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Local Moving Least Square - One-Dimensional IRBFN
Technique: Part Il - Unsteady Incompressible Viscous
Flows

D. Ngo-Congd-?, N. Mai-Duy?!, W. Karunasena and T. Tran-Cong':3

Abstract: In this study, local moving least square - one dimensioni@girated
radial basis function network (LMLS-1D-IRBFN) method igpented and demon-
strated with the solution of time-dependent problems scBuwargers’ equation,
unsteady flow past a square cylinder in a horizontal chameLiasteady flow past
a circular cylinder. The present method makes use of thdiparbf unity concept
to combine the moving least square (MLS) and one-dimenkiategrated radial
basis function network (1D-IRBFN) techniques in a new applo This approach
offers the same order of accuracy as its global countenpert] D-IRBFN method,
while the system matrix is more sparse than that of the 1DHRBw~hich helps
reduce the computational cost significantly. For fluid flowhdems, the diffusion
terms are discretised by using LMLS-1D-IRBFN method, wliiile convection
terms are explicitly calculated by using 1D-IRBFN methotie present numerical
procedure is combined with a domain decomposition tectiniguhandle large-
scale problems. The numerical results obtained are in ggoekeent with other
published results in the literature.

Keywords: Unsteady flow, Burgers’ equation, square cylinder, cincajdinder,
moving least square, integrated radial basis function,alomecomposition.

1 Introduction

Time-dependent analysis plays a very important role in #sgh of diverse en-
gineering products and systems, e.g. in aerospace, autemotarine and civil
applications. In this paper, a new efficient numerical metio developed for
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the solution of time-dependent problems and illustrateth veixamples such as
the well-known Burgers’ equation, unsteady flows past arggoginder in a hor-
izontal channel, and unsteady flows past a circular cylindgurgers’ equation
has been studied by many authors to verify their proposecerined methods be-
cause it is the simplest nonlinear equation that includesexion and dissipation
terms. Caldwell, Wanless, and Cook (1987) presented a mawde finite ele-
ment method to obtain a solution of Burgers’ equation undléerént prescribed
conditions. Iskander and Mohsen (1992) devised new algostbased on a com-
bination of linearization and splitting-up for solving shéquation. Hon and Mao
(1998) solved Burgers’ equation using multiquadric (MQ)dpatial discretisation
and a low order explicit finite difference scheme for tempdrscretisation. Their
numerical results indicated that the major numerical eisdrom the time inte-
gration instead of the MQ spatial approximation. Hassariettama, and Hosham
(2005) developed fourth-order finite difference methodeldagn two-level three-
point finite difference for solving Burgers’ equation. Hasfian and Shodja (2008)
proposed a gradient reproducing kernel particle methodK&R) for spatial dis-
cretisation of Burgers’ equation to obtain equivalent imdr ordinary differen-
tial equations which are then discretised in time by the Geaethod. Hosseini
and Hashemi (2011) presented a local-RBF meshless methsdlfing Burgers'’
equation with different initial and boundary conditions.

Flows past a circular cylinder have been extensively stubiemany researchers
to verify their new numerical methods for irregular domaifi$ere is no singu-
larity on a circular cylinder surface and the flow field behihd cylinder contains
a variety of fluid dynamic phenomena, which makes the prohigeresting as a
benchmark. Cheng, Liu, and Lam (2001) applied a discretexonethod to inves-
tigate an unsteady flow past a rotationally oscillatingudac cylinder for different
values of oscillating amplitude and frequency at a Reynoldaber of 200. Based
on the numerical results obtained, they provided a map d&Ftocand non-lock-
on regions which helps to classify the different vortex e in the wake with
respect to the oscillating amplitude and frequency of tHimdgr.

For the problem of flow past a square cylinder, singulariiesur at the corners
of the square cylinder, which poses some challenges in tefrascurate determi-
nation of such singularities. In order to obtain a convergatution, very dense
grids are usually generated near the singularities. DawisMoore (1982) stud-
ied unsteady flow past a rectangular cylinder using finitedéhce method (FDM)
with third-order upwind differencing for convection, stiamd central scheme for
diffusion terms and a Leith-type scheme for time integratidaki, Sen, and el Hak
(1994) conducted a numerical study of flow past a fixed squdireder at various

angles of incidence for Reynolds numbers up to 250. Theiremigal simula-
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tion was based on the stream function-vorticity formulataf the Navier-Stokes
equation together with a single-valued pressure conditiomake the problem
well-posed. Sohankar, Norberg, and Davidson (1998) ptedetrlculations of
unsteady 2-D flows around a square cylinder at differentesngf incidence using
an incompressible SIMPLEC finite volume code with a nongtaed grid arrange-
ment. The convective terms were discretised using the-trildr QUICK differ-
encing scheme, while the diffusive terms were discretisagucentral differences.
Breuer, Bernsdorf, Zeiser, and Durst (2000) investigatedrdined flow around a
square cylinder in a channel with blockage ratio gBIy a lattice-Boltzmann
automata (LBA) and a finite volume method (FVM). Turki, Abbasnd Nasral-
lah (2003) studied an unsteady flow and heat transfer clegistats in a chan-
nel with a heated square cylinder using a control volumeefisiement method
(CVFEM) adapted to a staggered grid. In their work, the infaes of blockage
ratio, Reynolds number and Richardson number on the flovenpattere investi-
gated. Berrone and Marro (2009) applied a space-time agaptethod to solve
unsteady flow problems including flows over backward facitegp @nd flows past
a square cylinder in a channel. Moussaoui, Jami, MezrhabNaiji (2010) simu-
lated a 2-D flow and heat transfer in a horizontal channelrobt&d by an inclined
square cylinder using a hybrid scheme with lattice Boltzmarethod to determine
the velocity field and FDM to solve the energy equation.

