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Local Moving Least Square - One-Dimensional IRBFN
Technique: Part II - Unsteady Incompressible Viscous

Flows

D. Ngo-Cong1,2, N. Mai-Duy1, W. Karunasena2 and T. Tran-Cong1,3

Abstract: In this study, local moving least square - one dimensional integrated
radial basis function network (LMLS-1D-IRBFN) method is presented and demon-
strated with the solution of time-dependent problems such as Burgers’ equation,
unsteady flow past a square cylinder in a horizontal channel and unsteady flow past
a circular cylinder. The present method makes use of the partition of unity concept
to combine the moving least square (MLS) and one-dimensional integrated radial
basis function network (1D-IRBFN) techniques in a new approach. This approach
offers the same order of accuracy as its global counterpart,the 1D-IRBFN method,
while the system matrix is more sparse than that of the 1D-IRBFN, which helps
reduce the computational cost significantly. For fluid flow problems, the diffusion
terms are discretised by using LMLS-1D-IRBFN method, whilethe convection
terms are explicitly calculated by using 1D-IRBFN method. The present numerical
procedure is combined with a domain decomposition technique to handle large-
scale problems. The numerical results obtained are in good agreement with other
published results in the literature.

Keywords: Unsteady flow, Burgers’ equation, square cylinder, circular cylinder,
moving least square, integrated radial basis function, domain decomposition.

1 Introduction

Time-dependent analysis plays a very important role in the design of diverse en-
gineering products and systems, e.g. in aerospace, automotive, marine and civil
applications. In this paper, a new efficient numerical method is developed for
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the solution of time-dependent problems and illustrated with examples such as
the well-known Burgers’ equation, unsteady flows past a square cylinder in a hor-
izontal channel, and unsteady flows past a circular cylinder. Burgers’ equation
has been studied by many authors to verify their proposed numerical methods be-
cause it is the simplest nonlinear equation that includes convection and dissipation
terms. Caldwell, Wanless, and Cook (1987) presented a moving node finite ele-
ment method to obtain a solution of Burgers’ equation under different prescribed
conditions. Iskander and Mohsen (1992) devised new algorithms based on a com-
bination of linearization and splitting-up for solving this equation. Hon and Mao
(1998) solved Burgers’ equation using multiquadric (MQ) for spatial discretisation
and a low order explicit finite difference scheme for temporal discretisation. Their
numerical results indicated that the major numerical erroris from the time inte-
gration instead of the MQ spatial approximation. Hassanien, Salama, and Hosham
(2005) developed fourth-order finite difference method based on two-level three-
point finite difference for solving Burgers’ equation. Hashemian and Shodja (2008)
proposed a gradient reproducing kernel particle method (GRKPM) for spatial dis-
cretisation of Burgers’ equation to obtain equivalent nonlinear ordinary differen-
tial equations which are then discretised in time by the Gear’s method. Hosseini
and Hashemi (2011) presented a local-RBF meshless method for solving Burgers’
equation with different initial and boundary conditions.

Flows past a circular cylinder have been extensively studied by many researchers
to verify their new numerical methods for irregular domains. There is no singu-
larity on a circular cylinder surface and the flow field behindthe cylinder contains
a variety of fluid dynamic phenomena, which makes the probleminteresting as a
benchmark. Cheng, Liu, and Lam (2001) applied a discrete vortex method to inves-
tigate an unsteady flow past a rotationally oscillating circular cylinder for different
values of oscillating amplitude and frequency at a Reynoldsnumber of 200. Based
on the numerical results obtained, they provided a map of lock-on and non-lock-
on regions which helps to classify the different vortex structure in the wake with
respect to the oscillating amplitude and frequency of the cylinder.

For the problem of flow past a square cylinder, singularitiesoccur at the corners
of the square cylinder, which poses some challenges in termsof accurate determi-
nation of such singularities. In order to obtain a convergent solution, very dense
grids are usually generated near the singularities. Davis and Moore (1982) stud-
ied unsteady flow past a rectangular cylinder using finite difference method (FDM)
with third-order upwind differencing for convection, standard central scheme for
diffusion terms and a Leith-type scheme for time integration. Zaki, Sen, and el Hak
(1994) conducted a numerical study of flow past a fixed square cylinder at various
angles of incidence for Reynolds numbers up to 250. Their numerical simula-
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tion was based on the stream function-vorticity formulation of the Navier-Stokes
equation together with a single-valued pressure conditionto make the problem
well-posed. Sohankar, Norberg, and Davidson (1998) presented calculations of
unsteady 2-D flows around a square cylinder at different angles of incidence using
an incompressible SIMPLEC finite volume code with a non-staggered grid arrange-
ment. The convective terms were discretised using the third-order QUICK differ-
encing scheme, while the diffusive terms were discretised using central differences.
Breuer, Bernsdorf, Zeiser, and Durst (2000) investigated aconfined flow around a
square cylinder in a channel with blockage ratio of 1/8 by a lattice-Boltzmann
automata (LBA) and a finite volume method (FVM). Turki, Abbassi, and Nasral-
lah (2003) studied an unsteady flow and heat transfer characteristics in a chan-
nel with a heated square cylinder using a control volume finite element method
(CVFEM) adapted to a staggered grid. In their work, the influences of blockage
ratio, Reynolds number and Richardson number on the flow pattern were investi-
gated. Berrone and Marro (2009) applied a space-time adaptive method to solve
unsteady flow problems including flows over backward facing step and flows past
a square cylinder in a channel. Moussaoui, Jami, Mezrhab, and Naji (2010) simu-
lated a 2-D flow and heat transfer in a horizontal channel obstructed by an inclined
square cylinder using a hybrid scheme with lattice Boltzmann method to determine
the velocity field and FDM to solve the energy equation.

Dhiman, Chhabra, and Eswaran (2005) investigated influences of blockage ratio,
Prandtl number and Peclet number on the flow and heat transfercharacteristics of
an isolated square cylinder confined in a channel in a 2-D steady flow regime (1≤
Re≤ 45) using semi-explicit FEM on a non-uniform Cartesian grid. The third order
QUICK scheme was used to discretise the convection terms, while the second-order
central difference scheme was used to discretise the diffusion terms. The semi-
explicit FEM was also applied to a steady laminar mixed convection flow across
a heated square cylinder in a channel [Dhiman, Chhabra, and Eswaran (2008)].
Sahu, Chhabra, and Eswaran (2010) conducted a study of 2-D unsteady flow of
power-law fluids past a square cylinder confined in a channel for different val-
ues of Reynolds number (60≤ Re≤ 160), blockage ratio (β0 = 1/6,1/4 and 1/2)
and power-law flow behaviour index (0.5≤ n≤ 1.8) using the semi-explicit FEM.
Bouaziz, Kessentini, and Turki (2010) employed a control volume finite element
method (CVFEM) adapted to the staggered grid to study an unsteady laminar flow
and heat transfer of power-law fluids in 2-D horizontal planechannel with a heated
square cylinder.

