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Abstract. One of the emerging concepts in microdata protection is k-
anonymity, introduced by Samarati and Sweeney. k-anonymity provides
a simple and efficient approach to protect private individual information
and is gaining increasing popularity. k-anonymity requires that every tu-
ple(record) in the microdata table released be indistinguishably related
to no fewer than k respondents. In this paper, we introduce two new vari-
ants of the k-anonymity problem, namely, the Restricted k-anonymity
problem and Restricted k-anonymity problem on attribute (where sup-
pressing the entire attribute is allowed). We prove that both problems
are NP-hard for k ≥ 3. The results imply the main results obtained
by Meyerson and Williams. On the positive side, we develop a polyno-
mial time algorithm for the Restricted 2-anonymity problem by giving a
graphical representation of the microdata table.

1 Introduction

Today’s globally networked society places great demand on the sharing
of information. However, the use of data containing personal information
has to be restricted in order to protect individual privacy. To ensure the
anonymity of the entities to which the sensitive data undergoing pub-
lic or semipublic release refer, data holders often remove or encrypt ex-
plicit identifiers such as names, medical care card numbers(MCN) and
addresses. The process is called de-identifying the data.

However, such a de-identification procedure does not guarantee the
privacy of individuals in the data. Released information often contains
other data, such as race, date of birth, gender and Zip code, which can
be linked to publicly available information to re-identify respondents and
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to infer information that was not intended for release. Sweeney reported
that 87 percent of the population of the United States can be uniquely
identified by the combinations of attributes: gender, date of birth, and
5-digit zip code [11].

Besides de-identification, an alternative approach is to restrict the
release of information in some way. In this paper, we focus on the strategy
of k-anonymity, which was first proposed by Samarati and Sweeney [10].
A microdata table satisfies k-anonymity if every record in the table is
identical to at least (k− 1) other records with respect to the set of quasi-
identifier attributes.1 Such a data set is called k-anonymous. As a result,
an individual is indistinguishable from at least (k − 1) individuals in a
k-anonymous data set.

Among the techniques proposed for providing anonymity in the re-
lease of microdata, the k-anonymity proposal focuses on two techniques
in particular: generalization and suppression, which unlike other existing
techniques, such as de-identification, preserve the truthfulness of the in-
formation. Generalization consists in substituting the values of a given
attribute with more general values. We use ∗ to denote the more general
value. For instance, we could generalize two different Zip code 4350 and
4373 to 435∗. The other technique, referred to as data suppression, re-
moves the part (cell suppression) or entire value (attribute suppression) of
attributes from the microdata table. Note that suppressing an attribute
to reach k-anonymity can equivalently be modeled via a generalization of
all the attribute values to ∗.2

To illustrate the concept, consider the data in Table 1, which exem-
plifies medical data to be released after de-identification. This table does
not contain personal identification attributes, such as name, address, and
medical care card number(MCN). However, values of other released at-
tributes, such as age, gender and Zip may appear in some external table
jointly with the individual identity, and can therefore allow tracking. For
instance, age, gender and Zip can be linked within Table 3 to reveal Name,
Address, and City. In Table 1, for example, the first record is unique in
these three attributes, and this combination, if unique in the external
world as well, uniquely identifies the corresponding tuple as pertaining to

1 The set of attributes included in the microdata table, also externally available and
therefore exploitable for linking is called quasi-identifier.

2 This observation holds assuming that attribute suppression removes only the values
and not the attribute (column) itself. This assumption is reasonable since removal
of the attribute (column) is not needed for k-anonymity.
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MCN Gender Age Zip Diseases
∗ Male 25 4350 Hypertension
∗ Male 23 4351 Hypertension
∗ Male 22 4352 Depression
∗ Female 28 4353 Chest Pain
∗ Female 34 4352 Obesity
∗ Female 31 4350 Flu

Table 1: De-identified Private Table

MCN Gender Age Zip Diseases
∗ Male 22-25 435∗ Hypertension
∗ Male 22-25 435∗ Hypertension
∗ Male 22-25 435∗ Depression
∗ Female 28-34 435∗ Chest Pain
∗ Female 28-34 435∗ Obesity
∗ Female 28-34 435∗ Flu

Table 2: A 3-anonymous view of Table 1

“Lee, 10 Collard Court, Toowoomba”, thus revealing that he has reported
Hypertension.

