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Abstract

This paper studies a problem of robust rule-based classification, i.e. making

predictions in the presence of missing values in data. This study differs from

other missing value handling research in that it does not handle missing values

but builds a rule based classification model to tolerate missing values. Based on a

commonly used rule-based classification model, we characterise the robustness of

a hierarchy of rule sets,k-optimal rule sets with the decreasing size corresponds

to the decreasing robustness. We build classifiers based onk-optimal rule sets and

show experimentally that they are more robust than some benchmark rule-based

classifiers, such as C4.5rules and CBA. We also show that the proposed approach

is better than two well known missing value handling methods for missing values

in test data.

keywords: Data mining, rule, classification, robustness.
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1 Introduction

Automatic classification has been a goal for machine learning and data mining, and

rule-based methods are widely accepted due to their easy understandability and inter-

pretability. In the last twenty years, rule-based methods have been extensively studied,

for example, C4.5rules [20], CN2 [7, 6], RIPPER [8], CBA [16], CMAR [15], and

CPAR [23].

Most rule-based classification systems make accurate and understandable classifi-

cations. However, when a test data set contains missing values, a rule-based classifica-

tion system may perform poorly because it may not be robust. We give the following

example to show this.

Example 1 Given a well-known data set listed in Table 1, a decision tree (e.g. ID3

[19] can be constructed as in Figure1.

No˙ Outlook Temperature Humidity Wind Play

1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

Table 1:A training data set

The following 5 rules are from the decision tree.

1. If outlook is sunny and humidity is high, then do not play tennis.

2. If outlook is sunny and humidity is normal, then play tennis.

2



Outlook

Sunny RainOvercast

High Normal Strong Weak

Humidity Wind

No Yes No Yes

Yes

Figure 1: A decision tree from the training data set

3. If outlook is overcast, then play tennis.

4. If outlook is rain and wind is strong, then do not play tennis.

5. If outlook is rain and wind is weak, then play tennis.

We note that all rules include the attribute outlook. Suppose that the outlook informa-

tion is unknown in a test data set. This rule set makes no predictions on the test data

set, and hence is not robust. It is possible to have another rule set that makes some

predictions on the incomplete test data set.

In real world applications, missing values in data is very common. In many cases,

missing values are unrecoverable due to unrepeatable procedures or high cost of ex-

periments or surveys. Therefore, a practical rule-based classification system has to be

robust for missing values.

One common way to deal with missing values is to estimate and replace them [18],

called imputation. Some typical imputation methods are: mean imputation, predic-

tion imputation, and hot deck imputation [3]. Imputation methods are dominating in

classification. For categorical attributes, the following three imputation methods are

commonly used: most common attribute value substitution [7], local most common

attribute value substitution [17], and multiple attribute value substitution [20]. In a

recent study [3], k-nearest neighbor substitution method is shown as the most accurate
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imputation method.

In this paper, we discuss an alternative approach to deal with missing values. In-

stead of imputing missing values, we propose to build robust rule based classification

models to tolerate missing values. An imputation method is to “treat” missing val-

ues, but the proposed method is to make a system “immunise” from missing values to

certain degree.

Treating missing values can be effective when users know the data very well, but

may lead to misleading predictions when a wrong value is imputed. For example, when

a missing value female is imputed by value male, misleading prediction on the record

may occur. In the worst case, the errors of a classification model and the errors of

an imputation method are additive. In contrast, the proposed method does not impute

missing values, and hence does not incur errors from the missing value estimation.

We will discuss how to build robust rule-based classifiers that tolerate missing

values. A rule based classifier built on our method has been shown to be more accurate

than two benchmark rule based classifications systems, C4.5rules [20] and CBA [16]

on incomplete test data sets. We also show that the classifier is more accurate than

C4.5rules plus two imputation methods respectively. A preliminary study appeared

in [14], and this is a comprehensive report with a significant extension.

This paper primarily characterises the relationships between the size of rule sets

and their tolerative capability for missing values in test data. The theoretical conclu-

sions are very useful for selecting right rule sets to build rule based classifiers. The

paper also shows that building robust classifiers is a good alternative to handling miss-

ing values.

The rest of the paper is organised as follows: Section2 defines class association

rules and their accuracies. Section3 defines the optimal rule set and discusses its

robustness. Section4 definesk-optimal rule sets and discusses their robustness. Sec-

tion 5 presents two algorithms to generatek-optimal rule sets. Section6 demonstrates
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k-optimal rule set based classifiers are more robust than some benchmark rule-based

classifiers. Section7 concludes the paper.

2 Class association rules and accuracy estimation

In this section, we define class association rules and discuss methods to estimate their

accuracy.

Note that rules used to the final classifier are only a very small portion of a class

association rule set. I strongly argue that the optimal class association rule set [13]

should be a proper base to build rule based classifiers. In this paper, we start with the

complete class association rule set and then move to the optimal class association rule

set to make the connection and distinction between our work and other works clear.

We use association rule concepts [1] to define class association rules. Given a

relational data setD with n attributes, a record ofD is a set of attribute-value pairs,

denoted byT . An attribute is dedicated to class labels. Or every tuple has one class.

A patternis a set of attribute-value pairs. Thesupportof a patternP is the ratio of the

number of records containingP to the number of records in the data set, denoted by

supp(P ). An implicationis a formulaP → c, whereP is a pattern andc is a class. The

support of the implicationP → c is supp(P ∪ c). The confidence of the implication is

supp(P ∪ c)/ supp(P ), denoted byconf(P → c). Thecovered setof the rule is the set

of all records containing the antecedent of the rule, denoted bycov(P → c). We say

A → c is aclass association ruleif supp(A → c) ≥ σ andconf(A → c) ≥ φ, where

σ andφ are the minimum support and confidence respectively.

Definition 1 The complete class association rule set is the set of all class association

rules that satisfies the minimum support and the minimum confidence.