In the past decades, some mesh-free and local RBF-based methods have been de-
veloped for solving fluid flow problems. Shu, Ding, and Yeo (2003) presented a
local RBF-based differential quadrature method (local RBF-DQ) for a simulation
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of natural convection in a square cavity. In their study, three layers of orthogonal
grid near and including the boundary were generated for imposing the Neumann
condition of temperature and the vorticity on the wall. The derivatives of the field
variables in the boundary conditions were then discretisedby the conventional one-
sided second order finite difference scheme. The local RBF-DQ method was also
employed for solving several cases of incompressible flows including a driven-
cavity flow, flow past a cylinder, and flow around two staggeredcircular cylin-
ders [Shu, Ding, and Yeo (2005)]. Ding, Shu, Yeo, and Xu (2007) presented the
mesh-free least square-based finite difference (MLSFD) method to simulate a flow
field around two circular cylinders arranged in tandem and side-by-side. Vertnik
and Šarler (2006) presented an explicit local RBF collocation method for diffusion
problems. Sanyasiraju and Chandhini (2008) developed a local RBF based gridfree
scheme for unsteady incompressible viscous flows in terms ofprimitive variables.
Chen, Hu, and Hu (2008) employed a partition of unity concept[Babûska and Me-
lenk (1997)] to combine the reproducing kernel and RBF approximations to yield a
local approximation that enjoys the exponential convergence of RBF and improves
the conditioning of the discrete system. Le, Rabczuk, Mai-Duy, and Tran-Cong
(2010) proposed a locally supported moving IRBFN-based meshless method for
solving various problems including heat transfer, elasticity of both compressible
and incompressible materials, and linear static crack problems.

Another approach for solving PDEs is the so-called Cartesian grid method where
the governing equations are discretised with a fixed Cartesian grid. This approach
significantly reduces the grid generation cost and has a great potential over the con-
ventional body-fitted methods when solving problems with moving boundary and
complicated geometry. Udaykumar, Mittal, Rampunggoon, and Khanna (2001)
presented a Cartesian grid method for computing fluid flows with complex im-
mersed and moving boundaries. The incompressible Navier-Stokes equations are
discretised using a second-order FVM, and second-order fractional-step scheme
is employed for time integration. Russell and Wang (2003) presented a Cartesian
grid method for solving 2-D incompressible viscous flows around multiple moving
objects based on stream function-vorticity formulation. Zheng and Zhang (2008)
employed an immersed-boundary method to predict the flow structure around a
transversely oscillating cylinder. The influences of oscillating frequency on the
drag and lift acting on the cylinder were investigated.

As an alternative to the conventional differentiated radial basis function network
(DRBFN) method [Kansa (1990)], Mai-Duy and Tran-Cong (2001a) proposed the
use of integration to construct the RBFN expressions (the IRBFN method) for the
approximation of a function and its derivatives and for the solution of PDEs. Nu-
merical results showed that the IRBFN method achieves superior accuracy [Mai-
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Duy and Tran-Cong (2001a); Mai-Duy and Tran-Cong (2001b)].A one-dimensional
integrated radial basis function network (1D-IRBFN) collocation method for the
solution of second- and fourth-order PDEs was presented by Mai-Duy and Tan-
ner (2007). Along grid lines, 1D-IRBFN are constructed to satisfy the govern-
ing differential equations with boundary conditions in an exact manner. In the
1D-IRBFN method, the Cartesian grids were used to discretise both rectangular
and non-rectangular problem domains. The 1D-IRBFN method is much more effi-
cient than the original IRBFN method reported in Mai-Duy andTran-Cong (2001a).
Le-Cao, Mai-Duy, Tran, and Tran-Cong (2011) employed the 1D-IRBFN method
to simulate unsymmetrical flows of a Newtonian fluid in multiply-connected do-
mains using the stream-function and temperature formulation. Ngo-Cong, Mai-
Duy, Karunasena, and Tran-Cong (2011) extended this methodto investigate free
vibration of composite laminated plates based on first-order shear deformation
theory. Ngo-Cong, Mai-Duy, Karunasena, and Tran-Cong (2012) proposed a lo-
cal moving least square - one dimensional integrated radialbasis function net-
work method (LMLS-1D-IRBFN) for simulating 2-D steady incompressible vis-
cous flows in terms of stream function and vorticity. In the present study, we fur-
ther extend the LMLS-1D-IRBFN method for solving time-dependent problems
and demonstrate the new procedure with the simulation of Burgers’ equation, un-
steady flows past a square cylinder in a horizontal channel, and unsteady flows past
a circular cylinder. The present numerical procedure is combined with a domain
decomposition technique to handle large-scale problems.

The paper is organised as follows. The LMLS-1D-IRBFN methodis presented in
Section 2. The governing equations for incompressible viscous flows are given in
Section 3. Several numerical examples are investigated using the proposed method
in Section 4. Section 5 concludes the paper.

2 Local moving least square - one dimensional integrated radial basis func-
tion network technique

A schematic outline of the LMLS-1D-IRBFN method is depictedin Fig. 1. The
proposed method with 3-node support domains (n= 3) and 5-node local 1D-IRBF
networks (ns = 5) is presented here. On anx-grid line [l ], a global interpolant for
the field variable at a grid pointxi is sought in the form

u(xi) =
n

∑
j=1

φ̄ j(xi)u
[ j](xi), (1)

where
{

φ̄ j
}n

j=1 is a set of the partition of unity functions constructed using MLS

approximants [Liu (2003)];u[ j](xi) the nodal function value obtained from a local
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interpolant represented by a 1D-IRBF network[ j]; n the number of nodes in the
support domain ofxi . In (1), MLS approximants are presently based on linear
polynomials, which are defined in terms of 1 andx. It is noted that the MLS shape
functions possess a so-called partition of unity properties as follows.

n

∑
j=1

φ̄ j(x) = 1. (2)

Relevant derivatives ofu at xi can be obtained by differentiating (1)

∂u(xi)

∂x
=

n

∑
j=1

(

∂ φ̄ j(xi)

∂x
u[ j](xi)+ φ̄ j(xi)

∂u[ j](xi)

∂x

)

, (3)

∂ 2u(xi)

∂x2 =
n

∑
j=1

(

∂ 2φ̄ j(xi)

∂x2 u[ j](xi)+2
∂ φ̄ j(xi)

∂x
∂u[ j](xi)

∂x
+ φ̄ j(xi)

∂ 2u[ j](xi)

∂x2

)

, (4)

where the valuesu[ j](xi),∂u[ j](xi)/∂x and∂ 2u[ j](xi)/∂x2 are calculated from 1D-
IRBFN networks withns nodes.