Name Address City Age Zip Gender
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Lee 10 Collard Court Toowoomba 25 4350 Male
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Table 3: Non de-identified Publicly available table

To avoid breaching privacy, Table 1 can be modified to Table 2. In Ta-
ble 2, age is grouped into intervals, and Zips are clustered into large areas
(the symbol ∗ denotes any digit). A (tuple) record in the quasi-identifier
is identical to at least three other records in Table 2, and therefore, no
individual is identifiable.

A k-anonymous table protects individual privacy in the sense that,
even if an adversary has access to all the quasi-identifier attributes of all
the individuals represented in the table, he would not be able to track
down an individual’s record further than a set of at least k records. Thus,
releasing a k-anonymous table prevents definitive record linkages with
publicly available databases and keeps each individual hidden in a crowd
of k − 1 other people.

In recent years, numerous algorithms have been proposed for imple-
menting k-anonymity via generalization and suppression. Samarati [9]
presents an algorithm that exploits a binary search on the domain gener-
alization hierarchy to find minimal k-anonymous table. We recently im-
prove his algorithm by integrating the hash-based technique [12]. Bayardo
and Agrawal [3] presents an optimal algorithm that starts from a fully
generalized table and specializes the dataset in a minimal k-anonymous
table, exploiting ad hoc pruning techniques. LeFevre, DeWitt and Ra-
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makrishnan [7] describes an algorithm that uses a bottom-up technique
and a priori computation. Fung, Wang and Yu [4] present a top-down
heuristic to make a table to be released k-anonymous. The approach ap-
plies to both continuous and categorical attributes. As far as k-anonymity
problem is concerned, fewer theoretical results were obtained. The excep-
tions are Meyerson and Williams [8] and Aggarwal et al. [1, 2] proved
the optimal k-anonymity is NP-hard (based on the number of cells and
number of attributes that are generalized and suppressed) and describe
approximation algorithms for optimal k-anonymity.

2 Paper organization and contributions

In Section 3, we introduce two new variants of the k-anonymity problem,
namely, the Restricted k-anonymity problem and Restricted k-anonymity
problem on attribute and we discusses the connection between Restricted
k-anonymity problem and general k-anonymity problem which stresses
the significance of investigating this new class anonymity problem.

Our first contribution is the NP-hardness proof the Restricted k-
anonymity problem and the Restricted k-anonymity problem on attribute,
and are presented in Section 4 and 5. The theoretical results for Restricted
k-anonymity problem also provide an alternative NP-hardness proof of
general k-anonymity problem, which imply the main results obtained in
[1, 2, 8].

The second contribution is presented in Section 6. Through a graphical
representation of the microdata table, we develop a polynomial time algo-
rithm for the Restricted 2-anonymity problem. Considering the connection
between Restricted k-anonymity problem and general k-anonymity prob-
lem, we could develop another efficient algorithm for general k-anonymity
problem as well. We will include this application part in a separate paper.
Finally, conclusions and future work are given in Section 7.

3 Restricted k-anonymity problem

We consider degree-m tuples in the private database to be m-dimensional
vectors vi, drawn from

∑m, where
∑

is a (finite) alphabet of possible
values for attributes(columns). Thus, the private databases under consid-
eration are formally represented as subsets V ⊆ ∑m. Let ∗ be a symbol
that is not in

∑
.
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t(v3) = (∗, 0, ∗, 0)v3 = (0, 0, 1, 0)

v2 = (1, 0, 0, 0)

v1 = (1, 0, 1, 0)

t(v2) = (∗, 0, ∗, 0)

t(v1) = (∗, 0, ∗, 0)

=⇒
t

Fig. 1: Suppressing a dataset by t

v6 = (0, 1, 1, 1)v3 = (0, 0, 1, 0)

v2 = (1, 0, 0, 0)

v1 = (1, 0, 1, 0)

v3 = (0, 0, 1, 0)

v1 = (1, 0, 1, 0)

