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A B S T R A C T

Drought stands as a highly perilous natural catastrophe that impacts numerous facets of human existence.
Drought data is nonstationary and noisy, posing challenges for accurate forecasting. This study proposes a novel
hybrid framework integrating TVF-EMD preprocessing, LASSO feature selection and Ensemble Deep RVFL
modeling for improved multistep ahead drought prediction. Using decomposed SPEI12 values, six machine-
learning techniques (Support Vector Regression (SVR), Simple RVFL, Ensemble Deep RVFL, and Recurrent
Neural Network (RNN), XGBoost, Random Forest (RF)) were applied to forecast the SPEI12 drought index. The
present study involved forecasting drought in two Canadian stations located in the eastern region (Charlottetown
in Prince Edward Island and Fredericton in New Brunswick), where agriculture is rainfed and mostly affected by
drought. The statistical period of 1980–2022 was considered for analysis. Following the decomposition of
drought data with TVF-EMD, lagged data was generated using the TVF-EMD results. Training time was decreased
by utilizing the Lasso regression feature selection algorithm to select effective inputs. Various statistical mea-
sures, including the root mean square error (RMSE) and correlation coefficient (R), were employed to assess the
precision of the models. The research findings indicated that the TVF-ED-RVFL model achieved the highest level
of precision in forecasting multistep ahead (1,3,6 and 12) SPEI12 drought index for both Charlottetown and
Fredericton stations. During testing, the TVF-ED-RVFL model predicted 1-month SPEI12 for Charlottetown (R =

0.9995, RMSE = 0.0352) and Fredericton (R = 0.9974, RMSE = 0.0560). For multistep ahead forecasting, the R-
values range from 0.9924 for 3-months ahead to 0.9242 for 12-months ahead in Charlottetown and range from
0.9846 for 3-months ahead to 0.8293 for 12-months ahead in Fredericton. By increasing the forecasting horizon,
the accuracy of models decreased. The present study’s outcomes can contribute to enhancing water management
practices during periods of drought.

1. Introduction

Drought is among the most catastrophic and costliest natural hazards
worldwide. It is well-known as a creeping phenomenon (i.e., gradually
pans out) but covers extensive areas, even on a continental scale (Hao
et al., 2014; Maity et al., 2021; Wilhite et al., 2007). Drought negatively
affects surface and groundwater resources, soil erosion and degradation,

agriculture, food scarcity, and causes economic and social damages.
Drought has occurred recently in some parts of the world, even in
Europe (i.e., central Europe), known as a green continent, and leads to
numerous and irreparable damages (Felsche & Ludwig, 2021).

Canada faced at least ten severe droughts, like other parts of the
world. Historical drought occurrences in Canada are 1910–11, 1914–15,
1917–20, 1928–30, 1931–32, 1936–38, 1948–51, 1960–62, 1988–89,
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and 1999–2005 (Bonsal et al., 2011; Maybank et al., 1995). It has been
reported by Bonsal et al. (2011) that the drought period of 1999–2005
was extremely severe and extended from British Columbia from the west
to Atlantic provinces from the west and led to considerable agricultural,
environmental, economic, and societal damages. The drought in the
Prairies Provinces from 2001 to 2002 caused $3 Billion in losses in the
agricultural sector, resulting in a $6 Billion drop in Canada’s GDP
(Wheaton et al., 2008). Earth’s climate system has recently changed, and
changes are speeding up because of climate change. These changes
directly impact drought occurrences’ frequency, duration, and severity.
If this trend continues, it may lead to humanitarian catastrophes, espe-
cially for future generations.

One of the primary keys to drought mitigation is drought monitoring
and forecasting, leading to the construction of an early warning online
system. To accomplish this aim, many drought indices have been created
and employed to monitor and evaluate various categories of drought,
including agricultural, meteorological, socioeconomic, and hydrological
droughts (Eden, 2012; van Hoek, 2016). Palmer Drought Severity Index
(PDSI) (Palmer, 1968), Standardized Precipitation Index (SPI) (Mckee
et al., 1993), Surface Water Supply Index (SWSI) (Doesken & Garen,
1991), and Standardized Precipitation Evapotranspiration Index (SPEI)
(Vicente-Serrano et al., 2010) are among well-known indices of drought
assessment. Most of these indices are developed based on readily
available meteorological variables, such as SPI, SPEI, and PDSI. SPI and
SPEI are among the most widely used methods of drought assessment.
The advantage of SPEI over SPI is that SPI only considers precipitation,
while SPEI involves both precipitation and evapotranspiration simulta-
neously (i.e., temperature impact on drought occurrence).

There are four primary groups of drought monitoring and assessment
methods: linear statistical methods, dynamical/physical/conceptual
methods, remote sensing techniques, and data-driven/machine learning
models. Drought occurrences are stochastic, chaotic, and nonlinear;
therefore, simple and linear models such as ARMIA cannot capture
drought variations accurately. Although dynamical/physical/concep-
tual methods are able to evaluate spatial and temporal damages caused
by drought, vast input data is required, and calibration is time-
consuming. Drought monitoring through remote sensing data is popu-
lar, as it is able to investigate both spatial and temporal scales, but
drought time-series analysis is time-consuming, especially for large
areas.

There has been a growing trend in the application of machine
learning (ML) and deep learning (DL) methodologies within the domain
of hydrology. The advantages of ML/DL can be the non-linearity struc-
ture, high flexibility, high robustness, less input variable, reasonable
accuracy, insensitivity to missing data, and ability to handle big data
with different dimensions (Khosravi et al., 2019; Tao et al., 2024;
Yaseen, 2023). Artificial Neural Network (ANN) is one of the oldest ML-
based models that is widely used in the field of hydrology and specif-
ically in drought assessment (Belayneh et al., 2014; Tareke & Awoke,
2023; Wable et al., 2023). Because of its low convergence and gener-
alization power, ANN, combined with a fuzzy logic approach and
adaptive neuro-fuzzy inference system (ANFIS), is developed. Support
vector regression (SVR), extreme learning machine (ELM), and Gene
expression programming (GEP) are also among popular ML models that
are frequently used in hydrology and water resources management.
Mokhtarzad et al. (2017) compared the prediction capability of ANN,
ANFIS, and SVR for drought perdition at Bojnourd city station and
finally stated that the SVR model leads to higher performance (Mokh-
tarzad et al., 2017). Wang et al. (2022) implemented ELM, SVR, and
their combination with a wavelet model for drought prediction in Dez
Dam, Iran (Wang et al., 2022). They finally stated that the wavelet has
increased each model’s modeling performance, and ELM is a more
effective and promising tool for drought prediction. Overall, all these
traditional models need the weights of their membership functions set
accurately. In addition, some of them are hyperparameter models (i.e.,
SVR), limiting their application. Yaseen et al. (2021) compared the

performance of minimum probability machine regression (MPMR),
random forest (RF), M5 Tree (M5tree), online sequential-ELM (OSELM),
and extreme learning machine (ELM) for drought prediction in
Bangladesh and finally revealed that ELM model leads to the highest
performance (Yaseen et al., 2021).

Recently, the application of DL algorithms has attracted the attention
of researchers globally due to their higher performance compared to
traditional models (Maity et al., 2021). In addition, DL models are
developed to solve the problem end to end, while ML models separate
the issue into different parts. Some other advantages of DL are feature
generation automation, better self-learning capabilities, advanced ana-
lytics, and scalability. Panahi et al. (2020) developed a convolutional
neural network (CNN) deep learning model for groundwater potential
areas and then compared its performance with the SVR models as a
benchmark. They finally declared that the groundwater potential map
derived by the CNN model has 85 % accuracy, while those of SVR have
75 %. Abbes et al. (2023) developed Long Short-Term Memory (LSTM)
combined with a Multi-Resolution Analysis Wavelet Transform (MRA-
WT), called MRA-WT-LSTM for drought modeling at prediction in Iran
(Abbes et al., 2023). They finally compared their results with ANN, SVR,
random forest (RF), and LSTM models. They showed that the proposed
hybrid framework of MRA-WT-LSTM with R2 greater than 0.93 out-
performs other models. Kadam et al. (2024) developed and employed
RNN, GRU, and LSTM deep-learning models for drought prediction
(Kadam et al., 2024). They finally stated that deep learning models are
promising for drought modeling and prediction, and all models lead to
good performance, but LSTMmodels have a higher prediction capability
than other models.

