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Abstract: The study aims to develop a holistic framework for maximum area coverage of a disaster
region during a bushfire event. The monitoring and detection of bushfires are essential to assess
the extent of damage, its direction of spread, and action to be taken for its containment. Bushfires
limit human’s access to gather data to understand the ground situation. Therefore, the application
of Unmanned Aerial Vehicles (UAVs) could be a suitable and technically advanced approach to
grasp the dynamics of fires and take measures to mitigate them. The study proposes an optimization
model for a maximal area coverage of the fire-affected region. The advanced Artificial Bee Colony
(ABC) algorithm will be applied to the swarm of drones to capture images and gather data vital for
enhancing disaster response. The captured images will facilitate the development of burnt area maps,
locating access points to the region, estimating damages, and preventing the further spread of fire. The
proposed algorithm showed optimum responses for exploration, exploitation, and estimation of the
maximum height of the drones for the coverage of wildfires and it outperformed the benchmarking
algorithm. The results showed that area coverage of the affected region was directly proportional to
drone height. At a maximum drone height of 121 m, the area coverage was improved by 30%. These
results further led to a proposed framework for bushfire relief and rescue missions. The framework is
grounded on the ABC algorithm and requires the coordination of the State Emergency Services (SES)
for quick and efficient disaster response.

Keywords: bushfires; burnt area; damage detection; UAVs; ABC algorithm; evacuation

1. Introduction

Australia has suffered from the consequences of bushfires for decades, losing its
vegetated landscape and thereby being forced to initiate rehabilitation. Over the years,
there have been various efforts towards analyzing the cases of bushfires and trying to
mitigate the ill effects of the disaster. However, the recent bushfires from 2019–2020
proved to be among the worst disasters hitting Australia. The Australian summers with
prolonged drought, low humidity, and high winds greatly increase the risk of bushfires
and thereby worsen the consequences [1]. Australia has consistently lost over 1.5% of its
annual GDP to bushfires, with the 2009 bushfires alone causing a loss of $4.4 billion to
the Australian economy. The 2019–2020 bushfires surpassed the losses of the previous
years by causing a setback of almost $4–5 billion dollars [2]. Along with the economic
loss, the country lost around 30 million hectares of its vegetated land and 3 billion of its
animal population [2]. The increasing losses faced by Australia are greatly attributed to the
increasing rate of climate change. The prolonged summers and increased drought in the
country over the years have led to increased damages caused by bushfires [3]. An overview
of the bushfires occurring in Australia from the devasting 2009 incidence onwards has been
summarized in Table 1. While forest fires continue to occur in Australia almost every year,
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the highest impact fires have occurred in 2009 and 2019–2020, relatively smaller-scale fires
were recorded between the years 2011–2012 and 2015–2016, as shown in Table 1. Apart
from the economic losses and deaths, bushfires have also led to damage to the forests
where certain areas have been burned time and again [4]. The after-effects of bushfires
have also been observed in the form of lasting diseases in humans and animals, along
with a lingering rate of air pollution. The diversity of the impact caused by bushfires has
provoked a scientific focus on identifying how such disasters could be predicted, possibly
prevented, and mitigated.

Table 1. Overview of bushfires in Australia in the last decade.

Sr. No. Year Number of Deaths Region Area (in Hectares) Total Loss (in USD)

1 2019–2020 75 Victoria and NSW 30 million 5 billion

2 2015–2016 9 Western Australia
and NSW 299,000 N/A

3 2011–2012 4 Southern Australia 92,000 N/A

4 2008–2009 173 Victoria, South
Australia 4.5 million 942 million

Understanding the risks and potential losses associated with bushfires calls for iden-
tifying the reasons behind the occurrence of the disaster. Climate change and lengthy
summers increase the rate of drought, leading to a higher chance of forest fires. In addition
to the natural causes of forest fires, there are also instances of human involvement, such as
fires lit for land conservation, land use, burning down regions over a property dispute, and
other such instances [5]. However, the fires caused by human involvement are much lower
in number and impact as compared to the ones caused by natural instances. Since forests
are present in proximity to vegetative areas and urban settings, the rate of expansion of the
area covered by the fires can be quite quick. Moreover, the presence of weather conditions
such as high temperatures and high-speed winds further enhance the spread of wildfires.
Understanding the causes is only the first step towards identifying the risks associated
with bushfires. The loss of human lives, land, and economic damages linger for long and
harm the country’s livelihood as well as economy [6].

