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Abstract

With the addition of new drugs in the market each year, the number of drugs in drug databases

is constantly expanding, posing a problem when prescribing medications for patients, especially

elderly patients with multiple chronic diseases who often take a large variety of medications.

Besides the issue of polypharmacy, the need to handle the rapid increase in the volume

and variety of drugs and the associated information exert further pressure on the healthcare

professional to make the right decision at point-of-care. Hence, a robust decision support

system will enable users of such systems to make decisions on drug prescription quickly and

accurately.

Although there are many systems which predict drug interactions, they are not customised

to the medical profile of the patient. The work in this study considers the drugs that the patient

is taking and the drugs that the patient is allergic to before deciding if a specific drug is safe

to be prescribed. To exploit the vast amount of biomedical corpus available, the system uses

data mining methods to evaluate the likelihood of a drug interaction of a drug pair based on

the textual description that describes the drug pair. These methods lie within the prediction

layer of the conceptual three-layer framework proposed in the thesis. This framework enables

drug information to be used in a decision support system which associates with the medical

profile of the patient. The other two layers are the knowledge layer and the presentation layer.

The knowledge layer comprises information on drug properties from drug databases such as

DrugBank. The presentation layer presents the results via a user-friendly interface. This layer

also obtains information from the user the drug to be prescribed and the medical profile of

patients. Models used in these data mining methods include the network approach and the

word embedding approach.

Empirical experiments with these models support the hypothesis that drug interactions are

associated with similarities derived from their feature vectors, resulting in the deployment of a

decision support system for use in dental clinics. A survey conducted on dentists found positive

response in the use of such a system in helping them in drug prescription which result in a

better treatment outcome. They found the system useful and easy to use. The novel approach
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of using information on drug interaction through data mining for use in a personalised decision

support system has provided a platform for further research on optimising of drug prescription,

transforming the clinical workflow at point-of-care within the healthcare domain.
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基基基于于于数数数据据据挖挖挖掘掘掘的的的精精精密密密医医医学学学决决决策策策支支支持持持系系系统统统

摘摘摘要要要

随着每年市场上新药的不断增加，药品数据库中不断扩大的的药品数量增

大了医生给患者开药时带来的难度，尤其是给经常服用多种药物的患有多种慢

性疾病的老年患者。除了多种药物的问题外，处理药物数量和种类的快速增长

以及相关信息的需求，进一步增大了医疗专业人员在开药时做出正确决定的难

度。因此，一个有效的决策支持系统能够帮助医疗专业人员在开药时做出快速

又准确地决策。

尽管有许多系统可以预测药物之间的相互作用，但都不是依据患者的个人药

物资料进行设计的。本文研究的工作要充分的考虑患者正在服用的药物和患者

对药物过敏的情况下，从而决定否可以安全地开一种特定的药物。为了充分利

用现有的大量生物医学语料，该系统依据描述药物对的文本描述，采用数据挖

掘方法的评估药物对之间的相互作用。这些方法属于本文提出的概念三层框架

的预测层。该框架使用的药物信息能够用于与患者的医疗简介相关的决策支持

系统中。本框架另外两层是知识层和表示层，其中知识层包括来自药物数据库

（如DrugBank）的药物属性信息，表示层通过用户友好的界面显示结果。表

示层可以从用户那里获得要开的药方和病人的医疗资料。采用的数据挖掘方法

有网络方法和单词嵌入方法。

通过实验验证发现，药物的相互作用与从其特征向量有密切关系，并已部署

牙科诊所的一个决策支持系统中。对牙医的调查结果显明，该系统可以帮助他

们更有效地开药，从而获得更好的治疗效果。他们发现这个系统既实用又易于

使用。因此，本文提出的用于个性化决策支持系统挖掘药物相互作用信息的新

颖方法，为进一步研究优化药物处方提供了平台、更改了医疗领域内的临床工

作流程。
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Chapter 1

Introduction

Avoiding prescription error is crucial for the healthcare professional. The growing amount of

data on drugs coupled with the prevalence of polypharmacy raise the importance of having

suitable tools to harness such data to enhance the treatment outcome. With this motivation in

mind, this chapter introduces the research problem and the methodology adopted to evaluate

the hypothesis related to the use of drug information to help the health professional in their drug

prescription. Details and awards related to the publication and presentation of the research

are also included in the chapter.

1.1 Background

Dentists are trained to deal quickly and accurately with the diagnosis of oral health disease with

the aid of data gathered from images, observations and interviews with patients to ascertain

their medical and social history.

These clinical tasks have become a challenge due to the phenomenal growth in information

technology accompanied by the prodigious amounts of data being produced. According to

IBM, 2.5 quintillion bytes of data (2,500,000,000 gigabytes) are generated every day1. To put

1https://www.storagenewsletter.com/2011/10/21/ibm-cmo-study/
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this into perspective, using the 250G capacity of a blu-ray disk as an example, 10 million pieces

will be required to store such data, and if these disks were stacked, they would reach 1.3 times

the height of Mount Everest. These unprecedented growth in data are radically transforming

personalised medicine and changing the approach in biomedical research [20].

Higher volume, faster speed and greater variety of data and the way these data and their

presentation have led to a paradoxical twist in the way data is managed and handled. Though

the digitalisation of information offers better productivity in terms of searching and storing, it

has created a burden on the user because of the need to ensure that relevant results are being

applied in the right context, as well as issues of security, privacy and accuracy.

It can be seen that the way these data are presented has altered the clinical workflow and

cultural climate of the entire healthcare industry. Many healthcare professionals relying on pen

and paper already face the risk of going out of business as more and more data are digitalised.

The skill to click, copy and paste is becoming more crucial than the ability to hold a pen, flip

and clip papers. Analogue X-ray films are replaced by digital X-rays. Treatment notes written

on cards are replaced by digital notes. Lead used in pencil is progressively replaced by silicon

used in electronic devices for recording notes. Wooden furniture for storage is being replaced

by digital media.

Technoscapes and mediascapes which are part of the five “scapes” (the other three are

ethnoscapes, financescapes and mediascapes ) described by Appudurai [3], offers us a lens

to better appreciate and understand the phenomenal change which has lead to such an impact

on the cultural and clinical flow for the healthcare professional. In mediascapes, images are

distributed through digital and cloud technologies in increasingly complex ways. What this

means is that the user throughout the world will need to experience and handle data in a

complicated and interconnected repertoire of films, disks as well as local and remote storage.

Technoscapes explain how the nature of work in the workplace has been brought about by

technology like big data and machleine learning. The effect of technology combined with

media can be phenomenal. Sales volume at Alibaba.com on Single’s Day (11 Nov) has seen

an increase of 194% over the past 5 years, rising from 91.2 billion yuan in 2014 to 268.4 billion

yuan in 20192.

Technology and the media will surely change the way transactions are performed, not just in

e-commerce but also in other areas including healthcare. Guided by relevant clinical questions,

powerful Artificial Intelligence (AI) techniques can unlock clinically relevant information hidden

2https://cnb.double11/statistics
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in the massive amount of data, which in turn can assist clinical decision making. Hence

healthcare professionals cannot escape from the use of technology and should instead embrace

and adopt technology as a tool to help them diagnose, record and retrieve information for

their patients. Such decision support tools will help reduce the cognitive load in daily clinical

practice, especially the adverse interactions of the ever increasing number of drugs being

introduced by the pharmaceutical industry. As more and more patients are taking multiple

drugs, it is crucial for the healthcare practitioner to be able to obtain information on drug

prescription at point-of-care.

A common and crucial question in medicine is to inquire about the effect of a drug. Such a

feature, if incorporated within a CDSS will enable the medical professional to quickly decide if

a drug is safe for prescription. A wrong prescription can lead to many undesirable side-effects

and may also be fatal. A study by Dechanont et al. discovered that hospital admission could

have been avoided if prescription is properly administered [24]. Among hospitalised patients,

nearly two-thirds are exposed to DDI while 40%-70% are discharged with potential DDI [48].

Hence it is important to make use of CDSS to reduce medication errors [135]. In fact, the

ability to deliver personalised decision support is critical to the clinical success of precision

medicine [60]. Therefore, a CDSS with information on drug interaction will enhance treatment

efficiency of the practitioner and reduce prescription errors [88].

Although there are many such systems, there is a lacking in a personalised system where

information on drug interaction is integrated with the drug profile of the patient. Imagine all the

information of the patient is already stored digitally, yet the user has to enter again relevant

information of the patient like age and current drug that patient is taking, it will be a waste of

time and also subject to risk of errors related to data entry. Even with many decision support

systems that may provide alert on adverse drug events, there is still a lack of evidence on the

relevance of CDSS alerts to detect actual adverse drug events [47]. Many systems also do

not cover drug related problems on an individual patient level.

With this in mind a personalised clinical decision support system for drug prescription

which enables users to know if the drug to be prescribed is safe for the patient would help

healthcare professionals function more efficiently a point-of-care. Although many studies have

been done to ascertain drug interactions [10, 145, 156], this study uses such information as

an evidence-based approach to ensure that drugs prescribed by healthcare professionals are

safe based on the individual patient’s profile.
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1.2 Hypotheses and Research Questions

Given the crucial need for correct prescription and the way information is stored and retrieved,

there is a pressing need to be able to predict if a drug pair is in an adverse relationship.

Such information, with consideration of the patient’s medical profile, will help the healthcare

professional to prevent prescription error.

With the plethora of drug information within the bio-medical domain, the appropriate approach

is to employ such information to discover the relationship within a drug pair. Intuitively, if both

drugs are similar, their textual description should also be similar. This leads to the hypothesis

that similar drug pairs have a higher similarity ratio than dissimilar pairs. Specifically, the thesis

aims to answer these research questions:

1. What properties should be extracted from the bio-medical corpus for finding the similarity

of a drug pair?

2. How can such information be extracted?

3. How can the similarity ratio of a drug pair be predict based on the features extracted?

4. How can the similarity ratio be used by the healthcare professional?

The scientific methodology is adopted (See Section 1.4) to validate the hypotheses and to

answer the research questions. Various models will be proposed and tested to enable the user

to make an informed choice on the drugs to be prescribed.

1.3 Research Problem

Assuming the user has knowledge of the patient’s medical conditions, the medications that

the patient is currently taking and the patient’s drug allergies, the goal of this research is to

ensure the drug that the healthcare professional is prescribing does not belong to the group

of drugs that the patient is allergic to, with the system monitoring and updating the set of drug

allergies within the patient profile defined in Section 3.1.3. In order to ensure that drugs can

be prescribed safely, the task is then to find the relationship between the drug to be prescribed

and the drug that the patient is currently taking. If their relationship is friendly, then it is safe for
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the user to prescribe it to the patient. Otherwise an alternative list of drugs will be needed for

the user to make an informed choice.

There are many existing approaches to check if a drug pair has an adverse relationship.

Since the aim is to allow clinical translation of theoretical findings, the medical profile of the

patient is taken into consideration when deciding on the similarity of a drug pair. Data mining

methods are used to retrieve relevant information to predict the similarity ratio of a drug pair in

order to exploit the huge number of biomedical databases available.

Thus, the research problem is to evaluate the likelihood of the drug interaction of a drug

pair based on semantic relationship revealed from the textual description of the drug pair.

The 3-tuple definition of the patient (refer to Section 3.1.3) ensures the system captures and

considers the patient’s individual profile by taking into account the drugs the patient is taking

as well as the drug the patient is allergic to. By achieving the research goal, the research

outcome of proposed thesis will provide decision support to health professionals in practice in

terms of drug prescription at point-of-care. Specifically, the research outcome will help users of

such a decision support system reduce potential risk of issuing allergic drugs to a patient and

as a result, improve the quality of treatment in clinics. The development of a decision support

system which helps healthcare professionals reduce the chance of prescribing inappropriate

drugs to a patient, thus improving the quality of treatment in clinics. In addition, the findings in

this research provides the potential to contribute to the wider medical domain.

The efficient approach in the design of the clinical decision support system (CDSS) with

consideration of the medical profile of the patients result in the following significant contributions:

• advancement in the design of clinical decision support systems by using similarity ratio

of a drug-pair;

• attributes like adverse interactions and side effect of a drug can be used to construct

feature vectors for computing similarity ratios;

• by hierarchically representing the drug-pairs within the context of a CDSS, paths linking

the common drugs within the set of interacting drugs can be used to arrive at a similarity

ratio;

• results support the hypothesis that similar drug-pairs have a higher similarity ratio compared

to that of dissimilar pairs;

• provide a platform for further research on data mining and machine learning methods
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within the medical domain which will transform the clinical work flow of the health-care

industry.

1.3.1 Limitations and Assumptions

In this section, the limitations and assumptions are specified, aiming to define the scope of

the research in the thesis.

While formulating the hypothesis, it is assumed that description of drugs in bio-medical text

reflects the behavior and effect of the drugs. Since the decision support system requires the

medical profile of the patient, it is assumed that in actual deployment of the system, information

regarding drug allergy of the patient and drugs that the patient is currently taking is accurate

and up-to-date. Due to the complexity of the prototype to consider fully the patient’s profile,

only the first two tuples of the patient’s profile is taken into consideration. Moreover, medical

condition is not as common and crucial compared to the drugs that the patient is taking and

drugs that the patient has allergy. Hence only the first two tuples are taken into consideration.

These assumptions were made as per the advices obtained while consulting with the panel of

dentists at Glory Dental Surgery, Singapore. Although this project involves only dental health

professionals, the same approach can be used within the medical domain as both domains

share the same objective of safe prescription of drugs for their patients at point-of-care.

In the design of the model, it is assumed that it does not claim to treat the patient’s medical

condition - it only attempts to check for possible side-effects of the drug to be prescribed

with the condition. For example, if the patient has a cardiovascular condition, the drug to be

prescribed, although not considering its healing effect, should consider the adverse effects

it may have on the patient as it is crucial that certain drugs be avoided for certain medical

condition of the patient.

The model also assumes that the patient does not have a cross-allergy to the drugs

they are currently taking. This is a safe and valid assumption since the fact that patient can

attend for dental treatment shows that the patient can function normally and is not impaired

by the adverse effects of the drugs. Furthermore, the drugs that the patient is currently taking

is assumed to be prescribed by a medical doctor who should already have considered the

patient’s medical condition and known drug allergies.

Since the deployment based on the result of the study is a decision support system, the
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user has the liberty to overwrite the system’s suggestions as the function of the system is

limited to assisting the user in checking for possible adverse reactions between the drug to be

prescribed and the drug that patient is currently taking.

1.4 Research Methodology

Due to the nature of this research, which involves the vigorous testing of a hypothesis relating

to the way drugs interact with each other in terms of effect on the patients, the scientific

methodology is used in the study. The scientific methodology is an empirical method involving

making conjectures and hypothesis, deciding the predictions for testing and carrying out experiments

to determine how accurate are the hypotheses (Figure 1.1)

The conjecture attempts to explain a behaviour while formulating questions. The drugs

prescribed by the healthcare professional can adversely affect patients in terms of allergic

reactions, as well as adverse reactions with the drugs that the patient is currently taking.

Hence, the thesis aims to assist the healthcare professional in deciding if a drug is safe for

prescription by investigating if that drug is similar to or adversely interacts with each drug

relevant to the patient’s medical profile, with the two drugs under investigation being termed

a drug pair. Instead of the traditional way of checking drug interactions with their chemical

properties, the thesis attempts to use data mining methods to help answer the question of how

similar the drugs of a drug pair are. If the drug that the user of the system is going to prescribe

is similar to the drugs that the patient is allergic to, then it will be helpful for the user to be

aware of that information before making the prescription. While formulating the questions in

search of a solution for the user to make a decision on the suitability of a drug for prescription,

the methodology enters from the conjecture stage into the next stage where the hypothesis is

formulated.