Dhiman, Chhabra, and Eswaran (2005) investigated infligeatélockage ratio,
Prandtl number and Peclet number on the flow and heat traciséeacteristics of
an isolated square cylinder confined in a channel in a 2-Digtéaw regime (1<
Re< 45) using semi-explicit FEM on a non-uniform Cartesian gfitie third order
QUICK scheme was used to discretise the convection ternike thie second-order
central difference scheme was used to discretise the diffuerms. The semi-
explicit FEM was also applied to a steady laminar mixed cotiga flow across
a heated square cylinder in a channel [Dhiman, Chhabra, aaciEan (2008)].
Sahu, Chhabra, and Eswaran (2010) conducted a study of ZS@ady flow of
power-law fluids past a square cylinder confined in a chanoretifferent val-
ues of Reynolds number (60 Re< 160), blockage ratiofy = 1/6,1/4 and 1/2)
and power-law flow behaviour index.®< n < 1.8) using the semi-explicit FEM.
Bouaziz, Kessentini, and Turki (2010) employed a contrdunee finite element
method (CVFEM) adapted to the staggered grid to study areadgtlaminar flow
and heat transfer of power-law fluids in 2-D horizontal plahannel with a heated
square cylinder.

In the past decades, some mesh-free and local RBF-baseddnédtave been de-
veloped for solving fluid flow problems. Shu, Ding, and Yeo(q2ppresented a
local RBF-based differential quadrature method (local REBP) for a simulation
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of natural convection in a square cavity. In their studye¢hlayers of orthogonal
grid near and including the boundary were generated for gimgothe Neumann
condition of temperature and the vorticity on the wall. Tlegightives of the field
variables in the boundary conditions were then discretigetthe conventional one-
sided second order finite difference scheme. The local RBFi2thod was also
employed for solving several cases of incompressible flowkiding a driven-
cavity flow, flow past a cylinder, and flow around two staggec@dular cylin-
ders [Shu, Ding, and Yeo (2005)]. Ding, Shu, Yeo, and Xu (2(@ésented the
mesh-free least square-based finite difference (MLSFDhaukto simulate a flow
field around two circular cylinders arranged in tandem ade-by-side. Vertnik
and Sarler (2006) presented an explicit local RBF collatathethod for diffusion
problems. Sanyasiraju and Chandhini (2008) developedeh RBF based gridfree
scheme for unsteady incompressible viscous flows in ternpsimiitive variables.
Chen, Hu, and Hu (2008) employed a partition of unity con¢Bpbuska and Me-
lenk (1997)] to combine the reproducing kernel and RBF ayiprations to yield a
local approximation that enjoys the exponential convergesf RBF and improves
the conditioning of the discrete system. Le, Rabczuk, May;Cand Tran-Cong
(2010) proposed a locally supported moving IRBFN-basedhiees method for
solving various problems including heat transfer, elégtiof both compressible
and incompressible materials, and linear static cracklenab.

Another approach for solving PDEs is the so-called Cantegiad method where
the governing equations are discretised with a fixed Cartegiid. This approach
significantly reduces the grid generation cost and has & gotential over the con-
ventional body-fitted methods when solving problems withvimg boundary and
complicated geometry. Udaykumar, Mittal, Rampunggoord Khanna (2001)
presented a Cartesian grid method for computing fluid flowth womplex im-
mersed and moving boundaries. The incompressible NatideS equations are
discretised using a second-order FVM, and second-ordetidreal-step scheme
is employed for time integration. Russell and Wang (2008sented a Cartesian
grid method for solving 2-D incompressible viscous flowsuge multiple moving
objects based on stream function-vorticity formulatiorhedg and Zhang (2008)
employed an immersed-boundary method to predict the flouctstre around a
transversely oscillating cylinder. The influences of datiitg frequency on the
drag and lift acting on the cylinder were investigated.

As an alternative to the conventional differentiated ratasis function network
(DRBFN) method [Kansa (1990)], Mai-Duy and Tran-Cong (280froposed the
use of integration to construct the RBFN expressions (ti&FIR method) for the
approximation of a function and its derivatives and for tblison of PDEs. Nu-
merical results showed that the IRBFN method achieves swpsccuracy [Mai-
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Duy and Tran-Cong (2001a); Mai-Duy and Tran-Cong (2001A)ne-dimensional
integrated radial basis function network (1D-IRBFN) colition method for the
solution of second- and fourth-order PDEs was presented &My and Tan-
ner (2007). Along grid lines, 1D-IRBFN are constructed ttiséa the govern-
ing differential equations with boundary conditions in aa& manner. In the
1D-IRBFN method, the Cartesian grids were used to diserdiath rectangular
and non-rectangular problem domains. The 1D-IRBFN methadtich more effi-
cient than the original IRBFN method reported in Mai-Duy dmnadn-Cong (2001a).
Le-Cao, Mai-Duy, Tran, and Tran-Cong (2011) employed thelRBFN method
to simulate unsymmetrical flows of a Newtonian fluid in muitigonnected do-
mains using the stream-function and temperature fornmatiNgo-Cong, Mai-
Duy, Karunasena, and Tran-Cong (2011) extended this methiodestigate free
vibration of composite laminated plates based on firstiosthear deformation
theory. Ngo-Cong, Mai-Duy, Karunasena, and Tran-Cong Z2@toposed a lo-
cal moving least square - one dimensional integrated rduals function net-
work method (LMLS-1D-IRBFN) for simulating 2-D steady inopressible vis-
cous flows in terms of stream function and vorticity. In thegant study, we fur-
ther extend the LMLS-1D-IRBFN method for solving time-degent problems
and demonstrate the new procedure with the simulation oj&uat equation, un-
steady flows past a square cylinder in a horizontal channdluasteady flows past
a circular cylinder. The present numerical procedure ishioed with a domain
decomposition technique to handle large-scale problems.

The paper is organised as follows. The LMLS-1D-IRBFN metteopresented in

Section 2. The governing equations for incompressibleovisdlows are given in

Section 3. Several numerical examples are investigated) tise proposed method
in Section 4. Section 5 concludes the paper.

2 Local moving least square - one dimensional integrated r&dl basis func-
tion network technique

A schematic outline of the LMLS-1D-IRBFN method is depiciedrig. 1. The
proposed method with 3-node support domaims:-3) and 5-node local 1D-IRBF
networks (s = 5) is presented here. On argrid line [I], a global interpolant for
the field variable at a grid poing is sought in the form

i U[J] (1)

where{(p,} is a set of the partition of unity functions constructed gsviLS
approxmants [Liu (2003)]ull!(x) the nodal function value obtained from a local
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interpolant represented by a 1D-IRBF netwojk n the number of nodes in the
support domain ok;. In (1), MLS approximants are presently based on linear
polynomials, which are defined in terms of 1 andt is noted that the MLS shape
functions possess a so-called partition of unity propgie follows.