1.1. Queensland Bushfires

While the previous cases of bushfires in Australia have majorly highlighted the Victoria
region due to the high impact of the disasters in this region, particularly the 2009 bushfires,
it is important to note that with increasing climate change, other regions of Australia are also
increasingly becoming prone to disasters [7]. The Queensland region, particularly South
Queensland, is prone to ill effects of bushfires due to the increasing urban development
in the region. Along with developments, the population in South Queensland has also
increased in the last decade, thereby increasing the potential impact of bushfires in the
region [8]. Additionally, local area planning for determining road networks and access
to different regions is crucial to predict which routes can be used for relief work and
evacuations in the case of fires. The Queensland bushfire planning project has developed
hazard maps and identified key markers for local area development and for keeping a
distance between urban developments and vegetative areas [9].

The 2019–2020 wildfires in Australia were widespread and majorly impacted Victoria
and NSW, later covering several areas in Queensland. As per the data from the Australian
National Recovery and Resilience Agency, there were around 60 different fires in different
regions across Queensland during the summer in 2019. The areas majorly affected by
the fires included the Peregian Spring, Stanthorpe, and Numinbah Valley. A total of over
6 million hectares of land was covered by the fires, leading to the destruction of 49 houses.
In total, the 2019–2020 disaster affected Queensland leading to a total of 3% insurance loss
in the region, as compared to the overall economic hit taken by the rest of the country. Prior
to these recent fires, Queensland has faced bushfire-related damages in the past, although
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these instances have been less severe as compared to fires in the rest of Australia. It is
important to note that the risk is increasing with time and each subsequent fire poses a
larger risk than before [10].

1.2. Government Policies and Frameworks

Adapting to measures of reducing disaster risks is a major challenge faced by Australia.
Opting for international frameworks of disaster risk reduction (DRR) and climate action
policies holds great potential for all stakeholders. At present, the Australian government’s
climate action and risk reduction policies are quite scattered due to the division of jurisdic-
tions across the different states. There is a need to develop cross-region measures for the
integration of climate changes policies [11,12]. Moreover, these preventive measures should
be interdisciplinary and should involve hazard analysis by experts of different fields to
truly include a holistic analysis of the overall loss caused by disasters.

The government needs to adopt a holistic approach which involves local and federal
bodies to strengthen the policy and decision-making processes in times of disasters. The
National Climate Change Adaptation Framework is a good example of the government’s
approach to develop a collaborative approach for combating climate change [13]. The
national policies thus developed have recognized the long-term impact of climate change
as well as the urgency of dealing with the issue. While this approach is a good initiative
towards instigating a dialogue and call for action, there is a need to further improve
upon the existing risk reduction strategies and develop a sustainable approach towards
DRR. Ideally, there should be set policies and strategies in place or that clearly outline
the objectives of DRR along with clear directions regarding the actions to be taken when
faced with a disaster [14]. The government organizations and NGOs working towards DRR
should together develop a visionary plan for dealing with future disasters by identifying
the roles and responsibilities that different sectors can assume for combating climate change
and responding to disasters efficiently [15]. Collaboration being put in place prior to the
occurrence of disasters is extremely important to ensure a prompt response and efficient
relief work during and after disasters. Moreover, involving the public sector in the policy
development and identifying the stakeholders who can play a role in developing resilience
within their communities are crucial tasks [16].

1.3. Advanced Approaches for Disaster Risk Management

The mitigation of disaster risks and post-disaster risk management highly depends on
technology in the current era. The Australian government has long since relied on the use of
the internet for disaster risk communication and relief work. One of the biggest barriers in
achieving efficient online communication is the involvement of different regional governing
bodies and agencies. Communication barriers and poorly planned disaster alerts have led
to significant losses in the past [17]. Preparing the community for safe evacuations and
providing them directions to safe places are huge tasks, and communication inefficiencies
render the use of online communications quite pointless [18]. Apart from developing an
efficient framework for public awareness and disaster mitigation, technology use has been
explored quite widely in the last two decades.