Consequently, this leads to the prediction stage where we set a threshold to predict if a

group of drug pairs are indeed similar. The more unlikely that a prediction would be correct

simply by coincidence, the more convincing the prediction will be. At the Hypothesis and

Prediction stage, current theories, concepts obtained from the Literature Review stage are

taken into consideration. This will ensure the subsequent stages of model and experiment

design can effectively test if the prediction is accurate enough to support the hypothesis.

The Testing stage gathers evidence by conducting experiments to test the accuracy of the

7



predictions, quantified by performance measures. The hypothesis may have to be amended

if the results do not support the hypothesis. Otherwise, the methodology progresses to the

Evaluation and Analysis stage to determine what the experimental results show, and what

the underlying reasons are for any outliers. Any possible extension of the experiment or

alternative ways of conducting the experiment can be highlighted in the Conclusion stage of

the methodology. Very often, the findings are communicated by presentation in conferences

and reporting in relevant scientific journals. Accordingly, the findings of this research have

been presented in scientific conferences and published in many journals. They have also

been deployed in a clinical environment as a decision support system for drug prescription by

the healthcare practitioner.

Literature Review
(Chapter 2)

Hypothesis
(Chapter 1)

Prediction
(Chapter 1)

Modelling
(Chapters 3,4)

Testing
(Chapter 5)

Conjecture
(Chapter 1)

Deployment
(Chapter 7)

Evaluation
(Chapter 6)

Conclusion
(Chapter 8)

Figure 1.1: Scientific methodology

Although Figure 1.1 shows the different stages of the scientific methodology as a sequence

of steps, these steps may not always be in that fixed sequence. As noted in the account of

William Whewell’s (1794-1866) epistemology of science, elements of “invention, sagacity and

genius” are needed at each step of discovery of scientific knowledge [56].

The thesis being part of the reporting and communication process within the scientific

methodology, notwithstanding, comprehensively presents the entire process including the way

the hypothesis and the models are formulated as well as how the experiment is designed,

conducted and analysed. The thesis is organised as follows:

Chapter 1 introduces the background of the research and how the hypothesis is formulated.

The research problem is formulated and defined along with assumptions and limitations

of the study.
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Chapter 2 is the literature review which surveys existing work and examines their limitations

and how the gaps in the area of decision support systems are identified and addressed

in the study. Various technical approaches in predicting the similarity of a drug pair are

also described in this chapter.

Chapter 3 explains how relevant information is extracted from text corpus to be used in the

decision support system. The conceptual framework, which consists of the knowledge

layer, prediction layer and presentation layer, is explained.

Chapter 4 continues to describe in more detail the way drug similarity is obtained for the

different models adopted within the prediction layer.

Chapter 5 gives details in the experimental design of each model as well as how data are

collected and measured.

Chapter 6 discusses and analyses the results.

Chapter 7 illustrates the relevance of the research findings in terms of deployment within a

clinical setting. The concept of a mobile learning application for drug prescription is also

demonstrated in this chapter.

Chapter 8 concludes the thesis by discussing the contributions and possible future work.
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Chapter 2

Literature Review

Many studies have been done on drug interactions and decision support systems. This chapter

reviews relevant studies in these areas in order to identify the gaps this research aims to

address.

2.1 Clinical Decision Support Systems

The Clinical Decision Support System (CDSS) in this research belongs to the larger group of

decision support systems (DSS), where the purpose is to provide decision makers a means to

make decisions. Such an understanding from the perspective of general DSS will help support

awareness of the functions and features expected of clinical DSS. Figure 2.1 illustrates a

design structure of a typical decision support system.

When there is more than one decision maker, the process can be complicated, all the more

when the information available can be subjective, objective, a combination of both, or even

fuzzy. The problem and solution in a dental clinic refers to the treatment that best suits the

patient. As shown in Figure 2.1, the decision made by the decision maker will depend on

the problem itself, which would influence the criteria adopted by the decision maker as well as

relevant information pertaining to the problem. Such an approach is reflected in the popular
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Information
People

(Decision Makers)
Problem
(Task)

Solution

Figure 2.1: Design of a typical decision support system

PICO model [117] used by doctors in clinical assessment within evidence-based practice.

This framework guides the practitioner in gathering information by asking questions related

to information on the Patient (P), Intervention process (I), Comparison with other alternatives

(C) and the Outcome to be achieved (O) which is the clinical problem the practitioner is trying

to solve or diagnose. In most clinical situations, the patient can also act as the decision maker

where information in terms of financial cost and aesthetic demands can influence the final

outcome.

Therefore, a decision making process would normally be influenced by the individual’s role

as the decision maker, their preferences and the criteria used to make the decision [74,76].

Generally, such complex decision making structure is determined by classical decision

theories such as classical formal and empirical-cognitive decision theory, the theory of

multi-criteria and/or multi-objectives decision making and the theory of group decision making.

Interested readers may refer to [75] for more in-depth discussions.

Applications exist to put such theories into practice especially in the growing area of

multi-criteria group DSS. For example, the “Decider" system, a fuzzy multi-criteria group

DSS [78], takes into account the nature of information which in reality is usually expressed

in linguistic terms, and the hierarchic structure of the problem and the decision makers.

Other areas of application where group decision making is based on multiple criteria include

new product development such as for clothes [77] and digital scales [57] where preferences

regarding the product have to be considered, and the car manufacturing industry where budget

and time constraints are critical [70]. Another interesting application of DSS is to support a

group of users in the choice of vacation packages [83]. Besides commercial applications,

DSS are also found in areas that require long-term planning for sustainable development, for

example, energy policy planning [115] and forest management [97]

Similar to the system established by [76] where fuzzy numbers are used to handle the
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uncertainties in the role of decision makers and the criteria used to arrive at the solution, a

recent system by [108] uses fuzzy logic to construct a clinical DSS based on information input

in the form of probability distributions. The unique aspect of this system is that the outcome

given is not the single most desired solution, but rather, a set of solutions. By expressing

the conclusion in this way, patients are more likely to accept the diagnostic decision from the

health practitioner [43].

In terms of DSS for dentists, the information needed before the final treatment is decided

will include the preferences of the patient in terms of cost and quality. For example, a fuzzy

cognitive map is used to help the dentist decide on a suitable implant abutment for patients

[68], combining expert knowledge from dentists and suppliers in the decision making process.

Similarly, fuzzy logic is used by the system proposed by [79] to identify symptoms from patients,

which are usually vague, making it difficult for the dentist to reach a detailed and definitive

diagnosis.

Another DSS described by [105] represents an attempt to personalise the treatment plan

by considering patient preferences to reach a mutual agreement between the patient and the

doctor. Although this is a positive move to attract more users to adopt decision support, it only

focuses on treatment planning for a single treatment.

As dentists are limited by and differ in their cognitive functions, such as in the recall and

application of possible risk factors, there can be potential differences in the decisions made

by different dentists, or even by one dentist at different times. In order to minimise such

divergence, the system proposed by [8] considers expert domain knowledge and risk factors

in decision support for caries management.

Though these systems utilise expert knowledge from dentists, there is no integration with

a drug database which is essential within the clinical workflow.

The next section looks at some means of understanding CDSS in terms of the technology

underlying their designs, classifications and benefits they can bring to the dentist.

2.1.1 Approaches in Understanding Clinical Decision Support Systems

A CDSS is an information system (IS) which has the ability to provide knowledge and

personalised information to users, intelligently filtered to enhance health and healthcare
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System Comments
Selection of implant components [68] Uses expert knowledge from dentists

and abutment suppliers
Treatment of tooth fracture [79] Uses fuzzy logic to help identify

complaints from patients
Treatment of decay [105] Considers the patient’s preference
Management of tooth decay [8] Considers the patient’s oral history and

health risk factors

Table 2.1: Recent decision support systems

outcomes [99]. They are not intended to replace the dentist’s judgment and responsibility for

decision making, but to provide assistance in diagnosis and treatment planning [146]. Table 2.2

presents some system capabilities with examples. They can be general or targeted at specific

situations such as implant placement, and the output can be delivered to the user before,

during or after the clinical decision is made [25]. The functionalities of DSS should follow the

“five rights concept" [128] as a framework for planning and implementation:

the right information (treatment planning, drug interactions);

to the right people (dentists, patients);

through the right channels (mobile devices, workstations);

in the right intervention formats (alerts, graphics, info-buttons);

at the right time within the clinical workflow (before drug prescription, at point-of-care).

CDSS Capabilities Examples

Preventive care Screening, immunisation and disease

management suggestions

Diagnosis Lists of ranked differential diagnoses

Treatment plans Treatment guidelines and drug dosage

recommendations

Table 2.2: Major functionalities of CDSS [28]

Technologies behind Clinical Decision Support Systems

A CDSS can be implemented as a passive system, a semi-active system or an active system

according to how it is being triggered [35]. Depending on the clinical tasks to be achieved,
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typical technologies used to develop such a system include machine learning, knowledge

representation and data mining.

Machine Learning Machine learning is an appealing technique for its predictive ability

based on existing representative data for diagnosis. Common machine learning techniques

include Artificial Neural Network (ANN), logistic regression and support vector machines

(SVM). ANN attempts to simulate the non-linear processing pattern of the human brain and

is a very powerful tool for generalising acquired knowledge and data analysis by interweaving

artificial neurons across input, hidden and output layers. For example, Georgios et al. used

ANN for periodontal disease diagnosis and to classify patients according to their immune

responses [103]. ANN was also applied to support decisions on implant placements, where the

system mimicked choices made by implant experts [118]. Though data learning and training

in the hidden layer is not transparent to the user, ANN is simple to implement as it requires

minimal statistical training. The logistic regression method utilises a simpler linear model, and

unlike ANN which can handle arbitrary relationships between input and output variables, it can

only be used if such relationships can be explicitly identified [4]. Thus, the logistic regression

method is not as robust as ANN. To classify non-linear datasets for an effective diagnosis, SVM

can be used, which separates complex datasets with a linear hyperplane. Due to the complex

nature of the datasets, training time can be high, especially when the volume of the datasets is

large. However, this can be reduced by excluding outlier data points. For example, Kang et al.

were able to obtain highly reliable drug failure prediction results with SVM when superfluous

data points were excluded from the SVM ensemble construction [63].

Knowledge Representation Instead of learning from clinical knowledge as in machine

learning, knowledge representation focuses on creating a knowledge description language

which, when combined with a reasoner, is able to make diagnostic inferences. One approach

in knowledge representation is the use of fuzzy logic, which is important in DSS as many

applications deal with imprecise data and expect the results to have a dispositional rather

than categorical validity. Unlike binary logic methods such as the above described ANN or

SVM where the output is either true or false, fuzzy logic allows for different degrees of truth.

In [79]’s design of a DSS for dental treatment, fuzzy logic was used to accept inaccurate and

vague values of dental signs and symptoms associated with fractured teeth to produce possible

treatment plans. Under rigorous testing conditions, the system was found to be similar to the

dentist’s professional predictions with respect to treatment for such situations.

Besides fuzzy logic, ontology-based systems can also be used to represent expert domain

knowledge. Park et al. developed a shared DSS for dental fillings [105]. An ontology was built
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Dympna et al. [29] Khalilfa [64] Proposed Method
Simple: interactive query Basic: checking on drug

interactions
Static: EHR, appointment
reminders, drug allergy alerts

Complex: prediction of Advanced: individualised Dynamic: knowledge base
diseases using ANN dosing support integration, self-learning

Table 2.3: Classification of a CDSS

based on tooth anatomy, diseases and treatment options. This enables ontology-generated

evidence-based alternatives to be made available for dentists and patients to reach a shared

decision on the most effective treatment plan.

Since the use of radiographs feature prominently in oral disease diagnosis [127],

information from the images should also be stored in the knowledge base. This focus on

the problem rather than the technology corresponds to an improvement from the conventional

method of diagnosis and meaningful use of DSS [72].

Data Mining For unstructured data, text mining techniques can be used to discover

context-specific knowledge based on patient-specific profile in supporting dentists in their

decision-making process for a specific oral health situation.

Semantic meanings can be extracted from textual data through data mining methods based

on rules created from concepts and relationships within the appropriate ontology. [153] used

a data mining method to identify relationships between medications for diabetes patients. By

identifying patterns within the drug database, the system was able to predict, with significant

accuracy, the subsequent medication to be prescribed.

Classification of Clinical Decision Support Systems

In the literature, there are many ways to classify CDSS, according to their features and

functions. For example, as shown in Table 2.3, Dympna et al. classifies them according to

complexity of the system’s functions [29]. A simple system is one that accepts a command from

the user and produces a response to the user. As an illustration, the user may use the system

to check for drug reactions to a particular drug by entering the drug name, with the system then

displaying the results to the user. Complex systems use a “black-box" approach, including

artificial intelligence, logistic regression and data mining, to produce advice or diagnostic

predictions to the user. Examples include systems for identification of prostate cancer, sleep

apnoea and psychiatric problems. Unfortunately, there are no examples in the area of dental
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pathology. This is expected as even in the medical domain, complex systems are difficult

to customise to local clinical workflow, not to mention being difficult to develop as it requires

both design expertise from the researchers and relevant knowledge from the users within their

clinical domain [29]. Similarly, Khalilfa refers to systems that perform checking on drug-drug

interactions as basic systems [64]. Those with more elaborate features such as checking on

contra-indications and dosage support are referred to as advanced systems.

In the context of DSS for dental clinics, it is recommended that such systems be classified

as static and dynamic to reflect the approach taken in the design and implementation of the

system within the clinical workflow. Static systems are those which do not possess the learning

ability that dynamic systems can provide to the dentist. With machine learning features

incorporated into the design, dynamic systems are able to provide real-time personalised

support to the dentist where the medical profile of each individual patient is taken into

consideration. In the prototype designed as a result of this study, the drug that is prescribed is

stored in the database against the particular patient’s record. Subsequent checking will refer

to the updated drugs that were being prescribed.

According to these definitions, the systems that correspond to the simple or basic groups

of DSS referred to earlier will be known as static systems since such systems are not

personalised to the individual patient. Systems that provide logistic and administration support

also come under this category. Examples are programs that allow storing, searching and

retrieval of information on the clinic’s inventory, accounting and patient information.

On the other hand, dynamic systems are designed to incorporate reasoning and

self-learning capabilities so as to provide personalised support at point-of-care to the dentist

within the clinical workflow. One critical feature in personalised support is in the area of drug

prescription, where the system should be able to support the dentist in determining if the drug

to be prescribed is safe for the patient by considering the individual’s relevant medical history

- the drugs the patient is currently taking, the drugs the patient is allergic to, and the medical

conditions of the patient [40].

Hence, dynamic systems typically incorporate a drug knowledge base to store decisions

made by the dentist and information on side-effects and interactions of drugs. It is crucial in

a dynamic system to ensure that the drug knowledge base is updated regularly, not only with

the latest information on drugs, but also with the decisions made by the dentist. This will allow

the system to capture the ground truths from the dentist and in turn, become more efficient in

providing relevant information.
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Following the suggested approach in the classification of DSS, if the system is not

self-learning, it will be grouped as static even if it provides advanced features such as the

dosing support mentioned by [64]. On the other hand, a system that provides answers to

simple queries [29] or basic functions [64] on drug interactions can be considered a dynamic

system if such queries take into account the relevant medical history of the individual patient

and is able to learn from previous decisions of the dentist.

Benefits of Decision Support Systems

Besides assisting dentists to make timely and informed treatment decisions, a DSS is also

useful in the following areas [94,150]:

1. keeping electronic health records (EHR);

2. drug prescription, medication dosing support;

3. clinical reference count;

4. point-of-care alerts and reminders.

