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Pultruted profiles are becoming more popular in advanced composite structural construction, 
due to the ease of manufacturing, good external finish, good dimensional tolerance and the excellent 
mechanical properties.  In recent years pultruted profiles are largely employed in aerospace structural 
applications such as deck beams, vertical stabilizers etc.  The current research conducted on advanced 
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Abstract. This paper discusses a detailed study carried out on vibration characteristics of transversely 
loaded pultruted composite beams.  A considerable discrepancy was noticed in the measured vibration of 
the transversely loaded beam and the calculated natural frequencies of the beam using Euler-Bernoulli 
beam theory.  It has been observed that the natural frequencies of the beam were increased after lateral 
loading.  A simplified mathematical model was derived for the equation of motion in order to determine 
the vibration characteristics of the loaded beam.  The discontinuities introduced at the loading points were 
modelled as a combination of translational and torsional springs.  The predictions of the model have 
demonstrated that it has sufficiently captured the dynamic behaviour of a laterally loaded beam.  A 
comparison of model prediction and the experimental results is presented.   

1. INTRODUCTION 
 
In the past few decades, advanced fibre composite materials have revolutionized the fields of 
aerospace, marine, energy and civil infrastructure industries.  Due to high stiffness, and strength-to-
weight ratio, considerable fatigue life and resistance to chemical corrosion are the major factors of the 
success in composite materials in many expensive and critical infrastructure constructions.   

The expansion of composites in the industry is facing new challenges due to imposed standards 
in the field.  Advanced fibre composite structures which are being used in defence, aerospace and civil 
infrastructures suffer harsh static and dynamic loading which will degrade material properties, and 
cause disintegration of the structure and catastrophic failures.  As such, there is a growing demand for 
a reliable and an accurate structural health monitoring (SHM) system to maintain the structural 
integrity and extended life-span of these expensive and critical advanced composite structures.  
Structural health monitoring systems principally use static and dynamic responses of structures for the 
purpose of detecting damage and estimating residual life.  Vibration techniques have been used in the 
aerospace industry for a few decades to detect damage in composite structures [1, 2] due to the 
simplicity of implementing dynamic response based damage detection methods.  Consequently, it is 
important to establish an in-depth knowledge in dynamic response of structural components 
frequently used in advance composite constructions before implementing a vibration based SHM 
system.   
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composite structures at the Centre of Excellence in Engineered Fibre Composites (CEEFC) of the 
University of Southern Queensland has developed hybrid composite bridges chiefly using pultruted 
beam sections to replace wooden bridges in rural Australia.  As such, an investigation of the dynamic 
behaviour of pultruted sections will be absolutely useful for the development of SHM systems for 
advanced composite structures.   
 

 
2. OBJECTIVE 
 
Advanced composite beams experience various types of loading at different orientations, according to 
their arrangement in the structure.  The most common loading type for beams is lateral loading such 
as live loads on floor beams and bridge girders.   
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Consider the laterally loaded beam shown in Figure 1.  From the first principles, each loading 

point corresponds to a discontinuity point in the elastic curve.  The radius of curvature (R) changes at 
each discontinuity point: 
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since the lateral deflection w(x) changes with the bending moment M(x) as: 
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As a consequence, each part of the beam bounded by loading points and the supports would 
behave differently under dynamic excitation while satisfying the common boundary conditions such 
as displacement, slope, shear force and the bending moments at C, D and E.   

The natural frequencies of beams with various boundary conditions have been considered by 
many researchers [3, 4, 5].  These analyses were based on Euler-Bernoulli and Timoshenko beam 
theory and exact and approximate solutions have been obtained for beams with attached masses, 
spring masses etc.  However, no attention has been given to the discontinuities caused by point loads 
on beams.  

This paper describes the research work undertaken to investigate the effects of lateral loads on 
the dynamic response of pultruted beams.  The experimental procedures and the analytical method 
will be discussed in following sections.   