Given a data setD, the minimum supportσ and the minimum confidenceφ, the com-

plete class association rule set is denoted byRc(σ, φ), or simplyRc.
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Notations Meanings Defined in
Rc the complete class association rule set Section2
Ropt the optimal class association rule set Section3.1
Rk ak-optimal class association rule set Section4

Rmin whenk = 0 Section4
cond(r) andcons(r) the antecedent (conditions) and the consequence of ruler Section3.1

supp(A → c) the support of ruleA → c Section2
conf(A → c) the confidence of ruleA → c Section2
acc(A → c) an estimated accuracy of ruleA → c Section2
cov(A → c) the cover set of ruleA → c Section3.1

Table 2:Some frequently used notations in the paper

We list some frequently used notations of this paper in Table2 for the fast referral.

In classification study, the basic requirements of a rule are accuracy and coverage.

More specifically, a rule covers few negative records in the training data set and identi-

fies certain number of records that have not been identified by other rules. The formal

definition of “identify” will appear in the next section. A classification rule genera-

tion algorithm usually uses implicit minimum accuracy and support requirements. For

example, the accuracy of a classification rule is generally very high, and those small

coverage rules are more likely to be removed in the post pruning. Hence the minimum

thresholds in the above definition should not cause problems in practice.

In practice, predictions are made by a classifier. A classifier is a sequence of rules

sorted by decreasing accuracy and tailed by a default prediction. In classifying an

unseen record without class information, the first rule that matches the case classifies

it. If no rule matches the record, the default prediction classifies it.

An estimation of rule accuracy is important since it directly affects how rules are

used in the prediction. There are a few ways to estimate rule accuracy. Laplace ac-

curacy is a widely used estimation [6]. We rewrite the Laplace accuracy in terms of
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support and cover set as follows.

Laplace(A → c) =
supp(A → c)× |D|+ 1

| cov(A → c)|+ |C|

where|C| is the number of all classes,supp(A → c) × |D| is the number of correct

predictions made by the rule on the training data and| cov(A → c)| is the number of

reords containing the antecedent of the rule in the training data.

Quinlan used the pessimistic error rate in rule pruning [20]. We present the pes-

simistic error as the pessimistic accuracy in the following.

Pessimistic(A → c) = 1−
f + z2

2N
+ z

√
f
N
− f2

N
+ z2

4N2

1 + z2

N

wheref = 1 − conf(A → c), N = | cov(A → c)|, andz is the standard deviation

corresponding to a statistical confidencec, which forc = 25% is z = 0.69.

Other interestingness metrics [21], such as, Chi-square test, can be used to compare

predictive power of association rules. Our intention is not to discuss which estimation

is the best in this paper. The accuracy of a rule can be estimated by a means. We

represent the accuracy of ruleA → c asacc(A → c). We used Laplace accuracy in

our experiments.

Usually, the minimum confidence of a class association rule is high so it naturally

excludes conflicting rules, such asA → y andA → z, in a complete class association

rule set.

We will consistently discuss class association rules in the rest of the paper. For the

sake of brevity, we omit class association in the following discussions.
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3 The optimal rule set and its robustness

3.1 Ordered rule-based prediction model and the optimal rule set

In this section, we first formalise the procedure of rule-based classification and then

define the optimal classification rule set.

We start with some notations. For a ruler, we usecond(r) to represent its an-

tecedent (conditions), andcons(r) to denote its consequence. Given a test recordT ,

we say ruler coversT if cond(r) ⊆ T . The set of records that are covered by a rule

r is called the cover set of the rule, denoted bycov(r). A rule can make a prediction

on a covered record. Ifcons(r) is the class ofT , then the rule makes a correct predic-

tion. Otherwise, it makes a wrong prediction. Let theaccuracyof a prediction equal

the estimated accuracy of the rule making the prediction. If a rule makes the correct

prediction on a record, then we say the ruleidentifiesthe record.

There are two types of rule-based classification models.

1. Ordered rule-based classifiers: rules are organised as a sequence, e.g. in the

descending accuracy order. When classifying a test record, the first rule cover-

ing the record in the sequence makes the prediction. This sequence is usually

tailed by a default class (prediction). When there is no rules in the sequence

covering the test record, the record is predicted to belong to the default class.

C4.5rules [20] and CBA [16] employ this model.

2. Unordered rule-based classifiers: rules are not organised in a sequence and all

(or some) rules covering a test record participate in the determination of the class

of the record. A straightforward way is to adopt the majority vote of rules like in

CPAR [23]. A more complex way is to build a model to compute the combined

accuracy of multiple rules. Improved CN2 [6] and CMAR [15] employ this

method.
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We do not consider committee prediction, e.g. Bagging [5] which use multiple

classifiers.

The first model is simple and effective. It makes a prediction based on the maxi-

mum likelihood. This is because that rules with higher accuracy usually precede rules

with lower accuracy and the accuracy approximates the conditional probability when

the data set is large.

There is no uniform form for the second model. Methods of voting vary in different

proposals. An important condition for using the second model, independence of rules,

is normally not satisfied. For example, in a complete class association rule set, the

conditions of most rules are correlated. Further, voting may be bias against small

distributed classes.

In this paper, we employ the ordered rule-based classification model. We formalise

rule order as follows.

Definition 2 Ruler1 precedes ruler2 if 1) acc(r1) > acc(r2), 2) acc(r1) = acc(r2)

and supp(r1) > supp(r2), or 3) acc(r1) = acc(r2), supp(r1) = supp(r2) and

| cond(r1)| < | conf(r2)|.

In the above definition, we take the support and the length of a rule into considera-

tion because they have been minor criteria for sorting rules in practice, such as in [16].

Building a classifier is more complicated than this. We use this simple model to draw

some theoretical conclusions, and then verify the conclusions by experiments.

A predictive rule is defined as follows.

Definition 3 Let T be a record andR be a rule set. Ruler in R is the predictive rule

for T if r coversT and is the most preceding rule among all rules coveringT .

For example, both ruleab → z (acc = 0.9) and ruled → y (acc = 0.6) cover

record{abcde}. Ruleab → z is the predictive rule for the record but ruled → y is

not.
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As both the accuracy and the support are real numbers, in a large data set it is

very unlikely that a record is covered by two rules with the same accuracy, support,

and length. Therefore, it is a reasonable assumption that each record has a unique

predictive rule for a given data set and a rule set, and we use this assumption in the rest

of paper.