In addition, ensemble-based or hybridization techniques are among
the popular approaches to increase the modeling prediction power of
each ML/DL model. Bui et al. (2020) developed several models of
random forest (RF), M5P, reduced error pruning tree (REPT), random
tree (RT), and their ensemble with Bagging algorithm for water quality
index (WQI) prediction (Bui et al., 2020). Finally, they declared that
ensemble-based models, due to higher flexibility and benefit from two
models simultaneously, have a higher prediction power than standalone
models. Kaur and Sood (2020) implemented ANN, SVR, and deep neural
network (DNN) for drought assessment in three divisions of the Texas
area, USA (Kaur & Sood, 2020). They finally revealed that the DNN
model outperformed other models besides just coupling two models,
hybridizing the feature selection algorithm and model’s hyperparameter
tuning reported as a promising technique (Jamei et al., 2023), which
rarely addressed in the field of water resources, while has a significant
impact on the modeling performance.

RVFL is a particular form of a neural network that utilizes random
weights, as suggested in Pao et al., (1994). Randomly generating the
weights of the enhancement layer enhances the efficiency of training a
neural network. The improvement layer functions as an unsupervised
method for extracting features. A different autonomous random neural
network was introduced by Schmidt et al., (1992), which is a specific
instance of RVFL that does not include the functional link. Several
studies have conducted comparisons on the performance of RVFL and its
other variants with other machine learning techniques in time series
forecasting problems (Cheng et al., 2024; Gao et al., 2021, 2022, 2023;
Qiu et al., 2018). Gao et al. (2022) implemented an edRVFL network for
electricity load forecasting. They augmented the random enhancement
features using empirical wavelet transformation (EWT). The raw load
data were decomposed by EWT in a walk-forward manner, ensuring no
future data leakage during the decomposition process. Subsequently, all
sub-series generated by the EWT, including the raw data, were input into
the edRVFL for forecasting. The proposed model was evaluated on
sixteen publicly available time series from the Australian Energy Market
Operator for the year 2020. The simulation results showed that the
proposed model outperformed eleven other forecasting methods across
two error metrics and statistical tests in electricity load forecasting tasks.
Jamei et al. (2023) utilized a time-varying filter-based empirical mode
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decomposition (TVF-EMD) combined with an ensemble deep Random
Vector Functional Link (edRVFL) scheme to forecast PM2.5 and PM10
concentrations 1-hour and 3-hours ahead in two regions of Australia. To
validate the TVF-EMD-DRVFL model, they also employed classical RVFL
and bidirectional gated recurrent unit neural network (Bi-GRU) models
in both hybrid and standalone frameworks. The findings indicate that
the TVF-EMD-DRVFL model delivers the highest accuracy for fore-
casting PM2.5 and PM10 concentrations at t + 1 and t + 3 for the
Brisbane and North Parramatta stations.

The novelty and gap in the research lies in developing a hybrid
modeling framework that integrates data preprocessing techniques with
machine learning algorithms for improved monthly drought forecasting.
Non-stationarities and noise in drought time series data can hinder the
model if not treated properly. Conventional EMD decomposition might
pose mode mixing problems by which the corresponding IMFs might
contain high-frequency and low-frequency signals. This is because there
is no way to differentiate between intrinsic oscillations and noise in the
shifting process. The TVF-EMD method tries to solve this problem by
using a time-varying filter when shifting the data instead of the local
mean. This filter has the ability to either increase or decrease its cutoff
frequency depending on the localized features of the signal. We can use
this adaptive, time-varying filter to eliminate high-frequency noises
while allowing the intrinsic low-frequency oscillations inherent in the
IMFs. This enables each IMF to correspond to the oscillations involving a
single characteristic scale and prevents mode coupling. It extracts sig-
nals at different time scales more accurately. When performing the TVF-
ED analysis on the drought time series beforehand, it is better to

decompose the data into a trend, seasonality, and noise and obtain low-
frequency patterns relevant to drought.

This study proposes a novel framework for multi-temporal fore-
casting of the SPEI12 drought index using Time-varying filter based
Empirical Mode Decomposition (TVF-EMD) for signal decomposition,
Least Absolute Shrinkage and Selection Operator (LASSO) regression for
feature selection, and Ensemble Deep Random Vector Functional Link
(RVFL) machine learning model. The hybridization of data processing
steps like TVF-EMD and feature selection aims to reduce complexity and
extract meaningful information from time-series drought data. This is
integrated with the Ensemble Deep RVFL model, which has not been
previously applied for drought forecasting. The framework aims to
improve forecasting accuracy compared to standalone machine learning
models like Support Vector Regression (SVR), Random Forest (RF),
XGBoost, Recurrent Neural Network (RNN), RVFL, and ED-RVFL
models. Through comprehensive evaluation and comparison of hybrid
and standalone models, the study aims to identify the most effective
modeling approach for drought forecasting and assess the lead times for
which results are acceptable. This can help address the research gaps in
effective monitoring and predicting drought, which is important for
sustainable water resource management. The case study focuses on
Atlantic Canada, which has high agricultural importance for the region.
Drought forecasting is crucial here as most farming is rainfed and thus
vulnerable to water shortages. The objectives of the current research can
be summarized:

Fig. 1. Location of Stations.
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i. forecast drought at two stations in Eastern Canada (Charlotte-
town and Fredericton) for multiple time steps ahead using the
SPEI index.

ii. 2-Investigate how data processing techniques (TVF-EMD and
feature selection) can improve the results of standalone machine
learning models.

iii. Compare the performance of hybrid TVF-based models (TVF-ED-
RVFL, TVF-SVR, TVF-RNN, TVF-RF, TVF-XGBoost, TVF-RVFL) vs
standalone models (ED-RVFL, RVFL, XGBoost, RF, SVR, RNN).

iv. Evaluate models using extensive statistical metrics like correla-
tion coefficient, RMSE, NSE, KGE, IA, and U95%. The compre-
hensive evaluation will provide robust validation of model
performance.

v. Analyze multistep ahead scatter plots, time series plots, and re-
sidual plots to visually assess model forecasts against observa-
tions for different lead times.

2. Material and methods

2.1. Study area and data description

In the current study, two stations in Prince Edward Island (Charlot-
tetown) and New Brunswick (Fredericton) provinces of Canada were
selected to forecast agricultural drought. Both provinces have many
agricultural lands that produce many crops such as potatoes, wheat,
barley etc. Fig. 1 shows the location of Charlottetown and Fredericton
stations in Canada. According to the Koppen climate classification sys-
tem, both stations have a humid continental climate (Dfb) (Beck et al.,
2018). The statistical period of 1980–2022 (43 years) was considered to
calculate the drought index in both stations. The mean temperature
values are 5.8 and 5.7 for Charlottetown and Fredericton, respectively.
Annual precipitation and evapotranspiration are (1170 and 716 mm)
and (1067 and 849 mm) for Charlottetown and Fredericton,
respectively.

To compute the SPEI, the non-exceedance probability of the differ-
ences between potential evapotranspiration and precipitation is
adjusted using a three-parameter log-logistic distribution that considers
frequent negative values (Vicente-Serrano et al., 2010). By applying a
logarithmic probability distribution, the water balance is normalized to
obtain the SPEI. In this investigation, the Hargreaves and Samani
method (Hargreaves& Samani, 1985) was utilized to calculate PET. The
following equation provides the difference (Di) between precipitation
(P) and PET for the given month (i):

Di = Pi − PETi (1)

The summed D values are compiled across various time scales in the
subsequent manner:

Dkn =
∑k− 1

j=0
(Pn− j − PETn− j) (2)

Fig. 2. Time Series of SPEI12 drought index at Charlottetown and Fredericton stations.

Table 1
Descriptive statistics of data.

Metric Charlottetown Fredericton

Number of Data 504 504
Mean − 0.0017 0.0012
Standard Deviation 0.9840 0.9855
Minimum − 2.0492 − 2.2461
Maximum 2.1835 2.7484
Quartile 1 − 0.7890 − 0.7091
Median 0.0344 0.0030
Quartile 3 0.6778 0.7243
Skewness − 0.0012 0.0688
Kurtosis − 0.7682 − 0.4608

M. Karbasi et al.
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Determining the likelihood of an event happening requires three
parameters of the log-logistic probability distribution function; this is
how SPEI is calculated. In accordance with the log-logistic distribution,
one can formulate the probability distribution function of D as follows
(Abramowitz & Stegun, 1965):

SPEI = Ψ −
δ0 + δ1Ψ + δ2Ψ2

1+ d1Ψ + d2Ψ2 + d3Ψ3 (3)

where

Ψ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 2ln(P)

√
forP ≤ 0.5 (4)

P = 1 − F(x)forP > 0.5 (5)

in which P represents the probability that the D series will surpass and
F(x) is the probability distribution of the log-logistic distribution.
Readers are directed to the following source (Vicente-Serrano et al.,
2010) for additional information regarding the SPEI obtaining proced-
ure and the constant values of δ0, δ1, δ2, d1, d1, and d3. The multi-
temporal monthly forecasting of meteorological drought relied on the
SPEI12 values calculated at the Charlottetown and Fredericton stations.
The time series of the SPEI12 drought index in both stations is depicted in
Fig. 2. According to Fig. 2, most droughts in Charlottetown occurred
from 1994 to 2008, and in Fredericton stations, droughts occurred from

2015 to 2022. Table 1 presents the descriptive statistics of the SPEI12
drought index in both stations.