 
3. ANALYSIS 
 
3.1 Vibration model 
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Starting from the classical laminated plate theory (CLTP) for composite plate (Figure 2), a governing 
equation of motion can be defined as [6]: 

 

Figure 1. Typical laterally loaded beam 

Figure 2. A typical plate element 
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When the width of the plate, y, is small compared to its length along the x–axis, and the loading 
and transverse displacements are functions of x only, then the plate can be treated as a beam.  As a 
consequence, one dimensional (1D) analysis would be sufficient to obtain dynamic characteristics.  
For 1D analysis, neglecting y terms and the rotary inertia term, equation (3) can be re-written as: 
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    (a)      (b) 

Figure 3. (a) Laterally loaded beam (b) Equivalent beam with a translational and a torsional spring 

The equation of motion for a pultruted composite beam (equation (4)) is similar to Euler-
Bernoulli equation of motion for an isotropic beam.   

Assuming solution for equation (4) as tiexWtxw ω)(),( =  where ω is natural frequency of the 
beam.  Substituting into equation (4): 
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Assuming general solution for equation (5) as: 
 

        W(x) = c1Sin(λx)+ c2Sinh(λx)+ c3Cos(λx)+ c4Cosh(λx)   (6) 
 

where c1, c2, c3, c4  are constants 

Assuming the solution for equation (5) as 
A

EI
ρ

λω 2=  and using simply supported boundary 

conditions, i.e. @ x=0, w(0)=0 and , @ x=L, w(L)=0, λ can be calculated as: 
 

λ=nπ/L for n=1…….n.  
 

The above equation gives the natural frequencies of the beam AB which has no discontinuities.  
However, the beam AB has a discontinuity due to the load acting on point C which has not been 
considered in the formulation.  Therefore, the above natural frequency solution is no longer valid for 
the loaded beam AB.  To incorporate the loading point discontinuity, the following procedures will be 
adopted in the model development. 

The discontinuity at point C can be considered as a boundary and the load can be replaced as 
combined torsional and translational springs as shown in Figure 3(b) [3].  Consequently, the beam AB 
becomes two interconnected beams, AC and BC.  Equation (5) can then be applied to the beam 
segments AC and BC.  The boundary conditions for the continuity at point C must be satisfied by both 
beam segments.    

a b

K

T
A

BCSection 1 Section 2

X1  X2  

L

E,I and A

P

a b

x

w
A BC



For the continuity of the beam at C, the following boundary conditions must be satisfied: 
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where K and T are the stiffness of translational and rotational springs respectively.   
 

As such, for two segments of the beam AB there are 12 homogeneous equations that can be 
developed.  Since, there are two rigid supports that have no adjacent beam segments at A and B, the 
total number of equations can be reduced to 6.  Bapat and Bapat [3] has shown that a single value of λ 
per mode satisfies the solution of the equation of motion of both segments of the beam.  Thus 
neglecting the torsional effect (T) for small deflections, the continuity boundary conditions give the 
frequency equation as: 
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Solving the determinant above (Equation (8)), the natural frequencies of the beam segments can 

be calculated. 
 
 
3.2 Finite Element Analysis (FEA) of the loaded beam 
 
A FEA mesh was created for a pultruted beam of 50mm x 50 mm x 5mm and 1300 mm long using 
STRAND7 commercial software.  The model comprised with 12000 QUAD4 plate elements.  The 
model was solved using dynamic solver and post processed to obtain natural frequencies and the mode 
shapes.   

Natural frequencies of the loaded beam were calculated first.  Thereafter, the loading point of 
the beam was replaced with constraint in y direction (loading direction) and then the natural 
frequencies of the beam were re-calculated. 
 
 
4. EXPERIMENTATION 
 
A 50mm x 50 mm x 5mm and 1300 mm long pultruted section was simply supported on a 3 point 
bending rig of span 900 mm.  The supported beam was mounted on a 100kN MTS universal testing 
machine.  The beam was loaded from 0 to 5 kN in a few steps.  A three axis MEM ADXL330 
accelerometer was attached to the top surface of the beam at a location of 100mm from the mid point 
of the beam.  A PCB086C04 impulse hammer was used to excite the system and LMS VB8 front end 
was used for data acquisition at a maximum rate of 25kHz.  The data was post processed using LMS 
Testxpress© software.   