Full details of the LMLS-1D-IRBFN method can be found in [Ngo-Cong, Mai-Duy,
Karunasena, and Tran-Cong (2012)].

3 Governing equations for 2-D unsteady incompressible viscous flows

The governing equations for 2-D incompressible viscous flows written in terms of
stream functionψ and vorticityω are given by

∂ 2ψ
∂x2 +

∂ 2ψ
∂y2 =−ω , (5)

1
Re

(

∂ 2ω
∂x2 +

∂ 2ω
∂y2

)

=
∂ω
∂ t

+

(

∂ψ
∂y

∂ω
∂x

−
∂ψ
∂x

∂ω
∂y

)

, (6)

whereRe is the Reynolds number,t the time, and(x,y)T the position vector. The
x andy components of the velocity vector can be defined in terms of the stream
function as

u=
∂ψ
∂y

, (7)

v=−
∂ψ
∂x

. (8)
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The computational boundary conditions for vorticity can becomputed as

ωw =−

(

∂ 2ψw

∂x2 +
∂ 2ψw

∂y2

)

(9)

where the subscriptw is used to denote quantities on the boundary. For curved
boundaries, a formula reported in [Le-Cao, Mai-Duy, and Tran-Cong (2009)] is
employed here to derive the vorticity boundary conditions at boundary points onx-
andy-grid lines as follows.

ω(x)
w =−

[

1+

(

tx
ty

)2
]

∂ 2ψw

∂x2 −qy, (10)

ω(y)
w =−

[

1+

(

ty
tx

)2
]

∂ 2ψw

∂y2 −qx, (11)

whereqx andqy are known quantities defined by

qx =−
ty
t2
x

∂ 2ψw

∂y∂s
+

1
tx

∂ 2ψw

∂x∂s
, (12)

qy =−
tx
t2
y

∂ 2ψw

∂x∂s
+

1
ty

∂ 2ψw

∂y∂s
, (13)

in which tx = ∂x/∂s, ty = ∂y/∂s and s is the direction tangential to the curved
surface.

Boundary conditions for stream function are specified in thefollowing examples.

4 Numerical results and discussion

Several time-dependent problems are considered in this section to study the perfor-
mance of the present numerical procedure. The domains of interest are discretised
using Cartesian grids. The simple Euler scheme is used for time integration. For
Burgers’ equation, the LMLS-1D-IRBFN method is employed todiscretise both
diffusion and convection terms. For fluid flow problems, the LMLS-1D-IRBFN
is used to discretise the diffusion terms while the convection terms are explicitly
calculated by using the 1D-IRBFN technique. A domain decomposition technique
is employed for solving the fluid flow problems. By using the LMLS-1D-IRBFN
method to discretise the left hand side of governing equations and the LU decom-
position technique to solve the resultant sparse system of simultaneous equations,
the computational cost and data storage requirements are reduced.
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4.1 Example 1: Burgers’ equation

The present numerical method is first verified through the solution of Burgers’
equation as follows.

∂u
∂ t

+u
∂u
∂x

=
1

Re
∂ 2u
∂x2 . (14)

The diffusion and convection terms in Equation (14) are discretised on a uniform
grid using LMLS-1D-IRBFN method implicitly and explicitly, respectively.

4.1.1 Approximation of shock wave propagation

Consider the Burgers’ equation (14) defined on a segment 0≤ x≤ 1, t ≥ 0 and sub-
ject to Dirichlet boundary conditions. The initial and boundary conditions can be
calculated from the following analytical solution [Hassanien, Salama, and Hosham
(2005); Hosseini and Hashemi (2011)]

uE(x, t) =
[α0+µ0+(µ0−α0)exp(η)]

1+exp(η)
, (15)

whereη = α0Re(x−µ0t −β0), α0 = 0.4,β0 = 0.125,µ0 = 0.6,Re= 100.

Tab. 1 shows the comparison among the numerical results of LMLS-1D-IRBFN
and 1D-IRBFN methods and the exact solution at timet = 1.0 for several time step
sizes and using a grid of 61. It can be seen that the accuracy isgreatly improved by
reducing the time step. Grid convergence studies for both methods with the same
time step of 10−3 are given in Tab. 2. The numerical results show that the accu-
racy is not improved much with increasing grid density for both methods, which
indicates that the major numerical error is not from the LMLS-1D-IRBFN and 1D-
IRBFN spatial approximation, but from the temporal discretisation. It is noted that
the LMLS-1D-IRBFN method offers the same level of accuracy as the 1D-IRBFN
method.

4.1.2 Sinusoidal initial condition

Consider the Burgers’ Equation (14) defined on a segment 0≤ x ≤ 1, t ≥ 0 and
subject to the following Dirichlet boundary conditions andinitial condition.

u(0, t) = u(1, t) = 0, t > 0, (16)

u(x,0) = sinπx, 0≤ x≤ 1. (17)
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The corresponding analytical solution was found by Cole (1951) as follows.

uE(x, t) =

2πε
∞
∑
j=1

jk j sin( jπx)exp(− j2π2εt)

k0+
∞
∑
j=1

k j cos( jπx)exp(− j2π2εt)
, (18)

whereε = 1/Re, k0 =
1
∫

0
exp(−1−cosπx/2πε)dx , and

k j = 2
1
∫

0
cos( jπx)exp(−1−cosπx/2πε)dx.

Tab. 3 presents the numerical results at several positionsx and timest for Reynolds
number of 10 and several grid sizes in comparison with the exact solution and the
numerical results of Hosseini and Hashemi (2011) who used a local-RBF colloca-
tion for spatial discretisation and the explicit Euler scheme for time discretisation,
while the corresponding comparison for the case of Reynoldsnumber of 100 is
given in Tab. 4. For the purpose of comparison, the same time step is taken to be
10−3 in these cases. It can be seen that the present numerical results are slightly
more accurate than those of the local-RBF in general.