2.2. Time-varying filter-based empirical mode decomposition

Li et al. (2017) introduced the concept of the time-varying filter-
based empirical mode decomposition (TVF-EMD) method to solve the
problems of mode mixing and the final effect in empirical mode
decomposition (EMD). They achieved this by using a time-varying filter
to perform the shifting process (Li et al., 2017).

When implementing the TVF-EMD approach, it is crucial to carefully
consider the appropriate bandwidth threshold and B-spline order as they
serve as the main limitations (Li et al., 2017). If these limitations are
deemed incorrect, the mode mixing problem cannot be optimized using
the TVF-EMD model. Similarly, the local cut-off frequency must be
determined to execute time-varying filtering. Further, compared to the
decomposition procedures, the TVF-EMD method produces more prac-
tical outcomes (Jamei et al., 2023; Wang et al., 2020). Furthermore, in
comparison to the decomposition approaches, the TVF-EMD methodol-
ogy produces more feasible findings (Li et al., 2017):

Step -1: Calculate the local cutoff frequency with a B-spline
approximation, which may be explained as:

Fig. 3. The topology of the Ensemble Deep RVFL model.

Fig. 4. Schematic diagrams of the RNN Model (Zheng et al., 2023).
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gnm(t) =
∑∞

k=− ∞

c(k)βn(t/m − k) (1)

In this context, β-n.(t)= B represents the B-spline function, whereas c
(k) = B denotes the B-spline coefficient. By a factor of m the B-spline
function is increased in size. n, m, and (k) are the factors that determine

the approximation result. When provided with the B-spline order n and
knotsm, the task of B-spline approximation involves determining the (k)
that minimizes the approximation error, and it is computed as:

ε2m =
∑+∞

t=− ∞

(
x(t) − [c]↑m

*bnm(t)
)2 (2)

In which, bnm(t) = βn(t/m), [ • ]† m = up-sampling operation bym, and
* = convolution operator and the solution of c(k) is

c(k) =
[
pn*m x

]

↓m(k) (3)

where, [ • ]↓m = down-sampling operation by m, and pnm = pre-filter.
Thus, we can write Eq. (1) as:

Fig. 5. Determining important lags using ACF and PACF plots.

Table 2
Setting for TVF-EMD for SPEI index decomposition.

Station Name Stopping
criterion

Number of
Decomposed IMFs

End_flag B-spline
Order

Charlottetown 0.1 11 0 26
Fredericton 0.1 11 0 26

Fig. 6. Drought signal decomposition using TVF-EMD for Charlottetown and Fredericton stations.

M. Karbasi et al.
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gnm(t) =
[
pn*m
]

↓m
*bnm(t) (4)

The B-spline approximation utilized in the above equation is a spe-
cific type of low-pass filtering. Thus, the TVF is generated utilizing the
local cut-off frequency that is projected from the input signal. The
purpose of this procedure is to acquire the local cut-off frequency,
φʹ
bis(t) = φʹ

1(t)+ φʹ
2(t)/2, here, φʹ

1(t), and φʹ
2(t) are slow varying com-

ponents. Realign the φʹ
bis(t) to solve the issue of intermittence, i.e., noise,

and obtain the final local cut-off frequency by interpolating among the
peaks (or remainders).

Step-2: This procedure is executed in order to acquire the local cut-

off frequency.
Step-3: Determine if the residual signal satisfies the halting re-

quirements (or meets the criteria for improvement) in the following
manner (Jamei et al., 2023; K. Wang et al., 2020):

θ(t) =
BLoughlin(t)

φavg(t)
(5)

In which, BLoughtin(t) and φarg(t) provides the weighted average
instantaneous frequency and Loughlin instantaneous bandwidth of
distinct components. The current investigation employed TVF-EMD to
anticipate monthly drought at the Charlottetown and Fredericton

Fig. 7. Determining effective inputs for drought forecasting at Charlottetown station by lasso regression feature selection algorithm.
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stations. A thorough understanding of the TVF-EMD model can be ob-
tained from the study conducted by Li et al. (2017).

2.3. Least absolute shrinkage and selection operator (LASSO) feature
selection

The LASSO is an effective technique for selecting variables and
creating regression models. This approach was suggested by Tibshirani
(1996) in order to improve the precision of machine-learning model
testing. LASSO modifies the model’s residua’ sum of squares (RSS) by

including a penalty component (Tibshirani, 1996). If the RSS surpasses
the penalized period, the variable will incur a further penalty; therefore,
A regularization procedure will be used to reduce the penalty to zero for
a portion of its coefficients. Only features with non-zero coefficients are
retained as a consequence. The LASSO method may provide several
advantages. At the outset, the regression model’s interpretability can be
improved by utilizing the LASSO function, which eliminates redundant
or least correlated variables. Subsequently, researchers can analyze and
deduce the most consequential explanatory variable while excluding
extraneous variables that lack correlation.

Fig. 8. Determining effective inputs for drought forecasting at Fredericton station by lasso regression feature selection algorithm.
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Additionally, overfitting is minimized by this method. A training
model with excessive explanatory variables is prone to overfitting.
While the model performs admirably during training, its prediction ac-
curacy on the testing data is subpar. We will ultimately strike a balance
between variation and bias. By increasing the penalty term, bias is
augmented while variance is reduced, so achieving a balance between
variance and bias and simplifying the model. It is assumed that the

formula in a linear model is:

Y = Xβ+ ε (6)

Using explanatory variable X and response variable Y. Xis described
as an Xn×k matrix, and Y can be defined as a Yn×1 matrix in vector form.
With an upper constraint of the sum of the absolute values of the model
parameters, the LASSO minimizes the RSS. The upper bound is denoted
as t. Now, the LASSO formula is represented as Eq. (7).

minimize
∑n

i=1

(

yi −
∑

j
xijβj

)2

subject to
∑k

j=1

⃒
⃒βj
⃒
⃒ < t (7)

Thus, the optimization will also be expressed in vector form by:

minimized

(
|Y − Xβ|22

n

)

subject to
∑k

j=1

⃒
⃒βj
⃒
⃒ < t (8)

Prior to the sum of the absolute values of the model parameters, a
penalty term λ is appended. Greater penalty term magnitude will result
in greater model shrinkage. As a result, the estimation of the parameters
will be:

β̂(λ) = argmin
β

(
|Y − Xβ|22

n
+ λ
∑k

j=1

⃒
⃒βj
⃒
⃒

)

(9)

Considering the shrinkage, the jth coefficient is assumed in this study
as βj(λ) = 0. Subsequently, the model will exclude characteristics with a
zero coefficient. Altering the penalty levels enables researchers to
modify the quantity of picked characteristics. Hence, the LASSO feature
selection technique seems valuable in machine learning for feature
selection.

2.4. Machine learning technics

2.4.1. Simple RVFL and ensemble deep RVFL
The deep ensemble-based RVFL model was initially proposed by

Cheng et al. (2021). RVFL model stability, robustness, and precision are
enhanced with this method of ensemble learning and deep learning
integration (Malik et al., 2023; Ren et al., 2016). Fig. 3 demonstrates the
deep ensemble RVFL model’s design. Similar to the normal RVFL, this
model consists of stacks of additional hidden layers following the first
hidden layer; its weights and biases are reserved and randomized (Cheng
et al., 2021). By means of L hidden nodes, the deep ensemble RVFL
model generates a output nodes that have been trained independently.
Conversely, every output layer extracts characteristics from its matching
intermediate hidden layer and input layer via direct connections.
Following the removal of bias words to facilitate understanding, the first
layer’s output is as follows (i.e., l = 1) can be defined as (Cheng et al.,
2021):

H(1) = f
(
XW(1)) (10)

Here, f(.) = non-linear activation function, and W(l)∊R(Mo×N) =

weights between the input layer and the first hidden layer. While for
each layer l > 1, it is computed as (Shi et al., 2021):

H(l) = f
( [
H(l− 1)X

]
W(l) ) (11)

Here, W(l)∊R(Ml×N) = weight between the previous layer and the
current layer, and Ml = Mo + N. For lth enhancement layer, the loss
function is defined as:

Lossl = ‖
[
Hl,X

]
βl− Y‖

2
+ λ‖βl‖

2 (12)

Here, βl is the output vector of the l
th. λ is the regularization parameter.