In addition, a well-designed system which integrates patients’ EHR will complement

the dentist’s evidence-based decision making with benefits including less paperwork, better

tracking of data, accounting and reporting functionality [18]. Storing the daily clinical decisions

and treatment outcomes will enable the system to “learn” and possess more knowledge to

solve subsequent clinical problems. With datasets stored in ontology and made available

using the techniques and technologies of the Semantic Web, the data will become accessible

for further data analysis and knowledge discovery. This produces a platform that supports

a “range of scientific research activities intended to advance our understanding of dental

conditions and the relative success of different treatment interventions” [129]. Consistent and

reliable information will also avoid misdiagnosis and malpractice, which can lead to expensive

legal suits. With comprehensive drug information and diagnostic support provided in real-time

at point-of-care within the clinical workflow, there will be improved clinical efficiency, oral health

outcomes for patients and job satisfaction for the whole dental team.
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• Well-designed database with expert knowledge to enable the

system to respond fast and be self-learning

• Dynamic systems with regular updates and compliance to

standardised datasets

• A user-friendly interface with fat response time will be

perceived as beneficial, leading to increased adoption

Classification

Technology

Benefits

Figure 2.2: Ways of understanding decision support systems

Summary

This section outlined approaches in understanding CDSS in terms of the technology underlying

their designs, classifications and benefits to the user. As summarised in Figure 2.2, the right

technology behind the design of CDSS will ensure the system is self-learning and has the most

relevant information on the patient’s medical conditions and drug allergies. Besides providing

static information, it should be dynamic where the knowledge base is updated regularly and

able to give alternative suggestions based on the personalised medical status of the patient.

A dynamic DSS will be perceived as beneficial which results in increased adoption by users

within the clinical workflow. Hence, it is important for clinical DSS to be able to progressively

learn from the user’s decisions and make diagnostic personalised inferences in a user-friendly

manner.

Despite the benefits that a DSS can potentially bring to the user as described in this section,

many dentists are still not adopting it as a diagnostic tool in their daily practice. The next section

looks at the common challenges that hinder such an adoption.
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2.1.2 Challenges to Adoption of Decision Support Systems

Although DSS have existed since the 1990s, adoption in the clinical workflow is still poor. This

section looks at some of the major challenges in the adoption and implementation of DSS as

a treatment planning tool for dentists.

Lack of Perceived Usefulness

As mentioned in Section 3.1.2, the focus of diagnosis should be on the problem and not on the

technology [72]. Many dentists feel that they can diagnose the problem better than the DSS,

perceiving that such systems are not useful within their clinical workflow. Poor usability is often

cited as a reason for slow adoption of IS as it “makes it difficult for providers to navigate through

the information and obtain an integrated view of patient data” [140]. Besides, most systems

only support a particular kind of treatment, such as treatment planning for tooth decay [79,104]

or the selection of implant components [68].

Such limited scope also contributes to their slow adoption rate [129]. A qualitative case

study with thirty-seven doctors found that usefulness in relation to consultation issues is one

of the driving factors for adoption of DSS in diagnosing clinical problems [126]. Though

it investigated medical doctors, the findings can be applied to dentists as well, with other

studies also supporting this conclusion. For example, Venkatest et al ’s findings [144] are in

agreement with the Technology Acceptance Model [23] which posits perceived usefulness as

a determinant in usage intention of technology. In another study which examines challenges

in adopting CDSS by using the Unified Theory of Acceptance and Use of Technology (UTAUT)

model, performance expectancy (which includes perceived usefulness), defined as “the degree

to which an individual believes that using the system will help him or her to attain gains in job

performance” [144], is again the strongest predictor of usage intention. A literature review

conducted by Devaraj has identified challenges to performance expectancy of DSS [26], with

the top five being:

• time constraints;

• obscure workflow issues;

• authenticity/reliability of information;

• disagreement with the system;
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• interoperability/standards.

A study on how clinicians diagnose and treatment plan also revealed that sources of

information used by dentists come as separate blocks which distract the users and have

adverse effects on efficiency [140].

Complex Sociocultural and Economic Factors

Dentists envisage that a DSS is not very useful in aiding diagnosis, and they are used to

depending on their own clinical skills or at most a quick discussion with colleagues before

arriving at a treatment plan. Medical practitioners are used to the culture of autonomy, and

using such a system will disrupt that autonomy leading to resistance to their adoption within

the clinical workflow [143]. A study on the challenges perceived by a group of rheumatologists

discovered a sense of ambivalence relating to concerns that using technology could impair

doctor-patient communication [165]. Many studies have also noted that practitioners are

reluctant to use the system in front of patients [26]. This is expected since practitioners do

not wish to be perceived as lacking in diagnostic skills or appear to be inefficient in navigating

the system. Resistance to new technology is not just confined to DSS, as can be seen from

the introduction of the blood pressure monitor into the clinical workflow during the early 20th

century. At that time, physicians deemed that their unique skill in taking blood pressure

by palpation was being challenged and thus felt uneasy about using such technology [22].

However, it is so common nowadays, to the point that it has become a do-it-yourself gadget

and can be used by anyone at home.

Majid, in a study to understand the lag in IS adoption, discovered that financial gain

and time savings are crucial factors in influencing technology adoption, suggesting that for

a clinical DSS to be used at point-of-care, a fast response time is required [80]. Research by

Mamatela with African doctors identified environmental factors to contribute to the practitioner’s

propensity to adopt the use of electronic health technology [81]. Zande et al. also discovered

that the diffusion rate of a new technology depends on social influence from peers and the

perceived advantages that the system will bring to their workflow [142].

Horgan performed a comprehensive survey of why personalised medicine is not being

accepted by many clinical establishments, and found that important factors included

differences in company cultures and the practitioner’s ability to use and interpret results from

the IS [51].
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In an effort to explore the challenges that come with the implementation of an IS

at Stockholm’s Karolinska University, Ovretveit et al. discovered that consultation before

implementation is a prominent factor [100], and that the perceived usefulness of the new

system aligns with Roger’s Theory on the diffusion of innovation which seeks to examine

factors that influence the adoption of new technology [113]. While most studies focus on

the economic aspect of technology [92], this study looks at challenges to adoption from the

sociocultural aspect.

The findings also appear to support Orlikowski’s theoretical model [98] which explains how

user interaction with technology is influenced by the corporate culture within the clinic. The

model is an attempt to explain that technology is a product of human design and yet used

by humans to accomplish the designed task. As illustrated by the model in Figure 2.3, such

actions are often confounded by the social environment of the work place.

Figure 2.3: Structurational model of technology [98]

In an evaluation of the factors that impact on information systems, it was also strongly

suggested that socio-technical connectives between users and technology should be

considered when developing electronic health systems [95].

Difficulties in Interpretability

Interpretability, in terms of interfacing and standards, is another issue that can influence CDSS

adoption.

Human Computer Interface
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Usability and human factors are the first recommended domains within the research

agenda tasked by the American Medical Informatics Association [84], which highlights the

significance of the user interface in CDSS. Without a well-designed interface, the personalised

and smart learning features of the IS will not be fully utilised and its usefulness will not be

perceived by the user. In fact, user-friendliness is important in increasing the “usability” of the

system as it will make it easier for the dentist to navigate and obtain an integrated view of the

patient’s data [140].

As shown in Figure 2.4, the human computer interface (HCI) plays an important role within

the cyclic path of the local expert knowledge base and diagnostic result from the DSS. An

effective system will have a user-friendly interface to enable the dentist to understand the

given result from the system. Based on the result, the dentist will be able to further update

the local knowledge base. With the updated knowledge base and data mining techniques,

the system will be able to continue to produce useful and relevant information for the dentist

to make subsequent decisions. A smooth and efficient human-computer integration such that

knowledge can be obtained with ease will result in more clinicians accepting and using the

technology [36].

Figure 2.4: Role of HCI in an intelligent information system

As an efficient and effective IS involves communication between the system and the user,

a comprehensive interface design is crucial for the successful construction and flow of an

appropriate knowledge base. Thyvalikakath et al. observed that there is little research on the

application of cognitive engineering methods to support system design [141]. More studies
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are required to observe how dentists interact with patients and computers as the results will

contribute to the design of an IS that can enhance cognitive support for dentists [140].

Lack of Standards

Lack of standards and lack of time act as challenges to the adoption of CDSS [26].

While a DSS needs to simulate the decision-making process of the dentist, the result of the

process may appear difficult to interpret for the dentist due to emerging standards of healthcare

information technology [29], and may cause dentists to spend too much time on the system at

point-of-care. Since good design of a system requires the efficient collaboration of knowledge

from patient profiles and other knowledge bases, standardisation of data is important to ensure

the system performs efficiently.

Summary

This section has identified perceived usefulness as one of the main challenges against CDSS

adoption by dentists. Other challenges (Table 2.4) include various complex sociocultural

factors, system interface and the issue of standards.

As perceived usefulness also implies a system with an acceptable response time and a

user-friendly interface, many users are reluctant to use CDSS as current systems have limited

functions and features, are perceived to be difficult to use, and require unwarranted effort to

interpret the results produced by the system.

A lack of concern for the user’s needs and expectations contributes further to the lack of

propensity to adopt the system within their clinical workflow. Perceived advantages that the

system will bring about, such as possible time savings within the user’s workflow (thus leading

to cost savings), are also crucial factors in influencing technology adoption by the dentist.

The next section surveys some of the current DSS that attempt to overcome these

challenges.
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Challenges Remarks

Perceived usefulness Limited functions

Sociocultural and economic Resistance towards technology

factors Social and corporate influences

User interface and Lack of standards for datasets

standards Difficulty in interpreting results

Table 2.4: Challenges to adopting decision support systems

2.1.3 How Decision Support Systems Overcome Challenges

The need for a robust and intelligent self-learning system has been identified by IBM as one

of the challenges in effective healthcare delivery [1]. Such a system should have appropriate

tools and techniques to provide decision support to users [132]. Most current systems consist

of only simple alerts and reminders with no sophisticated advisory functions [29]. Table 2.5

presents some features available in the design of current DSS, in comparison with the features

expected to appear in future systems as suggested by some researchers.

The following sections highlight some of the important features in these systems that help

dentists overcome the challenges in the adoption of CDSS within their clinical workflow.

Efficient Design of Knowledge Base

It appears that many designs contain a knowledge base of rules pertaining to the expert

knowledge of the application. For example, for an application that targets implants, [158]

described a dental expert system, which stores facts on symptoms and diseases with static

general information of patient profiles to assist the dentist in disease diagnosis. It stresses

the importance of an evidence-based diagnostic approach instead of an experimental one and

provides a modular design framework containing a knowledge acquisition database, a general

database, an inference engine and the user interface. The knowledge acquisition database is

important for any DSS to be useful for the users, and is critical in assisting the dentist to make

an intelligent treatment plan [90].

Similarly, Lee et al. have researched the optimal selection of dental implant abutments [68].

A fuzzy cognitive map is used to contain rules and expert domain knowledge from both dentists
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Current Clinical DSS Design Features Expected Design Features
Separate display of information sources [140] Integration of medical and dental history [116,121]
Simple, static and non-learning [29] Intelligent and personalised [51]
Perceived as not useful and time consuming Efficient searching, retrieval algorithm and

user-friendly HCI
Limited scope [129] Interoperability and accessibility [37]

Table 2.5: Current and expected features of CDSS

and domain experts from implant manufacturers. To enhance patient satisfaction and effective

treatment, the clinical DSS not only stores expert knowledge but also generates treatment

options using ontology that contains the patient’s profile and their preference of options [105].

Mago et al. also developed a system to reduce inconsistencies in treatment planning for a

fractured tooth [79]. Fuzzy logic, first introduced by Takagi and Sugeno [136], was used for its

strength in dealing with imprecision pertaining to dental disease and symptoms.

In another CDSS, anatomy and diseases are stored in a database according to standards

from FMA and ICD-10 respectively [104]. By linking treatment with information from the

database, the system was able to aid the dentist in treatment planning and reduce the need to

primarily rely on memory of similar cases, or on trial and error.

As seen from the design of current CDSS, the knowledge base plays an important role

in providing treatment options to the users. Naturally, such domain knowledge needs to be

regularly updated to maintain options that are relevant. With the help of the Delphi technique, a

six-month study at King Faisal Specialist Hospital and Research Center collecting experiences

and suggestions on strategies for successful implementation of decision support reported

that updated knowledge bases is one of the success factors for a CDSS to be useful and

acceptable to users [64]. To allow such knowledge bases to be reviewed, updated and

managed effectively, an important feature in current systems is to the separation of these

clinical rules and knowledge from the main IS application. This leads to cheaper service

integration of DSS into existing IS [66] and also enables such systems to utilise information

from local knowledge base with those from other ontology. Figure 2.5 is an illustration of this

model.

Though the current CDSS utilise knowledge bases in their design, they are of a limited

nature, restricted to a particular kind of treatment plan. Even if it is focused on diagnosis

of a common disease such as dental caries, the knowledge base is not self-learning. For

example, the system developed by Park et al. [105] for dental fillings needs to be expanded to

include clinical guidelines from global dental ontology in a real-time manner and integrated
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Figure 2.5: CDSS model [30]

with local knowledge, in order for the system to be self-learning and to allow practise of

evidence-based dentistry. This involves semantic annotation that requires complex machine

learning techniques [129]. Since dental ontology can enable decision support system

to automatically update their knowledge base with expensive expert medical and dental

knowledge, it will be easier and cheaper to maintain the system with the current expertise of

dentists and the latest existing knowledge in scientific and clinical evidence [129]. Additionally,

the efforts of researchers and dentists can be harnessed easily through a Semantic Web

interface provided by dental ontologies which act as a consensual representation of knowledge

in the dental domain [129]. Good design and fast response time will increase the appeal of

such a system.

Ontology

We expect a CDSS to not only be efficient enough to appear helpful to dentists, but also

to fit the clinical workflow at point-of-care, which commonly requires it to handle multiple

diseases and drug allergy information. Bhatia and Singh designed a CDSS to produce a

treatment plan for tooth decay [9]. Based on the different degree of oral symptoms, the system

suggests possible treatment plans based on the Bayesian Network. Another system proposed

by Bessani et al. also used the Bayesian Network as an inference engine to produce treatment

options based on the individual’s oral health history and risk factors [8]. Though these systems
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help the dentist to treat patients more confidently, they are only restricted to situations involving

tooth decay. Furthermore, there is no interfacing with ontology knowledge based on dental

disease and drug information.

The inclusion of drug ontology is important as drug information is commonly needed

within the clinical workflow and is a basic point-of-care activity in oral health therapy. In a

study to encourage health professionals to use CDSS by identifying the potential challenges

that they are facing, over half the literature short-listed for review utilised patient disease in

their CDSS [26]. This reflects that patient disease/condition management is the area where

healthcare practitioners require the most assistance in decision-making. Therefore, a CDSS

which integrates with drug knowledge bases to advise on drug suitability before prescription

will appear helpful to dentists and overcome the performance expectancy challenge .

Ontology should be updated in real time without the need for manual intervention. Using

this technology also requires the standardisation of datasets, with the need to only be familiar

with one set of terminology increasing the attractiveness of usage.

Human Computer Interface

As described in Section 2.1.2, a poorly designed user interface downgrades the performance

and reduces the benefits to clinicians [52], posing a challenge to system adoption. A well

designed interface enhances usability and cognitive support for the user to make better and

faster decisions. The system proposed by Park et al. also integrates expert knowledge from the

patient and existing ontology though it is unclear if the ontology is updated in real-time [105].

Overall, it is a good system except for the lack of a drug checking function, which is essential

within the clinical workflow.

