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Abstract

Numerous organizations collect and distribute non-aggregate personal data for a variety

of different purposes, including demographic and public health research. In these situations,

the data distributor is often faced with a quandary: on one hand, it is important to protect

the anonymity and personal information of individuals. While one the other hand, it is also

important to preserve the utility of the data for research.

This thesis presents an extensive study of this problem. We focus primarily on notions

of anonymity that are defined with respect to individual identity, or with respect to the value

of a sensitive attribute. We discuss the anonymization techniques over relational data and

large survey rating data. For relational data, we propose a variety of techniques that use gen-

eralization (also called recoding) and microaggregation to produce a sanitized view, while

preserving the utility of the input data. Specifically, we provide a new structure called “Pri-

vacy Hash Table”; propose three enhanced privacy models to limit the privacy leakage; we

inject the purpose and trust into the data anonymization process to increase the utility of

the anonymized data, and we enhance the microaggregation method by using concepts from

Information Theory. For survey rating data, we investigate two important problems (satisfac-

tion and publication problems) in anonymizing survey rating data. By utilizing the character-

istics of sparseness and high dimensionality, we develop a slicing technique for satisfaction

problems. By using graphical representation, we provide a comprehensive analysis of graph-

ical modification strategies. For all the techniques developed in this thesis, we include a set

of extensive evaluations to indicate that the techniques are possible to distribute high-quality

data that respect several meaningful notions of privacy.
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CHAPTER 1

INTRODUCTION

1.1 PRIVACY PRESERVING DATA SHARING

With the fast development of computer hardware and software, and the rapid computerization

of businesses and government operations, large amounts of data have been collected. These

data often need to be published, shared with, or outsourced to collaborating companies for

further processing. For example, the government may need to publish the census data with

household income information in a certain area; a hospital may need to share its patient

records with public health researchers; a loan company may need to publish its customer

finance data to demonstrate its business rules, and so on.

Such data often contains private information, and should not be disclosed directly. In the

above example, the household income of a particular family in the census data, the health

record of a particular patient, and the financial history of any individual in the loan report are

all sensitive information, for which privacy should be maintained.

Traditionally, the data owner often chooses some representative statistics to publish, or

pre-aggregate parts of the data that others might be interested in. In this way, an individual’s

privacy is better protected. However, data published in these forms lack flexibility. Others

can only learn about the pre-computed statistics, but nothing else.

In recent years, researchers have proposed to publish data in the form of microdata, i.e.,

data in the original form of individual tuples. Obviously the release of microdata offers

significant advantages in terms of information availability, as the original records are kept

and people can issue arbitrary queries they are interested in. So it is particularly suitable for

10
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ad hoc analysis.

However, the release of microdata raises privacy concerns when records containing sen-

sitive attributes (SA) of individuals are published. Existing privacy practice relies on de-

identification, i.e., removing explicit identification information (e.g., name, SSN, home ad-

dress and telephone numbers) from microdata. However, it has been well recognized [86,

104] that simple de-identification is not sufficient to protect an individual’s privacy. One’s

other attributes (so-called quasi-identifiers, or QI for short, such as age, zip code, date of birth

and race) are usually needed for data analysis, and thus are kept after de-identification. Indi-

viduals’ sensitive information may often be revealed when microdata are linked with publicly

available information through quasi-identifiers. A famous example is given by Sweeney in

[104], where she successfully identified the governor of Massachusetts using only his date of

birth, gender, and ZIP code from local hospital records, and then combine this information

with the census database.

k-anonymity [86, 104] is a privacy model to address the above privacy problem. Through

domain generalization and record suppression, k-anonymity guarantees that publicly avail-

able information cannot be related with less than k records in a microdata database. In other

words, given a sensitive attribute value in microdata, an attacker can at most relate it to a

group of no fewer than k individuals instead of any specific one. The larger the value of k is,

the better the privacy is protected. Several algorithms are proposed to enforce this principle

[7, 22, 43, 62, 60, 63, 53]. Machanavajjhala et al. [70] showed that a k-anonymous table may

lack diversity in the sensitive attributes. In particular, they showed that the degree of privacy

protection does not really depend on the size of the equivalence classes on QID attributes

which contain tuples that are identical on those attributes. Instead, it is determined by the

number and distribution of distinct sensitive values associated with each equivalence class.

To overcome this weakness, they propose the l-diversity [70]. However, even l-diversity is
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insufficient to prevent attribute disclosure due to the skewness and the similarity attack. To

amend this problem, t-closeness [65] was proposed to solve the attribute disclosure vulnera-

bilities inherent in previous models.

However, depending on the nature of the sensitive attributes, even these enhanced proper-

ties still permit the information to be disclosed or have other limitations. Most of the existing

work places more stress on the protection of the specific values, not the sensitive categories

that the specific value belongs to. For example, the information of a person who is affected

by a Top Confidential disease needs to be protected, no matter whether it is HIV or Cancer.

It will be very useful to propose a privacy model that ensures the protection of not only the

specific values, but also the confidential categories they belong to.

In the scenarios, the same database is requested for different application purposes by dif-

ferent data requesters. On the one hand, considering the diversity of purposes, the require-

ments for individual attributes, based on how important they are for requesting purposes, are

various. For example, Age and Gender attributes in the census database are essential for

demographic purposes, but they are not necessary for some prediction purposes, so a priority

weight associated with each attribute is valuable to indicate the importance of the attribute

for requesting purposes. While, on the other hand, considering the variety of data requesters,

the reliability of data requesters to data providers depends on their trust evaluation. The trust

between the data requester and data provider reflects the possibility that the data would be

misused by the data requester. The more trustworthy the data requesters are, the less chance

they will maliciously use the requested data. Existing work on data anonymisation focuses

on developing effective models and efficient algorithms to optimize the trade-off between

data privacy and utility. Normally, the same anonymous data are delivered to different re-

questers regardless of what kind of purposes the data are used for, letting alone the reliability

of the data requester. By specifying the requesters’ application purpose and their reliability,
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the result of the data anonymisation will achieve a better trade-off.

Recently, a new privacy concern has emerged in privacy preservation research: how to

protect individuals’ privacy in large survey rating data. For example, movie rating data,

which is supposed to be anonymized, is de-identified by linking un-anonymized data from

another source [40]. Though several models and algorithms have been proposed to preserve

privacy in relational data, most of the existing studies can deal with relational data only

[104, 70, 65, 122]. Divide-and-conquer methods are applied to anonymize relational data

sets due to the fact that tuples in a relational data set are separable during anonymisation.

In other words, anonymizing a group of tuples does not affect other tuples in the data set.

However, anonymizing a survey rating data set is much more difficult since changing one

record may cause a domino effect on the neighborhoods of other records, as well as affecting

the properties of the whole data set. Hence, previous methods can not be applied to deal

with survey rating data and it is much more challenging to devise anonymisation methods

for large survey rating data than for relational data.

In this dissertation, we propose solutions to all the privacy problems mentioned above.

Furthermore, we apply the concept of entropy, an important concept in information theory,

and propose a distance metric to evaluate the amount of mutual information among records

in the microdata, and propose the method of constructing a dependency tree to find the key

attributes, which we can use to process approximate microaggregation.

1.2 SCOPE OF THE RESEARCH

Privacy-preserving data sharing is a broad topic. In this dissertation, we restrict our discus-

sion to a carefully chosen scope. Solutions within this scope can serve as a foundation for

more complex scenarios.
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1.2.1 DATA MODEL

In this dissertation, we study the privacy of two types of data.

• First, we consider the anonymization of tabular data from one table, where each en-

try of the table corresponds to an individual. Attributes of each entry can be separated into

quasi-identifiers and a sensitive attribute. For multiple tables, if they are non-correlated,

which means there is no association between their attributes, we can anonymize them with

our approach separately. If there are some associated attributes, we can construct a com-

bined view on these tables based on those attributes. When we do need to publish multiple

correlated tables separately, the problem is much harder. As pointed out by Yao et al. [131],

the problem of checking k-anonymity in multiple views is generally NP-hard. We leave this

as possible future work.

• For tabular data, we assume the identifier attributes like Name have already been re-

moved. The remaining attributes are either quasi identifiers or sensitive attributes. If no quasi

identifiers exist in the table, or if some of the quasi identifiers are also sensitive, it is difficult

for attackers to link the identifiers in the outside database and tuples in the microdata. Thus

we do not consider such situations.

• Second, we consider the anonymization of survey rating data, which have the char-

acteristics of high dimensionality and sparseness. We provide a graphical representation of

such data and assume that in the graph, nodes represent entities, and edges indicate their

distance. Specifically, we only consider unweighted and undirected graphs, and each pair of

nodes have only a single edge between them.

1.2.2 PUBLISHING MODEL

We assume a static model of microdata release. In other words, we assume there is no

change to the original data. Therefore, once an anonymized microdata table is published,
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there is no need to update it. Many real applications work in this fashion. For example,

for streaming data, we can always collect data block by block and treat each block as an

independent table. For the case of modification and deletion in the old data, the problem

becomes more complicated, as attackers can track the difference in the anonymized tables

before and after the modification. This will introduce more privacy leakage. Currently, there

are few solutions to this kind. We also leave this for future work.

1.2.3 PRIVACY MODEL

For privacy of tabular data, we focus on protecting the sensitive attribute of individuals. In

other words, the goal is to prevent attackers from knowing the sensitive attribute values of

individuals. For survey rating data, we focus on the privacy of an individual’s identity. We

do not constrain if attackers can infer whether someone or some entity is in the database. In

other words, we do not take into account the “existential sensitivity”, where the mere fact

that there exists a record for a specific individual Alice in the microdata table may also be

considered sensitive, even though Alice’s sensitive attribute is unknown. The reason is, as

stated in [70], that besides public databases, attackers may often have external background

knowledge. For example, Bob may physically see that Alice checked into a hospital. Thus,

it is difficult, if not impossible, to prevent such information leakage. In this dissertation,

revealing one’s sensitive attribute values is considered a privacy violation, but revealing the

existence of a record with specific quasi-identifiers is not.

1.2.4 ATTACK MODEL

For tabular data, we assume that the only information attackers can access is the published

anonymized table, and some other publicly available database that contains the association

between the unique identifiers and quasi-identifiers in the microdata. We do not consider
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insider attacks. In other words, we assume attackers cannot access the original data, and

do not have a priori knowledge of the correlation between quasi-identifiers and sensitive

attributes.

For survey rating data, we assume that the adversary knows that victims are in the survey

rating data and the preferences of the victims for some non-sensitive issues from personal

weblogs or social network sites. The attacker wants to find ratings on sensitive issues of the

victims.

1.3 CONTRIBUTIONS

Information sharing has become part of the routine activities of many individuals, companies,

organizations, and government agencies. Privacy-preserving data sharing is a promising ap-

proach to information sharing, while preserving individual privacy and protecting sensitive

information. In this dissertation, we provide a systematic study of the privacy preserving

techniques in microdata and survey rating data. We identify the privacy requirements for

several specific scenarios, and design corresponding anonymization schemes based on gen-

eralization/suppression approaches. In particular, the contributions of this thesis include the

following:

• We propose a novel structure of a privacy hash table, and provide a new approach to

generate a minimal k-anonymous table by using the privacy hash table, which improves a

previous search algorithm proposed by Samarati [87]. Moreover, we extend our privacy

hash table structure to be compatible with other privacy principles, like l-diversity.

• We identify the limitation of the p-sensitive k-anonymity model and propose three new pri-

vacy models, called p+-sensitive k-anonymity, (p, α)-sensitive k-anonymity and (p+, α)-

sensitive k-anonymity models to mitigate the limitation. We theoretically analyze the
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computational hardness of the problems, and propose efficient and effective anonymiza-

tion algorithms to tackle the problems.

• We present a novel data anonymisation approach, which takes into account the reliability

of data requesters and the relative attribute importance for the application purpose. We

quantify the level of anonymisation through the concept of the degree of data anonymisa-

tion, and derive a decomposition algorithm for data anonymization.

• We investigate the problem of achieving k-anonymity by means of approximate microag-

gregation, which in contrast to the previous microaggregation method, uses a part of the

dimensional resources. It works by selecting key attributes from the best dependency tree,

which is constructed based on a new mutual information measure capturing the depen-

dency between attributes in the microdata.

• We propose a novel (k, ϵ, l)-anonymity privacy principle for protecting privacy in such sur-

vey rating data. We theoretically investigate the properties of (k, ϵ, l)-anonymity model,

and study the satisfaction problem, which is to decide whether a survey rating data set

satisfies the privacy requirements given by the user. A fast slicing technique was proposed

to solve the satisfaction problem by searching the closest neighbors in large, sparse and

high dimensional survey rating data.

• We apply a graphical representation to formulate the (k, ϵ, l)-anonymity problem and pro-

vide a comprehensive analysis of the graphical modification strategies. Extensive exper-

iments confirm that our technique produces anonymized data sets that are highly useful

and preserve key statistical properties.
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1.4 DISSERTATION OUTLINE

In the rest of this dissertation, we describe different privacy goals, as well as their respective

solutions in each chapter. Specifically, we will describe the privacy hash table in Chapter

2, the enhanced p-sensitive k-anonymity models in Chapter 3, the purpose and trust-aware

anonymization approach in Chapter 4, the approximate microaggregation method in Chapter

5 and the (k, ϵ, l)-anonymity model for anonymizing survey rating data in Chapter 6 and

7. Related works are discussed in Chapter 8, where we also conclude this dissertation, and

point out some possible further research directions.
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CHAPTER 2

PRIVACY HASH TABLE

k-anonymity is a technique that prevents “linking” attacks by generalizing and/or suppress-

ing portions of the released microdata so that no individual can be uniquely distinguished

from a group of size k. In this chapter, I investigate a full-domain generalization model

of k-anonymity, I examine the issue of computing minimal k-anonymous table and intro-

duce the structure of privacy hash table, which provides a new approach to generate minimal

k-anonymous table and improves the previous search algorithms. Further, I extended the

privacy hash table structure to make it compatible with other privacy principles.

The information included in this chapter is based on the published paper [94].

2.1 MOTIVATION

k-anonymity is a technique that prevents joining attacks by generalizing and/or suppress-

ing portions of the released microdata so that no individual can be uniquely distinguished

from a group of size k. There are a number of models for producing an anonymous ta-

ble. One class of models, called global-recoding [118], maps the values in the domains of

quasi-identifier attributes to other values. This chapter is primarily concerned with a spe-

cific global-recoding model, called full-domain generalization. Full-domain generalization

was proposed by Samarati and Sweeney [86, 87] and maps the entire domain of each quasi-

identifier attribute in a table to a more general domain in its domain generalization hierarchy.

This scheme guarantees that all values of a particular attribute in the anonymous table belong

to the same domain.
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For any anonymity mechanism, it is desirable to define some notions of minimality. In-

tuitively, a k-anonymous table should not generalize, suppress, or distort the data more than

is necessary to achieve such k-anonymity. Indeed, there are a number of ways to define min-

imality. One notion of minimality is defined so as to generalize or suppress the minimum

number of attribute values in order to satisfy a given k-anonymity requirement. Such a prob-

lem is shown to be NP -hard [2, 71]. As to our model, the notion of minimal full-domain

generalization was defined in [86, 87] using the distance vector of the domain generalization.

Informally, this definition says that a full-domain generalized private table PT is minimal if

PT is k-anonymous, and the height of the resulting generalization is less than or equal to

that of any other k-anonymous full-domain generalization.

In this chapter, we focus on this specific global-recoding model of k-anonymity. Our

objective is to find the minimal k-anonymous generalization (table) under the definition of

minimality defined by Samarati [87]. By introducing the hash-based technique, we provide

a new privacy hash table structure to generate minimal k-anonymous tables that not only

improve the search algorithm proposed by Samarati [87] but is also useful for computing

other optimal criteria solutions for k-anonymity. Further, we also extend our algorithm to

cope with other privacy principles, such as l-diversity.

2.2 PRELIMINARIES

2.2.1 K-ANONYMITY

Let T be the initial microdata table and T ′ be the released microdata table. T ′ consists of a

set of tuples over an attribute set. The attributes characterizing microdata are classified into

the following three categories.

• Identifier attributes that can be used to identify a record such as Name and Medicare card.
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• Quasi-identifier (QI) attributes that may be known by an intruder, such as Zip code and

Age. QI attributes are presented in the released microdata table T ′ as well as in the initial

microdata table T .

• Sensitive attributes that are assumed to be unknown to an intruder and need to be protected,

such as Disease or ICD9Code1. Sensitive attributes are presented both in T and T ′.

In what follows we assume that the identifier attributes have been removed and the quasi-

identifier and sensitive attributes are usually kept in the released and initial microdata table.

Another assumption is that the values for the sensitive attributes are not available from any

external source. This assumption guarantees that an intruder can not use the sensitive at-

tributes to increase the chances of disclosure. Unfortunately, an intruder may use record

linkage techniques [119] between quasi-identifier attributes and external available informa-

tion to glean the identity of individuals from the modified microdata. To avoid this possibility

of privacy disclosure, one frequently used solution is to modify the initial microdata, more

specifically the quasi-identifier attributes values, in order to enforce the k-anonymity prop-

erty.

Definition 2.1 (k-anonymous requirement). Each release of data must be such that every

combination of values of quasi-identifiers can be indistinctly matched to at least k respon-

dents.

The concept of k-anonymity [100] tries to capture one of the main requirements that has

been followed by the statistical community and by agencies releasing data on the private

table (PT ). According to this requirement, the released data should be indistinguishably

related to no less than a certain number of respondents. The set of attributes included in the

private table, which is also externally available and therefore exploitable for linking, is called

quasi-identifier (QI).
1http://icd9cm.chrisendres.com/
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Since it seems highly impractical to make assumptions about the datasets available for

linking to external attackers or curious data recipients, essentially k-anonymity takes a safe

approach requiring the respondents to be indistinguishable (within a given set) with respect

to the set of attributes in the released table. To guarantee the k-anonymity requirement, k-

anonymity requires each value of a quasi-identifier in the released table to have at least k

occurrences. Formally, we have the following definition.

Definition 2.2 (k-anonymity). Let PT (A1, · · · , Am) be a private table and QI be a quasi-

identifier associated with it. PT is said to satisfy k-anonymity with respect to QI if and only

if each sequence of values in PT [QI] appears at least with k occurrences in PT [QI]2.

A QI-group in the modified microdata T ′ is the set of all records in the table containing

identical values for the QI attributes. There is no consensus in the literature over the term

used to denote a QI-group. This term was not defined when k-anonymity was introduced

[87, 103]. More recent papers use different terminologies such as equivalence class [65, 70,

122] and QI-cluster [110, 95, 97].

If a set of attributes of external tables appears in the quasi-identifier associated with the

private table (PT ) and the table satisfies k-anonymity, then the combination of the released

data with the external data will never allow the recipient to associate each released tuple with

less than k respondents. For instance, when considering the released microdata in Table 2.1

with quasi-identifier QI = {Gender, Age, Zip}, we see that the table satisfies k-anonymous

with k = 1 only since there exists a single occurrence of values over the considered QI (e.g.,

the single occurrence of “Male, 22 and 4352” and “Female, 34 and 4350”). Table 2.2 is a

3-anonymous view of Table 2.1.

2PT [QI] denotes the projection, maintaining duplicate tuples, of attributes QI in PT
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Gender Age Zip Disease
Male 25 4370 Cancer
Male 25 4370 Cancer
Male 22 4352 Cancer

Female 28 4373 Chest Pain
Female 28 4373 Obesity
Female 34 4350 Flu

Table 2.1: An example of microdata

Gender Age Zip Disease
Male [22-25] 43** Cancer
Male [22-25] 43** Cancer
Male [22-25] 43** Cancer

Female [28-34] 43** Chest Pain
Female [28-34] 43** Obesity
Female [28-34] 43** Flu

Table 2.2: A 3-anonymous microdata

2.2.2 GENERALIZATION RELATIONSHIP

Among the techniques proposed for providing anonymity in the release of microdata, the

k-anonymity focuses on two techniques in particular: generalization and suppression, which

unlike other existing techniques, such as scrambling or swapping, preserve the truthfulness

of the information.

Generalization consists of substituting the specific values of a given attribute with more

general values. We use ∗ to denote the most general value. For instance, we could gener-

alize two different Zip codes 4370 and 4373 to 437∗. The other technique, referred to as

data suppression, removes a part or the entire value of attributes from the table. Suppress-

ing an attribute (i.e., not releasing any of its values) to reach k-anonymity can equivalently

be modelled via a generalization of all the attribute values to the most generalized data ∗.

Note that this observation holds assuming that attribute suppression removes only the val-

ues and not the attribute (column) itself. This assumption is reasonable since removal of

the attribute (column) is not needed for k-anonymity. In this chapter, we consider only data

generalization.

The notion of domain (i.e., the set of values that an attribute can assume) is extended to

capture the generalization process by assuming the existence of a set of generalized domains.

The set of original domains together with their generalizations is referred to as Dom. Each

generalized domain contains generalized values and there exists a mapping between each
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domain and its generalizations. (For example, Zip codes can be generalized by dropping the

least significant digit at each generalization step, Ages can be generalized to an interval, and

so on). This mapping is described by means of a generalization relationship ≤D. Given two

domains Di and Dj ∈ Dom, Di ≤D Dj states that values in domain Dj are generalizations

of values in Di. The generalization relationship ≤D defines a partial order on the set Dom

of domains, and is required to satisfy the following two conditions:

C1: ∀Di, Dj, Dz ∈ Dom:

Di ≤D Dj, Di ≤D Dz ⇒ Dj ≤D Dz ∨Dz ≤D Dj

C2: all maximal element of Dom are singletons.

Condition C1 states that for each domain Di, the set of domains generalization of Di is

totally ordered and we can think of the whole generalization domain as a chain of nodes,

and if there is an edge from Di to Dj , we call Dj the direct generalization of Di. Note that

the generalization relationship ≤D is transitive, and thus, if Di ≤ Dj and Dj ≤ Dk, then

Di ≤ Dk. In this case, we call Dk the implied generalization of Di. Condition C1 implies

that each Di has at most one direct generalization domain Dj , thus ensuring determinism

in the generalization process. Condition C2 ensures that all values in each domain can be

generalized to a single value. For each domain D ∈ Dom, the definition of a generalization

relationship implies the existence of a totally ordered hierarchy, called the domain general-

ization hierarchy, denoted DGHD. Paths in the domain generalization hierarchy correspond

to implied generalizations and edges correspond to direct generalizations. For example,

consider DGHZ0 in Figure 2.1. Z1 is the direct generalization of Z0 and Z2 is the implied

generalization of Z0.

A value generalization relationship denoted ≤V , can also be defined, which associates

with each value in domain Di, a unique value in domain Dj . For each domain D ∈ Dom, the

value generalization relationship implies the existence of a value generalization hierarchy,
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z

Z1 = {435∗, 437∗}

Z0 = {4350, 4352, 4370, 4373}

Z2 = {43 ∗ ∗}

DGHZ0

person

437∗

4370 43734352

435∗

43 ∗ ∗

V GHZ0

G0 = {male, female}

G1 = {person}

DGHG0

female

4350

male

V GHG0

A0 = {22, 25, 28, 34}

A1 = {(22 − 25), (28 − 34))}

A2 = {(22 − 34)}

DGHA0

22 25 28 34

(22-25) (28-34)

(22-34)

V GHA0

Figure 2.1: Domain and value generalization hierarchies for Zip code, Age and Gender

denoted V GHD. It is easy to see that the value generalization hierarchy V GHD is a tree,

where the leaves are the minimal values in D and the root (i.e., the most general value) is the

value of the maximum element in DGHD.

Example 2.1. Figure 2.1 illustrates an example of domain and value generalization hierar-

chies for domains: Z0, A0 and G0. Z0 represents a subset of the Zip codes in Table 2.1;

A0 represents Age; and G0 represents Gender. The generalization relationship specified for

Zip codes generalizes a 4-digit Zip code, first to a 3-digit Zip code, and then to a 2-digit Zip

code. The attribute Age is first generalized to the interval (22-25) and (28-34), then to the

interval (22-34). The Gender hierarchy in the figure is of immediate interpretation.

Since the approach in [87] works on sets of attributes, the generalization relationship and

hierarchies are extended to refer to tuples composed of elements of Dom or of their values.

Given a domain tuple DT =< D1, · · · , Dn > such that Di ∈ Dom, i = 1, · · · , n, the

domain generalization hierarchy of DT is DGHDT = DGHD1 × · · · × DGHDn , where
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the Cartesian product is ordered by imposing a coordinate-wise order. Since each DGHDi
is

totally ordered, DGHDT defines a lattice with DT as its minimal element and the tuple com-

posed of the top of each DGHDi
, i = 1, · · · , n as its maximal element. Each path from DT

to the unique maximal element of DGHDT defines a possible alternative path, called gener-

alization strategy for DGHDT , which can be followed when generalizing a quasi-identifier

QI = (A1, · · · , An) of attributes on domains D1, · · · , Dn. In correspondence with each

generalization strategy of a domain tuple, there is a value generalization strategy describing

the generalization at the value level. Such a generalization strategy hierarchy is actually a

tree structure. The top unique maximal element can be regarded as the root of the tree and

the minimal element on the bottom is the leaf of the tree. Let L[i, j] denote the jth data at

height i (The bottom data is at the height 0) and L[i] denote the number of data at height i.

Example 2.2. Consider domains G0 (Gender) and Z0 (Zip code) whose generalization hi-

erarchies are illustrated in Figure 2.1. Figure 2.2 illustrates the domain generalization hi-

erarchy of the domain tuple < G0, Z0 > together with the corresponding domain and value

generalization strategies. There are three different generalization strategies corresponding

to the three paths from the bottom to the top element of lattice DGH<G0,Z0> shown in Figure

2.3. In the generalization strategy 1, L[0, 2] is (male, 4370), L[0] = 6 and L[2, 2] is (person,

435∗), L[2] = 2.

Next, we prove that the number of generalization strategies can actually be computed by

a recursive function. For the ease of simplicity, we first discuss the situation of the data set

made of two attributes, and then we extend our result to multiple attributes.

THEOREM 2.1: Given data set T has two attributes A and B, and the domain generaliza-

tion hierarchy of the attribute A is given as A0 ≤D A1 ≤D · · · ≤D Am, where A0 contains

the most specific value while Am is the most general form of the data. The domain gen-

eralization hierarchy of the attribute B is given as B0 ≤D B1 ≤D · · · ≤D Bn, where B0
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< G0, Z0 >

< G0, Z1 >

< G0, Z2 >

< G1, Z2 >

< G1, Z1 >

< G1, Z0 >

DGH<G0,Z0>

Figure 2.2: The hierarchy of DGH<G0,Z0>

contains the most specific value while Bn is the most general form of the data. Let f(m,n)

be the number of generalization strategies for T , then f(0, i) = 1 (1 ≤ i ≤ n), f(j, 0) = 1

(1 ≤ i ≤ m), and

f(m,n) = f(m− 1, n) + f(m,n− 1) (2.1)

PROOF: We first construct the hierarchy of DGHA0,B0 . The level of the hierarchy corre-

sponds to the sum of the number of value generalizations of A and B, which is m and n,

then there are m + n + 1 levels, from level 0 to level m + n. The nodes (Ap, Bq) on the

level i satisfy the following properties: (1) p + 1 = i (2) 1 ≤ p ≤ m and 1 ≤ q ≤ n

(3) the difference of the sum of the subscripts of the two attributes A and B between two

nearest neighbors is 1. (4) if there is an arrow pointed from the node (Ap1 , Bq1) on the level

i to the node (Ap2 , Bq2) on the level j, then p1 + q1 + 1 = p2 + q2. From the hierarchy of

DGHA0,B0 , it is easy to get that f(0, i) = 1 for 1 ≤ i ≤ n, since there is only one pos-

sible path that going through node (A0, Bi) to (Am, Bn). The same applies to f(j, 0) = 1

(1 ≤ i ≤ m). Since the path that goes through the node (Am−1, Bn) and (Am, Bn−1) must

arrive at the node (Am, Bn), then f(m,n) ≤ f(m − 1, n) + f(m,n − 1). Next, we prove

that f(m,n) = f(m− 1, n) + f(m,n− 1).

If f(m,n) < f(m−1, n)+f(m,n−1), which means that there is at least one path that ar-
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rives at the node (Am, Bn), but does not pass through the node (Am−1, Bn) and (Am, Bn−1),

it contradicts with the property (4) discussed above. Hence, the equality holds. �

For example, in the hierarchy of DGH<G0,Z0> shown in Figure 2.2, the value general-

ization hierarchy for the attribute Gender is from G0 to G1, where m = 1 and the value gen-

eralization hierarchy for the attribute Zip is from Z0 to Z2, where n = 2 (Figure 2.1). Then

we could use the equation (2.1) to compute f(1, 2), which is f(1, 2) = f(1, 1) + f(0, 2) =

f(1, 0) + f(0, 1) + f(0, 2) = 1 + 1 + 1 = 3. Next, we can extend the results to deal with

multiple attributes.

COROLLARY 2.1: Given data set T has k attributes A1, A2, · · · , Ak, and the domain gen-

eralization hierarchy of the attribute Ai is defined by function h(Ai), and |h(Ai)| denotes

the level of the domain generalization hierarchy, where Ai0 contains the most specific value

while Ai|h(Ai)| is the most general form of the data for the attribute Ai (1 ≤ i ≤ k). Let

f(|g(A1)|, |g(A2)|, · · · , |g(Ak)|) be the number of generalization strategies for T , then

f(|g(A1)|, |g(A2)|, · · · , |g(Ak)|) = 1, if |g(Ai)| = 0 (1 ≤ i ≤ k) (2.2)

f(|g(A1)|, |g(A2)|, · · · , |g(Ak)|) =
k∑

i=1

f(|g(A1)|, · · · , |g(Ai)| − 1, · · · , |g(Ak)|) (2.3)

2.2.3 GENERALIZED TABLE AND MINIMAL GENERALIZATION

Given a private table (PT ), our approach to provide k-anonymity is to generalize the values

stored in the table. Intuitively, attribute values stored in the private table (PT ) can be substi-

tuted with generalized values upon release. Since multiple values can be mapped to a single

generalized value, generalization may decrease the number of distinct tuples, thereby possi-

bly increasing the size of the clusters containing tuples with the same values. We perform
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(female, 4373) (male, 4352) (female, 4350)(male, 4370)

(person, 4370) (person, 4373) (person, 4352) (person, 4350)

(person, 437∗) (person, 435∗)

(person, 43∗∗)

< G1, Z1 >

< G1, Z2 >

< G0, Z0 >

< G1, Z0 >

Generalization Strategy 1

(female, 4373)(male, 4370)

(female, 4373) (male, 4352) (female, 4350)(male, 4370)

(male, 437∗) (female, 437∗) (male, 435∗) (female, 435∗)

(person, 437∗) (person, 435∗)

(person, 43∗∗)

< G1, Z1 >

< G1, Z2 >

< G0, Z0 >

< G0, Z1 >

Generalization Strategy 2

(female, 4373)(male, 4370)

(female, 4373)(male, 4352) (female, 4350)(male, 4370)

(male, 437∗) (female, 437∗)(male, 435∗) (female, 435∗)

(male, 43∗∗) (female, 43∗∗)

(person, 43∗∗)

< G0, Z2 >

< G1, Z2 >

< G0, Z0 >

< G0, Z1 >

Generalization Strategy 3

(female, 4373)(male, 4370)

Figure 2.3: Domain and value generalization strategies

generalization at the attribute level. Generalizing an attribute means substituting its val-

ues with corresponding values from a more general domain. Generalization at the attribute

level ensures that all values of an attribute belong to the same domain. In the following,

dom(Ai, PT ) denotes the domain of attribute Ai in private table PT .

Definition 2.3 (Generalized table). Let PTi(A1, · · · , An) and PTj(A1, · · · , An) be two ta-

bles defined in the same set of attributes. PTj is said to be a generalization of PTi, written

PTi ≼ PTj , if and only if: (1) |PTi| = |PTj|; (2) ∀Az ∈ {A1, · · · , An} : dom(Az, PTi) ≤D
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G0 Z0

Male 4370
Male 4370
Male 4352

Female 4373
Female 4373
Female 4350

(a) PT

G0 Z2

Male 43∗∗
Male 43∗∗
Male 43∗∗

Female 43∗∗
Female 43∗∗
Female 43∗∗

(b) GT[0,2]

G1 Z1

person 437∗
person 437∗
person 435∗
person 437∗
person 437∗
person 435∗

(c) GT[1,1]

G1 Z2

person 43∗∗
person 43∗∗
person 43∗∗
person 43∗∗
person 43∗∗
person 43∗∗

(d) GT[1,2]

Figure 2.4: Generalized table for PT

dom(Az, PTj); and (3) It is possible to define a bijective mapping between PTi and PTj that

associates each tuple pti ∈ PTi with a tuple ptj ∈ PTj such that pti[Az] ≤V ptj[Az] for all

Az ∈ {A1, · · · , An}.

Example 2.3. Consider the private table PT illustrated in Figure 2.4(a) and the domain

and value generalization hierarchies for G0(Gender) and Z0(Zip) illustrated in Figure 2.2.