Remote sensing and Geographic Information System (GIS) technology have been at the
top of the list of technologies being explored for planning bushfire risk management [19].
Fire risk mapping through the analysis of different regions is a rewarding approach as
it provides valuable insights r areas that are prone to fires. As identified in the previous
sections, fire risk is associated with weather conditions and regional climate data. Having
the climate data and risk patterns from different regions has made it possible to map
bushfire risk. In addition to disaster area mapping, the use of Unmanned Aerial Vehicles
(UAVs) has been suggested in several studies. The key idea is that areas covered by
bushfires generally have low accessibility, a lack of safe routes, and low visibility due to
the rising smoke. The use of UAVs potentially lowers the need for human intervention as
the safe access routes can be analyzed remotely and communication costs with individuals
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involved in rescue operations can be reduced [20]. The key to achieve optimum usage of
the UAVs is identifying the best possible algorithm for optimizing the path of the UAV.
Table 2 provides an overview of different algorithms that are commonly used with UAVs
for path planning and for achieving an optimized functionality. The four most commonly
reported algorithms are the Ant Colony Optimization (ACO), Genetic Algorithm (GA), the
Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC) [21,22]. While the
purpose of each of these algorithms is slightly different and depends on the task at hand,
the overall aim is to achieve the best path for reaching a target in the shortest possible
time [23–25]. Each of these algorithms has different advantages and disadvantages and is
optimized differently to achieve the end goal.

Table 2. Comparison of different algorithms.

Algorithms Ant Colony
Optimization (ACO)

Genetic Algorithm
(GA)

Particle Swarm
Optimization (PSO)

Artificial Bee
Colony (ABC)

Purpose Finding the
shortest path

Locating the best path
(or any item) among a

selection

Approaching target in
the shortest time

Numerical problem
optimization. The purpose
of the algorithm is to look

for the best possible
solution to a problem.

Advantages

Can work in diverse
environment; quick in

selecting suitable
solutions

Faster than most other
exhaustive searches;
efficient in solving
complex problems

Applicable in a number
of engineering research;
no overlap or mutation

calculation.

Wide problem-solving
range, can be applied to

combinatorial and complex
problems; has high
flexibility and fast

convergence

Disadvantages
Stagnation, low

convergence speed,
and local optimum

Time consuming and
expensive

Low convergence
speed and local

optimum

Can have premature
convergence in secondary

search stages

Optimization Metaheuristic
Optimization Discrete Optimization Stochastic

Optimization
Metaheuristic
Optimization

This study considers the case study of the South Queensland region which is prone to
fires. The rest of the paper is organized as follows: Section 2 briefly outlines the problem
statement, proposed approach, and the drone coverage of the area. Section 3 gives details
on the proposed framework for emergency response. Section 4 summarizes the benefit of
the ABC optimization method to overcome the existing barriers of UAVs.

2. Problem Statement

While drones provide an ease in that they can be optimized for coordinates and allow
for the remote observation of the target area, there are also certain limitations with the use
of UAVs. The main limitations to the use of UAVs include path deviation due to wind, air
pressure, and the possibility of collision with other drones. The region covered by different
UAVs can overlap, leading to an increased chance of collision. These limitations make it
crucial to optimize the algorithm operating on the UAVs to ensure that the target region is
covered appropriately and the limitations can be overcome. At present, there are several
existing algorithms which are being used for optimizing UAVs, as have been described in
the previous section.
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3. Methodology
3.1. Case Study

The South Queensland region is selected for the case study, as seen in Figure 1.
This region is frequently affected by bushfires. Planned urban development is a key
towards ensuring that the vegetative areas and forests have a clear distinction and distance
from housings.
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3.2. Proposed Approach

The aim of this study is to optimize path planning and drone routing through the
application of the ABC algorithm. The reason for choosing the ABC algorithm over others
is its high functionality in solving numerical problems. The algorithm was first proposed
by Karaboga as a solution to complex numerical problems [25]. Various applications of the
algorithm have been developed for optimizing constrained and unconstrained problems.
The algorithm relies on three parameters, including maximum cycle repeats, population
size, and adjustable limits. There are three components involved in the model: food sources,
foraging bees, and unemployed foraging bees. The flowchart of the algorithm is shown
in Figure 2. The ABC algorithm uses metaheuristic optimization for achieving optimal
solutions, as described in the previous sections. Each of the ABC optimization phases
(initialization, employed bee phase, onlooker bee phase, and storage of resources) has been
described in the following sub-sections. At the end of all the iterations and analyses, the
optimal output is selected by the bees (UAVs or drones in this case).