Z (%) =1. 2)
=1

Relevant derivatives af atx; can be obtained by differentiating (1)

aulx N (ow(x) — aulil(x
0§ (880100 200

22u(x: N (92g(x) ag(x)aull(x) — o2ull(x
s P )

=1
where the valuesl!(x),dulll (x) /dx and 8%ulll (x) /@x? are calculated from 1D-
IRBFN networks withng nodes.

Full details of the LMLS-1D-IRBFN method can be found in [NGong, Mai-Duy,
Karunasena, and Tran-Cong (2012)].

3 Governing equations for 2-D unsteady incompressible vistis flows

The governing equations for 2-D incompressible viscousdlawitten in terms of
stream functiony and vorticity w are given by

o’y %y

2 TaE T W (5)
1 [(0%w J*w dw [(dYow OYow

1(F0 Fw)_du, (owow_ouow) ®
Re\ odx oy ot dy 0x 0x ody

whereReis the Reynolds numbet.the time, andx,y)T the position vector. The
x andy components of the velocity vector can be defined in terms efsthream
function as

_ oy
=% 7)

S ox’
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The computational boundary conditions for vorticity cancbenputed as
%Py 0%y

where the subscriptv is used to denote quantities on the boundary. For curved
boundaries, a formula reported in [Le-Cao, Mai-Duy, andni@ong (2009)] is
employed here to derive the vorticity boundary conditioniscaindary points ox-
andy-grid lines as follows.

2] 52
I P A 10
af =1+ () ] 4, (10
2] 52
v _ _ ty Y
o =~ |1+ () ] . (1)
whereqy andgy are known quantities defined by
0% 10%Y
= t2 dyds 'ty 0xds’ (12)
ty 92 197
Gy=— 37 o) 2 (13)

12 0x0s 'ty 9yds’

in which t, = dx/ds,ty = dy/ds ands is the direction tangential to the curved
surface.

Boundary conditions for stream function are specified inftlewing examples.

4 Numerical results and discussion

Several time-dependent problems are considered in thi®sdo study the perfor-
mance of the present numerical procedure. The domainsestsitare discretised
using Cartesian grids. The simple Euler scheme is usednf@r ittegration. For
Burgers’ equation, the LMLS-1D-IRBFN method is employeddiscretise both
diffusion and convection terms. For fluid flow problems, tHdlS-1D-IRBFN
is used to discretise the diffusion terms while the coneecterms are explicitly
calculated by using the 1D-IRBFN technique. A domain deaoasitipn technique
is employed for solving the fluid flow problems. By using the L841D-IRBFN
method to discretise the left hand side of governing eqoatand the LU decom-
position technique to solve the resultant sparse systenmofiteneous equations,
the computational cost and data storage requirements duege.
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4.1 Example 1: Burgers’ equation

The present numerical method is first verified through theitsm of Burgers’
equation as follows.

du du 194

The diffusion and convection terms in Equation (14) areréissed on a uniform
grid using LMLS-1D-IRBFN method implicitly and explicitlyespectively.

4.1.1 Approximation of shock wave propagation

Consider the Burgers’ equation (14) defined on a segmemnt & 1,t > 0 and sub-
ject to Dirichlet boundary conditions. The initial and bdany conditions can be
calculated from the following analytical solution [Hasgam Salama, and Hosham
(2005); Hosseini and Hashemi (2011)]

[0+ Mo+ (Ho — ao) exp(n )]

D =T )

; (15)

wheren = apReXx— Lot — Bo), ap = 0.4, Bp = 0.125 pp = 0.6,Re= 100.

Tab. 1 shows the comparison among the numerical results df3-¥D-IRBFN
and 1D-IRBFN methods and the exact solution at tirael.0 for several time step
sizes and using a grid of 61. It can be seen that the accurgecgady improved by
reducing the time step. Grid convergence studies for botioads with the same
time step of 103 are given in Tab. 2. The numerical results show that the accu-
racy is not improved much with increasing grid density fothomethods, which
indicates that the major numerical error is not from the LMLI3-IRBFN and 1D-
IRBFN spatial approximation, but from the temporal disisagion. It is noted that
the LMLS-1D-IRBFN method offers the same level of accurasyhee 1D-IRBFN
method.

4.1.2 Sinusoidal initial condition

Consider the Burgers’ Equation (14) defined on a segmentx0< 1,t > 0 and
subject to the following Dirichlet boundary conditions andial condition.

u(o,t) =u(1,t)=0, t>0, (16)
u(x,0) = sinrx, 0<x<1l 17)
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The corresponding analytical solution was found by Colé{)%s follows.

21 E jkj sin(jmx) exp(— j2met)
=

Ug(X,t) = (18)

ko + § kj cog j mx) exp(— j2ret) ’
=

1
wheree = 1/Re, ko = [ exp(—1— cosrnx/2me)dx, and
0

1
kj = 2 [ coq jmx) exp(—1 — cosrx/2re ) dx.
0

Tab. 3 presents the numerical results at several positians timed for Reynolds
number of 10 and several grid sizes in comparison with thetes@ution and the
numerical results of Hosseini and Hashemi (2011) who usedal-RBF colloca-
tion for spatial discretisation and the explicit Euler stieefor time discretisation,
while the corresponding comparison for the case of Reynoideber of 100 is
given in Tab. 4. For the purpose of comparison, the same tiameis taken to be
1073 in these cases. It can be seen that the present numericks rasslightly
more accurate than those of the local-RBF in general.

The numerical results for the case of a large Reynolds numb&0000 at time

t = 1.0 are described in Tabs. 5 and 6 using the same grid size of [3)1he
same time step of 1@ as reported in [Hosseini and Hashemi (2011)]. Tab. 5 gives
the numerical results at a uniform grid with a grid spacindl in comparison
with the exact solution and the results of other authors)enthie corresponding
comparison of numerical results at the same grid positienseported in [Has-
sanien, Salama, and Hosham (2005); Hashemian and Sho8f@){20bsseini and
Hashemi (2011)] are provided in Tab. 6. Those comparisoo® shat the present
numerical results are in good agreement with the exact dred aumerical method
solutions.