Hence, the minimum value of the loss function can be obtained using the
closed-form solution (Saunders & Gammerman, 1998):

Table 3
Optimized model adjustment for the forecasting of drought.

Study site Models Best parameters

Charlottetown single
models

SVR epsilon = 0.05, kernel = ’rbf’, gamma = 0.5,
C = 1

ED-RVFL num_nodes: 5, regular_para: 0.01, num_layer:
3

RNN Learning Rate: 0.00211, Batch Size: 4,
Layers: 1, Epochs: 88,.Number of
Neurons:15,.Training Algorithm: Adam,
Dropout: 0

XGBoost ’colsample_bytree: 0.8, learning_rate: 0.1,
max_depth: 2, min_child_weight: 4,
n_estimators: 100, nthread: 3, objective: reg:
squarederror, subsample: 0.8

RF max_depth: 3, min_samples_leaf: 2,
min_samples_split: 18, n_estimators: 10

RVFL num_nodes: 10, regular_para: 0.01

Charlottetown TVF
based models

TVF-SVR C = 10, epsilon = 0.05, gamma = 0.05,
kernel = ’rbf’

TVF-ED-
RVFL

num_nodes: 5, regular_para: 0.0001,
num_layer: 3

TVF-RNN Learning Rate: 0.0006, Batch Size: 2, Layers:
1, Epochs: 150,.Number of Neurons:12,.
Training Algorithm: Adam, Dropout: 0
{’colsample_bytree’: 0.8, ’learning_rate’: 0.1,
’max_depth’: 2, ’min_child_weight’: 4,
’n_estimators’: 200, ’nthread’: 3, ’objective’:
’reg:squarederror’, ’subsample’: 0.8}

TVF-RF max_depth: 5, min_samples_leaf: 2,
min_samples_split: 18, n_estimators: 20

TVF-RVFL num_nodes: 10, regular_para: 0.1

Study site Models Best parameters

Fredericton single
models

SVR C= 100 epsilon= 0.01, gamma= 0.5, kernel
= ’rbf’

ED-RVFL num_nodes: 10, regular_para: 0.001,
num_layer: 3

RNN Learning Rate: 0.0001, Batch Size: 4, Layers:
1, Epochs: 150,.Number of Neurons:20,.
Training Algorithm: Adam, Dropout: 0

XGBoost {’colsample_bytree’: 0.8, ’learning_rate’: 0.2,
’max_depth’: 2, ’min_child_weight’: 4,
’n_estimators’: 25, ’nthread’: 3, ’objective’:
’reg:squarederror’, ’subsample’: 0.9}

RF {’max_depth’: 3, ’min_samples_leaf’: 2,
’min_samples_split’: 12, ’n_estimators’: 10}

RVFL num_nodes: 5, regular_para: 0.01

Fredericton TVF
based models

TVF-SVR C= 100 epsilon= 0.01, gamma= 0.1, kernel
= ’rbf’

TVF-ED-
RVFL

num_nodes: 3, regular_para: 0.01, num_layer:
4

TVF-RNN Learning Rate: 0.00225, Batch Size: 4,
Layers: 1, Epochs: 250,.Number of
Neurons:15,.Training Algorithm: Adam,
Dropout: 0

XGBoost {’colsample_bytree’: 0.8, ’learning_rate’: 0.2,
’max_depth’: 2, ’min_child_weight’: 4,
’n_estimators’: 200, ’nthread’: 3, ’objective’:
’reg:squarederror’, ’subsample’: 0.9}

RF {’max_depth’: 7, ’min_samples_leaf’: 1,
’min_samples_split’: 12, ’n_estimators’: 100}

RVFL num_nodes: 10, regular_para: 0.1
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βl =
(
DTD+ λI

)− 1DTY (13)

The D =
[
Hl,X

]
. The L forecast of the deep learning network can be

obtained after all the values of the βl obtained. The ultimate forecast of
the deep ensemble RVFL model is thereafter an ensemble of layer out-
puts, and this may be acquired by majority vote or the average score
approach (Du et al., 2022):

Y =
[
Hl,X

]
βl (14)

Algorithm 1: Pseudocode Ensemble Deep RVFL model

Input: N, the hidden dimension
L, the number of layers
λl, the regularization strength of l th layer
Output:β = [β1,⋯, βl]
Initialize the W1,⋯,WL randomly
l = 1
for l ≤ L do
if l = 1 then
Compute H1 using W1 as in Eq. (10)
Compute β1 using λ1 as in Eq. (13)

Else
Compute Hl using Wl as in Eq. (11)
Compute βl using λl as in Eq. (13)

End
l + +

End

2.4.2. Support vector machine regression (SVR)
Support vector regression (SVR) was developed by Smola in 1996 as

a variant of the support vector machine (SVM) that includes regression
functions. Vapnik (2000) proposed the initial iteration of the Support
Vector Machine (SVM) model, which hinged on the structural risk

minimization (SRM) principle (Vapnik, 2000). The SVR model was
developed in engineering, statistical, and predictive applications to
address regression and forecasting issues. The fundamental concept
underlying the SVR model is to identify a function dependence f(x) that
makes the most minimal feasible use of all data (training xi, objectives
yi) (Smola, 1996). The expression for the regression function of the SVR
model is as follows:

f(x) = w× ϕ(x)+ b (15)

Where ϕ represents the transfer function, f signifies the regression
function, and w and b denote the weight and bias, respectively. The
regression issue may be expressed as

Minimize :
1
2

⃦
⃦
⃦
⃦
⃦
w‖2 +C

∑N

i=1

(
ξi + ξ*i

)
(16)

Subject to :

⎧
⎪⎪⎨

⎪⎪⎩

yi − f(x) ≤ ε + ξi
f(x) − yi ≤ ε + ξ*i

ξi, ξ
*
i ≥ 0, i = 1, 2,3,⋯,N

(17)

Where ε represents the boundary value, ξi and ξ*i denote the slack var-
iables, and C represents the penalty parameter. Through the application
of Lagrange multipliers, the optimization problem undergoes a sub-
stantial transformation into quadratic programming yielding a solution
for a nonlinear regression function that can be expressed as follows:

f(x) =
∑N

i=1

(
αi − α*

i
)
K(x, xi)+ b (18)

The Kernel function is denoted as K(x, xi), and the dual variables are αi
and α*i . Several kernels, including linear, polynomial, sigmoid, and

Fig. 9. The flowchart of the current study.
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radial basis functions (RBF), comprise the SVR model’s structure. The
RBF kernel was utilized in the provided study owing to its superior ac-
curacy and robustness in comparison to other kernel functions; it is
regarded as the most often employed function in the hydrologic appli-
cation of SVR (Kalteh, 2013; Khan & Coulibaly, 2006). The RBF can be
formulated as

K(x, xi) = exp
(
− γ‖xi− x‖2

)
(19)

The value “γ,” which “represents the kernel function, is the primary
determinant of whether the performance of support vector regression is
enhanced or diminished.

2.4.3. Recurrent neural network
One type of ANN or artificial neural network that allows ordered

consecutive datasets to be occupied successively at the separate time-
step onward broadcast is the Recurrent Neural Network (RNN). All
sequencing data will share the learnable weight groups. In order for the
RNN to be a compatible answer to time-series difficulties, it is assumed
that it will absorb arrangement evidence among each signal dataset with
its situation (Fayer et al., 2023). Normally, RNN at separately a time-
step i can distribute two different mediums, which are called Hidden
States hi and Outcomes yi. These RNN structures utilizing both are
referred to as complete RNNs hi and yi interested in scheming of the
unseen states hi+1 with outcomes yi+1 at the following time stage. An
RNN attractive individual hi into the next time step calculation is
intended through (Elman, 1990), while Elman network is another name

for it. The RNN requires just yi additionally known as Elman network. A
Jordan RNN, which requires individual (Cruse, 1996). Here, Tensorflow,
the most popular deep learning framework for recurrent neural net-
works, was used:

ht = σh(Whxt +Uhht− 1 + bh) (20)

yt = σ
(
Wyht + by

)
(21)

Where σ is the sigmoid function,Wh,Wy and Uh are weights that can be
used to generate the output, transmitted hidden state, and hidden states
from the previous time step, where bh with by are bias in related cal-
culations of hidden states and output (Zheng et al., 2023). The charac-
teristics of the recurrent neural networks demonstrate their successful
capacity for learning from time series or sequential data, with an
improved capacity to discriminate between absolute and relative tem-
poral positions. Fig. 4 shows a schematic structure of the RNN model.

