNN
classifier provided the best results with a maximum ACA of
93.9%. This model accurately predicted 1914 out of 2088
Al-phases, 842 out of 977 A2 phases, and 2537 out of 2635
A3-phases, resulting in high pcn (95.0%) and recall values
(95.0%) highlighting the effectiveness of the classifier for
narcolepsy. The results of this classification task, including
performance parameters and confusion matrix, is shown in
Table 12.

We analyzed EEG recordings from a total of 29 NFLE
patients for the classification of Phase A subphases. A total of
199522 samples were extracted and processed through signal
preprocessing and feature extraction. The KNN classifier was
found to be the best option, achieving a maximum ACA of
80.92%. This model accurately predicted 21139 out of 25584
Al-phases, 8580 out of 12743 A2 phases, and 21254 out
of 24666 A3-phases. Indicating relatively lower pcn (82.0%)
and recall value (83.0%). The results of this classification task
is shown in Table 13.

For the classification of Phase A subphases in PLM
patients, we analyzed EEG recordings from 9 patients. A total
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TABLE 13. Performance parameters and confusion matrix obtained for
Phase A subtype classification in NFLE patients.

Predictied Per-class metrics
True Al A2 A3 | Pen Rcl Fl

Al 82.6% 10.4%  71.0% 0.82 0.83 0.82
A2 21.1% 673% 11.6% 0.67 0.67 0.67
A3 7.7% 6.1%  86.2% 0.87 0.86 0.86

ACA =8092%  kappa= 0.702

Overall metrics

TABLE 14. Performance parameters and confusion matrix obtained for
Phase A subtype classification in PLM patients.

Predictied Per-class metrics
True Al A2 A3 | Pen Rl F1
Al 87.0% 6.9% 6.1% 0.88 0.87 0.88
A2 85% 798% 11.7% | 0.78 0.8 0.79

A3 3.0% 52%  91.8% | 0.92 0.92 0.92

ACA=88.0% kappa= 0.804

Overall metrics

TABLE 15. Performance parameters and confusion matrix obtained for
Phase A subtype classification in RBD patients.

Predictied Per-class metrics
True Al A2 A3 | Pen Rcl Fl1

Al 83.6% 71.9% 8.5% 0.82 0.84 0.83

A2 13.4% 734% 132% | 0.74 0.73 0.74
A3 5.5% 48%  89.7% | 091 0.9 0.9
Overall metrics ACA =849%  kappa= 0.751

of 51584 samples were extracted and processed through sig-
nal preprocessing and feature extraction. The KNN classifier
was found to be the most effective, achieving a maximum
ACA of 80.0%. This model accurately predicted 4204 out
of 4832 Al-phases, 2849 out of 3572 A2 phases, and 8214 out
of 8949 A3-phases, resulting in pcn and recall values of
88.0% and 87.0% respectively. The performance parameters
and confusion matrix for this classification task can be seen
in Table 14.

For the classification of Phase A subphases in RBD
patients, we analyzed EEG recordings from a total of
22 patients. A total of 109401 samples were extracted and
processed through signal preprocessing and feature extrac-
tion. The KNN classifier was found to be the most effective,
achieving a maximum ACA of 84.9%. This model accurately
predicted 9383 out of 11230 Al-phases, 5397 out of 7350
A2 phases, and 18488 out of 20620 A3-phases, resulting
in pcn and recall values of 82.0% and 84.0% respectively.
The performance parameters and confusion matrix for this
classification task is shown in Table 15.

After individually analyzing the classification of phase A
subphases in sleep disordered patients and healthy subjects,
we combined the data from all 77 subjects and extracted a
total of 144077 epochs of 2-sec duration corresponding to
phase A subphases. The KNN classifier was found to be the
most effective, achieving a maximum ACA of 78.8%. This
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TABLE 16. Performance parameters and confusion matrix obtained for
Phase A subtype classification in combined 77 subjects.

Predictied Per-class metrics
True Al A2 A3 | Pen Rcl Fl1
Al 799%  10.8% 9.2% 0.79 0.8 0.8
A2 204% 63.1% 16.4% | 0.63 0.63 0.63

A3 8.0% 7.4%  84.6% | 0.85 0.85 0.85

ACA =788%  kappa=  0.665

Overall metrics

model accurately predicted 41255 out of 51606 Al-phases,
17651 out of 27954 A2 phases, and 54604 out of 64517
A3-phases, resulting in pcn, recall values and AUC of 79.0%,
80.0%, and 84.0% respectively. The performance parameters
and confusion matrix for this classification task is shown in
Table 16.