4.2 Example 2: Steady and unsteady flows past a square cytiimda horizontal
channel

The steady and unsteady flows past a square cylinder in aohtaizchannel are
considered here. The present LMLS-1D-IRBFN method is usedibcretisation
of diffusion terms implicitly, while the 1D-IRBFN method &nployed to calculate
the convection terms explicitly. The problem geometry amgirulary conditions are
described in Fig. 2. Note that computational boundary dard for vorticity are
determined by Equation (9). The distances from the inletauikdt to the center of
the square cylinder are taken tolbg= 6.5D andLq = 19.5D, respectively, where
D is the side length of the square cylinder taken to be 1. Thissartes are chosen
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based on the studies of [Sohankar, Norberg, and Davids@8)J1%urki, Abbassi,
and Nasrallah (2003); Bouaziz, Kessentini, and Turki (2P10

A fully developed laminar flow is assumed at the inlet, thus itilet velocity is
described by a parabolic profile as follows.

U = Umax <1— <2H_y>2> (29)

whereumax the maximum velocity at the inlet taken to be 1; dddhe height of
the channel. The stream function values at the top and battalie of the channel
(yx andyx,) can be determined through Equations 7, 8 and 19. When gdilvira
flow problems involving the vortex shedding, the proper laarg condition at the
outlet is a very important issue. A suitable outflow boundaogdition allows the
flow to exit the domain smoothly and has a minimum effect orbteaviour of the
flow field. In the present study, the Neumann boundary canditiof the stream
function and vorticity at the outlet are considered. It isaathat the value of stream
function on the cylinder wally,) is equal to zero for the case of steady flows, but
is is unknown for the case of unsteady flows. This valyevaries with respect
to time and can be determined by using a single-valued meessindition [Lewis
(1979); Le-Cao, Mai-Duy, Tran, and Tran-Cong (2011)].

The non-overlapping domain decomposition technique [@uoami and Valli (1999)]
is employed here in order to reduce the size of memory reduifée continuity

of the stream function and vorticity variables and theirtfosder derivatives are
imposed at the subdomain interfaces. The computationabatois decomposed
into 24 subdomains. Each subdomain is represented by ann@artesian grid as
shown in Fig. 3. Fine grids are generated in the domains heanytinder in order

to obtain reliable and accurate numerical results.

Calculation of drag and lift coefficients

From the primitive variable formulation, the pressure ggats @p/dx,dp/dy) on
the square cylinder are given by

op 1 [d%u d?u ou du
&—R—e(ﬁ+d—>ﬂ>—<u&+v&>, (20)
op 1 (0™ 0% ov  ov
7 relotow) (5ve) &)

whereReis Reynolds number defined lBe= una,D/v, D the side length of the
square cylindery the kinematic viscosity. For the case of stationary cylintiee
convection terms are equal to zero on the cylinder surfapgtens (20) and (21)
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then become
2 2
2 2
The vorticity can be determined as
w=9- g_; (24)

Making use of (24) along the top and the bottom of the squdied®r and differ-
entiating both sides with respectyaesult in

ow 02U
ET— (29)

From Equations (22) and (25), the gradients of pressuregalosm bottom and the
top walls are determined as
@ 1w

ax Redy’ (26)

In a similar fashion, one can calculate the gradients ofgumresalong the front and

the rear walls as follows.
ap 1w

W Redx’ 27
dy Reodx (27)

Integrating equations (26) and (27) along the horizontdl\aertical walls, respec-
tively, the pressure distribution on the cylinder surfaaa be determined.

Drag and lift coefficients can be determined as

Fo
_ 28
CD 1/2pU2maXD ) ( )
F
_ 29
“ T 12080 =9
wherep is fluid density, and the drag, and lift F_ are defined by
Fo = Fp, + Foy, (30)

F=FR,+F, (31)
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in which
1
Fo, = [ (pr— pr)dy, (32)
0
1
= /(pb— p)dx (33)
0
1
o = [ (- w)dx (34)
0

(Tr — T)dy, (35)

T
I
o—0_

where ps, pr, pp, andp; are values of pressure distribution on the front, rear, bot-
tom and top surfaces of the square cylinder, respectivelg;ta 1., 7,, andt; are
values of shear stress acting on the front, rear, bottomamsirfaces of the square
cylinder, respectively, as shown in Fig. 4.

4.2.1 Steady case

A grid independence study for flow past a square cylinder ineamnel at Reynolds
number of 40 is conducted. The length of recirculation Zonend drag coefficient
Cp for various grid sizes are presented in Tab. 7. The variataih, andCp with
respect to the number of nodes are described in Figs. 5 ahddh be seen that the
numerical results are convergent with increasing grid iéernBhe flow parameters
L, andCp, for different Reynolds number&é< 40) using a grid of 57k 351 are
provided in Tab. 8. The present numerical results are in ggpdement with the
published results of other authors. Contours of streamtifmmand vorticity of
the flow field around the square cylinder for small Reynolds\bers are given in
Fig. 7. It appears that the flow separation occurs at théngadéldges of the cylinder
and a closed steady recirculation region containing tworsgtric vortices forms
behind the cylinder. The size of the recirculation regiorréases with increasing
Reynolds number.

4.2.2 Unsteady case

When the Reynolds number reaches a certain critical vala, fflast a square
cylinder in a channel becomes unsteady. The critical Rejgolimber is a function
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of the blockage ratio defined in Fig. 2. Here we do not attermgetarch for these
critical Reynolds numbers and simply investigate the flomskeveral values oy
(1/2, 1/4, and 1/8) and Reynolds numbers {6&e< 160). The Strouhal number
is calculated based on the frequency of the vortex shedflinige cylinder length
D and the maximum inlet velocitymax as follows.

St= f—D (36)
Umax
Time-averaged drag coefficie@bn, is defined by
1}
Com = / Codt, @37)
h—1t1

wheret, —t; is the period of the vortex shedding.