2.4.4. Random forest
Random forest is classified as a supervised machine-learning tech-

nique that may be employed for either classification or regression tasks
(Breiman, 1999). The random forest method, known for its strong
ensemble learning capabilities, holds great potential for a wide range of
applications. Ensemble learning mitigates the problem of overfitting in
individual decision trees by aggregating the predictions of numerous
decision trees, resulting in enhanced accuracy of the overall model.
Random forest methods excel in handling nonlinear connections and

Table 4
Results of one step ahead drought forecasting in Charlottetown. Note that the best model is boldfaced (black).

Model Data R RMSE KGE NSE U95% IA

TVF-RNN Train 0.9752 0.2169 0.0509 0.9469 0.5920 0.9866
Test 0.9634 0.2988 0.6853 0.9250 0.8246 0.9795

TVF-ED-RVFL Train 0.9992 0.0379 0.9988 0.9984 0.1050 0.9996
Test 0.9995 0.0352 0.9986 0.9990 0.0977 0.9997

TVF-SVR Train 0.9983 0.0553 0.9783 0.9965 0.1534 0.9991
Test 0.9951 0.1289 0.7221 0.9860 0.3485 0.9963

TVF-RF Train 0.9717 0.2281 0.9412 0.9042 0.6327 0.9838
Test 0.8421 0.6112 0.6860 0.1370 1.6796 0.8904

TVF-XGBoost Train 0.9970 0.0743 0.9938 0.9826 0.2062 0.9984
Test 0.8979 0.5303 0.7636 − 0.0087 1.4430 0.9192

TVF-RVFL Train 0.9991 0.0389 0.9983 0.9987 0.1078 0.9996
Test 0.9994 0.0386 0.9987 0.9771 0.1069 0.9997

RNN Train 0.9546 0.2892 0.9146 0.9055 0.8021 0.9766
Test 0.9572 0.3235 0.8805 0.9120 0.8979 0.9781

ED-RVFL Train 0.9502 0.2933 0.9291 0.9028 0.8137 0.9739
Test 0.9617 0.2999 0.9155 0.9244 0.8326 0.9797

SVR Train 0.9514 0.2899 0.8690 0.9051 0.8039 0.9743
Test 0.9546 0.3273 0.8113 0.9100 0.9075 0.9753

RF Train 0.9537 0.2833 0.9094 0.9058 0.7857 0.9755
Test 0.9559 0.3232 0.9122 0.7523 0.8949 0.9762

XGBoost Train 0.9634 0.2525 0.9280 0.9343 0.7003 0.9808
Test 0.9549 0.3257 0.9108 0.7804 0.9024 0.9760

RVFL Train 0.9505 0.2924 0.9034 0.9299 0.8110 0.9741
Test 0.9597 0.3080 0.9202 0.8984 0.8553 0.9783
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complicated data, making them superior to other machine learning
models. On the other hand, logistic regression and linear regression
models are more appropriate for issues that are linearly separable or
need linear fitting (Evans et al., 2011). Furthermore, Random Forests
can efficiently manage data with many dimensions, eliminating the need
for a time-consuming feature selection procedure. RFs are well-suited
for real-world issues that include a large number of features and a
huge amount of data (Xue et al., 2024).

2.4.5. XGBoost
XGBoost, short for extreme gradient boosting, is a machine learning

technique that is designed to efficiently boost decision trees. Chen and
Guestrin created it based on gradient-boosting decision trees (GBDT)
(Chen& Guestrin, 2016). XGBoost combines many decision trees, which
are considered weak learners, to create a powerful learner. XGBoost
stands out for its ability to do multi-threaded parallel and distributed
computing. This allows it to execute quickly on datasets with billions of
samples or in memory-limited environments (He et al., 2024).

The XGBoost technique enhances running performance by parallel-
izing the feature selection process for each tree. The samples are selected
using a random sampling strategy, which helps to somewhat mitigate
the problem of overfitting. The GBDT algorithm follows the principle of
training a tree on a training set and sampled labels. This tree is then used
to predict the values of the training set samples. The predicted values are
subtracted from the actual labels to obtain the residuals. These residuals
are then used to train the second tree. Following the training process, the
residual of each individual sample is acquired. Subsequently, the nth
tree is trained using an analogous approach. XGBoost is a more efficient

technique compared to GBDT. It achieves ensemble learning by using
gradient boosting to combine numerous CART submodules (Dong et al.,
2022).

2.5. Goodness-of-fit indices

Performance metrics, generally referred to as error measures, are
fundamental components of evaluation frameworks across multiple
disciplines. The performance of ML models was assessed in the present
work using six distinct assessment metrics: correlation coefficient (R),
root mean square error (RMSE), uncertainty with 95 % confidence level
(U95%), Nash–Sutcliffe efficiency index (NSE), Kling-Gupta efficiency
(KGE), and IA (Willmott indicator of agreement) (Willmott, 1982). The
mathematical formulations of used metrics are as follows.

R =

∑N
i=1
(
SPEIo,i − SPEIo

) (
SPEIfor,i − SPEIfor

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
SPEIo,i − SPEIo

)2 ∑N

i=1

(
SPEIfor,i − SPEIfor

)2

√ (22)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1

(
SPEIo,i − SPEIfor,i

)2

√
√
√
√ (23)

IA = 1 −
∑N

i=1
(
SPEIo,i − SPEIfor,i

)2

∑N
i=1
( ⃒
⃒SPEIo,i − SPEIo

⃒
⃒+
⃒
⃒SPEIo,i − SPEIo

⃒
⃒
)2 (24)

Fig. 10. Scatter plots of observed SPEI12 drought index versus Forecasted drought index in Charlottetown station.
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NSE = 1 −
∑N

i=1
(
SPEIo,i − SPEIfor,i

)2

∑N
i=1
(
SPEIo,i − SPEIo

)2 (25)

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(R − 1)2 + (α − 1)2 + (β − 1)2
√

(26)

U95% = 1.96
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

SD2
e + RMSE

2
√

here SPEIo,i and SPEIfor,i are observed and predicted SPEI values,
respectively. SPEIo and SPEIfor are averaged data of observed and fore-
casted SPEI values. Additionally, the comparative deviations between
the expected and actual values are denoted by the α, where β is the ratio
between the average values projected and observed. When R, NSE, KGE,
and IA are both equal to 1, the model exhibits exceptional performance.
The standard deviation of the difference between the predicted and
actual values is denoted by SD2e .

The correlation coefficient (R) measures the linear relationship be-

tween observed and predicted values, indicating the model’s ability to
capture data trends. RMSE is sensitive to large errors and provides an
intuitive measure of prediction accuracy in the same units as the data.
Uncertainty with 95 % confidence level (U95%) quantifies the range
within which the true predictions lie, offering insights into model reli-
ability. NSE evaluates how well the model predicts compared to the
mean of observed data, with values closer to 1 indicating better per-
formance. KGE combines correlation, bias, and variability to measure
model accuracy comprehensively. Lastly, IA assesses the degree of
agreement between observed and predicted values, with higher values
indicating better performance. Together, these metrics ensure a robust
evaluation of the model, confirming its accuracy, reliability, and
comprehensive predictive capabilities.

2.6. Model development and figuring out model tuning

In this investigation, a new intelligent framework has been invented
for multi-temporal (one, three, six, and twelve months ahead) monthly

Fig. 11. Rug plots of observed and forecasted values of ML Models at Charlottetown station.

M. Karbasi et al.



Expert Systems With Applications 256 (2024) 124900

14

forecasting of the SPEI12 drought index in two Atlantic provinces of
Canada, Prince Edward Island, and New Brunswick. The provided
framework is built on the Lasso regression feature selection EMD-TVF
and Ensemble Deep RVFL schemes, generated in MATLAB 2023 and
Python 3.11 environments. Here, the case study focuses on two critical
Atlantic Canada cities that play a significant role in the country’s agri-
cultural aspects, like potato production, seed production, and agricul-
tural education. The available datasets for monthly SPEI12 are over 43
years (1980–2022). The TVF-EMD preprocessing was performed in
MATLAB, whereas the second preprocessing stage associated with Lasso
feature selection and all the ML models were performed in Python using
Scikit-learn (Pedregosa et al., 2011), Keras (Arnold, 2017), and Ten-
sorFlow (Abadi, 2016) libraries platforms. Here, the first 70 % of the
whole time series of SPEI12 was allocated as the training dataset (30 %),
and the rest of the time series was used to validate the implemented
frameworks.