The numerical results for the case of a large Reynolds numberof 10000 at time
t = 1.0 are described in Tabs. 5 and 6 using the same grid size of 301 and the
same time step of 10−4 as reported in [Hosseini and Hashemi (2011)]. Tab. 5 gives
the numerical results at a uniform grid with a grid spacing of1/8 in comparison
with the exact solution and the results of other authors, while the corresponding
comparison of numerical results at the same grid positions as reported in [Has-
sanien, Salama, and Hosham (2005); Hashemian and Shodja (2008); Hosseini and
Hashemi (2011)] are provided in Tab. 6. Those comparisons show that the present
numerical results are in good agreement with the exact and other numerical method
solutions.

4.2 Example 2: Steady and unsteady flows past a square cylinder in a horizontal
channel

The steady and unsteady flows past a square cylinder in a horizontal channel are
considered here. The present LMLS-1D-IRBFN method is used for discretisation
of diffusion terms implicitly, while the 1D-IRBFN method isemployed to calculate
the convection terms explicitly. The problem geometry and boundary conditions are
described in Fig. 2. Note that computational boundary conditions for vorticity are
determined by Equation (9). The distances from the inlet andoutlet to the center of
the square cylinder are taken to beLu = 6.5D andLd = 19.5D, respectively, where
D is the side length of the square cylinder taken to be 1. Those distances are chosen
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based on the studies of [Sohankar, Norberg, and Davidson (1998); Turki, Abbassi,
and Nasrallah (2003); Bouaziz, Kessentini, and Turki (2010)].

A fully developed laminar flow is assumed at the inlet, thus the inlet velocity is
described by a parabolic profile as follows.

u= umax

(

1−

(

2y
H

)2
)

(19)

whereumax the maximum velocity at the inlet taken to be 1; andH the height of
the channel. The stream function values at the top and bottomwalls of the channel
(ψt andψb) can be determined through Equations 7, 8 and 19. When solving fluid
flow problems involving the vortex shedding, the proper boundary condition at the
outlet is a very important issue. A suitable outflow boundarycondition allows the
flow to exit the domain smoothly and has a minimum effect on thebehaviour of the
flow field. In the present study, the Neumann boundary conditions of the stream
function and vorticity at the outlet are considered. It is noted that the value of stream
function on the cylinder wall (ψw) is equal to zero for the case of steady flows, but
is is unknown for the case of unsteady flows. This valueψw varies with respect
to time and can be determined by using a single-valued pressure condition [Lewis
(1979); Le-Cao, Mai-Duy, Tran, and Tran-Cong (2011)].

The non-overlapping domain decomposition technique [Quarteroni and Valli (1999)]
is employed here in order to reduce the size of memory required. The continuity
of the stream function and vorticity variables and their first-order derivatives are
imposed at the subdomain interfaces. The computational domain is decomposed
into 24 subdomains. Each subdomain is represented by a uniform Cartesian grid as
shown in Fig. 3. Fine grids are generated in the domains near the cylinder in order
to obtain reliable and accurate numerical results.

Calculation of drag and lift coefficients

From the primitive variable formulation, the pressure gradients (∂ p/∂x,∂ p/∂y) on
the square cylinder are given by

∂ p
∂x

=
1

Re

(

∂ 2u
∂x2 +

∂ 2u
∂y2

)

−

(

u
∂u
∂x

+v
∂u
∂x

)

, (20)

∂ p
∂y

=
1

Re

(

∂ 2v
∂x2 +

∂ 2v
∂y2

)

−

(

u
∂v
∂x

+v
∂v
∂x

)

, (21)

whereReis Reynolds number defined byRe= umaxD/ν , D the side length of the
square cylinder,ν the kinematic viscosity. For the case of stationary cylinder, the
convection terms are equal to zero on the cylinder surface, equations (20) and (21)
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then become

∂ p
∂x

=
1

Re

(

∂ 2u
∂x2 +

∂ 2u
∂y2

)

, (22)

∂ p
∂y

=
1

Re

(

∂ 2v
∂x2 +

∂ 2v
∂y2

)

. (23)

The vorticity can be determined as

ω =
∂v
∂x

−
∂u
∂y

. (24)

Making use of (24) along the top and the bottom of the square cylinder and differ-
entiating both sides with respect toy result in

∂ω
∂y

=−
∂ 2u
∂y2 . (25)

From Equations (22) and (25), the gradients of pressure along the bottom and the
top walls are determined as

∂ p
∂x

=−
1

Re
∂ω
∂y

. (26)

In a similar fashion, one can calculate the gradients of pressure along the front and
the rear walls as follows.

∂ p
∂y

=
1

Re
∂ω
∂x

. (27)

Integrating equations (26) and (27) along the horizontal and vertical walls, respec-
tively, the pressure distribution on the cylinder surface can be determined.

Drag and lift coefficients can be determined as

CD =
FD

1/2ρu2
maxD

, (28)

CL =
FL

1/2ρu2
maxD

, (29)

whereρ is fluid density, and the dragFD and lift FL are defined by

FD = FDp +FD f , (30)

FL = FLp +FL f , (31)
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in which

FDp =

1
∫

0

(pf − pr)dy, (32)

FLp =

1
∫

0

(pb− pt)dx, (33)

FD f =

1
∫

0

(τt − τb)dx, (34)

FL f =

1
∫

0

(τr − τ f )dy, (35)

wherepf , pr , pb, andpt are values of pressure distribution on the front, rear, bot-
tom and top surfaces of the square cylinder, respectively; and τ f ,τr ,τb, andτt are
values of shear stress acting on the front, rear, bottom and top surfaces of the square
cylinder, respectively, as shown in Fig. 4.

4.2.1 Steady case

A grid independence study for flow past a square cylinder in a channel at Reynolds
number of 40 is conducted. The length of recirculation zoneLr and drag coefficient
CD for various grid sizes are presented in Tab. 7. The variations of Lr andCD with
respect to the number of nodes are described in Figs. 5 and 6. It can be seen that the
numerical results are convergent with increasing grid density. The flow parameters
Lr andCD for different Reynolds numbers (Re≤ 40) using a grid of 571×351 are
provided in Tab. 8. The present numerical results are in goodagreement with the
published results of other authors. Contours of stream function and vorticity of
the flow field around the square cylinder for small Reynolds numbers are given in
Fig. 7. It appears that the flow separation occurs at the trailing edges of the cylinder
and a closed steady recirculation region containing two symmetric vortices forms
behind the cylinder. The size of the recirculation region increases with increasing
Reynolds number.

4.2.2 Unsteady case

When the Reynolds number reaches a certain critical value, flow past a square
cylinder in a channel becomes unsteady. The critical Reynolds number is a function
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of the blockage ratio defined in Fig. 2. Here we do not attempt to search for these
critical Reynolds numbers and simply investigate the flow for several values ofβ0

(1/2, 1/4, and 1/8) and Reynolds numbers (60≤ Re≤ 160). The Strouhal number
is calculated based on the frequency of the vortex sheddingf , the cylinder length
D and the maximum inlet velocityumax as follows.