Assume QI = {Gender, Zip} to be a quasi-identifier. The following three tables in Figure

2.4 are all possible generalized tables for PT . For clarity, each table reports the domain

for each attribute in the table. With respect to k-anonymity, GT[1,1] satisfies k-anonymity for

k = 1, 2; GT[0,2] satisfies k-anonymity for k = 1, 2, 3 and GT[1,2] satisfies k-anonymity for

k = 1, · · · , 6.

Given a private table PT , different possible generalizations exist. However, not all gen-

eralizations can be considered equally satisfactory. For instance, the trivial generalization

bringing each attribute to the highest possible level of generalization provides k-anonymity

at the price of a strong generalization of the data. Such extreme generalization is not needed

if a table containing more specific values exists which satisfies k-anonymity as well. This

concept is captured by the definition of minimal k-anonymity (generalization). To introduce

it we first introduce the notion of distance vector.
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< G0, Z0 >

< G0, Z1 >

< G0, Z2 >

[1, 2]

< G1, Z1 >

< G1, Z0 >

DGH<G0,Z0>

< G1, Z2 >

[1, 1] [0, 2]

[1, 0] [0, 1]

[0, 0]

Figure 2.5: Hierarchy DGH<G0,Z0> and corresponding lattice on distance vectors

Definition 2.4 (Distance vector). Let PTi(A1, · · · , An) and PTj(A1, · · · , An) be two ta-

bles such that PTi ≼ PTj . The distance vector of PTj from PTi is the vector DVi,j =

[d1, · · · , dn] where each dz, z = 1, · · · , n, is the length of the unique path between Dz =

dom(Az, PTi) and dom(Az, PTj) in the domain generalization hierarchy DGHDz .

Example 2.4. Consider the private table PT and its generalizations illustrated in Figure

2.4. The distance vectors between PT and each of its generalized tables is the vector ap-

pearing as a subscript of the table. A generalization hierarchy for a domain tuple can be

seen as a hierarchy (lattice) on the corresponding distance vectors. Figure 2.5 illustrates the

lattice representing the dominance relationship between the distance vectors corresponding

to the possible generalizations of < G0, Z0 >.

We extend the dominance relationship ≤D on integers to distance vectors by requiring

coordinate-wise ordering as follows. Given two distance vectors DV = [d1, · · · , dn] and

DV ′ = [d′1, · · · , d′n], DV ≤ DV ′ if and only if di ≤ d′i for all i = 1, · · · , n. Moreover,

DV < DV ′ if and only if DV ≤ DV ′ and DV ̸= DV ′.

Intuitively, a generalization PTi(A1, · · · , An) is minimal k-anonymity (generalization)

if and only if there does not exist another generalization PTz(A1, · · · , An) satisfying k-
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anonymity and whose domain tuple is dominated by PTj in the corresponding lattice of

distance vectors). Formally, we can define it as follows:

Definition 2.5 (Minimal k-anonymity). Let PTi(A1, · · · , An) and PTj(A1, · · · , An) be

two tables such that PTi ≼ PTj . PTj is said to be a minimal k-anonymity (generalization)

of PTi if and only if: (1) PTj satisfies k-anonymity; and (2) ∀PTz : PTi ≼ PTz, PTz

satisfies k-anonymity⇒ ¬(DVi,z ≤ DVi,j).

Example 2.5. Consider table PT and its generalized tables illustrated in Figure 2.4. For

k = 2 two minimal k-anonymous table exist, namely GT[0,2] and GT[1,1]. GT[1,2] is not

minimal because it is a generation of GT[1,1] and GT[0,2]. Also, there is only one minimal

k-generalized tables with k = 3, which is GT[0,2].

2.3 PRIVACY HASH TABLE

A hash table is a data structure that will increase the search efficiency from O(log(n)) (bi-

nary search) to O(1) (constant time) [27]. A hash table is made up of two parts: an array (the

actual table where the data to be searched is stored) and a mapping function, known as a hash

function. The hash function is a mapping from the input data space to the integer space that

defines the indices of the array (bucket). In other words, the hash function provides a way for

assigning numbers to the input data such that the data can then be stored at the array (bucket)

with the index corresponding to the assigned number. For example, the data in Table 2.1 are

mapped into buckets labeled 0, 1, 2, 3 in Table 2.3. The data in the bucket with the same

assigned number is called a hash equivalence class. Depending on the different problems,

we could choose different hash functions to classify our input data as we need. For instance,

consider quasi-identifier QI = {Age, Zip} in Table 1. We hash them into different buckets

with the function ((Age− 20) + (Zip− 4350))mod 4 (see Table 2.3).
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Bucket 0 1 2 3
(25, 4370) (28, 4373)Content (22,4352)
(25, 4370)

(34, 4350)
(28, 4373)

Table 2.3: An example of hash table

From Table 2.3, we see that two identical data (25, 4350) and (28, 4353) in the quasi-

identifier fall into two different hash equivalence classes. Further, if we add a row (labeled

COUNT) to record the number of contents in the corresponding bucket (see Table 2.4), we

can easily determine whether or not the table satisfies the k-anonymity requirement. For

instance, according to the row COUNT in Table 2.4, Table 2.1 only satisfies k-anonymity

with k = 1.

Bucket 0 1 2 3
COUNT 1 2 1 2

(25, 4370) (28, 4373)Content (22,4352)
(25, 4370)

(34, 4350)
(28, 4373)

Table 2.4: Hash table with COUNT

This hash-based technique is not new in data mining. In [79], the authors used this

technique to present an efficient hash-based algorithm for mining association rules which

improves a previous well-known A priori algorithm. In this chapter, we integrate this tech-

nique into computation of a minimal k-anonymous table. By using such a technique, we can

reduce the number of potential sets that need to be checked whether they are k-anonymous

during a binary search and thus improve the time complexity in [87].

Concerning the efficiency of hash table and binary search, we note the following. (1).

The hash table has a faster average lookup time O(1) [27] than the binary search algorithm

O(log(n)). Note that the worst case in hash tables happens when every data element is

hashed to the same value due to some bad luck in choosing the hash function and bad pro-

gramming. In that case, to do a lookup, we would really be doing a straight linear search on
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a linked list, which means that our search operation is back to being O(n). The worst case

search time for a hash table is O(n). However, the probability of that happening is so small

that, while the worst case search time is O(n), both the best and average cases are O(1). The

hash table shines in very large arrays, where O(1) performance is important. (2). Building

a hash table requires a reasonable hash function, which sometimes can be difficult to write

well, while a binary search requires a total ordering on the input data. On the other hand,

with hash tables the data may be only partially ordered.

2.3.1 THE HASH-BASED ALGORITHM

A number of convincing parallels exist between Samarati and Sweeney’s generalization

framework [86, 87], ideas used in mining association rules [11, 108] and the hash-based

technique used in [79]. By bringing these techniques to bear on our model of the full-

domain generalization problem, we develop an efficient hash-based algorithm for computing

minimal k-anonymity.

In [87], Samarati describes a binary search algorithm for finding a single minimal k-

anonymous full-domain generalization based on the specific definition of minimality out-

lined in the previous section. The algorithm uses the observation that if no generalization

of height h satisfies k-anonymity, then no generalization of height h′ < h will satisfy k-

anonymity. For this reason, the algorithm performs a binary search on the height value.

If the maximum height in the generalization lattice is h, the algorithm begins by check-

ing each generalization at height ⌊h
2
⌋. If a generalization exists at this height that satisfies

k-anonymity, the search proceeds to look at the generalizations of height ⌊h
4
⌋. Otherwise,

generalizations of height ⌊3h
4
⌋ are searched, and so forth. This algorithm has been proven to

be able to find a single minimal k-anonymous table.

We integrate the hash technique into the algorithm and develop a more efficient algorithm
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Algorithm 1: Finding minimal k-anonymity in k-anonymous class.
Input: the k-anonymous class
1. Sort the data in k-anonymous class.
2. Compute the number n(i) of L[i, j] at each height i,
3. If n(i) ̸= L[i], discard the all the L[i, j] at the height i.
4. Otherwise, keep them.
Output: The height at which the first data is in the remaining
k-anonymous class, and generalizing the data to this height could
obtain the minimal k-anonymous table.

based on our definition of minimality. A drawback of Samarati’s algorithm is that for arbi-

trary definitions of minimality this binary search algorithm is not always guaranteed to find

the minimal k-anonymity table. We conjecture that the hash technique used in this chapter

might be suitable for the further improvement of algorithms based on other optimal criteria

for k-anonymity.

Let the domain generalization hierarchy be DGHDT , where DT is the tuples of the do-

mains of the quasi-identifier. Assume that the top generalization data with the highest height

in DGHDT satisfies the required k-anonymity. The idea of the algorithm is to hash the

data in DGHDT to a different hash equivalence class. Under our definition of the minimal-

ity, the hash function that we choose should hash all generalizations with height h > 0 in

DGHDT that satisfies k-anonymity to the same hash equivalence class, which is called the

k-anonymous class (the bucket labeled 2 in Table 2.4). The hash-based algorithm consists

of two main steps. At the first stage, the data that satisfy k-anonymity are hashed into the

k-anonymous class. The second step is to use Algorithm 1 to find the minimal k-anonymous

table in the k-anonymous class.

Algorithm 1 illustrate how to find the minimal k-anonymous table in k-anonymous class.

Consider Table 2.1 and its generalization strategy 1 in Figure 2.3. Generalized data L[1, 1],

L[1, 2], L[2, 1], L[2, 2] and L[3, 1] are hashed into the k-anonymous class. We sort the data

in k-anonymous class as {L[1, 1], L[1, 2], L[2, 1], L[2, 2], L[3, 1]}, since L[1] = 4 and the
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Bucket 0 1 2
Children[i, j] 0 1 ≥ 2

L[0, 1], L[0, 2], L[0, 3] L[1, 3] L[1, 1], L[1, 2]Content
L[0, 4], L[0, 5], L[0, 6] L[1, 4] L[2, 1], L[2, 2], L[3, 1]

Table 2.5: Hash table of generalization strategy 1 in Figure 2.3

Algorithm 2: Hash-based algorithm for minimal k-anonymity.
Input: Generalization hierarchy DGHDT ; anonymous requirement k;
Output: A minimal k-anonymous table.
1. Create a table with k + 1 column labeling 0, 1, · · · , k − 1, k.

Compute the value of Children[i, j] for each data j at the height i.
2. For l = 0, 1, · · · , k − 1

If Children[i, j] = l, put Children[i, j] to the bucket labeled l.
Else put Children[i, j] to the bucket labeled k .

3. Apply Algorithm 1 to compute the minimal k-anonymous table.

number of data at the height 1 in k-anonymous class is 2. According to Step 3 in Algorithm

1, we delete L[1, 1] and L[1, 2] from k-anonymous class. At last, the output height is 2, and

we can generalize the table to this height so that it satisfies 2-anonymity with quasi-identifier

QI = {Gender, Zip}.

Next, we illustrate how to hash the generalization data in DGHDT to the k-anonymous

class. Denote Children[i, j] the number of children that the jth data at the height i have. For

example, in generalization strategy 1 in Figure 2.3, Children[1, 3] = 1 and Children[2, 1] =

4. Suppose we have the requirement of k-anonymity. The desired hash table contains k + 1

buckets, labeled as 0, 1, 2, · · · , k−1, k, the labeled number 0, 1, · · · , k−1 denotes the value

of Children[i, j] in DGHDT and the kth bucket has the data whose Children[i, j] ≥ k.

Note that the bucket labeled k is actually the k-anonymous class. We could see the follow-

ing Table 2.5 as an example (where k = 2). All the potential generalization data satisfying

2-anonymity are classified into the third bucket, which consists of the k-anonymous class.

Algorithm 2 is our hash-based algorithm. Compared to Samarati’s binary search algo-
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rithm, Algorithm 2 finds the minimal k-anonymous table in the k-anonymous class, which

is smaller than the potential sets that need to be checked in Samarati’s algorithm. Because of

the hash technique we used in Algorithm 2, the search complexity is reduced from O(log(n))

(binary search) to O(1) [27].

2.4 EXTENDED PRIVACY HASH TABLE

The k-anonymity property ensures protection against identity disclosure, i.e. the identifica-

tion of an entity (person, institution). However, as we will show next, it does not protect the

data against attribute disclosure, which occurs when the intruder finds something new about

a target entity.

Name Gender Age Zip
Rick Male 25 4370
Vicky Female 28 4373
Rudy Male 25 4370
Jenny Female 34 4350

Table 2.6: External available information

Consider the 3-anonymous microdata shown in Table 2.2, where the set of quasi-identifier

is composed of {Gender, Age, Zip} and Disease is the sensitive attribute. As we discussed

above, identity disclosure does not happen in this modified micro data. However, assuming

that external information in Table 2.6 is available, attribute disclosure can take place. If the

intruder knows that in the Table 2.2 the Age attribute was modified to [22-25], s/he can de-

duce that both Rick and Rudy have cancer, even if he does not know which record, 1, 2 or

3, corresponds to which person. This example shows that even if k-anonymity can protect

identity disclosure well, sometimes it fails to protect against sensitive attribute disclosure.

To overcome this privacy breach, the l-diversity model is described in [70].
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Definition 2.6 (l-diversity). A QI-group is said to have l-diversity if there are at least l

“well-represented” values for the sensitive attribute. A modified table is said to have l-

diversity if every QI-group of the table has l-diversity.

Machanavajjhala et al. [70] gave a number of interpretations of the term “well-represented”

in this principle:

1). Distinct l-diversity: The simplest understanding of “well represented” would be to en-

sure there are at least l distinct values for the sensitive attribute in each QI-group. Dis-

tinct l-diversity is similar to the p-sensitive k-anonymity model [110]. However, distinct

l-diversity does not prevent probabilistic inference attacks. Distinct 1-diversity cannot pro-

vide a stronger privacy guarantee because there is no way to ensure the distribution among

data values. A QI-group may have one value appear much more frequently than other val-

ues, enabling an adversary to conclude that an entity in the equivalence class is very likely

to have that value. For example, it is feasible that a distinct 2-diverse table has a QI-group

containing 100 rows where one sensitive value contains a positive result while the other 99

contain negative results. An adversary would be able to predict with 99% accuracy that the

victim has a negative sensitive value. This motivated the development of the following two

stronger notions of l-diversity.

2). Entropy l-diversity: The entropy of a QI-group G is defined to be:

Entropy(G) = −
∑
s∈S

p(G, s)logp(G, s)

in which S is the set of the sensitive attribute, and p(G, s) is the fraction of records in G that

have sensitive value s. A table is said to have entropy l-diversity if for every QI-group G,

Entropy(G) ≥ log(l). Entropy l-diversity is stronger than distinct l-diversity. As pointed

out in [70], in order to have entropy l-diversity for each QI-group, the entropy of the entire
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table must be at least log(l). Sometimes this may be too restrictive, as the entropy of the

entire table may be low if a few values are very common. This leads to the following less

conservative notion of l-diversity.

3). Recursive (c, l)-diversity: Recursive (c, l)-diversity makes sure that the most frequent

value does not appear too frequently, and the less frequent values do not appear too rarely.

Let m be the number of values in a QI-group, and ri, 1 ≤ i ≤ m be the number of times

that the ith most frequent sensitive value appears in a QI-group G. Then G is said to have

recursive (c, l)-diversity if r1 < c(rl + rl+1 + · · · + rm). A table is said to have recursive

(c, l)-diversity if all of its QI-groups have recursive (c, l)-diversity.

In this section, we extend the hash table constructed in the previous section to support l-

diversity in order to protect sensitive attributes. Through a decent hash function, the records

that share the same combination of the quasi-identifiers are hashed into one bucket, and it

was shown in Table 2.4 that each bucket of the hash table represents one unique QI-group

within the dataset. Appending a list of sensitive values to the end of each bucket allows the

sensitive values to be associated with the correct QI-group.

We also extend the concept of domain generalization hierarchy (DGH) to extended do-

main generalization hierarchy (EDGH), which includes the the value of the sensitive at-

tributes. An example of the EDGH according to generalization strategy 1 is shown in Figure

2.6. Next, we extend the hash-based algorithm (Algorithm 2) to deal with the l-diversity

property.

(a). To find distinct l-diversity: since the bucket of the privacy hash table contains the value

of the sensitive attribute, to make sure the distinct l-diversity property is satisfied, we only

need to check if there are l-distinct sensitive attribute values in each bucket. The algorithm

works by breadth-first searching from the bottom level with most specific values to the top

level with the most general value of the extended domain generalization hierarchy (EDGH).
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(female, 4373) (male, 4352) (female, 4350)(male, 4370)

(person, 4370) (person, 4373) (person, 4352) (person, 4350)

(person, 437∗) (person, 435∗)

(person, 43∗∗)

< G1, Z1 >

< G1, Z2 >

< G0, Z0 >

< G1, Z0 >

Generalization Strategy 1

(female, 4373)(male, 4370)

Cancer Cancer Chest Pain Obesity Cancer FluSensitive Values

(1) (1)

(1)

(1) (1)

(2)

(3)

(1) (1)

(1) (1)

(2)

(4)

(∗) indicates the number of distinct sensitive values if generalized to that level

Figure 2.6: Extended domain generalization EDGH<G0,Z0>

Bucket 0 1 2 3
COUNT 1 2 1 2

(25,4370) (28,4373)Content (22,4352)
(25,4370)

(34,4350)
(28,4373)

Cancer Chest PainSensitive Attributes Cancer
Cancer

Flu
Obesity

Table 2.7: Extended privacy hash table with sensitive attributes

At each level of EDGH, in addition to the validation of k-anonymity property, the algorithm

needs also to check if the distinct l-diversity property is satisfied, which can be done by

counting the number of different sensitive attributes values at each data j of the level i, and

we denote it by Sensitive[i, j]. The algorithm is sketched in Algorithm 3.

(b). To find entropy l-diversity: The bucket of the privacy hash table still contains the value

of sensitive attribute, and to ensure the entropy l-diversity property is satisfied, we need to

check if the entropy of the sensitive values in each bucket is greater than the threshold value

logl. The breadth-first algorithm searches from the bottom level, with the most specific

values to the top level, and with the most general value of the extended domain generalization

hierarchy (EDGH). At each level of the EDGH, in addition to the validation of k-anonymity

property, the algorithm needs to check if the entropy l-diversity property is satisfied as well,

which can be done by computing the entropy at each data j of the level i, and we denote it
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Algorithm 3: Hash-based algorithm for minimal distinct l-diversity.
Input: Extended Generalization hierarchy EDGHDT ; anonymous requirement k and l;
Output: A minimal distinct l-diverse table.
1. Create a table with k + 1 column labeling 0, 1, · · · , k − 1, k.

Compute the value of Children[i, j] and Sensitive[i, j] for each data j at the height i.
2. For l = 0, 1, · · · , k − 1

If Children[i, j] = l, put Children[i, j] to the bucket labeled l.
Else put Children[i, j] to the bucket labeled k .

3. Apply Algorithm 1 to compute the minimal k-anonymous table. Suppose at level h.
4. If for any data i at the level h, Sensitive[i, h] ≥ l.
5. Derive the minimal distinct l-diverse solution.
6. Otherwise, go to Step 3.

(female, 4373) (male, 4352) (female, 4350)(male, 4370)

(person, 4370) (person, 4373) (person, 4352) (person, 4350)

(person, 437∗) (person, 435∗)

(person, 43∗∗)

< G1, Z1 >

< G1, Z2 >

< G0, Z0 >

< G1, Z0 >

Generalization Strategy 1

(female, 4373)(male, 4370)

Cancer Cancer Chest Pain Obesity Cancer FluSensitive Values

(0) (0)

( 1
2
log2)

(0) (0)

(log2)

( 3
2
log2)

(0) (0)

(0) (0)

( 1
2
log2)

(log2+ 1

2
log3)

(∗) indicates the entropy if generalized to that level

Figure 2.7: Extended domain generalization EDGH<G0,Z0> of generalization strategy
1 specifying the value of entropy

by Entropy[i, j]. The algorithm is sketched in Algorithm 4. An example of the EDGH with

the value of entropy according to generalization strategy 1 is shown in Figure 2.7.

(c). To find recursive (c, l)-diversity: The only difference between recursive (c, l)-diversity

and distinct (entropy) l-diversity is that we check if the formula r1 < c(rl + rl+1 + · · ·+ rm)

holds at a certain level.
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Algorithm 4: Hash-based algorithm for minimal entropy l-diversity.
Input: Extended Generalization hierarchy EDGHDT ; anonymous requirement k and l;
Output: A minimal entropy l-diverse table.
1. Create a table with k + 1 column labeling 0, 1, · · · , k − 1, k.

Compute the value of Children[i, j] and Entropy[i, j] for each data j at the height i.
2. For l = 0, 1, · · · , k − 1

If Children[i, j] = l, put Children[i, j] to the bucket labeled l.
Else put Children[i, j] to the bucket labeled k .

3. Apply Algorithm 1 to compute the minimal k-anonymous table. Suppose at level h.
4. If for any data i at the level h, Entropy[i, h] ≥ logl.
5. Derive the minimal entropy l-diverse solution.
6. Otherwise, go to Step 3.

2.5 AN EXAMPLE

In this session, an example is given to illustrate the proposed (extended) hash-based approach

for finding minimal privacy anonymous solutions. Table 2.8 shows a dataset to be used in

the example. The QI-attributes are {Age, Zip}, and the sensitive attribute is Salary. In this

example, we set k = 2 and l = 2, and our objective is to find the minimal k-anonymous solu-

tion and minimal l-diverse solution. We first illustrate how to find the minimal 2-anonymous

solution.

Age Zip Salary
17 12K 1000
19 13K 1010
20 14K 1020
24 16K 50000
29 21K 16000
34 24K 24000
39 36K 33000
45 39K 31000

Table 2.8: An example data set

The domain and value generalization hierarchies (DGH and V GH) for attribute Age

and Zip is shown in Figure 2.8. The grid hierarchy of DGH<A0,Z0> is shown in Figure 2.9.
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Z1 = {[12K − 16K], [21K − 24K], [36K − 39K]}

Z0 = {12K, 13K, 14K, 16K, 21K, 24K, 36K, 39K}

Z2 = ∗

DGHZ0

17 19 20 24 29 34 39 45

12K 13K 14K 16K 21K 24K 36K 39K

[12K-16K] [21K-24K] [36K-39K]

∗

V GHZ0

A0 = {17, 19, 20, 24, 29, 34, 39, 45}

A1 = {[17 − 24], [29 − 34], [39 − 45]}

A2 = ∗

DGHA0

[17-24] [29-34] [39-45]

∗

V GHA0

Figure 2.8: DGH and V GH for Age and Zip of the example

There are six possible generalization strategies from the generalization hierarchy in Fig-

ure 2.9. We arbitrarily take one of them for our example as marked in bold in Figure 2.9.

The detailed generalization strategy is described in Figure 2.10.

According to the Algorithm 2, we build the hash table of the generalization strategy

shown in Figure 2.10 as in Table 2.9. Since our privacy requirement k = 2, we only focus

on the Bucket 2 with the value of Children[i, j] ≥ 2. The Bucket 2 consists of seven pairs,

which are on three different levels from L[2] to L[4]. According to our algorithm, we start

to check from L[2]. Recall that for each level, we use L[i] to represent the number of data

L[i, j] on each level i, and n[i] to denote the number of data L[i, j] that fall into the hash

table. In our example, L[2] = 3, L[3] = 3, L[4] = 1, and n[2] = 3, n[3] = 3, n[4] = 1. Next,

we compare the value of L[i] and n[i] from the smallest i. If they are equal, we also find

the minimal anonymous solution, which means if we generalize the original data sets to the

level i, it is the optimal solution according to our defined minimal criteria. Otherwise, we
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< A0, Z0 >

< A1, Z2 >

< A0, Z2 >

< A2, Z2 >

< A1, Z1 >

< A1, Z0 >

DGH<G0,Z0>

< A2, Z0 >

< A2, Z1 >

< A0, Z1 >

Figure 2.9: The hierarchy of DGH<A0,Z0>

Age Zip Salary
[17-24] [12K-21K] 1000
[17-24] [12K-21K] 1010
[17-24] [12K-21K] 1020
[17-24] [12K-21K] 50000
[29-34] [21K-24K] 16000
[29-34] [21K-24K] 24000
[39-45] [36K-39K] 33000
[39-45] [36K-39K] 31000

Table 2.10: 2-anonymous (2-diverse) data

(17,12K)

< A1, Z1 >

< A1, Z2 >

< A0, Z0 >

< A0, Z1 >

< A2, Z2 >

(19,13K) (20,14K) (24,16K) (29,21K) (34,24K) (39,36K) (45,39K)

(17,[12-16K]) (19,[12-16K]) (20,[12-16K]) (24,[12-16K]) (29,[21-24K]) (34,[21-24K]) (39,[36-39K]) (45,[36-39K])

([39-45],[36K-39K])([17-24],[12K-16K]) ([29-34],[21K-24K])

([17-24],*) ([29-34],*) ([39-45],*)

(*,*)

L[0]

L[1]

L[2]

L[3]

L[4]

(1) (1) (1) (1) (1) (1) (1)(1)

(4) (2) (2)

(4) (2) (2)

(8)

Figure 2.10: One (extended) domain and value generalization strategy from Figure 2.9

search for the next level until the equation holds. In our example, L[2] = n[2], which means

that we have already found the minimal 2-anonymous solution, and the anonymized data set

is shown in Table 2.10.

Next, we explain how to find the 2-diverse solution. Here, we find a distinct 2-diverse

solution, the entropy 2-diverse and recursive 2-diverse solution, which can be done with

a similar process. The extended domain generalization hierarchy is shown in Figure 2.10.

Since the minimal 2-anonymity solution is at level 3, and the number of sensitive value at

the third level is greater than l = 2, according to algorithm 3, the minimal distinct 2-diverse

solution is at level 3. The modified data is the same as in Table 2.10.
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Bucket 0 1 2
Children[i, j] 0 1 ≥ 2

L[0, 1], L[0, 2], L[0, 3] L[1, 1], L[1, 2], L[1, 3] L[2, 1], L[2, 2], L[2, 3]
Contents L[0, 4], L[0, 5], L[0, 6] L[1, 4], L[1, 5], L[1, 6] L[3, 1], L[3, 2], L[3, 3]

L[0, 7], L[0, 8] L[1, 7], L[1, 8] L[4, 1]

Table 2.9: Hash table of generalization strategy in Figure 2.10

2.6 SUMMARY

In this chapter, I focused on a specific global-recoding model of k-anonymity. The objective

was to find the minimal k-anonymous generalization (table). By introducing the structure of

privacy hash table, I have provided a new approach to generate minimal k-anonymous table,

which improves a previous search algorithm proposed by Samarati [87]. Further, I extended

our privacy hash table structure to make it compatible with other privacy principles, like l-

diversity. To facilitate better understanding, I have also included an application example to

explain how to find the minimal anonymous solution through a privacy hash table structure.
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CHAPTER 3

ENHANCED k-ANONYMITY MODELS

In this chapter, I proposed three new privacy models to enhance the k-anonymity model

for privacy preserving data publishing. I theoretically analyze the computational hardness

of their decision problems, and propose efficient anonymization algorithms to tackle these

problems. The experimental results show that the proposed models have advantages in terms

of effectiveness, efficiency and distortion ratio.

The information included in this chapter is based on the published papers [90, 91].

3.1 MOTIVATION

When releasing microdata, it is necessary to prevent sensitive information of individuals

from being disclosed. Two types of information disclosure have been identified in the liter-

ature [35, 59]: identity disclosure and attribute disclosure. Identity disclosure occurs when

an individual is linked to a particular record in the released table. Attribute disclosure oc-

curs when new information about some individuals is revealed, i.e., the released data makes

it possible to infer the characteristics of an individual more accurately than would be pos-

sible before the data release. While k-anonymity protects against identity disclosure, it is

insufficient to prevent attribute disclosure. Several models such as p-sensitive k-anonymity

[110], l-diversity [70] and t-closeness [65] were proposed. However, depending on the na-

ture of the sensitive attributes, even these enhanced properties still permit the information to

be disclosed or have other limitations.

Limitation of p-sensitive k-anonymity: The purpose of p-sensitive k-anonymity [110] is to
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ID Age Country Zip Code Disease
1 27 USA 14248 HIV
2 28 Canada 14207 HIV
3 26 USA 14206 Cancer
4 25 Canada 14249 Cancer
5 41 China 13053 Hepatitis
6 48 Japan 13074 Phthisis
7 45 India 13064 Asthma
8 42 India 13062 Obesity
9 33 USA 14248 Flu

10 37 Canada 14204 Flu
11 36 Canada 14205 Flu
12 35 USA 14248 Indigestion

Table 3.1: Raw microdata

protect against attribute disclosure by requiring that there should be at least p different values

for each sensitive attribute within the records that share a combination of quasi-identifiers.

This approach has the limitation of implicitly assuming that each sensitive attribute takes

values uniformly over its domain; that is, that the frequencies of the various values of a

sensitive attribute are similar. When this is not the case, achieving the required level of

privacy may cause a huge data utility loss.

Limitation of l-diversity: The l-diversity model [70] protects against sensitive attribute

disclosure by considering the distribution of the attributes. The approach requires l “well-

represented”1 values in each combination of quasi-identifiers. This may be difficult to achieve

and, like p-sensitive k-anonymity, may result in a large data utility loss. Further, l-diversity

is insufficient to prevent similarity attack.

Limitation of t-closeness: The t-closeness model [65] protects against sensitive attributes

disclosure by defining semantic distance among sensitive attributes. The approach requires

the distance between the distribution of the sensitive attribute in the group and the distribu-

1The interpretation of the term “well-represented” can be found in [70].
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ID Age Country Zip Code Disease
1 <30 America 142∗∗ HIV
2 <30 America 142∗∗ HIV
3 <30 America 142∗∗ Cancer
4 <30 America 142∗∗ Cancer
5 >40 Asia 130∗∗ Hepatitis
6 >40 Asia 130∗∗ Phthisis
7 >40 Asia 130∗∗ Asthma
8 >40 Asia 130∗∗ Obesity
9 3∗ America 142∗∗ Flu

10 3∗ America 142∗∗ Flu
11 3∗ America 142∗∗ Flu
12 3∗ America 142∗∗ Indigestion

Table 3.2: 2-sensitive 4-anonymous microdata

tion of the attribute in the whole data set to be no more than a threshold t. Whereas Li et al.

[65] elaborate on several ways to check t-closeness, no computational procedure to enforce

this property is given. If such a procedure was available, it would greatly damage the util-

ity of data because enforcing t-closeness destroys the correlations between quasi-identifier

attributes and sensitive attributes.

Faced with these limitations, we intend to enhance the current privacy principles to make

them preserve a good balance between data quality and data privacy. In this chapter, I iden-

tify situations when the p-sensitive k-anonymity property is not enough for privacy protec-

tion and I study three solutions to overcome the identified problem. The comprehensive

experimental results show that the enhanced privacy models are better than the previous one

in terms of data quality and utility.

3.2 PRELIMINARIES

As I mentioned in the previous chapter, although k-anonymity can protect identity disclosure

well, sometimes it fails to protect against sensitive attribute disclosure. To deal with this
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Category ID Sensitive values Sensitivity
One HIV, Cancer Top Secret
Two Phthisis, Hepatitis Secret

Three Obesity, Asthma Less Secret
Four Flu, Indigestion Non Secret

Table 3.3: Categories of Disease

problem in privacy breach, the p-sensitive k-anonymity model was introduced in [110].

Definition 3.1 (p-sensitive k-anonymity). The modified microdata T ′ satisfies p-sensitive

k-anonymity property if it satisfies k-anonymity, and for each QI-group in T ′, the number of

distinct values for each sensitive attribute is at least p within the same QI-group.

For example, Table 3.2 is a 2-sensitive 4-anonymous view of Table 3.1. Although the

p-sensitive k-anonymity principle represents an important step beyond k-anonymity in pro-

tecting against attribute disclosure, it still has some shortcomings. Sometimes, the domain

of the sensitive attributes, especially the categorical ones, can be partitioned into categories

according to the sensitivity of attributes. For example, in medical datasets Table 3.1, the

Disease attribute can be classified into four categories (see Table 3.3). The different types

of diseases are organized in a category domain. The attribute values are very specific, for

example they can represent HIV or Cancer, which are both Top Secret information about

individuals. In case the initial microdata contains specific sensitive attributes like Disease,

the data owner can be interested in protecting not only these most specific values, but also

the category that the sensitive values belong to. For example, the information of a person

who is affected by Top Secret needs to be protected, no matter whether it is HIV or Cancer.