First, after filling in the missing datasets, the most influential ante-
cedent information (input time lags) for every horizon of SPEI12 was
designated using the autocorrelation function (AFC) and partial auto-
correlation function (PACF) as the most renowned techniques among
hydrological researchers (Jamei et al., 2024). The outcomes of ante-
cedent information related to all the preferred horizons are shown in
Fig. 5. According to the ACF and PACF, the first three lags of SPEI12 in
both cases studied, owing to the higher value of the autocorrelation
coefficient measures (more than 75 %) and temporal dependency, are
qualified as inputs to participate in the second preprocessing stage

(signal decomposition). As the drought indices signal naturally has a lot
of non-stationery and complexities, reaching the permissible and
promising forecasting accuracy just by applying the standalone ML
framework is unlikely and arduous (Jamei et al., 2023). For this reason,
emerging signal decomposition techniques with high mathematical po-
tential have been widely considered for integration with the ML model
in hydrological modeling. Here, the TVF-EMD, a new decomposition
technique, was implemented to reduce the complexity of the SPEI12
signals for each case study (Charlottetown and Fredericton). The most
crucial setting parameters of TVF-EMD are the number of decomposed
IMFs, B-spline order, and stopping criterion, which for all the situations
in modeling are listed in Table 2. Using a trial-and-error procedure, the
number of decomposed IMFs related to both stations was estimated to be
equal to 11. Fig. 6 illustrates the decomposed drought index (SPEI12)
signal for Charlottetown (left side) and Fredericton (right side).

The third stage of preprocessing before the feed ML model is filtering
the redundant sub-sequences from the input feature pool to reduce the
computational cost and enhance the accuracy of the SPEI12 forecasting
process. For this purpose, the Lasso regression feature selection was
adopted to acquire the optimal input feature of four scenarios (horizons)
associated with the Charlottetown and Fredericton stations. Figs. 7 and 8
depict the effective input features of the SPEI12 (t + 1), SPEI12 (t + 3),
SPEI12 (t + 6), and SPEI12 (t + 12) scenarios. In the Charlottetown
station, 21, 22, 20, and 23 sub-components among all 33 pool members
have been merited for the SPEI12 (t + 1), SPEI12 (t + 3), SPEI12 (t + 6),
and SPEI12 (t + 12) scenarios, respectively. In contrast, in the

Table 5
Results of one step ahead drought forecasting in Fredericton. Note that the best model is boldfaced (black).

Model Data R RMSE KGE NSE U95% IA

TVF-RNN Train 0.9941 0.1196 0.7965 0.9852 0.3243 0.9961
Test 0.9712 0.1910 0.9117 0.9402 0.5304 0.9835

TVF-ED-RVFL Train 0.9988 0.0475 0.9983 0.9977 0.1318 0.9994
Test 0.9974 0.0560 0.9945 0.9949 0.1556 0.9987

TVF-SVR Train 0.9998 0.0206 0.9938 0.9996 0.0571 0.9999
Test 0.9938 0.0886 0.9690 0.9871 0.2453 0.9967

TVF-RF Train 0.9824 0.1877 0.9636 0.9396 0.9903 0.5206
Test 0.8704 0.3867 0.7547 0.7910 0.9246 1.0712

TVF-XGBoost Train 0.9989 0.0470 0.9977 0.9929 0.9994 0.1305
Test 0.9354 0.2793 0.8721 0.8657 0.9634 0.7732

TVF-RVFL Train 0.9985 0.0544 0.9969 0.9971 0.9992 0.1509
Test 0.9972 0.0607 0.9940 0.9701 0.9985 0.1658

RNN Train 0.9281 0.3663 0.8989 0.8613 1.0159 0.9616
Test 0.9013 0.3782 0.8325 0.8076 1.0452 0.9467

ED-RVFL Train 0.9282 0.3659 0.8972 0.8616 1.0149 0.9616
Test 0.9046 0.3707 0.8408 0.8151 1.0256 0.9483

SVR Train 0.9354 0.3494 0.8589 0.8738 0.9683 0.9664
Test 0.8889 0.4145 0.8288 0.7688 1.1458 0.9408

RF Train 0.9315 0.3587 0.8670 0.8822 0.9622 0.9948
Test 0.7926 0.5390 0.5236 0.6226 0.8772 1.4621

XGBoost Train 0.9362 0.3473 0.8753 0.8828 0.9646 0.9633
Test 0.8943 0.3926 0.7926 0.7966 0.9418 1.0820

RVFL Train 0.9259 0.3716 0.8572 0.8950 0.9603 1.0308
Test 0.9024 0.3767 0.8090 0.8196 0.9467 1.0399
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Fredericton station, 21, 22, 23, and 26 sub-components have deserved
for the SPEI12 (t + 1), SPEI12 (t + 3), SPEI12 (t + 6), and SPEI12 (t + 12)
scenarios, respectively.

Forecasting hydrological problems using complementary intelligent
frameworks is intrinsically complicated enough that it cannot overlook
the optimal-tuning hyperparameters of ML models. The inaccurate
tuning hyperparameters of ML and particularly deep learning models
might result in disappointing outcomes and can be seriously tarnished
due to applying such tough preprocessing.

Thus, the process above is considered one of the most critical stages
of model development. The grid search tuning scheme is a reliable and
popular scheme that adequately matches Python models. The grid
search tool has been implemented to optimize the SVR, ED-RVFL, and
RNN model hyperparameters. The optimized value of all the model
settings in complementary and standalone frameworks is reported in
Table 3 for each case study. In this regard, the “rbf” kernel function,
epsilon, and gamma are the primary hyperparameters for the SVR
model. The gamma and epsilon ranges, the SVR’s main hyper-
parameters, are acquired (0.05–0.5) and (0.01–0.05), respectively. Also,
the significant hyperparameters related to the RNN are the layer, neuron
number, training algorithm, learning rate value, and epoch. Here, the
range of learning rate and neuron number are computed
(0.0006–0.00225) and (10–20) using the grid search strategy. In
contrast, the TVF-ED-RVFL, as the primary ML model, depends on the
node number (num_nodes), regulation parameter (regular_para), and
the number of layers. According to Table 3, the best optimal ranges of
num_nodes and regular_para fall into the (3–10) and (0.0001–0.1),
respectively. Fig. 9 shows the whole framework of the current study.

3. Results and discussion

The TVF-ED-RVFL, TVF-RVFL, TVF-RF, TVF-XGBoost, TVF-RNN,
TVF-SVR, ED-RVFL, RNN, XGBoost, RF, RVFL, and SVR models were
judged and compared against each other in both train and test periods to
forecast SPEI12 index for Charlottetown and Fredericton stations. A set
of statistical goodness-of-fit metrics, namely R, RMSE, NSE, KGE, IA, and
U95%, and several types of diagnostic plots were also used to examine the
precision of these models.

Table 4 displays the goodness-of-fit values to inspect the standalone
and hybrid TVF-based frameworks to forecast SPIE12 in Charlottetown
and Fredericton stations. The TVF-ED-RVFL model expressed highest
accuracy by means of (R = 0.9992, RMSE= 0.0379, NSE= 0.9984, KGE
= 0.9988, IA = 0.9996, U95% = 0.1050) and (R = 0.9995, RMSE =

0.0352, NSE = 0.9990, KGE = 0.9986, IA = 0.9997, U95% = 0.0977),
following with TVF-RVFL (R = 0.9991, RMSE = 0.0389, NSE = 0.9987,
KGE = 0.9983, IA = 0.9996, U95% = 0.1078), and (R = 0.9994, RMSE =

0.0386, NSE = 0.9771, KGE = 0.9987, IA = 0.9997, U95% = 0.1069) in
training and testing periods to forecast SPEI12. The hybrid TVF-RVFL
and TVF-RNN are reasonably good at forecasting SPEI12 but could not
surpass the TVF-ED-RVFL model. ED-RVFL is better than the SVR, RF,
XGBoost, RVFL, and RNN models in the standalone version of the
models. By comparing the TVF-based hybrid and standalone models, it is
noted that the TVF-based hybrid version of the models, except TVF-RF
and TVF-XGBoost, outperformed the standalone counterparts in fore-
casting SPEI12 in Charlottetown station.

The scatter plots in Fig. 10 inspect the capability of machine learning
models between the forecasted and observed SPEI12 for Charlottetown.

Fig. 12. Scatter plots of observed SPEI12 drought index versus Forecasted drought index in Fredericton station.
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The scatter diagrams supplement the models’ forecasting competence by
embedding the R and RMSE metrics. By inspecting, the TVF-ED-RVFL
model reached the highest accuracy level by gaining R = 0.9995,
RMSE = 0.0352, followed by TVF-RFL, TVF-SVR, and TVF-RNN to
forecast SPEI12. Moreover, the hybrid TVF-based version of the models
demonstrates better precision in terms of scatter plots along with R and
RMSE metrics over the standalone models. The accuracy improvement
can be seen up to 4 % in hybrid models (i.e., specifically in the case of
TVF-ED-RVFL) against standalone counterparts. Hence, Fig. 10 verified
that the TVF-ED-RVFL model is the most accurate SPEI12 forecasting
model at Charlottetown.