5. RESULTS AND DISCUSSION 
 
Table 1. Calculated λ for various values of normalized stiffness k 
 

Mode k =Ka3/EA 
10 102 103 104 108 1012 

1 1.483290 1.741530 3.141600 3.141600 3.141600 3.1416 
2 2.243390 3.044190 3.640510 3.707660 3.714070 3.71477 
3 3.141600 3.141600 4.841310 4.916880 4.923660 4.92439 
4 4.206000 4.368150 6.283190 6.283190 6.283190 6.28319 

 

Table 2.  Experimental natural frequencies in Hz at various loads and FEA results for the beam constrained at 
middle (loading point).   

 

Mode FEA 
(Mid Constrained) 

LOAD (kN) 
0 1 2 3 5 

1 395 124 416 420 424 416 
2 437 448 650 446 458 710 
3 648 842 712 694 806 748 
4 720 - 756 796 - - 

 

Table 3. Calculated frequencies in Hz for various normalized stiffness k (using λ from Table 1) 
 

Mode Normalized stiffness (k) 
10 102 103 104 108 1012 

1 130 180 584 584 584 584 
2 298 549 785 814 817 817 
3 584 584 1388 1431 1436 1436 
4 1047 1130 2337 2337 2337 2337 

 

Table 4. Calculated, FEA and measured frequencies in Hz for beam with no load 
 

Mode Experimental FEA Euler-Bernoulli 
1 124 137 146 
2 448 396 584 
3 842 649 1315 
4 1735 990 2337 
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Figure 4. Graph of natural frequencies obtained analytically and experimentally 

Tables 1 to 4 and Figure 4 show the analytical and experimental natural frequencies of a laterally 
loaded simply supported beam.   
 



 
 
Figure 5 illustrates the first mode of the beam with vertical constrained at the mid span.  The 
experimental results clearly show that the first natural frequency of the loaded beam increased by 
approximately four fold irrespective of the load intensity (Table 2).  FEA results of the beam 
constrained at the loading points (mid. span) shows a similar trend.  This frequency is approximately 
equal to the first natural frequency of a beam which has half of the length of the beam considered 
here.  The calculated frequencies (Table 3) show that with the increase of stiffness (k) of the assumed 
translational spring will increase the natural frequencies of the beam.  However, the calculated natural 
frequencies do not change significantly when k >104 .  The calculated natural frequencies for large k 
(10<k<104) values show a similar trend as experimental/FEA results, but the calculated frequencies 
are higher than the experimental results.   

The frequencies listed in Table 4 show some discrepancies between calculated and experimental 
natural frequencies for the unloaded beam.  The natural frequencies calculated from Euler-Bernoulli 
beam theory show a considerable deviation from the experimentally obtained natural frequencies of 
mode 3 and above.  However, the FEA results show some correlation with experimental results.   
 
6. CONCLUSIONS 
 
Dynamic response of a beam loaded at its mid-span was investigated experimentally and analytically.  
The natural frequencies of the beam have increased considerably due to the lateral loading.  A 
mathematical model was developed in order to study the dynamic response of the loaded beam.  The 
analysis has shown that the assumption of discontinuity at the loading point as a combination of 
translational and rotational springs is reasonable and the model predicted alike results to experimental 
results.  The analytical results show that the developed mathematical model has reasonably captured 
the dynamic behaviour of a laterally loaded beam.  However, further work needs to be done to fine 
tune the model to address the discrepancies between experimental results and the model predictions.  
An investigation into the feasibility and the limitations of Euler-Bernoulli beam theory for pultruted 
beam is also warranted.   
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Figure 5. FEA results Mode 1 – 395 Hz 


