
An efficient domain-decomposition pseudo-spectral

method for solving elliptic differential equations

N. Mai-Duy∗ and T. Tran-Cong

Faculty of Engineering and Surveying,

The University of Southern Queensland, Toowoomba, QLD 4350, Australia

Submitted to Commun. Numer. Meth. Engng, 14-Aug-2006;

Revised, 28-Nov-2006

∗Corresponding author: Telephone +61 7 4631 1324, Fax +61 7 4631 2526, E-mail
maiduy@usq.edu.au

1



SUMMARY

In this paper, a new numerical scheme based on non-overlapping domain decom-

positions and integrated Chebyshev approximations for solving elliptic differential

equations is presented. The distinguishing feature of the present scheme is that it

achieves a Cp continuous solution across the interfaces (p−the order of the differ-

ential equation). Several test problems are employed to verify the method. The

obtained results indicate that the achievement of higher-order smoothness leads to

a significant improvement in accuracy.

KEY WORDS: domain decomposition; spectral approximation; collocation method;

integral formulation

1 INTRODUCTION

Domain decomposition (DD) methods have become necessary to deal with large

industrial applications. The methods divides the given analysis domain into a num-

ber of subdomains. Based on the concept of spatial decomposition, the DD meth-

ods can be classified into two categories: overlapping (Schwarz methods) and non-

overlapping (substructuring methods). Continuity of the solution and its smoothness

up to a certain order are imposed over contiguous regions. The original problem

can thus be replaced with a set of subproblems of reduced size. The main advan-

tages of the DD methods are that they provide an effective way to devise parallel

algorithms and to overcome numerical difficulties associated with large matrices and

ill-conditioning problems. Furthermore, for spectral methods, the DD methods can

be utilized to decompose complex geometries into simple ones where the application

of the methods is feasible, and to overcome limitations related to fully populated

matrices. The main drawback of the DD methods is that the accuracy of the solu-
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tion is deteriorated by the fact that the numerical solution is not as smooth as that

in the case of single domains. From the literature, the conventional DD methods

normally provide a solution that is only up to Cp−1 continuous over contiguous re-

gions (p−the order of the differential equation). It can be seen that the achievement

of higher-degrees of continuity is very desirable in the context of domain decompo-

sition. Comprehensive discussions on domain decomposition can be found in, for

example, [1,2].

In this paper, non-overlapping domain decompositions are incorporated into pseudo-

spectral approximations for solving elliptic differential equations (DEs). A compre-

hensive review on spectral methods can be found in, for example, [3-5]. Previous

findings showed that the use of integration to construct the Chebyshev and radial-

basis-function expressions provides an effective way to impose the multiple boundary

conditions [6-10]. The present study, which is concerned with the case of domain

decomposition, will show that the integral collocation formulation allows a Cp contin-

uous solution, instead of the usual Cp−1 continuity, across the subdomain interfaces.

The present numerical scheme can thus attain an improvement in accuracy over

conventional differential formulations. Several numerical examples are included to

demonstrate the attractiveness of the present implementation.

The remainder of the paper is organized as follows. In section 2, the integral col-

location formulation with Chebyshev polynomials is briefly reviewed. In section 3,

the proposed collocation method based on non-overlapping domain decompositions

and integrated Chebyshev approximations is presented, where the p-order derivative

continuity of the solution is achieved. The method is verified by considering several

1D and 2D problems governed by second- and fourth-order elliptic DEs in section

4. Section 5 gives some concluding remarks.
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2 THE INTEGRAL PSEUDO-SPECTRAL FOR-

MULATION

Consider the following DE

Lu = f, −1 ≤ x ≤ 1, (1)

where L is a differential operator and f is a given function. This equation is cou-

pled with a set of prescribed boundary conditions to constitute the boundary-value

problem.

The domain of interest is represented by a set of unevenly-spaced Gauss-Lobatto

(G-L) points

{xi}N
i=0 =

{
cos

(
πi

N

)}N

i=0

, (2)

which cluster at boundaries.

For the integral collocation formulation, one first decomposes the highest-order

derivative dpu/dxp in the differential equation into the truncated Chebyshev series

form

dpu(x)

dxp
=

N∑
k=0

akTk(x), (3)

where {ak}N
k=0 is the set of expansion coefficients to be found, and {Tk(x)}N

k=0 the

set of Chebyshev polynomials of first kind. Expressions for lower derivatives and
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the variable itself are then obtained through integration as

dp−1u(x)

dxp−1
=

N∑
k=0

akI
(p−1)
k (x) + c1, (4)

dp−2u(x)

dxp−2
=

N∑
k=0

akI
(p−2)
k (x) + c1x + c2, (5)