=⇒

v2 = (1, 0, 0, 0)

v4 = (0, 1, 0, 1)

v5 = (1, 1, 0, 1)

t

Fig. 2: Constructing a restricted instance

Definition 1. Let t be a map from V to (
∑∪{∗})m. We say that t is a

suppressor on V if for all v ∈ V and j = 1, 2, · · · ,m, it is the case that
t(v)[j] ∈ {v[j], ∗}.3

Intuitively speaking, a suppressor defines some kind of anonymous
vector t(v) = v′ in an anonymous set V ′ ⊆ (

∑∪{∗})m. The coordinates
of V ′ are identical to the coordinates of V , except some may be sup-
pressed by ∗. Consider following example. Let V = {1010, 1000, 0010},
with suppressor t(a1a2a3a4) = ∗a2 ∗a4 (each ai ∈ {0, 1}), then the result-
ing t(V ) = {∗0 ∗ 0, ∗0 ∗ 0, ∗0 ∗ 0} (See Fig.1).

Now, we can extend the definition of a suppressor t to a set of vectors
V . Here, we regard t(V ) as a multiset 4, when two or more vectors in V
map to the same suppressed vector. (i.e. v 6= v′ ∈ V , but t(v) = t(v′)).
Following, we define k-anonymity.

Definition 2. Let t be a suppressor on the set V = {v1, v2, · · · , vn} ⊆∑m. Then t(V ) is k-anonymous if and only if for all vi ∈ V , there exists
k − 1 indices i1, i2, · · · , ik−1 ∈ {1, 2, · · · , n}, such that t(vi1) = t(vi2) =
· · · = t(vik−1

) = t(vik).

In other words, when a suppressor makes the database k-anonymous,
it means that every anonymous vector is a member of a multiset of (at
least) k identical vectors. For example, the left dataset in Fig.1 becomes
3-anonymous after suppressing by t.

Restricted k-anonymity problem : Given V ⊆ ∑m (where
∑

= {0, 1})
such that the number of zeroes in each attribute (column) is exactly k; Is
3 We consider a special case of suppressions, i.e. each entry is either included in the

output, or omitted entirely, with a ∗ character taking its place.
4 A multiset is a set in which elements can appear more than once. Notice that, given

a multiset M and an element e, we may have that e ∈ M match more than once;
i.e., {e|e ∈ M} is a multiset and its cardinality can be larger than 1. The usual set
operations are extended to multisets accordingly.



6 X. Sun et al.

there a suppressor t, such that t(V ) is k-anonymous and suppresses the
minimum number of vector coordinates?

EXAMPLE: The left dataset in Fig.2 is an instance of general 3-anonymity
problem and the right dataset is an instance of Restricted 3-anonymity
problem.

Another version of the Restricted k-anonymity problem is where we
choose whether or not to suppress various attributes from the database.
We say that attribute(column) j is suppressed by t if for all v ∈ V , v[j] =
∗. Formally, we define the Restricted k-anonymity problem on attribute
as follows:

Restricted k-anonymity problem on attribute : Given V ⊆ ∑m

(where
∑

= {0, 1}) such that the number of zeroes in each attribute (col-
umn) is exactly k; Is there a suppressor t, such that t(V ) is k-anonymous
and suppresses the minimum number of attributes (columns)?

The reason why we introduce the definition of Restricted k-anonymity
problem is its close connection with general k-anonymity problem. Given
an instance of general k-anonymity problem, we could construct an in-
stance of the Restricted k-anonymity problem (take Fig.2 as an example,
by adding three vectors v4, v5, v6, we can make the left dataset an instance
of the Restricted 3-anonymity problem), which could provide an alterna-
tive approach to solve the general k-anonymity problem. Currently, we are
working on developing algorithms to find solutions of the restricted prob-
lem and with some post-processing, the solution can be a good solution
for the general problem.

4 Cell suppression is hard

In this section, we prove that the Restricted k-anonymity problem is NP-
hard for k ≥ 3. First, recall the Restricted 3-anonymity problem.
Restricted 3-anonymity problem: Given V = {v1, v2, · · · , vn} ⊆

∑m (where∑
= {0, 1}) such that the number of zeroes in each attribute (column) is

3, and l ∈ N : Is there a suppressor t, such that t(V ) is 3-anonymous, and
the total number of suppressed vector coordinates in t(V ) is at most l?