In the ABC algorithm, the agents (bees—or a colony of bees) look for a solution to
the suggested problem (identifying food source). The application of the ABC algorithm
converts the numerical problem, such as looking for an optimum vector, thereby reducing
the objective function. The fitness function of the artificial bee colony algorithm is applied
to solve the facility location problem and refers to the quality of the solution for a given
problem. The alpha scores relate to the measure of internal consistency, that is how closely
related a set of objects is in a group. The pseudo code of the algorithm is given below,
and the algorithm is explained in the following section along with an overview of the
proposed model.
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Algorithm 1: ABC algorithm for UAV path planning

1: Initialization:
2: Initialize the population and evaluate the fitness function;
3: Calculate the value for initial cost function;
4: Set best solution, Solbest← Sol;
5: Set the maximum number of iterations;
6: Set population size = PS;
7: PS = Onlookerbee = EmployeedBee;
8: Iteration← 0;
9: Improvement:
10: while iteration < NumOflte do
11: for i = 1: EmployeedBee do
12: Select a random solution and apply random neighborhood structure;
13: Sort solutions in ascending order based on penalty;
14: Determine probability for each solution using:

Pi =
∑
[

1
fiti

]−1

fiti

15: end for
16: for i = 1: OnlookerBee do
18: Sol*← Apply random number on Sol*;
19: Sol*← select the solution who has the higher probability;
20: if Sol ∗ ∗ S olbest then
21: Solbest = Sol**;
22: end if
23: end for
24: Scoutbee determines the abandoned patient’s location and replace it with the new
patient’s location;
25: Iteration + +
26: end while.



Fire 2022, 5, 122 7 of 15

3.2.1. Global Optimization Problem

In the case of the global optimization problem, the vector is defined as x, which
minimizes the function (f) (→−x) which is described as:

min f
(→

x
)

,
→
x = (x1, x2, . . . , xi, . . . xn) ∈ Rn (1)

with the following constraints:

li ≤ xi ≤ ui, i = {1, . . . , n}, (2)

hj

(→
x
)
= 0, j = {p + 1, . . . , q}. (3)

In this case, the f
(→

x
)

is described in the space S (a n- dimensional rectangle in Rn

(SRn). Here, the upper and lower limits of the variable (2) are known as the constrained
optimization problem, considering that both p and q are 0 for the unconstrained problem.

hj is a name of the function. As this is a constrained problem. hj puts the upper bound

on the solution and li puts the lower bound on the solution of the f
(→

x
)

.

3.2.2. Initiation Phase

The first phase is the initiation, where the food sources are generated for every individ-
ual bee. The generation of sources (xmi) depends on the problem which is being considered.
For our study, xmi are the affected locations to be visited. This can be defined as follows:

xmi = li + rand(0, 1) ∗ (ui − li) (4)

where li is the upper limit and ui− s the lower limit of the parameter.

3.2.3. Employed Bees

This phase is concerned with the search for the food sources by the bees. The food
sources can be alternated such that the bees determine the neighboring food source (umi)
to be fit for use. For our study, umi are the affected neighboring locations to be visited, as
shown in (6).

umi = xmi + φmi (xmi − xki) (5)

Each of these parameters is selected randomly, where →
xk
| is a food source, i is

a parameter index, and →
vm
| is a number within the range [−a, a]. The food fitness is

determined through the application of a greedy fitness between→
vm
| and→

xm
|.

f itm

(→
xm

)
=


1

1+ fm

(→
xm

) i f fm

(→
xm

)
≥ 0

1 + abs
(

fm

(→
xm

))
i f fm

(→
xm

)
< 0

 (6)

um represents the neighboring food source for bees. φmi is a random number within
the range [−a,a] which randomly decides how much distance bees cover towards the
calculated direction towards the food source.