If we modify the microdata to satisfy the p-sensitive k-anonymity property, it is possible

that in a QI-group with p distinct sensitive attribute values, all of them belong to the same

pre-defined confidential category. For instance, the values {HIV, HIV, Cancer, Cancer} of

one QI-group in Table 3.2 all belong to the Top Secret category. To avoid such situations, we
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Age Country ZipCode Disease Category
<40 America 1424* HIV One
<40 America 1424* Cancer One
<40 America 1424* Flu Four
<40 America 1424* Indigestion Four
>40 Asia 130** Hepatitis Two
>40 Asia 130** Phthisis Two
>40 Asia 130** Asthma Three
>40 Asia 130** Obesity Three
<40 America 1420* HIV One
<40 America 1420* Cancer One
<40 America 1420* Flu Four
<40 America 1420* Flu Four

Table 3.4: 2+-sensitive 4-anonymous microdata

introduce three new enhanced privacy protection models, namely, p+-sensitive k-anonymity

model, (p, α)-sensitive k-anonymity model and (p+, α)-sensitive k-anonymity model, which

are aware of not only protecting specific sensitive values, but also prevent similarity attack,

which refers to the situation where the sensitive attribute values in a QI-group have distinct

but similar sensitivity, and an adversary can learn important information.

3.3 NEW PRIVACY PROTECTION MODELS

Let S be a categorical sensitive attribute I want to protect against attribute disclosure. All

of the concepts in this chapter are easily explained in the single sensitive attribute setting,

but can also be generalized to multiple sensitive attributes. First, we sort the values of S

according to their sensitivity, forming an ordered value domain D, and then partition the

attribute domain into m categories (S1, S2, · · · , Sm), such that S = ∪m
i=1Si, Si ∩Sj = ∅ (for

i ̸= j) and Si ≤ Si+1 (for i = 1, · · · ,m), where Si ≤ Sj means that Si is more sensitive than

the Sj (for 1 ≤ i ≤ j ≤ m). For example, consider the Disease S={HIV, Cancer, Phthisis,

Hepatitis, Obesity, Asthma, Flu, Indigestion} in Table 3.1, it has been partitioned into four
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Age Country ZipCode Disease Weight Total
<40 America 142** HIV 0
<40 America 142** HIV 0
<40 America 142** Cancer 0

1

<40 America 142** Flu 1
>40 Asia 130** Hepatitis 1/3
>40 Asia 130** Phthisis 1/3
>40 Asia 130** Asthma 2/3

2

>40 Asia 130** Obesity 2/3
<40 America 14*** Cancer 0
<40 America 14*** Flu 1
<40 America 14*** Flu 1

3

<40 America 14*** Indigestion 1

Table 3.5: (3, 1)-sensitive 4-anonymous microdata

categories according to the sensitivity of the diseases (Table 3.3), where S1 (Top Secret) is

the most sensitive and S4 (Non Secret) is the least sensitive one.

Definition 3.2 (p+-sensitive k-anonymity). The modified microdata T ′ satisfies p+-sensitive

k-anonymity property if it satisfies k-anonymity, and for each QI-group in T ′, the number of

distinct categories for each sensitive attribute is at least p within the same QI-group.

Table 3.4 is a 2+-sensitive 4-anonymous view of Table 3.1. The first four records in Table

3.4 correspond to the records 1,4,9 and 12 in Table 3.1 after anonymization. As you can see,

for example, in Table 3.4, the first four records belong to one QI-group in which the Disease

is not that easy to be referred since they belong to two different categories defined in Table

3.3. Compared with the previous anonymous solution shown in Table 3.2, this new model

could overcome the shortcomings of previous models and reduce the possibility of leaking

privacy. Before introducing our next enhanced (p, α)-sensitive k-anonymity model, we first

define an ordinal weight for each category, which captures the degree to which each specific

sensitive value contributes to the QI-group.
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Let D(S) = {S1, S2, · · · , Sm} denote a partition of categorical domain of an attribute S

and weight(Si) be the weight of category Si. Then,

 weight(Si) =
i−1
m−1

; 1 ≤ i < m

weight(Sm) = 1,
(3.1)

Note that the weight of the specific sensitive value is equal to the weight of the category

that the specific value belongs to. The weight of the QI-group is the total weight of each

specific sensitive value that the QI-group contains.

We illustrate these concepts by taking Table 3.4 as an example. Given the partition of

sensitive attributes as shown in Table 3.3 and four corresponding values set A={Cancer,

Phthisis, Asthma, Flu}. According to Equation (3.1), weight(S1) = 0, weight(S2) = 1/3

and weight(Asthma) = 2/3, weight(Flu) = 1, the total weight of A is 0+1/3+2/3+1=2.

Our next enhanced privacy principle is defined as follows:

Definition 3.3 ((p, α)-sensitive k-anonymity). The modified microdata T ′ satisfies (p, α)-

sensitive k-anonymity property if it satisfies k-anonymity, and each QI-group has at least p

distinct sensitive attribute values with its total weight at least α.

For instance, Table 3.5 is a (3, 1)-sensitive 4-anonymous view of Table 3.1. There are

at least three different values in each QI-group and the least total weight of the QI-group is

1. We can easily see that the (p, α)-sensitive k-anonymity model can well protect sensitive

information disclosure as well when compared with the previous p-sensitive k-anonymity

model.

Definition 3.4 ((p+, α)-sensitive k-anonymity). The modified microdata T ′ satisfies (p+, α)-

sensitive k-anonymity property if it satisfies k-anonymity, and each QI-group has at least p

distinct categories of the sensitive attribute and its total weight is at least α.
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These three new introduced models focus on different perspectives in protecting sensitive

attributes disclosures. Instead of focusing on the specific values of sensitive attributes, the

p+-sensitive k-anonymity model cares more about the categories that the values belong to.

Although (p, α)-sensitive k-anonymity and (p+, α)-sensitive k-anonymity models still put

the point on the specific values, it includes an ordinal metric system to measure how much

the specific sensitive attribute values contribute to each QI-group. In the next section, we

theoretically prove that p+-sensitive k-anonymity, (p, α)-sensitive k-anonymity and (p+, α)-

sensitive k-anonymity are computationally NP-hard. We use different approaches to derive

the hardness results. For the computing harness of p+-sensitive k-anonymity, it can be proved

directly as a deduction from the known results in [110], while to prove the hardness of the

optimal (p, α)-sensitive k-anonymity problem, it takes a standard procedure by reducing it

to a well-known NP-hard problem. The hardness of (p+, α)-sensitive k-anonymity problem

is a direct corollary from the hardness of the optimal (p, α)-sensitive k-anonymity problem.

3.4 NP-HARDNESS

The optimal p-sensitive k-anonymity problem is NP-hard as discussed in [110]. It is easy

to deduce that the optimal p+-sensitive k-anonymity model is also NP-hard. Recall that the

difference between the p+-sensitive k-anonymity and p-sensitive k-anonymity principles is

that the former requires p distinct categories, while the latter enforces p different values.

Consider the situation when each pre-defined category contains only one sensitive value, in

which case the p+-sensitive k-anonymity could be reduced to the p-sensitive k-anonymity

principle. Because the optimal p-sensitive k-anonymity problem is NP-hard [110], it is easy

to obtain that computing the optimal p+-sensitive k-anonymity is NP-hard as well. Next,

we show that the optimal (p, α)-sensitive k-anonymity problem is NP-hard. As a direct

corollary, the optimal (p+, α)-sensitive k-anonymity problem is also NP-hard.
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THEOREM 3.1: (p, α)-sensitive k-anonymity is NP-hard for a binary alphabet (
∑

= {0, 1}).

PROOF: The proof is by transforming the problem of EDGE PARTITION INTO 4-CLIQUES

[44] to the (p, α)-sensitive k-anonymity problem.

EDGE PARTITION INTO 4-CLIQUES: Given a simple graph G = (V,E), with |E| =

6m for some integer m, can the edges of G be partitioned into m edge-disjoint 4-cliques?

Given an instance of EDGE PARTITION INTO 4-CLIQUES, set p = 2, α = 6 and

k = 12. For each vertex v ∈ V , construct a non-sensitive attribute. For each edge e ∈ E,

where e = (v1, v2), create a pair of records rv1,v2 and r̃v1,v2, where the two records have the

attribute values of both v1 and v2 equal to 1 and all other non-sensitive attribute values are

equal to 0, but one record rv1,v2 has the sensitive attribute equal to 1 and the other record

r̃v1,v2 has a sensitive attribute equal to 0.

We define the cost of the (2, 6)-sensitive 12-anonymity to be the number of suppressions

applied in the data set. We show that the cost of the (2, 6)-sensitive 12-anonymity is at most

48m if and only if E can be partitioned into a collection of m edge-disjoint 4-cliques.

Suppose E can be partitioned into a collection of m disjoint 4- cliques. Consider a 4-

clique C with vertices v1, v2, v3 and v4. If we suppress the attributes v1, v2, v3 and v4 in the

12 records corresponding to the edges in C, then a cluster of these 12 records are formed

where each modified record has four ∗s. Note that the (p, α)-sensitive requirement can be

satisfied as the frequency of the sensitive attribute value 1 is equal to 6. The cost of the

(2,6)-sensitive 12-anonymity is equal to 12× 4×m = 48m.

Suppose the cost of the (2,6)-sensitive 12-anonymity is at most 48m. As G is a simple

graph, any twelve records should have at least four attributes different. So, each record

should have at least four ∗s in the solution of the (2,6)-sensitive 12-anonymity. Then, the

cost of the (2,6)-sensitive 12-anonymity is at least 12 × 4 × m = 48m. Combined with

the proposition that the cost is at most 48m, we obtain that the cost is exactly equal to 48m
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and thus each record should have exactly four ∗s in the solution. Each cluster should have

exactly 12 records (where six have sensitive value 1 and the other six have sensitive value 0).

Suppose the twelve modified records contain four ∗s in attributes v1, v2, v3 and v4, and the

records contain 0s in all other nonsensitive attributes. This corresponds to a 4-clique with

vertices v1, v2, v3 and v4. Thus, we conclude that the solution corresponds to a partition into

a collection of m edge-disjoint 4-cliques. �

COROLLARY 3.1: (p+, α)-sensitive k-anonymity problem is NP-hard for a binary alphabet

(
∑

= {0, 1}).

3.5 UTILITY MEASUREMENTS

In this section, we discuss three generic utility metrics for measuring the quality of anonymized

data. There are a number of quality measurements presented in previous studies. Many met-

rics are utility based, for example, model accuracy [43, 61] and query quality [60, 125]. They

are associated with some specific applications. Three generic metrics have been used in a

number of recent works.

Discernability metric (DM): The discernability metric was proposed by Bayardo et al. [22]

and has been used in [60, 125]. It is defined in the following:

DM =
∑

QI-group G

|G|2

where |G| is the size of the QI-group G. The cost of anonymisation is determined by the size

of the QI-group. An optimization objective is to minimize discernability cost.

Normalized average QI-group (CAVG): Normalized average QI-group size was proposed by

CHAPTER 3. ENHANCED K-ANONYMITY MODELS



Xiaoxun Sun Ph.D Dissertation - 56 of 198

LeFevre et al. [60] and has been used in [125]. It is defined as the following:

CAVG = (
total records

total QI-groups
)/(k)

The quality of k-anonymisation is measured by the average size of QI-groups produced. An

objective is to reduce the normalized average QI-group size.

These measurements are mathematically sound, but are not intuitive to reflect changes

being made to an anonymized data set. In this chapter, we also use the most generic criterion,

called distortion ratio, which measures changes caused by the operation of data generalisa-

tion.

Distortion ratio: Suppose the value of the attribute in a tuple (record) has not been general-

ized, there will be no distortion. However, if the value of the attribute in a tuple is generalized

to a more general value in the taxonomy tree or the conceptual generalization hierarchy, there

is a distortion of the attribute of the tuple associated with the operation of the generalization.

If the value is generalized more (i.e. the original value is updated to a value at the node of

the taxonomy near the root), the distortion will be greater. Thus, the distortion of this value

is defined in terms of the height of the value generalized. For example, if the value has not

been generalized, the height of the value generalized is equal to 0. If the value has been

generalized one level up in the taxonomy, the height of the value generalized is equal to 1.

Let hi,j be the height of the value generalization of the attribute Ai of the tuple tj . The

distortion of the whole data set is equal to the sum of the distortions of all values in the

generalized data set. That is, distortion=
∑

i,j hi,j . Distortion ratio is equal to the distortion

of the generalized data set divided by the distortion of the fully generalized data set, where

the fully generalized data set is the one in which all values of the attributes are generalized

to the root of the taxonomy tree.
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3.6 THE ANONYMIZATION ALGORITHMS

In this section, I propose a set of algorithms for achieving new enhanced privacy principles,

p+-sensitive k-anonymity, (p, α)-sensitive k-anonymity and (p+, α)-sensitive k-anonymity

principles. I adopt the local recording mechanism, since it produces less distortion than the

global recoding model. I first describe the idea of developing the local recoding algorithms,

and then use a simple example to illustrate how the algorithm works.

The idea of the algorithm is to first generalize all tuples completely so that, initially, all

tuples are generalized into one QI-group. Then, tuples are specialized in iterations. During

the specialization, we must maintain p+-, (p, α)-and (p+, α)-sensitive k-anonymity proper-

ties. The process continues until we cannot specialize the tuples any more (Algorithm 1).

For ease of illustration, we present how the algorithm works for (p, α)-sensitive k-anonymity

for a set of quasi-identifier attributes with size 1.

Algorithm 1: The Top-down Local Recoding Algorithm (Localpk(p, k))
1. Fully generalize all tuples such that all tuples are equal.
2. Let P be a set containing all these generalized tuples
3. S ← {P}; O ← ∅.
4. Repeat
5. S′ ← ∅
6. For all P ∈ S do
7. Specialize all tuples in P one level down in generalization

hierarchy forming a number of specialized child nodes.
8. Un-specialize the nodes which do not satisfy p-sensitive

k-anonymity by moving the tuples back to the parent node.
9. If the parent P does not satisfy p-sensitive k-anonymity then.
10. Un-specialize some tuples in the remaining child nodes

so that the parent P satisfies p-sensitive k-anonymity.
11. For all non-empty branches B of P , do S′ ← S′ ∪ {B}
12. S ← S′

13. If P is non-empty then O ← O ∪ {P}
14. Until S = ∅
15. Return O.

Let us illustrate this with an example in Table 3.6(a). Suppose the QI contains Zip Code
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Figure 3.1: Algorithm illustration for QI={Zip Code}

Age Zip Code Disease
27 14248 HIV
35 14248 Indigestion
33 14248 Flu
25 14247 Cancer

(a)

No. Zip Code Disease
1 14248 HIV
2 14248 Indigestion
3 14248 Flu
4 14247 Cancer

(b)

No. Zip Code Disease
1 14248 HIV
2 14248 Indigestion
3 1424* Flu
4 1424* Cancer

(c)

Table 3.6: (a): Sample Data from Table 3.1; (b): Original projected table; (c): Gener-
alized projected table

only. Because there are only two sensitive values, so we assume that α = 1, p, k = 2. Ini-

tially, we generalize all four tuples completely to a most generalized value Zip Code=*****

(Figure 3.1(a)). Then, we specialize each tuple one level down in the generalization hierar-

chy. We obtain the branch with Zip Code = 1**** in Figure 3.1(b). In the next iteration, we

obtain the branch with Zip Code = 14***, the branch with Zip Code = 142** and the branch

with Zip Code = 1424* in Figure 3.1(c), (d) and (e), respectively. Next, we can further spe-

cialize the tuples into the two branches as shown in Figure 3.1(f). Hence the specialization

processing can be seen as the growth of a tree.

If each leaf node satisfies (p, α)-sensitive k-anonymity, then the specialization will be
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successful. However, we may encounter some problematic leaf nodes that do not satisfy

(p, α)-sensitive k-anonymity. Then, all tuples in such leaf nodes will be pushed upwards

in the generalization hierarchy. In other words, those tuples cannot be specialized in this

process. They should be kept unspecialized in the parent node. For example, in Figure

3.1(f), the leaf node with Zip Code = 14247 contains only one tuple, which violates (p, α)-

sensitive k-anonymity. Thus, we have to move this tuple back to the parent node with Zip

Code = 1424*. See Figure 3.1(g).

After the previous step, we move all tuples in problematic leaf nodes to the parent

node. However, if the collected tuples in the parent node do not satisfy (p, α)-sensitive k-

anonymity, we should further move some tuples from other leaf nodes L to the parent node

so that the parent node can satisfy (p, α)-sensitive k-anonymity while L also maintains the

(p, α)-sensitive k-anonymity. For instance, in Figure 3.1(g), the parent node with Zip Code

= 1424* violates (p, α)-sensitive k-anonymity. Thus, we should move one tuple upwards in

the node B with Zip Code = 14248 (which satisfies (p, α)-sensitive k-anonymity). In this

example, we move tuple 3 upwards to the parent node so that both the parent node and the

node B satisfy the (p, α)-sensitive k-anonymity.

Finally, in Figure 3.1(h), we obtain a data set where the Zip Code of tuples 3 and 4

are generalized to 1424* and the Zip Code of tuples 1 and 2 remains 14248. So the final

allocation of tuples in Figure 3.1(h) is the final distribution of tuples after the specialization.

The results can be found in Table 3.6(c).

3.7 PROOF-OF-CONCEPT EXPERIMENTS

We performed two sets of experiments on our proposed p+-sensitive k-anonymity and (p, α)-

sensitive k-anonymity models with real-world data sets to show their effectiveness and effi-

ciency.
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Attribute Type Height
Age Numeric 5

Workclass Categorical 3
Education Categorical 4
Country Categorical 3

Marital Status Categorical 3
Race Categorical 3

Gender Categorical 2
Health Condition Sensitive –

Table 3.7: Features of QI attributes

k, p Number of attribute disclosures
Model 1 Model 2 Model 3

k = 3, p = 2
25 3 2

Model 1 Model 2 Model 3
k = 4, p = 2

30 4 6
Model 1 Model 2 Model 3

k = 3, p = 3
15 2 3

Model 1 Model 2 Model 3
k = 4, p = 3

21 1 2

Table 3.8: Attribute disclosures

In the first set of experimental studies, we use the Adult database publicly available at the

UC Irvine Machine Learning Repository [77], and we evaluate algorithms of proposed three

enhanced k-anonymity models in terms of Similarity Attack, Effectiveness, Efficiency and

Distortion Ratio. Our second set of experiments deploys a real database CENSUS database2

commonly used in the literature [128, 129, 130], and we compare our proposed algorithms

with a traditional clustering method, Clustering [111] in terms of three data quality measures,

distortion ratio, discernability (DM) and normalized average QI-group size (CAVG). Both

sets of experiments show that the proposed enhanced k-anonymity models are efficient and

effective for privacy protection in real-world data publication.

3.7.1 FIRST SET OF EXPERIMENTS

EXPERIMENT SETUP

Data Sets. In this set of experiments, we adopted the publicly available Adult Database,

which has become the benchmark of this field and was adopted by [62, 43, 65, 110, 70]. For

the Adult database, we used a configuration similar to [62]. We eliminated the records with

unknown values. The resulting data set contains 45222 tuples. Seven of the attributes were

chosen as the set of quasi-identifier attributes. We add a column with sensitive values called

2downloadable at http://ipums.org
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Figure 3.2: Execution time vs. three privacy measures

“Health Condition” consisting of {HIV, Cancer, Phthisis, Hepatitis, Obesity, Asthma, Flu,

Indigestion} to the whole data set and randomly assign one sensitive value to each record of

the Adult data set. Table 3.7 provides a brief description of the modified data set including

the attributes we used, the type of each attribute, the number of distinct values for each

attribute, and the height of the generalization hierarchy for each attribute.

On default, we set α=1, p=2 and k=3. We denote the previous p-sensitive k-anonymity

model as Model 1, the p+-sensitive k-anonymity model as Model 2 and the (p, α)-sensitive

k-anonymity model as Model 3. We modified the Incognito algorithm [62] so that it produces

p+- and (p, α)-sensitive k-anonymous data sets as well. All the experiments are run on top

of Windows XP on a machine with a 2.0GHz Pentium 4 processor and 1GB RAM.

EXPERIMENTAL RESULTS

We evaluate the proposed models in terms of the similarity attack, effectiveness, execution

time and distortion ratio, and summarize the experimental results as follows.

Similarity Attack. We use the first 7 attributes in Table 3.7 as the quasi-identifier attributes
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Figure 3.3: Distortion ratio vs. two enhanced privacy measures

and treat “Health Condition” as the sensitive attribute. We divide the eight values of the

Health Condition attribute into four pre-defined equal-size categories, based on the confi-

dentiality of the values (See Table 3.3). Any QI-group that has all values falling in one

category is viewed as vulnerable to a similarity attack. We first generate all 2-sensitive 2-

anonymous tables. In total, there are 21 minimal data sets and 13 of them suffer from the

similarity attack (13/21=0.62%). In one such anonymized table, a total of 916 records can be

inferred about their sensitive value class. We then generated all 30 minimal (2,1)-sensitive

2-anonymous tables, and found that only 4 of whem are vulnerable to the similarity attack

(4/30=13%). Similar results are obtained with the p+-sensitive k-anonymity model. To

summarize, both p+-sensitive k-anonymity and (p, α)-sensitive k-anonymity models could

significantly reduce the chance of similarity attacks.

Effectiveness. Table 3.8 shows that even under two new enhanced p+-sensitive k-anonymity

and (p, α)-sensitive k-anonymity models, disclosure channels still exist so that the Health

Condition can be inferred. This is because of the nature of sensitive attributes. However,

compared with the previous p-sensitive k-anonymity model, our new enhanced models could
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significantly reduce the number of sensitive attribute disclosures, which help to achieve better

privacy protection.

Efficiency. We compare the efficiency among three privacy measures: (1) p-sensitive k-

anonymity; (2) p+-sensitive k-anonymity; (3) (p, α)-sensitive k-anonymity. Results of effi-

ciency experiments are shown in Figure 3.2. The running times for p+-sensitive k-anonymity

and p-sensitive k-anonymity are similar, which makes p+-sensitive k-anonymity usable in

practice. Figure 3.2(a) shows the running times with fixed p = 4, α = 4 while varying the

size s of the quasi-identifier attributes, where 2 ≤ s ≤ 7. A set of quasi-identifier attributes

has size s consisting of the first s attributes listed in Table 3.7. Figure 3.2(b) shows the run-

ning times of three privacy measures with the same set of quasi-identifier attributes but with

different parameters settings of p and α. As shown in the figures, p+-sensitive k-anonymity

run faster than the (p, α)-sensitive k-anonymity; the difference gets larger when α increases.

Distortion Ratio. Results of distortion ratio are shown in Figure 3.3. From Figure 3.3(a),

the distortion ratio almost increases as the size of the quasi-identifier attributes grows. This

is because when the set of quasi-identifier attributes contains more attributes, there is more

chance that two tuples are different with respect to the set of the quasi-identifier attributes.

In other words, there is more chance that the tuples will be generalized. Thus, the distortion

ratio is greater. On average, the distortion ratio of Model 3 is greater than Model 2, since

Model 3 requires a stricter privacy requirement causing more data generalization. In Figure

3.3(b), when α increases, the distortion ratio decreases. Intuitively, if α is larger, meaning

that there is less requirement of metric α, it yields fewer operations of generalization of the

values in the data set. Thus, the distortion ratio is smaller.
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Figure 3.4: Performance of different local recoding algorithms with varying k: (a)
Distortion ratio (b) Discernability (c) Normalized average QI-group size.

3.7.2 SECOND SET OF EXPERIMENTS

Data sets. Our experimentation deploys a real database CENSUS commonly used in the

literature [128, 129, 130]. It contains 500k tuples, each of which describes the personal in-

formation of an American. The CENSUS data set includes four numerical attributes Age,

Birthplace, Occupation and Income, whose domains are [16,93], [1,710], [1,983] and [1k,

100k], respectively. We treat the first three columns as the set of quasi-identifier attributes,

and Income as the sensitive attribute. We further divide the attribute Income into four cate-

gories shown in Table 3.9. By default, we set α=1, p=2 and k=3. We denote the clustering

algorithm used in [111] as Clustering, the local recoding algorithm for Model 2 and Model 3

as localpk2 and localpk3. We run comparisons throughout three quality measures, distortion

ratio, discernability (DM) and normalized average QI-group size (CAVG).

Category ID Income Sensitivity
One [1k, 20k] Lower Income
Two (20k, 40k] Average Income

Three (40k, 70k] Above Average
Four (70k, 100k] Higher Income

Table 3.9: Categories of Income
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Figure 3.5: Running time comparison of different local recoding algorithms

In Figure 3.4, we compare three local recoding algorithms in terms of the distortion ratio,

DM and CAVG. Based on distortion ratio, our proposed models are superior to the previous

one. Specifically, both localpk2 and localpk3 perform consistently better than the clustering

method. This shows that our defined α metric could significantly reduce the distortion ratio.

For two other measures, our models are better than the previous one as well. In comparison

to the big difference of CAVG among different algorithms, differences of an algorithm in

variant k are negligible.

Figure 3.5 shows the graphs of the execution time against k and α when p = 2. In

Figure 3.5(a), when k varies, the execution time of all algorithms increases with k. This is

because when k increases, the number of candidates (representing the generalization domain)

increases, and thus the execution time increases. In Figure 3.5(b), when α varies, different

algorithms change differently. The execution time of local recoding algorithms decreases

when α increases. In the local recoding algorithms, we may have to unspecialize some tuples

in the branches satisfying (p, α)-sensitive k-anonymity so that the parent satisfies (p, α)-

sensitive k-anonymity. When α is small, it is more likely that the parent cannot satisfy (p, α)-

sensitive k-anonymity, triggering this step of un-specialization. As the un-specialization step
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is more complex, the execution time is larger when α is smaller.

3.8 SUMMARY

p-sensitive k-anonymity is a novel property that, when satisfied by microdata sets, can help

increase the privacy of the respondents whose data are being used. However, as shown in

this chapter, to some extent, this property is not enough for protecting sensitive attributes. In

this chapter, I proposed three new privacy models, called p+-sensitive k-anonymity, (p, α)-

sensitive k-anonymity and (p+, α)-sensitive k-anonymity models to enhance the previous

p-sensitive k-anonymity model. I theoretically analyzed the computational hardness of their

decision problems, and proposed efficient and effective anonymization algorithms to tackle

these problems. The experimental results show that the proposed models have advantages in

terms of effectiveness, efficiency and distortion ratio.
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CHAPTER 4

INJECTING PURPOSE AND TRUST INTO

DATA ANONYMISATION

Data anonymisation is of increasing importance for allowing sharing individual data among

various data requesters for a variety of data analysis and mining applications. Most existing

works of data anonymisation target at the optimization of the anonymisation metrics to bal-

ance the data utility and privacy, whereas they ignore the effects of a requester’s trust level

and application purposes during the data anonymisation. The aim of this chapter is to pro-

pose a much finer level anonymisation scheme with regard to the data requester’s trust value

and specific application purpose. I prioritize the attributes for anonymisation based on how

important and critical they are related to the specified application purposes, and propose the

degree of data anonymiztion, which intends to determine to what extent the data should be

anonymized. The decomposition algorithm is developed to find the desired anonymous so-

lution, which guarantees the uniqueness and correctness. Finally, the extensive experiments

on two real-world data sets confirm the benefits for both data requesters and providers.

The information included in this chapter is based on the pub,ished paper [98].

4.1 MOTIVATION

Data privacy and identity protection is a very important issue when databases containing

huge amounts of information need to be stored and distributed for research or other pur-

poses. For example, the National Cancer Institute initiated the Shared Pathology Informatics

Network (SPIN) for researchers throughout the country to share pathology-based data sets
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annotated with clinical information to discover and validate new diagnostic tests and thera-

pies, and ultimately to improve patient care. However, individually identifiable health infor-

mation is protected under the Health Insurance Portability and Accountability Act (HIPAA).

The released data has to be sufficiently anonymized before being shared over the network.

We consider two scenarios where two distinct data requesters require the same data set for

different application purposes.

Scenario 1: The Research Center from the University requests the census data from the US

Census Bureau to conduct a demographic analysis in the local area.

Scenario 2: A PhD student from the Faculty of Business requires the same census data from

the US Census Bureau to investigate or predict the potential business opportunities in the

local area.

The above two scenarios show that the same database may be used for different appli-

cation purposes by different data requesters. On the one hand, considering the diversity

of purposes, the requirements for individual attributes based on how important they are for

requesting purposes are various. For example, Age and Gender attributes in the census

database are essential for demographic purposes, but they are not necessary for some predic-

tion purposes, so a priority weight associated with each attribute is valuable to indicate the

importance of the attribute for requesting purposes. While, on the other hand, considering

the variety of data requesters, the reliability of data requesters to data providers depends on

their trust evaluation. Intuitively, a research center is more reliable than an individual stu-

dent, since a larger organization is usually more trustworthy than a strange individual for

the data provider. The trust between the data requester and data provider reflects the possi-

bility that the data would be misused by the data requester. The more trustworthy the data

requesters are, the less chance they will maliciously use the requested data. So, back to our

scenario, the research center should receive the anonymized data with less anonymisation
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than the individual student.

Existing work on data anonymisation focuses on developing effective models and effi-

cient algorithms to optimize the trade-off between data privacy and utility. Normally, the

same anonymous data is delivered to different requesters regardless of what kind of pur-

poses the data used for, letting alone the reliability of the data requester. By specifying the

requesters’ application purpose and their reliability, the result of the data anonymisation will

achieve a better trade-off. Following this idea, two main challenges arise:

Challenge 1: Since it is not always possible for data requesters to specify the attribute prior-

ities before hand, how can we automatically learn attribute priority from specific application

purposes and further quantify to what extent the data should be anonymized when incorpo-

rating application purposes?

Challenge 2: Faced with different data requesters, how can we accurately evaluate the data

requester’s reliability and further build the projection between the reliability of the data re-

quester and the desired degree of data anonymisation?

Private

Data requester
Data provider

Our contribution:

Trust
evaluation

Attribute
priority

Anonymous

scheme

Mapping
strategy

Decompo
data

Anonymous

sition

Database

Figure 4.1: The architecture of data anonymisation by injecting purposes and trust

In this chapter, we incorporate application purposes and trust into the anonymisation

process to maximize data utility for the data requester. Figure 4.1 illustrates a typical ar-

chitecture of data anonymisation by injecting purposes and trust. A data requester could be

an individual with general data exploration purpose or a research institute with sophisticated
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data mining tasks such as demographic analysis. Upon receiving a user’s request, the pur-

pose of the request indicates the priorities of the attributes during the data anonymisation.

Our idea is to represent the requirements of the application purposes in the form of a list

of attributes and weight pairs where each attribute is associated with a priority value based

on how important it is to the application purposes. Next, the trust evaluation mechanism is

triggered to evaluate the data requester’s reliability, and thereby to determine the degree of

the anonymized data through the projection function. Finally, by decomposing the degree of

anonymisation, the anonymized data is sent back to the data requester.

4.2 ATTRIBUTE PRIORITY

Based on the discussions above, priorities are used to specify how important the attributes

are for certain application purposes. In some applications, exact values for a specific attribute

may be favored while the generalization of others is negligible. By specifying priorities the

data requester is able to determine the degree of generalization and information loss s/he

is willing to cope with. The attribute priority reflects what kind of attributes are essential

for certain purposes. For certain application purposes, since it is almost impossible for the

data requesters themselves to determine the priority of each attribute, in order to capture the

dependency among the attributes, we adopt the concept of entropy from information theory

to measure the amount of information, construct the independency matrix to quantify the

relativity of two relative attributes, and devise a method to automatically derive the attribute

priorities.
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Gender Age Postcode
male middle 4350
male middle 4350
male young 4351

female young 4352
female old 4353
female old 4353

(a)

Gender Age Postcode
male middle 4350
male middle 4350

* young 435*
* young 435*

female old 4353
female old 4353

(b)

Gender Age Postcode
* middle 435*
* middle 435*
* young 435*
* young 435*
* old 435*
* old 435*

(c)

Table 4.1: (a) a raw table. (b) 2-anonymity by local recoding. (c) 2-anonymity by global
recoding.

4.2.1 MUTUAL INFORMATION MEASURE

We are more surprised when an unlikely outcome happens than when a likely one occurs. A

useful measure of the surprise of an event with probability p is −log2p. The main concept of

information theory is that of entropy, which measures the expected uncertainty or the amount

of information provided by a certain event. The entropy of X is defined by:

H(X) = −
∑
x

P (X = x)log2P (X = x)

with 0log20 = 0 by convention. It can be shown that 0 ≤ H(X) ≤ log2|X|, with H(X) =

log2|X| only for the uniform distribution, P (X = x) = 1/|x| for all x ∈ X . For the simplic-

ity of illustration, we use the data shown in Table 4.1(a) as an example. There are 6 records

in the sample data and each record contains 3 attributes {A1, A2, A3}, where A1, A2, A3

refers to Gender, Age and Postcode respectively. For each attribute Ai (1 ≤ i ≤ 3), we

define the probability P (Ai = ‘x′) as the fraction of rows whose projection onto Ai is

equal to x, where x is the value of the certain attribute. For instance, P (A1 = ‘male′) =

1/2, P (A3 = ‘4350′) = 1/3 and P (A1 = ‘male′, A3 = ‘4350′) = 1/3. H(A1) =

−(1/2)log2(1/2)− (1/2)log2(1/2) = 1, H(A2) = 1.5849 and H(A1, A2) = 1.9183.