C. EXPLAINABLE Al (XAI) USING SHAPLEY ANALYSIS
Feature ranking is important because it helps to identify the
most relevant features for a given classification task. [47]
By ranking features in order of importance, it can help to
reduce the dimensionality of the data, which can make it
easier to visualize and analyze. Additionally, feature ranking
can help to improve the performance of machine learning
models by identifying the most informative features and dis-
carding those that are less relevant [47]. One of the most
prominent method for feature ranking in machine learning is
SHAP (SHapley Additive exPlanations) method [48]. It is a
method that uses the concept of Shapley values to provide
feature importance scores for any machine learning model.
This method for feature ranking assigns a score to each fea-
ture based on its contribution to the overall prediction made
by a machine learning model [24], [49]. The method takes
into account the interactions between features and assigns
a score based on the marginal contribution of each feature
to the overall prediction. It assigns a score to each feature,
indicating how much the model’s accuracy would decrease if
that feature were removed [49]. Features with high Shapely
values have a greater impact on the model’s predictions, and
removing them would cause a greater decrease in accuracy.
This method can be used to identify the most important fea-
tures for a given problem and also to understand how different
features are contributing to the final prediction [49]. It is an
effective method for feature selection and feature importance
ranking [50].

In this study, we calculated the Shapley value for two cases.
In the first case, we used the 18 features of phase A and
B from healthy subjects and ranked its features using the
Shapley value, as shown in Figure 4a. In the second case,
we used the 18 features of phase A subtype from healthy
subjects and ranked its features using the Shapley value,
as shown in Figure 4b. The Shapley beeswarm plot shown
in Figure 4 depicts that the features at the top of the plot have
a greater impact on the model’s prediction than those at the
bottom. In the Shapley beeswarm plot, the red dots denote
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features that contribute more to the model’s prediction, and
blue dots denote features that contribute less to the model’s
prediction. From our analysis, we found that in the first case,
for phase A and B classification, features from ‘Activity (D1)’
to ‘Activity (D4)’ have more red dots compared to blue or
purple dots, indicating that they have a greater significance
in affecting the model’s output as compared to other features.
In the second case, for phase A subtype classification, fea-
tures from ‘Activity (D1)’ to ‘Activity (D4)’ have more red
dots compared to blue or purple dots, indicating they have a
greater significance in affecting the model’s output than other
features. This implies that in both cases, features ‘Activity
(D1)’ to ‘Activity (D4)’ which were obtained through a com-
bination of wavelet decomposition and Hjorth parameter have
been found to be highly effective for classification. These
features may be employed in a machine learning model to
identify CAP phase A and B, and phase A subphases.

V. DISCUSSION

There are few works available on the automated classi-
fication of the microstructure of CAP (Phase A&B and
phase A subphases). On the other side, there are several
research available, based on the automated classification of
sleep macrostructures events, such as sleep stage scoring and
identification of sleep disorders. There are limited number
of studies available on identifying the phases of CAP that
have included individuals with sleep disorders, with the few
exceptions of Mendonca et al. [56], Hartmann et al. [57],
Sharma et al. [51], and Murarka et al. [7] who included both
healthy individuals and patients with sleep disorders. From
studies that classify the microstructure of CAP the majority
classified phase A because CAPSD (CAP sleep database)
only contains annotation of phase A subtypes, the annotations
for B phase is not available in the CAPSD. Sharma et al.
[55] and Dhok et al. [52] classified the A&B phases of the
CAP using healthy subjects. Sharma et al. [55] achieved their
highest performance using 12 features, while Dhok et al.
[52] achieved their highest performance using 121 features.
Mendez et al. [58] in their study used an unbalanced data
set, comprising 3963 occurrences of Phase A subtypes from
10 healthy individuals. They applied a KNN classifier with
different features such as sample entropy, energy, Tsallis
entropy, frequency band indices, and standard deviation.
They reported an accuracy score (ACA) of 80%, sensitiv-
ity of 80%, and specificity of 70%. Dhok et al. [52] used
balanced data set of six healthy participants from the CAP
sleep database, with 4653 samples of phase A & phase B
each, for automatic CAP phase classification. They achieved
72.35% ACA using Wigner-Ville distribution-based feature
extraction and a support vector machine (SVM) classifier.
Mendonca et al. [56] developed a classification technique that
uses time series analysis and a matrix of lags, coupled with
an SVM classifier. The developed method achieved an ACA
of 77% for indirect estimation of the CAP cycles using ECG
signals with a duration of 60 seconds. Loh et al. [54] classi-
fied the A&B phases of the CAP using a 1D convolutional
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TABLE 17. Comparison of our work on the automated phase A&B classification with the previous works conducted using the same database.