Many existing systems lack the usability and friendliness that users expect from an IS. In

a survey on factors influencing implementation and outcomes of a dental recording system,

less than a third of the respondents (n=130) thought that the system improved productivity

when asked: “What do you like about the Electronic Patient Record System?” The majority

favoured its increase of legibility and improved access to patient charts [147]. The results

suggest a need to enhance the usability of IS. In order to transform patient profiles and data

in a knowledge base into useable and useful knowledge, the design of the HCI must consider

who are the potential users. It should combine the cognitive and reasoning ability of the expert

user with the fast and accurate data mining processing power of the IS [50]. A good interface
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is also crucial in the technology diffusion process to enable high acceptance and absorption

rates.

As mentioned previously, radiographs are useful diagnostic tools for the dentist to identify

oral diseases. A system has been developed to analyse x-ray images for patients with tooth

decay in order to assist the dentist in making accurate and timely decisions on diagnosis and

treatment planning [111]. As illustrated in Figure 2.6, the original image is enhanced to enable

the user to more accurately identify the exact location of the tooth decay. The image is then

segmented to eliminate misjudgment, and feature extraction performed to enable the algorithm

to identify the location of the lesion for the dentist to make further judgment on the treatment

plan.

Figure 2.6: Dental caries detection algorithm framework [111]

ORAD (Oral Radiographic Differential Diagnosis) is a system developed for identifying

intra-bony lesions from radiographs to produce a list of possible diseases [151]. It was found

that the system is useful as an adjunct for the dentist in diagnosing oral diseases [127]. As can

be seen from current systems, there is yet an ideal design to cater for real-time updating of

ontology and treatment planning for multiple oral therapies as well as drug information checking

before prescription at point-of-care.

Summary

This survey explored key features that are crucial for the adoption of CDSS by dentists, such

as effective design and a user-friendly interface. Systems should be well designed to enable

the user to make effective and efficient treatment plans without having to depend on memory
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of past cases. As indicated in Table 2.6, systems which incorporate visual representations

in identifying oral disease with user-friendly interface will help the dentist overcome the

performance expectancy challenge.

A survey of existing systems with features that support treatment planning for the dentist

found that such systems offer treatment options only for a single aspect such as selection of

implant components or the identification of tooth decay.

Systems that are personalised to the patient’s oral health profile with a user-friendly

interface will be perceived by dentist as more useful. This will help them to overcome

challenges in their decision to adopt a DSS within their clinical workflow. Even within

such a personalised system, there is still a lack in real-time interfacing with drug and

disease knowledge bases to enable treatment planning for multiple oral therapies and

recommendations in drug prescription.

Features Remarks

Effective design of database Insightful use of expert knowledge

Ontology Important to link to drug and disease knowledge bases

User-friendly interface Overcome the performance expectancy challenge

Table 2.6: Overcoming challenges

2.1.4 Trends for Clinical Decision Support Systems

Research and development on CDSS should keep pace with technology changes so that the

system can fit the diagnostic requirements of users and be adopted into the clinical workflow.

This section highlights some of the emerging trends such as the use of big data in personalised

systems - recently mentioned as a top contribution in a survey of 1,254 papers published in

2014 in the field of clinical decision support [13] - as well as the issue of privacy.

Big Data

With an ever-increasing volume and different types of knowledge to be stored in an IS

(for example, structured, semi-structured and/or unstructured), it remains a challenge for

the system to allow processing and searching techniques to interact efficiently with human

intelligence. Compared to other fields such as education and finance, the velocity and variety
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Figure 2.7: Big data heat map [121]

of data generated in healthcare is much more significant, with Figure 2.7 illustrating a big data

heat map covering these domains.

From the heat map, it is evident that the quantity and expected speed of processing,

analysing and distributing of information in healthcare will “bring the potential to discover

new knowledge that can improve work practices and produce better outcomes” [121]. This

is particularly true in the dental clinic where the dentist needs to consider information from

intra-oral images, 3D images, unstructured clinical notes and the patient’s profile in real-time

at point-of-care before deciding on a personalised treatment plan.

Big data, which integrates knowledge through analytic tools such as Semantic Web,

offers advisory functions such as personalised treatment options, in addition to the typical

administrative functions. Furthermore, the indexing of clinical and non-clinical datasets of big

data will help researchers discover new knowledge and relationships among multiple variables,

which is impossible with unconnected and disparate datasets.

Hence, design and implementation of CDSS should exploit the notable potential of big data.

The system should effectively and efficiently analyse, integrate and interpret knowledge to be

used by the user in enhancing treatment outcomes and patient health [50]. Due to information

silos, which fragment the medical and dental domains [122], it is important that data from both

domains is seamlessly integrated for efficient processing and distribution to clinicians. Besides

early medical prognosis (as many medical conditions are manifested first in oral cavity), other

benefits of medical and dental record integration are [116]:
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• improved decision-making;

• improved patient outcomes through prevention, early detection, and proper intervention;

• transparent information across medical and dental providers;

• reduced cost to providers.

In addition to the challenge of information silos in knowledge bases is the need for DSS to

be able to reference and reason from these databases to produce an effective personalised

treatment plan. For example, by using OWL 2 (an ontology language for the web), Park et

al. [104] designed a system to generate dental treatment options by querying knowledge bases

that represent the type of disease and tooth location. Datasets containing drug information will

also be very useful for the dentist when prescribing drugs at point-of-care. This is to allow

dentists to ensure that the patient will not suffer from an adverse effect from a cross-allergy to

the prescribed drug (usually due to similarities to a drug that the patient is known to be allergic

to) or an interaction between the prescribed drug and the drugs that the patient is currently

taking.

Personalised Systems

Among the many knowledge domains to be stored in a typical CDSS, there is a growing

interest in the field of genomics to cater to genetic variations among patients. Focusing on such

personalised information will result in greater quality of care and reduced healthcare cost, so

it is not surprising that pharmocogenomics, the use of patient genotypes to explain individual

differences in drug responses [59], is one of the most common examples of personalised

medicine [51]. In fact, it has been predicted that personalised medicine will replace the

traditional trial and error approach in healthcare [39]. More specifically in oral healthcare,

personalised medicine based on the individual’s unique genetic, molecular and clinical profile

should be the aim for researchers and dental practitioners in providing quality, customised and

effective healthcare [37]. It has been anticipated that applying genomic information to oral

disease diagnosis will allow a better understanding of disease aetiology, leading to preventive

measures being implemented prior to disease onset [31].

A proposal for a framework to support the sequencing of genomes predicted that a decision

support system provides the greatest opportunity to enable the use of genetically-guided

personalised medicine [150]. Hopefully, the collaboration between eMERGE [41] and the
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clinical decision support consortium [21] will lead to a standard for genome-informed IS and

fulfill the vision for personalised medicine in the near future.

Hence, it is important that potential systems are personalised to the patient’s profile to align

with the trend towards personalised medicine.

Standards and Privacy Issues

As discussed in Section 2.1.2, interoperability and standards are one of the top challenges in

adopting CDSS. The difference in data formats from different vendors and countries not only

reduces interoperability but also makes the merging of complex datasets complicated [51].

Thus, the challenge is to standardise the knowledge base format to enable the system

integration less painful.In fact, focusing on a standard approach to knowledge sharing is one

of the most active areas in current research in translating support from campus research to

clinical point-of-care [89]. To ease practical development of CDSS, design should endeavour

to conform to standards such as those produced by Health Level Seven International [49]

and incorporating clinical terminologies 1 which adhere to interoperability specifications like

those owned and distributed by the International Health Terminology Standards Development

Organisation [55]. This will remove another challenge to the adoption of a CDSS. While it is

important to unite and standardise different data and coding standards, there may be potential

issues of privacy with regards to patient information. For dentists to adopt and integrate DSS,

there is a need to convey both to patients and practitioners that secure protection of information

is in place within the system. Privacy regulations are required to balance against the need for

exposure of data between researchers and developers [1].

In summary, CDSS should be capable of integrating the ever-increasing volume of data

appearing in different genres and formats, and to make inferences to effectively process and

produce clinically relevant knowledge to support decision-making by dentists. The challenge

of information silos requires systems to work on standardised datasets stored in an ontology

which can be inferred and retrieved through the latest Semantic Web technology. While

research efforts are focusing on maintaining a uniform knowledge base format for effective

sharing and reasoning, the delicate issue of privacy needs to be addressed carefully so

that personalised features of a CDSS can be fully utilised by dentists without the risk of

compromising patient confidentiality.

1https://www.snomed.org/
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2.1.5 Support for Drug Prescription

In order for the design of CDSS to fit the workflow for the health professional, critical features

within the workflow should be included. As mentioned in Section 1, a system to reduce

medication errors is important to enhance treatment efficiency. Such features will also enhance

the adoption of the system as management of diseases is the area where support is most

needed [26]. As reviewed earlier, many works do not include the medical profile of the patient

[8,27,34,68,105] . The lack of such features clearly results in the inability to provide a

personalised system. Although there are many studies that examine drug-drug interaction

[12,14,155], they do not associate them with the patients medical profile to facilitate individual

drug prescription. The unique approach adopted in the thesis uses the medical information

of the patient to support the decision-making process for doctors at point-of-care within the

clinical work-flow.

2.2 Drug Interactions

In the study of pharmacology, drug interactions can refer to pharmacokinetics and pharmaco-

dynamics [45]. Pharmacokinetics refers to the movement of drugs in the body, which is what

the body does to the drugs in terms of absorption, distribution, metabolism and excretion.

Such interactions occur when the perpetrator drug alters the concentration of another drug, the

object drug with clinical consequences, which can be positive or negative. On the other hand,

pharmacodynamics is what the drug does to the body. A wrong prescription of a drug may

result in unwanted side-effects like rash or dizziness. The textual description of side-effects

can also be used in data mining procedures to study the similarity of a drug pair.

Many systems are using data mining techniques to explore drug-drug interaction (DDI).

In fact, such techniques are evolving quickly to improve the accuracy of the experiments,

though in most situations results may not be sufficient to derive DDI [154]. A recent work

by Bokharaeian et al. attempts to determine DDI by identifying neutral candidates, negation

cues and scopes from bio-medical text [12]. Features extracted from these articles include

linguistic definitions of negation, the position of the drugs discussed in the sentence and

the linguistic-based confidence level of an interaction. By using datasets from DrugBank,

it is reported that the results achieved an F -score of 68.4%. Text mining techniques have

also recently used to predict protein interactions from bio-medical text [69]. To increase the
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prediction rate by ensuring information from tables and figures are also extracted, Milosevic

et al. suggested a 7-step methodology [87]. These 7 steps are table detection, functional

processing, structural processing, semantic tagging, pragmatic processing, cell selection and

syntactic processing and extraction. Such an approach will ensure both figures and text are

considered when mining the clinical literature. The approach achieved a F -score of at least

82% depending on the complexity of the tasks.

Another common way of examining DDI is to extract relevant information from text. For

example, Tari et al. developed a method that combines text mining and automated reasoning

to predict enzyme-specific DDI [138]. Yan et al. also used text mining techniques to create

features based on relevant information such as genes and disease names extracted from drug

databases to augment limited domain knowledge [155]. These features were then used to

build a logistic regression model to predict DDI. Another method to extract information on DDI

from bio-medical text was proposed by Bui et al. [14]. DDI pairs are mapped according to

their syntactic structure, and subsequently generated feature vectors are used to produce a

predictive model which classify the drug pair as interacting or not interacting. Drug similarity

has also been shown to be associated with literature-based similarity from a recent work by

Zeng et al.. They attempted to measure drug similarity, which can be used to predict drug

interactions [27,34], from electronic medical records [157].

Though these studies use data mining methods to extract relevant information to predict

DDI, these works are limited to two tiers, the knowledge layer and prediction layer, unlike the

three-layer framework in this paper.

The crucial need to use the knowledge obtained from data mining motivated us to develop

this three-layer conceptual framework. Although our system is similar to that proposed by

Casillas et al. in terms of using information from the patient [17], the unique approach adopted

in the thesis goes one step further in using such information to support the decision-making

process for the dentist at point-of-care within the clinical workflow. In this model, an additional

presentation layer is introduced, providing an important interface between the user and the

knowledge mined from bio-medical sources. Besides the use of the proposed presentation

layer, the use of features like tf ∗ idf and word vectors in getting the drug similarity to decide if

the drug pair is in adverse relationship distinguish the approach against existing DDI methods.

Moreover, innovative approaches adopted in the prediction layer allow the efficient extraction

of features that relate the similarity of a drug pair in terms of the shared difference in their

term frequencies. Experimental results for this approach was favorable compared to existing

models.
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2.3 Detection of Drug Properties

2.3.1 Graph-based Similarity

As data representation is crucial to machine learning in terms of retrieval and recommendation

tasks [163], this study attempts to represent the domain knowledge on drug interactions by a

graph. This enables the similarity of a drug pair to be predicted based on their common paths.

By representing the drugs as nodes and the interactions between them as edges, algorithms

can be developed to find common paths connecting two nodes. If the number of common

paths between a drug pair is large, it indicates that the pair is very similar.

In recent years, there has been a growing interest in comparing text and computing

similarity between entities by representing them as a graphical model. For example, in the

model experimented by Palma et al., the semantic similarity between drug pairs is used to

predict drug target interactions [101]. Based on the hypothesis that similar targets interact

with the same drugs, and similar drugs interact with the same targets, a heterogeneous graph

was constructed with edges that included the drug-target interaction as well as drug-drug and

target-target similarity edges. Jeh and Widom also proposed a framework to compute the

similarity between two objects by representing them and their relationship as a graph [58].

With the objects as nodes and their relationship as edges, this framework assumes that two

objects are similar if the objects related to them are also similar. For example, two publications

are considered similar if the papers cited by each publication are also similar. The directed

graph G used to represent such a framework with nodes V and edges E can be formally

defined as G = (V,E) where the nodes V represents the objects and the edges E represent

the relationship between the objects. If Ii(v) represents individual incoming objects and Oi(v)

individual outgoing objects, then the similarity score between any two nodes A and B is defined

as:

Sim(A,B) =
C1

|O(A)||O(B)|

|O(A)|∑
i=1

|O(B)|∑
j=1

s(Oi(A), Oj(B)) (2.1)

In another model with special emphasis on Heterogeneous Information Networks (HIN)

[148], similarities between two entities can be found by considering the number of paths

between them. Nodes and edges are defined in this HIN as G = (V,E) where the nodes

are the set of entities A and edges are the set of links R between the items in the entities. The
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entity type mapping is given by φ = V → A and the relation type mapping given by ψ = E → R.

The similarity between two entities A and B is defined as:

sim(A,B) =
2.# paths between A and B

#circles with entity A + #circles with entity B
(2.2)

In yet another attempt to represent entities in a directed graph, Shi et al. focused on

an approach which also assigns weights to the relations between the entities [125]. Hence,

this method of representation becomes appropriate for a recommender system. Besides

weightage, this method also assigned attributes to the links between the entities.

Figure 2.8: Objects and relations in an information network [125]

For example, users a and b may have a common liking for movie m1 (see Figure 2.8 ),

besides other movies, so we can say that m1 is in a direct neighborhood of a. In addition, the

model suggested here incorporates attributes to the relationship between a and m1, a rating

matrix (Figure 2.9). In this case, the similarity between user Tom and user Bob is higher than

the similarity between user Tom and user Mary

2.3.2 Word Embedding

Word embedding is a method inspired by deep neural network models to represent the

semantic and syntactic similarities between words. It is used in many areas including sentiment
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Figure 2.9: Rating matrix between users u1,2,3 and movies m1,2 [125]

analysis [137] and sentence classification [159]. Figure 2.10 shows one of the models

employed by a popular platform Word2Vec. The figure shows two context words before and

after the target word being predicted from the popular Skip-gram model. Performance of the

training of models using Word2Vec depends on window size and layer size. Window size refers

to the number of words before and after the word to extract for the training sample. Table 2.7

shows the training sample for the sample input word “the” and “jumps” with a window size of

three 6.