In the ordered rule-based classification model, only one rule makes prediction on a

record, and hence we have the following definition.

Definition 4 Let the prediction of rule set R on record T be the same as the prediction

of the predictive rule inR on T.

For example, ruleab → z (acc = 0.9) predicts record{abcdef} to belong to class

z with the accuracy of 90%. Rule set{ab → z (acc = 0.9), d → y (acc = 0.6)}
predicts record{abcdef} to belong to classz with the accuracy of 90% since rule

ab → z (acc = 0.9) is the predictive rule.

Some rules in the complete rule set never make predictions on any records, and we

exclude them in the following.

Firstly we discuss how to compare predictive power of rules. We user2 ⊂ r1 to

representcond(r2) ⊂ cond(r1) andcons(r2) = cons(r1). We callr2 is more general

thanr1, or r1 is more specificthanr2. A rule covers a subset of records covered by one

of its more general rules.

Definition 5 Ruler2 is stronger than ruler1 if r2 ⊂ r1 andacc(r2) ≥ acc(r1). In a

complete rule setRc, a rule is (maximally) strong if there is not another rule inRc that

is stronger than it. Otherwise, the rule is weak.

Only strong rules make predictions in the complete rule set. For example, rule

ab → z is weak becauseacc(ab → z) < acc(a → z). Whenever ruleab → z covers a

record, rulea → z does. Since rulea → z precedes ruleab → z, ruleab → z never
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has a chance to be a predictive rule. Therefore, we have the following definition to

exclude weak rules likeab → z.

Definition 6 The set of all strong rules in the complete rule set is the optimal rule set,

denoted byRopt.

A related concept of optimal rule set is non-redundant rule set. A definition of

non-redundant association rule sets is presented by Zaki [24] and a non-redundant

classification rule set is called an essential classification rule set [2]. The definition of

essential classification rule sets is more restrictive than the definition of optimal rule

sets. A more specific rule is excluded from an essential rule set only when both its

support and its confidence are the identical to those of one of its more general rules.

The definition of the optimal rule definition follows the observation that a more specific

rule with accuracy lower than that of one of its more general rule does not participate

in building an ordered rule based classifier. An optimal rule set is a subset of essential

rule set. More detailed discussions on the relationships between optimal rule sets and

non-redundant rule sets is characterised in my other work [12].

3.2 Robustness of the optimal rule set

In this section, we first define robustness of rule sets and then discuss the robustness

of the optimal rule set.

We use a concept of robustness to characterise the capability of rule set making

predictions on incomplete data sets. We say that a rule set gives any prediction on a

record with the accuracy of zero when it cannot provide a prediction on the record.

Definition 7 LetD be a data set, andR1 andR2 be two rule sets forD. R2 is at least

as robust asR1 if, for all T ′ ⊆ T andT ∈ D, predictions made byR2 are at least as

accurate as those byR1.
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For example, letR1 = {ab → z (acc = 0.9)} andR2 = {ab → z (acc = 0.9), d →
z (acc = 0.8)}. For record{abcde}, both rule sets predict it to belong to classz with

the same accuracy of 90%. Whenb is missed from the record,R2 predicts it to belong

to classz with the accuracy of 80% whereasR1 predicts it to belong to classz with

the accuracy of 0%. Thus,R2 is more robust thanR1.

For a large data set, estimated accuracies of rules approach true accuracies of rules.

Consider that rule setR2 is more robust than rule setR1. For a complete test data set

both rule sets make predictions with the same accuracy. For an incomplete test data

set, rule setR2 makes predictions at least as accurately as rule setR1.

Ideally, we would like to have a rule set to make predictions on any incomplete

record, but it is impossible since there may not be a rule inRc covering every incom-

plete record. The robustness of a rule set is limited by rules inRc. On the other hand,

this rule set is unnecessarily large. The optimal rule set is a smaller equivalence.

Theorem 1 For any complete class association rule setRc, the optimal classification

rule setRopt is the smallest rule set in size that is as robust asRc.

Proof All weak rules excluded by the optimal rule set cannot be predictive rules in

any cases because they are ordered lower and more specific than their corresponding

strong rules that exclude them. On the other hand, every strong rule is a potentially

predictive rule. When an incomplete record contains only the antecedent of a strong

rule, the strong rule is the predictive rule for the record. Therefore, both the complete

rule set and the optimal rule set have the same set of predictive rules, and hence the

optimal rule set is as robust as the complete rule set.

Now we prove the minimum property. Suppose that we may omit a ruler from

the optimal rule setRopt and the new rule setR′
o = Ropt \ r is still as robust as the

complete rule setRc. Consider a test record that is covered only by ruler. By the

definition of the optimal rule set, there is no rule inR′
o covering the record or at most
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there are some covering rules with a lower accuracy thanr. Hence, the prediction

made byR′
o cannot be as accurate as that fromRopt. As a result,R′

o is not as robust as

Rc, and this contradicts the assumption.

The theorem is proved.¤

This theorem means that no matter what an input record is (complete or incom-

plete) the optimal rule set gives the same prediction on the record as the complete rule

set with the same accuracy.

Let us look at differences between the complete rule set and the optimal rule set

through an example.

Example 2 For the data set in Example1, there are21 rules in the complete rule set

when the minimum support is2/14 and the minimum confidence as80%. However,

there are only 10 rules in the optimal rule set, and they are listed as follows. We take

confidence as accuracy in this example for easy illustration since otherwise an accu-

racy estimation method requires a calculator. (Numbers in parentheses are support

and accuracy, respectively.)