St=
f D

umax
. (36)

Time-averaged drag coefficientCDm is defined by

CDm =
1

t2− t1

t2
∫

t1

CDdt, (37)

wheret2− t1 is the period of the vortex shedding.

Figs. 8 and 9 respectively present variations of Strouhal numberStand time-averaged
drag coefficientCDm with respect to Reynolds number for the case of blockage ra-
tio of 1/8 and using different grids of 547× 331, 571× 351 and 645× 367. The
obtained numerical results are compared with the results ofFVM [Breuer, Berns-
dorf, Zeiser, and Durst (2000)] both using a non-uniform grid of 560×340, lattice-
Boltzmann automata (LBA) method [Breuer, Bernsdorf, Zeiser, and Durst (2000)]
using a uniform grid of 2000×320, space-time adaptive method (STAM) [Berrone
and Marro (2009)] and control volume finite element method (CVFEM) [Bouaziz,
Kessentini, and Turki (2010)] using a non-uniform grid of 249×197. It can be seen
that the present numerical results at three different gridsare slightly different and in
good agreement with the results of other methods. Fig. 10 shows variations of drag
and lift coefficients with respect to timet for the case ofRe= 90,β0 = 1/8 and us-
ing a grid of 571×351. It can be seen that those coefficients vary periodicallyafter
a certain time. The contours of stream function and vorticity for different Reynolds
numbers (Re= 40,60,90 and 160) andβ0 = 1/8 are depicted in Figs. 11 and 12,
respectively. The well-known von Karman vortices generatebehind the cylinder
periodically when a critical Reynolds number (Re≈ 60) is exceeded.

Tab. 9 presents Strouhal numberStand time-averaged drag coefficientCDm for sev-
eral Reynolds numbers (60≤ Re≤ 160) and blockage ratios (β0 = 1/2,1/4 and
1/8). It is noted that in the cases ofβ0 = 1/2 and 1/4, the flow is still steady
for Re= 60 and 80. The influences of Reynolds number on the Strouhal num-
ber St and time-averaged drag coefficientCDm for blockage ratios (β0 = 1/2 and
1/4) are described in Figs. 13 and 14, respectively. It can be seen that Reynolds
number has a very weak influence on the Strouhal number for those cases, and the
time-averaged drag coefficient decreases with increasing Reynolds number up to
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160. Figs. 15 and 16 presents the contours of stream functionand vorticity of flow
field around the square cylinder in a channel with blockage ratio of 1/4, while the
corresponding contours for the case of blockage ratio of 1/2 are given in Figs. 17
and 18. Figs. 11, 15 and 17 indicate that the critical Reynolds number (at which
the flow becomes unsteady) increases with increasing blockage ratio. For example,
at Re= 60, the flow becomes unsteady in the case ofβ0 = 1/8, but is still steady
in the case ofβ0 = 1/4. At Re= 100, the flow becomes unsteady in the case of
β0 = 1/4, but remains nearly steady in the case ofβ0 = 1/2. The numerical results
obtained are in good agreement with those of Sahu, Chhabra, and Eswaran (2010)
who used the semi-explicit FEM.

4.3 Example 3: Unsteady flows past a circular cylinder

The unsteady flow past a circular cylinder at different Reynolds numbers (Re=
80,100 and 200) is considered here, whereRe= U0D/ν , U0 is the far-field inlet
velocity taken to be 1,D the diameter of the cylinder taken to be 1,ν the kine-
matic viscosity. The same numerical procedure as in Example2 is employed. The
problem geometry and boundary conditions are described in Fig. 19. Note that
computational boundary conditions for vorticity are determined by Equations (9)-
(13). The computational domain is decomposed into 25 subdomains as shown in
Fig. 20. A finer grid is generated in the subdomain containingthe circular cylinder.
The far-field flow is assumed to behave as a potential flow and the far-field stream
functionψ f ar can be defined by [Kim, Kim, Jun, and Lee (2007)]

ψ f ar =U0y

(

1−
D2

4(x2+y2)

)

. (38)

The boundary conditions for stream function are given by

ψ = ψ f ar, ω = 0, onΓ1,Γ2,Γ3 (39)

∂ψ
∂x

= 0,
∂ω
∂x

= 0, onΓ4 (40)

ψ = ψw,
∂ψ
∂n

= 0, onΓw (41)

wheren is the direction normal to the cylinder surface;ψw the unknown stream
function value on the cylinder wall,Γw; and the subscriptw is used to denote quan-
tities onΓw. The valueψw varies with respect to time and can be determined by
using a single-valued pressure condition [Lewis (1979); Le-Cao, Mai-Duy, Tran,
and Tran-Cong (2011)].

Tabs. 10-12 respectively present Strouhal number, drag andlift coefficients for dif-
ferent Reynolds numbers. The present numerical results arein good agreement
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with the published results of other authors. Fig. 21 presents the variations of drag
and lift coefficients with respect to time forRe= 100. The periodic variations of
these coefficients are observed as time goes on. The contoursof stream function
and vorticity of the flow field around the circular cylinder atdifferent Reynolds
numbers are provided in Figs. 22 and 23, respectively. With increasing Reynolds
number, the vortex shedding frequency increases and the vortices become smaller.

5 Conclusions

A new numerical procedure based on the local MLS-1D-IRBFN method is pre-
sented for time-dependent problems. The numerical resultsfor Burgers’ equation
indicate that the LMLS-1D-IRBFN approach yields the same level of accuracy as
the 1D-IRBFN method, while the system matrix is more sparse than that of the
1D-IRBFN, which helps reduce the computational cost significantly. The LMLS-
1D-IRBFN shape function possesses the Kronecker-δ property which allows an
exact imposition of the essential boundary condition. Cartesian grids are employed
to discretise both regular and irregular problem domains. The combination of the
present numerical procedure and a domain decomposition technique is success-
fully developed for simulating steady and unsteady flows past a square cylinder
in a horizontal channel with different blockage ratios and unsteady flows past a
circular cylinder. The influence of blockage ratio on the characteristics of flow
past a square cylinder in a channel is investigated for a range of Reynolds num-
bers (60≤ Re≤ 160) and several blockage ratios (β0 = 1/2,1/4 and 1/8). The
obtained numerical results indicate that (i) the critical Reynolds number (at which
the flow becomes unsteady) increases with increasing blockage ratio; (ii) time-
averaged drag coefficient decreases with increasing Reynolds number up to 160;
and (iii) the Reynolds number has a very weak influence on the Strouhal number
for the cases ofβ0 = 1/2 and 1/4.
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Table 1: Burgers’ equations, approximation of shock wave propagation: compari-
son of numerical results and exact solution att = 1.0 for Re= 100 and several time
step sizes, using a grid of 61. (1) 1D-IRBFN, (2) LMLS-1D-IRBFN