Sleep Study Performance measures (%)
disorder type ACA  Precision  Sensitivity  Specificity ~ F1 Score  Classifier
Insomnia Sharma M et al. [51] 71.4 73 67.2 75.7 70 EBagT
Murarka et al. [7] 70.88 81.82 56.52 86.41 66.86 1D-CNN
Our work 88.48 84.24 78.87 93.02 81.47 KNN
NFLE Sharma M et al. [51] 77.4 79 75 79.60 77 SVM
Murarka et al. [7] 76.68 74.08 81.24 72.23 77.49 1D-CNN
Our work 86.43 80.38 75.43 91.50 77.83 E-bagT
Narcolepsy Sharma M et al. [51] 71.8 73 70 73.90 71 EBoosT
Murarka et al. [7] 82.21 82.09 82.60 82.34 81.82 1D-CNN
Our work 94.33 93.95 89.02 97.06 91.42 KNN
RBD Sharma M et al. [51] 66 68 60 71.8 64 EBagT
Murarka et al. [7] 79.48 84.92 72.30 86.84 78.10 1D-CNN
Our work 84.67 80.93 74.84 90.15 71.77 KNN
PLM Sharma M et al. [51] 71.9 74 70 75.8 71 EBoosT
Murarka et al. [7] 78.72 83.98 71.64 85.99 77.32 1D-CNN
Our work 88.68 85.60 79.77 93.20 82.58 KNN

neural network (CNN) and achieved an ACA of 73.64%, but
their study was also limited to healthy participants. However,
their model required a higher level of processing power due
to the more number of trainable parameters. Mariani et al.
[59] discovered that Hjorth activity was a more effective
descriptor for CAP A phases, resulting in improved perfor-
mance in classifying between Phase A and Phase B, which
supports the results of our study. Table 18 summarises several

50956

CAP detection studies that employed EEG data from the
CAPSD.

The work done by Sharma et al. [51] focused on classifying
Phase A and Phase B of CAP, whereas this work aimed to
provide a comprehensive classification by including subtypes
of A-Phase, namely A1, A2, and A3. This approach aims to
provide a more detailed evaluation of cyclic changes during
sleep, which is crucial in clinical settings. Also, we attempted
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TABLE 18. Comparison of our work on phase A and phase B classification with other studies using the same database.

Study Method Number Performance measures (%)
of subjects ACA Sensitivity ~ Specificity =~ F1-Score
Dhok et al. [52] Renyi Entropy based on 6 (healthy) 87.45 87.75 52.09 73
Wigner-Ville and SVM
Mendonca et al. [53] Time series analysis based on  9(Healthy), 4 (SBD), 1 79 76 80 -
SVM (bruxism)
Machado et al. [54] Mutiple features with KNN, 30 (NFLE) 76 77 79 -
SVM and DA classifier
Sharma et al. [55] optimal biorthogonal wavelet 6 (healthy) 87.50 51.89 87.53 -
filter based Tsallis, approxi-
mate Entropy fetures
Sharma et al. [51] Optimal wavelet based Hjorth 77 (Healthy and disordered  75.7 75.7 74 71.3
and entropy features included)
Murarka et al. [7] 1-D CNN 75 (Healthy and disordered  78.84 73.44 84.26 77.68
included)
Our work Hjorth parametre features based 77 (Healthy and disordered — 92.55 89.57 93.9 88.23

on Optimal wavelet filter included)

to fill the research gap identified by Sharma et al. [51], who
suggested that machine learning models should be developed
to classify the subtypes of Phase A. Sharma et al. [51] used
a combination of Hjorth parameters and wavelet entropy to
extract 48 features for classification, whereas we use only 18
Hjorth parameters. Hence, we reduced the computational
complexity of the system compared to the previous work
by Sharma et al. [51]. Furthermore, while their model used
two EEG channels, we use a single EEG channel (C4-Al),
which simplified the model. Our results showed that the KNN
classification algorithm was the most effective in our model,
as opposed to the top-performing Ensemble of the boosted
tree (Eboost) and the Ensemble of the bagged tree (EbagT)
used by Sharma et al. [51]. The advantages of KNN include
its simplicity and shorter training time, making it well-suited
for practical applications in real-life scenarios. A comparison
between our method and Sharma et al. [51] can be found in
Table 17. Sharma et al. [51] considered the classification
task of A phases with respect to non-A phases in their work.
They labeled all non-A phases occurring during the NREM
sleep stage as B phases. However, it should be noted that
according to AASM guidelines, not all non-A phases are
necessarily B phases (B phases are a subset of non-A phases).
In this work, we followed the guidelines of the AASM for
precise segregation of non-A and B phases. This accurate and
rigorous approach to labeling A and B phases has led to a
significant improvement in accuracy. Furthermore, it may be
noted that the number of A and B phases considered for the
classification task in Sharma et al. [51]’s work is equal by not
considering all epochs of A-phases. However, in our work,
we have considered all epochs, and therefore the numbers of
A and B phases are not the same, as shown in Table 1 and
Table 2.