· · · · · · · · · · · · · · ·
du(x)

dx
=

N∑
k=0

akI
(1)
k (x) + c1

xp−2

(p − 2)!
+ c2

xp−3

(p − 3)!
+ · · · cp−2x + cp−1, (6)

u(x) =
N∑

k=0

akI
(0)
k (x) + c1

xp−1

(p − 1)!
+ c2

xp−2

(p − 2)!
+ · · · cp−1x + cp, (7)

where I
(p−1)
k (x) =

∫
Tk(x)dx, I

(p−2)
k (x) =

∫
I

(p−1)
k (x)dx, · · · , I

(0)
k (x) =

∫
I

(1)
k (x)dx,

and c1, c2, · · · , cp are integration constants. It can be seen that apart from the

Chebyshev coefficients {ak}N
k=0, the integral formulation ((3)-(7)) produces new coef-

ficients (integration constants {ci}p
i=1) whose number is equal to the order of DE/the

number of boundary conditions, i.e. p. As a result, it allows one (i) to approximate

the DE at the whole set of G-L points and (ii) to add p additional equations to

the main system to impose p boundary conditions. Numerical results showed that

the integral formulation attains a significant improvement in accuracy and condition

number over conventional differential formulations [7].

3 THE PRESENT DOMAIN DECOMPOSITION

TECHNIQUE

For the sake of simplicity, the method is presented in detail for the following second-

order DE

α
d2u

dx2
+ β

du

dx
+ γu = f(x), (8)
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defined on the domain a ≤ x ≤ b, subject to the Dirichlet boundary conditions at

both ends: ūa and ūb.

The present scheme combines the substructuring method with the integral pseudo-

spectral method for solving DEs. The numerical procedure involves two main steps:

(i) To find the values of the variable u at the interface points/interior-boundary-

points (the interface solution) and (ii) To find the values of the variable u at the

interior points in subdomains (the subdomain solution).

3.1 The interface solution

The domain of interest is divided into M subdomains. Each subdomain is discretized

using (N + 1) G-P points via the following coordinate transformation

x[j] =
x

[j]
r − x

[j]
l

2
ξ +

x
[j]
r + x

[j]
l

2
=

L[j]

2
ξ +

x
[j]
r + x

[j]
l

2
, (9)

in which x
[j]
l and x

[j]
r are the coordinates of the boundary points of a subdomain j,

L[j] = x
[j]
r − x

[j]
l , and ξ the G-L points (−1 ≤ ξ ≤ 1).

The continuity of the solution and its flux leads to the following constraint equations

u
[j]
N = u

[j+1]
0 , (10)(

du

dx

)[j]

N

=

(
du

dx

)[j+1]

0

, (11)

where j = {1, 2, · · · ,M − 1}.

The present scheme requires the solution u to be continuous, i.e.

u
[j]
N = u

[j+1]
0 = ūj, j = {1, 2, · · · ,M − 1}, (12)
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and its derivatives to be matched at the interfaces. This approach allows an easy

implementation (automation) of the computer code.

Consider a subdomain j. Using integrated Chebyshev approximations (3)-(7) with

p = 2, the governing equation (8) and the boundary conditions can be transformed

into

4α

L[j]2

N∑
k=0

a
[j]
k Tk(ξ) +

2β

L[j]

(
N∑

k=0

a
[j]
k I

(1)
k (ξ) + c

[j]
1

)
+ γ

(
N∑

k=0

a
[j]
k I

(0)
k (ξ) + c

[j]
1 ξ + c

[j]
2

)
= f(x[j](ξ)),

(13)

N∑
k=0

a
[j]
k I

(0)
k (−1) − c

[j]
1 + c

[j]
2 = ūj−1, (14)

N∑
k=0

a
[j]
k I

(0)
k (+1) + c

[j]
1 + c

[j]
2 = ūj, (15)

where ūj−1 = ūa for j = 1, ūj = ūb for j = M , and the unknowns are the set of

expansion coefficients and integration constants.

The evaluation of (13) at the whole set of G-L points {ξi}N
i=0 plus the boundary

conditions (14)-(15) results in a determinate system of equations of the form

A[j]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
[j]
0

a
[j]
1

· · ·
a

[j]
N

c
[j]
1

c
[j]
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f
[j]
0

f
[j]
1

· · ·
f

[j]
N

ūj−1

ūj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (16)

or

A[j]ŝ[j] =

⎛⎜⎜⎜⎜⎝
f̂ [j]

ūj−1

ūj

⎞⎟⎟⎟⎟⎠ , (17)
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where A[j] is the known matrix of dimension (N +3)× (N +3). Unlike conventional

differential formulations, the governing equation (8) is forced to be satisfied at the

two boundary points exactly in (17) (the first and Nth rows)