Theorem 3. The Restricted 3-anonymity problem is NP-hard.

Proof. The reduction is from Exact cover by 3-sets (X3C) [5]: Given a
finite set X with |X| = 3q and a collection C of 3-element subsets of X,
does C contain an exact cover for X; that is, a sub collection C ′ ⊆ C
such that every element of X occurs in exactly one member of C ′?
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Let X = (x1, x2, · · · , x3q) and C = (C1, C2, · · · , Cm), where |Ci| = 3
for i = 1, 2, · · · ,m. We construct a database V as follows. For each xi,
define an m-dimensional vector vi ∈

∑m:

vi[j] =

{
0 if xi ∈ Cj

1 otherwise

Set V = (v1, v2, · · · , v3q), l = 3q(m− 1), and the number of zeroes in
each attribute(column) is 3 because of |Cj | = 3. Then V is an instance of
the Restricted 3-anonymity problem.

Assume t is the optimal suppressor on V (i.e. suppresses the minimum
number of vector coordinates and maintains 3-anonymity). We claim that
the total number of coordinates suppressed by t is at most 3q(m − 1) if
and only if there is an X3C in C.

Sufficiency. Suppose that there is an X3C C ′ ⊆ C. For i = 1, 2, · · · , n,
let j(i) be such that C ′

j(i) is the unique set in C ′ that contains xi. Define
a suppressor t by:

t(vi)[j′] =

{
0 if j′ = j(i)
* otherwise

Since xi ∈ C ′
j(i), the vi[j(i)] = 0, and all the other are ∗. Therefore, t

is a suppressor on V .
Now consider any t(vi). There are three elements xi, xi′ , xi′′ in the

set C ′
j(i), and each element has identical anonymous vectors; i.e. t(vi) =

t(vi′) = t(vi′′). Hence there are two vectors in t(V ) which are identical to
t(vi). This shows that t(V ) is 3-anonymous and t is feasible. Since in our
solution, every t(v) ∈ t(V ) has exactly one non-∗ coordinate, the number
of ∗’s is exactly 3q(m − 1). Therefore the optimal 3-anonymous solution
has at most 3q(m− 1) ∗’s in its vectors.

Necessity: Suppose that t suppresses at most 3q(m−1) coordinates and
there does not exist X3C. We draw a contradiction as follows. Consider
any 3-anonymous solution t for V . First, we answer the question: can there
exist a vector with two non-∗’s in its anonymous form? Suppose that vi

is such a vector. Since t(V ) is 3-anonymous, there must exist two other
vectors vi′ and vi′′ , which have the same value as t(vi) in the anonymous
form, say, t(vi′) and t(vi′′). Since the non-∗ coordinates have the same
values as in the original vi vectors, we must have vi, vi′ and vi′′ identical
in two different coordinates, j and j′. By construction, any two vectors
in V can match only in coordinates where they are 0, and vi[j] = 0 only
if the element xi is in the set Cj . Hence vi, vi′ and vi′′ are in the two
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different sets, Cj and Cj′ of C. However, this means two different sets
are identical in C, which is not possible. So for any feasible 3-anonymous
suppressor t for V , every vector vi ∈ V has at most one non-∗ coordinate
in its 3-anonymous form t(vi). Hence at least 3q(m − 1) coordinates in
t(V ) are suppressed.

Therefore, if we have a t(V ) with at most 3q(m − 1) suppressed co-
ordinates, it must be that every vector in t(V ) has exactly one non-∗
coordinate. Given this fact, we can construct an X3C C ′ for C in the
following way. For each i = 1, 2, · · · , n, consider the non-∗ coordinate in
t(vi). This coordinate must have value 0 (otherwise there can be no iden-
tical vectors). If this corresponds to the coordinate j, we add the set Cj

to a cover C ′. Clearly we produce a collection of sets such that each el-
ement in X is in at least one set. Since there are 3 identical vectors for
every vector v ∈ V (including v), it follows that there are at most q sets
in C ′. Since we need at least q sets to cover every element, there must
be exactly q sets in C ′, which is exactly an X3C. This contradicts our
assumption, so it follows that there is an X3C in C if and only if the
optimal 3-anonymous solution has at most 3q(m− 1)∗’s.
Corollary 4. The Restricted k-anonymity problem is NP-hard for k ≥
3.