1. If outlook is sunny and humidity is high, then do not play tennis.(3/14, 100%)

2. If outlook is sunny and humidity is normal, then play tennis.(2/14, 100%)

3. If outlook is overcast, then play tennis.(4/14, 100%)

4. If outlook is rain and wind is strong, then do not play tennis.(2/14, 100%)

5. If outlook is rain and wind is weak, then play tennis.(3/14, 100%)

6. If humidity is normal and wind is weak, then play tennis. (3/14, 100%)

7. If temperature is cool and wind is weak, then play tennis. (2/14, 100%)

8. If temperature is mild and humidity is normal, then play tennis. (2/14, 100%)

9. If outlook is sunny and temperature is hot, then do not play tennis. (2/14, 100%)

10. If humidity is normal, then play tennis. (6/14, 87%).

Since the complete rule set is larger, we do not show it here. However, to demon-
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strate why some rules in the complete rule set are not predictive rules, we list 7 rules

including attribute value overcast as follows:

3. if outlook is overcast, then play tennis.(4/14, 100%)

11. if outlook is overcast and temperature is hot, then play tennis.(2/14, 100%)

12. if outlook is overcast and humidity is high, then play tennis.(2/14, 100%)

13. if outlook is overcast and humidity is normal, then play tennis.(2/14, 100%)

14. if outlook is overcast and wind is strong, then play tennis.(2/14, 100%)

15. if outlook is overcast and wind is weak, then play tennis.(2/14, 100%)

16. if outlook is overcast and temperature is hot and wind is weak, then play tennis.

(2/14, 100%)

Only rule 3 is included in the optimal rule set out of the above7 rules. The other6

rules are not predictive rules since they follow rule3 in the rule sequence defined by

Definition 2 and are more specific than rule3. Therefore, they cannot be predictive

rules.

In the above example, the size difference between the complete rule set and the

optimal rule set is not very significant because the underlying data set is very small. In

some data sets, however, the optimal rule set can be less than 1% of the complete rule

set.

Even though the optimal rule set is significantly smaller than the complete rule

set, it is still much larger than a traditional classification rule set. Some rules in the

optimal rule set are unnecessary when the number of missing attribute values is limited.

Therefore, we show how to reduce the optimal rule set for a limited number of missing

values in the following section.
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4 k-optimal rule sets and their robustness

In this section, we further simplify the optimal rule set tok-optimal rule sets for test

data sets with up tok missing attribute values. We then discuss properties ofk-optimal

rule sets.

We first define thek-incomplete data set to be a new data set with exactlyk missing

values from every record of the data set. We usek-incomplete data sets as test data

sets.

Definition 8 LetD be a data set withn attributes, andk ≥ 0. Thek-incomplete data

set ofD is Dk = {T ′ | T ′ ⊂ T, T ∈ D, |T | − |T ′| = k}. Conveniently,Dk consists of

a set of
(

n
k

)
data sets where each omits exactlyk attributes (columns) fromD.

For example, the 1-incomplete data set contains a set ofn data sets where each

omits one attribute (column) fromD. Note that the 0-incomplete data set ofD is D

itself.

Let us represent the optimal rule set in terms of incomplete data sets.

Lemma 1 The optimal rule set is the set of predictive rules for records in the union of

k-incomplete data sets for0 ≤ k < n.

Proof Firstly, a weak rule, excluded by the optimal rule set, cannot be a predictive rule

for the k-incomplete record. When a weak rule and one of its corresponding strong

rules cover thek-incomplete record, the strong rule will be the predictive rule. The

weak rule is more specific than the strong rule and hence there is no chance for the

weak rule to cover a record that is not covered by the strong rule.

Secondly, a strong rule, included by the optimal rule set, will be the predictive rule

for an incomplete record. Let an incomplete record contain only the antecedent of the

strong rule. The strong rule is the predictive rule of the record because other more

general rules covering the record have lower accuracy than the strong rule.
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Consequently, the lemma is proved.¤

In other words, if the optimal rule set could not make a prediction on an incomplete

record, another rule set, e.g. the complete rule set, could not neither; a rule in an

optimal rule set is a predictive rule for some incomplete records. For example, given

an optimal rule set{a → z (acc = 0.9), b → z (acc = 0.8), c → z (acc = 0.7)}.
For record{abcdefg}, rule c → z becomes the predictive rule when botha andb are

missing.

The optimal rule set preserves all potential predictive rules fork-incomplete data

sets withk up ton− 1. However, it is too big in many applications. Now we consider

how to preserve a small number of predictive rules for limited number of missing

values in incomplete data sets.

Definition 9 A k-optimal rule set contains the set of all predictive rules on thek-

incomplete data set.

For example, rule set{a → z (acc = 0.9), b → z (acc = 0.8)} is 1-optimal for

record{abcdefg}. Whena is missing, ruleb → z is the predictive rule. Whenb, c, d,

e, f or g is missing, rulea → z is the predictive rule.

We have used the name ofk-optimal rule sets in one of our previous work [14].

Recently, another rule mining algorithm [22] also generatesk-optimal rule sets, which

containk rules with the largest leverage.k in our k-optimal rule sets stands fork-

missing values per record, and is usually a small number.k in the otherk-optimal rule

sets indicates the number of rules, and is a reasonable big number.

We have the following property fork-optimal rule sets.

Lemma 2 Thek-optimal rule set makes the same predictions as the optimal rule set

on all p-incomplete data sets for0 ≤ p ≤ k.
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Proof Thek-optimal rule set contains predictive rules for allp-incomplete data sets

with 0 ≤ p ≤ k according to Definition9, and hence this lemma holds immediately.

¤

For example, given an optimal rule set{a → z (acc = 0.9), b → z (acc =

0.8), c → z (acc = 0.7), d → z (acc = 0.6)}. Rule set{a → z (acc = 0.9), b →
z (acc = 0.8), c → z (acc = 0.7)} is 2-optimal for record{abcdefg}. It makes the

same prediction as the optimal rule set on record{abcdefg} with up to two missing

values, e.g.{bcdefg} and{cdefg}.
The k-optimal rule set is a subset of the optimal rule set that makes the same

predictions as the optimal rule set on a test data set withk missing attribute values

per record. As a special case, a0-optimal rule set1 makes the same predictions as the

optimal rule set on the complete test data set.

Theorem 2 The(k +1)-optimal rule set is at least as robust as thek-optimal rule set.