The conditional entropy H(Y |X) of a random variable Y given X is then defined as:
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H(Y |X) = −
∑
x,y

p(x, y)log2p(y|x)

where p(x, y) is the joint distribution of variables X and Y . The conditional entropy has the

following properties:

PROPOSITION 4.1: Let H(Y |X) be the conditional entropy for Y given X , then,

(1) 0 ≤ H(Y |X) ≤ H(Y );

(2) H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y );

(3) H(X, Y ) ≤ H(X) +H(Y )

The proof of Proposition 1 is given in [124]. According to the proposition, the condi-

tional entropy H(Y |X) can be rewritten as: H(Y |X) = H(X,Y )−H(X), which provides

an alternative and easy way to compute the conditional entropy H(Y |X). Still consider

the previous example, H(A1|A2) = H(A1, A2) − H(A1) = 1.9183 − 1 = 0.9183 and

H(A2|A1) = 0.3334.

We adopt the conditional entropy to measure the mutual information, which is a distance

metric.

Definition 4.1 (Mutual Information Measure). The mutual information measure with re-

gard to two random variables A and B is defined as:

MI(A,B) = H(A|B) +H(B|A) (4.1)

For example, MI(A1, A2) = H(A1|A2) + H(A2|A1) = 0.9183 + 0.3334 = 1.2517.

Mutual information measure is a measure of how independent the two random variables are

when the value of each random variable is known. Two events A and B are independent if
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and only if their mutual information measure achieves the maximum H(A) +H(B). There-

fore, the less the value of the mutual information measure is, the more dependent the two

random variables are. According to this measure, A is said to be more dependent on B than

C, if MI(A,B) ≤MI(A,C).

THEOREM 4.1: The mutual information measure MI(A,B) satisfies the following prop-

erties:

(1) MI(A,B) ≥ 0;

(2) MI(A,B) = MI(B,A);

(3) MI(A,B) +MI(B,C) ≥MI(A,C)

PROOF: The first two are easy to verify. Here, we give the detail for the third one. Note

that,

H(A|C) ≤ H(A,B|C) (4.2)

≤ H(B|C) +H(A|B,C)−H(C) (4.3)

≤ H(B|C) +H(A|B) +H(C)−H(C) (4.4)

= H(B|C) +H(A|B) (4.5)

The inequalities (7.4) and (7.5) hold because of Proposition 1(1) and (2). (7.6) holds due to
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Proposition 1(3) and (7.7) holds because of Proposition 1(2). Then,

MI(A,B) +MI(B,C)

= H(A|B) +H(B|A) +H(B|C) +H(C|B) (4.6)

= (H(A|B) +H(B|C)) + (H(C|B) +H(B|A))

≥ H(A|C) +H(C|A) (4.7)

= MI(A,C) (4.8)

The equality (7.8) holds because of the definition of the mutual information measure and the

inequality (7.11) holds because of (7.7). �

It is easy to verify that MI(A,B) = 0 if and only if there is a one-to-one function

mapping between A and B. Since when H(B|A) = 0, B is a function of A, then when

MI(A,B) = 0 if and only if H(B|A) = 0 and H(A|B) = 0; i.e, there is a one-to-one func-

tion mapping between A and B. In this sense, the mutual information measure MI(A,B)

we defined is a distance metric.

Definition 4.2 (Independency Matrix). Given data set T with n records {r1, r2, · · · , rn},

where each record contains m attributes {A1, A2, · · · , Am}, the independency matrix DT is

defined as:

DT = (MI(i, j))m×m

where MI(i, j) is the mutual information measure, i, j ∈ {A1, A2, · · · , Am}.

For instance, the independency matrix of our example is as follows:
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A1 A2 A3

A1 0 1.2517 0.9183

A2 1.2517 0 0.3334

A3 0.9183 0.3334 0


The normalized independency matrix is normalize the values in the independency matrix to

the range [0,1]. The normalized independency matrix of our example is:



A1 A2 A3

A1 0 0.5 0.367

A2 0.5 0 0.133

A3 0.367 0.133 0


With the normalized independency matrix, we define the attribute priority. For a certain

purpose, some attributes can be determined to be useful, some are useless, while others are

not sure. Let A1, A2, · · · , Am be the attribute set, and for the purpose p, without loss of

generality, suppose A1 is the most useful attribute and Am is the one with least usage (if

there are no A1 and Am, we can always swap the attributes to make the most useful one the

first and most useless one the last). Then, the attribute priority of each attribute is defined as

follows.

Definition 4.3 (Attribute Priority). Let D = (MI(Ai, Aj)m×m) be the normalized inde-

pendency matrix among attributes A1, · · · , Am (1 ≤ i, j ≤ m). For a certain purpose p, a

priority P (Ai, p) is assigned to each attribute Ai for the purpose p (1 ≤ i ≤ m). Suppose

A1 is the most useful attribute and Am is the least useful one. Then, the priority P (Ai, p) is
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defined by the following recursive function:

P (Ai, p) =


1 i = 1

0 i = m

MI(Ai,Ai+1)P (Ai−1,p)+MI(Ai−1,Ai
)P (Ai+1,p)

MI(Ai−1,Ai
)+MI(Ai,Ai+1)

others

For the ease of description, we write P (Ai, p) as Pi or P (Ai) for the attribute Ai in the

rest of the paper. If we are given Table 4.1(a) and for certain purpose, we set P (A1) = 1,

P (A3) = 0, with the independency matrix, we could determine P (A2) = 0.133∗1+0.5∗0
0.5+0.133

=

0.21.

THEOREM 4.2: 0 ≤ P (Ai, p) ≤ 1, ∀1 ≤ i ≤ m.

PROOF: The first step towards solving the recurrence

P (Ak) =
MI(Ak, Ak+1)P (Ak−1) +MI(Ak−1, Ak)P (Ak+1)

MI(Ak−1,Ak
) +MI(Ak, Ak+1)

is to look for solutions of the form P (Ak) = rk, where r is a constant. When we have found

the solutions of this form, we will use the result to find the general solution of the recurrence.

Suppose P (Ak) = rk; then P (Ak−1) = rk−1 and P (Ak+1) = rk+1. Substitute these

expressions into the recurrence:

m ∗ rk+1 − (m+ n) ∗ rk + n ∗ rk−1 = 0

Take out the common factor rk−1:

rk−1 ∗ (m ∗ r2 − (m+ n) ∗ r + n) = 0

We see that, in order for P (Ak) = rk to be a solution of the recurrence, r must satisfy the
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quadratic equation

m ∗ r2 − (m+ n) ∗ r + n = 0

where m = MI(Ai−1, Ai), n = MI(Ai, Ai+1). Since ∆ = (m+n)2−4mn = (m−n)2 ≥ 0,

it has two cases.

Case 1: ∆ = 0. It can be deduced that m = n, which means ∀i, MI(Ai−1, Ai) =

MI(Ai, Ai+1). We can re-write the characteristic function as

r2 − 2 ∗ r + 1 = 0

which has one unique root r = 1, then P (Ai) = (X + Y ∗ i) ∗ ri, which equals to P (Ai) =

(X + Y ∗ i), where 1 ≤ i ≤ m. To determine the value of X and Y , we can use the two

initial conditions. Finally, X = m
m−1

, Y = − 1
m−1

, and

P (Ai) =
m

m− 1
− 1

m− 1
∗ i (1 ≤ i ≤ m)

Obviously, 0 ≤ P (Ai, p) ≤ 1, ∀1 ≤ i ≤ m.

Case 2: ∆ > 0. There are two roots for the equation:

 r1 = 1, r2 =
n
m

if m > n

r1 =
n
m
, r2 = 1 if m < n

Without loss of generality, we assume that r1 = 1, r2 = n
m

and m > n. Since the equation

has two roots, then the general solution of the recurrence is

P (Ai) = X ∗ ri1 + Y ∗ ri2 (4.9)

= X + Y ∗ ( n
m
)i (4.10)
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Applying the initial conditions P (A1) = 1 and P (Am) = 0, we will get:

 X + Y ∗ n
m

= 1

X + Y ∗ ( n
m
)m = 0

The solution for this system is:

 X = − ( n
m
)m−1

1−( n
m
)m−1

Y = 1
n
m
−( n

m
)m

Then,

P (Ai) = −
tm−1

1− tm−1
+

ti

t− tm
(1 ≤ i ≤ m)

where t = n
m

, since m > n, 0 < t < 1. It is easy to deduce that 0 ≤ P (Ai, p) ≤ 1,

∀1 ≤ i ≤ m. Therefore, the theorem holds. �

Theorem 4.2 confirms the correctness of the defined attribute priority. As we assign the

priority 1 to the most useful attribute and 0 to the least useful one, Theorem 4.2 guarantees

that all the priorities calculated by the equation fall into the range [0,1]. With the aid of

attribute priority, in the next section, we discuss how to define the degree of data anonymi-

sation.

4.3 DEGREE OF DATA ANONYMISATION

Data anonymisation is the way to protect data from inference by other malicious data users.

There are many articles investigating the methods to anonymize data, however, no existing

work has determined to what extent the data should be anonymized. In this section, we first

introduce the data anonymisation model and the utility measures that are used throughout
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male female

*

4350 4351 4352 4353

435*

*

Figure 4.2: Generalization hierarchy (taxonomy tree) for attributes Gender and Post-
code

this chapter, then we describe the method to quantify the degree of anonymisation.

4.3.1 DATA ANONYMISATION MODEL

Among the many identifiability based privacy principles, we apply k-anonymity model [87,

104] as the privacy model, which is one of the most widely accepted privacy models and

serves as the basis for many others. Below, we introduce some necessary terminologies of

this principle. k-anonymity property requires that no individual record should be uniquely

identifiable from a group of at least k with respect to the QI-attributes. The set of all records

in T containing identical values for the QI set is referred to as a QI-group. T is k-anonymous

with respect to the QI-attributes if every record is in a QI-group of size at least k. For exam-

ple, Table 4.1(a) does not satisfy 2-anonymity property since tuples male, young, 4351 and

female, young, 4352 occur only once. Table 4.1(b) is a 2-anonymous view of Table 4.1(a)

since the size of all QI-group with respect to the QI-attributes {Gender, Age, Postcode} is at

least 2.

Another objective for k-anonymisation is to minimize distortions. A table may have

more than one k-anonymous view, but some are better than others. For example, we may

have another 2-anonymous view of Table 4.1(a) as in Table 4.1(c). Table 4.1(c) loses much

more information than Table 4.1(b).
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In the literature of the k-anonymity problem, there are two main models. One model is

global recoding [43, 62, 104, 87], while the other is local recoding [2, 103]. Here, we assume

that each attribute has a corresponding conceptual generalization hierarchy or taxonomy tree

(Shown in Figure 4.2). A lower level domain in the hierarchy provides more details than

a higher level domain. For example, Postcode 4350 is a lower level domain and Postcode

435* is a higher level domain. We assume such hierarchies for numerical attributes too. In

particular, we have a hierarchical structure defined with {value, interval, *}, where value is

the raw numerical data, interval is the range of the raw data and * is a symbol representing

any values. Generalization replaces lower level domain values with higher level domain

values. For example, Age 27, 28 in the lower level can be replaced by the interval [27-28] in

the higher level. Examples of local and global recoding are shown in Table 4.1(b) and Table

4.1(c). In this chapter, our trust-based data anonymisation is built on the global recoding

model.

4.3.2 DEGREE OF DATA ANONYMISATION

In some cases, attributes should be generalized only up to a certain degree or not be trans-

formed at all. Otherwise, their values become useless for an application purpose. In this

section, we define the degree of data anonymisation.

Definition 4.4 (Degree of attribute anonymisation). Let Ah be the height of a domain hi-

erarchy for attribute A, and let levels A1, A2, · · · , Ah be the domain levels of A from the

most general to the most specific. Let the weight function wj,j−1 between domain level Aj−1

and Aj be pre-defined, where 2 ≤ j ≤ h. When a value is anonymized from level Ap to level

Aq in its value generalization hierarchy (p ≥ q), the degree of attribute anonymisation of A

is defined as:
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Deg(Ap, Aq) =

∑p
j=q+1 wj,j−1∑h
j=2 wj,j−1

p¿q

Deg(Ap, Aq) = 0 p=q

In the following, we discuss two typical types of weight function wj,j−1.

(1). Uniform weight function: wj,j−1 = 1 (2 ≤ j ≤ h)

This is the simplest scheme where all weights are equal to 1. In this scheme, Deg is the

number of steps it takes for a value being anonymized over all possible generalization steps.

For example, let birth date hierarchy be {D/M/Y, M/Y, Y, 10Y, C/Y/M/O, *}, where 10Y

stands for 10-year interval and C/Y/M/O for child, young, middle age and old age. Deg from

D/M/Y to Y is Deg(6,4)=(1+1)/5=0.4. In gender hierarchy, {M/F, *}, Deg from M/F to * is

Deg(2,1)=1/1=1.

(2). Utility weight function: wj,j−1 =
1

(j−1)β
(2 ≤ j ≤ h, β ≥ 1).

For a fixed β, the intuition of this scheme is that the more anonymized the data are, the

less utility the data will be, i.e., the anonymisation near to the top should give a greater degree

of data anonymisation compared with the anonymisation far from the top. Thus, we formu-

late the utility weight scheme, where the weight near to the top is larger and the weight far

from the top is smaller. For example, consider a hierarchy: {D/M/Y, M/Y, Y, 10Y, C/Y/M/O,

*} for birth date. Let β = 1. Deg from D/M/Y to M/Y is Deg(6,5)=(1/5)/(1/5 + 1/4 + 1/3

+ 1/2 + 1) = 0.087. In gender hierarchy {M/F, *}, Deg from M/F to * is Deg(2,1)=1/1=1.

The degree of anonymisation caused by the generalization of one cell from M/F to * in the

gender attribute is more than the degree of anonymisation caused by the generalization of 11

cells from D/M/Y to M/Y in the birth date attribute.

The degree of data anonymisation at the attribute level is within the range of [0,1]. In

the following, we define degree of anonymisation caused by the generalization of tuples and
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tables.

Definition 4.5 (Degree of tuple anonymisation). Let t = {v1, v2, · · · , vn} be a tuple and

t′ = {v′1, v′2, · · · , v′n} be a generalized tuple of t. Let level(vj) be the domain level of vj in

the attribute hierarchy of αj and Pj is the attribute priority of αj . Then, the degree of tuple

anonymisation is defined as:

Deg(t, t′) =

∑n
j=1 Pj × Deg(level(vj), level(v′j))∑n

j=1 Pj

Since the degree of data anonymisation at the attribute level is within the range of

[0,1], the degree of data anonymisation at the tuple level is also between 0 and 1. For

example, let the weights be defined by the uniform weight function, attribute Gender be

in hierarchy of {M/F, * } and attribute Postcode be in hierarchy of {dddd, ddd*, dd**,

d***, * }. P (Gender) = 0, P (PostCode) = 0.5, and P (Age) = 1 are the equally

scaled priority values. Let t3 be tuple 3 in Table 4.1(a) and t′3 be tuple 3 in Table 4.1(b).

For attribute Gender, the degree of anonymisation is 1. For attribute Postcode, the de-

gree of anonymisation is 0.25. For attribute Age, there is no anonymisation. Therefore,

Deg(t3, t
′
3) = (1 ∗ 0 + 0.25 ∗ 0.5 + 0 ∗ 1)/(1 + 0 + 0.5) = 0.6.

Definition 4.6 (Degree of table anonymisation). Let T ′ be generalized from table T , tj be

the jth tuple in T and t′j be the jth tuple in T ′. Then, the degree of table anonymisation is

defined as:

Deg(T, T ′) =

∑|T |
j=1 Deg(tj, t′j)

|T |

where |T | is the number of tuples in T .

In this chapter, the degree of data anomymisation refers to the degree of data anonymi-

sation at the table level. It is easy to see that the degree of data anonymisation falls into
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the interval [0,1]. From Table 4.1(a) and (b), Deg(t1, t′1) =Deg(t2, t′2)=Deg(t5, t′5)=Deg(t6,

t′6)=0, and Deg(t3, t′3)=Deg(t4, t′4)=0.125. So, the total degree of anonymisation between the

Table 4.1(a) and (b) is Deg(T, T ′) = (0.125 + 0.125)/6 = 0.05. Table 4.1(c) is another

possible anonymous view of Table 4.1(a), then the total degree of anonymisation between

Table 4.1(a) and (c) is Deg(T, T ′) = 0.25 ∗ 0.5 ∗ 6/6 = 0.125, which is three times larger

than the previous one, and it can also be obtained by the observation of two tables.

So far, by defining the degree of anonymisation from the attribute level, we have be able

to determine anonymisation degree of the published data set. In Section 4.4, we discuss the

algorithms on how to derive the anonymous data with the specified degree of data anonymi-

sation.

4.4 THE DECOMPOSITION ALGORITHM

In this section, we discuss how to anonymize the data set with a specific degree of data

anonymisation by developing a novel decomposition method, which provides the unique

and correct anonymous solution.

Generally, if we are given the original data set and its anonymous version, it is easy to

calculate the degree of anonymisation of the anonymized data set. However, it is not that

easy to get the anonymous version of the original data set only with the information about

the degree of anonymisation. The naive way to solve this problem is to enumerate all the

possible anonymous views, calculate the degree of anonymisation of each view, and then

find the one that matchesthe given anonymisation degree, however, this enumeration-based

method suffers from two main problems. First of all, if there are n attributes A1, A2 · · · , An

in the data set and the height of the generalization hierarchy of Ai is mi (1 ≤ i ≤ n), then

the number of all the possible anonymous solutions is
∏n

i=1 mi, which is highly inefficient

if the number of attributes becomes large. Second of all, different anonymous data sets may
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have the same degree of data anonymisation, in which case it is difficult to determine which

is the desired view to deliver to the data requester. In this chapter, we propose an effective

decomposition approach to deal with these problems. Our approach consists of two steps.

The first step is to decompose the degree of anonymisation of the whole data set to each

attribute level, and the second step is to determine the anonymous view of each attribute.

Step 1: In this step, we are going to decompose the degree of anonymisation into the attribute

level. Let the original data set be T , which has n attributes A1, A2 · · · , An, and each attribute

Ai is associated with the priority Pi (1 ≤ i ≤ n). If the degree of anonymisation of T is

Deg(T ), then we defined the degree of anonymisation for the attribute Ai as:

Deg(Ai) =
Pi∑n
i=1 Pi

×Deg(T ), 1 ≤ i ≤ n (4.11)

The degree of data anonymisation at the attribute level is proportional to the priorities of the

attributes.

Step 2: After the first step, we get the the degree of data anonymisation at the attribute level.

Right now, we consider how to generate the anonymous view of the attribute Ai with the

degree of attribute anonymisation Deg(Ai) (1 ≤ i ≤ n).

Let Ah be the height of a domain hierarchy for the attribute A, and let levels A1, A2, · · · , Ah

be the domain levels of A from the most general to the most specific. When a value is

anonymized from level Ap to level Aq in its value generalization hierarchy (p ≥ q), the de-

gree of attribute anonymisation of A is defined in the Definition 7.4. Since there are h levels

in the domain hierarchy, the degree of anonymisation has been divided into h − 1 intervals,

which are [ i
h−1

, i+1
h−1

], where 0 ≤ i ≤ h−2. For the decomposed degree of attribute anonymi-

sation Deg(Ai), it must fall into one of h−1 intervals. Without loss of generality, we assume

that the value Deg(Ai) is within the p-th interval [ p−1
h−1

, p
h−1

], where 1 ≤ p ≤ h− 1, then for
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the attribute Ai, we generalize it to the p-th in its generalization hierarchy. We do the same

thing for all the attributes, and in the end, we could get the anonymous data set with the

degree of data anonymisation Deg(T ).

Let us take an example to illustrate the decomposition process. Our initial data set is

shown in Table 4.1(a), and our aim is to generate an anonymous data set with the degree

of anonymisation 1/8. In the first step, we decompose the anonymisation degree to the at-

tribute level. Suppose the attribute priority P (Gender) = 1, and P (Age) = 0, then from the

independency matrix and the definition of attribute priority in Section 4.2, we could com-

pute that P (Postcode) = 0.266, and Deg(Gender) = 0.099, Deg(Age) = 0 and Deg

(Postcode) = 0.027 according to the Equation (7.5). The second step is to map the degree

of anonymisation to its generalization hierarchy. Since the generalization hierarchy for at-

tributes Gender and Postcode are given in Figure 4.2, according to the schema of Step 2,

Gender should be generalized to ∗, and Postcode should be generalized to 435∗. After the

operation, the anonymous table would be Table 4.1(c), which is consistent with the previous

example.

In the following, we show that the decomposition process is correct. The first issue we

need to address is the uniqueness of the anonymized data set. Since we are given an initial

data set T with the specific degree of data anonymisation deg, we need make sure that the

anonymous data set produced through our decomposition process is unique, i.e., if we put

T and deg into our system, there has to be one and only one anonymous data set generated

as output. If the generated anonymous data set has more than one anonymous view with the

same anonymisation degree, the only possible way is that the same attributes in the origi-

nal data set are generalized into different levels in their generalization hierarchies. This can

only be caused in a situation when the decomposed degree of attribute anonymisation falls

into different levels of the attribute domain hierarchy, which is impossible in our decompo-
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sition schema, since, as shown in Step 2, the decomposed degree of attribute anonymisation

must fall in one and only one level. Thus, our decomposition schema produces a unique

anonymous solution.

T

T ′

deg

Deg(T ′)

T ′′

Deg(T ′)

Same

Figure 4.3: Correctness of the anonymisation degree decomposition

We use Figure 4.3 to illustrate the correctness of the decomposition schema. We are

given a data set T with the specified degree of data anonymisation deg, and through our

decomposition schema, we could obtain the unique anonymous view T ′ of T . We can then

compute the anonymisation degree Deg(T ′) of T ′. Since the value of Deg(T ′) is not neces-

sarily the same as deg, we recalculate the anonymous data set T ′′ with the anonymous degree

Deg(T ′). In order to make sure that our decomposition schema is correct, the anonymous

view T ′ and T ′′ should be the same.

THEOREM 4.3 (CORRECTNESS): Let T ′ be an anonymous data set of the original data set

T with the specified anonymisation degree deg, and Deg(T ′) be the anonymisation degree

between T and T ′, T ′′ be anonymous data set of the original data set T with the specified

anonymisation degree Deg(T ′), then T ′ = T ′′.

We use a simple example to explain Theorem 4.3. For example, given Table 4.1(a) as the

original data set with the degree of data anonymisation 0.1, by the decomposition algorithm,

the anonymous data set we obtained is in the form of Table 4.1(c). The actual degree of

data anonymisation between Table 4.1(a) and Table 4.1(c) is 0.125, and if we apply the
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decomposition process again with the new degree 0.125, the anonymized form of Table

4.1(a) is still Table 4.1(c). This confirms the correctness of the theorem. �

So far, we have presented our decomposition method for deriving an anonymized data

set, and we show that our proposed decomposition algorithm guarantees the uniqueness and

correctness of the anonymous solution.

4.5 PROOF-OF-CONCEPT EXPERIMENTS

We conduct a set of experiments to evaluate our trust-based approach for data anonymisation.

The aim of the experiments are two-fold. First, we compare the data utility between a trust-

based approach and general approach without trust evaluation. Second, we investigate the

effect of attribute priority on the data utility for different application purposes.

4.5.1 EXPERIMENT SETUP

Our first data set used in the experiments is the Census data set1. This data contained 49,657

records. Ten attributes were chosen as the QI-attributes. The second real data set is the Adult

database from the UCI Machine Learning Repository [77], which has become the benchmark

of this field and was adopted by [62, 43]. We eliminated the records with unknown values.

The resulting data set contains 45222 tuples. Seven of the attributes were chosen as the

quasi-identifier. Summaries of both real data sets are provided in Table 4.2.

We implemented the decomposition algorithm(Dec) developed in this paper, and com-

pared it with two other anonymisation algorithms, namely, the Mondrian algorithm(Mon)

[60] and the greedy Top-Down Specialization(TDS) [43].

In our first sets of experiments, we intend to investigate whether the trust-based data

1http://www.census.gov/acs/www/index.html
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Attribute Type Distinct values Height
Age Numeric 74 5

Workclass Categorical 8 3
Education Categorical 16 4
Country Categorical 41 3

Marital Status Categorical 7 3
Race Categorical 5 3

Gender Categorical 2 2

(a) Adult Database

Attribute Type Distinct values Height
Region Categorical 57 5

Age Numeric 77 5
Citizenship Categorical 5 4

Marital Status Categorical 5 3
Education Categorical 17 4

Sex Categorical 2 2
Hours per week Numeric 93 5

Disability Categorical 3 2
Race Categorical 9 3

Salary Numeric 2 5

(b) Census Database

Table 4.2: Features of two real-world databases

anonymisation could incur better data utility, since the existing anonymisation algorithms

only focus on optimizing one utility or privacy measurement while releasing the anonymous

data, and they do not distinguish the trust of the data requesters. Intuitively, the data requester

with the higher value of trust should be delivered with anonymous data with better data utility

than the requester with lower trust. The target of this series of experiments is to verify this.

Our second experiment is to study the effect of the attribute priority on the data utility for

different application purposes. Since for different application purposes, usually not all the

attributes in the original and anonymous data are useful, we identify two application scenar-

ios of the same data set, and through specifying the attribute priority, we make comparisons
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in terms of the data utility, classification accuracy and prediction accuracy.

4.5.2 FIRST SET OF EXPERIMENTS

In this section, we study the effect of trust on the data utility during the anonymisation pro-

cess. We choose 5 different data requesters and for each user, we randomly generate a trust

value between 0 and 1. For the trust-based data anonymisation, we apply our decomposition

algorithm (Dec) to release five anonymous data sets to these 5 different users, and we com-

pare two utility measurements with the general data anonymisation approaches by using the

Mondrian algorithm(Mon) [60] and the greedy Top-Down Specialization(TDS) [43] without

regard to trust. We do not set an attribute priority in this set of experiments.

Experimental results are shown in Figure 4.4 and Figure 4.5. In Figure 4.4, the seven

attributes are selected as the quasi-identifier and k is fixed to 20, while the trust values are

generated randomly from 0 to 1. We report the discernability (DM) and normalized average

QI-group size (CAVG) of our methods based on the average of ten trials. Our methods have

been evaluated in both uniform and utility weight functions. Conclusions from both function

are very similar and here we only show results from the utility weight function, where we

set β = 1. We adopt the quadratic projection from trust to degree of anonymisation.

Figure 4.4(a) shows the performance of different methods with regard to the utility mea-

surement DM with variant trust value t on the Adult database. Since the algorithms Mon and

TDS produce the same anonymous data, the DM measurement remains the constant while t

varies. For the decomposition algorithm Dec, we note that when the value of trust is less than

0.5, the algorithm generates a similar DM to the other two algorithms, and when the trust

value becomes greater than 0.5, the DM value is less than both TDS and Mon. Similar trends

are obtained when running on the Census database, and results are shown in Figure 4.4(b).

For the same setting of the parameters, we also test the normalized average QI-group size
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Figure 4.4: Performance of different methods with variant t

(CAVG). The decomposition algorithm Dec which is aware of the trust reduces the CAVG

measurement compared with the other two algorithms Mon and TDS on both Adult and Cen-

sus databases. Results are shown in Figure 4.4(c) and Figure 4.4(d). The results obtained

by the experiments confirm our intention of developing a trust-based data anonymisation

model, which has the capability to distinguish the trust values among data users and provide

the customer who has the higher trust with the anonymous data, with a better utility.

Figure 4.5(a) displays the comparison of different methods when varying k in the Adult

database with DM. We can see that for variant k, the Dec algorithm produces better DM com-

pared with both Mon and TDS when t = 0.8 and for the small value t, the result generated by

Dec is still acceptable compared to the other two algorithms. Figure 4.5(b) reports the results

on the Census database with variant k with regard to the normalized average QI-group size
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Figure 4.5: Performance of different methods with variant k

(CAVG).

4.5.3 SECOND SET OF EXPERIMENTS

In this section, we investigate the effect of setting attribute priorities for different application

purposes. We identify two application scenarios mentioned in the motivation. The first sce-

nario is for demographic purposes, and the second is for classification purposes. For the first

application purpose, we compare the discernibility measurement with two other general al-

gorithms, Mon and TDS. For each database, we evaluate the decomposition algorithm when

the trust value varies and privacy parameter k varies. For the second application purpose, we

compare the classification and prediction accuracy.

Figures 4.6(a) to 4.6(d) evaluate the effect of attribute priorities of the demographic pur-

pose in both the Adult and Census databases. Figures 4.6(a) and 4.6(b) describe the compar-

ison of the weighted DM metric among three algorithms. In Figure 4.6(a), we set the priority

of attribute Age the highest while the Workclass is the lowest one. From the figure, we can

see that our proposed decomposition algorithm has the least weighted DM for the larger trust

value. Since in the practical situation, for certain application purposes, different people have

different options about which attributes should be selected as the high or low priority, it is
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Figure 4.6: Performance vs. attribute priority: (a) P (Age) = 1 and P (Workclass) = 0
on Adult database (b) P (Country) = 1 and P (Workclass) = 0 on Adult database
(c) P (Age) = 1 and P (Salary) = 0 on Census database (d) P (Region) = 1 and
P (Salary) = 0 on Census database

important to show that for the larger trust, even if changing the attribute priority sequence,

the result should be consistent. Figure 4.6(b) shows the result by making the attribute Coun-

try the top priority, and it also maintains the least weighted DM for large trust, which verifies

our thought. We did similar experiments on the Census database, and the results are shown

in Figures 4.6(c) and 4.6(d).

Figures 4.7 and 4.8 evaluate the classification and prediction accuracy among three ap-

proaches. Our evaluation methodology is similar to [61]. The data is first divided into

training and testing sets, and we apply the anonymous algorithms to the trained set and test-

ing sets to obtain the anonymized trained and testing sets, and finally the classification or
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Figure 4.7: Performance vs. classification and predication accuracy on Adult database
with t = 0.9: (a) Naive Bayes Classification (b) J48 Classification (c) Naive Bayes Pre-
diction (d) J48 Prediction

regression model is trained by the anonymized trained sets and tested by the anonymized

testing sets. The Weka implementation [121] of the simple Naive Bayes and Decision Tree

(J48) classifiers were used for the classification and prediction.

Figure 4.7 shows the comparisons of classification accuracy of all the three approaches

in the adult database with trust value t = 0.9. We can observe that for the larger trust value,

our decomposition algorithm provides more accuracy than the other two approaches, which

leads to better data utility. Figure 4.8 displays the results of the experiments conduced in the

Census database with t = 0.2. We could see that for the smaller trust value, the classification

and prediction accuracy are between two other algorithms, and also acceptable in practice.
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Figure 4.8: Performance vs. classification and predication accuracy on Census
database with t = 0.2: (a) Naive Bayes Classification (b) J48 Classification (c) Naive
Bayes Prediction (d) J48 Prediction

4.6 SUMMARY

We have presented a novel data anonymisation approach, which takes into account the reli-

ability of data requesters and the relative attribute importance for application purposes. We

quantified the level of anonymisation through the concept of the degree of data anonymi-

sation, and derived a decomposition algorithm for data anonymization. Our experimental

results show that our data anonymisation method achieves better data utility than general

approaches with regard to trust and application purposes.
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CHAPTER 5

PRIVACY PROTECTION THROUGH

APPROXIMATE MICROAGGREGATION

Microdata protection is a hot topic in the field of Statistical Disclosure Control, which has

gained special interest after the disclosure of 658000 queries by the America Online (AOL)

search engine in August 2006. Many algorithms, methods and properties have been pro-

posed to deal with microdata disclosure. One of the emerging concepts in microdata protec-

tion is k-anonymity, introduced by Samarati and Sweeney. k-anonymity provides a simple

and efficient approach to protect private individual information and is gaining increasing

popularity. k-anonymity requires that every record in the microdata table released be indis-

tinguishably related to no fewer than k respondents. In this chapter, I apply the concept of

entropy to propose a distance metric to evaluate the amount of mutual information among

records in microdata, and propose a method of constructing a dependency tree to find the key

attributes, which can be used to process approximate microaggregation. Further, I adopt this

new microaggregation technique to study k-anonymity problem, and an efficient algorithm

is developed. Experimental results show that the proposed microaggregation technique is

efficient and effective in the terms of running time and information loss.

The information included in this chapter is based on the published paper [99].

5.1 MOTIVATION

In order to protect privacy, Samarati and Sweeney [100, 103, 86, 87] proposed the k-anonymity

model, where some of the quasi-identifier fields are suppressed or generalized so that, for
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each record in the modified table, there are at least k − 1 other records in the modified

table that are identical to it with respect to the quasi-identifier attributes. The general ap-

proach adopted in the literature to achieve k-anonymity is suppression/generalization, so

that minimizing information loss translates to reducing the number and/or the magnitude of

suppressions and generalizations [2, 86, 103, 88, 95, 122, 70, 65, 71].

Another method to achieve anonymity is through microaggregation [34, 33, 105]. Mi-

croaggregation is a Statistical Disclosure Control (SDC) technique consisting of the aggre-

gation of individual data. It can be considered as an SDC sub-discipline devoted to the

protection of microdata. Microaggregation can be seen as a clustering problem with con-

straints on the size of the clusters. It is in some ways related to other clustering problems

(e.g., dimension reduction or minimum squares design of clusters). However, unlike cluster-

ing, microaggregation does not consider the number of clusters or the number of dimensions,

but only the minimum number of elements that are grouped in each cluster.