Fig. 11 exhibits the Rug-distribution of the predicted SPEI12 gener-
ated by the hybrid and standalone versions of the models vs. the
observed SPEI12. The density distribution of the TVF-ED-RVFL and TVF-
RVFL models for the Charlottetown station appeared to be precisely
overlying with the observed SPEI12 as compared to other models. The
ED-RVFL and RVFL methods portray a relatively better density distri-
bution against observed SPEI12 than the SVR, RF, XGBoost, and RNN

models in the standalone group of models. Fig. 11 further established the
better predictability of the TVF-ED-RVFL in terms of Rug-distribution
plots to forecast SPEI12.

The TVF-ED-RVFL model in Table 5 also accomplished the maximum
accuracy values to forecast SPEI12 at Fredericton station compared to
other machine learning models. The numerical values obtained by the
TVF-ED-RVFL model are displayed as R = 0.9988, 0.9974; RMSE =

0.0475, 0.0560; NSE = 0.9977, 0.9949; KGE = 0.9983, 0.9945; IA =

0.9994, 0.9987; and U95% = 0.1318, 0.1556 in both training and testing
periods to forecast SPEI12. Moreover, the TVF-RVFL and TVF-SVR are
also reasonably good at acquiring a second position, while TVF-RNN
comes in fourth position in forecasting SPEI12. TVF-XGBoost and TVF-
RF ranked fifth and sixth, respectively. It is again true that the hybrid
version of the models surpasses the standalone models for better accu-
racy. However, the TVF-ED-RVFLmodel generally proved to be a precise
SPEI12 performer for Fredericton station.

The scatter plots for Fredericton station in Fig. 12 discovered the
model evaluation based on the hybrid and standalone models between

Fig. 13. Rug plots of observed and forecasted values of ML Models at Fredericton station.
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the observed and forecasted SPEI12 in combination with R and RMSE
values. The TVF-ED-RVFL expressed higher accuracy to forecast SPEI12
with R = 0.9974, and RMSE = 0.0560 as compared to TVF-RVFL (R =

0.9972, RMSE = 0.0607), TVF-SVR (R = 0.9938, RMSE = 0.0886) and
TVF-RNN (R = 0.9712, RMSE = 0.1910). The standalone models are

relatively low in forecasting SPEI12 at Fredericton station as compared to
their hybrid versions. The TVF-ED-RVFL yet again offered improved
accuracy in forecasting SPEI12 compared to other models.

The Rug-Histogram plot in Fig. 13 exhibits the forecasting SPEI12 for
Fredericton station generated by the TVF-ED-RVFL, TVF-SVR, TVF-RNN,

Fig. 14. Box plots of Residual values for Charlottetown and Fredericton stations.

Fig. 15. Taylor diagrams for Charlottetown and Fredericton stations.
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TVF-RVFL, TVF-XGBoost, TVF-RF, ED-RVFL, RVFL, XGBoost, RF, SVR,
and RNN models. The distribution of the TVF-ED-RVFL and TVF-RVFL
models appeared to be accurate, with the observed SPEI12 overlapping
with the density compared to other benchmarking models. Again, the
hybrid models are better in relation to the standalone models by pro-
ducing the same density distributions. Thus, Fig. 13 confirms that the
TVF-ED-RVFL performs better for the Fredericton station than other
benchmarking models.

The residual box plots in Fig. 14 deliver a more concrete and
conclusive comparison of the models’ forecasting ability for both
Charlottetown and Fredericton stations along with the interquartile
range (IQR) using the hybrid TVF-ED-RVFL, TVF-SVR, TVF-RNN, ED-
RVFL, SVR and RNNmodels to forecast SPEI12. It is evident that the TVF-
ED-RVFL model offered more accurate forecasts with lower residual box
plot distribution and IQR = 0.049 (Charlottetown station) and 0.078
(Fredericton stations) to forecast SPEI12, followed by TVF-RVFL model.
The other models are relatively lower in forecasting SPEI12 for both
stations based on residual box plots and IQR. Thus, TVF-ED-RVFL
models attain precise SPEI12 forecasting at both Charlottetown and
Fredericton stations.

Fig. 15 presented the Taylor diagram to assess the efficiency based on
the observed and forecasted SPEI12 using TVF-ED-RVFL, TVF-SVR, TVF-
RNN, ED-RVFL, SVR, and RNN for both Charlottetown and Fredericton
stations. Taylor diagrams are very useful for comprehensively evalu-
ating the models’ comparability, centered on standard deviation and
correlation coefficient. For the Charlottetown station, the TVF-ED-RVFL

model positioned closely to the observed SPEI12 by registering a corre-
lation coefficient between 0.99 and 1 with a standard deviation (of 1.0
to 1.2). This gives the TVF-ED-RVFLmodel the first ranking in the Taylor
diagram, and TVF-SVR achieved the second-ranking. The hybrid models
are rationally satisfactory as compared to the standalone models, but
their forecasting accuracy cannot be exceeded. The standalone Ed-RVFL,
SVR, and RNNmodels are positioned far away from the observed SPEI12.
The TVF-ED-RVFL model again falls in close proximity to observed
SPEI12 for Fredericton station in relation to other comparing models to
forecast SPEI12. Therefore, the TVF-ED-RVFL model outperformed
against comparing models at both stations to forecast SPEI12.

3.1. Multistep ahead forecasting

Because of the better performance of TVF-ED-RVFL and ED-RVFL
models in single step ahead drought forecasting in both stations, these
models were used to forecast multistep ahead drought forecasting. Ta-
bles 6 and 7 demonstrate the multistep ahead, i.e., 1-, 3-, 6-, and 12-
months SPEI12 forecasting in Charlottetown and Fredericton stations
to measure the performance of the TVF-ED-RVFL and ED-RVFL models.
For Charlottetown station, the TVF-ED-RVFL seemed to be the highest
precise model for all forecasting horizons in terms of R, RMSE, NSE,
KGE, IA, and U95% metrics when comparing against the single/stand-
alone ED-RVFL model (Table 6). A significant accuracy improvement
can be noted by the TVF-ED-RVFL model for all 1-, 3-, 6-, and 12-month
SPEI12 forecasting in Charlottetown station, which confirms the

Table 6
Results of Multi steps ahead drought forecasting for Charlottetown station.

Model Steps Ahead Data R RMSE NSE KGE IA U95%

Single 1 Train 0.9502 0.2933 0.9028 0.9291 0.9739 0.8137
Test 0.9617 0.2999 0.9244 0.9155 0.9797 0.8326

3 Train 0.8633 0.4749 0.7453 0.8040 0.9223 1.3172
Test 0.8545 0.5721 0.7282 0.6666 0.9150 1.5869

6 Train 0.7109 0.6647 0.5053 0.5839 0.8122 1.8436
Test 0.6083 0.8710 0.3622 0.3051 0.7481 2.4148

12 Train 0.3908 0.8615 0.1526 0.1301 0.5015 2.3895
Test − 0.2229 1.2405 − 0.2935 − 0.6235 0.1687 3.4354

TVF-based 1 Train 0.9992 0.0379 0.9984 0.9988 0.9996 0.1050
Test 0.9995 0.0352 0.9990 0.9986 0.9997 0.0977

3 Train 0.9926 0.1147 0.9852 0.9894 0.9963 0.3182
Test 0.9924 0.1485 0.9815 0.9315 0.9956 0.4123

6 Train 0.9854 0.1608 0.9710 0.9768 0.9926 0.4460
Test 0.9833 0.2028 0.9654 0.9696 0.9915 0.5633

12 Train 0.9578 0.2699 0.9168 0.9209 0.9773 0.7486
Test 0.9242 0.4184 0.8529 0.8441 0.9603 1.1612

Table 7
Results of multi steps ahead drought forecasting for Fredericton station.