Corollary 5. The k-anonymity problem is NP-hard for k ≥ 3.

Corollary 5 was first obtained by Meyerson and Williams [8].

5 Attribute suppression is hard

In this section, we consider the situation whether or not to suppress var-
ious attributes from the database and we prove it is hard as well.

Suppose that X = (x1, x2, · · · , x3q) and C = (C1, C2, · · · , Cm), where
|Ci| = 3, for i = 1, 2, · · · ,m, and let

∑
= {0, 1}. We build the database

V = (v1, v2, · · · , v3q) where each vi represents an element in X. Assume t
suppresses the least number of attributes and is defined as in Theorem 3.

Theorem 6. The Restricted 3-anonymity problem on attribute is NP-
hard.

Proof. (proof sketch) We claim that there exists a suppressor that sup-
presses at most m− q attributes and maintains 3-anonymous if and only
if C has an X3C. If C has an X3C, then by suppressing those m− q at-
tributes not in the cover, each remaining attributes has 3 vectors that has



Lecture Notes in Computer Science 9

the same value, which is 3-anonymous. Conversely, if we have a suppressor
t as above, then for every j, since the anonymous table is 3-anonymous
and the number of zeroes is 3, there are exactly 3 vectors vk such that
vk[j] = 0. It follows that if an attribute is not suppressed, then there
exists 3 vectors with the same value under this attribute. Since the two
attributes i and j are not suppressed in a 3-anonymous table if and only
if Ci ∩ Cj = ∅, at least m − q attributes must be suppressed in any 3-
anonymous table. Therefore, if we obtain a t(V ) with at most m− q sup-
pressed attributes, it must be that exactly m−q attributes are suppressed
in a 3-anonymous table. Then we can obtain an X3C as in Theorem 3.

Corollary 7. The Restricted k-anonymity problem on attribute is NP-
hard for k ≥ 3.

Corollary 8. The k-anonymity problem on attribute is NP-hard for k ≥
3.

Corollary 8 implies the result obtained by Aggarwal et al.[1, 2].

6 Algorithm for Restricted 2-anonymity problem

In this section, we present a graphic representation of the Restricted 2-
anonymity problem, which produces a polynomial time algorithm with
running time in O(n2m). First, recall the Restricted 2-anonymity problem:

PROBLEM: Restricted 2-anonymity problem

INSTANCE: Dataset V = {v1, v2, · · · , vn} ⊆
∑m

, where
∑

= {0, 1} and the number

of zeroes in each attribute (column) is 2, and l ∈ N .

QUESTION: Is there a suppressor t such that t(V ) is 2-anonymous and the total

number of suppressed vector coordinates in t(V ) is at most l?

The transformation is made from the perfect matching problem in a
simple graph. We include its definition here for completeness.
Perfect matching problem: Given a graph G = (U,E) with |U | = n and
|E| = m, is there a subset S ∈ E of n/2 edges such that each vertex of U
is contained in exactly one edge of S?

Without loss of generality, assume that no two columns in the dataset
have the same values. (If not, we could simplify the dataset by deleting the
repeated one, which has no effect on the anonymity process) Also assume
that V = {v1, v2, · · · , vn} ∈

∑m. Now construct a graph as follows:
Let U = (v1, v2, · · · , vn) and E = {eik(j)} where for each j = 1, 2, · · · ,m,

eik = (vi(j), vk(j)) with vi(j) = vk(j) = 0 according to the assumption.
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v1

v2 v3

v4

e1

e2

e3

e4

e5 ⇐⇒ v2 = (0, 0, 1, 1, 1)

v3 = (1, 0, 0, 1, 0)

v1 = (0, 1, 1, 0, 0)

v4 = (1, 1, 0, 0, 1)

e3e4 e5e1 e2

t

Fig. 3: Dataset(right)and its graphical representation(left)