Recently, Murarka et al. [7] classified CAP phases for both
healthy and disordered individuals using 1-D CNN without
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extracting the features. Table 17 presented a comparison of
our work with state of art techniques on the classification of
phase A&B with the C4-Al channels for narcolepsy, RBD,
PLM, NFLE, and insomnia patients. Murarka et al.’s [7]
model for insomnia achieved an ACA of 70.88%, while our
model had an ACA of 88.48%, an improvement of 17.6%.
Murarka et al.’s [7] model had precision of 81.82%, sensitiv-
ity of 56.52%, specificity of 86.41%, and F1 score of 66.86%.
Our model obtained a precision of 84.24%, sensitivity of
78.87%, specificity of 93.02%, and F1 score of 81.47%. Our
model for insomnia showed improvements in each of these
performance parameters, making it an effective classifier for
insomnia. Murarka et al.’s [7] model for NFLE had an ACA of
76.68%, a precision of 74.08%, sensitivity of 81.24%, speci-
ficity of 72.23%, and F1 score of 77.49%. Our model was able
to improve these results, achieving an ACA of 86.43%, with
an improvement of 9.75%. Our model also had a precision
of 80.38%, sensitivity of 75.43%, specificity of 91.50%, and
F1 score of 77.83%. For narcolepsy, our model outperformed
Murarka et al’s [7] model in all performance measures.
With an ACA of 94.33%, precision of 93.95%, sensitivity
of 89.02%, specificity of 97.06%, and F1 score of 91.42%,
our model was approximately 10% better in each perfor-
mance measure. Our model also showed a slight improve-
ment over Murarka et al’s [7] model for RBD, with an
ACA of 84.67% compared to 79.48%. The other performance
measures, including precision, sensitivity, specificity, and F1
score, were similar between the two models. Our model for
PLM had an ACA of 88.68%, a significant improvement of
15.96% over Murarka et al.’s [7] model, which had an ACA
of 78.72%. Our model also outperformed theirs for precision
(85.60% vs 83.98%), sensitivity (79.77% vs 71.64), speci-
ficity (93.20% vs 85.99), and F1 score (82.58% vs 77.32%).
Our model for PLM showed significant improvements in
each of these performance parameters, making it a highly
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TABLE 19. Comparision of our work on phase A subtype classification with other studies using the same database.

Disorder type Study Method ACA (%) Classifier

Healthy Mendonga et al. [60]  Heuristic oriented search algorithm based on 1-D CNN 82 1D-CNN
Our work 92.85 KNN
Healthy Mendez et al. [61] Multiple features with KNN classifier 82.23 KNN
Our work 92.85 KNN
Healthy Hartmann et al. [57] Multiple features with variable LSTM network 81.89 LSTM
Our work 92.85 KNN

NFLE Machado et al. [62] Mutiple features with KNN , SVM and DA classifier 61 SVM, KNN

Our work 80.92 KNN

effective model. Overall, the results show that our model
outperformed Murarka et al.’s [7] model in terms of ACA,
precision, sensitivity, specificity, and F1 score for all sleep
disorders (insomnia, narcolepsy, RBD, and PLM). These
improvements justifies the superiority of our model over the
state-of-the-art techniques for all sleep disorders.