dt = 10−2 dt = 10−3 dt = 10−4

x Exact (1) (2) (1) (2) (1) (2)
0.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.056 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.111 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.167 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.222 0.9998 1.0000 1.0000 0.9999 0.9998 0.9998 0.9998
0.278 0.9978 1.0000 0.9999 0.9983 0.9982 0.9980 0.9979
0.333 0.9801 0.9991 0.9988 0.9829 0.9831 0.9808 0.9810
0.389 0.8473 0.9153 0.9145 0.8545 0.8547 0.8495 0.8496
0.444 0.4518 0.4516 0.4526 0.4533 0.4539 0.4533 0.4539
0.500 0.2379 0.2387 0.2383 0.2382 0.2379 0.2381 0.2379
0.556 0.2043 0.2050 0.2050 0.2044 0.2044 0.2043 0.2043
0.611 0.2005 0.2006 0.2006 0.2005 0.2005 0.2005 0.2005
0.667 0.2001 0.2001 0.2001 0.2001 0.2001 0.2001 0.2001
0.722 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.778 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.833 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.889 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.944 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
1.000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
Ne 2.45E-02 2.42E-02 2.75E-03 2.86E-03 9.51E-04 1.12E-03
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Table 2: Burgers’ equations, approximation of shock wave propagation: grid con-
vergence study of numerical results forRe= 100, t = 1.0, and∆t = 10−3. (1)
1D-IRBFN, (2) LMLS-1D-IRBFN

nx = 41 nx = 61 nx = 81
x Exact (1) (2) (1) (2) (1) (2)
0.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.056 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.111 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.167 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.222 0.9998 0.9999 0.9998 0.9999 0.9998 0.9999 0.9998
0.278 0.9978 0.9983 0.9979 0.9983 0.9982 0.9983 0.9983
0.333 0.9801 0.9829 0.9848 0.9829 0.9831 0.9829 0.9829
0.389 0.8473 0.8546 0.8554 0.8545 0.8547 0.8545 0.8546
0.444 0.4518 0.4534 0.4552 0.4533 0.4539 0.4533 0.4535
0.500 0.2379 0.2381 0.2372 0.2382 0.2379 0.2382 0.2381
0.556 0.2043 0.2044 0.2043 0.2044 0.2044 0.2044 0.2044
0.611 0.2005 0.2005 0.2005 0.2005 0.2005 0.2005 0.2005
0.667 0.2001 0.2001 0.2001 0.2001 0.2001 0.2001 0.2001
0.722 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.778 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.833 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.889 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.944 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
1.000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
Ne 2.78E-03 3.48E-03 2.75E-03 2.86E-03 2.75E-03 2.78E-03
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Table 3: Burgers’ equations, sinusoidal initial condition: comparison among the
numerical results of LMLS-1D-IRBFN and Local-RBF [Hosseini and Hashemi
(2011)] and the analytical solution forRe= 10,∆t = 10−3.

nx = 9 nx = 33 nx = 57 nx = 81
x t Exact Present Local-RBF Present Local-RBF Present Local-RBF Present
0.25 0.4 0.30889 0.30820 0.30817 0.30838 0.30821 0.30838 0.30862 0.30839

0.6 0.24074 0.24025 0.24026 0.24040 0.24030 0.24040 0.24059 0.24040
0.8 0.19568 0.19556 0.19533 0.19543 0.19537 0.19543 0.19560 0.19543
1.0 0.16256 0.16291 0.16230 0.16238 0.16234 0.16238 0.16253 0.16238
3.0 0.02720 0.02762 0.02714 0.02720 0.02716 0.02720 0.02723 0.02720

0.50 0.4 0.56963 0.57036 0.56861 0.56896 0.56867 0.56896 0.56929 0.56896
0.6 0.44721 0.44865 0.44643 0.44670 0.44651 0.44669 0.44701 0.44669
0.8 0.35924 0.36150 0.35863 0.35886 0.35871 0.35885 0.35913 0.35885
1.0 0.29192 0.29463 0.29142 0.29163 0.29150 0.29162 0.29187 0.29162
3.0 0.04021 0.04081 0.04011 0.04020 0.04015 0.04020 0.04025 0.04020

0.75 0.4 0.62544 0.62926 0.62486 0.62515 0.62496 0.62511 0.62540 0.62511
0.6 0.48721 0.49318 0.48646 0.48695 0.48658 0.48691 0.48712 0.48691
0.8 0.37392 0.37992 0.37322 0.37371 0.37333 0.37369 0.37385 0.37369
1.0 0.28747 0.29251 0.28688 0.28732 0.28698 0.28731 0.28744 0.28731
3.0 0.02977 0.03021 0.02970 0.02977 0.02973 0.02977 0.02981 0.02977

Table 4: Burgers’ equations, sinusoidal initial condition: comparison among the
numerical results of LMLS-1D-IRBFN and Local-RBF [Hosseini and Hashemi
(2011)] and the analytical solution forRe= 100,∆t = 10−3.

nx = 9 nx = 33 nx = 57 nx = 81
x t Exact Present Local-RBF Present Local-RBF Present Local-RBF Present
0.25 0.4 0.34191 0.33414 0.33395 0.34114 0.33396 0.34114 0.33794 0.34114

0.6 0.26896 0.26353 0.26328 0.26841 0.26328 0.26841 0.26613 0.26841
0.8 0.22148 0.21759 0.21722 0.22107 0.21723 0.22107 0.21936 0.22107
1.0 0.18819 0.18523 0.18488 0.18787 0.18489 0.18787 0.18655 0.18787
3.0 0.07511 0.07416 0.07438 0.07504 0.07438 0.07504 0.07476 0.07504

0.50 0.4 0.66071 0.64995 0.64907 0.65961 0.64908 0.65961 0.65496 0.65961
0.6 0.52942 0.51822 0.51971 0.52848 0.51972 0.52849 0.52461 0.52849
0.8 0.43914 0.42785 0.43139 0.43839 0.43140 0.43839 0.43530 0.43839
1.0 0.37442 0.36512 0.36820 0.37381 0.36821 0.37381 0.37134 0.37381
3.0 0.15018 0.14802 0.14872 0.15003 0.14873 0.15004 0.14947 0.15004