⇐⇒

v2 = (0, 0, 1, 1, 1)

v3 = (1, 0, 0, 1, 0)

v1 = (0, 1, 1, 0, 0)

v4 = (1, 1, 0, 0, 1)

e3e4 e5e1 e2e1e2e3e4e5

t(v1) = (0, ∗, ∗, ∗, ∗)

t(v2) = (0, ∗, ∗, ∗, ∗)

t(v3) = (∗, ∗, 0, ∗, ∗)

t(v4) = (∗, ∗, 0, ∗, ∗)

t
⇐⇒

v2 = (0, 0, 1, 1, 1)

v3 = (1, 0, 0, 1, 0)

v1 = (0, 1, 1, 0, 0)

v4 = (1, 1, 0, 0, 1)

e3e4 e5e1 e2e1e2e3e4 e5

t(v1) = (∗, ∗, ∗, 0, ∗)

t(v2) = (∗, 0, ∗, ∗, ∗)

t(v3) = (∗, 0, ∗, ∗, ∗)

t(v4) = (∗, ∗, ∗, 0, ∗)

t

Fig. 4: Dataset and its two 2-anonymous tables

Then we get the simple graph G = (U,E) with |U | = n and |E| = m.
(See Fig.3 as an example.) On the contrary, if we have the simple graph
G = (U,E) with U = (v1, v2, · · · , vn) and E = (e1, e2, · · · , em), then con-
struct a database V as follows:

For each vi, define an m-dimensional vector vi ∈
∑m as vi[j] = 0

if vi ∈ ej ; Otherwise, vi[j] = 1; Set V = {v1, v2, · · · , vn}. Then because
the graph G is simple, obviously, the number of zeroes in each attribute
(column) is 2, which is an instance of the Restricted 2-anonymity problem.

Theorem 9. Given an instance of the Restricted 2-anonymity problem,
the optimal Restricted 2-anonymous solution has at most n(m−1) ∗’s sup-
pressed by t if and only if there is a perfect matching in the corresponding
constructed graph G.

Proof. The proof is similar to Theorem 3, we omit it here due to the page
limit.

Corollary 10. The Restricted 2-anonymity problem can be solved in poly-
nomial time.
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Algorithm 1: Polynomial time algorithm for the Restricted 2-anonymity problem.

Input : A dataset V = (v1, v2, · · · , vn) ⊆ ∑m

Output: The 2-anonymous dataset t(V ) (where t is a suppressor)

1. Construct the graph G = (U, E) where U = (v1, v2, · · · , vn) and E = {eik(j)}
and for each j = 1, 2, · · · , m, eik = (vi(j), vk(j)),with vi(j) = vk(j) = 0

2. Find one perfect matching M in G.

3. If found, let M(i) denote the unique edge in M containing node i and let

t(M(i)) = 0 and t(j) = ∗, if j 6= M(i). Output t(V ).

4. If not found. Output t(V ) with each value replaced by ∗ in V .

Running Time: The running time of Algorithm 1 depends on Step 2,
which can be solved in O(n2m) [6]. Since the transformation could be
done in at most O(n2), the algorithm time complexity for Restricted 2-
anonymity problem is in O(n2m). Also, since the graph can be specified
by its vertex adjacency matrix A, which could be described by at most
nm bits of input, so the space (memory) complexity of the algorithm is
O(nm). Note that if we find out all the perfect matchings M in G, then
we could find all the possible 2-anonymous tables.

EXAMPLE: We use Fig.4 as an example to illustrate how Algorithm 1
works. Our objective is to make the left dataset in Fig.4 2-anonymous.
The left graph in Fig.3 is the graphic representation of the dataset in
Fig.4. In that graph, we could find all perfect matchings {e1, e3} and {e2,
e4} and according to Algorithm 1, all the 2-anonymous tables are shown
in Fig.4.

7 Conclusions and future work

In this paper, we introduce two new variants of the k-anonymity problem,
namely, the Restricted k-anonymity problem and Restricted k-anonymity
problem on attribute. We prove that both problems are NP-hard for k ≥
3. The results imply the main results obtained by Meyerson and Williams.
We have also developed a polynomial time algorithm for the Restricted 2-
anonymity problem by giving a graphical representation of the microdata
table.

Our future work is to develop applicable algorithms for general k-
anonymity problem based on the theoretical results obtained in this pa-
per. More specifically, it involves developing a new efficient exact algo-
rithm and providing better approximate algorithm scheme for general k-
anonymity problem based on the connection and transformation between
the Restricted k-anonymity problem and general k-anonymity problem.
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