3.2.4. Onlooker Bees Phase

The employed bees provide information to the onlooker bees depending on the
food source. The probability (pm) selected by the onlooker bee is determined by the
following equation:

pm =
f itm

(→
xm

)
∑SN

m=1 f itm

(→
xm

) (7)
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3.2.5. Scout Bees Phase

Once the food sources of the neighbors are explored at length and its fitness value
does not improve for a certain number of cycles, they are then abandoned after which the
scout bees look for random food. This step is similar to the initiation phase. For example,
the food source,

→
xm is now abandoned and the scout bee now looks for a new solution, as

shown by (4).
The proposed algorithm has been tested and benchmarked against Augerat et al. [24].

The benchmarks were applied using python on a machine having a core i7 processor and a
16 GB RAM. In this approach, the number of bees applied as employed and onlookers is
equal to that of the number of available food sources. The evaluation sources in this case
are Karaboga and Basturk [25].

3.3. Drone Coverage

In terms of using drones for disaster region coverage, the key parameters include wind
pressure, possibility of collision, appropriate drone height, and maximum area coverage by
a single drone. A critical analysis of these parameters contributes to the determination of
the optimal path and height attained by a drone during the coverage of a target area. In
the case of using drones at the time of bushfires, it is crucial to account for the rapid speed
at which bushfires can spread in the vegetated areas and the nearby locations. Therefore,
identifying the correct number of drones to be used and their coordinates with respect
to the distance between different drones and the area to cover are the most important
parameters. Figure 6 provides an overview of the relation between drone height and the
corresponding area coverage. As can be seen in the figure, height and area coverage have
a proportional relation whereby attaining an optimal height is crucial for covering the
maximum possible region of the target area. The key idea is to determine a drone height
at which the camera mounted on the drone can provide good area coverage and thereby
obtain clear images of the desired region for directing relief work. Since the images and
videos obtained through UAVs, deployed at a region where bushfires are ongoing, help in
directing the relief workers and identifying safe evacuation routes, it is important to carry
out the calculations and determine the optimal drone height.

In this study, we carried out a series of experiments using drones for area coverage
in the Queensland region. Table 3 shows the parameters explored in determining optimal
drone height, drone numbers, and area coverage. As can be seen in Table 3, at a maximum
elevation of 121.97 m, drones achieved an area coverage of 145.04 km2. In this experiment
we used a total of 12 drones; the maximum height capacity of each of the drones was
121.97 m (around 400 feet). The field of view X or FoVx refers to the horizontal field of view
and the field of view Y or FoVy refers to the vertical field of view.

Table 3. Specifications of drones, their units, and parameters.

Parameters Symbol Units Value

Area Coverage A km2 145.04
Maximum Elevation of drones hmax m 121.97
Elevation of drones in solution n m 120
Drone field of view X FoVx degree 83.97
Drone field of view Y FoVy degree 61.93
Total number of drones n - 12

Figure 3 provides an overview of area coverage using different numbers of drones.
As can be seen, using more drones increases the total area coverage by drones. Therefore,
determining the number of drones is possible in connection with the total area in kilometers
that needs to be covered in any given scenario.



Fire 2022, 5, 122 9 of 15

Fire 2022, 5, x FOR PEER REVIEW  9  of  16 
 

 

thereby obtain clear images of the desired region for directing relief work. Since the im‐

ages and videos obtained through UAVs, deployed at a region where bushfires are ongo‐

ing, help in directing the relief workers and identifying safe evacuation routes, it is im‐

portant to carry out the calculations and determine the optimal drone height. 

In this study, we carried out a series of experiments using drones for area coverage 

in the Queensland region. Table 3 shows the parameters explored in determining optimal 

drone height, drone numbers, and area coverage. As can be seen in Table 3, at a maximum 

elevation of 121.97 m, drones achieved an area coverage of 145.04 km2. In this experiment 

we used a  total of 12 drones;  the maximum height capacity of each of  the drones was 

121.97 m (around 400 feet). The field of view X or FoVx refers to the horizontal field of 

view and the field of view Y or FoVy refers to the vertical field of view. 

Table 3. Specifications of drones, their units, and parameters. 

Parameters  Symbol  Units  Value 

Area Coverage  A  km2  145.04 

Maximum Elevation of drones  hmax  m  121.97 

Elevation of drones in solution  n  m  120 

Drone field of view X  FoVx  degree  83.97 

Drone field of view Y  FoVy  degree  61.93 

Total number of drones  n  ‐  12 

Figure 3 provides an overview of area coverage using different numbers of drones. 