Proof For those records inp-incomplete data sets forp ≤ k, both rule sets make

the same predictions because both make the same predictions as the optimal rule set

according to Lemma2.

For those records in the(k + 1)-incomplete data set, the(k + 1)-optimal rule set

makes the same predictions as the optimal rule set and thek-optimal rule set does not.

Hence, there may be some records that are identified by the(k + 1)-optimal rule set

but not by thek-optimal rule set.

Consequently, the(k +1)-optimal rule set is at least as robust as thek-optimal rule

set.¤

For example, 2-optimal rule set{a → z (acc = 0.9), b → z (acc = 0.8), c →
z (acc = 0.7)} is more robust than 1-optimal rule set{a → z (acc = 0.9), b →

1To avoid possible confusion, we call a 0-optimal rule set as a min-optimal rule set.
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z (acc = 0.8)}. When valuesa andb are missed from the record{abcdefg}, the first

rule set predicts it to belong to classz with the accuracy of 70% whereas the second

rule set makes any prediction with the accuracy of 0%.

We give an example to showk-optimal rule sets and their predictive capabilities.

Example 3 In the data set of Example1, with the minimum support of2/14 and the

minimum confidence of80%, we have the optimal rule set with10 rules as shown in

Example2. These10 rules can identify all records in the data set. We take confidence

as accuracy in this example for easy illustration since otherwise an accuracy estima-

tion method requires a calculator. We have a min-optimal rule set as follows, where

two numbers in the parentheses are support and accuracy respectively.

1. If outlook is sunny and humidity is high, then do not play tennis.(3/14, 100%)

2. If outlook is sunny and humidity is normal, then play tennis.(2/14, 100%)

3. If outlook is overcast, then play tennis.(4/14, 100%)

4. If outlook is rain and wind is strong, then do not play tennis.(2/14, 100%)

5. If outlook is rain and wind is weak, then play tennis.(3/14, 100%)

6. If humidity is normal and wind is weak, then play tennis. (3/14, 100%)

Rules1, 2, 3, 4 and5 identify different records in the data set, so they are included

in the min-optimal rule set. As to rule6, it is the predictive rule for record9. When

identifying record 9, rule 6 has higher support than rule2 and hence is the predictive

rule for the record. This consideration results in that the min-optimal rule set is more

robust than the rule set from the decision tree. When Outlook information is missing,

the rule set from the decision tree identifies nothing while the min-optimal rule set

identifies3 records. The min-optimal rule set provides exactly the same predictions as

the optimal rule set on the complete test data set.

With the following 4 additional rules, the rule set becomes 1-optimal.

7. If temperature is cool and wind is weak, then play tennis. (2/14, 100%)

8. If temperature is mild and humidity is normal, then play tennis. (2/14, 100%)
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9. If outlook is sunny and temperature is hot, then do not play tennis. (2/14, 100%)

10. If humidity is normal, then play tennis (6/14, 87%).

This rule set gives more correct predictions on incomplete test data than the min-

optimal rule set. For example, when Outlook information is missing, the 1-complete

rule set identifies6 records, which are3 records more than the min-optimal rule set;

when Temperature,14, equal; when Humidity,11, 2 more; and when Wind,11, 2 more.

The improvement is clear and positive. In this example, the1-optimal rule set equals

the optimal rule set. This is because that the data set contains only four attributes. In

most data sets, a 1-optimal rule set is significantly smaller than an optimal rule set.

Thek-optimal rule sets form a hierarchy.

Lemma 3 LetRk andRk+1 be thek-optimal and the(k + 1)-optimal rule sets forD.

ThenRk ⊆ Rk+1.

Proof Rk contains the set of all predictive rules over allp-incomplete data sets for

p ≤ k. Rk+1 contains the set of all predictive rules over allp-incomplete data sets for

p ≤ k and all predictive rules for(k + 1)-incomplete data sets. The predictive rule for

a record is unique as assumed following Definition3. So,Rk ⊆ Rk+1. ¤

In Example2 and3, Ropt = R4 = R3 = R2 = R1 ⊃ Rmin. Theoretically,k is up

to n, the number of attributes, but practically, only a smallk << n is meaningful.

Till now, we have introduced the set of optimal rule sets, and we observe that the

following hierarchy holds these optimal rule sets.

Ropt ⊇ · · · ⊇ Rk+1 ⊇ Rk ⊇ · · · ⊇ Rmin

The robustness of ak-optimal rule set fork > 0 is due to that it preserves more

potentially predictive rules in case that some rules are paralysed by missing values in

a data set.
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Usually, a traditional classification rule set is smaller than a min-optimal rule set,

since most traditional classification systems post prune the final rule set to a small

size. From our observations, most traditional classification rule sets are subsets of

min-optimal rule sets. For example, the rule set from c4.5 in Example1 is a subset of

the min-optimal rule set in Example3 and is less robust than the min-optimal rule set.

Experimental results will show this.

Finally, we consider a property that will help us to findk-optimal rule sets. We can

interpret thek-optimal rule set through a set of min-optimal rule sets.

Lemma 4 Consider that ak-incomplete sub data set omits exactlyk attributes from

data setD. The union of min-optimal rule sets over allk-incomplete sub data sets is

k-optimal.

Proof For each of everyk-incomplete sub data set, we obtain a min-optimal rule set

that contains all predictive rules for the incomplete data set. The union of these min-

optimal rule sets contains all predictive rules on thek-incomplete data set, and hence

is k-optimal.¤

We give an example to show this lemma.

Example 4 Follow Example3. When Outlook information is omitted, a min-optimal

rule set consists of rule 6, 7, 8 and 10; when Temperature, rule 1, 2, 3, 4, 5 and 6;

when Humidity, rule 3, 4, 5, 7 and 9; when Wind, rule 1, 2, 3, 8, 9 and 10. The union of

the above four min-optimal rule sets on four 1-incomplete data sub sets is 1-optimal.

This lemma suggests that we can generate thek-optimal rule set by generating

min-optimal rule sets on a set of incomplete data sets.
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5 Constructing k-optimal rule sets

We now consider two different methods for constructing robust rule sets. The first

method extends a traditional classification rule generation technique and the second

one extends an optimal classification rule mining technique.