As stated in [31, 32, 33], the result and execution time of miroaggregation depends on

the number of the variables used in the microaggregation process. Microaggregation using

fewer variables sometimes offers the best solution. The question of interest is: do we have

to use all the dimension resources (attributes) in the microaggregation, or can we use only a

small number of the attributes in the microaggregation process and obtain better solutions?

This chapter is mostly concerned with this. To answer the question, we introduce the con-

cept of entropy, an important concept in information theory, and propose a distance metric

to evaluate the amount of the mutual information among records in the microdata, and pro-

pose the method of constructing a dependency tree to find the key attributes, which we can

use to process approximate microaggregation. Further, we apply this new microaggregation

technique to solve the k-anonymity problem.
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RUNNING EXAMPLE

ID A1 A2 A3 A4 A5 A6

r1 0 0 0 1 1 1
r2 0 1 1 0 1 0
r3 1 1 0 1 0 0
r4 0 0 1 1 1 1
r5 0 1 1 1 0 0
r6 0 0 1 0 0 1
r7 1 1 1 0 0 1
r8 0 1 1 0 0 0
r9 1 1 1 0 1 1
r10 0 1 1 1 0 1
r11 0 1 1 1 0 0
r12 1 1 1 1 1 1

Table 5.1: Sample data

For the simplicity of illustration, we use the data shown in Table 5.1 as our running

example. There are 12 records {r1, r2, · · · , r12} in the sample data and each record contains

6 attributes {A1, · · · , A6}. For each attribute Ai (1 ≤ i ≤ 6), we define the probability

P (Ai = x) as the fraction of rows whose projection onto Ai is equal to x, where x ∈ {0, 1}.

For instance, P (A1 = 1) = 1/3, P (A3 = 0) = 1/6 and P (A1 = 1, A3 = 0) = 1/12.

5.2 PRELIMINARY

Many techniques have been proposed to deal with the anonymity problem. In this section,

we introduce some basic concepts regarding this. First, we take a look at some fundamental

concepts of microaggregation and k-anonymity. Then, we show how to achieve k-anonymity

through microaggregation.
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5.2.1 MICROAGGREGATION WITH ITS ALGORITHMS

Statistical Disclosure Control (SDC) seeks to transform data in such a way that the data can

be publicly released whilst preserving utility and privacy, where the latter means avoiding

disclosure of information that can be linked to specific individual or corporate respondent

entities. Microaggregation is an SDC technique consisting of the aggregation of individual

data. It can be considered as an SDC sub-discipline devoted to the protection of the micro-

data. Microaggregation can be seen as a clustering problem with constraints on the size of

the clusters. It is somewhat related to other clustering problems (e.g., dimension reduction

or minimum squares design of clusters). However, the main difference of the microaggre-

gation problem is that it does not consider the number of clusters to generate or the number

of dimensions to reduce, but only the minimum number of elements that are grouped in the

same cluster.

Microaggregation has been used for several years in different countries. It started at

Eurostat [30] in the early nineties, and has since then been used in Germany [85] and several

other countries [37]. Microaggregation is relevant not only with SDC, but also in artificial

intelligence [32]. In the latter field, the application is used to increase the knowledge of a

system for decision making and domain representation. Microaggregation techniques may

also be used in data mining in order to scale down or even compress the data set while

minimizing the information loss.

When we microaggregate data we have to keep two goals in mind: (i) Preserving data

utility. To do this, we should introduce as little noise as possible into the data; i.e., we should

aggregate similar elements instead of different ones. In the example in Figure 5.1, groups of

three elements are built and aggregated. Note that elements in the same aggregation group are

similar. (ii) Protecting the privacy of the individuals. Data have to be sufficiently modified

to make re-identification difficult; i.e., by increasing the number of aggregated elements, we
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Gender Age Postcode Problem
male middle 4350 stress
male middle 4350 obesity
male young 4351 stress

female young 4352 obesity
female old 4353 stress
female old 4353 obesity

Table 5.2: A raw microdata

Gender Age Postcode Problem
male middle 4350 stress
male middle 4350 obesity
∗ young 435∗ stress
∗ young 435∗ obesity

female old 4353 stress
female old 4353 obesity

Table 5.3: A 2-anonymous microdata

69 5 11104

5 55 1010 10

Average

Origianl data

Microaggregated data

record

Figure 5.1: Example of microaggregation

increase data privacy. In the example in Figure 5.1, after aggregating the chosen elements, it

is impossible to distinguish between them, so that the probability of linking any individual

is inversely proportional to the number of aggregated elements.

In order to determine whether two elements are similar, a similarity function such as the

Euclidean distance, Minkowski distance or Chebyshev distance can be used. A common

measure is the Sum of Squared Errors (SSE). The SSE is the sum of squared distances from

the centroid of each group to every record in the group, and is defined as:

SSE =
s∑

i=1

ni∑
j=1

(xij − x̄i)
′(xij − x̄i) (5.1)

where s is the number of groups, ni is the number of records in the ith group, xij is the jth

record in the ith group and x̄i is the average record of the ith group. Optimal multivariate
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microaggregation, that is, with minimum SSE, was shown to be NP-hard in [78]. The only

practical microaggregation methods are heuristic.

k-anonymity, suggested by Samarati and Sweeney [100, 103, 86, 87], is an interesting

approach to reduce the conflict between information loss and privacy protection. For a given

k, k-anonymity is assumed to be enough protection for respondents, and one can concentrate

on minimizing information loss with the only constraint that k-anonymity should be satisfied.

This is a clean way of solving the tension between data protection and data utility. The gen-

eral approach adopted in the literature to achieve k-anonymity is suppression/generalization,

so that minimizing information loss translates to reducing the number and/or the magnitude

of suppressions and generalizations [86, 103, 88]. Generalization consists of substituting the

values of a given attribute with more general values. We use ∗ to denote the more general

value. For instance, Table 5.3 is a 2-anonymous view of Table 5.2. In Table 5.3, Post-

codes 4351 and 4352 are generalized to 435∗. Suppression refers to removing a part or the

entire value of attributes from the microdata. Note that suppressing an attribute to reach k-

anonymity can equivalently be modeled via a generalization of all the attribute values to ∗.

The drawbacks of partially suppressed and coarsened data for analysis were highlighted in

[34]:

• Satisfying k-anonymity with minimum data modification using generalization (recoding)

and local suppression was shown to be NP-hard by Meyerson and Williams [71], Aggarwal

et al. [2] and Sun et al. [89];

• Using global recoding for generalization causes too much information loss, and using

local recoding complicates data analysis by causing old and new categories to co-exist in

the recoded data;

• There is no standard way of using local suppression and analyzing partially suppressed
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data usually requires specific software;

• Last but not least, when numerical attributes are generalized, they become non-numerical.

Joint multivariate microaggregation of all QI attributes with minimum group size k was

proposed in [34] as an alternative to achieve k-anonymity. Besides being simpler, this al-

ternative has the advantage of yielding complete data without any coarsening (nor catego-

rization in the case of numerical data). Other proposals [62, 88, 89, 95] generalize ordinal

numerical data, replacing numerical data by intervals. In the case of the k-anonymity appli-

cation, micro-aggregation is performed on the projection of records on QI attributes.

For the first algorithm, known as Maximum Distance to Average Vector (MDAV), achieve-

ing microaggregation through k-anonymity was proposed in [33]. The MDAV algorithm

works as follows: first, it computes the centroid (average record) of records in the data set,

and find the most distant record r from the centroid and the most distant record s from r.

Second, it forms two groups around r and s: the first group contains r and the k − 1 records

closest to r; the other group contains s and the k − 1 records closest to s. Finally, the two

groups are microaggregated and removed from the original dataset. The steps are repeated

until there are no records in the original dataset. Although MDAV generates groups of fixed

size k, it lacks flexibility for adapting the group size to the distribution of the records in the

data set, which may result in poor homogeneity in a group. Variable-size MDAV (V-MDAV)

was proposed to overcome this limitation by computing a variable-size group, and a detailed

analysis can be found in [105].

In the next section, we will propose our approximate microaggregation technique, and

show how to apply it to solve k-anonymity in order to overcome most of the problems of

generalization/suppression listed above.
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5.3 APPROXIMATE MICROAGGREGATION

The work presented in this paper is based on information theory, and is related to the ap-

plication of a dependency tree of information theory in data mining and databases. In this

section, by using the concept of entropy, and the mutual information measure, which cap-

tures the mutual dependency between attributes introduced in the last chapter, we introduce

our microaggreation technique by constructing the dependency tree, and then applying this

microaggregation technique to the k-anonymity problem.

5.3.1 DEPENDENCY TREE

Dependency tree was introduced by Chow and Liu [24], in which they introduced an algo-

rithm for fitting a multivariate distribution with a tree (i.e., a density model that assumes that

there is only pairwise dependency between variables). In the maximum likelihood sense, the

dependency tree is the best tree to fit the dataset, and it uses mutual information measure to

estimate the dependency of two random variables.

The dependency tree has been used in finding dependency structure in the features that

improve the classification accuracy of the Bayes network classifiers [42]. [25] uses the de-

pendency tree to represent a set of frequent patterns, which can be used to summarize patterns

into few profiles. [51] presents a large node dependency tree, in which the nodes are subsets

of variables of a dataset. The large node dependency tree is applied to density estimation and

classification.

Definition 5.1 (Dependency Matrix). Given microdata T with n records {r1, r2, · · · , rn},

where each record contains m attributes {A1, A2, · · · , Am}, the dependency matrix DT is

defined as:

DT = (MI(i, j))m×m
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A1
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A3

A4

A5

A6

G

A1

A2

A3

A4

A5

A6

TG

1.3796

1.3753

1.7772

1.6217

1.3180

Figure 5.2: Left: Fully connected graph G; Right: Its minimum spanning tree TG

(Right)

where MI(i, j) is the mutual information measure, i, j ∈ {A1, A2, · · · , Am}.

For instance, the dependency matrix in our running example is as follows:



0 1.3796 1.5339 1.8777 1.8777 1.8126

1.3796 0 1.3753 1.7772 1.6681 1.3180

1.5339 1.3753 0 1.3368 1.6217 1.6217

1.8777 1.7772 1.3368 0 1.9586 1.9586

1.8777 1.6681 1.6217 1.9586 0 1.7510

1.8126 1.3180 1.6217 1.9586 1.7510 0


With the dependency matrix, we could construct a fully connected weighted graph G =

(V,E, ω), where V = {v1, v2, · · · , vm} is the set of vertices, which corresponds to the at-

tributes in T , and for each pair of vertices (vi, vj) there is an edge eij connecting them, and

ω(eij) refers to the weight of each eij between vi and vj (1 ≤ i, j ≤ m), which can be

obtained from the dependency matrix. An example of such a fully connected graph is shown

in Figure 5.2(Left).

We observe that ω(eij) represents to what extent vertex vi (or attribute Ai) is dependent
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on vj (or Aj). However, in the worst case, any pair of attributes can be dependent, although,

as stated in [24], we could simplify by using an approximation which ignores the conditions

on multiple attributes, and retains only dependency in at most a single attribute at a time,

which results in a tree-like structure. It is easy to see that in the fully connected weighted

graph G, there is a large number of trees, each of which represents a unique approximation

dependency structure. Here, in order to reduce the uncertainty in the dataset and maximize

the mutual information among the attributes simultaneously, we find the minimum spanning

tree as our best dependency tree from the fully connected graph G, based on our proposed

mutual information measure. Here, we use the Kruskal algorithm [27], which is essentially

a greedy algorithm. The candidate edges are sorted in increasing order of their weights (i.e.

mutual information measure). Then, starting with an empty set E0, the algorithm examines

one edge at a time (in the order resulting from the sort operation), checks if it forms a cycle

with the edges already in E0 and, if not, adds it to E0. The algorithm ends when m−1 edges

have been added to E0, where m refers to the number of vertices in G.

Algorithm 1: Finding the best dependency tree
1. Compute the mutual information measure between
each pair of attributes in T and construct the dependency
matrix DT . There are m(m− 1)/2 weight that need to be
calculated, since T has m attributes.

2. Construct a fully connected graph, where the nodes
correspond to the attributes in T . The weight of each edge
refers to their mutual information measure.

3. Find the best dependency tree by the minimum
spanning tree algorithm.

The algorithm of finding the best dependency tree is briefly described in Algorithm 1 and

an example of the best dependency tree found is shown in Figure 5.2(Right).

After finding out the best dependency tree, we need to set out rules to select the key

attributes from the dependency tree to process approximate microaggregation.
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Algorithm 2: k-anonymity through approximate microaggregation
Input: Microdata set T consisting of n records having m attributes each.
Output: Microaggregated microdata T ′ satisfying k-anonymity property
1. Find out the best dependency tree by Algorithm 1 and select the key attributes

2. Project the records of T to the key attributes.

3. Compute the centroid (average record) x̄ of records in the projected data set, and find
the most distant record r from the centroid and the most distant record s from r.

4. Form two groups around r and s: the first group contains r and the k − 1 records
closest to r; the other group contains s and the k − 1 records closest to s.

5. If there are at least 2k records which do not belong to any of the groups formed
in Step 4, go to Step 3, taking the previous set of records minus the groups formed
in the latest instance of Step 4, as the new set of records.

6. If there are between k and k − 1 records which do not belong to any of the groups
formed in Step 4, form a new group with those records and exit the algorithm.

7. If there are less than k remaining records which do not belong to any of the groups
formed in Step 4, add them to the group formed in Step 4 whose centroid is closest to
the centroid of the remaining records.

8. Return microaggregated data T ′ by replacing each record with the centroid of the group
it belongs to.

Definition 5.2. Let G = (V,E) be a graph, where V = {v1, v2, · · · , vm}. Then, the degree

of the node vi is the number of edges incident to the nodes, denoted by deg(vi).

For example, in Figure 5.2(Right), deg(A2) = 4, and deg(A3) = 2. Let TG be the best

dependency tree found in G. We then compute the degree of each vertex in TG and sort them

in decreasing order. Without loss of generality, we assume that deg(v1) ≥ deg(v2) ≥ · · · ≥

deg(vm) after they are sorted in decreasing order. Then, the principle of choosing the key

attributes is as follows:

Definition 5.3. Suppose deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vm) after they are sorted. Then,

the vertices v1, v2, · · · vk are chosen as the key attributes if the following two requirements

are satisfied at the same time:
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v1

v2
vm· · · · · ·v3 v1 v2 · · · · · · vm

(a) (b)

Figure 5.3: Proof of Theorem 5.1

k−1∑
i=1

deg(vi) < m (5.2)

k∑
i=1

deg(vi) ≥ m (5.3)

For example, for the minimum spanning tree TG in Figure 5.2, we choose attributes A2

and A3 as the key attributes, since according to the principle described above, deg(A2) < 6

and deg(A2) + deg(A3) = 6.

THEOREM 5.1: Let TG be the best dependency tree of G, with V = {v1, v2, · · · , vm}, and

N be the number of selected key attributes. Then, 2 ≤ N ≤ m/2.

PROOF: Since in a tree-like structure, the maximum degree of a vertex is m − 1 [27], and

without loss of generality, we assume that deg(v1) = m − 1, and in this case, the best

dependency tree found has the form shown in Figure 5.3(a), then, according to Definition

5, only two vertices will be selected as key attributes, say v1 and v2. This is the situation

when the number of the selected key attributes reaches the minimality. On the other hand,

when the number of the selected key attributes reaches the maximality, the structure of the

best dependency tree has a form shown in Figure 5.3(b), and in this case, at most m/2 key

attributes will be selected. So, 2 ≤ N ≤ m/2. �
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Theorem 5.1 assures that at most half the amount of dimension resources is needed in the

microaggregation process with our technique, which could significantly reduce the execution

time. In the next section, we discuss in detail how to apply this technique to the k-anonymity

problem.

5.3.2 APPLICATION TO K-ANONYMITY

Our aim is to obtain k-anonymous microdata without coarsened nor partially suppressed

data. This makes their analysis and exploitation easier, with the additional advantage that

numerical continuous attributes are not categorized. In this section, we adopt the approxi-

mate microaggregation technique to solve the k-anonymity problem.

Our algorithm receives as input a microdata set T consisting of n records having m at-

tributes each. The result of the algorithm is a k-partition used to microaggregate the original

microdata set and to generate a microaggregated data set T ′ that fulfils the k-anonymity prop-

erty. Instead of taking all the attributes into the microaggregation process, we only use the

selected key attributes, which capture the dependency between attributes, to microaggregate

the data. The novelty and difference from the previous microaggregation methods exist here.

Our proposed approach is effective and efficient in terms of running time and information

loss.

The first two steps of the algorithm build the initial dataset for microaggregation. This se-

lects the key attributes from the best dependency tree and returns a projected dataset, which

has the same number of records as T , but each record only contains the value of key at-

tributes. Once the average record is computed, the algorithm looks for other records which

are distant to it and adds records to it until it reaches a minimum cardinality k (Step 3-4).

After repeating this process several times, a set of groups satisfying the k-anonymity prop-

erty is obtained. However, a number of records can remain unassigned, and they must be
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distributed amongst the previously created groups (Step 5-7). Finally, the algorithm further

microaggregates the original microdata T by replacing each record in T by the centroid of

the group to which it belongs (Step 8). The algorithm is outlined in Algorithm 2.

In this section, we discuss in detail how to apply our microaggregation technique to solve

k-anonymity in order to overcome most of the problems of generalization/suppression in the

following aspects:

• Approximate microaggregation is a unified approach, unlike the dual method combining

generalization and suppression.

• It does not complicate data analysis by adding new categories to the original scale, unlike

generalization/suppression.

• It does not result in suppressed data, which makes analysis of k-anonymous data easy.

• It is suitable to protect continuous data without removing their numerical semantics.

5.4 PROOF-OF-CONCEPT EXPERIMENTS

5.4.1 EXPERIMENT SETUP

We employ real-life CENSUS data set downloadable at http://www.ipums.org in

the experimental study. The CENSUS data set contains the personal information of 500K

American adults. The data set has 9 discrete attributes summarized in Table 5.4. From CEN-

SUS, we create two sets of micro tables, in order to examine the influence of dimensionality

and the impact of cardinality. The first set has 6 tables, denoted as CENSUS-20%, · · · ,

CENSUS-100%, respectively. Specifically, CENSUS-t% (20 ≤ t ≤ 100) indicates the data

set consisting of t% records randomly sampled from the whole CENSUS data set, and each
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Attribute Number of distinct values
Age 78

Gender 2
Education 17

Marital 6
Race 9

Work-class 8
Country 83

Occupation 50
Salary-class 50

Table 5.4: Summary of attributes in CENSUS

record has 9 attributes shown in Table 5.4. The second set contains 5 tables, denoted as 5-

CENSUS, · · · , 9-CENSUS, respectively, where n-CENSUS (3 ≤ n ≤ 9) represents the data

set with the first n attributes selected from Table 5.4, and each data set has the same number

of records as the whole CENSUS data set.

Our aim is to test the efficiency and effectiveness of the proposed approximate microag-

gregation algorithm for k-anonymity. We denote our proposed algorithm as MA, and we

compare it with the previous MDAV-based algorithm [33], denoted as MA. We first evalu-

ate the execution time of our approach by varying the cardinality of the data sets, the number

of attributes and the value of k. In order to compare the effectiveness, for each data set, we

adopt two measurements. One is to measure the information loss in terms of SSE/SST ,

where SSE is the sum of square errors as defined in equation (5.1), and SST refers to the

sum of square errors applied over the whole dataset. The other metric is to compare the

number of key attributes projected in the microaggregation.

5.4.2 EXPERIMENTAL RESULTS

Efficiency: Figures 5.4(a)-(c) show the comparison of execution time of two microaggre-

gation methods. In this set of experiments, we fixed k = 20 and vary the data percentage.
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Figure 5.4: Running time comparison between different methods

Figure 5.4(a) plots the result by varying the data percentage of the whole Census data set

from 20% to 100%. As we can see, the AMA incurs less computation time than the MA

method. This is expected since in the AMA process, less attributes are used in the microag-

gregation. We can see that the difference of the computation cost is getting larger with the

increased data cardinality. Figure 5.4(b) describes the running time comparison when vary-

ing the privacy parameter k. The computation cost of both MA and AMA algorithms is

increasing with k, but AMA consistently outperforms the MA method. Figure 5.4(c) shows

the computation overhead differences by altering the number of attributes. The computation

overhead of both methods is increasing when enlarging the number of attributes. The result

is expected since the overhead is increased with more dimensions. The AMA method per-

forms better than the MA algorithm since we use a part of the attributes instead of the whole

dimensional resources, which significantly reduces the amount of computation.

Effectiveness: Having verified the efficiency of our technique, we proceed to test its effec-

tiveness. We measure the utility in terms of SSE/SST , where SSE is the sum of square

errors as defined in equation (5.1), and SST refers to the sum of square errors applied over

the whole data set. Figure 5.5(a) shows the number of key attributes used in MA and AMA

approaches. As we can see, the number remains the same for the MA method, since it
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Figure 5.5: Number of key attributes and information loss comparisons

projects all the attributes into the microaggregation process. By contrast, the number of key

attributes used in AMA is less than half of that used by MA approaches, which verifies the

results in Theorem 5.1.

Figures 5.5(b) and (c) show the information loss by applying MA and AMA algorithms.

Figure 5.5(b) is plotted by changing the percentage of the data set. Although the result

indicates that AMA generates a little bit more information loss than MA, the difference is not

enlarged when the data cardinality is increased. A similar tread is obtained in Figure 5.5(c)

by varying the value k. The information loss is increased with k, since larger k demands a

stricter privacy requirement, which reduces the utility of the data.

Summary: Overall, the AMA outperforms MA in terms of efficiency, and the difference

becomes larger when the volume and dimension of data are increasing. Although AMA

generates a little bit more information loss than MA, it is still practical since AMA only uses

at most half of the attributes in the microaggregation process.

5.5 SUMMARY

Previous approaches to obtain microdata sets fulfilling the k-anonymity property were mainly

based on suppression and generalization. In this chapter, we have shown how to achieve the

CHAPTER 5. PRIVACY PROTECTION THROUGH APPROXIMATE MICROAGGREGATION



Xiaoxun Sun Ph.D Dissertation - 112 of 198

same property by means of approximate microaggregation, which, different from the previ-

ous microaggregation method, uses a part of the dimensional resources. It works by selecting

key attributes from the best dependency tree, which is constructed based on a new mutual

information measure based on information theory, which in turn captures the dependency be-

tween attributes in the microdata. The experimental results show that the proposed technique

is efficient in terms of running time and information loss.
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CHAPTER 6

ANONYMIZING LARGE SURVEY RATING

DATA

I study the challenges of protecting privacy of individuals in the large public survey rating

data in this chapter. Recent study shows that personal information in supposedly anonymous

movie rating records are de-identified. The survey rating data usually contains both ratings

of sensitive and non-sensitive issues. The ratings of sensitive issues involve personal privacy.

Even though the survey participants do not reveal any of their ratings, their survey records are

potentially identifiable by using information from other public sources. None of the existing

anonymisation principles (e.g., k-anonymity, l-diversity, etc.) can effectively prevent such

breaches in large survey rating data sets.

I tackle the problem by defining a principle called (k, ϵ)-anonymity model to protect

privacy. Intuitively, the principle requires that, for each transaction t in the given survey

rating data T , at least k − 1 other transactions in T must have ratings similar to t, where

the similarity is controlled by ϵ. The (k, ϵ)-anonymity model is formulated by its graphical

representation and a specific graph-anonymisation problem is studied by adopting graph

modification with graph theory. Various cases are analyzed and methods are developed to

make the updated graph meet (k, ϵ) requirements

The information included in this chapter is based on the published paper [91].
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6.1 MOTIVATION

On October 2, 2006, Netflix, the world’s largest online DVD rental service, announced a

$1-million Netflix Prize to improve their movie recommendation service [47]. To aid con-

testants, Netflix publicly released a data set containing 100,480,507 movie ratings, created by

480,189 Netflix subscribers between December 1999 and December 2005. Narayanan and

Shmatikov have shown in their recent work [75] that an attacker only needs a little informa-

tion to identify the anonymized movie rating transaction of an individual. They re-identified

Netflix movie ratings using the Internet Movie Database (IMDb) as a source of auxiliary

information and successfully identified the Netflix records of known users, uncovering their

political preferences and other potentially sensitive information.

We consider the privacy risk in publishing anonymous survey rating data. For example,

in a life style survey, ratings to some issues are non-sensitive, such as the likeness of book

“Harry Potter”, movie “Star Wars” and food “Sushi”. Ratings to some issues are sensitive,

such as income level and sexual frequency. Assume that each survey participant is cautious

about his/her privacy and does not reveal his/her ratings. However, it is easy to find his/her

preferences on non-sensitive issues from publicly available information sources, such as

personal weblogs or social networks. An attacker can use these preferences to re-identify

an individual in the published anonymous survey rating data and consequently find sensitive

ratings of a victim.

Based on the public preferences, a person’s ratings on sensitive issues may be revealed

in a supposedly anonymized survey rating data set. An example is given in the Table 6.1.

In a social network, people make comments on various issues, which are not considered

sensitive. Some comments can be summarized as in Table 6.1(b). People rate many issues

in a survey. Some issues are non-sensitive while some are sensitive. We assume that people

are aware of their privacy and do not reveal their ratings, whether thy are non-sensitive
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non-sensitive sensitive
ID issue 1 issue 2 issue 3 issue 4
t1 6 1 null 6
t2 1 6 null 1
t3 2 5 null 1
t4 1 null 5 1
t5 2 null 6 5

(a)

non-sensitive issues
name issue 1 issue 2 issue 3
Alice excellent so bad -
Bob awful top -
Jack bad - good

(b)
Table 6.1: (a) A published survey rating data set containing ratings of survey partic-
ipants on both sensitive and non-sensitive issues. (b) Public comments on some non-
sensitive issues of some participants of the survey.

or sensitive. However, individuals in the anonymoized survey rating data are potentially

identifiable based on their public comments from other sources. For example, Alice is at risk

of being identified, since the attacker knows that Alice’s preference on issue 1 is ‘excellent’;

by cross-checking Table 6.1(a) and (b), s/he will deduce that t1 in Table 6.1(a) is linked

to Alice, and thus the sensitive rating on issue 4 by Alice will be disclosed. This example

motivates us to address the following challenges:

(1.) (Modelling Problem): Given a large survey rating data set T , how to preserve individ-

ual’s privacy through identity protection in T ?

(2.) (Anonymization Problem): Given a large survey rating data set T , how to anonymize T

while maintaining the least amount of distortion?

(3.) (Satisfaction Problem): Given a large survey rating data set T , how to efficiently deter-

mine whether T satisfies the given privacy requirements?

Though several models and algorithms have been proposed to preserve privacy in rela-

tional data, most of the existing studies can deal with relational data only [104, 70, 65, 122].

Divide-and-conquer methods are applied to anonymize relational data sets due to the fact that

tuples in a relational data set are separable during anonymisation. In other words, anonymiz-

ing a group of tuples does not affect other tuples in the data set. However, anonymizing a
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survey rating data set is much more difficult since changing one record may cause a domino

effect on the neighborhoods of other records, as well as affecting the properties of the whole

data set. Hence, previous methods can not be applied to deal with survey rating data and it

is much more challenging to devise anonymisation methods for large survey rating data than

for relational data.

The satisfaction problem is easy and straightforward to be determined in the relational

databases, but it is nontrivial in the large survey rating data set. The research of the privacy

protection is initiated in the relational databases, in which several state-of-the-art privacy

paradigms [103, 70, 65] are proposed and many greedy or heuristic algorithms [43, 62, 60,

98] are developed to enforce the privacy principles. In the relational database, taking k-

anonymity as an example [86, 103], it requires each record to be identical with at least k− 1

others with respect to a set of quasi-identifier attributes. Given an integer k and a relational

data set T , it is easy to determine if T satisfies the k-anonymity requirement since the equal-

ity has the transitive property, whenever a transaction a is identical with b, and b is in turn

indistinguishable with c, then a is the same as c. With this property, each transaction in T

only needs to be checked once and the time complexity is at most O(n2d), where n is the

number of transactions in T and d is the size of the quasi-identifier attributes. Therefore the

satisfaction problem is trivial in relational data sets, while the situation is different for the

large rating data. First of all, the survey rating data set normally does not have a fixed set of

personal identifiable attributes as relational data. In addition, the survey rating data are char-

acterized by high dimensionality and sparseness. The lack of a clear set of personal identifi-

able attributes together with its high dimensionality and sparseness make the determination

of the satisfaction problem challenging. Second, the defined dissimilarity distance between

two transactions (ϵ-proximate) does not possess the transitive property. When a transaction

a is ϵ-proximate with b, and b is ϵ-proximate with c, then usually a is not ϵ-proximate with c.
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Each transaction in T has to be checked for as many as n times in the extreme case, which

makes it highly inefficient to determine the satisfaction problem. This calls for smarter tech-

nique to efficiently determine the satisfaction problem before anonymizaing the survey rating

data. To our best knowledge, this research is the first to touch on the satisfaction of privacy

requirements in survey rating data.

6.2 PROBLEM DEFINITION

We assume that a survey rating data set publishes people’s ratings on a range of issues. In a

lifestyle survey, some issues are sensitive, such as income level and sexual frequency, while

some are non-sensitive, such as the likeness of a book, a movie or a kind of food. Each survey

participant is cautious about his/her privacy and does not reveal his/her ratings. However, an

attacker can use publicly available information to identify an individual’s sensitive ratings in

the supposedly anonymous survey rating data. Our objective is to design effective models to

protect the privacy of people’s sensitive ratings in the published survey rating data.

Given a survey rating data set T , each transaction contains a set of numbers indicating

the ratings on some issues. Let (o1, o2, · · · , op, s1, s2, · · · , sq) be a transaction, oi ∈ {1 :

r, null}, i = 1, 2, · · · , p and sj ∈ {1 : r, null}, j = 1, 2, · · · , q, where r is the maximum

rating and null indicates that a survey participant did not rate. o1, · · · , op stand for non-

sensitive ratings and s1, · · · , sq denote sensitive ratings. Each transaction belongs to a survey

participant.

Although each survey participant is wary about their privacy and does not disclose his/her

ratings, an attacker may find a victim’s preference (not exact rating scores) by personal

familiarity or by reading the victim’s comments on some issues from personal weblogs or

social networks. We consider that attackers know preferences of non-sensitive issues of

a victim but do not know exact ratings and want to find out the victim’s ratings on some
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sensitive issues.

6.2.1 BACKGROUND KNOWLEDGE

The auxiliary information of an attacker includes: (i) the knowledge that a victim is in the

survey rating data; (ii) preferences of the victims on some non-sensitive issues. The attacker

wants to find ratings on sensitive issues of the victim.

In practice, knowledge of Types (i) and (ii) can be gleaned from an external database

[75]. For example, in the context of Table 6.1(b), an external database may be the IMDb. By

examining the anonymous data set in Table 6.1(a), the adversary can identify a small number

of candidate groups that contain the record of the victim. It will be an unfortunate scenario

where there is only one record in the candidate group. For example, since t1 is unique in

Table 6.1(a), Alice is at risk of being identified. If the candidate group contains not only the

victims but also other records, an adversary may use this group to infer the sensitive value

of the individual victim . For example, although it is difficult to identify whether t2 or t3 in

Table 6.1(a) belongs to Bob, since both records have the same sensitive value, Bob’s private

information is identified.

In order to avoid such an attack, we propose a two-step protection model. Our first step

is to protect an individual’s identity. In the released data set, every transaction should be

“similar” to at least (k−1) other records based on the non-sensitive ratings so that no survey

participants are identifiable. For example, t1 in Table 6.1(a) is unique, and based on the

preference of Alice in Table 6.1(b), her sensitive issues can be re-identified in the supposed

anonymized data set. Jack’s sensitive issues, on the other hand, are much safer, since t4 and

t5 in Table 6.1(a) form a similar group based on their non-sensitive rating.

The second step is to prevent the sensitive rating from being inferred in an anonymized

data set. The idea is to require that the sensitive ratings in a similar group should be diverse.
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For example, although t2 and t3 in Table 6.1(a) form a similar group based on their non-

sensitive rating, their sensitive ratings are identical. Therefore, an attacker can immediately

infer Bob’s preference on the sensitive issue without identifying which transaction belongs

to Bob. In contrast, Jack’s preference on the sensitive issue is much safer than that of both

Alice and Bob.

6.2.2 NEW PRIVACY PRINCIPLES

Let TA = {oA1 , oA2 , · · · , oAp , sA1 , sA2 , · · · , sAq} be the ratings for a survey participant A

and TB = {oB1 , oB2 , · · · , oBp , sB1 , sB2 , · · · , sBq} be the ratings for a participant B. We

define the dissimilarity between two non-sensitive ratings as follows.