As can be seen, using more drones increases the total area coverage by drones. Therefore, 

determining the number of drones is possible in connection with the total area in kilome‐

ters that needs to be covered in any given scenario. 

 

Figure 3. Relation between height and maximum area coverage by a drone. 

   

Figure 3. Relation between height and maximum area coverage by a drone.

4. Results

We considered a case study of South Queensland to further evaluate the proposed
approach. In the case of bushfires, a reliable approach is required for analyzing safe routes
for evacuation. In this approach, we have carried out several experiments for evaluating
the ABC algorithm for bushfire disaster in the Queensland region. In order to keep the
numerical factors simple, the total number of employed bees was kept equal to that of
the onlooker bees. It was found that the optimum speed of convergence was achieved
when the colony size was fixed at 50. Figure 4 illustrates the fitness function of the ABC
optimization for drones. The fitness function in the ABC algorithm refers to the quality of
the solution for a given problem. As can be seen through the figure, the linear fitness value
decreases with an increase in the epoch. Up until an epoch value of 50, the fitness value is
above or around 900, but as the epoch increases, the fitness score drops linearly.
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The alpha (linear alpha) scores achieved by the ABC algorithm are shown in Figure 5.
The alpha refers to the greediness of the search, as explained in Section 3.2.3. The higher
the alpha score, the more randomization can occur in the drone pathway, where a score
of 1 refers to complete greediness. Moreover, linear approximation is important because
determining the value of a function at a certain point can be challenging. Linear approxima-
tion is a more simplistic approach than an exponential approximation. In Figure 4, a linear
approximation is also more suitable as we are trying to show fitness values decreasing with
every iteration.
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Figure 5. Liner (alpha) scores of Artificial Bee Colony for path planning of drones.

Drone route optimization using ABC algorithm to deliver payload across selected
Queensland region Figure 6 shows the paths used by the UAVs for disastrous region. It is
notable that the drones follow the ABC algorithm for maximum area coverage and avoid
overlaps in the drone paths.
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Figure 6. Drone route optimization using ABC algorithm to deliver payload across selected Queens-
land region. The parameters in this case were: search limit is 50, number of epochs (iterations) is 200,
number of onlooker bees is 20, and number of locations to be visited is 30.
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Table 4 provides a summary of different experiments that were conducted at varying
locations and used a different number of drones. The optimal cost calculations have been
carried out using the experiments described in [21]. This approach is known to have the
best solutions for numerical problems. The limitation of using these linear approaches is
that the increase in the number of drones leads to an elevation in the computations involved
in the process. In the case of using six drones, the overall simulations can take several
hours which is not a real-time solution for emergencies such as bushfires. The use of ABC
enables the achievement of optimal solutions within seconds, as can be seen from Table 3.

Table 4. Overall evaluation of ABC for drone’s path planning.

Iteration Critical Points Drones Storage Capacity
(MB)

Optimal Cost
(Using [25])

Cost
(Using ABC)

Time
(Seconds) Error

0 31 5 100 672 706.66 21.0367 0.051577
1 34 5 100 788 809.074 23.5703 0.026744
2 35 5 100 955 996.295 24.6331 0.043241
3 38 6 100 805 820.314 28.3691 0.019024
4 39 5 100 549 567.367 26.8919 0.033455
5 41 6 100 829 947.106 30.5565 0.142468
6 43 6 100 742 777.851 33.6116 0.048317
7 44 7 100 909 986.059 36.7406 0.084773
8 45 5 100 751 796.908 32.6524 0.061129
9 45 6 100 678 768.924 37.4266 0.134106

10 50 7 100 741 763.955 41.7246 0.030978
11 50 8 100 1312 1354.94 44.8531 0.032729
12 51 7 100 1032 1124.71 43.0054 0.089835
13 52 7 100 747 818.93 43.3379 0.096292
14 56 7 100 707 792.406 47.5649 0.120801
15 57 7 100 1153 1555.3 66.1008 0.348916
16 57 9 100 1598 1740.75 57.7029 0.08933
17 63 10 100 1496 1776.06 75.7468 0.187206
18 64 9 100 861 1083.07 75.1847 0.257921
19 66 9 100 1316 1611.29 82.6786 0.224384
20 67 10 100 1032 1206.91 86.5646 0.169486

The error in this method is quite small, considering the little time required for compu-
tation, as is shown in the following equation:

error =
ABC Cost−Optimal Cost

Optimal Cost
(8)

Drone Coverage Outcomes

Analysis of areas covered in bushfires is a critical task and requires careful consid-
eration of all the parameters involved.Table 5. Shows the number of drones required for
maximum area coverage in disastrous situation.