α

(
d2u

dx2

)[j]

0

+ β

(
du

dx

)[j]

0

+ γu
[j]
0 = f

[j]
0 , (18)

α

(
d2u

dx2

)[j]

N

+ β

(
du

dx

)[j]

N

+ γu
[j]
N = f

[j]
N . (19)

Solving (17) yields

ŝ[j] =
(
A[j]

)−1

⎛⎜⎜⎜⎜⎝
f̂ [j]

ūj−1

ūj

⎞⎟⎟⎟⎟⎠ . (20)

As mentioned earlier, the interface unknown vector, namely (ū1, ū2, · · · , ūM−1)
T , are

determined by the imposition of continuity of the first-order normal derivative at

the interfaces

(
du

dx

)[1]

N

=

(
du

dx

)[2]

0

, (21)(
du

dx

)[2]

N

=

(
du

dx

)[3]

0

, (22)

· · · · · ·(
du

dx

)[M−1]

N

=

(
du

dx

)[M ]

0

, (23)

where

du[j](x(ξ))

dx
=

2

L[j]

(
N∑

k=0

a
[j]
k I

(1)
k (ξ) + c

[j]
1 + 0

)
=

2

L[j]

[
I

(1)
0 , I

(1)
1 , · · · , I

(1)
N , 1, 0

]
ŝ[j].

(24)

Substituting (20) into (21)-(23) and then imposing the prescribed boundary condi-
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tions ūa and ūb yield the following square system of equations

Af

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ū1

ū2

· · ·
ūM−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= ĝ, (25)

where Af is the known interface matrix of dimension (M − 1)× (M − 1), and ĝ the

known vector whose components are functions of f(x), ūa and ūb.

From (12), (21)-(23), and (18)-(19), it can be seen that the following relations are

imposed at an interface j

u
[j]
N = u

[j+1]
0 , (26)(

du

dx

)[j]

N

=

(
du

dx

)[j+1]

0

, (27)

α

(
d2u

dx2

)[j]

N

+ β

(
du

dx

)[j]

N

+ γu
[j]
N = f

[j]
N , (28)

α

(
d2u

dx2

)[j+1]

0

+ β

(
du

dx

)[j+1]

0

+ γu
[j+1]
0 = f

[j+1]
0 . (29)

Since f
[j]
N = f

[j+1]
0 , (26)-(29) lead to

(
d2u

dx2

)[j]

N

=

(
d2u

dx2

)[j+1]

0

. (30)

Thus, Cp continuity (p = 2 in this example) is automatically satisfied in general.

3.2 The subdomain solution

Substitutions of the interface values obtained from solving (25) into (20) yield the

sets of expansion coefficients and integration constants for subdomains, and hence
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the solution to the original problem is obtained. It is noted that each subdomain

can be analyzed separately, offering an opportunity for parallelization.

The present numerical scheme can be extended to solve higher-dimensional problems

and higher-order ODEs. Similarly, the Cp continuity of the solution over contiguous

regions is achieved owing to the satisfaction of the governing equation at the bound-

ary points in each subdomain. For the case of higher-order ODEs, consider an ODE

of pth-order (p−an even number). The boundary conditions at the interfaces can

be chosen to be {u, du/dx, ..., dp/2−1u/dxp/2−1}, and these unknown values are then

determined by the imposition of continuity in the (p/2), (p/2 + 1), · · · , (p − 1)th-

order derivatives across the interfaces. For the case of 2D problems, the integral

pseudospectral method for single domains, which was reported previously in [10], is

applied here to discretize the governing equation in subdomains.

4 NUMERICAL RESULTS

In the following examples, the accuracy of a numerical solution produced by an

approximation scheme is measured via the discrete relative L2 error defined as

Ne =

√∑Q
i=0 [ue(xi) − u(xi)]

2∑Q
i=0 ue(xi)2

, (31)

where (Q + 1) is the number of test points, and ue and u are the exact and ap-

proximate solutions, respectively. The present formulation is based on point collo-

cation and therefore its implementation is simple. Under certain circumstances (e.g.

smooth problems with simple geometries), the present scheme yields spectral accu-

racy. It is known that the domain-decomposition techniques using finite-difference

and finite-element schemes provide only algebraic convergence rates with respect to

mesh refinement.
10



4.1 1D problem

The error Ne is computed using a set of 201 uniformly distributed test points (Q =

200), which are generally distinct from the G-L collocation points.

4.1.1 Second-order ODE

Consider the following ODE

d2u

dx2
+

du

dx
+ u =

[
1 − (4π)2

]
sin(4πx) + 4π cos(4πx), (32)

in the domain 0 ≤ x ≤ 1 with the boundary conditions u(0) = u(1) = 0. The exact

solution can be verified to be

ue = sin(4πx), (33)

which is a C∞ function.