Figs. 8 and 9 respectively present variations of StrouhalberStand time-averaged
drag coefficienCpr, with respect to Reynolds number for the case of blockage ra-
tio of 1/8 and using different grids of 547 331, 571x 351 and 645« 367. The
obtained numerical results are compared with the resulS/dfl [Breuer, Berns-
dorf, Zeiser, and Durst (2000)] both using a non-unifornd @i 560x 340, lattice-
Boltzmann automata (LBA) method [Breuer, Bernsdorf, Zeiaad Durst (2000)]
using a uniform grid of 200& 320, space-time adaptive method (STAM) [Berrone
and Marro (2009)] and control volume finite element methodREM) [Bouaziz,
Kessentini, and Turki (2010)] using a non-uniform grid 0824197. It can be seen
that the present numerical results at three different gridslightly different and in
good agreement with the results of other methods. Fig. 1@skariations of drag
and lift coefficients with respect to timidor the case oRe= 90, p = 1/8 and us-
ing a grid of 571x 351. It can be seen that those coefficients vary periodiedier

a certain time. The contours of stream function and voyticit different Reynolds
numbers Re= 40,60,90 and 160) ang, = 1/8 are depicted in Figs. 11 and 12,
respectively. The well-known von Karman vortices genelathind the cylinder
periodically when a critical Reynolds numb&e~ 60) is exceeded.

Tab. 9 presents Strouhal numl&tiand time-averaged drag coeffici€y, for sev-
eral Reynolds numbers (60 Re< 160) and blockage ratioi{ = 1/2,1/4 and
1/8). It is noted that in the cases B = 1/2 and ¥4, the flow is still steady
for Re= 60 and 80. The influences of Reynolds number on the Strouhal nu
ber St and time-averaged drag coefficigbxy, for blockage ratiosf§ = 1/2 and
1/4) are described in Figs. 13 and 14, respectively. It can be &t Reynolds
number has a very weak influence on the Strouhal number feetbases, and the
time-averaged drag coefficient decreases with increaseyndétds number up to
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160. Figs. 15 and 16 presents the contours of stream funatidrvorticity of flow
field around the square cylinder in a channel with blockagie cd 1/4, while the
corresponding contours for the case of blockage ratio/@fdre given in Figs. 17
and 18. Figs. 11, 15 and 17 indicate that the critical Reysalgdmber (at which
the flow becomes unsteady) increases with increasing bieckaio. For example,
atRe= 60, the flow becomes unsteady in the cas@pf 1/8, but is still steady

in the case offp = 1/4. At Re= 100, the flow becomes unsteady in the case of
Bo = 1/4, but remains nearly steady in the cas@ef 1/2. The numerical results
obtained are in good agreement with those of Sahu, ChhatuieEswaran (2010)
who used the semi-explicit FEM.

4.3 Example 3: Unsteady flows past a circular cylinder

The unsteady flow past a circular cylinder at different Régmaumbers Re=
80,100 and 200) is considered here, wh&e= UgD/v, Uy is the far-field inlet
velocity taken to be 1D the diameter of the cylinder taken to be W the kine-
matic viscosity. The same numerical procedure as in Exagjgemployed. The
problem geometry and boundary conditions are describedgnl®. Note that
computational boundary conditions for vorticity are det#red by Equations (9)-
(13). The computational domain is decomposed into 25 subd®ras shown in
Fig. 20. Afiner grid is generated in the subdomain contaitiegcircular cylinder.
The far-field flow is assumed to behave as a potential flow aadatifield stream
function ¢ can be defined by [Kim, Kim, Jun, and Lee (2007)]

D2
far __ o

o =y (1 g ) )
The boundary conditions for stream function are given by

Y=y w=0 onry,M,M (39)
oy Jw

=0 5-=0, only (40)
¥ =, i—lﬁ =0, only (41)

wheren is the direction normal to the cylinder surfaag;, the unknown stream
function value on the cylinder wall,,,; and the subscript is used to denote quan-
tities onl",. The valueyx, varies with respect to time and can be determined by
using a single-valued pressure condition [Lewis (1979)0a®, Mai-Duy, Tran,
and Tran-Cong (2011)].

Tabs. 10-12 respectively present Strouhal number, dragdjfandefficients for dif-
ferent Reynolds numbers. The present numerical resultinageod agreement



Manuscript submitted to CMES

15

with the published results of other authors. Fig. 21 prestrd variations of drag
and lift coefficients with respect to time féte= 100. The periodic variations of
these coefficients are observed as time goes on. The comtbatieam function
and vorticity of the flow field around the circular cylinder different Reynolds
numbers are provided in Figs. 22 and 23, respectively. Withelasing Reynolds
number, the vortex shedding frequency increases and tlieambecome smaller.

5 Conclusions

A new numerical procedure based on the local MLS-1D-IRBFNhoe is pre-
sented for time-dependent problems. The numerical refurlBurgers’ equation
indicate that the LMLS-1D-IRBFN approach yields the samellef accuracy as
the 1D-IRBFN method, while the system matrix is more spansa that of the
1D-IRBFN, which helps reduce the computational cost sigaifily. The LMLS-
1D-IRBFN shape function possesses the Kroneékeroperty which allows an
exact imposition of the essential boundary condition. €saan grids are employed
to discretise both regular and irregular problem domairtsee dombination of the
present numerical procedure and a domain decompositidmitpee is success-
fully developed for simulating steady and unsteady flows pasquare cylinder
in a horizontal channel with different blockage ratios amsgtaady flows past a
circular cylinder. The influence of blockage ratio on therelateristics of flow
past a square cylinder in a channel is investigated for aerafidReynolds num-
bers (60< Re< 160) and several blockage ratigé = 1/2,1/4 and ¥8). The
obtained numerical results indicate that (i) the criticalyRolds number (at which
the flow becomes unsteady) increases with increasing kdeckatio; (ii) time-
averaged drag coefficient decreases with increasing Ré&ymaimber up to 160;
and (iii) the Reynolds number has a very weak influence on treuBal number
for the cases oy = 1/2 and V4.
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Table 1: Burgers’ equations, approximation of shock wawpagation: compari-
son of numerical results and exact solutioh -at1.0 for Re= 100 and several time
step sizes, using a grid of 61. (1) 1D-IRBFN, (2) LMLS-1D-IRB