Source Text Input text Training Sample
The quick brown fox jumps The The,quick,brown
over the lazy dog The,quick,fox

The,brown,fox
The quick brown fox jumps jumps quick,brown,jumps
over the lazy dog brown,fox,jumps

quick,fox,jumps
jumps,over,the
jumps,the,lazy
jump,over,lazy

Table 2.7: Training sample at window size of three

The more frequent the combination of words occur in the training sample, the more likely

the word will be selected. If quick, brown occur more frequently, and if quick is chosen as an
6Illustration adapted from http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/ (Accessed

11 Dec 2016)
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Figure 2.10: Skip-gram model of Word2Vec

input word, then brown will be selected as the nearest word.

Layer size refers to the number of desired features in the word vector. Thus, if we wish to

have three features, and there are four words in the vocabulary, the size of the hidden layer

matrix will be four rows by three columns:

[
0 0 1 0

]
X


17 24 1

23 5 7

4 6 13

10 12 19

 =
[
4 6 13

]

The input vector of a word is a single row vector with all zeros except the word itself. Take

the sentence “quick fox jumps over” for example. If we sort them in alphabetical order, the

vocabulary list will be
[
fox jumps over quick

]
. Then the input vector for the word “jumps”

will be
[
0 1 0 0

]
. There are 4 items as we assumed our vocabulary only has 4 words. The

word vector obtained from the word2Vec model will be the product of the two matrices.

A recent work by Wang et al. [149] used this approach to extract information on DDI from

bio-medical corpus. The method was to capture the core meaning of the sentences in the

text and incorporate the syntatic contexts into the embeddings. Zhu et al. examined the
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ability of Word2vec in deriving semantic relatedness and similarity between biomedical terms

in published articles [164]. It is interesting to note that models that are trained on specific text

like abstracts yielded better results than those trained with the main text of the articles.

Liu et al. attempted to use word embeddings to capture semantic information of words

for the classification of DDI [73]. Word embeddings was also used to exploit the syntactic

information of a sentence to extract DDI [162]. Both systems deliver promising performance,

notwithstanding that neither are customised to the drug profile of the patient.

2.4 Summary

This chapter has presented a comprehensive review of decision support systems, how drug

pairs are identified as unsafe for prescription and the different data mining approaches

associated with obtaining the similarity ratio of a drug pair.

Although a CDSS is helpful for the healthcare professional, the review has identified

challenges to adoption of such technology, such as perceived usefulness and social factors, as

well as some of the key features in current systems that attempt to overcome these challenges.

In order to gain acceptance, a personalised CDSS is crucial which hence motivated the

research, the results of which has already been used for deployment by dental healthcare

professionals. The deployed system differentiates itself from existing systems reviewed in

this chapter [8, 27, 34, 68, 105] by integrating with the medical profile of the patient. Based

on algorithms created in the research, the system will then advise the user if the drug to be

prescribed will interact with the drug the patient is currently taking, or belongs to the same

group of drugs to which the patient is allergic.

Much work has been done to discover information on DDI using data mining techniques

[14, 138, 155, 157], as it is known that drug similarity can be used to predict drug interaction

[27,34]. In designing the current framework for the research, the study introduces the concept

of layers. While reviewing these current systems, the term knowledge layer is used to identify

the information related to the drugs and all the processing algorithms have been allocated

to the prediction layer. By adding a presentation layer, the conceptual framework in

the research enables knowledge obtained from data mining to be deployed for use. This

enables the user to customise such knowledge for drug prescription at point-of-care thereby

enhancing the efficiency of treatment by the healthcare professional. While creating features
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to determine if a drug pair is similar, many methods including the graph-based approach [101]

and word-embedding approach [73,149] have been deployed.

The rest of the thesis further describes each of these models within the three-layer

conceptual framework. The incidence of adverse drug interaction as well as associated

hospital admission can be reduced [24] when such models are integrated with the medical

profile of the patients to support the users in prescribing the drugs through a comprehensive

decision support system. Such a system will also relieve the healthcare practitioner from

having to rely on search engines like Google or Yahoo which suffer from low recall and

precision rates [15] as the results may not be relevant to their needs. Therefore, a CDSS

which integrates with drug knowledge bases to identify adverse drug events and advises

on drug suitability before prescription will appear helpful to users. With timely and accurate

DDI information embedded within a CDSS, more comprehensive treatment options can be

made available to patients and practitioners, thus contributing to a more positive treatment

experience, better oral health outcomes and job satisfaction for the healthcare professional.
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Chapter 3

Knowledge Base and Recognition

of Drug Features

The review of the literature in the previous chapter has identified the gap where the prediction

of a drug interaction needs to be associated with the drugs that the patient is currently taking

and the drugs that the patient is allergic to. This chapter explains the design idea behind

the approach to achieve the ability for drug prediction, which will enable a reliable CDSS to

be implemented for clinical applications. The conceptual framework is also introduced in this

chapter, with description of how data associated with the drugs is selected and transformed

into different kinds of features to enable discovery of potential interactions within drug pairs.
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3.1 Three-layer Conceptual Framework

Profile of Patient and Drugs to Prescribe

Text-mining

Knowledge base

Presentation Layer

Prediction Layer

Knowledge Layer

Figure 3.1: Three-layer framework

The aim of the study is to propose a unique approach in supporting the professional user in

drug prescription, with consideration of the drugs that the patient is currently taking and the

drugs that the patient is allergic to. In order to advise the dentist if the drug to be prescribed

is suitable, a three-tier conceptual model was used: the knowledge layer, the prediction layer

and the presentation layer (Figure 3.1).

The knowledge layer comprises of the drug properties where the model will need in order

to determine if a drug pair is similar and whether there are any adverse interactions between

a pair of drugs. Such properties are easily available from a plethora of bio-medical text and

knowledge bases.

These drug properties are then transformed into feature vectors in order to determine if a

drug pair is similar. These tasks are performed within the prediction layer where our algorithm

will predict if the drug pair is suitable to be prescribed to the patient for consumption.

The top most layer is the presentation layer where our model will present the results to the

user. Based on the outcome of the prediction layer, this layer will suggest alternative drugs if

the drug to be prescribed is found to be unsuitable for the patient. Additionally, the presentation

layer also contains the initial drug profile of the patients, consisting of the drugs the patient is

currently taking and the drugs that the patient is allergic to. The presence of the drug profile

of patients also distinguishes our approach against many other decision support systems as
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it allows the result of the prediction layer to be customised according to the drug profile of

the patients. Hence as shown in Figure 3.1, the model exists in a round trip which starts

with the drug profile and the intended prescription in the presentation layer. The prediction

layer then co-ordinates data from the presentation layer with information from the knowledge

layer to predict the suitability of the drug that is being prescribed. The results are then stored

back in the knowledge base and also transmitted back to the user in the presentation layer.

Though a good interface is important for the user to adopt the system, it should be noted that

the focus of the research is about a system that considers the medical profile of the patient in

predicting if a drug is safe for prescription. By separating the framework into three layers, there

is a flexibility in the actual implementation as it is not necessary for each tier to be physically

located within the same hardware platform. Each can be developed and maintained as an

independent tier. This approach also ensures the interfacing between each layer conforms to

standards to enable the smooth linkage between them. Moreover, the output can be used for

other tasks. For example, by using the word embedding approach in building feature vectors

(See Section 3.4.4 ), the output from the prediction layer can be fed into other neural networks

to accomplish other tasks. The following sections describe in more details the functions of

each tier of the framework.

3.1.1 Knowledge Layer

The knowledge layer consists of the bio-medical text which described the properties of the

drugs. It comprises the domain knowledge in raw data form. Examples of such bio-medical

drug database includes DrugBank, KEGG (Kyoto Encyclopedia of Genes and Genomes)

and NDF-RT (National Drug File Reference Terminology). DrugBank contains an exhaustive

compilation of biochemical properties about drugs. KEGG is a database of metabolic pathways

of chemical structures, drug interactions and target molecules. NDF-RT contains a repository

of drug interactions sourced from the United States Veteran Administration Data from the

database is used to construct a new taxonomy T relating to interactions and side-effects.

It consists of the domain of drugs linked by their semantic relations of “advantageous" and

“adverse", and is defined as a 3-tuple T := 〈D,R,HR
D〉, where

• D = {d1, d2, ..., d|D|} is the domain set of drugs;

• R = {r+, r−, r0} is a set of semantic relations, where r+(di, dj) means that the effects of

drugs di and dj are advantageous; r−(di, dj) means that the effects of drugs di and dj

are adverse; r0(di, dj) means that the effects of drugs di and dj are not related.
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• HR
D is the taxonomical structure constructed by all d ∈ D linked by r ∈ R. 2

With this knowledge base, information is retrieved to using various models so as to

determine and predict if the drug is in an adverse relationship with another drug. Features

relating to each drug like their potential side-effects can also be obtained.

3.1.2 Prediction Layer

From the drug taxonomy T text mining was conducted to extract relevant information, where

the text for each drug was extracted, cleaned and stored in order to provide information on the

underlying properties of a drug pair, enabling the similarity of the drug pair to be computed.

The flexibility and robustness of the three-layer framework allows the calculation of drug

pair similarity to proceed with various approaches. In the current work, four methods were

used: the statistical model, the side-effect model, the adverse network model and the word

embedding model as shown in Table 3.1 (see Chapter 4 for detailed description of the models).

Model Method
Statistical model Frequency-based embedding
Side-effect model Frequency-based embedding
Adverse network model Network approach
Word embedding model Prediction based embedding

Table 3.1: Methods used for drug prediction within prediction layer

The methods are not integrated and different methods result in different models.

Experiments are conducted to see how well can each model predict the similarity of a

drug-pair. The network approach as well as word embedding methods like frequency-based

and prediction-based methods are used to derive feature vectors. These feature vectors are

an indication of the probability of an adverse interaction of a drug pair. With such information,

these methods can be readily applied to a decision support system to assist dentists in their

drug prescription at point-of-care. One of the tools used in the prediction-based method is the

Gensim implementation of Word2Vec1 where similar words can be efficiently obtained. As an

illustration, Figure 3.2 shows that not only do related words tend to cluster together, but similar

entities are also within close vicinity of each other.

Figure 3.3 shows that the tool is also able to group similar classes of drugs together
1https://radimrehurek.com/gensim/models/word2vec.html
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even though the dataset used to build feature vectors is from Google News, which is not a

bio-medical corpus.

3.1.3 Presentation Layer

The layer serves as an interface between the prediction layer and the user. A well-designed

user-friendly interface will help dentists adopt such a system in their clinical workflow. As

highlighted in Table 3.2, user requirements in the presentation layer need to be efficiently

mapped onto the prediction layer to enable useful and relevant information to be extracted for

further computing of the similarity ratio.

Presentation Layer Prediction Layer Knowledge Layer

• Efficient mapping of • Efficient choice of programming • Bio medical data

user requirements approach sources, drug taxonomy

• User-friendly interface • Implementation of data mining • Drug properties

• Algorithm design

Table 3.2: Features of conceptual framework

The presentation layer also distinguishes the system from many other systems as it

contains personalised patient information. In this system, patient p ∈ P is a 3-tuple belonging

to a set of patients P where p := 〈D,D−,M〉 such that

• D ⊂ D is the set of drugs that p is currently taking, where |D| <= θD;

• D− ⊂ D is a known set of drugs that p is allergic to, where |D−| <= θD− and D−∩D = ∅;

• M = {m1,m2, ...,mj} ⊂ M is a class set of medical conditions (e.g. diabetes, heart

problem, lactation, pregnancy, etc.) that p is currently having, where M is the domain set

of all medical conditions and |M| <= θM. 2

As shown in Figure 3.4, besides the biographic data of the patient, the presentation layer

allows the user of the system to be aware of the drug profile of the patient, providing the

healthcare professional crucial information to prescribe the appropriate drug to the patient.

The drugs which the dentist is going to prescribe are also stored in this layer. Such

information is needed in the prediction layer for extraction of feature vectors. In order to

maintain user-friendliness, which is crucial for clinical adoption of the system, it is important

for this layer to present the results in an easy-to-understand format.
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Based on the results transmitted from the prediction layer, the service at the presentation

layer will then advise the user if the drug to be prescribed is safe for the patient. This approach

allows the presentation layer to crystallise the results in a meaningful and friendly manner, so

that prescription advice can be presented to the user. Hence, the presentation layer acts as an

important supporting tool to the dentist in deciding whether the drug to be prescribed is safe

for the patient.

In order to deploy a CDSS within the three-layer conceptual framework, relevant and useful

information has to be done on the textual description of the drugs stored in the drug repository.

The next section describes how the knowledge base is built to facilitate decision making

pertaining to drug prescription.

3.2 Constructing the Knowledge Base

Parsing and cleaning the information embedded within the bio-medical text is required to

estabish a knowledge base for downstream application like a decision support system. The

initial steps also align with the first two steps of a typical knowledge discovery process (Figure

3.5) [46]:

1. Selection

2. Pre-processing

3. Data transformation (into nodes, edges and tables)

4. Data mining (searching for features)

5. Evaluation

6. Visualisation

7. Decision making

These stages can be iterative where the output of one stage may indicate the need for the

previous stage to be refined. Such iterative process within a knowledge discovery process

ensures that the desired results at each stage can be obtained by fine-tuning the input to that

stage [61,82]. For example, in the evaluation stage, if the results are not satisfactory, the

process of transforming the data can be amended.
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The selection stage involves the choice of database and the kinds of data to be used for the

subsequent stages. Typically, knowledge bases that contain relevant data within the domain

knowledge is identified. In order for the data to be transformed efficiently, stopwords are

removed as they only serve to connect sentences and are not needed contextually. Stemming

is also applied to the text to reduce words to their root form.

The knowledge base which provides the domain knowledge forms the backbone in this

proposed system. In the context of the research, the domain knowledge will be the information

pertaining to the drugs to be prescribed by the user of the system.

Data Selection

Preprocessing

Data transformation

Data mining

Evaluation

Visualisation

Decision making

Figure 3.5: Typical knowledge discovery process

The selection of data sources together with pre-processing and data transformation forms

the knowledge layer within the conceptual framework (Section 3.1). The layer contains

important information relating to drug interactions.

The text comprises of a bag of words from which relevant information was extracted and

used for the construction of a network of nodes and edges. Such tasks facilitate subsequent

stages in the knowledge discovery process where feature vectors can be extracted and used

for computing the similarity ratio of a drug pair.
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In this study, the text from DrugBank is used as it is a richly richly annotated database with a

wide spectrum of drugs and variety of identifiers including chemical structure and codes from

different terminologies [5], and precedent use to build drug repositories on drug indications

[110]. References are also provided for drugs that are indexed to other databases like the

Kyoto Encyclopedia of Genes and Genomes, which is a collection of information on diseases

and chemical substances useful for bio-informatics research and education. Many fields in

this database are also hyper-linked to other resources including the RxList database which

offers detailed and current pharmaceutical information on drugs useful for prescription and

patient education. With a comprehensive corpus of information relevant to both end-users and

professionals, information on drug action and drug interaction of FDA-approved drugs can be

freely obtained [53].

The textual data that describes each drug in the taxonomy was extracted. An advantage

of using DrugBank is that each drug is being described by different properties. Hence, in this

study, different properties of each drug were stored for use in the experiment. Each drug is

described from a different perspective to suit both patients (under the heading “Overview”) and

healthcare professionals (under the heading “Professionals”) while information on side-effects

are found under the heading “Side-effects”.