5.1 A multiple decision tree approach

Heuristic methods have been playing an important role in classification problems, so

here we first discuss how to generatek-optimal rule sets by a heuristic method.

In order to use a rule set on incomplete data sets, we may generate a rule set from a

incomplete data set. For a set ofk-incomplete sub data sets of the training data set, we

can construct a set of rule sets on them. Intuitively, the union rule set will withstand

up tok missing values to some extent.

We use C4.5rules [20] as the base rule generator in this algorithm. Although con-

structing multiple classifiers has been discussed before, such as Bagging [5] and Boost-

ing [9, 10]. This algorithm differs from others in that it samples attributes systemati-

cally rather than records randomly, and that it uses the union of all rule sets instead of

individual classifiers.

Thek-incomplete data set consists of a set of
(

n
k

)
(n is the number of attributes for

D) sub data sets in which each omits exactlyk attribute (column) information fromD.

Algorithm 1 Multiple tree algorithm

Input: data setD, integerk ≥ 1

Output: Rule setR

(1) setR = ∅
(2) for eachk-incomplete sub data setD′ of D

(3) build a decision treeT fromD′ by C4.5
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(4) call C4.5rules to generate a rule setR′ fromT

(5) let R = R ∪R′

(6) returnR

We now study the robustness of the output rule set of the algorithm. Suppose that

eachR′ is the min-optimal rule set for the correspondingk-incomplete sub data set.

The final rule set is thek-optimal rule set by Lemma4. A traditional classification rule

set is usually less robust than a min-optimal as shown in the experiments. Therefore,

the output rule set is at most as robust as thek-optimal rule set.

This algorithm may be inefficient whenk is large. This is because
(

n
k

)
rule sets

have to be generated where significant repeating computation is involved. It is pos-

sible to modify codes of the C4.5 and C4.5rules to avoid the repeating computation.

However, this modification may not be necessary when precisek-optimal rule sets can

be generated.

5.2 An optimal class association rule set approach

In this section, we present a precise method to computek-optimal rule sets. A naive

method would perform the following three steps:

1. generate the complete rule set by an association rule approach, such as Apri-

ori [1] or FP-growth [11].

2. find the min-optimal rule set for everyk-incomplete data set,

3. union all min-optimal rule sets.

This method would be inefficient. Firstly, the complete rule set is usually very

large, and is too expensive to compute for some data sets when the minimum support

is low. Secondly, the process of finding the min-optimal rule set from a large complete

rule set is expensive too.
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An efficient algorithm [22] generatingk-optimal rule sets actually serves different

purposes since thatk-optimal is different from thisk-optimal as discussions following

Definition9.

In our proposed algorithm, we directly find a smaller optimal rule set and compute

thek-optimal rule set from the optimal class rule set in a single pass over the data set.

An efficient algorithm for generating the optimal rule set is presented in [13, 12].

Here, we only present an algorithm to compute thek-optimal rule set from the optimal

rule set.

Given a ruler, let Attr(r) be the set of attributes whose values appear in the an-

tecedent ofr. A p-attribute pattern is an attribute set containingp attributes. Given a

recordT and an attribute setX, letOmit(T, X) be a new partial record projected from

T without attribute values fromX.

Algorithm 2 k-optimal rule set generator

Input: data setD, optimal rule setRopt andk ≥ 0

Output:k-optimal rule setR

(1) setR = ∅
(2) for each recordTi in D

(3) let R′
i contain the set of rules that coverTi

(4) for eachr ∈ R′
i let UsedAttr = UsedAttr∪Attr(r)

(5) for eachk-attribute setX in UsedAttr

(6) let T = Omit(Ti, X)

(7) if there is no predictive rule forT in Ri

(8) then select a predictive ruler′ for T and move it fromR′
i into Ri

(9) let R = R
⋃

Ri

(10) returnR
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We first illustrate the algorithm by the following example.

Example 5 Consider data set in Table1 and the optimal rule set in Example2. We

use the above algorithm to generate the 1-optimal rule set. LetT1 be the first row in

Table1. Initially, R = ∅ andR′
1 = {r1, r9} wherer1 andr9 represent the first rule and

the ninth rule in the optimal rule set in Example2. In line 4, UsedAttr ={Outlook,

Temperature, Humidity}. From line 5 to line 8, firstly, value in Outlook column is

omitted and no rule is selected. Secondly, value in Temperature column is omitted

and the first ruler1 is selected. Thirdly, value in Humidity column is omitted and the

ninth rule r9 is selected. Up to line 9,R = R1 = {r1, r9}. Rule set{r1, r9} is the

1-optimal rule set forT1. As a comparison, rule set{r1} is the min-optimal rule set for

T1. For any one missing value inT1, the min-optimal rule set has 50% of probability

of being paralysed by the missing value, either in Outlook column or in Humidity

column, whereas the 1-optimal rule set has 25% of probability of being paralysed by

the missing value, only in Outlook column. 1-optimal rule set reduces the probability

of being paralysed by missing values.

Now we consider its correctness. In lines (4) and (5), we only consider attributes

used in rules since missing values in other attributes do not affect the performance of

rules. This algorithm selects predictive rules for allk-missing patterns on each of every

record in the training data set in lines (5) to (7). The algorithm generates ak-optimal

rule set correctly according to Lemma4.

6 Experiments

In the previous sections, we build a theoretical model for selecting classification rule

sets that are less sensitive to missing values in test data. In this section, we will exper-

imentally prove that these rule sets do tolerate certain missing values in test data by
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showing their classification accuracies on incomplete test data. Missing values have

not been handled, and we intend to show the ability of tolerating missing values of

k-optimal rule sets andk-optimal classifiers.

In the first part of the experiments, we evaluate the robustness ofk-optimal rule

sets by following the definitions in the previous sections except that a record in ak-

incomplete data set does not containk missing values exactly but on average.