The domain of interest is divided into 2, 3, · · · , 45 subdomains, and each subdo-

main is discretized using 5, 7 and 9 G-L points. In order to show the effect of

the achievement of higher-order smoothness on the solution accuracy, the case of a

single domain is also considered. Figure 1 shows the accuracy of the integral and

differential formulations. It can be seen that the gap between the two curves, rep-

resenting superior accuracy of the integral formulation over the differential one, for

the domain-decomposition case is much wider than that for the single-domain case.

This is probably attributable to the fact that the solution is only forced to be C1

continuous across the interfaces for the differential formulation, but up to C2 for the

integral formulation. For the case of 9 points/subdomain, the condition numbers of

Af are in the range of O(100) − O(102) for both formulations.
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4.1.2 Fourth-order ODE

Find a function u satisfying the fourth-order ODE

d4u

dx4
+

d2u

dx2
=
[
(4π)2 − 1

]
(4π)2 sin(4πx), (34)

in 0 ≤ x ≤ 1 and the boundary conditions

u(0) = 0,
du(0)

dx
= 4π,

u(1) = 0,
du(1)

dx
= 4π.

The exact solution here is also given by (33). A wide range of subdomains from 2 to

36 with an increment of 1 are employed. Each subdomain is represented by 5, 7 and

9 G-L points. Results for Ne obtained by the integral and differential formulations

are shown in Figure 2. Again, the relative performance of the integral formulation

for the domain-decomposition case is far superior to that for the single-domain case.

It indicates that the achievement of higher-order smoothness (C4 continuous) leads

to a significant improvement in accuracy. For the case of 9 points/subdomain, the

condition numbers of Af are in the range of O(101)−O(106) for both formulations.

4.2 2D problem

Consider the following Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= − [cos(πx) + cos(πy) + 2 cos(πx) cos(πy)] , (35)
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in a L−shaped domain (Figure 3), subject to the Dirichlet boundary conditions.

The exact solution is given by

ue =
1

π2
[1 + cos(πx)] [1 + cos(πy)] , (36)

which is plotted in Figure 4. For this problem, it is necessary to decompose the

analysis domain into a set of subdomains. Here, three subdomains (Figure 3) with

the same tensor product grids are employed, and the differential and integral for-

mulations are applied to discretize the governing equation in each subdomain. The

differential formulation provides a C1 continuous solution across the two interfaces.

Owing to the satisfaction of the governing equation at the interface points, the point-

wise C2 continuity is achieved with the integral formulation. Results concerning the

error norm of the solution Ne are displayed in Figure 5 using seven grids, namely

3×3, 5×5, · · · , 15×15/subdomain, and they indicate that the integral formulation

is more accurate than the differential formulation. At Nt = 341 (Nt = NM +1: the

total number of points), the Ne error of the former is three orders of magnitude bet-

ter than that of the latter. The two formulations yield the condition number of Af

in the range of O(100)−O(101). It can be seen that they both offer an exponential

rate of convergence.

The present formulation can be extended to the case of radial basis functions (RBF)

in a straightforward manner. However, for single domains, our numerical studies

(e.g. [9]) already indicated that integrated RBFs give only an algebraic convergence

rate (not exponential one as with Chebyshev polynomials). The advantage of the

RBF method is that it does not require an underlying mesh.
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5 CONCLUDING REMARKS

This paper presents a new domain-decomposition spectral collocation method for

solving elliptic differential equations which achieves a Cp continuous solution across

the interfaces, where p is the order of the differential equation. This achievement of

higher-order smoothness is due to the use of integration to construct the Chebyshev

approximations of the solution in subdomains. Numerical results obtained show

that the present numerical scheme alleviates the deterioration of accuracy of the

solution caused by structural partitioning.
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Figure 1: Second-order ODE, 0 ≤ x ≤ 1, {2, 3, · · · , 45} subdomains: Discrete
relative L2 error (Ne) versus the total number of points Nt (Nt = NM + 1) by
the differential and integral formulations. It is noted that all figures have the same
scaling for the y−axis.
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Figure 2: Fourth-order ODE, 0 ≤ x ≤ 1, {2, 3, · · · , 36} subdomains: Discrete
relative L2 error (Ne) versus the total number of points (Nt) by the differential
and integral formulations. It is noted that all figures have the same scaling for the
y−axis.
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Figure 3: 2D problem: geometry.
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Figure 5: 2D problem, 3 subdomains: Discrete relative L2 error (Ne) versus the total
number of points (Nt) by the differential and integral formulations. At Nt = 341,
the error of the latter is three orders of magnitude better than that of the former.
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