Model Steps Ahead Data R RMSE NSE KGE IA U95%

Single 1 Train 0.9282 0.3659 0.8616 0.8972 0.9616 1.0149
Test 0.9046 0.3707 0.8151 0.8408 0.9483 1.0256

3 Train 0.7763 0.6185 0.6026 0.6821 0.8638 1.7155
Test 0.6379 0.6374 0.3338 0.4772 0.7729 1.7392

6 Train 0.5649 0.8064 0.3191 0.3815 0.6845 2.2368
Test 0.4462 0.7895 − 0.0220 0.0363 0.6028 2.0814

12 Train 0.2010 0.9253 0.0393 − 0.1531 0.2310 2.5666
Test − 0.0024 1.0361 − 0.7605 − 0.7933 0.4424 2.5690

TVF-based 1 Train 0.9988 0.0475 0.9977 0.9983 0.9994 0.1318
Test 0.9974 0.0560 0.9949 0.9945 0.9987 0.1556

3 Train 0.9917 0.1258 0.9835 0.9876 0.9958 0.3491
Test 0.9846 0.1369 0.9693 0.9681 0.9921 0.3801

6 Train 0.9784 0.2020 0.9573 0.9655 0.9889 0.5603
Test 0.9569 0.2321 0.9117 0.8811 0.9753 0.6413

12 Train 0.8285 0.5294 0.6856 0.7369 0.8968 1.4684
Test 0.8293 0.5118 0.5705 0.4143 0.8389 1.3483
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suitability of the TVF decomposition method with ED-RVFL (Table 6).
Similarly, the TVF-ED-RVFL displays better accuracy in Table 7 to
forecast 1-, 3-, 6-, and 12-month SPEI12 for Fredericton station as
compared to the ED-RVFL model. Here, it is to be noted that the TVF-ED-

RVFL model performance is getting lower in the long term (i.e., 12
months) ahead of SPEI12 forecast as compared to the 1-, 3-, and 6-
months ahead for Fredericton station. But overall, the TVF-ED-RVFL
achieves better accuracy as compared to the ED-RVFL to forecast 1-,

Fig. 16. Scatter plots of Multistep Ahead Forecasting of SPEI12 for Charlottetown and Fredericton stations.
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3-, 6-, and 12-months ahead SPEI12 for both Charlottetown and Fred-
ericton stations (Tables 6 and 7).

The scatter plots in Fig. 16 characterize the observed and forecasted
SPEI12 of 1-, 3-, 6-, and 12-months ahead generated by the TVF-ED-RVFL
model for Charlottetown and Fredericton stations. Besides, the R
grouping with the RMSE metric was also displayed in Fig. 16. The TVF-
ED-RVFL model at 1-, 3-, 6-, and 12 months ahead to forecast SPEI12
exhibited good accuracy between the observed and forecasted values
along with higher R and lower RMSE magnitudes in relation to Char-
lottetown station. The outcomes are also similar in the case of Freder-
icton station, which forecasts 1-, 3-, 6-, and 12 months ahead of SPEI12.
The TVF-ED-RVFL model forecast is slightly decreased for 12 months

ahead of SPEI12 in the scatter diagram as compared to 1-, 3-, and 6-
months for both stations, and this also coincides with Tables 6 and 7.
Thus, Fig. 16 established that TVF-ED-RVFL model is better for fore-
casting multistep ahead SPEI12.

The time-series plots in Fig. 17 compared the annual trends from
2012 to 2022 using TVF-ED-RVFL and ED-RVFL and observed 3-, 6-, and
12-months ahead SPEI12 for Charlottetown and Fredericton stations. The
TVF-ED-RVFL model clearly attained better accuracy in terms of parallel
and consistent trends against the observed SPEI in 3-, 6-, and 12-months
ahead forecast horizons as compared to the ED-RVFL model for Char-
lottetown station. The TVF-ED-RVFL produced more consistent trends
plot at 3-months, followed by 6-months, and 12-months ahead SPEI12
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Fig. 17. Time series of observed and multistep ahead Forecasted values of SPEI12 for Charlottetown and Fredericton stations.
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forecasting. This further established that the forecasting accuracy was
higher for the short and medium-term (3-, and 6-months) SPEI12 as
compared to 12-months ahead. Similarly, the TVF-ED-RVFL model
shows more consistency in trends with observed SPEI12 for the Freder-
icton station.

3.2. Discussion

The current paper shows improved precision compared to conven-
tional approaches in multistep-ahead drought forecasting in Eastern
Canada using TVF-EMD, LASSO feature selection, and Ensemble Deep
RVFL. Our work includes innovative preprocessing and modeling
methods, setting it apart from existing research on drought prediction

using ML and DL.
The decomposition methods are widely used in time series analysis

especially for the nonstationary and noisy data, for instance drought
indices. TVF-EMD application in this research was central since it
facilitated the breakdown of the SPEI12 values and helped in pattern and
trend identification from the collected information. This step signifi-
cantly improves the next machine learning models to be used. For
example, Belayneh et al. (2014) and Özger et al., (2020) applied wavelet
transform and EMD for drought forecasting. Also, Karbasi et al. (2023)
have used discrete wavelet transform and empirical wavelet transform
(EWT) to forecast drought in Iran. Their results showed better perfor-
mance of EWT-based models.

There are many applications of EMD and its extensions, including
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Fig. 17. (continued).
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TVF-EMD, in a large number of fields in which time series are analyzed.
For instance, Jamei et al. (2023) adopted TVF-EMD to improve the
exactness of the forecast of the PM2. 5 and the levels of PM 10 they prove
the effectiveness of the decomposition techniques dealing with the
elaboration of the detailed analysis of the actual datasets. Karbasi et al.
(2023) used a combination of TVF-EMD and bidirectional RNN to
forecast reference evapotranspiration, and their results showed that
TVF-based models had higher accuracy.

Furthermore, the investigations carried out by Abbes et al. (2023) &
Kadam et al. (2024) hypothesize that DL models, including LSTM and
GRU are more effective compared to other ML methods in drought
forecasting. Our results are consistent with this trend since the tested
deep learning model, namely the Ensemble Deep RVFL model, was
found to be more accurate in terms of forecasting than the selected
benchmark models, which include SVR, Simple RVFL, RNN, XGBoost,
and Random Forest.

For future studies, the following suggestions are recommended.

• The comparison with more advanced signal decomposition tech-
niques can be adopted to solve the non-stationarity and non-linearity
issues of mode mixing. Therefore, multivariate variational mode
decomposition (MVMD) (ur Rehman & Aftab, 2019) and multivar-
iate empirical mode decomposition (MEMD) (Rehman & Mandic,
2010) can be the potential approaches against the EMD-TVF method.

• The black-box representation of deep learning limits and confines
their ability in terms of explainability. To overcome this, the
explainable AI techniques such as Local Interpretable Model-
Agnostic Explanations (LIME) (Mishra et al., 2017) and Shapley
Additive explanations (SHAP) (Shapley, 1953) can be integrated into
the modeling framework for better understanding.

• Another aspect that enriches the modeling strategy is the hybridi-
zation of the physics-based models to illustrate the physical
overview.

• The Bayesian Model Averaging (Sloughter et al., 2010) and boot-
strapping (Tiwari & Chatterjee, 2011) techniques are widely
considered to solve the underlying uncertainties of the model and
can be adopted in future work.

4. Conclusion

This paper proposed a novel modeling framework to forecast short-,
medium- and long-term drought index (i.e., SPEI12) using EMD-TVF and
Ensemble Deep RVFL to create EMD-TVF-ED-RVFL for Charlottetown
and Fredericton stations in Canada. The EMD-TVF method decomposes
the 1-, 3-, 6-, and 12-months SPEI12 data into IMF signals. Next, the most
significant IMFs were determined by the lasso regression feature selec-
tion algorithm. Finally, the selected IMFs were incorporated as inputs
into the TVF-ED-RVFL model to forecast 1-, 3-, 6-, and 12-months ahead
of SPEI12. The results confirmed that the EMD-TVF-ED-RVFL model
exhibits higher precision to forecast multistep ahead SPEI12 compared to
the comparing models. The hybrid EMD-TVF-based models were higher
in accuracy than the standalone/single version of the models.

The EMD-TVF-ED-RVFL model acquired the highest precision to
forecast 1-, 3-, 6-, and 12-months ahead of SPEI12 for both Charlotte-
town and Fredericton stations. For example, to forecast SPEI12 (i.e., 1-
month), the EMD-TVF-ED-RVFL model in testing period reported the
goodness-of-fit metrics (R = 0.9995, RMSE = 0.0352, NSE = 0.9990,
KGE = 0.9986, IA = 0.9997, U95% = 0.0977)-Charlottetown station and
[R = 0.9974; RMSE = 0.0560; NSE = 0.9949; KGE = 0.9945; IA =

0.9987; and U95% = 0.1556]- Fredericton station.
As a future recommendation, satellite-derived input data can be used

in the proposed EMD-TVF-ED-RVFL model to forecast the SPEI index,
further enhancing accuracy. Moreover, the satellite-derived inputs
provide an alternative to the ground-based data, which is sometimes
hard to attain due to complexity and financial burden. Due to the recent
changes in climates, the impacts of droughts are frequent and severe;

therefore, synoptic-scale climate mode indices can be used to provide in-
depth analysis and enhance the model’s accuracy. Moreover, other
meteorological and atmospheric inputs (i.e., temperature, precipitation,
humidity, vapor pressure, solar radiations, etc.) can be used in the
proposed EMD-TVF-ED-RVFL model to forecast the SPEI index. The
EMD-TVF-ED-RVFL model can be applied to agriculture, the environ-
mental and hydrology sectors, and renewable and sustainable energy
areas to broaden the scope in the future.
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