Table 5. Number of drones required for maximum area coverage.

Number of Drones Area Coverage (km2)

4 57.52
6 69.63
8 59.00
10 112.79
12 146.06

The height of the drones corresponds to the area covered, as shown in Table 6. As can
be seen from the results in the table below, increasing the height of the drone has a direct
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positive effect on the area coverage, in that the area coverage increases. Starting from 5 m,
the area coverage is 0.38 km2. At a maximum height of 121 m, the area coverage reaches
182.62 km2.

Table 6. Drone height and the corresponding area coverage.

Height
(m)

Area Coverage
(km2)

5 0.38
20 6.10
40 20.43
60 38.22
80 78.38

100 119.64
121 182.62

5. Discussion
Proposed Framework for Emergency Response

Building upon the results obtained in this study, we propose a framework for efficient
disaster management by the State Emergency Services (SES). The framework is described
in detail in Figure 7. Firstly, an operational planning step needs to be carried out in which
the recovery and relief work methods are designed, known as the mission design step. The
operational planning method depends on the region hit by the bushfires since the local
area government policies for disaster management can differ. The key management tasks
in the case of bushfires are to analyze the area impacted by the bushfire and determine the
equipment, human resources, and costs associated with the management plan. Although
the auditing for disaster management occurs prior to a disaster to determine state budgets
and national capacity for dealing with a disaster, it is crucial to determine the budgets when
faced with a disaster. Once the cost and equipment have been agreed upon and deployed
for disaster management, it leads to the mission design phase. The mission design part in
the scenario of bushfires involves working on determining the safe routes for evacuations
and analyzing the number of drones needed and the overall area that can be covered by the
available resources. The flight parameters and drone trajectories are also determined during
the mission design stages. The next stage is the UAV take-off which essentially initiates
the analysis and rescue process through a series of steps. As per the proposed method, an
ABC-based UAV coverage of the bushfire-covered areas is carried out in the first stage of
the mission (rescue work). The flight parameters and trajectories are determined depending
on the identification of the optimal height of the drones through ABC for determining the
desirable area coverage through the UAVs. As explained in the prior sections, the height
of a drone directly corresponds to the area it covers. The maximum height attained by
most commercial drones is 400 feet (121.97 m), which corresponds to an area coverage
of above 182 km2. These numbers are key to achieving correct resource allocation. After
the initial design and preparatory phase, the drones take off and the rescue operation
begins. One of the major needs in the disaster management framework is ensuring that
the State Emergency Services (SES) are set at the initial stages and that the communication
with the rescue workers is straightforward and quick. Since the SES must carry out the
monitoring and collaborative teamwork across the different teams involved in post-disaster
management, it is important to make sure that everything is in place once the drones have
been deployed. The flight of the drones has different phases, including the climb, hovering,
and descent. During the climbing stage, the drones must attain their maximum height,
which leads to the hovering stage, where the task of the drones is to capture data in the
form of images or videos, which can then be used for monitoring the disaster-hit area. The
monitoring stage is carried out by data received from different drones covering varying
patches of the bushfires, for example, data from UAV 1, 2, 3, and 4. This stage is where the
proposed ABC algorithm comes into play for analyzing the drone data and determining
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the best output, which in this case is the best safety route. The data from individual drones
are combined in the form of swarm knowledge, which in turn helps in the development
of fire maps. The mapping of bushfires is a critical step and enables the disaster response
and risk reduction steps. Once the fire maps have been generated and all the possible
information from the UAVs has been streamlined, a report is developed for guiding the
rescue services. The report in this case is in the form of result analysis provided by the
ABC algorithm. The optimized and automated functions of the algorithm ensure that the
analysis and result derivation phase is quick and accurate. Information such as the safe
routes, road networks, and accessibility to the bushfire areas for rescue purposes can be
extracted from the data gathered by the UAVs. This report is then sent to the ground station
where the relief workers and the SES assume charge for carrying out the necessary relief
work. Thus, a highly optimized and streamlined approach can be put into practice for
reducing and mitigating the risks associated with bushfires.