Dis(oAi
, oBi

) =


|oAi
− oBi

| if oAi
, oBi

∈ {1 : r}

0 if oAi
= oBi

= null

r otherwise

(6.1)

Definition 6.1 (ϵ-proximate). Given a survey rating data set T with a small positive number

ϵ, two transactions TA, TB ∈ T , where TA = {oA1 , oA2 , · · · , oAp , sA1 , sA2 , · · · , sAq} and

TB = {oB1 , oB2 , · · · , oBp , sB1 , sB2 , · · · , sBq}. We say TA and TB are ϵ-proximate, if ∀ 1 ≤

i ≤ p, Dis(oAi
, oBi

) ≤ ϵ. We say T is ϵ-proximate, if every two transactions in T are

ϵ-proximate.

If two transactions are ϵ-proximate, the dissimilarity between their non-sensitive ratings

is bounded by ϵ. In our running example, suppose ϵ = 1, ratings 5 and 6 may have no

difference in interpretation, so t4 and t5 in Table 6.1(a) are 1-proximate based on their non-

sensitive rating. If a group of transactions are in ϵ-proximate, then the dissimilarity between

each pair of their non-sensitive ratings is bounded by ϵ. For example, if T = {t1, t2, t3}, then

it is easy to verify that T is 5-proximate.
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Definition 6.2 ((k, ϵ)-anonymity). A survey rating data set T is said to be (k, ϵ)-anonymous

if every transaction is ϵ-proximate with at least (k − 1) other transactions. The transaction

t ∈ T with all the other transactions in that ϵ-proximate with t forms a (k, ϵ)-anonymous

group.

For instance, there are two (2,5)-anonymous groups in Table 6.1(a). The first one is

formed by {t1, t2, t3} and the second one is formed by {t4, t5}. The idea behind this privacy

principle is to make each transaction that contains non-sensitive attributes similar to other

transactions in order to avoid linking to personal identity. (k, ϵ)-anonymity well preserves

identity privacy. It guarantees that no individual is identifiable with the probability greater

than the probability of 1/k. Both parameters k and ϵ are intuitive and operable in real-world

applications. The parameter ϵ captures the protection range of each identity, whereas the

parameter k is to lower an adversary’s chance of beating that protection. The larger the k

and ϵ are, the better protection it will provide.

Although the (k, ϵ)-anonymity privacy principle can protect people’s identity, it fails to

protect an individuals’ private information. Let us consider one (k, ϵ)-anonymous group.

If the transactions of the group have the same rating on a number of sensitive issues, an

attacker can know the preference on the sensitive issues of each individual without knowing

which transaction belongs to whom. For example, in Table 6.1(a), t2 and t3 are in a (2, 1)-

anonymous group, but they have the same rating on the sensitive issue, and thus Bob’s private

information is breached.

This example illustrates the limitation of the (k, ϵ)-anonymity model. To mitigate this

limitation, we require more diversity of sensitive ratings in the anonymous groups. In the

following, we define the distance between two sensitive ratings, which leads to the metric

for measuring the diversity of sensitive ratings in the anonymous groups.
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First, we define dissimilarity between two sensitive rating scores as follows.

Dis(sAi
, sBi

) =


|sAi
− sBi

| if sAi
, sBi

∈ {1 : r}

r if sAi
= sBi

= null

r otherwise

(6.2)

Note that there is only one difference between dissimilarities of sensitive ratings Dis(sAi
, sBj

)

and dissimilarities of non-sensitive ratings Dis(oAi
, oBj

), that is, in the definition of Dis(ooi , ooj),

null − null = 0, and for the definition of Dis(sAi
, sBj

), null − null = r. This is because

for sensitive issues, two null ratings mean that an attacker will not get information from two

survey participants, and hence they are good for the diversity of the group.

Next, we introduce the metric to measure the diversity of sensitive ratings. For a sensitive

issue s, let the vector of ratings of the group be [s1, s2, · · · , sg], where si ∈ {1 : r, null}.

The means of the ratings is defined as follows:

s̄ =
1

Q

g∑
i=1

si

where Q is the number of non-null values, and si± null = si. The standard deviation of the

rating is then defined as:

SD(s) =

√√√√1

g

g∑
i=1

(si − s̄)2 (6.3)

For instance in Table 6.1(a), for the sensitive issue 4, the means of the ratings is (6+1+1+

1 + 5)/5 = 2.8 and the standard deviation of the rating is 2.23 according to Equation (6.3).

Definition 6.3 ((k, ϵ, l)-anonymity). A survey rating data set is said to be (k, ϵ, l)-anonymous

if and only if the standard deviation of ratings for each sensitive issue is at least l in each

(k, ϵ)-anonymous group.
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Still consider Table 6.1(a) as an example. t4 and t5 is 1-proximate with the standard

deviation of 2. If we set k = 2, l = 2, then this group satisfies the (2,1,2)-anonymity require-

ment. The (k, ϵ, l)-anonymity requirement allows sufficient diversity of sensitive issues in

T , therefore it could prevent the inference from the (k, ϵ)-anonymous groups to a sensitive

issue with a high probability.

6.2.3 HAMMING GROUPS

Given a survey rating data set T , we define a binary flag matrix F (T ) to record if there is a

rating or not for each non-sensitive issue (column). F (T )ij = 1 if the ith participant rates

the jth issue and F (T )ij = 0 otherwise. For instance, the flag matrix associated with the

rating data of Table 6.2 is

F =



1 1 0

1 1 0

1 1 0

1 1 0

1 0 1

1 0 1


(6.4)

in which each row corresponds to survey participants and each column corresponds to non-

sensitive issues. In order to measure the distance between two vectors in the flag matrix, we

borrow the concept of Hamming distance [48].

Definition 6.1 (Hamming Distance). Hamming distance between two vectors in the flag

matrix of equal length is the number of positions for which the corresponding symbols are

different. We denote the Hamming distance between two vectors v1 and v2 as H(v1, v2).
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In other words, Hamming distance measures the minimum number of substitutions re-

quired to change one vector into the other, or the number of errors that transformed one

vector into the other. For example, if v1 = (1, 1, 0) and v2 = (1, 0, 1), then H(v1, v2) = 2. If

the Hamming distance between two vectors is zero, then these two vectors are identical. In

order to categorize identical vectors in the flag matrix, we introduce the concept of Hamming

group.

Definition 6.2 (Hamming Group). Hamming group is the set of vectors in which the Ham-

ming distance between any two vectors of the flag matrix is zero. The maximal Hamming

group is a Hamming group that is not a subset of any other Hamming group.

For example, there are two maximal Hamming groups in the flag matrix (7.3) made up

of vectors {(1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0)} and {(1, 0, 1), (1, 0, 1)} and they correspond

to groups {t1, t2, t3, t4} and {t5, t6} of T .

6.3 PUBLISHING ANONYMOUS SURVEY RATING DATA

In this section, we describe our modification strategies through the graphical representation

of the (k, ϵ)-anonymity model. Firstly, we introduce some metrics to quantify the distor-

tion caused by anonymization. Secondly, we present the (k, ϵ)-anonymity model with its

graphical representaion. Finally, we describe the modification strategies in detail.

6.3.1 DISTORTION METRICS

In this section, we define a measure of information loss.

Definition 6.3 (Tuple distortion by edge addition). Let t = (t1, t2, · · · , tm) be a tuple and

t′ = (t′1, t
′
2, · · · , t′m) be an anonymized tuple of t. Then, the distortion of this anonymisation

is defined as:
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non-sensitive sensitive
ID issue 1 issue 2 issue 3 issue 4
t1 3 6 null 6
t2 2 5 null 1
t3 4 7 null 4
t4 5 6 null 1
t5 1 null 5 1
t6 2 null 6 5

Table 6.2: Sample survey rating data (I)

non-sensitive sensitive
ID issue 1 issue 2 issue 3 issue 4
t1 3 6 null 6
t2 2 5 null 1
t3 4 7 null 4
t4 5 6 null 1
t5 1 null 5 1
t6 2 null 6 5
t7 6 null 6 3
t8 5 null 5 2

Table 6.3: Sample survey rating data (II)

Distortion additon(t, t′) =
m∑
i=1

|ti − t′i|

For example, if the tuple t = (5, 6, 0) is generalized to t′ = (5, 5, 0), then the distortion

of this anonymisation is |5− 5|+ |6− 5|+ |0− 0| = 1.

Definition 6.4 (Data set total distortion). Let T ′ = (t′1, t
′
2, · · · , t′n) be the anonymized data

set from T = (t1, t2, · · · , tn). Then, the total distortion of this anonymisation is defined as:

Distortion(T, T ′) =
n∑

i=1

Distortion addition(ti, t′i)

For example, let T = (t1, t2, t3, t4), where t1 = (5, 6, 0), t2 = (2, 5, 0), t3 = (4, 7, 0)

and t4 = (5, 6, 0). Let the anonymized view be T ′ = (t′1, t
′
2, t

′
3, t

′
4), where t′1 = (5, 5, 0),

t′2 = (3, 5, 0), t′3 = (3, 7, 0) and t′4 = (5, 7, 0). Then, the distortion between the two data sets

is 1 + 1 + 1 + 1 = 4.

6.3.2 GRAPHICAL REPRESENTATION

Given a survey rating data set T = {t1, t2, · · · , tn}, its graphical representation is the graph

G = (V,E), where V is a set of nodes, and each node in V corresponds to a record ti
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(i = 1, 2, · · · , n) in T , and E is the set of edges, where two nodes are connected by an

edge if and only if the distance between two records is bounded by ϵ with respect to the

non-sensitive ratings (Equation (6.1)).

Two nodes ti and tj are called connected if G contains a path from ti to tj (1 ≤ i, j ≤ n).

The graph G is called connected if every pair of distinct nodes in the graph can be connected

through some paths. A connected component is a maximal connected subgraph of G. Each

node belongs to exactly one connected component, as does each edge. The degree of the

node ti is the number of edges incident to ti (1 ≤ i ≤ n).

THEOREM 6.1: Given the survey rating data set T with its graphical representation G, T

is (k, ϵ)-anonymous if and only if the degree of each node of G is at least (k − 1).

PROOF: “⇐”: Without loss of generality, we assume that G is a connected graph. If for

every node v in G, the degree of v is greater than (k − 1), which means there are at least

(k − 1) other nodes connecting with v, then according to the construction of the graph, two

nodes have an edge connection if and only if their distance is bounded by ϵ. Therefore, T

satisfies (k, ϵ)-anonymity property.

“⇒”: If T is (k, ϵ)-anonymous, then according to the definition of (k, ϵ)-anonymity,

each record in T is ϵ-proximate with at least (k − 1) other records, and then in the graphical

representation G of T , the degree of each node should be at least (k − 1). �

With the equivalent condition proven in Theorem 6.1, we see that in order to make T

(k, ϵ)-anonymous, we need to modify its graphical representation G to ensure that each node

in G has a degree of at least (k − 1). Next, we introduce the general graph anonymization

problem. The input to the problem is a simple graph G = (V,E) and an integer k. The

requirement is to use a set of graph-modification operations on G in order to construct a

graph G′ = (V ′, E ′) with the degree of each node in G′ being at least k − 1. The graph
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modification operation considered in this chapter is edge addition (adding edges occurs by

modifying values of transactions represented as nodes), since the operation of edge deletion

is symmetric and thus can be handled analogously. We require that the output graph be over

the same set of nodes as the original graph, that is, V ′ = V . The distortion function of

anonymizing G is represented as D(G), and it is computed by the distortion metrics defined

in Section 6.3.1.

Problem 6.1. Given a graph G = (V,E) and an integer k, find a graph G′ = (V,E ′) with

E ′∩E = E by modifying values of some tuples so that the degree of each node of the

corresponding graph is at least (k − 1) such that the distortion D(G) is minimized.

THEOREM 6.2: Problem 6.1 is NP-hard.

PROOF: The NP-hardness proof of the Problem 6.1 is transformed from the problem of

Edge Partition into 4-Cliques [44].

Edge Partition Into 4-Cliques: Given a simple graph G = (V,E), with |E| = 6m for

some integer m, can the edges of G be partitioned into m edge-disjoint 4-cliques?

Given an instance of Edge Partition into 4-Cliques, we first construct a rating data set T

as follows. For each vertex vi ∈ V , construct an issue Ai. For each edge e ∈ E, where e =

(v1, v2), create a pair of records rv1,v2, where the record has the ratings of both issues A1 and

A2 equal to 2 and all other issues equal to 0. We then construct the graphical representation

G′ of T by setting k = 6, ϵ = 1. The objective here is to add the edges to make the degree of

each node in G′ at least (k − 1), and we apply the cost metrics defined in Section 6.3.1. We

show that the cost of making the degree of each node in G′ at least (k − 1) is at most 12m if

and only if E can be partitioned into a collection of m edge-disjoint 4-cliques.

“⇐” Suppose E can be partitioned into a collection of m disjoint 4- cliques. Consider

one 4-clique C with vertices v1, v2, v3 and v4 Figure 6.1(a). Then, the rating data set T
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constructed from C is shown in Figure 6.1(b) and the graphical representation G′ of T is

Figure 6.1(c).

v1

v2
v3

v4

⇒ ⇒

r12

(a) (b)

r13

r14

r23

r24

r34

(c)

Figure 6.1: (a) one 4-clique C; (b) a rating data set T constructed from C; (c) graphical
representation G′ of T with ϵ = 1

Since there are three 2s and three 0s for each issue in T , with the privacy requirement

k = 6 and ϵ = 1, the distance of any pair of nodes is bounded by 2, which is greater than the

given ϵ. To satisfy the requirements, we can change all the 2s or 0s in T to 1s, which has the

cost of 3× 4×m = 12m (shown in Figure 6.2).

r12

r13

r14

r23

r24

r34

⇐ ⇒

(a) (b)(c)

Figure 6.2: Two possible modifications of the rating data set T with k = 6, ϵ = 1

“⇒” Suppose the cost of making the degree of each node in G′ is at most 12m. As G

is a simple graph, any record only has two ratings of 2 and any six records should have at

least four issues whose distances are greater than the given ϵ. The modification can be made

by either changing 2 or 0 to 1. Thus, each record should have at least two 1s in T when its

graphical representation G′ satisfies the condition that each node in G′ has the degree of at
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least 5. Then, the cost of making the degree of each node in G′ is at least 6× 2×m = 12m.

Combining with the proposition that the cost is at most 12m, we obtain the cost is exactly

equal to 12m and thus each record should have exactly two 1s in the solution. Each group

should have exactly 6 records. Suppose the six modified records contain 2 1s in issues A1,

A2, A3 and A4. This corresponds to a 4-clique with vertices v1, v2, v3 and v4. Thus, we

conclude that the solution corresponds to a partition into a collection of m edge-disjoint

4-cliques. �

Even though we can present the equivalent connection between the problem of anonymiz-

ing survey rating data and Problem 6.1, it is not easy to solve the Problem 6.1. The difficulties

occur in two main aspects. The first difficulty comes from the NP-hardness results of Prob-

lem 6.1, which makes no polynomial time algorithms for solving the problem and the only

practical methods are heuristic. The second, but not the least difficult, is the domino effect.

If the degree of a node is less than (k − 1), we need to add some edges to make its degree

(k − 1).

However, this simple operation could cause a domino effect to other nodes. The domino

effect is a chain reaction that occurs when a small change causes a similar change nearby,

which then will cause another similar change, and so on. In the graphical representation of

the survey rating data set, if we add an edge to two nodes that are originally not connected,

then the distance between these two nodes should be bounded by ϵ. Since the distance be-

tween these two nodes is changed, it is mostly likely that the distance between these two

nodes and other nodes is affected as well. If this happens, it is hard to regulate the modifica-

tion either on the graphical representation or on the survey rating data set. Take Figure 6.3 as

an example. Since node b is connected with nodes a, c, e, g, if we are going to change the de-

gree of b, all the nodes are subject to this change, and the whole structure of the graph would

be different. To avoid this domino effect, we further reduce the anonymization problem to
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ensure that the change of one node’s degree has no effects on other nodes. In this chapter,

we adopt the concept of k-clique for the reduction.

b

a

c

d

e

f

g

Figure 6.3: An example of domino effects

G is a clique if every pair of distinct nodes is connected by an edge. The k-clique is

a clique with at least k nodes. The maximal k-clique is the a k-clique that is not a subset

of any other k-clique. We say the connected component G = (V,E) is k-decomposable if

G can be decomposed into several k-cliques Gi = (Vi, Ei) (i = 1, 2, · · · ,m), and satisfies

Vi

∩
Vj = ∅ for (i ̸= j),

∪m
i=1 Vi = E, and

∪m
i=1 Ei ⊆ E. The graph is k-decomposable if

all its connected components are k-decomposable. The decomposability of the graph has the

following monotonicity property.

t1 t2

t3 t4

t5 t6

G1

G2

t1

t3 t4
G134

G

(a) (b)

Figure 6.4: Graphical representation example

PROPOSITION 6.1: If a graph G = (V,E) is k1-decomposable, then it is also k2-decomposable,

for every k2 ≤ k1.

For instance, the graphical representation of the survey rating data in Table 6.2 with ϵ = 2

is shown in Figure 6.4(a). In Figure 6.4(a), there are two connected components, G1 and G2,
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where G2 is the 2-clique. G134 is a maximal 3-clique in G1 (shown in Figure 6.4(b)). G is

2-decomposable, since both G1 and G2 are 2-decomposable. Two possible 2-decompositions

of G1, G11 and G12 are shown in Figure 6.5.

t1 t2

t3 t4
G1

t1

t2 t3

t4 t1

t3

t2

t4

⇒

G11
G12

⇐

Figure 6.5: Two possible 2-decompositions of G1

Note that if G is k-decomposable, then the degree of each node is at least (k − 1).

However, on the other hand, if the degree of every node in G is at least (k − 1), G is not

necessarily k-decomposable. A counter example is shown in Figure 6.6. For each node of

G, the degree is at least 3, but G is not 4-decomposable. Although k-decomposability of G

is a stronger condition than requiring the degree of the nodes in G to be at least (k − 1), it

can avoid the domino effect through edge addition operations. From Theorem 6.1, we have

the following corollary.

t1
t2

t3
t4

t5 t6

G

t7 t8

Figure 6.6: A counter example

COROLLARY 6.1: Given the survey rating data set T with its graphical representation G,

if G is k-decomposable, then T is (k, ϵ)-anonymous.
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For instance, the survey rating data shown in Table 6.2 is (2, 2)-anonymous since its

graphical representation (Figure 6.4(a)) is 2-decomposable.

Problem 6.2. Given a graph G = (V,E) and an integer k, modify values of some tuples to

make the corresponding graph G′ = (V,E ′) k-decomposable with E ′∩E = E such that

the distortion D(G) is minimized.

Note that Problem 6.2 always has feasible solutions. In the worst case, all edges not

present in each connected component of the input graph can be added. In this way, the

graph becomes the union of cliques and all nodes in each connected component have the

same degree; thus, any privacy requirement is satisfied (due to Proposition 6.1). Because of

Corollary 6.1, Problem 6.1 always has a feasible solution as well.

If a given survey rating data set T satisfies the anonymity requirement, we can publish

the data directly. On the other hand, if T is not (k, ϵ)-anonymous, we need to do some

modifications in order to make it anonymous. Due to the hardness of computing Problem

6.1, in this chapter, we investigate the solutions of Problem 6.2. We provide the heuristic

methods to compute (k, ϵ)-anonymous solution, which starts from each connected compo-

nent. More specifically, we consider three scenarios that may happen during the computa-

tion. Firstly, if each connected component is already k-decomposable, then we do nothing

since it has satisfied the privacy requirements. Secondly, if some connected components

are k-decomposable while others are not, we reinvestigate their Hamming groups to see

whether two different connected components belonging to the same Hamming group can be

merged together. Third, if none of the above situations happen, we consider borrowing nodes

from connected components that belong to different Hamming groups. In Section 6.3.3, we

discuss the possible graphical modification operations, and in Section 6.3.4, we apply the

graphical modifications to the survey rating data sets by the metrics defined in Section 6.3.1.
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6.3.3 GRAPHICAL MODIFICATION

Given the survey rating data set T with its graphical representation G, the number of con-

nected components in G can be determined by the flag matrix of T . If two transactions are in

different Hamming groups in the flag matrix, there must be no edge between these two nodes

in G. For instance, the flag matrix of Table 6.2 is shown in Equation (7.3), and obviously

there are two connected components in G (shown in Figure 6.4). However, the converse is

not true, since it may happen that two transactions are in the same Hamming group in the

flag matrix, but their distance is greater than the given ϵ. For instance, although there are still

two groups in the flag matrix of Table 6.3, there would be three connected components in its

graphical representation (see Figure 6.7(a)).

The number of Hamming groups decided by the flag matrix is not sufficient to deter-

mine the number of connected components of G, but it is enough to determine the minimum

number of connected graphs of G. The graph anonymisation process starts from the con-

nected component of the graphical representation. We test the (k, ϵ) requirements for each

connected component of G, and have the following three cases:

Case 1:(Trivial case) If all the connected components of G are k-decomposable, then we

publish the survey rating data without any changes.

Case 2:(Merging case) There exists at least one connected component containing at least

two nodes that is not k-decomposable. If some of the connected components do not satisfy

the requirement, it may happen that some of them belong to the same Hamming group in

the flag matrix. For example, with k = 3 and ϵ = 2, the two connected components G2

and G3 do not satisfy this requirement, but they belong to the same Hamming group in the

flag matrix of Table 6.3 whose graphical representation is shown in Figure 6.7(a). In this

situation, we merge them first, and then do modifications in order to make them meet the

requirement. Figure 6.7(b) illustrates how the merging process and modification works.
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t1 t2

t3 t4

t5 t6

G1

G2

t7 t8

G3

t1 t2

t3 t4

G1

t5 t6

t7 t8

G23

⇒

(a) (b)

Figure 6.7: Merging and modification process for subcase 2.1

At the initial stage, there are three connected components G1, G2 and G3. If the privacy

requirement is k = 3 and ϵ = 2, we verify this requirement for each component, and it

turns out that none of the components satisfy the requirement. We further know that records

t5, t6, t7, t8 are in the same Hamming group of the flag matrix of Table 6.3, so we merge

them into one connected components G23 by adding four edges among them. To make G1

meet the requirement, it is enough to add one edge between t2 and t4. The added edges are

shown in bold Figure 6.7(b). After the merging and modification process, Figure 6.7(b) is

4-decomposable, and according to Corollary 6.1, the survey rating data set shown in Table

6.3 satisfies the privacy requirement. Now, we could make the graph k-decomposable by

edge addition operations.

Case 3:(Borrowing case) There exists at least one connected component that is not k-

decomposable and in the case that we could not make G k-decomposable through a merging

and modification process, we need to borrow some nodes from other connected components

without affecting other connected components. In order to produce no effect to other groups,

we find the maximal k-clique.

Take Table 6.2 (graphical representation in Figure 6.4(a)) as an example with k = 3, ϵ =

2. We need to borrow at least one point from G1 for G2 in order to satisfy the given k. In

order not to affect the structure of G1, we find the maximal 3-clique G1,3,4 of G1, and the left

point t2 is the one we borrow from G1. Then, we add edges between t2, t5 and t2, t6 to make
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t1 t2

t3 t4

t5 t6

G1

G2

t1

t3 t4

G134

t2

t5 t6

⇒

Figure 6.8: Borrowing nodes from other connected graphs

it 3-decomposable. The process is shown in Figure 6.8.

Case 3.1: If the k-clique is unique in the connected graph, then we borrow the point from

the left ones. However, there might not be a unique k-clique. For example, either t1, t2, t3 or

t1, t3, t4 form a 3-clique of G1. In either case, the left point is t4 or t2. In order to determine

which one we should choose, we need to define the objective of our problem and measure

the information loss. We discuss appropriate metrics in the next section. Generally speaking,

our objective is to find a solution with minimum distortion.

Case 3.2: It might happen that there is no k-clique in some connected components. For

example, the graphical representation of some sample data is shown in Figure 6.9 with the

privacy requirement k = 3, ϵ = 2. In Figure 6.9(a), there are two connected components

G1 and G2. With the requirement of k = 3, there is no 3-clique in G1. Instead, we find

a 2-clique. Generally, if there is no k-clique, we find a (k − 1)-clique, and since 2-clique

always exists, this recursive process will end.

If we find the 2-cliques, the next question is how to combine them into a 3-clique. In the

example above, there are three possible 2-cliques consisting of {t1, t2}, {t1, t3} and {t3, t4}.

If we choose {t1, t2} and {t1, t3} to merge together, there will be information loss in adding

the edge between t2 and t3 (Figure 6.9(b)). If we choose {t1, t3} and {t3, t4} to merge

together, there will be information loss in adding the edge between t1 and t4 (Figure 6.9(c)).

The decision of choosing which kind of operation is dependent on the distortion incurred by
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t1 t2

t3 t4

t5 t6

G1

G2

t1 t2

t3

t1

t3 t4

t4

t5 t6

t5 t6

t2

(a) (b) (c)

Figure 6.9: Combining two 2-cliques

the edge addition operation. Distortion metrics are introduced in the next section.

6.3.4 DATA MODIFICATION

In the previous section, we discussed how to modify the graph to make it k-decomposable.

In this section, we reflect such changes in the corresponding survey rating data set.

Recall we have the survey rating data set T = (t1, t2, · · · , tn), ti = (xi1, xi2, · · · , xim),

where xij is the rating of survey participant i on issue j (1 ≤ i ≤ n, 1 ≤ j ≤ m). xj =

(x1j, x2j, · · · , xnj) denoting the vector of ratings on issue j by all the survey participants

(1 ≤ j ≤ m). Given the privacy requirement ϵ, k, we construct the graphical representation

G of the data set T , and publish T ′ = (t′1, t
′
2, · · · , t′n), t′i = (x′

i1, x
′
i2, · · · , x′

im) (1 ≤ i ≤ n

and 1 ≤ j ≤ m).

Case 1: If G is already a k-clique with given ϵ, then output T ′, the same as T .

Case 2 (Edge addition): If G is not yet a k-clique, add necessary edges to make G a k-

clique. We publish T ′ as follows: Firstly, we compute the centroid tc = (tc1, tc2, · · · , tcm),

where tci =
x1i+x2i+···+xni

n
, 1 ≤ i ≤ n. There are several cases that may happen to tc:

Case 2.1 (Integer Strategy): If tci is an integer, ∀i = 1, 2, · · · ,m, we sort the ratings of

the jth issue of T ascending order. Without loss of generality, we assume the ratings on the
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jth issue of T , xj = (x1j, x2j, · · · , xnj) is sorted ascended (1 ≤ j ≤ m).

Case 2.1.1: If ϵ ≥ 1 and n is even, the first n
2

ratings x1j, x2j, · · · , xn
2
j are modified to

tcj − 1, tcj − 1, · · · , tcj − 1, and the remaining n
2

ratings x(n
2
+1)j, · · · , xnj are modified to

tcj + 1, tcj + 1, · · · , tcj + 1. For example, if T = (t1, t2, t3, t4), where t1 = (5, 6, 0), t2 =

(2, 5, 0), t3 = (4, 7, 0) and t4 = (5, 6, 0) and ϵ = 2, k = 4, the centroid is tc = (4, 6, 0), then

after the modification T ′ = (t′1, t
′
2, t

′
3, t

′
4), where t′1 = (5, 5, 0), t′2 = (3, 5, 0), t′3 = (3, 7, 0)

and t′4 = (5, 7, 0). See matrix (6.5) for a more visualized transformation. The numbers in

bold indicate that they are modified. The modification of the graphical representation G to

the 4-clique G′ is shown in Figure 6.10.

T =



5 6 0

2 5 0

4 7 0

5 6 0


⇒



5 5 0

3 5 0

3 7 0

5 7 0


= T’ (6.5)

t1 t2

t3 t4

G

t1

t3 t4

t2

⇒

G′

Figure 6.10: The modification of graphical representation G for Case 2.1.1

Case 2.1.2: If ϵ > 1 and n is odd, the first n−1
2

ratings x1j, x2j, · · · , xn−1
2

j are modified

to tcj − 1, tcj − 1, · · · , tcj − 1, the n
2
th is modified to tcj , and the remaining n+1

2
ratings

xn
2
j, x(n+1

2
)j, · · · , xnj are modified to tcj + 1, tcj + 1, · · · , tcj + 1. For example, if T =

(t1, t2, t3, t4, t5), where t1 = (5, 6, 0), t2 = (2, 5, 0), t3 = (4, 7, 0), t4 = (5, 6, 0) and t5 =

(4, 6, 0) and ϵ = 2, k = 5, the centroid is tc = (4, 6, 0), then after the modification T ′ =

(t′1, t
′
2, t

′
3, t

′
4, t

′5), where t′1 = (5, 5, 0), t′2 = (3, 5, 0), t′3 = (4, 7, 0), t′4 = (5, 6, 0), and
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t′5 = (3, 7, 0). See the matrix (6.6) for a more visualized transformation. The numbers in

bold indicate that they are modified. The modification of the graphical representation G to

the 5-clique G′ is shown in Figure 6.11.

T =



5 6 0

2 5 0

4 7 0

5 6 0

4 6 0


⇒



3 6 0

3 5 0

4 7 0

5 6 0

3 7 0


= T’ (6.6)

t1

t2 t3

t4

G

t1

t3

t4

t2

⇒

G′

t5 t5

Figure 6.11: The modification of graphical representation G for Case 2.1.2

Case 2.1.3: If ϵ = 1 and n is odd, the ratings xj = (x1j, x2j, · · · , xnj) are all changed to

the tcj, tcj, · · · , tcj , 1 ≤ j ≤ m.

Case 2.2 (Fraction Strategy): If tci is a fraction, ∀i = 1, 2, · · · ,m, then since tci =

x1i+x2i+···+xni

n
, 1 ≤ i ≤ n, write it in another form tci = ⌊tci⌋ + r

n
, where ⌊tci⌋ is the largest

integer that is smaller than tci and r is an integer with 0 < r
n
< 1.

Case 2.2.1: If r ≤ ϵ, the ratings x1j, x2j, · · · , xnj are modified to ⌊tci+r⌋, ⌊tci⌋, · · · , ⌊tci⌋.

Actually, r can be added to any one rating. For simplicity, we add it to the first rating. For

example, if T = (t1, t2, t3), where t1 = (5, 6), t2 = (2, 5) and t3 = (4, 6) with ϵ = 2, k = 3.

The centroid is tc = (11
3
, 17

3
). For tc1 = ⌊tc1⌋ + r

n
= 3 + 2

3
and tc2 = ⌊tc2⌋ + r

n
= 5 + 2

3
.

After the modification T ′ = (t′1, t
′
2, t

′
3), where t′1 = (5, 7), t′2 = (3, 5) and t′3 = (3, 5). See
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the matrix (6.7) for a more visualized transformation. The numbers in bold indicate that they

are modified. The modification of the graphical representation G to the 3-clique G′ is shown

in Figure 6.12.

T =


5 6

2 5

4 6

⇒


5 7

3 5

3 5

 = T’ (6.7)

t1

t2 t3

G

t3t2

⇒

G′

t1

Figure 6.12: The modification of graphical representation G for Case 2.2.1

Case 2.2.2: If r > ϵ, then r can be written in the form r = p× ϵ + s, where the integers

p ≥ 1 and 0 ≤ s < ϵ. The ratings x1j, x2j, · · · , xnj are modified to ⌊tci⌋ + 1, ⌊tci⌋ +

1, · · · , ⌊tci⌋ + s. p is added to the first p × ϵ ratings, and s is added to the last rating. For

example, if T = (t1, t2, t3, t4), where t1 = (5, 6), t2 = (2, 5), t3 = (4, 7) and t3 = (4, 5)

with ϵ = 2, k = 4. The centroid is tc = (13
4
, 23

4
). For tc1 = ⌊tc1⌋ + r

n
= 3 + 3

4
and

tc2 = ⌊tc2⌋ + r
n
= 5 + 3

4
. Since r = 3 > ϵ = 2, we write r = p× ϵ + s

ϵ
= 1 + 1

2
. After the

modification T ′ = (t′1, t
′
2, t

′
3, t

′
4), where t′1 = (4, 6), t′2 = (4, 6), t′3 = (3, 5) and t′4 = (4, 6).

See the matrix (6.8) for a more visualized transformation, and the numbers in bold indicate

that they are modified. The modification of the graphical representation G to the 4-clique G′

is shown in Figure 6.13.
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T =



5 6

2 5

4 7

4 5


⇒



4 6

4 6

3 5

4 6


= T’ (6.8)

t1 t2

t3 t4

G

t1

t3 t4

t2

⇒

G′

Figure 6.13: The modification of graphical representation G for Case 2.2.2

Case 2.3 (Mixed Strategy): If tci is an integer, for some i = 1, 2, · · · ,m and for others tci

is a fraction, then apply the integer strategy to the ratings whose tci is an integer, and apply a

fraction strategy to the ratings whose tci is a fraction.

The following theorem proves that the cases are complete and the modified data set in-

deed satisfies the (k, ϵ)-anonymity requirement.

THEOREM 6.3 (CORRECTNESS AND COMPLETENESS): Given a survey rating data set

T , ϵ and k, the modified data set T ′ satisfies (k, ϵ)-anonymity after applying modification

cases.