0.75 0.4 0.91026 0.85640 0.90742 0.91011 0.90749 0.91014 0.90905 0.91015
0.6 0.76724 0.65947 0.75810 0.76643 0.75814 0.76643 0.76282 0.76643
0.8 0.64740 0.55693 0.63810 0.64651 0.63812 0.64652 0.64284 0.64652
1.0 0.55605 0.48796 0.54787 0.55524 0.54789 0.55527 0.55202 0.55527
3.0 0.22481 0.20834 0.22261 0.22449 0.22265 0.22459 0.22376 0.22459
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Table 5: Burgers’ equations, sinusoidal initial condition: comparison among nu-
merical results and exact solution forRe= 10000,∆t = 10−4, using a grid of 301.

x Exact Caldwell, Wanless Iskander and Hon and Present
and Cook (1987) Mohsen (1992) Mao (1998)

0.056 0.0422 0.0422 0.0419 0.0424 0.0421
0.111 0.0843 0.0844 0.0839 0.0843 0.0842
0.167 0.1263 0.1266 0.1253 0.1263 0.1263
0.222 0.1684 0.1687 0.1692 0.1684 0.1683
0.278 0.2103 0.2108 0.2034 0.2103 0.2103
0.333 0.2522 0.2527 0.2666 0.2522 0.2521
0.389 0.2939 0.2946 0.2527 0.2939 0.2939
0.444 0.3355 0.3362 0.3966 0.3355 0.3355
0.500 0.3769 0.3778 0.2350 0.3769 0.3769
0.556 0.4182 0.4191 0.5480 0.4182 0.4182
0.611 0.4592 0.4601 0.2578 0.4592 0.4592
0.667 0.5000 0.5009 0.6049 0.4999 0.4999
0.722 0.5404 0.5414 0.6014 0.5404 0.5404
0.778 0.5806 0.5816 0.4630 0.5802 0.5805
0.833 0.6203 0.6213 0.7011 0.6201 0.6202
0.889 0.6596 0.6605 0.6717 0.6600 0.6595
0.944 0.6983 0.6992 0.7261 0.6957 0.6982

Table 6: Burgers’ equations, sinusoidal initial condition: comparison of numerical
results forRe= 10000,∆t = 10−4, using a grid of 301.

x Hassanien, Salama Hashemian and Hosseini and Present
and Hosham (2005) Shodja (2008) Hashemi (2011)

0.050 0.0379 0.0379 0.0379 0.0379
0.110 0.0834 0.0834 0.0833 0.0834
0.160 0.1213 0.1213 0.1212 0.1213
0.220 0.1667 0.1667 0.1666 0.1667
0.270 0.2044 0.2044 0.2044 0.2044
0.330 0.2469 0.2497 0.2496 0.2496
0.380 0.2872 0.2872 0.2871 0.2872
0.440 0.3322 0.3322 0.3321 0.3322
0.500 0.3769 0.3769 0.3768 0.3769
0.550 0.4140 0.4141 0.4140 0.4140
0.610 0.4584 0.4584 0.4583 0.4583
0.660 0.4951 0.4951 0.4950 0.4950
0.720 0.5388 0.5388 0.5387 0.5388
0.770 0.5749 0.5749 0.5748 0.5749
0.830 0.6179 0.6179 0.6178 0.6179
0.880 0.6533 0.6533 0.6530 0.6532
0.940 0.6952 0.6952 0.6890 0.6941
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Table 7: Steady flow past a square cylinder in a channel: grid convergence study of
recirculation lengthLr and drag coefficientCD for Re= 40.

Grid Lr CD

173×121 2.37 1.10
211×151 2.29 1.31
281×201 2.26 1.49
351×251 2.25 1.57
469×301 2.25 1.75
493×305 2.25 1.79
557×341 2.27 1.88
571×351 2.27 1.89
599×351 2.27 1.91
645×367 2.27 1.92
717×377 2.27 1.91
Breuer, Bernsdorf, Zeiser, and Durst (2000) 2.15 1.70
Gupta, Sharma, Chhabra, and Eswaran (2003) 1.90 1.86
Dhiman, Chhabra, and Eswaran (2005) 2.17 1.75

Table 8: Steady flow past a square cylinder in a channel: comparison of recircula-
tion lengthLr and drag coefficientCD, using a grid of 571×351.

Re Source Lsep CD

10 Breuer, Bernsdorf, Zeiser, and Durst (2000) 0.49 3.64
Gupta, Sharma, Chhabra, and Eswaran (2003) 0.40 3.51
Dhiman, Chhabra, and Eswaran (2005) 0.49 3.63
Present 0.48 3.73

20 Breuer, Bernsdorf, Zeiser, and Durst (2000) 1.04 2.50
Gupta, Sharma, Chhabra, and Eswaran (2003) 0.90 2.45
Dhiman, Chhabra, and Eswaran (2005) 1.05 2.44
Present 1.06 2.64

30 Breuer, Bernsdorf, Zeiser, and Durst (2000) 1.60 2.00
Gupta, Sharma, Chhabra, and Eswaran (2003) 1.40 2.06
Dhiman, Chhabra, and Eswaran (2005) 1.62 1.99
Present 1.66 2.15

40 Breuer, Bernsdorf, Zeiser, and Durst (2000) 2.15 1.70
Gupta, Sharma, Chhabra, and Eswaran (2003) 1.90 1.86
Dhiman, Chhabra, and Eswaran (2005) 2.17 1.75
Present 2.27 1.89
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Table 9: Unsteady flow past a square cylinder in a channel: Strouhal num-
ber St and time-averaged drag coefficientCDm for different blockage ratiosβ0 =
1/2,1/4 and 1/8, using grids of 645×191, 645×271 and 645×367, respectively.
Note that in the case ofβ0 = 1/2, 1/4, the flow is still steady forRe= 60, 80

β0 = 1/2 β0 = 1/4 β0 = 1/8
Re St CDm St CDm St CDm

60 - 7.522 - 1.871 0.122 1.585
80 - 6.237 - 1.634 0.131 1.477
100 0.344 5.396 0.185 1.483 0.137 1.412
120 0.349 4.773 0.192 1.382 0.142 1.366
140 0.352 4.269 0.196 1.303 0.146 1.340
160 0.352 3.850 0.197 1.239 0.148 1.315

Table 10: Unsteady flow past a circular cylinder: Strouhal numberSt for different
Reynolds numberRe= 80,100 and 200.