The collection of these drug properties then goes through the pre-processing stage. At

this stage, stopwords were removed and words converted to their root form through stemming

which enhanced the reliability of the data [124]. The processed data was then used by the

different models to classify if a drug-pair is similar. The ability to store interactive drug pairs

within a network of nodes and edges allowed the knowledge layer to be represented by a

directed acyclic graph (DAG). Each drug was represented as a vertex on the graph. The

edges that connect a pair of vertices show the interactions within the drug pair. The cluster of

drugs that has adverse interactions with a given drug can be known from the drug taxonomy.

Figure 3.6 shows a subset of the major DDI in the drug taxonomy. Note that nodes in

the taxonomy are connected to one another through arrows which indicate that an adverse

interaction exists within the drug pair. Each node on the drug taxonomy consisted of a drug with

its associated properties. Such a chain of DDI will form the backbone of a drug DAG. As shown

in Figure 3.6, capreomycin adversely interacts with adefovir and tenofovir, which interacts with

ibuprofen and caffeine respectively, showing that a given drug may interact adversely with

more than one drug. Such information can be stored as a database for subsequent retrieval

in building the models for the detection of adverse interactions of a drug pair. Table 3.3 shows

the drugs that interacts with ibuprofen at different levels.
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Major Moderate Minor

acetaminophen atenolol ampicillin

aspirin azilsartan calcium carbonate

adefovir azithromycin cascara sagrada

aluminum hydroxide balsalazide cimetidine

anisindione bedaquiline citric acid

apixaban medoxomil colchicine

dasabuvir

donepezil

famotidine

magnesium hydroxide

sodium picosulfate

Table 3.3: Database of drug interaction

To facilitate the process of a personalised drug prescription system, a CDSS will be

developed so that the user can make an informed choice on the drugs that is to be prescribed

to the patient. With new drugs coming to the market every day, such a system will be very

helpful to the dentist. As discussed in Section 2.1.2, the system must be user-friendly so that

the user is willing to adopt it within their clinical workflow. Though there are many systems

available, the system in this study is personalised to the medical profile of the patient. Drugs

used within the dental clinic is only a mere fraction of the large variety of drugs available

and used in a medical clinic, notwithstanding the fact that the dentist will still need to have

knowledge of other drugs. Depending on the medical conditions of the patients, they may be

taking other kinds of drugs which the dentist needs to be aware of, in order to avoid adverse

interactions with subsequently prescribed drugs.

3.3 Mining Data from Text Corpus

In order to extract relevant information from the text describing each drug, it is necessary to

examine how such information is being organised in the text corpus. There are many such

bio-medical text corpus such as KEGG and DrugBank. By using text mining techniques

through computer algorithms, information can be retrieved, processed and stored in a

structured format to allow knowledge on DDI to be discovered. In the case of DrugBank,
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description of each drug comes under the headings “Overview”, “Professional”, “Side-effects”

and “Interactions”. Although both bio-informatics and chem-informatics resources are

contained in DrugBank, in the context of this research, only information pertaining to

side-effects and adverse interactions are extracted and stored in a local database for the

experiment.

The section on “Overview” describes the drugs using easy-to- understand language for lay

people. The list here shows the information under “Overview” for the drug warfarin:

• What is warfarin?

• Important information

• Before taking this medicine

• How should I take?

• What happens if I overdose?

• What should I avoid while taking warfarin?

• Warfarin side-effects?

• Warfarin dosing information?

• What other drugs will affect warfarin?

Under Side-effects, information is separated into two portions, one for consumers and the other

one for healthcare professionals. Under consumers, it lists out all the side-effects in terms

of more common, less common and rare. As for healthcare professionals, information on

side-effects ar categorised as “hepatic”, “gastrointestinal”, “hypersensitivity”, “dermatologic”,

“respiratory”, “cardiovascular”, “metabolic” etc.

Under “Professional”, active and inactive ingredients, indications, dosage and warnings are

listed. An image of the label is also included for most of the drugs in the database. Depending

on the drug, certain information may be overlapped among the three properties. For example,

critical side-effects can be mentioned under “Professional” though the details are listed under

“Side-effects”. Text from these three properties of each drug are extracted and stored so that

information can be obtained (see next section).

The data obtained on the properties (“Professional", “Overview", “Side-effects") of each

drug from the bio-medical text is then transformed to a structured database of side-effects,
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adverse interactions for each drug as well as textual data of the three properties of each drug.

Further information extracted from those three properties include the document frequency and

term frequency for each drug. Figure 3.7 shows the transformed information obtained from

Professional
attribute

Overview
attribute

Side-effect
attribute

Table of
side-effects

Table of
adverse interactions

Raw bio-medical text

Transformed text

Figure 3.7: Transforming data into structured text

the drug corpus DrugBank to be used for the experiment. The table of side-effects and table

of adverse interactions together with the text on the three properties of each drug serve as a

platform for the experiment.

The collection of side-effects is organised in order of drugID where all the side-effects

of each drug is stored, along with the intensity, from 0 to 5 (0 being the most common

effects which require immediate medical attention and 5 which does not require immediate

attention). The table is defined by three fields, drugBankID, the list of side-effects and the level

of seriousness (Table 3.4). For example, in Table 3.5, diarrhea and hearing loss are common

side-effects, but the former is of major effect and the other one is minor (Table 5.4 shows the

codes for the different levels of side-effect).

Field Type Size
drugBankID char 8
side_effect char 30
level char 1

Table 3.4: Structure of side-effect table

The other table of structured text mentioned in Figure 3.7 is the table of adverse

interactions. Table 3.6 shows the structure of the interaction table after extracting the set

of drugs that are in different levels of interaction with the subject drug. For example, Table

57



drugBankID side_effect level
DB01050 abdominal pain 0
DB01050 bloating 0
DB01050 diarrhea 0
DB01050 hearing loss 3
DB01050 nervousness 3

Table 3.5: Sample data for table of side-effects of Ibuprofen

3.7 shows a sample of drugs that are interactive with the drug Ibuprofen and the level of

interaction.

Field Type Size
drugBankID char 8
Interactive Drug char 20
Level char 1

Table 3.6: Structure of adverse interaction table

drugBankID Interactive Level
DB01050 warfarin major
DB01050 cidofovoir major
DB01050 leflunomid major
DB01050 metformin moderate
DB01050 famotidine minor
DB01050 tacrine minor

Table 3.7: Sample data for table of adverse interactions with ibuprofen

The next two sections explain the concept of similarity ratio within the context of this study

and describes the different models used in discovering drug interactions.

3.4 Recognition of Drugs through Feature Extraction

After the raw bio-medical textual data has been processed and assembled into a structured

database, the proposed models will then be able to determine if the drugs are similar through

their textual description, and the extent of their similarity. This section describes the text

processing methods by representing the drugs as feature vectors to allow the similarity of

a drug pair to be determined.

To determine the similarity of a drug pair, data mining is done by classifying a drug pair as

similar or dissimilar through extracting features of the drugs. The purpose of data mining is to

discover useful information from the property of the drug. Just like mining for gold, the aim is
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to search the mass of ores systematically to look for the hidden treasure. The efficiency and

accuracy of the search depends on the techniques used which have evolved over the years to

increase the chance of discovering the gold in the most efficient manner.

Similarly, there are many methods for obtaining information on the description of a drug.

Such information, or feature, of a drug pair can then be used to compute the similarity between

them. This section introduces the frequency-based approach, the prediction-based approach

and the network approach used in the models within the conceptual framework (See Table

3.1).

3.4.1 Bag of Words

The most basic method is the bag of words where an unordered list of individual words is

extracted from the document. For example, take three simple documents c1,c2 and c3 each

with a single sentence as shown in Table 3.8.

Document Sentence

Document c1 Warfarin is used to treat or prevent blood clots in veins

Document c2 Amoxicillin is used to treat infection caused by bacteria

Document c3 Ibuprofen is used to treat pain caused by toothache

Table 3.8: Sample documents

Before counting the frequency of each word, some basic pre-processing of the text such

as stop words removal and stemming is performed. By carrying out such tasks will result in

eliminating common words (like “the” and “is”) mapping associated words to their root form

(like “used” to “use”).
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term

document
c1 c2 c3

warfarin 1 0 0

use 1 1 1

treat 1 1 1

prevent 1 0 0

blood 1 0 0

clot 1 0 0

vein 1 0 0

amoxicillin 0 1 0

infect 0 1 0

cause 0 1 1

bacteria 0 1 0

ibuprofen 0 0 1

pain 0 0 1

toothache 0 0 1

Table 3.9: Matrix of count vector

Table 3.9 shows the number of times each word occur in each document after

pre-preprocessing is done. Such information can be represented as a matrix M of n rows by

c columns. The column corresponds to the documents in the corpus and the rows correspond

to the words in the vocabulary. If b(w, c) is the number of times the word w occurs in document

c, then each item bw,d can be represented as a matrix M as shown in Equation 3.1.

M =


b0,0 b0,1 . . . b0,c−1

b1,0 b1,1 . . . b1,c−1
...

. . .

bn−1,0 bn−1,1 . . . bn−1,c−1

 (3.1)

where n is the size of the vocabulary and c is the number of documents in the

corpus. From Equation 3.1, b(0, 0) refers to the number of occurrences for warfarin at

the first row in document c1. The word vector for warfarin b0,∗ can then be denoted as

[b(w0, c1), b(w0, c2), b(w0, c3)].

Although this is a straightforward way of coding the words, it does not capture the
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relationship among the words and hence the meaning behind the sentence. For example,

“this is interesting” will be encoded in the same way as “is this interesting”. Another problem

with this method is the inability to distinguish between important words and words such as ’is’

and ’the’ which also occur frequently.

3.4.2 Term Frequency Inverse Document Frequency (tf*idf)

An extension of the previous bag-of-words method is to consider word frequency not just in a

single document but across the entire corpus. By doing this, words that occur frequently in all

documents can be given less weight compared to words that occur frequently within a single

document. Instead of just keeping track of the raw number of occurrences of each word in the

count matrix as in Equation 3.1, tf*idf can be used where the frequency is normalised to take

into account the number of occurrences throughout the corpus:

tf =
b(w, c)∑

w′∈c
b(w′ , c)

idf = log
|C|

|{c ∈ C : w ∈ c}|

(3.2)

where |C| is the total number of documents in the corpus and |{c ∈ C : w ∈ c}| is the

number of documents where the word w appears.

Thus if v represents the tf*idf vawaslue for a word w in the corpus, then

v = tf ∗ idf

=
b(w, c)∑

w′∈c
b(w′ , c)

× log |C|
|{c ∈ C : w ∈ c}|

(3.3)

Using the same example as for bag-of-words, since amoxicillin occurs once in document c2,

the term frequency is 1
6 which is 0.167 as there are 6 words in the document c2. Since only

document c2 contains amoxicillin and there are 3 documents in the corpus, the tf ∗ idf for

amoxicillin is 0.167 ∗ log 3
1 which is 0.0795.

Compared to the word cause which also occurred once in c2 but twice in the corpus, the

tf ∗ idf for cause is 1
6 ∗ log

3
2 . This goes to show that it is 2.7 times less important than the word

amoxicillin.
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This illustration shows that if a word in a document appears frequently in other documents

across the corpus, it is likely to be less relevant to the document. On the other hand, the word

will be of more relevance if it occurs more frequently within the document.

By using Equation 3.3, the tf*idf for each word in the textual description of drug di can be

obtained. These values can be used in the model that uses tf*idf as feature vectors (Section

4.2).

If the words that describe drug di are w1i, w2i . . . wni where n is the total number of words

and their respective tf*idf from Equation 3.3 is v1iv2i . . . vni then the feature vector of drug di

is given by:
−→
fi = {(w1i, v1i), (w2i, v2i), . . . (wni, vni)} (3.4)

Once the feature vector
−→
fj is similarly obtained for drug dj , the similarity ratio of drug pair di

and dj is:

Sim(di, dj) =

n∑
k=1

(vki)× (vkj)√
n∑
k=1

(vki)
2 ×

√
n∑
k=1

(vkj)
2

(3.5)

Hence the term frequency of the words that describe each drug can be used to build feature

vectors for determining if a drug pair is similar.

3.4.3 Co-occurrence

The concept of contextual distance is used in this approach to cater for the contextual meaning

of words within a document. Instead of counting the occurrence of individual words like the

previous methods, words within a distance is counted. Table 3.10 shows the occurrence matrix

for the corpus of Table 3.8 representing the number of times the words occur together within

the context distance of two words before and after the target word.

62



Amoxicillin use treat infect cause bacteria

Amoxicillin 0 1 0 0 0 0

use 1 0 1 0 0 0

treat 0 1 0 1 1 0

infect 0 0 1 0 1 0

cause 0 0 1 1 0 1

bacteria 0 0 0 0 1 0

Table 3.10: Co-occurrence matrix

Take for example the target word “cause” in document c2. Within a context distance of

two, each of these words “treat”, “infect”, “bacteria” occurred once as indicated in the row

beginning with “cause” in Table 3.10. Thus, the row matrix for “cause” can be represented as[
0 0 1 1 0 1

]
. With each word in the textual description of the drugs in the bio-medical

database being represented as a co-occurrence matrix, a knowledge base associated with

each drug can be constructed. This will facilitate subsequent building of the drug model to

determine their similarity ratio.

3.4.4 Word Embedding

The previous three approaches were frequency based, using word frequency to build vectors.

Those methods derived a matrix of numbers from the original corpus by counting the number

of occurrences of the word, either individually or in association with its neighbouring words.

These approaches are memory-intensive and an inefficient means of storing the vectors. The

size of the vectors is the same as the size of the vocabulary, where a corpus of a million

words will result in a matrix with a million numbers. On the other hand, a prediction-based

approach will predict the probability of a word given the target word. Feature vectors created

by this approach proved to be superior for tasks like word similarities and word analogies. This

approach is used in one of the models for predicting the similarity of a drug pair. Explanation

of this approach is described in Section 2.3.2.

In the current study, frequency-based and word-embedding approaches were used in

deciding if a drug pair was suitable for prescription (Table 3.1). According to linguist JR Firth

(as cited by Nguyen [96]), “you shall know a word by the company it keeps”. Similarly, related

words and hence similar drugs can be known by finding similar words that describe the drugs.
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When these words are converted into vectors, the similarity ratio of a drug pair can be easily

obtained for comparison.

3.4.5 Common Paths in Adverse Network

Besides using word frequency and word embedding methods to extract features and represent

the drugs, a path-oriented approach is also possible. Information about drug interactions can

be represented as a network of nodes and edges. Such a network is a data structure with

information about the nodes and their relationships. In mathematical terms, this data structure

is described as a graph G = (V,E) with information on the nodes and the connections between

the nodes [67]. In such a graph, the nodes are referred to as vertices and the connections as

edges. The method is described in Section 2.3.1. A drug pair is highly similar if the number of

common paths between them is large.

3.5 Summary

This chapter introduced the three-layer conceptual framework of the thesis.

The knowledge base within the knowledge layer is constructed based on the features

obtained from the bio-medical corpus. Table 5.9 in Section 5.3.6 shows the number of features

obtained from drugBank. This process also aligns with the first three stages of a typical

knowledge discovery process. In order to obtain relevant information from the knowledge base,

different approaches have been described, from finding out how often words occur to how likely

those words would occur. These approaches in drug representations through vectors enable

the discovery of drug interactions. Such information makes it possible to determine potential

adverse interactions of a drug pair. The next chapter will describe the different approaches in

obtaining feature vectors through the various models within the prediction layer.
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Chapter 4

Discovering Drug Interactions

through Data Mining

The previous chapter described how the knowledge base is built from information associated

with drug properties available in DrugBank. The various forms of feature extraction from the

text was also explained. The different feature extraction methods results in a corresponding

model within the prediction layer. This chapter proposes the novel approaches within the

prediction layer of the conceptual framework for discovering the possibility of a drug pair

interaction:

• statistical model

• side-effect model

• adverse network model

• word embedding model

These models use data mining and evaluation which aims to discover patterns and meanings

from the knowledge base. Obtaining feature vectors to compute similarity ratio then leads to

the knowledge required for the user to decide if a drug is safe for prescription.
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4.1 Cosine similarity for Vector Space Models

Cosine similarity was used to obtain the features of the drugs from their vector representations.