PROOF: Suppose a survey rating data set T = (t1, t2, · · · , tn), ti = (xi1, xi2, · · · , xim),

where xij is the rating of survey participant i on the issue j (1 ≤ i ≤ n, 1 ≤ j ≤ m).

xj = (x1j, x2j, · · · , xnj) denotes the vector of ratings on issue j by all the survey participants

(1 ≤ j ≤ m). In order to discuss the modification of the data, without loss of generality, we

assume that T forms one (k, ϵ)-anonymous group after the modification. Given the privacy

requirement ϵ, k, we construct the graphical representation G of the data set T . We publish
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T ′ = (t′1, t
′
2, · · · , t′n), and t′i = (x′

i1, x
′
i2, · · · , x′

im), 1 ≤ i ≤ n and 1 ≤ j ≤ m. We verify the

statement case by case:

Case 2.1.1: For the jth issue, the first n
2

ratings x1j, x2j, · · · , xn
2
j are modified to tcj −

1, tcj − 1, · · · , tcj − 1, and the remaining n
2

ratings xn
2
j, x(n

2
+1)j, · · · , xnj are modified to

tcj + 1, tcj + 1, · · · , tcj + 1. It is easily verified that the distance between any two ratings is

bounded by 2, which is no more than ϵ.

Case 2.1.2: For the jth issue, the first n−1
2

ratings x1j, x2j, · · · , xn−1
2

j are modified to

tcj − 1, tcj − 1, · · · , tcj − 1, and the n
2
th is modified to tcj , and the remaining n+1

2
ratings

xn
2
j, x(n+1

2
)j, · · · , xnj are modified to tcj + 1, tcj + 1, · · · , tcj + 1. It is easy to verify that

the distance between any two ratings is bounded by either 1 or 2, which is no more than ϵ as

well.

Case 2.1.3: This is the most trivial case where all the ratings are the same for issue j. Of

course, the ϵ requirement is satisfied since the distance between any two ratings is 0.

Case 2.2.1: For issue j, the ratings x1j, x2j, · · · , xnj are modified to ⌊tci+r⌋, ⌊tci⌋, · · · , ⌊tci⌋.

The distance between two ratings is bounded by r, which is no more than ϵ under this case.

Case 2.2.2: For issue j, the ratings x1j, x2j, · · · , xnj are modified to ⌊tci⌋ + 1, ⌊tci⌋ +

1, · · · , ⌊tci⌋+ s. The distance between two ratings is bounded either by 1 or s− 1, which is

no more than ϵ under this case. �

In practice, applying one single data modification method is not adequate. Usually a

combination of several strategies is needed to meet the (k, ϵ) requirements. In order to test

the efficiency and effectiveness of our proposed approaches, we have conducted extensive

experiments which are described and discussed in the next section.
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6.4 PROOF-OF-CONCEPT EXPERIMENTS

In this section, we experimentally evaluate the effectiveness and efficiency of the proposed

survey rating data publication methods. Our objectives are three-fold. Firstly, we verify that

publishing the survey rating data satisfying (k, ϵ)-anonymity via our proposed approaches is

fast and scalable. Secondly, we show that the anonymous survey rating data sets produced

permit accurate data analysis. Finally, we perform the statistical analysis on both original

and anonymized data sets.

6.4.1 DATA SETS

Our experimentation uses two real-world databases, MovieLens1 and Netflix2. The Movie-

Lens data set was made available by the GroupLens Research Project at the University of

Minnesota. The data set contains 100,000 ratings (5-star scale), 943 users and 1682 movies.

Each user has rated at least 20 movies. The Netflix data set was released by Netflix for

a competition. This movie rating data set contains over 100,480,507 ratings from 480,189

randomly-chosen Netflix customers of over 17,000 movie titles. The Netflic data were col-

lected between October, 1998 and December, 2005 and reflected the distribution of all ratings

received during this period. The ratings are on a scale from 1 to 5 stars. In both data sets,

a user is considered as a survey participant while a movie is regarded as an issue to respond

to. Many entries are empty since each participant only rated a small number of movies.

6.4.2 EFFICIENCY

Data used for Figure 6.14(a) is generated by re-sampling the Movielens and Netflix data sets

while varying the percentage of data from 15% to 100%. For both data sets, we evaluated

1http://www.grouplens.org/taxonomy/term/14.
2http://www.netflixprize.com/.
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Figure 6.14: Running time on MovieLens and Netflix data sets vs. (a) Data percentage
varies; (b) ϵ varies; (c) k varies

the running time for the (k, ϵ)-anonymity model with the default setting k = 20, ϵ = 1.

For both testing data sets, the execution time for (k, ϵ)-anonymity is increased by enlarging

the percentage of both data sets. This is because as the percentage of data increases, the

computation cost increases too. The result is expected since the overhead is increased with

more dimensions.

Next, we evaluated the effect of the parameters k, ϵ on the cost of computing. The data

sets used for this experiment are the whole MovieLens and Netflix databases and we evaluate

by varying the value of ϵ and k. With k = 20, Figure 6.14(b) shows the computational cost

as a function of ϵ, in determining (k, ϵ)-anonymity for both data sets. Interestingly, in both

data sets, as ϵ increases, the cost initially becomes lower but then increases monotonically.

This phenomenon is due to a pair of contradicting factors that push up and down the running

time, respectively. At the initial stage, when ϵ is small, fewer edges are contained in the

graphical representation of the data set, and therefore, more computation efforts are put into

edge addition and data modification operations. This explains the initial descent of overall

cost. However, as ϵ grows, there are more possible (k, ϵ)-anonymous solutions and searching

for the one with the least distortion requires a larger overhead, and this causes the eventual
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Figure 6.15: Performance comparison on MovieLens and Netflix data sets: (a) Query
accuracy vs. ϵ; (b) Query accuracy vs. k; (c) Clusters changes vs. k

cost increase. Setting ϵ = 2, Figure 6.14(c) displays the results of execution time by varying

k from 20 to 60 for both data sets. The cost drops as k grows. This is expected because fewer

search efforts for possible (k, ϵ)-anonymous solutions are needed for a greater k, allowing

our algorithm to terminate earlier.

6.4.3 DATA UTILITY

Having verified the efficiency of our technique, we proceed to test its effectiveness. We

measure data utility as the error in answering average rating queries in the anonymous data

by running 100 random queries of the rating of a movie. We derive the estimated answer of

a query using the approach explained in [60]. The accuracy of an estimate is evaluated as its

relative error. Let act and est be the actual and estimated results respectively. The relative

error then equals |act− est|/act.

We first study the influence of ϵ (i.e., the length of a proximate neighborhood) on data

utility. Towards this, we set k to 10. With (10, ϵ)-anonymity, Figure 6.15(a) plots the average

error on both data sets as a function of ϵ. (k, ϵ)-anonymity produces useful anonymized
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data with an average error below 15%. The anonymisation strategies incur higher levels of

errors as ϵ increases. This is expected, since a larger ϵ demands stricter privacy preservation,

which reduces data utility. Next, we examined the utility of (k, ϵ)-anonymous solutions with

different k when ϵ = 2. Figure 6.15(b) presents the average error of 100 random queries of

the average rating as a function of k. The error grows with k because a larger k demands

tighter anonymity control. Nevertheless, even for the greatest k, the data still preserves fairly

good utility by our technique, incurring an error of no more than 20% for Movielens and

25% for Netflix.

Since our objective is to anonymize large survey rating data, we adopt another criterion

to evaluate data utility called membership changing ratio. This is the proportion of data

points changing cluster memberships from clusters on the original data set to clusters on

the anonymized data set when a clustering algorithm (e.g., k-means algorithm [55]) runs on

both data sets. We first anonymize the original dataset by our anonymisation method, and

then we run a k-means algorithm over both the original and anonymous data sets, keeping

the same initial seeds and identical k. We use the proportion of data points changing cluster

memberships as another measure of utility. Generally, the lower the membership changing

ratio is, the higher the data utility is preserved. Figure 6.15(c) plots a clustering membership

changing ratio versus k. The membership changing ratio increases with increasing k. When

k = 60, the membership changing ratio is less than 15% for both data sets. This shows that

our data modification approach preserves the grouping quality of anonymized data very well.

6.4.4 STATISTICAL PROPERTIES

We further performed the statistical analysis on the original and anonymous data sets. In

this series of evaluations, we compare some key statistical properties, centroid and standard

deviation with the original and anonymized data, since these statistics are extremely useful in
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Figure 6.16: Statistical properties analysis (Movielens Dataset): (a) centroid vs. data
percentage; (b) centroid vs. k; (c) standard deviation vs. ϵ

the data mining environment for anonymous data sets. For the centroid comparison, we first

calculated the average vector of the ratings that are not null of each attribute, then compared

the inner product of this vector with the result of the same operation on the anonymous

data set. The results were evaluated by varying the percentage of the data and the privacy

requirement k. For the standard deviation, we computed the average standard deviation

among all the attributes for the original and anonymous data sets. The experiments were

conducted by varying ϵ.

We first compared the centroid before and after anonymisation while varying the percent-

age of the data set. We set k = 20, ϵ = 2 and let the percentage of the data vary from 20% to

100%. The result is shown in Figure 6.16(a). We can see that although the centroid between

original and anonymous data sets are different, they do not differ much, which makes the

data useful for the data mining purposes, and the results suggest that our modification strate-

gies preserve the centroid of the data. We then fixed the data set with ϵ = 2 and varied the

privacy requirement k from 5 to 35. The result is shown in Figure 6.16(b). No matter what

kind of operations are used, the centroids before and after the operation are similar to each

other. Figure 6.16(c) compares average standard deviations before and after data anonymisa-
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tion. The average standard deviation remains constant for the original data, since parameter

ϵ has no effect on it. For the anonymous data set, the standard deviation is bounded by some

specific value for a given ϵ. It is not difficult to prove that the upper bound of the standard de-

viation for issue s is s max−s min
2

, where s max and s min are the maximum and minimum

ratings of s. With the parameter ϵ, the standard deviation is bounded by ϵ
2
. Similar results

were obtained on Netflix data sets as well.

6.5 SUMMARY

In this chapter, we have studied the problems of protecting sensitive ratings of individuals

in a large public survey rating data set. Privacy risks have emerged in a recent study on the

de-identification of published movie rating data. We proposed a novel (k, ϵ, l)-anonymity

privacy principle for protecting privacy in such survey rating data. We apply a graphi-

cal representation to formulate the problem and provide a comprehensive analysis of the

graphical modification strategies. Extensive experiments confirm that our technique pro-

duces anonymized data sets that are highly useful and preserve key statistical properties.
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CHAPTER 7

SATISFYING PRIVACY REQUIREMENTS IN

SURVEY RATING DATA

In Chapter 6, I proposed a new privacy principle called (k, ϵ, l)-anonymity in large survey

rating data, and in this chapter, I first investigate the properties of the (k, ϵ, l)-anonymity

model, and then formulate an interesting yet challenging Satisfaction Problem and develop a

slicing technique to determine the Satisfaction Problem, and finally I include the experiential

results in the real-life data sets.

The information included in this chapter is based on the published paper [93].

7.1 CHARACTERISTICS OF (k, ϵ, l)-ANONYMITY

Definition 7.1. Given a subset G of T , let neighbor(t, G) be the set of tuples, in which

the values of non-sensitive issues are ϵ-proximate with t and |neighbor(t, G)| indicates

its cardinality. maxsize(G) is the largest size neighbor(t, G) of every t ∈ G. Formally,

maxsize(G) = max∀t∈G |neighbor(t, G)|.

For example, let T be the data in Table 6.1(a), consisting of t1, · · · , t5, and G = T . As-

sume ϵ = 1, |neighbor(t1, G)| = {t1} since no other transaction in G is 1-proximate with t1

and |neighbor(t1, G)| = 1. Similarly, neighbor(t2, G) = {t2, t3} and |neighbor(t2, G)| = 2

because t2 and t3 are 1-proximate with t1. maxsize(G) = 2, because no other transaction

t ∈ G has a neighbor(t, G) higher than 2. maxsize(G) has the following property:
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LEMMA 7.1: Let G1, G2 be two partition of G and G1 ∪G2 = G. Then,

maxsize(G)

|G|
≤ max{maxsize(G1)

|G1|
,
maxsize(G2)

|G2|
}

PROOF: We first show maxsize(G) ≤ maxsize(G1) +maxsize(G2). Due to symmetry,

assume t ∈ G1, and that maxsize(G) is the size of the neighbor covering set neighbor(t, G)

of a tuple t ∈ G. Use S1 (S2) to denote the set of tuples in neighbor(t, G) that also belong to

G1 (G2). Obviously, neighbor(t, G) = S1∪S2 and S1∩S2 = ∅. Let t′ be the tuple in S2 with

the largest range. Notice that S1 ⊆ neighbor(t, G1) and S2 ⊆ neighbor(t′, G2). Therefore,

maxsize(G) = |S1| + |S2| ≤ |neighbor(t, G1)| + |neighbor(t′, G2)| ≤ maxsize(G1) +

maxsize(G2).

Given any subset G of T , we define α(G) = maxsize(G)/|G|, and α(G1), α(G2) in the

same manner. As maxsize(G) ≤ maxsize(G1) + maxsize(G2), we have (|G1| + |G2|) ·

α(G) = |G1| · α(G1) + |G2| · α(G2), leading to |G1|
|G2| · (α(G)− α(G1)) + α(G) ≤ α(G2). If

α(G) ≤ α(G1), lemma holds. If α(G) ≥ α(G1), the term |G1|
|G2| · (α(G)−α(G1)) > 0; hence,

α(G) ≤ α(G2). No matter in which case, lemma holds. �

Note that if G = ∪ni=1Gi, the result of the lemma can be extended to maxsize(G)
|G| ≤

maxn
i=1{

maxsize(Gi)
|Gi| }. In our example with ϵ = 5, G1 = {t1, t2, t3} and G2 = {t4, t5}.

Clearly, G1 ∪ G2 = T . It is easy to verify that maxsize(G1) = neighbor(t2, G1) = 2

and maxsize(G2) = neighbor(t4, G2) = 2. Hence, 2
5
< max{2

3
, 2
2
} = 1, the inequality in

Lemma holds.

THEOREM 7.1: Given ϵ and a partition of T = ∪n
i=1Gi, if T has at least one (k, ϵ)-

anonymity solution, then k ≤ ⌈maxsize(T )·|Gj |
|T | ⌉, where maxsize(Gj)

|Gj | = maxni=1{
maxsize(Gi)

|Gi| }.
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PROOF: Suppose |neighbor(t, Gj)| = maxsizeGj and k > ⌈maxsize(G)·|Gj |
|T | ⌉. If T has a

(k, ϵ)-anonymous solution, then the possibility of t being identified is at least 1
neighbor(t,Gj)

,

which is greater than |T |
maxsize(T )·|Gj | due to the fact that maxsize(T )

|T | ≤ maxsize(Gj)

|Gj | . With our as-

sumption, we get that the possibility of t being identified is greater than 1
k
, which contradicts

the fact that T has a (k, ϵ)-anonymous solution. �

Theorem 7.1 provides a sufficient condition for the existence of a (k, ϵ)-anonymity so-

lution. In our running example with ϵ = 1, we already know that maxsize(G) = 2, then

according to Theorem 7.1, if a (k, ϵ)-anonymity exists, then k ≤ ⌈2×3
5
⌉ = 2.

LEMMA 7.2: Given S = {s1, s2, · · · , sn} as the sensitive ratings of T . Let S1 and S2 be

two partitions of S and S1 ∪ S2 = S. Then,

SD(S) ≥ min{SD(S1), SD(S2)}

PROOF: Without loss of generality, suppose S1 = {s1, s2, · · · , sk} and S2 = {sk+1, · · · , sn}

and SD(S1) ≤ SD(S2). s̄ =
∑n

i=1 si
n

, s̄1 =
∑k

i=1 si
n

and s̄2 =
∑n

i=k+1 si
n

. Next, we show that
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SD(S) > SD(S1).

SD2(S)− SD2(S1) =

∑n
i=1(xi − x̄)2

n
−

∑k
i=1(xi − x̄1)

2

k

=
1

nk
(k

n∑
i=1

(xi − x̄)2 − n
k∑

i=1

(xi − x̄1)
2)

=
1

nk
(k

n∑
i=1

(xi − x̄)2 − k
k∑

i=1

(xi − x̄1)
2 − (n− k)

k∑
i=1

(xi − x̄1)
2)

Since SD(S1) ≤ SD(S2),
∑k

i=1(xi − x̄1)
2

k
≤

∑n−k
i=1 (xi − x̄2)

2

n− k

≥ 1

nk
(k

n∑
i=1

(xi − x̄)2 − k
k∑

i=1

(xi − x̄1)
2 − k

n∑
i=k+1

(xi − x̄2)
2)

=
1

n
(

n∑
i=1

(xi − x̄)2 −
k∑

i=1

(xi − x̄1)
2 −

n∑
i=k+1

(xi − x̄2)
2)

=
1

n
(

k∑
i=1

((xi − x̄)2 − (xi − x̄1)
2) +

n∑
i=k+1

((xi − x̄)2 − (xi − x̄2)
2)

Since kx̄1 =
k∑

i=1

xi and (n− k)x̄2 =
n∑

i=k+1

xi, then

=
1

n
(k(x̄1 − x̄)2 + (n− k)(x̄2 − x̄)2) ≥ 0

(7.1)

Therefore, the lemma holds. �

Note that if S = ∪n
i=1Si, the result of the lemma can be extended to SD(S) ≥ minn

i=1{SD(Si)}.

In our example with ϵ = 5, the ratings of the sensitive issue 4 S = {6, 1, 1, 1, 5} are divided

into two groups S1 = {6, 1, 1} and S2 = {1, 5}. It is easy to verify that SD(S) = 2.23,

SD(S1) = 2.35 and SD(S2) = 2. Therefore, SD(S) > min{SD(S1), SD(S2)}, the in-

equality in Lemma holds.

COROLLARY 7.1: Let S be the ratings of the sensitive issue of T , and be divided into n

groups, S1, · · · , Sn. If ∀i, SD(Si) ≥ l0. Then, SD(S) ≥ l0.
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The following theorem gives the upper bound of the parameter l in the (k, ϵ, l)-anonymity

model.

THEOREM 7.2: Let S be the set of ratings of the sensitive issue of T . Suppose S min and

S max be the minimum and maximum ratings in S, then the maximum standard deviation

of S is (S max−S min)
2

.

PROOF: For the ease of description, if we write S min as a and S max as b, we only need

to prove the following inequality holds with (a ≤ c ≤ b):

√
(a− a+b+c

3
)2 + (b− a+b+c

3
)2 + (c− a+b+c

3
)2

3
≤ (b− a)

2
(7.2)

Let f(c) be written as:

f(c) =
(a− a+b+c

3
)2 + (b− a+b+c

3
)2 + (c− a+b+c

3
)2

3

The graph of f(c) is a parabola, and after simplifying the function, the axis of symmetry is

c = a+b
2

, and since f ′(x) = 6 > 0 and a ≤ a+b
2
≤ b, the function has the minimum value

(b−a)2

6
, then

(b− a)2

6
≤ f(c) ≤ min{f(a), f(b)}

because f(a) = f(b) = 6(b−a)2

27
, then

(b− a)2

6
≤ f(c) ≤ 6(b− a)2

27

Due to the fact that 6(b−a)2

27
< (b−a)2

4
, then Equation (7.2) holds. The proof of Theorem 7.2

completes. �
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non-sensitive sensitive
ID issue 1 issue 2 issue 3 issue 4
t1 3 6 null 6
t2 2 5 null 1
t3 4 7 null 4
t4 5 6 null 1
t5 1 null 5 1
t6 2 null 6 5

Table 7.1: Sample rating data

7.2 THE SATISFACTION ALGORITHM

Problem 7.1 (Satisfaction Problem). Given a survey rating data set T and privacy require-

ments k, ϵ, l, the satisfaction problem of (k, ϵ, l)-anonymity is to decide whether T satisfies

the k, ϵ, l privacy requirements.

The satisfaction problem is to determine whether the user’s given privacy requirement is

satisfied by the given data set. This is a very important step before anonymizing the survey

rating data. If the data set has already met the requirements, it is not necessary to make any

modifications before publishing. As follows, we propose a novel slice technique to solve the

satisfaction problem.

Recall that we are given a survey rating data set consisting of a set of transactions T =

{t1, t2, · · · , tn}, |T | = n. Each transaction ti ∈ T contains issues from an issue set I =

{i1, i2, · · · , im}, |I| = m. Consider that both n (the number of survey participants) and

m (the number of issues) may be very large. For example, a million users rate thousands

of movies. The efficient identification of the violation to privacy requirement is nontrivial.

Firstly, the dissimilarity matrix is very big if we try to compute all pairwise distances. The

time complexity is O(n2m). Secondly, the data matrix may not fit in the memory. An

algorithm needs to read data from disk frequently.

Now we focus on the how to group T in order to fulfill the privacy requirement. We
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explained in the previous example that the first three transactions form a maximal Hamming

group and the last two transactions form the other one, which has inspired the idea of the

first step of the algorithm. It works as follows: firstly, we find out all the maximal Hamming

groups, namely H1, · · · , Hk. For each Hamming group Hi, 1 ≤ i ≤ k, we test for the privacy

requirement. In our running example, if given ϵ = 5, the two maximal Hamming groups

made of {t1, t2, t3} and {t4, t5} are already satisfying the privacy requirement. However, in

Table 7.1, the flag matrix is

F′ =



1 1 0

1 1 0

1 1 0

1 1 0

1 0 1

1 0 1


(7.3)

The maximal Hamming groups are H1 = {t1, t2, t3, t4} and H2 = {t5, t6}. If given ϵ = 1,

H2 has already met the requirement, but H1 does not. In this case, a smarter technique

is required to further process the group H1. Here, we adopt a greedy slicing technique to

address the challenge.

7.2.1 SEARCH BY SLICING

Our slicing algorithm is based on the projection search paradigm first used by Friedman

[41]. Friedman’s simple technique works as follows. In the preprocessing step, d dimen-

sional training points are ordered in d different ways by individually sorting each of their

coordinates. Each of the d sorted coordinate arrays can be thought of as a 1-D axis with the

entire d dimensional space projected onto it. Given a point q, the nearest neighbor is found

as follows. A small ϵ is subtracted from and added to each of q’s coordinates to obtain two
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Figure 7.1: The slicing technique finds a set of transactions Ct inside a cube of size 2ϵ
within the ϵ-proximate of t. The ϵ-proximate of the set Ct can then be found by an
exhaustive search in the cube.

values. Two binary searches are performed on each of the sorted arrays to locate the posi-

tions of both values. An axis with the minimum number of points in between the position is

chosen. Finally, points in between the positions on the chosen axis are exhaustively searched

to obtain the closest point. The complexity is O(ndϵ) and it is clearly inefficient in high d.

7.2.2 TO DETERMINE k AND l WHEN ϵ IS GIVEN

Our slicing technique is proposed to efficiently search for the neighbor within distance ϵ

in high dimension. As we shall see, the complexity of the proposed algorithm grows very

slowly in dimension for small ϵ. We illustrate the proposed slicing technique using a simple

example in 3-D space, as shown in Figure 7.1. Given t = (t1, t2, t3) ∈ T , our goal is to slice

out a set of transactions T (t ∈ T ) that are ϵ-proximate. Our approach is first to find the

ϵ-proximate of t, which is the set of transactions that lie inside a cube Ct of side 2ϵ centered
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at t. Since ϵ is typically small, the number of points inside the cube is also small. The ϵ-

proximate of C ′
t can then be found by an exhaustive comparison within the ϵ-proximate of t.

If there are no transactions inside the cube Ct, we know that the ϵ-proximate of t is empty,

so as the ϵ-proximate of the set C ′
t.

The transactions within the cube can be found as follows. First we find the transactions

that are sandwiched between a pair of parallel planes X1, X2 (See Figure 7.1) and add them

to a candidate set. The planes are perpendicular to the first axis of coordinate frame and are

located on either side of the transaction t at a distance of ϵ. Next, we trim the candidate set

by disregarding transactions that are not also sandwiched between the parallel pair of Y1 and

Y2, that are perpendicular to X1 and X2, again located on either side of t at a distance of

ϵ. This procedure is repeated for Z1 and Z2, at the end of which the candidate set contains

only transactions within the cube of size 2ϵ centered at t. Slicing(ϵ, T, t0) (Algorithm 1)

describes how to find the ϵ-proximate of the set Ct0 with t0 ∈ Ct0 .

Since the number of transactions in the final ϵ-proximate is typically small, the cost of

the exhaustive comparison is negligible. The major computational cost in the slicing process

occurs therefore in constructing and trimming the candidate set.

Suppose the set C ′
t (t ∈ C ′

t) is finally ϵ-proximate. We repeat the process for another

transaction on the set T \ C ′
t. Finally, two situations arise. One is that all transactions are

grouped into anonymous groups with each group having at least two transactions. The other

situation is that for some t′ ∈ T there is no ϵ-proximate and in that case, we let t′ form an

(k, ϵ)-anonymous group by itself.
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ALGORITHM 1: Slicing(ϵ, T, t0)(C)

1 andidate← {t0};S ← ∅

2 / ∗ To slice out the cube, ϵ-proximate of t0 ∗ /

3 for j ← 1 to n

4 do if |tj − t0| < ϵ

5 then Candidate← Candidate ∪ {tj}

6 S ← S ∪ {j}

7 / ∗ To trim the ϵ-proximate of t0 ∗ /

8 PCandidate← Candidate

9 for i← 1 to |S|

10 do for j ← 1 to |S|

11 do if |tS(i) − tS(j)| > ϵ

12 then PCandidate← PCandidate \ {tS(i)}

13 return ProperCandidate

We use the sample rating data in Table 7.1 to illustrate how the slicing algorithm works.

If we want to find a (k, ϵ)-anonymity solution with ϵ = 1, the first step is to slice out the

transactions that are ϵ-proximate with the first transaction t1, and we use Ct to denote the set

of transactions, where Ct = {t1, t2, t3}. The next step is to trim Ct to make it ϵ-proximate,

and the method is to verify if the distance between any two elements in Ct is bounded by ϵ.

In this example, the dissimilarity between t2 and t3 is greater than ϵ; then we take one out of

Ct (we choose t3 here), and after that, we could obtain the new set C ′
t = Ct \{t3} = {t1, t2},

which is already ϵ-proximate. Repeat this process on T ′ = T \C ′
t, and finally we can find one

(2, 1)-anonymity solution consisting of three anonymous groups {{t1, t2}, {t3, t4}, {t5, t6}}.

Further, if we consider sensitive issues, actually, there is enough diversity in each (k, ϵ)-
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anonymous group with l = 1.5. Therefore this example satisfies (2, 1, 1.5)-anonymity re-

quirement.

Further, if we partition T into {G1, G2}, where G1 = {t1, t2, t3, t4} and G2 = {t5, t6},

we get maxsize(T ) = 3 and maxsize(G1) = 3 with ϵ = 1. So according to Theorem 7.1,

k ≤ ⌈maxsize(T )·|G1|
|T | ⌉, which is 3×4

6
= 2. This example also verifies Theorem 7.1.

7.2.3 TO DETERMINE ϵ AND l WHEN k IS GIVEN

In this section, we discuss the situation when k is known, and how to find out a solution that

satisfies the (k, ϵ, l)-anonymity principle with ϵ as smaller as possible. To solve this problem,

we combine the slicing technique and binary search in our algorithm.

Binary search is a technique for locating a particular value in a sorted list of values.

It makes progressively better guesses, and closes in on the sought value by selecting the

middle element in the span (which, because the list is in sorted order, is the median value),

comparing its value to the target value, and determining if the selected value is greater than,

less than, or equal to the target value. A guess that turns out to be too high becomes the new

upper bound of the span, and a guess that is too low becomes the new lower bound. Pursuing

this strategy iteratively narrows the search by a factor of two each time, and finds the target

value or else determines that it is not in the list at all.

Our algorithm starts from the upper bound ϵ = r (r is the maximum rating in T ) and

begins with transaction t1 ∈ T , at the initial stage, all transactions fall into one (k, ϵ)-

anonymous group. We further our search by setting ϵ to r
2
, which is a middle element between

0 and r. For this new ϵ, we need to find out all transactions that are r
2
-proximate by running

the slicing technique discussed before. Our objective is to determine whether or not the set

of transactions that is r
2
-proximate neighborhood has a capacity greater than the given k. If

yes, we set the new upper bound to r
2

and search among the interval [0, r
2
]. Continue this
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process for interval [0, r
2
] with middle element r

4
. Else, we set the new lower bound to r

2

and continue searching in [ r
2
, r] with middle element 3r

4
. Repeat this until reaching the ter-

mination condition. We terminate searching if for the interval [upper bound, lower bound],

|upper bound − lower bound| < 1. Finally, ϵ returns to the unique integer in the interval

[upper bound, lower bound].

Consider our running example with k = 2. We begin with ϵ = 6 and return to an

anonymous solution with all transactions in one group. Next we try ϵ = 3 and the interval

[0,6] is partitioned into [0,3] and [3,6]. By using the slicing algorithm, it returns that there

is a set of transactions which is 3-proximate, and its capacity is less than 2. Then, we move

to the interval [3,6] and try ϵ = 4.5, the ϵ is still not large enough. We finish the search until

we get that ϵ is in the interval [4.5, 5.25], and since |5.25 − 4.5| < 1, the search terminates

and ϵ returns to 5. Finally we can find one (2, 5, 2)-anonymous solution consisting of two

anonymous groups {{t1, t2, t3}, {t4, t5}}.

7.2.4 TO DETERMINE k AND ϵ WHEN l IS GIVEN

In this section, we discuss the situation when l is given, and how to find a solution satisfying

the (k, ϵ, l)-anonymity principle with ϵ as small as possible. Let S be the ratings of the

sensitive issue of T , and SD(S) = l0 be the standard deviation computed by Equation (6.3).

Case 1: When l > l0. In this case, suppose one solution exists that satisfies both prin-

ciples. We let T be divided into n groups, and in each group, the similarity of any two

transactions is bounded by ϵ, and the number of transactions in each group is at least k,

and the standard deviation of the sensitive ratings in each group is at least l. According to

Corollary 7.1, the standard deviation of the sensitive ratings of T SD(S) is at least l as well,

which makes SD(S) > l0, and this is a contradiction. Hence, if l > l0, there is no required

solution.
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Case 2: When l ≤ l0. The algorithm starts from ϵ = r, and at this initial stage, all

transactions fall into one (k, ϵ, l)-anonymous group. Next, we continue our search by setting

ϵ to r
2
, which is a middle element between 0 and r. For this new ϵ, we need to verify if the

standard deviation of the sensitive ratings in each group formed by this new ϵ is at least l. If

yes, we set the new upper bound to r
2

and search among the interval [0, r
2
] and continue to test

for the middle element r
4
. Else, we set the new lower bound to r

2
and continue searching in

[ r
2
, r] by testing the middle element 3r

4
. Repeat this until reaching the termination condition.

We terminate searching if there exists an ϵ in the interval [upper bound, lower bound] with

|upper bound− lower bound| < 1 and the sensitive ratings in each group formed by this ϵ are

at least l. Finally, ϵ returns to the unique integer in the interval [upper bound, lower bound].

Consider the example in Table 7.1 with l = 2. The standard deviation of the sensitive

ratings of T is 2.1. Since l < 2.1, a solution exists that meets the privacy principle. We begin

with ϵ = 6, which returns to a solution containing all transactions in one group. Obviously,

it meets both principles. Next we try ϵ = 3 and the interval [0,6] is partitioned into [0,3] and

[3,6]. The (k, ϵ)-anonymous groups formed when ϵ = 3 are {t1, t2, t3, t4} and {t5, t6}. We

further verify the standard deviation of sensitive ratings in both group, and both are greater

than 2. This means when ϵ = 3, a solution exists that satisfies (2,3,2)-anonymity. In order

to find the solution with the smallest ϵ, we continue our search in the interval [0,3] and try

the middle value ϵ = 1.5. It returns to three groups {t1, t2}, {t3, t4} and {t5, t6}, however,

the standard deviation of the sensitive ratings of the second group are 1.5 < l. Next, we

continue to search in [1.5, 3] and still do not meet the (k, ϵ, l)-anonymity requirement. We

finish the search until we get that ϵ is in the interval [2.375, 3], and since |3−2.375| < 1, the

search terminates and ϵ returns to 3. Finally we can find one solution that meets the (2,3,2)-

anonymity principle, and it consists of two anonymous groups {t1, t2, t3, t4} and {t5, t6}.
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7.2.5 PRUNING AND ADJUSTING

In this section, we discuss the refine technique used in order to obtain the accurate (k, ϵ)-

anonymous groups. Without the refine process, some solutions are possibly missing due to

the greedy choice of ϵ-proximate. Let us take Table 7.1 as an example. If we set ϵ = 2 and

try to find the (k, ϵ)-anonymous groups, the resulting (k, ϵ)-anonymous groups are made of

{t1, t3, t4}, {t2}, {t5, t6}, which is not the desired solution, since t2 is unique in the second

group. However, with ϵ = 2, we could easily find that the desired (k, ϵ)-anonymous groups

consist of {t1, t2}, {t3, t4}, {t5, t6} in Table 7.1. From this fact, we see that some solutions

might be missed during our slicing process, and it is necessary to develop the appropriate

method to retrieve the “missing” ones. The reason for the missing solutions is the greedy

choice of ϵ-proximate. In every iteration of the algorithm, for the transaction ti, we slice out

all the transactions that are ϵ-proximate with ti and delete them from the original data set and

continue the slicing process for the next transaction tj . During this process, it might happen

that there are no other transactions that are ϵ-proximate with tj , but there might be some tk

which is ϵ-proximate with both ti and tj . Since the set that is ϵ-proximate was deleted in

order to continue the next search, some inaccurate groupings occur.