Source Re= 80 Re= 100 Re= 200
Braza, Chassaing, and Ha-Minh (1986) - 0.16 0.20
Liu, Zheng, and Sung (1998) - 0.165 0.192
Ding, Shu, Yeo, and Xu (2004) - 0.164 0.196
Park, Kwon, and Choi (1998) 0.152 0.165 -
Silva, Silveira-Neto, and Damasceno (2003) 0.15 0.16 -
Present, 548×379 0.159 0.168 -
Present, 640×379 0.151 0.168 0.199

Table 11: Unsteady flow past a circular cylinder: Drag coefficientCD for different
Reynolds numberRe= 80,100 and 200.

Source Re= 80 Re= 100 Re= 200
Braza, Chassaing, and Ha-Minh (1986) - 1.364±0.015 1.40±0.05
Liu, Zheng, and Sung (1998) - 1.350±0.012 1.310±0.049
Ding, Shu, Yeo, and Xu (2004) - 1.325±0.008 1.327±0.045
Park, Kwon, and Choi (1998) 1.35 1.33 -
Silva, Silveira-Neto, and Damasceno (2003) 1.4 1.39 -
Present, 548×379 1.364±0.004 1.344±0.012 -
Present, 640×379 1.365±0.005 1.344±0.012 1.295±0.048
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Table 12: Unsteady flow past a circular cylinder: Lift coefficient CL for different
Reynolds numberRe= 80,100 and 200.

Source Re= 80 Re= 100 Re= 200
Braza, Chassaing, and Ha-Minh (1986) - ±0.25 ±0.75
Liu, Zheng, and Sung (1998) - ±0.339 ±0.69
Ding, Shu, Yeo, and Xu (2004) - ±0.28 ±0.60
Park, Kwon, and Choi (1998) ±0.245 ±0.332 -
Silva, Silveira-Neto, and Damasceno (2003)±0.235 - -
Present, 548×379 ±0.237 ±0.344 -
Present, 640×379 ±0.245 ±0.341 ±0.70
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Figure 1: LMLS-1D-IRBFN scheme,� a typical[ j] node.
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Figure 2: Flow past a square cylinder in a channel: geometry and boundary condi-
tions. The blockage ratio is defined asβ0 = D/H. Note that computational bound-
ary conditions for vorticity are determined by Equation (9).
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Figure 3: Flow past a square cylinder in a channel: grid configuration.

Figure 4: Pressure and shear stress acting on the surface of asquare cylinder.
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Figure 5: Steady flow past a square cylinder in a channel: gridconvergence study
of recirculation lengthLr for Re= 40.
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Figure 6: Steady flow past a square cylinder in a channel: gridconvergence study
of drag coefficientCD for Re= 40.
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Figure 7: Steady flow past a square cylinder in a channel: contours of stream func-
tion for different Reynolds numbers, using a grid of 571×351.
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Figure 8: Unsteady flow past a square cylinder in a channel (blockage ratio
β0 = 1/8): variation of Strouhal numberStwith respect to Reynolds numberRe, us-
ing different grids of 547×331, 571×351 and 645×367; FVM [Breuer, Bernsdorf,
Zeiser, and Durst (2000)] using a non-uniform grid of 560× 340; LBA [Breuer,
Bernsdorf, Zeiser, and Durst (2000)] using a uniform grid of2000× 320; STAM
[Berrone and Marro (2009)]; CVFEM [Bouaziz, Kessentini, and Turki (2010)] us-
ing a non-uniform grid of 249×197.
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Figure 9: Unsteady flow past a square cylinder in a channel (blockage ratioβ0 =
1/8): variation of time-averaged drag coefficientCDm with respect to Reynolds
numberRe, using different grids of 547× 331, 571× 351 and 645× 367; FVM
[Breuer, Bernsdorf, Zeiser, and Durst (2000)] using a non-uniform grid of 560×
340; LBA [Breuer, Bernsdorf, Zeiser, and Durst (2000)] using a uniform grid of
2000× 320; STAM [Berrone and Marro (2009)]; CVFEM [Bouaziz, Kessentini,
and Turki (2010)] using a non-uniform grid of 249×197.
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Figure 10: Unsteady flow past a square cylinder in a channel (blockage ratioβ0 =
1/8): variation of drag coefficientCD and lift coefficientCL with respect to timet
for the case ofRe= 90, using a grid of 571×351.
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Figure 11: Unsteady flow past a square cylinder in a channel (blockage ratioβ0 =
1/8): Contours of stream function for different Reynolds numbers, using a grid of
645×367.
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Figure 12: Unsteady flow past a square cylinder in a channel (blockage ratioβ0 =
1/8): Contours of vorticity for different Reynolds numbers, using a grid of 645×
367.
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Figure 13: Unsteady flow past a square cylinder in a channel: variation of time-
averaged drag coefficientCDm with respect to Reynolds numberRe for blockage
ratiosβ0 = 1/2 and 1/4, using grids of 645×191 and 645×271, respectively;
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Figure 14: Unsteady flow past a square cylinder in a channel: variation of time-
averaged drag coefficientCDm with respect to Reynolds numberRe for blockage
ratiosβ0 = 1/2 and 1/4, using grids of 645×191 and 645×271, respectively;
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Figure 15: Unsteady flow past a square cylinder in a channel: Contours of stream
function for different Reynolds numbers (β0 = 1/4, grid = 645×271).
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Figure 16: Unsteady flow past a square cylinder in a channel: Contours of vorticity
for different Reynolds numbers (β0 = 1/4, grid = 645×271).
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Figure 17: Unsteady flow past a square cylinder in a channel: Contours of stream
function for different Reynolds numbers (β0 = 1/2, grid = 645×191).
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Figure 18: Unsteady flow past a square cylinder in a channel: Contours of vorticity
for different Reynolds numbers (β0 = 1/2, grid = 645×191).

Figure 19: Unsteady flow past a circular cylinder: geometry and boundary condi-
tions. Note that computational boundary conditions for vorticity are determined by
Equations (9)-(13).
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Figure 20: Unsteady flow past a circular cylinder: grid configuration.
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Figure 21: Unsteady flow past a stationary cylinder: drag andlift coefficientsCD

andCL with respect to time forRe= 100, using a grid of 548×379.
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Figure 22: Unsteady flow past a circular cylinder: contours of stream function
for different Reynolds numbersRe= 80,100 and 200, using grids of 548× 379,
548×379 and 640×379, respectively.
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Figure 23: Unsteady flow past a circular cylinder: contours of vorticity for different
Reynolds numbersRe= 80,100 and 200, using grids of 548×379, 548×379 and
640×379, respectively.