dt=107 dt=10° dt=10"4

X Exact (1) (2 (1) (2 (1) (2

0.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.056 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.111 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.167 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.222 0.9998  1.0000 1.0000 0.9999 0.9998 0.9998 0.9998
0.278 0.9978  1.0000 0.9999 0.9983 0.9982 0.9980 0.9979
0.333 0.9801  0.9991 0.9988 0.9829 0.9831 0.9808 0.9810
0.389 0.8473  0.9153 0.9145 0.8545 0.8547 0.8495 0.8496
0.444 0.4518  0.4516 0.4526 0.4533 0.4539 0.4533 0.4539
0.500 0.2379  0.2387 0.2383 0.2382 0.2379 0.2381 0.2379
0.556 0.2043  0.2050 0.2050 0.2044 0.2044 0.2043 0.2043
0.611 0.2005  0.2006 0.2006 0.2005 0.2005 0.2005 0.2005
0.667 0.2001  0.2001 0.2001 0.2001 0.2001 0.2001 0.2001
0.722 0.2000  0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.778 0.2000  0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.833 0.2000  0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.889 0.2000  0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.944 0.2000  0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
1.000 0.2000  0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
Ne 2.45E-02 2.42E-02 2.75E-03 2.86E-03 9.51E-04 1.12E-03
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Table 2: Burgers’ equations, approximation of shock wawpagation: grid con-
vergence study of numerical results fee= 100t = 1.0, andAt = 103, (1)
1D-IRBFN, (2) LMLS-1D-IRBFN

ny =41 ny =61 ny =81

X Exact (1) () (1) (2 (1) @)

0.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.056 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.111 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.167 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.222 0.9998 0.9999 0.9998 0.9999 0.9998 0.9999 0.9998
0.278 0.9978 0.9983 0.9979 0.9983 0.9982 0.9983 0.9983
0.333 0.9801 0.9829 0.9848 0.9829 0.9831 0.9829 0.9829
0.389 0.8473 0.8546 0.8554 0.8545 0.8547 0.8545 0.8546
0.444 0.4518 0.4534 0.4552 0.4533 0.4539 0.4533 0.4535
0.500 0.2379 0.2381 0.2372 0.2382 0.2379 0.2382 0.2381
0.556 0.2043 0.2044 0.2043 0.2044 0.2044 0.2044 0.2044
0.611 0.2005 0.2005 0.2005 0.2005 0.2005 0.2005 0.2005
0.667 0.2001 0.2001 0.2001 0.2001 0.2001 0.2001 0.2001
0.722 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.778 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.833 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.889 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.944  0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
1.000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
Ne 2.78E-03 3.48E-03 2.75E-03 2.86E-03 2.75E-03 2.78E-03
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Table 3: Burgers’ equations, sinusoidal initial conditiaromparison among the
numerical results of LMLS-1D-IRBFN and Local-RBF [Hosseand Hashemi
(2011)] and the analytical solution f&e= 10, At = 103,

ny=9 ny = 33 ny =57 ny =81
X t Exact Present Local-RBF  Present Local-RBF  Present LoB#-R Present
0.25 0.4 0.30889 0.30820 0.30817 0.30838 0.30821 0.30838 30862 0.30839
0.6 0.24074 0.24025 0.24026 0.24040 0.24030 0.24040 0924050.24040
0.8 0.19568 0.19556 0.19533 0.19543 0.19537 0.19543 0019560.19543
1.0 0.16256 0.16291 0.16230 0.16238 0.16234 0.16238 0316250.16238
3.0 0.02720 0.02762 0.02714 0.02720 0.02716 0.02720 0302720.02720
0.50 0.4 0.56963 0.57036 0.56861 0.56896 0.56867 0.56896 56929 0.56896
0.6 0.44721 0.44865 0.44643 0.44670 0.44651 0.44669 0144700.44669
0.8 0.35924 0.36150 0.35863 0.35886 0.35871 0.35885 0335910.35885
1.0 0.29192 0.29463 0.29142 0.29163 0.29150 0.29162 0729180.29162
3.0 0.04021 0.04081 0.04011 0.04020 0.04015 0.04020 0604020.04020
0.75 0.4 0.62544 0.62926 0.62486 0.62515 0.62496 0.62511 62540 0.62511
0.6 0.48721 0.49318 0.48646 0.48695 0.48658 0.48691 248710.48691
0.8 0.37392 0.37992 0.37322 0.37371 0.37333 0.37369 0637380.37369
1.0 0.28747 0.29251 0.28688 0.28732 0.28698 0.28731 0428740.28731
3.0 0.02977 0.03021 0.02970 0.02977 0.02973 0.02977 0102980.02977

Table 4: Burgers’ equations, sinusoidal initial conditiamomparison among the
numerical results of LMLS-1D-IRBFN and Local-RBF [Hosseamd Hashemi
(2011)] and the analytical solution f&e= 100,At = 103,

ny=9 ny = 33 ny =57 ny = 81
X t Exact Present Local-RBF  Present Local-RBF  Present LoB#-R Present
0.25 0.4 0.34191 0.33414 0.33395 0.34114 0.33396 0.34114 33794 0.34114
0.6 0.26896 0.26353 0.26328 0.26841 0.26328 0.26841 0826610.26841
0.8 0.22148 0.21759 0.21722 0.22107 0.21723 0.22107 0621930.22107
1.0 0.18819 0.18523 0.18488 0.18787 0.18489 0.18787 (6518650.18787
3.0 0.07511 0.07416 0.07438 0.07504 0.07438 0.07504 0607470.07504
0.50 0.4 0.66071 0.64995 0.64907 0.65961 0.64908 0.65961 65496 0.65961
0.6 0.52942 0.51822 0.51971 0.52848 0.51972 0.52849 0152460.52849
0.8 0.43914 0.42785 0.43139 0.43839 0.43140 0.43839 0043530.43839
1.0 0.37442 0.36512 0.36820 0.37381 0.36821 0.37381 0437130.37381
3.0 0.15018 0.14802 0.14872 0.15003 0.14873 0.15004 0714940.15004
0.75 0.4 0.91026 0.85640 0.90742 0.91011 0.90749 0.91014 90905 0.91015
0.6 0.76724 0.65947 0.75810 0.76643 0.75814 0.76643 276280.76643
0.8 0.64740 0.55693 0.63810 0.64651 0.63812 0.64652 (0464280.64652
1.0 0.55605 0.48796 0.54787 0.55524 0.54789 0.55527 (255200.55527

3.0 0.22481 0.20834 0.22261 0.22449 0.22265 0.22459 0622370.22459
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Table 5: Burgers’ equations, sinusoidal initial conditiaromparison among nu-
merical results and exact solution fRe= 10000,At = 104, using a grid of 301.