In order to fix this problem, our idea is to re-check each group that is found by the

algorithms to see if the singleton groups can borrow some transactions from large groups

(refer to the group having more than three transactions). If some transaction ti in the large

group is ϵ-proximate with tj in the singleton group, then we move the transaction ti to the

singleton group containing tj . Repeat this until the following conditions are satisfied.

Case 1: No singleton group exists in the pruned (k, ϵ)-anonymous groups. In this case, we

retrieve the missing solutions. For example, if we set ϵ = 2 in Table 7.1 and try to find

out the (k, ϵ)-anonymous groups, by using the slicing algorithm, three anonymous groups

{t1, t3, t4}, {t2}, {t5, t6} are found. Since there is a singleton, the pruning process is trig-

CHAPTER 7. SATISFYING PRIVACY REQUIREMENTS IN SURVEY RATING DATA



Xiaoxun Sun Ph.D Dissertation - 161 of 198

gered, which happens between the large group {t1, t3, t4} and the singleton group {t2}. Be-

cause Dis|t1 − t2| < ϵ = 2, transaction t1 is moved from the large group {t1, t3, t4} to

the singleton group {t2}, and two adjusted groups {t3, t4} and {t1, t2} are formed after the

moving.

Case 2: Some singleton groups exist. In this case, we say there is no solution for this given

ϵ. In order to find the solution, it is necessary to enlarge the value of ϵ.

7.3 ALGORITHM COMPLEXITY

In this section, we attempt to analyze the computational complexity of our proposed slicing

algorithm. Recall that our data set consisting of a set of survey records T = {t1, t2, · · · , tn},

|T | = n. Each transaction ti ∈ T contains issues from I = {i1, i2, · · · , im}, |I| = m.

The major computational cost is in the process of candidate construction and trimming. The

number of transactions initially added to the candidate list not only depends on ϵ, but also

on the location and distribution of the transaction. Hence, to facilitate analysis, we assume

a uniformly distributed transaction set. In the following, we denote random variables by an

uppercase letter, for instance, X . Vector x is in the form of x⃗. Suffixes are used to denote

individual elements of vectors, for instance, xk is the kth element of vector x⃗.

If we need to find the transactions that are ϵ-proximate with t⃗ ∈ T , Figure 7.2 shows the

transaction t and other n−1 transactions in 2-D drawn from a known distribution. Recall that

the candidate set is initialized with transactions sandwiched between a hyperplane pair in the

first dimension, or more generally, in the ith dimension. This corresponds to the transactions

that fall into area Cti in Figure 7.2, where the entire transaction set and t⃗ are projected to the

ith coordinate axis. The boundaries of Cti are where the hyperplanes intersect with the axis

i, at ti − ϵ and ti + ϵ. Let Mi be the number of transactions in Cti . In order to determine the
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Figure 7.2: The projection of transactions to one dimension of the search space and the
number of transactions inside C is given by binomial distribution.

average number of transactions added to the candidate set, we must compute E[Mi]. Let Zi

be the dissimilarity between ti and any other transaction in the candidate set and denote Pi

to be the possibility that any projected transaction is ϵ-proximate with ti; that is,

Pi = P{−ϵ ≤ Zi ≤ ϵ|ti} (7.4)

and if Mi is binomial distributed, the density of Mi in term of Pi is:

P{Mi = k|ti} = P k
i (1− Pi)

n−k

(
n

k

)
(7.5)

From (7.5), the average number of transactions in Cti , E[Mi|ti] is determined to be:

E[Mi|ti] =
n∑

k=0

kP{Mi = k|ti} = nPi (7.6)

Note that E[Mi|ti] is a random variable that depends on i and the location of t⃗. If the

distribution of t⃗ is known, the expected number of transactions can be computed as E[Mi] =

E[E[Mi|ti]]. Next, we derive an expression for the total number of transactions remaining

on the candidate set as we trim through the dimensions in the sequence 1, 2, · · · ,m. If Nk is
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the total number of transactions before iteration k, then

Nk = PiNk−1 = n
k∏

j=1

Pj, N0 = n (7.7)

Let N to be the total cost of the process of constructing and trimming the candidates. For

each trimming, we need to perform constant times searches and comparisons. If we assign

one unit cost to each operation, then with (7.7)

N = N1 + c
m−1∑
k=1

Nk = n(Pi + c
m−1∑
k=1

k∏
i=1

Pi) (7.8)

whose expected values is:

E[N |⃗t] = nE[Pi + c
m−1∑
k=1

k∏
i=1

Pi] (7.9)

From the equation (7.9), if the distribution of t⃗ and Z⃗ are known, we can compute E[N ] =

E[E[N |⃗t]] in term of ϵ. Next, we shall examine one particular case: uniformly distributed

transaction records.

Uniformly distributed survey rating data: We denote X⃗ a random variable for the Trans-

action set T . Now, we look at a special case when X⃗ is uniformly distributed. For any

dimension i, we assume an independent and uniform distribution with extent h on each of its

coordinates as:

fXi
(x) =

 1/h if −h/2 ≤ x ≤ h/2

0 otherwise
(7.10)

By using equation (7.10) and the fact that Zi = Xi − ti, an expression for density of Zi can
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be written as:

fZi|ti(z) =

 1/h if −h/2− ti ≤ x ≤ h/2− ti

0 otherwise
,∀i

Then, Pi in the equation (7.4) can be written as:

Pi = P{−ϵ ≤ Zi ≤ ϵ|ti} =
∫ ϵ

−ϵ

fZi|ti(z)dz ≤
∫ ϵ

−ϵ

1

h
dz ≤ 2ϵ

h
(7.11)

Putting (7.11) into (7.9), we obtain the upper bound:

E[N ] = n(
2ϵ

h
+ c(

2ϵ

h
+ (

2ϵ

h
)2 + · · ·+ (

2ϵ

h
)m−1)

= n(
2ϵ

h
+ c(

1− (2ϵ
h
)m

1− 2ϵ
h

− 1))

= O(nϵ+ n
1− ϵm

1− ϵ
)

(7.12)

We observe that for small ϵ, ϵm ≈ 0, and (7.12) becomes

E[N ] ≈ O(nϵ+ n
1

1− ϵ
) (7.13)

which is independent of dimension m and note that we have left out the cost of exhaustive

comparison for the ϵ-proximate neighborhood within the final hypercube. The reason is

that the cost of an exhaustive comparison is dependent on the distance metric used. It is very

small and can be neglected in most cases when n≫ m. If it needs to be considered, it can be

added to the equation (7.13). Overall, the total cost for transaction set T is O(n2ϵ+ n2 1
1−ϵ

),

which is more efficient than the heuristic pairwise approach running in O(n2m).
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Figure 7.3: Running time comparison on Movielens and Netflix data sets vs. (a) data
percentage varies (b) ϵ varies
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Figure 7.4: Running time comparison on Movielens and Netflix data sets vs. (c) k varies
(d) l varies

7.4 EXPERIMENTAL STUDY

In this section, we experimentally evaluate the effectiveness and efficiency of the proposed

algorithms for both satisfaction and publication problems. Our objectives are three-fold.

First, we verify that our slice algorithm of the satisfaction problem is fast and scalable on

the the (k, ϵ, l)-anonymity model. Second, we show that the produced anonymous data sets

of (k, ϵ)-anonymity model through the modification strategies permit accurate data analysis.

Finally, we perform the statistical analysis on an original and published anonymous data set.
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7.4.1 DATA SETS

Our experimentation deploys two real-world databases: the MovieLens1 and Netflix data

sets2. The MovieLens data set was made available by the GroupLens Research Project at

the University of Minnesota. The data set contains 100,000 ratings (5-star scale), 943 users

and 1682 movies. Each user has rated at least 20 movies. The Netflix data set was released

by Netflix for a competition. The movie ratings files contain over 100,480,507 ratings from

480,189 randomly-chosen, anonymous Netflix customers and over 17 thousand movie titles.

The data were collected between October, 1998 and December, 2005 and reflect the dis-

tribution of all ratings received during this period. The ratings are on a scale from 1 to 5

(integral) stars. In both data sets, a user is considered as an object while a movie is regarded

as an attribute and many entries are empty since a user only rated a small number of movies.

Except for rating movies, users’ ratings include some simple demographic information (e.g.,

age range). In our experiments, we treat the users’ ratings on movies as non-sensitive issues

and ratings on others as sensitive ones.

7.4.2 EFFICIENCY

Data used for Figure 7.3(a) is generated by re-sampling the Movielens and Netflix data sets

while varying the percentage of data from 10% to 100%. For both data sets, we evaluate

the running time for the (k, ϵ, l)-anonymity model with default setting k = 20, ϵ = 1, l = 2.

For both testing data sets, the execution time for (k, ϵ, l)-anonymity is increasing with the

increased data percentage. This is because as the percentage of data increases, the computa-

tion cost increases too. The result is expected since the overhead is increased with the more

dimensions.
1http://www.grouplens.org/taxonomy/term/14.
2http://www.netflixprize.com/.
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Figure 7.5: Running time comparison of Slicing and Pairwise methods on Movielens
data set vs. (a) data percentage varies (b) ϵ varies
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Figure 7.6: Running time comparison of Slicing and Pairwise methods on Netflix data
set vs. (c) k varies (d) l varies

Next, we evaluate how the parameters affect the cost of computing. The data set used for

this set of experiments are the whole sets of MovieLens and Netflix data and we evaluate by

varying the value of ϵ, k and l. With k = 20, l = 2, Figure 7.3(b) shows the computational

cost as a function of ϵ, in determining the (k, ϵ, l)-anonymity requirement of both data sets.

Interestingly, in both data sets, as ϵ increases, the cost initially becomes lower but then

increases monotonically. This phenomenon is due to a pair of contradicting factors that

push the running time up and down, respectively. At the initial stage, when ϵ is small,
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Figure 7.7: Space Complexity comparison of Slicing and Pairwise methods on Movie-
lens data set vs. (a) Data percentage varies (b) ϵ varies

more computation efforts are put into finding ϵ-proximate of the transaction, but less are

used in an exhaustive search for the proper ϵ-proximate neighborhood, and this explains the

initial descent of the overall cost. On the other hand, as ϵ grows, there are fewer possible

ϵ-proximate neighborhoods, thus reducing the searching time for this part, but the number of

transactions in the ϵ-proximate neighborhood is increased, which results in a huge exhaustive

search for the proper ϵ-proximate neighborhood and this causes the eventual cost increase.

Setting ϵ = 2, Figure 7.4(a) displays the results of running time by varying k from 10 to 60

for both data sets. The cost drops as k grows. This is expected, because fewer search efforts

for proper ϵ-proximate neighborhoods are needed for a greater k, allowing our algorithm

to terminate earlier. We also run the experiment by varying the parameter l and the results

are shown in Figure 7.4(b). Since the rating of both data sets are between 1 and 5, then

according to Theorem 7.2, 2 is already the largest possible l. When l = 0, there is no diversity

requirement among the sensitive issues, and the (k, ϵ, l)-anonymity model is reduced to the

(k, ϵ)-anonymity model. As we can see, the running time increases with l, because more

computation is needed in order to enforce stronger privacy control.

In addition to showing the scalability and efficiency of the slicing algorithm itself, we also
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Figure 7.8: Space Complexity comparison of Slicing and Pairwise methods on Netflix
data set vs. (c) k varies (d) L varies

experimented with the comparison between the slicing algorithm (Slicing) and the heuristic

pairwise algorithm (Pairwise), which works by computing all the pairwise distance to con-

struct the dissimilarity matrix and identify the violation of the privacy requirements. We

implemented both algorithms and studied the impact of the execution time on the data per-

centage, the value of ϵ, the value of K and the value of L.

Figure 7.5 plots the running time of both slicing and pairwise algorithms on the Movie-

lens data set. Figure 7.5(a) describes the trend of the algorithms by varying the percentage

of the data set. From the graph we can see that the slicing algorithm is far more efficient

than the heuristic pairwise algorithm especially when the volume of the data becomes larger.

This is because, when the dimension of the data increases, the disadvantage of the heuristic

pairwise algorithm, which is to compute all the dissimilarity distance, dominates the most

of the execution time. On the other hand, the smarter grouping technique used in the slicing

process makes less computation cost for the slicing algorithm. A similar trend is shown in

Figure 7.5(b) by varying the value of ϵ, in which the slicing algorithm is almost 3 times faster

than the heuristic pairwise algorithm. The running time comparisons of both algorithms in

the Netflix data set by varying the value of K and L are shown in Figure 7.6(a) and (b).
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Even on a larger data set, the slicing algorithm outperformed the pairwise algorithm, and the

running time of slicing is quick enough to be used in practice.

7.4.3 SPACE COMPLEXITY

In addition to evaluating the efficiency of the proposed slicing technique, we also investigate

the storage overheads of the algorithms. We adopt the peak memory to measure the storage

overheads, which indicates the maximum memory used during the implementation.

Figure 7.7 shows the space complexity comparison of the slicing method and the pairwise

approach on the Movielens data set by varying the percentage of the data and the value of ϵ.

In both cases, the slicing algorithm takes less peak memory than the pairwise method, which

is expected, since the pairwise approach computes all the possible distances and uses them

for identifying the validation of the privacy requirement, which takes much more space to

store in the dissimilarity matrix. We conduct the experiments by varying the value of K and

L on a larger Netflix data set, and plot the storage overheads in Figure 7.8. The graph shows

that the slicing algorithm needs almost two times less memory than the heuristic pairwise

approach.

7.5 SUMMARY

In this chapter, we theoretically investigated the properties of the (k, ϵ, l)-anonymity model,

and studied the satisfaction problem, which is to decide whether a survey rating data set

satisfies the privacy requirements given by the user. A fast slicing technique was proposed

to solve the satisfaction problem by searching closest neighbors in large, sparse and high

dimensional survey rating data. The experimental results show that the slicing technique is

fast and scalable in practice.
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CHAPTER 8

DISCUSSION

8.1 SUMMARY OF CONTRIBUTIONS

In an increasingly data-driven society, personal information is often collected and distributed

with ease. The demand of cross-domain data sharing has been increasing substantially in

recent years, when more and more companies are collaborating and outsourcing their data

with others. The release of microdata offers advantages for ad hoc analysis. Meanwhile, it

also raises privacy concerns when individual records are released.

In this dissertation, I have identified the privacy requirements for microdata and survey

rating data sharing in several specific scenarios, and proposed novel anonymization schemes

based on the generalization/microaggregation/graph modification schemes. The anonymiza-

tion schemes were optimized to balance the tradeoff between data utility and data privacy,

which was evaluated in terms of time efficiency, space complexity, queries accuracy, etc.

Specifically, our contributions are the following:

• Privacy Hash Table. Current technology has made the publication of people’s private

information a common occurrence. Existing work on privacy preserving data sharing

focuses on developing models and algorithms. This dissertation has developed a method-

ology to validate whether a privacy violation exists for a published data set. Determining

whether privacy violations exist is a nontrivial task. Multiple privacy definitions and large

data sets make exhaustive searches ineffective and computationally costly. The structure

of a privacy hash table is developed based on the k-anonymity. This data structure stores

the information of the published data set in a format that allows for simple, efficient traver-
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sal. The privacy hash table can effectively determine the anonymity level of the data set

with in O(1) in the best scenario, which has acceptable characteristics for its application.

We also extend the privacy hash table to deal with other privacy paradigms like l-diversity.

• Enhancing Current Privacy Principles. Recently many schemes, including k-anonymity

[104, 86], l-diversity [70], p-sensitive k-anonymity [110] and t-closeness [65] have been

introduced for preserving individual privacy when publishing database tables. This dis-

sertation identifies the limitations of these privacy paradigms, most of which are caused

because of their focus on the publication of specific values. We mitigate these limitations

by integrating an ordinal distance system, which is used to calculate to what extent the

sensitive attributes contribute to the QI-group. Specifically, we investigate the p-sensitive

k-anonymity problem, and provide three enhanced privacy models. The method is cur-

rently being extended to other privacy principles.

• Purpose and Trust-oriented Anonymization. Most existing work on data anonymisa-

tion optimizes the anonymisation in terms of data utility typically through one-size-fits-all

measures such as data discernibility. Few works have considered application purposes

where each application purpose may have a unique need of the data and the best way of

measuring data utility is based on the analysis task for which the anonymized data will

ultimately be used. The notion of purpose plays a central role in privacy protection access

control models [20, 21]. Here, we borrow the notion of purpose to indicate the kinds of

applications queried by different data requesters. Moreover, when a data requester pro-

poses a request, it indicates a critical need for data sharing within data requesters and

providers. Since the data requester could be different organizations or individuals, the

reliability of data requesters should be taken into account, especially when data providers

and requesters are unknown to each other. This dissertation aims to develop a much finer

data anonymisation strategy by taking the reliability of the data requester and specific ap-
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plication purpose into account, thereby increasing the data utility to the data requester for

certain application purposes.

• Privacy Protection through Approximate Microaggregation. Most existing research

on anonymization problems mainly adopts the method of generalization and/or suppres-

sion. However, first, meeting privacy requirements with minimum data modification using

generalization (recoding) and local suppression was shown to be NP-hard [71, 2, 89]; sec-

ond, using global recoding for generalization causes too much information loss, and using

local recoding complicates data analysis by causing old and new categories to co-exist in

the recoded data; third, there is no standard way of using local suppression and analyz-

ing partially suppressed data usually requires specific software; last but not least, when

numerical attributes are generalized, they become non-numerical. This dissertation has

applied the method of approximate microaggregation to overcome the disadvantages of

generalization/suppression. By applying the concept of entropy from information theory,

we find the most dependent attributes to construct the dependency tree and select the key

attributes to process the microaggregation.

• Anonymizing Survey Rating Data. Though several models and algorithms have been

proposed to preserve privacy in relational data, most of the existing studies can deal with

relational data only [104, 70, 65, 122]. Divide-and-conquer methods were applied to

anonymize relational data sets due to the fact that tuples in a relational data set are sep-

arable during anonymisation. In other words, anonymizing a group of tuples does not

affect other tuples in the data set. However, anonymizing a survey rating data set is much

more difficult since changing one record may cause a domino effect on the neighborhoods

of other records, as well as affecting the properties of the whole data set. We have used

a graph anonymization method to anonymize survey rating data and devised an efficient

slicing technique to determine whether the data set satisfies the privacy requirements by

CHAPTER 8. DISCUSSION



Xiaoxun Sun Ph.D Dissertation - 174 of 198

searching the nearest neighbors in sparse and high dimensions.

8.2 RELATED WORK

Privacy has raised many concerns in recent years, when data is shared between different

parties through the Internet. On the one hand, privacy practice needs to be declared when

data is collected from individuals. One the other hand, there is great need for mechanisms

to ensure that the collected data will be protected from disclosure when later disseminated.

Privacy problems have been identified and studied in a broad area of applications [126, 12,

132, 1, 4, 70, 103, 65, 128, 88, 89, 95, 96, 97, 98, 99, 110, 62, 133, 129, 87]. In this section,

we only discuss the following works related to our research. First, we introduce the policy-

based privacy enforcement, which helps server and client negotiate their privacy practice and

requirements. Privacy-preserving data mining is currently another hot topic, when several

parties want to collaborate and compute some functions of their data together, or transfer

their data to some specialized data miners, which will be discussed next. Our proposed

approaches fall in the third part, where the collected data is to be published.

8.2.1 POLICY-BASED PRIVACY ENFORCEMENT

When users share their data with websites, they prefer that the website will not abuse the

information they submitted. Policies have been designed to help users and websites to nego-

tiate their privacy practice.

The Platform for Privacy Preferences(P3P) [126] is a protocol allowing websites to de-

clare the intended use of information they collect about browsing users. It enables websites

to encode their data-collection and data-use practices in a machine-readable XML format,

known as P3P policies [72]. The W3C has also designed APPEL (A P3P Preference Ex-
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change Language) [64], which allows users to specify their privacy preferences. By adopting

these policies a user’s agent will be able to check a websites privacy policy against the user’s

privacy preferences, and automatically determine when the user’s private information can be

disclosed.

In order for enterprises to effectively enforce their privacy policies in addition to sim-

ply specifying them, IBM proposed the Enterprise Privacy Authorization Language (EPAL)

[12] as a formal language that provides enterprises with a way to automate and enforce pri-

vacy policies. EPAL policies, unlike P3P policies, are enforceable, as they are written and

structured in a similar fashion to access control policies that one may find in the security

domain. The policies are enforced by an enforcement engine that parses the files, assuring

the information collection, use and storage that occurs within the organization, and amongst

the organization and its partners, complies with the EPAL specified privacy practices.

8.2.2 PRIVACY-PRESERVING DATA MINING

Data mining techniques are used to find patterns in large databases of information. However,

sometimes these patterns can reveal sensitive information about the data holder or individuals

whose information are the subject of the patterns. The notion of privacy-preserving data

mining is to identify and disallow such revelations as evident in the kinds of patterns learned

using traditional data mining techniques.

In some cases several individuals may want to collaborate and evaluate some function of

their inputs, such that no more is revealed to a party or a set of parties about other parties’

inputs and outputs, except what is implied by their own inputs and outputs. This problem is

formally referred to as secure multi-party computation. It was first investigated by Yao [132],

and later generalized to multiparty computation. The seminal paper by Goldreich proves the

existence of a secure solution for any functionality [74].
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Sometimes a user does not have the ability to do data mining, and will transfer his data to

specialized data miners for analysis. A certain degree of anonymization is needed in order to

protect the individual reports or his data. In [4], Agrawal et al. identify the primary task in

data mining as the development of models about aggregated data (sum, count, average, max-

imum, minimum, pth percentile, etc.) without access to precise information in individual

data records. They classify the solutions to modify a value in a field into three methods. (1)

Value-Class Membership: partition values into sets of disjoint, mutually-exhaustive classes

and return the class to which xi belongs. We know that this is also referred to as general-

ization now. (2) Value Distortion: return xi + r instead of xi. This is also referred to as

randomization. (3) value dissociation: a value returned for a field of a record is a true value,

but from the same field in some other record. This method is essentially the permutation and

swapping approach. It is a global method and requires knowledge of values in other records.

8.2.3 MACRODATA/MICRODATA PROTECTION

MACRODATA AND MICRODATA

Previously data is released in pre-aggregated tabular form through a statistical database [1].

Such forms of data are generally called macrodata, which represent estimated values of sta-

tistical characteristics concerning a given population. There are two main approaches for

protecting statistical databases. The first approach restricts the statistical queries that can

be made or the data that can be published. The second approach modifies the query result

returned to users. The modification can be enforced directly on the stored data or at run time

when computing the query results.

To accommodate the increasing demands for flexibility and availability of information

from the users, microdata are to be released in many situations. Simple de-identification is

not enough to protect privacy, as we have already seen in Chapter 2. Quasi-identifiers linked

CHAPTER 8. DISCUSSION



Xiaoxun Sun Ph.D Dissertation - 177 of 198

with a public data database can often lead to the disclosure of identities. Many approaches

have been proposed to protect the privacy of microdata, on which we will elaborate below.

It will be pointed out that our approach also falls into this category.

MICRODATA PROTECTION

The privacy vulnerability of the release of de-identified microdata was first discussed by

Sweeney [104, 102]. It has been shown that, after linking a de-identified medical database

with voter registration records, medical records of many individuals can be uniquely identi-

fied. Sweeney further proposed k-anonymity as a model for protecting privacy of microdata.

Domain generalization and record suppression have been introduced as two techniques to

achieve k-anonymity [103].

In [87], Samarati presented a framework for generalization and suppression based k-

anonymity, where the concept of generalization hierarchies was formally proposed. Given

a predefined domain hierarchy, the problem of k-anonymity is thus to find the minimal do-

main generalization so that, for each tuple t in the released microdata table, there exist at least

k−1 other tuples which have the same quasi-identifiers as t. Samarati also designed a binary

search algorithm to identify minimal domain generalizations. The concept of l-diversity is

introduced by Machanavajjhala et al. in [70] to prevent attackers with background knowl-

edge. In [65], distribution of sensitive attributes is first considered. Based on this, a more

robust privacy measure (which we refer to as t-closeness) is proposed. Their work guaran-

tees that the distribution of any sensitive attribute within each group (equivalence class) is

close to its global distribution in the table. In [128], Xiao et al. proposed to let individuals

specify privacy policies about their own attributes.

It has been shown that the problem of general k-anonymity with suppression and arbitrary

domain generalizations (instead of pre-defined generalization hierarchies) is NP-complete
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[71, 3, 89]. Several approximation algorithms have been proposed [71, 3, 89]. Several other

works investigate the characteristics of k-anonymity. For example, Aggarwal discusses the

curse of dimensionality related to k-anonymity [7]. In particular, he shows that it is not

possible to create even a 2-anonymous table in high dimensional space without considerable

information loss. In [131], Yao et al. show that, when several microdata tables are disclosed,

even if each of them satisfies k-anonymity, by pooling them together, k-anonymity may be

violated. They further design algorithms to detect such violations. Zhong et al. [134] devise

a protocol for obtaining k-anonymous tables in distributed environments.

To improve the quality of the anonymized data, recently much work has been done to

efficiently compute minimal and optimal generalizations [62, 22]. In [22], Bayardo and

Agrawal presented a general model of the problem of finding optimal generalization and

suppressions to achieve k-anonymity. The model can accommodate a variety of cost metrics.

Pruning techniques have been proposed to reduce the search space of optimal generalization

and optimization. In the Incognito approach of [62], generalization hierarchies are explored

in a vertical way. It first computes the minimal solution to k-anonymity in the generalization

hierarchy for each quasi-identifier. These solutions are then combined to form the candidate

generalizations for the domain hierarchies of quasi-identifier pairs. This process continues

until a set of minimal domain generalizations are obtained for the full domains of quasi-

identifiers.

All the above works focus on introducing less imprecise information to microdata. But

their impact on the accuracy of aggregate queries has not been discussed. Recently Xiao et

al. [129] have proposed to achieve k-anonymity by separating quasi-identifiers and sensitive

attributes into two tables. These two tables are connected by the group ID of each tuple. It

is easy to see that their scheme is equivalent to a permutation of sensitive attributes among

tuples in the same group. They show that when quasi-identifiers are maintained, the accuracy
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of aggregate reasoning is improved a lot, as the probability of each tuple being touched

is known. As with most other works discussed above, however, this work only focuses

on categorical sensitive attributes. Their techniques cannot be directly applied to handle

numerical sensitive attributes, which was the focus of the work by [133].

GRAPH DATA PROTECTION

Since 2007, there has been considerable interest in anonymizing data which can be repre-

sented as a graph, with motivation coming from wanting to publish social network data.

Backstrom et al. [16] consider attacks on publishing such data with identifiers removed (the

“fully censored” case). They study both active attacks, in which the attacker is allowed to in-

sert a number of nodes and edges into the graph before it is published, and passive, in which

the attacker learns all the edges incident on a set of linked nodes. In both cases, the authors

show that with high probability, the known subgraph can be located in the overall graph,

and hence information can be learnt about connections between nodes. However, as here,

nothing is learnt about connections between nodes that are not incident on edges known to

the attacker.

Hay et al. [52] analyze what privacy is inherently present within the structure of typical

social networks, by measuring how many nodes have similar or identical neighborhoods

(based, e.g. on degrees of nearby nodes). This is similar to the attack we studied in Chapter

6. They analyze what additional privacy is gained by deleting and then randomly inserting up

to 10% of edge, but observe, as we did, that such large scale modification can significantly

alter graph properties. Zhou and Pei [135] define privacy so that each node must have k

others with the same (one-step) neighborhood characteristics, and measure the cost as the

number of edges added, and the number of node label generalizations. Korolova et al. [58]

analyze attacks in a different model, where the attacker can only “buy” information about the
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neighborhood of certain nodes. Zheleva and Getoor [137] study the effectiveness of machine

learning techniques to infer sensitive links which have been erased, given a graph in which

non-sensitive links have been anonymized. They consider a collection of anonymizations

based on grouping nodes: randomly deleting some non-sensitive edges; reporting only the

number of edges between groups; and simply reporting whether or not two groups have

any edges. They do not consider our approach of retaining the graph structure but hiding

the mapping from entities to nodes. Our work differs from prior work essentially because

we focus on a different region of the privacy-utility tradeoff: we consider settings where

releasing the unlabelled graph is permitted, but lacks utility, whereas prior work does not

allow such release.

Also relevant is work which considers relations with many sensitive attributes, since

such data is often effectively represented in graph form. Nergiz et al. [76] mention the short-

comings of representing and anonymizing bitmap representations of relational data. Closest

to our work in setting is recent work by Ghinita et al. [45] on anonymizing sparse high-

dimensional data (since the survey rating data can be seen as defining such a sparse relation).

Their approach is to extend known permutation based methods [129, 133] to improve utility.

In [73], Motwani and Nabar treat transactional data as a long vector of 0/1, and achieve an

approximation to the optimal anonymization. We define a different privacy model as [73].

In chapter 6, we define the privacy model by requiring each record similar with at least other

k − 1 ones, while [73] demands that each record is identical to at least k − 1 others. The

equality has the transitive property, and this property guarantees that once a modification

has been made to a certain transaction, it will not affect others. The similarity defined in

chapter 6 is measured by ϵ. When a transaction a is ϵ-proximate with b, and b is ϵ-proximate

with c usually a is not ϵ-proximate with c. Further, as shown in chapter 6, modifying one

record may affect others (Domino effect). These characteristics make the problem investi-
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gated in our work different from the anonymization of set-valued data. Accordingly, it is not

straightforward to directly extend the techniques in [73] to our problem.

8.3 FUTURE WORK

Privacy protection is a complex social issue, which involves policy making, technology, psy-

chology, and politics. Privacy protection research in computer science can provide only tech-

nical solutions to the problem. Successful application of privacy-preserving technology will

rely on the cooperation of policy makers in governments and decision makers in companies

and organizations. Unfortunately, while the deployment of privacy threatening technology,

such as RFID and social networks, grows quickly, the implementation of privacy-preserving

technology in real-life applications is very limited. As the gap becomes larger, we foresee

that the number of incidents and the scope of privacy breaches will increase in the near future.

Below, I identify a couple of potential research directions in privacy preservation, together

with some desirable properties that could facilitate the general public, decision makers, and

systems engineers to adopt privacy-preserving technology.

Privacy-preserving tools for individuals. Most existing privacy-preserving techniques

were proposed for data publishers, but individual record owners should also have the rights

and responsibilities to protect their own private information. There is an urgent need for per-

sonalized privacy-preserving tools, such as a privacy-preserving web browser and a minimal

information disclosure protocol for e-commerce activities. It is important that the privacy-

preserving notions and tools developed are intuitive for novice users. Xiao and Tao’s work

[128] provided a good start, but little work has been conducted on this direction. In future

work, I am going to extend the privacy preserving data sharing techniques developed in this

dissertation for the real-life application, for example, to help securely publish clinical data

and gene databases. The developed tools and software will enable the individual record
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owner to better protect their private information.

Privacy protection in emerging technologies. Emerging technologies, like location-based

services, RFID, bioinformatics, and mashup web applications, enhance our quality of life.

These new technologies allow corporations and individuals to have access to previously un-

available information and knowledge; however, they also bring up many new privacy issues.

Nowadays, once a new technology has been adopted by a small community, it can become

very popular in a short period of time. A typical example is the social network application

called Facebook (http://www.facebook.com). Since its deployment in 2004, it has

acquired 70 million active users. Due to the massive number of users, the harm could be

extensive if the new technology is misused. One research direction is to customize exist-

ing privacy-preserving models for emerging technologies. The technique developed in this

dissertation dealing with the survey rating data can be extended to deal with social network

security issues, since the rating data and social network share the same characteristics, high

dimensionality and sparseness. The slicing technique could be an efficient solution to large

scale social network, and this is the topic I am currently working on.

The research community has made great strides in recent years developing new seman-

tic definitions of privacy, given various realistic characterizations of adversarial knowledge

and reasoning. While technology plays a critical role in privacy protection for personal

data, it does not solve the problem in its entirety. The performance and utility of traditional

databases has been studied extensively in the literature. However, very limited research has

been done concerning the performance of anonymized data. In the long run, I would like

to explore research areas that combine performance, utility and privacy in the releasing of

public database. In recent years, many emerging applications also pose new and challeng-

ing privacy requirements in their corresponding data releasing. Example databases include

social network data, data collected from sensor networks or RFID, etc. I also plan to extend
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my research to such applications which needs special privacy treatment.
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