It can be noted from Tables 17 and 18 that, there are
few works available on classifying CAP phase A subtypes.
Further research in this area may be necessary to better under-
stand and classify CAP phase A subtypes. Table 19 shows
the comparision of our work on phase A subtype classifi-
cation with other studies. In this study, we have classified
CAP phase A subtypes separately for each disordered type,
and also combined them for a more comprehensive analysis.
Mendonca et al. [60] developed a metric called the A phase
index (API) using deep learning and a ID-CNN classifier for
classification. Their method was able to classify A subtypes
with an ACA of 82% using 27 subjects. Hartmann et al. [57]
used data from the CAPSD to examine 16 healthy sleepers
and 30 NFLE patients. The duration of the EEG epochs ana-
lyzed in this study ranged from 1-3 seconds. They reported
an ACA of 81.89% in the classification of phase A subtypes
using a group of healthy participants. Their model obtained an
ACA of 78.27% on a group of NFLE subjects. Our proposed
model for classifying phase A subtypes used several different
groups of subjects. When applied to healthy subjects, the
model achieved an ACA of 92.85%. It achieved an ACA
of 89.41%, 93.9%, 80.9% 88.0%, and 84.9% for individuals
with insomnia, narcolepsy,NFLE, PLM, and RBD, respec-
tively. Our proposed model obtained an overall ACA was
78.8% when considered sleep disorders and healthy subjects
combined which is shown in table 16. Our proposed model
yielded superior results compared to a majority of previous
studies.

Some of the advantages of our study are given below:

« We utilized an openly accessible CAP sleep database to
facilitate reproducibility and made it possible for other
researchers to evaluate their own research in relation to
this study.

« We expanded our sample size by incorporating partici-
pants from six distinct categories of the CAP database
comprising individuals with insomnia, PLM, NFLE,
RBD, narcolepsy, in addition to healthy subjects.
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« To the best of our knowledge this is the only study that
incorporates 6 classes and provide performance metrics
for each class.

o Used a single EEG channel to improve patient com-
fort, and this approach ultimately resulted in better
performance.

« We employed an XAI technique based on Shapley val-
ues to rank the extracted Hjorth features which provide
insight into the classification ability. To the best of our
knowledge, we are the first group to use XAl technique
in the classification of sleep CAP phases.

o In contrast to other studies, the proposed method uses
fewer features, leading to a reduction in computational
complexity.

o Our developed model is simple and does not involve
much computational complexity, making it suitable
for deployment in real-time applications by medical
practitioners.

There is a need for further research using heart rate
variability (HRV) and electrocardiography (ECG) signals,
acquired from photoplethysmography (PPG) signals, for the
identification of CAP phases and subphases.

PPG signals, which use light to measure HRV, are particu-
larly well-suited for use in wearable devices for CAP phases
and subphases detection. The use of these signals in wearable
devices has the potential to make CAP detection more acces-
sible and convenient. PPG signals, which use light to measure
HRYV, are particularly well-suited for use in wearable devices
designed for detecting CAP phases and subphases. The use
of these signals in wearable devices has the potential to make
CAP detection more accessible and convenient.

VI. CONCLUSION

In this study, we developed a novel algorithm for detecting
the different phases of CAP using EEG signals. KNN and
EbagT classifiers are used to distinguish A&B phases of
CAP and also to identify the Al, A2, and A3 subphases
within the A phase, utilizing single-channel EEG signals.
We evaluated the algorithms on subjects, both healthy and
those with one of five sleep disorders. We used a combination
of wavelet-bases techniques and machine learning methods
to develop the algorithms, and the results showed that they
were able to achieve promising performance in detecting
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the different CAP phases. We used an optimal filter bank
with minimized orthogonal properties and mean squared
bandwidth during the signal preprocessing stage to per-
form decomposition. We used Hjorth parameters as features,
and employed optimally tuned KNN and EbagT classifiers,
which yielded promising performance. We employed XAI-
based feature ranking method to provide insights into the
model’s decision-making process, and aid clinicians to trust
our model. The results showed that the algorithms were able
to achieve promising performance in detecting the different
CAP phases, with average classification accuracy of 91.6%
for healthy subjects and 94.33%, 88.68%, 86.3%, 88.5%,
and 84.43% for narcolepsy, PLM, RBD, insomnia, and
NFLE subjects, respectively, when categorizing phases A&B.
The maximum ACA was obtained for narcolepsy patients,
at 94.33% for phase A&B classification. When categorizing
A subphases (Al, A2, A3), the model was able achieved
an average classification accuracy of 92.85% for healthy
subjects and 93.9%, 88.0%, 84.9%, 89.41%, and 80.92%
for narcolepsy, PLM, RBD, insomnia, and NFLE subjects,
respectively. Before implementing the proposed model in a
clinical setting, it is necessary to test it using a diverse and
large dataset. Our developed system is easy to use, automated,
and designed with XAl technique, which can potentially alle-
viate the difficulties encountered by sleep specialists during
scoring of CAP phases. Our future goal is to create a model
based on HRV signals that are derived from PPG signals to
identify of CAP phases and subphases which will reduce the
bandwidth and computational time of the system.
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