The process of obtaining the cosine similarity starts with the dot product. Assuming
−→
fi and

−→
fj

contains the respective set of feature vectors for drug di, dj and {v1, v2..vi}, {v1, v2...vj} are

the respective values for the feature vectors
−→
fi ,
−→
fj stored in the respective array m, n.

Thus array m has items {v1, v2..vi} and array n has items {v1, v2..vj}.

For illustration, assume an equal number of items in both feature vectors, i and j having

the same value,

m = {vm1, vm2 . . . vmi}

n = {vn1, vn2 . . . vnj}
(4.1)

Then the dot product will be

−→
fi .
−→
fj =

j∑
p=1

vmpvnp

= vm1vn1 + vm2vn2 + . . . vmjvnj

(4.2)

and the geometric definition of the dot product is given by

−→
fi .
−→
fj = |

−→
fi ||
−→
fj |cosθ (4.3)

−→
fi

−→
fj

θ1

(a) More similar textual description

−→
fi

−→
fj

θ2

(b) Less similar textual description

Figure 4.1: Cosine similarity of documents
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Re-arranging equation 4.3,

cosθ =

−→
fi .
−→
fj

|
−→
fi ||
−→
fj |

(4.4)

The angle θ represents the similarity between the two vectors
−→
fi and

−→
fj . Depending on the

model used during the experiment, various methods were used to obtain the feature vectors
−→
fi

and
−→
fj . For example, if feature vectors are based on the textual similarity of the documents that

describe the drugs, then the feature vectors of two documents will be similar if both documents

contain similar terms. In other words, the angle θ1 between the two vectors
−→
fi and

−→
fj in the

vector space will be small, as both are heading closely in the same direction (Figure 4.1a).

Conversely, if the drug pair di and dj contains more dissimilar terms, then their respective

vectors
−→
fi and

−→
fj will be heading at a larger angle (Figure 4.1b) resulting in a smaller cosine

similarity since cos θ2 is lesser than cos θ1 when θ2 is larger than θ1. In fact, if there are no

common terms, the two vectors will be perpendicular to each other or orthogonal which results

in zero similarity ratio since cos 90 ◦ is zero.

4.2 Discovering Drug Interactions Through Word

Frequencies

During feature extraction in this model, noise was first removed from the unstructured textual

corpus obtained from DrugBank. Such noise refers to paltry terms like ‘the’, ‘a’ which may

affect the performance of the model. These stopwords were removed while similar words were

stemmed with the help of Porter’s algorithm [131]. The quote by Tobler (as cited in Sen [120])

that “Everything is related to everything else, but near things are more related than distant

things” can be applied not just to spatial similarity but also to textual similarity. Since it is

expected that similar drug pairs are described by more similar terms, the statistical values of

term frequencies and inverse document frequency can be used to determine the similarity ratio

of a drug pair.

Given that each drug has k terms each with their tf*idf computed, the task of the model

within the prediction layer of the framework was to construct feature vectors for each attribute

of the drug. This feature vector comprised of a set of pairs of keywords and their respective

tf ∗ idf .
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The set of terms {t1, t2, t3...tn} extracted for each drug to enable similarity to be computed

consisted of a bag of unordered terms, defined as:

T vi = {tv1, tv2, ...tvx}

T pi = {tp1, t
p
2, ...t

p
y}

T si = {ts1, ts2, ...tsz}

(4.5)

where T vi ,T pi ,T si refer to the set of terms of drug di within the attribute “Overview”,

“Professional” and “Side-effects” respectively and x, y, z are the respective number of terms.

It was then easy to obtain the term frequencies for each set of terms by constructing feature

vectors:

−→
fvi = {(tv1i, vv1i), (tv2i, vv2i), ...(tvxi, vvxi)}
−→
fpi = {(tp1i, v

p
1i), (t

p
2i, v

p
2i), ...(t

p
yi, v

p
yi)}

−→
fsi = {(ts1i, vs1i), (ts2i, vs2i), ...(tszi, vszi)}

(4.6)

Similarity within a drug pair for an attribute was computed by comparing common terms within

that attribute. For example, the similarity ratio Sim(di, dj) within the attribute “Professional” for

drug di and drug dj was obtained by comparing these two feature vectors, with each feature

vector sorted in descending order of the size of the term frequency:

−→
fpi = {(tp1i, v

p
1i), (t

p
2i, v

p
2i), ...(t

p
ni, v

p
ni)} (4.7)

such that vpni >= vp(n+1)i

−→
fpj = {(tp1j , v

p
1j), (t

p
2j , v

p
2j), ...(t

p
nj , v

p
nj)} (4.8)

such that vpnj >= vp(n+1)j where n is the size of each feature vector.

Since the terms within the set Ti and Tj (Equation 4.5) are unordered, the corresponding

values in the feature vectors fi and fj are also unordered (Equation 4.6). To ensure a

consistent contribution of the term frequencies to the similarity ratio between a drug pair, the

feature vectors are sorted to capture the highest n set of values of the vector for each drug.

From Equation 4.7 and Equation 4.8, the similarity ratio Simp(i, j) of drug pair di and dj

68



can be obtained.

Simp(di, dj) =

n∑
k=1

(vpki)× (vpkj)√
n∑
k=1

(vpki)
2 ×

√
n∑
k=1

(vpkj)
2

(4.9)

The similarity ratio obtained from a drug pair was used to decide if the drug pair was similar.

For example, if Simv(i, j) is the similarity ratio between feature vectors
−→
fvi and

−→
fvj taken from

drug property “Overview”, then the number of similar drug pairs that were correctly predicted

as similar can be found by counting the number of similar pairs. The number of true positives

and true negatives were then used to compute the F -score. A drug pair was considered to

be similar if Simv(i, j) was above a threshold value θ which occurs at F vmax. Different cut-off

points will result in different number of true positives which will influence the F -score. The

threshold value is the value where the F -score is maximum.

Thus if S(i, j) is used to represent the number of true positives which refer to those

instances when the similarity ratio is above θ, then

S(i, j) =

0, if Simv(i, j) < θ

1, otherwise
(4.10)

To obtain the overall gross similarity ratio, similarity ratio of the drug pair associated

with each attribute ("Professional, “Overview” and “Side-effect”) is taken into consideration.

Depending on how accurately the similarity of each drug pair was predicted, the similarity

associated with each attribute was normalised by a factor depending on the F -score. Thus

if F vmax, F pmax and F smax is the maximum F -score for drug attribute “Overview”, “Professional”

and “Side-effect” respectively, then the weight w1 against the similarity ratio for “Overview” is

given by:

w1 =
F vmax

(F vmax + F pmax + F smax)
(4.11)

w2 and w3 can also be calculated in a similar manner.

Thus the overall similarity ratio Sim(p, q) for drug pair di and dj is given by:

Sim(i, j) = w1 ∗ Simv(i, j) + w2 ∗ Simp(i, j) + w3 ∗ Sims(i, j) (4.12)

where

Simv is the similarity ratio for the drug property from “Overview”

Simp is the similarity ratio for the drug property from “Professional”
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Sims is the similarity ratio for the drug property from “Side-effects”

If the similarity ratio was above the threshold value, the service in the prediction Layer

classified it as similar, else it was classified dissimilar (Equation 4.10).

4.3 Discovering Drug Interactions Through Side-effects

Using the same text corpus as the statistical model, the first step in this model was to

extract the side-effects within the “Side-effect” attribute of each drug. These were stored in

a knowledge base for easy retrieval during the experiments. In order to indicate the impact of

the side-effects, the attribute was further categorised into major and minor categories, each of

which can be common or rare.

Let E ={e1, e2 . . . , er} be the set of all possible side-effects and Ei, Ej are the set of

side-effects of drug di and dj respectively where Ei ⊂ E, Ej ⊂ E and r= |E|. Then a row

matrix M can be used to represent the presence of the side-effects, depending on the position

of the side-effects within the set of all side-effects E:

M[i] =

1, if ei 6= 0

0, otherwise
(4.13)

Consider the case of a drug pair di and dj with the set of side-effects Ei and Ej where

Ei = {e3, e5}, Ej = {e5, e8} and e3, e5, e8 ∈ E. Then we can have 2 row matrices Mi and Mj to

represent the presence of the side-effects for the drug pair. The value of each element can be

either 1 or 0. Thus Mi[3] = 1, Mi[5] = 1 and Mj [5] = 1, Mj [8] = 1. From Mi and Mj , similarity

ratio Sim(di, dj) within the drug pair di and dj can then be calculated. The drug pair can then

be classified as similar or dissimilar if this ratio was above or below the threshold respectively

(Equation 4.10). Hence, for a set of drug pairs {d(i1, j1), d(i2, j2)...d(in, jn)} that are supposed

to be similar, the number of true positives which are drug pairs predicted as similar is given by:

n∑
k=1

S(ik, jk) (4.14)
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4.4 Discovering Drug Interactions from Common Paths of

Adverse Network

As described in Section 3.1, the drug taxonomy contains knowledge on drug interactions in

the knowledge layer of the three-layer framework. Detailed attributes are extracted at the

prediction layer where useful information can be obtained in relation to the set of drugs that

interacts with each drug.

The performance of the model was based on the hypothesis that the larger set of common

interacting drugs between a drug pair, the higher their similarity ratio. This lead to the

development of the adverse network model to facilitate the finding of the number of common

paths within a drug pair.

The approach introduced by Jeh et al. [58] in their model of measuring similarity based on

theoretical foundations was adopted to represent all drugs as nodes in a network, enabling

computation of their proximity in terms of the number of shared entities within the drug pair.

Assuming {di1, di2...dik} refers to the set of interacting drugs of di, then O(di) is known as

the set of out-neighbours of di with di as the vertex node.

If drug di and dj are represented as node i and node j respectively, then similarity within

the drug pair will be given by:

Sim(di, dj) =
C1

|O(di)||O(dj)|

|O(di)|∑
i=1

|O(dj)|∑
j=1

Sim(Oi(di), Oj(dj)) (4.15)

d1

ak
a3a2a1

Figure 4.2: Graph of interactive drugs with drug d1

Referring to Figure 4.2, if we consider the out-neighbours, drug d1 will have a set of

interacting drugs which can be denoted as N+(d1) where the number of drugs a1, a2, a3...ak

that adversely interact with drug d1 is k = |N+(d1)|. Individual drugs in N+(d1) which interact
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with d1 are then denoted by N+
i (d1)(1 ≤ i ≤ |N+(d1)|).

The path connecting two nodes indicates the relationship within a drug pair. Adapting the

notation from [125], the path from drug d1 to set of interactive drugs N+(d1) (denoted by A)

with ratings r is denoted by d1
r−→ A, which can also be written as d1(r)A, where r is the

relationship between d1 and A. The relationship can be major, moderate or minor represented

as 1,2 or 3 respectively. Thus, d1(1)A shows drug d1 has a minor interaction with the drugs in

set A.

Using the notation from the previous chapter, if N+(di) is found in Ar at position u, then

the uth column in matrix Mr will be updated as r, Mr[u]←− r.

Assuming a major interaction with r = 3, if the interactive drug of d1 occurs at position 5

and the interactive drugs of d2 occurs at positions 2 and 5, then M3
1 [5] = 3, M3

2 [2] = 3 and

M3
2 [5] = 3.

In this manner, the similarity ratio of the drug pair in the dataset can be computed from

the pair of row matrices taken from M1 and M2, such that M1=
[
a1 a2 . . . ap

]
and M2=[

b1 b2 . . . bp

]
where the value of each item in the matrix is:

au =

r, if N+(d1) == Ar[u]

0, otherwise

bu =

r, if N+(d2) == Ar[u]

0, otherwise

(4.16)

Hence for a drug pair di and dj with interaction rating of r, the similarity ratio will be given

by:

Simr(di, dj) =

p∑
i=1

ai × bi√
p∑
i=1

a2i ×

√
p∑
i=1

b2i

(4.17)

Computation of the similarity ratio then facilitates drug interaction predictions.
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4.5 Discovering Drug Interactions Through Word

Embeddings

This framework used the skip-gram model which is commonly utilised for learning word

embeddings by predicting context words given a target word. Features of context words were

then extracted through word embeddings. This method of finding the similarity within a drug

pair was used due to its increasing popularity in machine learning. Since it is expected that a

higher set of common terms will be used to describe two drugs that are similar in functions,

it was a sensible decision to measure the similarity between drugs in a drug pair by finding

words that are most related to each of these drugs.

Such an approach to machine learning has already had major impact in many areas

involving a large amount of data - such as medical imaging, speech recognition and natural

language processing - and is very relevant considering the constant increase of drug-related

bio-medical information [152]. Interest in word embedding has intensified with Mikolov et al.’s

introduction of a simplified architecture, which eliminates the non-linear hidden layer, allowing

training on much larger datasets than was previously possible [85].

Instead of using the set of interactive drugs as in the previous model, data from the text

corpus was used in this model to compute the similarity within a drug pair. With the help of

Word2Vec [85], tokens were then built by iterating through the sentences in the textual corpus,

specifying parameters like minimum word frequencies and the size of the feature vectors.

While Word2Vec is not strictly a deep neural network, the output vector that it produces in

numerical format within the deep learning models can be easily understood by other deep

networks making it very suitable for use in such works. Assuming wc and wt are the context

word and target word, the goal of the skip-gram model is to maximise the log-likelihood of

obtaining the output context word given the input target word, ie,.

J = logP (wc|wt) (4.18)

where J is the objective function.

Suppose uwt is a target embedding vector for wt and vwc is a context embedding vector

for the context word wc, then P , which is the conditional probability in the neural probabilistic
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language model [6] can be defined as:

P (wc|wt) =
exp(vTwcuwt)
W∑
w=1

exp(vTwcuwt)

(4.19)

Taking the log on both sides of Equation 4.19 above,

logP (wc|wt) = log
exp(vTwcuwt)
W∑
w=1

exp(vTwcuwt)

(4.20)

Since J = logP (from Equation 4.18), Equation 4.20 becomes:

J = log
exp(vTwcuwt)
W∑
w=1

exp(vTwcuwt)

(4.21)

J = logexp(vTwcuwt)− log
W∑
w=1

exp(vTwcuwt) (4.22)

In order to avoid expensive computation of softmax for the whole vocabulary, negative

sampling is commonly used as suggested by Mikolov et al. [86]. Then the objective function J

becomes:

J ′ =
∑

wt,wc∈D
logQθ(D = 1|wt, wc) +

∑
wt,wc∈D′

logQθ(D = 0|wt, wc) (4.23)

with the probability of wt and wc being observed is Qθ(D = 1|wt, wc) and the probability of

not being observed is Qθ(D = 0|wt, wc), D and D’ is the observed data and unobserved data

respectively and θ word embeddings.

Once the text corpus has been trained by Word2Vec, the output vector for any name of a

drug can be conveniently obtained through the skip-gram algorithm. As shown in Figure 2.10,

two words before and after the context word was predicted through this algorithm.

The more frequently the combination of words occurred in the training sample, the more

likely the word would be selected. If quick and brown occurred together more frequently than

quick and black, then in the case where quick was chosen as an input word, brown would be
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selected as the nearest word. The layer size determined the size of the output feature vectors.