X Exact Caldwell, Wanless Iskander and Hon and Present
and Cook (1987)  Mohsen (1992) Mao (1998)
0.056 0.0422 0.0422 0.0419 0.0424 0.0421
0.111 0.0843 0.0844 0.0839 0.0843 0.0842
0.167 0.1263 0.1266 0.1253 0.1263 0.1263
0.222 0.1684 0.1687 0.1692 0.1684 0.1683
0.278 0.2103 0.2108 0.2034 0.2103 0.2103
0.333 0.2522 0.2527 0.2666 0.2522 0.2521
0.389 0.2939 0.2946 0.2527 0.2939 0.2939
0.444 0.3355 0.3362 0.3966 0.3355 0.3355
0.500 0.3769 0.3778 0.2350 0.3769 0.3769
0.556 0.4182 0.4191 0.5480 0.4182 0.4182
0.611 0.4592 0.4601 0.2578 0.4592 0.4592
0.667 0.5000 0.5009 0.6049 0.4999 0.4999
0.722 0.5404 0.5414 0.6014 0.5404 0.5404
0.778 0.5806 0.5816 0.4630 0.5802 0.5805
0.833 0.6203 0.6213 0.7011 0.6201 0.6202
0.889 0.6596 0.6605 0.6717 0.6600 0.6595
0.944 0.6983 0.6992 0.7261 0.6957 0.6982

Table 6: Burgers’ equations, sinusoidal initial conditi@@mparison of numerical
results forRe= 10000,At = 104, using a grid of 301.

X Hassanien, Salama Hashemian and Hosseini and Present
and Hosham (2005)  Shodja (2008)  Hashemi (2011)
0.050 0.0379 0.0379 0.0379 0.0379
0.110 0.0834 0.0834 0.0833 0.0834
0.160 0.1213 0.1213 0.1212 0.1213
0.220 0.1667 0.1667 0.1666 0.1667
0.270 0.2044 0.2044 0.2044 0.2044
0.330 0.2469 0.2497 0.2496 0.2496
0.380 0.2872 0.2872 0.2871 0.2872
0.440 0.3322 0.3322 0.3321 0.3322
0.500 0.3769 0.3769 0.3768 0.3769
0.550 0.4140 0.4141 0.4140 0.4140
0.610 0.4584 0.4584 0.4583 0.4583
0.660 0.4951 0.4951 0.4950 0.4950
0.720 0.5388 0.5388 0.5387 0.5388
0.770 0.5749 0.5749 0.5748 0.5749
0.830 0.6179 0.6179 0.6178 0.6179
0.880 0.6533 0.6533 0.6530 0.6532

0.940 0.6952 0.6952 0.6890 0.6941
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Table 7: Steady flow past a square cylinder in a channel: grgiergence study of
recirculation length.; and drag coefficientp for Re= 40.

Grid Ly Cp

173x 121 2.37 1.10
211x 151 2.29 131
281x 201 2.26 1.49
351x 251 2.25 1.57
469x 301 2.25 1.75
493x 305 2.25 1.79
557x 341 2.27 1.88
571x 351 2.27 1.89
599x 351 2.27 191
645x%x 367 2.27 1.92
717x 377 2.27 191

Breuer, Bernsdorf, Zeiser, and Durst (2000) 2.15 1.70
Gupta, Sharma, Chhabra, and Eswaran (2003) 1.90 1.86
Dhiman, Chhabra, and Eswaran (2005) 217 1.75

Table 8: Steady flow past a square cylinder in a channel: cosguaof recircula-
tion lengthL, and drag coefficientp, using a grid of 57X 351.

Re Source Lsep Cp

10 Breuer, Bernsdorf, Zeiser, and Durst (2000) 0.49 3.64
Gupta, Sharma, Chhabra, and Eswaran (2003) 0.40 3.51
Dhiman, Chhabra, and Eswaran (2005) 0.49 3.63
Present 0.48 3.73

20 Breuer, Bernsdorf, Zeiser, and Durst (2000) 1.04 2.50
Gupta, Sharma, Chhabra, and Eswaran (2003) 0.90 2.45
Dhiman, Chhabra, and Eswaran (2005) 1.05 244
Present 1.06 2.64

30 Breuer, Bernsdorf, Zeiser, and Durst (2000) 1.60 2.00
Gupta, Sharma, Chhabra, and Eswaran (2003) 1.40 2.06
Dhiman, Chhabra, and Eswaran (2005) 1.62 1.99
Present 1.66 2.15

40 Breuer, Bernsdorf, Zeiser, and Durst (2000) 215 1.70
Gupta, Sharma, Chhabra, and Eswaran (2003) 1.90 1.86
Dhiman, Chhabra, and Eswaran (2005) 2.17 1.75
Present 2.27 1.89
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Table 9: Unsteady flow past a square cylinder in a channelouB&al num-
ber St and time-averaged drag coefficiebyy, for different blockage ratiofy =
1/2,1/4 and ¥/8, using grids of 64% 191, 645x 271 and 645 367, respectively.
Note that in the case @, = 1/2, 1/4, the flow is still steady foRe= 60, 80

Po=1/2 Po=1/4 Po=1/8
Re St Gm St Gm St Gom
60 - 7.522 - 1871 0122 1585
80 - 6.237 - 1634 0131 1.477

100 0.344 5.396 0.185 1.483 0.137 1.412
120 0.349 4.773 0.192 1.382 0.142 1.366
140 0.352 4.269 0.196 1.303 0.146 1.340
160 0.352 3.850 0.197 1.239 0.148 1.315

Table 10: Unsteady flow past a circular cylinder: Strouhahhar St for different
Reynolds numbeRe= 80,100 and 200.

Source Re=80 Re=100 Re=200
Braza, Chassaing, and Ha-Minh (1986) - 0.16 0.20
Liu, Zheng, and Sung (1998) - 0.165 0.192
Ding, Shu, Yeo, and Xu (2004) - 0.164 0.196
Park, Kwon, and Choi (1998) 0.152 0.165 -
Silva, Silveira-Neto, and Damasceno (2003) 0.15 0.16 -
Present, 54& 379 0.159 0.168 -
Present, 64& 379 0.151 0.168 0.199

Table 11: Unsteady flow past a circular cylinder: Drag coefitCp for different
Reynolds numbeRe= 80,100 and 200.