Fire 2022, 5, x FOR PEER REVIEW  14  of  16 
 

 

knowledge, which in turn helps in the development of fire maps. The mapping of bush‐

fires is a critical step and enables the disaster response and risk reduction steps. Once the 

fire maps have been generated and all the possible information from the UAVs has been 

streamlined, a report is developed for guiding the rescue services. The report in this case 

is in the form of result analysis provided by the ABC algorithm. The optimized and auto‐

mated functions of the algorithm ensure that the analysis and result derivation phase is 

quick and accurate. Information such as the safe routes, road networks, and accessibility 

to the bushfire areas for rescue purposes can be extracted from the data gathered by the 

UAVs. This report is then sent to the ground station where the relief workers and the SES 

assume charge for carrying out the necessary relief work. Thus, a highly optimized and 

streamlined approach can be put into practice for reducing and mitigating the risks asso‐

ciated with bushfires. 

 

Figure 7. Proposed framework for emergency response by the State Emergency Services. 

6. Conclusions 

This study proposes an Artificial Bee Colony (ABC) optimization method for over‐

coming the barriers that exist with the use of UAVs. The limitations at present include the 

determination of an optimized framework for achieving efficient post‐disaster response 

by monitoring the effected regions. Some of the main concerns addressed  in this study 

include:  (a)  identifying  the best algorithm  for utilizing  the  full potential of UAVs;  (b) 

achieving a balance between the numbers of drones used, the area covered by individual 

drones, and the maximum height that a drone can function upon. 

The framework developed and proposed in this study suggests that a flight height of 

100 m provides a near‐optimal area coverage. Increasing the height to 120 m can lead to 

an improvement of about 30% in terms of area coverage. A series of experiments and re‐

peated simulations were run to determine the velocity, height, area coverage, and energy 

requirements by the drones for optimal functioning. It was found that the best coverage 

was achieved when the drones were in the hovering stage, at a flight altitude of 120 m. 

This helped in determining the optimal velocity and battery usage by the drones. In the 

case of bushfires, using drones at the parameters determined through the simulations can 

enable quick responses and recovery tasks can be underway in an efficient manner. The 

disaster recovery framework for enabling an optimal response by the SES depends on the 

Figure 7. Proposed framework for emergency response by the State Emergency Services.

6. Conclusions

This study proposes an Artificial Bee Colony (ABC) optimization method for over-
coming the barriers that exist with the use of UAVs. The limitations at present include the
determination of an optimized framework for achieving efficient post-disaster response by
monitoring the effected regions. Some of the main concerns addressed in this study include:
(a) identifying the best algorithm for utilizing the full potential of UAVs; (b) achieving a
balance between the numbers of drones used, the area covered by individual drones, and
the maximum height that a drone can function upon.

The framework developed and proposed in this study suggests that a flight height
of 100 m provides a near-optimal area coverage. Increasing the height to 120 m can lead
to an improvement of about 30% in terms of area coverage. A series of experiments and
repeated simulations were run to determine the velocity, height, area coverage, and energy
requirements by the drones for optimal functioning. It was found that the best coverage
was achieved when the drones were in the hovering stage, at a flight altitude of 120 m.
This helped in determining the optimal velocity and battery usage by the drones. In the
case of bushfires, using drones at the parameters determined through the simulations can
enable quick responses and recovery tasks can be underway in an efficient manner. The
disaster recovery framework for enabling an optimal response by the SES depends on the
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use of the proposed ABC model for the optimization of the UAVs and their subsequent
deployment in the regions covered by bushfires. We have proposed a framework based on
our results which includes the use of the ABC algorithm for data analysis and a subsequent
correspondence with the SES for taking the appropriate actions for dealing with the disaster.
Future research in UAV pathways, energy consumption, and the type of UAVs can provide
more insight into the selection of the UAVs that can be used for data acquisition and disaster
management. Moreover, as per the proposed framework, identifying the key parameters
for quick response by the SES should also be explored in more depth to truly achieve
appropriate disaster responses.
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