In the second part of the experiments, we build classifiers based onk-optimal rule

sets following a common practice in building rule-based classifiers. We compare our

classifiers against other two benchmark rule-based classifiers on their classification

performances on incomplete test data sets by using ten-fold cross validation. We also

compare the proposed classifier with C4.5rules plus two well known missing value

handling methods.

6.1 Proof-of-concept experiment

In this section, we conduct an experiment to show the practical implication of defini-

tions and theorems.k-optimal rule sets are tested on randomly generatedl-incomplete

test data sets where0 ≤ l ≤ 6. The l-incomplete data sets are different from Defini-

tion 8 since they containl-missing values on average rather than exactly.

Two data sets are selected from UCI ML repository [4] and a brief description of

them are in the Appendix. They contain two classes each and their class distributions

are relatively even. They are very easy to be classified by any classification method.

We use them because they illustrate the main points of this paper very well.

k-optimal rule sets are generated by following algorithms 1 and 2. As a compar-

ison, a traditional classification rule set is generated by C4.5rules [20]. k-incomplete

test data sets are generated by omitting on averagek values in each record. We control

the total number of missing values, and let each record contain different number of
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missing values. To make the results reliable, we test every rule set on ten randomly

generated incomplete test data sets and report the average accuracy.

In the experiment, all rule sets are tested without the default predictions, since here

we test robustness of rule sets rather than classifiers. Predictive rules are defined by

Definition 3 using Laplace estimated accuracy. We set the minimum support as 0.1 in

each class, called local support, minimum confidence as 0.5, and maximum rule length

as 6 fork-optimal rule sets.

1- multi (k=1) min- single
Rule set complete optimal optimal C4.5rules optimal C4.5rules

Mushrooms 99126 1118 78 46 32 16
Congressional Voting 57384 1472 92 32 35 7

Table 3: Sizes of different rule sets. A complete rule set is very large, an optimal
rule set is large, and a rule set from C4.5rules is very small. A 1-optimal rule set is
larger than a min-optimal rule set. A rule set from multiple C4.5rules is closer to a
min-optimal rule set than to a 1-optimal rule set.

Table 2 shows that complete rule sets are significantly larger than optimal rule

sets which are significantly larger than 1- and min-optimal rule sets. We observe the

hierarchy ofk optimal rule sets discussed in Section4. Min-optimal rule sets are larger

than rule sets from the C4.5rules [20]. Rule sets generated by multiple decision trees

(k=1) are smaller than precise 1-optimal rule sets. This is because the C4.5rules prefers

simple rule sets.

Figure2 show that optimal rule sets perform the most accurately on incomplete

test data, 1-optimal rule sets the second best, min-optimal rule sets the third, and rule

sets from C4.5rules the worst. These results are consistent with Theorem2. Rule sets

from multiple C4.5rules (k=1) perform better than rule sets from single C4.5rules but

worse than 1-optimal rule sets.

These results illustrate the main ideas in this paper very well. No rule set can be

absolutely robust, but some rule sets are more robust than others. The robustness of

k-optimal rule sets follows Theorem2. The reason for the robustness is that some
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Figure 2:The robustness of different rule sets. Optimal rule sets are the more robust, 1-
optimal rule sets the second, min-optimal rule set the third, and rule sets from C4.5rules
the least robust. Rule sets from multiple C4.5rules are more robust than rule sets from
single C4.5rules but less robust than 1-optimal rule sets.

additional rules are preserved in case other rules are paralysed by missing values in the

test data set.

We note that there is not big room for accuracy improvement between 1-optimal

rule sets and optimal rule sets. Therefore,k-optimal rule sets fork > 1 are unneces-

sary. We also note that 1-optimal rule sets from the multiple decision tree approach

are not as robust as precise 1-optimal rule sets. This is consistent with our analysis in

Section5.

6.2 Comparative experiments

In this section, we conduct experiments to demonstrate the practical implication of the

theoretical results in constructing robust rule-based classifiers. Different rule-based

classifiers are tested on randomly generated incomplete test data sets where missing

values have not been handled. The ten-fold cross validation method and 28 data sets

have been employed in the experiments. A rule-based classifier that classifies incom-

plete test data with a higher accuracy is more robust than a rule-based classifier with a

lower accuracy.
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We constructk-optimal rule set based classifiers by following a common practice

for building rule-based classifiers. All rules in ak-optimal rule set are sorted by their

Laplace accuracy first. We then initiate an empty output rule sequence. We choose a

rule with the minimum misclassification rate in thek-optimal rule set, and move this

rule to the head of the output rule sequence. We remove the records covered by this

rule, and compute the misclassification rate of remaining rules in thek-optimal rule

set. Then we recursively move the rule with the minimum misclassification rate to the

tail of output rule sequence until there is no record left. When there are two rules with

the same misclassification rate, the preceding rule in thek-optimal rule set is removed.

After the above procedure is finished, remaining rules in thek-optimal rule set are

appended to the output rule sequence in the order of Laplace accuracy. The majority

class in the data set is set as the default class.

All k-optimal classifiers are compared against two benchmark rule-based classi-

fiers, C4.5rules [20] and CBA [16]. The former is a typical decision tree based clas-

sifier, and the latter is an association based classifier. We do not include the multiple

decision tree approach since a 1-optimal rule set from the multiple decision tree ap-

proach is not as robust as a precise 1-optimal rule set as shown by our analysis and

experiment. Further, the multiple decision tree approach is too time consuming when

k > 1.

Twenty-eight data sets from UCI ML Repository [4] are used to evaluate the ro-

bustness of different classifiers. A summary of these data sets is given in the Appendix.

The ten-fold cross validation method is used the experiment.k-incomplete test data

sets are generated by randomly omitting values in test data sets so that each record

has on averagek-missing values. Because thek-incomplete test data sets are gener-

ated randomly, the accuracy of each fold of ten-fold cross validation is the average of

accuracies obtained from 10 tests.