Source Re=80 Re= 100 Re= 200
Braza, Chassaing, and Ha-Minh (1986) - .384+0.015 1404+0.05
Liu, Zheng, and Sung (1998) - .350+0.012 1310+0.049
Ding, Shu, Yeo, and Xu (2004) - .325+0.008 1327+0.045
Park, Kwon, and Choi (1998) 1.35 1.33 -
Silva, Silveira-Neto, and Damasceno (2003) 1.4 1.39 -
Present, 54& 379 1364+0.004 1344+0.012

Present, 64& 379 13654+0.005 1344+0.012 1295+0.048
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Table 12: Unsteady flow past a circular cylinder: Lift coaéfic C_ for different

Reynolds numbeRe= 80,100 and 200.

Source Re=80 Re=100 Re=200
Braza, Chassaing, and Ha-Minh (1986) - +0.25 +0.75
Liu, Zheng, and Sung (1998) - +0.339 +0.69
Ding, Shu, Yeo, and Xu (2004) - +0.28 +0.60
Park, Kwon, and Choi (1998) +0.245 4+0.332 -
Silva, Silveira-Neto, and Damasceno (2003}-0.235 - -
Present, 54& 379 +0.237 +£0.344 -
Present, 64& 379 +0.245 +0.341 +0.70
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Figure 1: LMLS-1D-IRBFN scheme] a typicalj] node.
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Figure 2: Flow past a square cylinder in a channel: geomeittybaundary condi-
tions. The blockage ratio is defined @s= D/H. Note that computational bound-
ary conditions for vorticity are determined by Equation. (9)
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Figure 3: Flow past a square cylinder in a channel: grid condition.
\Lp/m
T

.0
[ -
Py .0
T

Tph“)

Figure 4: Pressure and shear stress acting on the surfacgofee cylinder.
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Figure 5: Steady flow past a square cylinder in a channel: givergence study
of recirculation length., for Re= 40.
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Figure 6: Steady flow past a square cylinder in a channel: givergence study
of drag coefficienCp for Re= 40.
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Figure 7: Steady flow past a square cylinder in a channel.ocostof stream func-
tion for different Reynolds numbers, using a grid of 57351
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Figure 8. Unsteady flow past a square cylinder in a channelckblge ratio
Bo=1/8): variation of Strouhal numb@&twith respect to Reynolds numbRe us-

ing different grids of 54% 331, 571x 351 and 64% 367; FVM [Breuer, Bernsdorf,
Zeiser, and Durst (2000)] using a non-uniform grid of 56840; LBA [Breuer,

Bernsdorf, Zeiser, and Durst (2000)] using a uniform gri2000x 320; STAM

[Berrone and Marro (2009)]; CVFEM [Bouaziz, Kessentiniddrurki (2010)] us-
ing a non-uniform grid of 24% 197.
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Figure 9. Unsteady flow past a square cylinder in a channetkbalge ratiqBy =
1/8): variation of time-averaged drag coefficiei,,, with respect to Reynolds
numberRe using different grids of 54% 331, 571x 351 and 645« 367; FVM
[Breuer, Bernsdorf, Zeiser, and Durst (2000)] using a noifieum grid of 560x
340; LBA [Breuer, Bernsdorf, Zeiser, and Durst (2000)] gsamuniform grid of
2000x 320; STAM [Berrone and Marro (2009)]; CVFEM [Bouaziz, Kestei,
and Turki (2010)] using a non-uniform grid of 249197.



Manuscript submitted to CMES

34

1.6} CD i
1.2F B
1
g 08
)
O 06
0.4
CL
0.2f B
O .
-0.2f B
0 20 40 60 80 100 120 140 160 180 200 220
time t

Figure 10: Unsteady flow past a square cylinder in a chanhatKbge ratiofy =
1/8): variation of drag coefficien€p and lift coefficientC, with respect to time
for the case oRe= 90, using a grid of 57% 351.
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Re= 40

Figure 11: Unsteady flow past a square cylinder in a chantetkage ratig3y =
1/8): Contours of stream function for different Reynolds nemsh using a grid of
645x 367.
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Figure 12: Unsteady flow past a square cylinder in a chantetkKage ratig3y =
1/8): Contours of vorticity for different Reynolds numbersjng a grid of 645«
367.
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Figure 13: Unsteady flow past a square cylinder in a chanrelation of time-
averaged drag coefficie@p, with respect to Reynolds numb&efor blockage
ratiosBp = 1/2 and ¥4, using grids of 645 191 and 645 271, respectively;
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Figure 14: Unsteady flow past a square cylinder in a chanraiation of time-
averaged drag coefficie@p, with respect to Reynolds numb&efor blockage
ratiosffo = 1/2 and /4, using grids of 64% 191 and 645 271, respectively;
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Figure 15: Unsteady flow past a square cylinder in a channahtdZirs of stream
function for different Reynolds numbergy(= 1/4, grid = 645x 271).
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Figure 16: Unsteady flow past a square cylinder in a chanretdtirs of vorticity
for different Reynolds numberg{ = 1/4, grid = 645x 271).
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Figure 17: Unsteady flow past a square cylinder in a channahtdtirs of stream
function for different Reynolds numberBy(= 1/2, grid = 645x 191).
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Figure 18: Unsteady flow past a square cylinder in a chanretdtirs of vorticity
for different Reynolds numberg{ = 1/2, grid = 645x 191).
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Figure 19: Unsteady flow past a circular cylinder: geometrg boundary condi-
tions. Note that computational boundary conditions fotiety are determined by
Equations (9)-(13).
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Figure 21: Unsteady flow past a stationary cylinder: drag ld@hdoefficientsCp
andC_ with respect to time foRe= 100, using a grid of 54& 379.
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Figure 22: Unsteady flow past a circular cylinder: contourstoeam function
for different Reynolds humbe®Re= 80,100 and 200, using grids of 548379,
548x 379 and 640« 379, respectively.
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Figure 23: Unsteady flow past a circular cylinder: contodirgoaticity for different
Reynolds numberRe= 80,100 and 200, using grids of 548379, 548x 379 and

640x 379, respectively.