The parameters for the optimal rule set generation are listed as follows. Local
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Figure 3:The average sizes of different classifiers on 28 data sets. An optimal classifier
is large whereas a C4.5rules classifier is very small. A CBA classifier is close to a min-
optimal classifier, and both are smaller than a 1-optimal classifier.

minimum support (support in a class), 0.01, minimum confidence, 0.5, and maximum

length of rules, 6. For both C4.5rules and CBA, we used their default settings.

Figure3 shows that an optimal classifier is significantly larger than both CBA and

C4.5rules classifiers. A CBA classifier approaches a min-optimal classifier in size. A

C4.5rules classifier is the smallest. A 1-optimal classifier is nearly twice as large as a

min-optimal classifier.

Figure4 shows that optimal, 1-optimal and min-optimal classifiers are more accu-

rate than both CBA and C4.5rules classifiers on incomplete test data sets. Therefore,

all optimal classifiers are more robust than CBA and C4.5rules classifiers.

The accuracy differences in Figure4 is not so significant because the accuracies

have been floated by the default predictions. A test record covered by no rule in a

classifier is predicted to belong to the default class. The default prediction makes a

classifier simple but may disguise the true accuracy. For example, in data set Hypothy-

roid, 95.2% records belong to class Negative and only 4.8 % records belong to class

Hypothyroid. So, if we set the default prediction as Negative, then this classifier will

give 95.2% accuracy on a test data set that misses all values. The true accuracy for this

“empty” data set should be zero rather than 95.2%. We see that how the accuracy is
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Figure 4:The average accuracies of five classifiers with the default predictions on 28
data sets. Optimal, 1-optimal and min-optimal classifiers (top three lines) are more
robust than CBA classifiers and C4.5rules classifiers.

floated by the default prediction. Further, this distribution knowledge is too general to

be useful. For example, a doctor uses his patient data to build a rule-based diagnosis

system. 80% patients coming to see him are healthy, and hence the system sets the

default as healthy. Though the default easily picks up 80% accuracy, this accuracy is

meaningless for the doctor.

In the following experiment, we remove the default prediction from each classifier.

We repeat the same experiment for all classifiers without the default predictions and

report the average accuracies on Figure5. CBA has not been included because we

could not remove its default prediction.

Figure5 shows that all optimal classifiers are more accurate than C4.5rules clas-

sifiers on incomplete data, and hence are more robust. Optimal classifiers are more

robust than 1-optimal classifiers, which are more robust than min-optimal classifiers

on average. Optimal classifiers improve classification accuracies on incomplete test

data by up to 28.2% over C4.5rules classifiers without the default predictions. This is

a significant improvement.

By comparing size differences of optimal, 1-optimal and min-optimal classifiers

with their classification accuracy differences on incomplete test data. 1-optimal clas-
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Figure 5: The average accuracies of four classifiers without the default predictions
on 28 data sets. Optimal rule classifiers are the most robust, 1-optimal classifiers the
second, min-optimal classifiers the third and C4.5rules classifiers the least robust.

sifiers make use of rules effectively.

To show the advantages of building robust classifiers over imputing missing values,

we compare the robust rule based classifiers to C4.5rules plus two different missing

value imputing methods. Most common attribute value substitution is a simple but

effective approach for imputing missing categorical values [7]. k-nearest neighbor

substitution is the most accurate approach for imputing missing values as shown in

the recent work [3]. In the former approach, a missing value is replaced by a value

that occurs most frequently in an attribute. In the later approach, a missing value is

replaced by a value that occurs most frequently in its k-nearest neighborhood.

We compare the proposed robust classifier, e.g. 1-optimal classifier without han-

dling missing values, to C4.5rules with test values being imputed by both approaches.

In the k-nearest neighbor substitution,k is set as 10 as in [3]. When the size of a test

data set is smaller than 100 but greater than 30,k is set as 5. When the size of a test

data set is smaller than 30,k is set as 3.

Figure6 shows that 1-optimal classifier alone is more accurate than C4.5rules plus

most common attribute substitution andk nearest neighbour substitution, respectively.

This demonstrates that building robust rule based classifiers is better than treating
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Figure 6: The comparison of 1-optimal classifier with two missing value imputation
methods on 28 data sets. The 1-optimal classifier is more accurate than C4.5rules plus
two imputation methods respectively in the presence of missing values.

missing values. In addition, 1-optimal classifier also benefits from a good imputation

method. When the average missing values in each record exceeds two in our exper-

iments,k-nearest neighbour substitution method improves the accuracy of 1-optimal

classifier.

7 Conclusions

In this paper, we discussed a problem of selecting rules to build robust classifiers that

tolerate certain missing values in test data. It differs from a missing value handling

problem since our discussion is about “immunising” from the missing values rather

than “treating” missing values. We defined a hierarchy of optimal rule sets,k-optimal

rule sets, and concluded that the robustness ofk-optimal rule sets decreases with the

decreasing size of rule sets. We proposed two methods to findk-optimal sets. We

demonstrated the practical implication of the theoretical results by extensive experi-

ments. All optimal rule set based classifiers are more robust than two benchmark rule-

based classification systems, C4.5rules and CBA. We further show that the proposed

method is better than two well known missing value handling method for missing val-
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ues in test data.

Given the frequent missing values in real world data,k-optimal rule sets have great

potential in building robust classifiers in the future applications. The theoretical results

also provide a guideline for pruning rules in a large rule set.
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Appendix: Data Set Description

Data set Size #Attr #Class
Anneal 898 38 5

Australian 690 14 2
Auto 205 25 7
Breast 699 10 2
Cleve 303 13 2
Crx 690 15 2

Diabetes 768 8 2
German 1000 20 2
Glass 214 9 7
Heart 270 13 2

Hepatitis 155 19 2
Horse-colic 368 22 2
House-vote 435 16 2

Hypo 3163 25 2
Ionosphere 351 34 2

Iris 150 4 3
Labor 57 16 2
Led7 3200 7 10

Lymph 148 18 4
Mushrooms 8124 22 2

Pima 768 8 2
Sick 2800 29 2
Sonar 208 60 2
Tic-tac 958 9 2
Vehicle 846 18 4

Waveform 5000 21 3
Wine 178 13 3
Zoo 101 16 7
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