Thus, if the vocabulary size of the corpus was k, and the number of terms in the text corpus

was n, the input vector would be a single row vector [1 X k] containing 0 at all positions within

the vector except the nth position which would be a 1. With a layer size of m, the size of the

hidden layer used by Word2Vec is [k X m]. In this way, the word vector produced for each

word would be the product of the matrix [1 X k] and [k X m] producing a single row vector of

size m. With the set of neighbouring words that are related for each drug, word vectors can

be constructed for each of these neighbouring words. The similarity ratio can be obtained to

help discover drug interactions by comparing how similar the set of word vectors was for each

drug. A higher similarity ratio indicates a higher chance of an adverse interaction within the

drug pair.

4.6 Summary

The different methods used to search for features in the different models were described. With

each drug represented in the vector space, knowledge about their interactions can be obtained.

Various models have evolved through the study where drug interactions can be discovered.

The statistical model and side-effect model use the tf*idf information on the text that describes

the drugs. Another approach is to examine the number of common drugs between a drug pair

in which have an adverse interaction. The larger the number of common paths between a drug

pair, the higher the similarity ratio, which means the less chance of an adverse interaction.

The word embedding approach is based on the expectation that a higher set of common terms

are used to describe a pair of similar drugs. Similarity ratio of a drug pair is obtained from the

vectors that represent the words most related to each drug.

These methods and the evaluation of their performances form the prediction layer of the

three-layer conceptual framework introduced in Chapter 3. The next chapter describes the

design of the models for the different approaches and implementation of the experiment to

evaluate the performance.
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Chapter 5

Empirical Experiments

The aim of this chapter is to describe both how the experiments were conducted and the data

preparation process. This will enable an evaluation of the reliability of the novel approach in

discovering the similarity of a drug pair. This process also falls under the testing stage of the

scientific methodology (Figure 1.1 ) adopted in the research. The baseline models [138, 155]

which serve as comparison for the subsequent results are also described in this chapter

5.1 Experimental Design

The purpose of the experiment was to evaluate the performance of the various models

described in the previous chapter. The data used for all the models was sourced from the

knowledge base.
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Start

More drug pairs?

Get feature vectors for drug pair

drug di drug dj

Compute similarity ratio Sim(di, dj)

Similar?

Stop
no

Increment true positive

yes

yes

no

Figure 5.1: Experimental design to for measuring performance

Figure 5.1 shows the experiment flow culminating in the measurement of the model’s

performance. Feature vectors are extracted the positive and negative drug pairs. The way

these vectors are extracted differs according to the type of model being used during the

experiment. The similarity ratio of the drug pair is then calculated.

77



If the similarity ratio of the drug pair was above the threshold value, and the drug pair is

supposed to be similar according to the ground truth specified in the knowledge base, then

the number of true positives will be incremented. True negatives will be incremented if the

similarity ratio is below the threshold value and the drug pair belongs to the dataset of drug

pairs which are supposed to be dissimilar. The performance of the model can be evaluated by

counting the number of true positives and true negatives in this manner.

5.1.1 Implementation of Statistical Model

In the statistical model, comparison was made between the feature vectors generated from

the text corpus. The similarity of the drug pairs in the dataset was computed and compared

against the ground truth. If the similarity ratio was above a certain threshold θ , the drug

pair was classified as similar; otherwise, it was classified as dissimilar. If a particular drug

pair was classified as similar and matched with the positive dataset, then it was a true

positive; if it matched with the negative sample, then it was a true negative. The number

of correct predictions is an indication of the model’s performance. For convenience and ease

of computation, recall and precision were used to gauge how well the prediction was made.

Various values of θ was used as threshold values to decide if the drug pair was similar. The final

value was chosen at the point when the model performed best as indicated by the F -score.

The F -score was then computed using the number of true positives and true negatives.

The values for true positives and true negatives depend on the threshold value. Naturally, at a

very low threshold value, the number of correct predictions within the positive sample dataset,

which is the score for the true positive, will be high. Hence by varying the threshold value,

different F -score were obtained since the F -score depends on the value of true positives.

A drug pair was considered to be similar when the similarity ratio Simv(i, j) was above a

threshold value θ. A value of “1” was attached to S(di, dj) of a drug pair to specify that the

similarity was above the threshold value θ and “0” otherwise. Hence, if Sim(di, dj) was the

similarity ratio of drug pair di and dj ,

S(i, j) =

0, if Sim(di, dj) < θ

1, otherwise
(5.1)

The total number of S(i, j) was the number of true positives for the experiment.
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5.1.2 Implementation of Side-effect Model

In this experiment, all the side-effects were retrieved from the knowledge base constructed

from DrugBank. In order to determine the similarity of a drug pair, a row matrix M where the

elements in the matrix can be either a 1 or 0 was used ( Equation 4.13). For example, within

the global set of side-effects E = {e1, e2 . . . er} (see Section 4.3), if side-effect “cough” for the

drug warfarin occurred at location 87 (ie value of e87 was “cough”), then the 87th element of

the row matrix M will be set to 1. The similarity ratio between the two drugs di and dj was then

obtained between the two row matrices Mi and Mj . Figure 5.2 shows the experimental flow

for this model.

5.1.3 Implementation of Adverse Network Model

In the adverse network model, the aim of the experiment was to find the number of common

paths within a drug pair. This was done by capturing the set of interactive drugs for each drug

in the drug pair through the use of row matrices. The purpose of the matrix was to indicate the

presence of all the out-going nodes of the drug.

At the beginning of the experiment, the contents of this matrix were initialised to 0. During

the experiment, matrix Mr for drugs d1 and d2 was created to indicate the positional match

with the adverse drugs for d1 and d2 with interaction rating r, where the number of columns in

Mr = |Ar|. |Ar| is the set of all the interacting drugs in the knowledge database. The ratings

used to describe the relationship between the vertex node and the set of interactive drugs were

major, moderate and minor.

Algorithm 1 shows the steps in obtaining the feature vectors to compute the similarity ratio.

With the similarity ratio results from the experiment, a threshold of θ = 0.5 was used to

predict if the drug pair is similar. The threshold value of 0.5 was chosen as it is the default

probability used by most classifiers [166]. A value of 0.5 or higher from the experiment was

classified as similar, and a value lower than 0.5 was classified as dissimilar. The performance

of the model can be evaluated by counting the number of correct predictions.
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Figure 5.2: Experimental design of side-effect model
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input : Let D be the drug corpus;
di, dj be the drug pair;
Mi and Mj be the row matrices;

output: Similarity ratio Sim(i, j)

while (for each drug that interacts with di) do
get index where drug occurs within D;
update Matrix Mi;

end
while (for each drug that interacts with dj) do

get index where drug occurs within D;
update Matrix Mj ;

end
Compute Sim(i, j);

Algorithm 1: Getting similarity ratio of adverse network model

5.1.4 Implementation of Word Embedding Model

In the word embedding model, feature vectors were obtained through an artificial neural

network approach. A predictive model was constructed for learning word embeddings from

the raw corpus that described the properties of the drugs by using the skip-gram model from

Word2Vec [85]. Word2Vec was a good fit for the context of the experiment since the problem

domain aimed to extract related words to determine the extent of similarity from bio-medical

text. Given a keyword, for example, the name of a drug, this method formulated a feature vector

that best predicted a window of surrounding words occurring in some meaningful context. Such

semantic similarity also conformed to the important criteria for selecting good word pairs [160].

When training the model, important parameters expected by Word2Vec were the word

frequency, layer size and window size. The word frequency was the minimum number of times

a word must appear in the corpus, the layer size was the number of desired features in the

word vector, and the window size was the number of words before and after the target word

to extract for the training sample. In order to observe the behaviour of this approach, the

model was constructed with individual attributes of the drug (“Professional”, “Overview” and

“Side-effects”) while varying the number of nearest neighbours. In the experiment, a number of

keywords associated with the nearest neighbor of the drug name was retrieved from the model.

Each keyword was represented by a word vector of numbers, the size of which depended on

the layer size as explained in Section 4.5. For example, if di1, di2, di3 were the three nearest

keywords for a given drug di, a word vector would be obtained from the specified model by

combining the three word vectors from the respective three keywords. Similarity ratio between

each set of vectors produced from the keywords could then be computed.

81



To test the reliability of this model, the same dataset from the statistical model

was used. However, word vectors were used instead of tf * idf to construct the

feature vectors. As shown in Algorithm 2, to obtain the feature vector, nearest

neighbours of each drug pair were converted into word vectors using Word2Vec utility.

Similarity ratio between the pair of word vectors for each drug was then computed.

input : Let D be the drug corpus;

di, dj be the drug pair;

output: Similarity ratio Sim(di, dj)

while (for each attribute in D ) do
set window size;

set layer size;

train the model using Word2Vec;

end

while (there are more drug pairs di, dj) do
get nearest neighbours;

build word vectors;

compute similarity ratio of Sim(di, dj);

end

Algorithm 2: Experimental design of word-embedding model

5.2 Baseline Models

Comparison of the baseline model with other works highlighted how adoption of this novel

approach resulted in superior performance. The work of [138] predicted DDI by parsing

bio-medical text for syntactic and semantic information on biological entities such as induction

and inhibition of enzymes by drugs. These relations were then mapped with the general

knowledge about drug metabolism and interactions to derive the DDI.

Besides DrugBank, the work uses data from abstracts found in MEDLINE database, which

has a large number of reputable source of citations from peer-reviewed biomedical text [107]

and is open access [44]. The approach is based on the idea that the interaction between two

drugs depends on the metabolism of the drug.

The enzyme acts as catalyst in the chemical reaction between drug di and drug dj (Figure

5.3). However, drug di may inhibit the action of the enzyme, in turn decreasing the effect of

drug dj .
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The methods in identifying drug interactions involved two phases: the extraction phase and

the reasoning phase. In the extraction phase, information on sentence structure and biological

entities was retrieved in order to obtain relationships within drug pairs. The reasoning phase

then applied the extracted interactions to the logic rules in order to derive the interactions of

the drug pair.

drug di

enzyme

drug dj

induces/inhibits

metabolizes

Figure 5.3: Drug interactions

In another work to predict interactions of a drug pair, Yan et al. developed various prediction

models to leverage on text mining and statistical inference techniques [155]. One of the models

Figure 5.4: Drug-Entity model [155]

used included the popular DET model used to capture the relation between drugs and other

entities. With plate notations [11], Figure 5.4 shows the generative process represented as

a Bayesian model. A dummy document with subject section and content section was built
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for each drug found in the MEDLINE corpus1, assuming the total number of drugs was D.

Hence, the total number of documents was D, with each document d conveyed by the number

of diseases. Nd refers to the total number of disease words w occurring in d. K was the total

number of topics and ad was the observed set of drugs, with A referring to the total number of

drugs.

Each drug x and topic z was a probabilistic distribution over topics (parameterised by θ) and

diseases (parameterised by ϕ) respectively. λ was the observable parameter which controlled

the drugs sampling. Just like the current work, DrugBank was also used. However, one of the

methods in their preparation of data was to represent each drug by a vector of drug targets.

The values in each vector were either 1 or 0, depending on whether the drug target was

associated with the given drug. In our work, we chose to construct feature vectors of tf*idf

from textual information related to the properties of each drug.

The performance metrics Area under Curve (AUC) of Receiver Operating Characteristics

(ROC) [33] used in our work was also adopted in this baseline model. A curve closer to the

upper-left corner in the ROC, resulting in a higher area beneath the curve, indicated a better

model performance.

Tari [138] Yan [155] Proposed Model

Aim Discover drug Predict drug Personalised drug

interaction interaction prediction

Source DrugBank and MeSH DrugBank and MeSH DrugBank

Method

Combine text mining

and reasoning

approach based

on biological entities

Compose feature

vectors based on

names of disease and

genes

Create feature vectors

from textual drug

description

Table 5.1: Baseline models

Table 5.1 shows a summary of the two baseline models to highlight the differences in

methods compared to our model. A comparison of performance is made in Section 6.2. The

two models were chosen as both works are associated with interaction between drug-pairs and

uses similar drug repositories. Although the research was started in 2015, it is encouraging to

note that the performance of a recent work [71] yields an overall F -score of 72% compared to

our embedding model of 75%. Besides the baseline model, performance of other web-based

1https://www.ebscohost.com/nursing/products/medline-databases/medline
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checkers were also tested against the prototype of this research. These are discussed

in Section 6.2.3. Moreover, unlike the prototype created from this research, these online

interaction checkers are unable to provide information about overall combination of multiple

drugs [42].

For comparison with more recent works, another model has been included. This model,

proposed by Zhang and Kordjamshidi (2018) uses dataset from Text Analysis Conference to

predict if a drug-pair is in adverse relationship [161]. With the help of support vector machine

and a medical dictionary, the model attempts to classify the precipitant drug from the training

dataset. The predictions were classified as correct or incorrect by comparing the precipitant

drug with the ground truth. An additional experiment is conducted with our model with the

same dataset. The results are compared in Section 6.2.3.

5.3 Data Preparation

Experiments were conducted based on the data obtained from public source. As the first step

in data preparation, data from DrugBank was downloaded and stored locally in a database.

For convenience, the MySQL database was used2.

To facilitate the ease of extracting relevant data from the drug taxonomy, the textual data

was pre-processed. Stopwords such as pronouns, prepositions and conjunctions will be

removed and similar words like run, running, runner will be stemmed by removing the suffixes,

resulting in a reduced number of words to process.

5.3.1 Preparing Data for Statistical Model

The properties of interest were those related to interactions and side-effects. Data related to

“Overview”, “Professional” and “Side-effects” was extracted from this database. Text mining

was conducted on each of these properties in order to construct feature vectors for computing

the similarity ratio between drugs. Figure 5.5 shows an extract of the three properties for

the drug warfarin. The “Overview” section uses lay language to explain the drug effects, the

appropriate dosage and areas to take note of while on the drug such as specific of food to

2As the thesis is not on system design and programming, the emphasis is to highlight the approach in extracting
useful information in the data mining process and not the programming procedures.
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Figure 5.6: Organisation of the properties of dataset

avoid. For the professional, the attribute “Professional” has more in-depth description such

as chemical structure, warnings and precautions as well as recommended dosage for various

symptoms to achieve maximum effect. The “Side-Effects” attribute lists out the major and

minor side-effects associated with the drug.

From the text of these attributes, feature vectors can be constructed from information like

term frequency and used for comparison with other drugs. Figure 5.6 illustrates how the the

attributes of each drug were structured for the purpose of this research. There were also

subcategories for properties on “Side-effects” and “Interaction”. The textual data from these

properties were mined in order to derive feature vectors.

Name of Field Example

ID DB00001

Name Lepirudin

CAS Number 120993-53-5

Drug Type BiotechDrug

Wikipedia ID Lepirudin

rxlist link http://www.rxlist.com/cgi/generic/lepirudin.htm

drug link http://www.drugs.com/cdi/lepirudin.html

Table 5.2: Structure of dataset in experimental evaluation
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From the basic structure of the dataset (Table 5.2), relevant knowledge on drug interactions

and subsequently term frequency were obtained through data mining. This is done in the

prediction layer, which computed the feature vectors and similarity ratio of drug pairs for

subsequent processing during the experiment.

5.3.2 Preparing Data for Side-effect Model

As properties of a drug pair in terms of their side-effects were used in the experiment to

build feature vectors, data mining was performed on the textual data from DrugBank to obtain

the side-effects. Similar to the statistical model, the side-effects of each drug were stored in

MySQL database for use during the experiment.

Level Side-Effects
1 abdominal or stomach pain with cramping
2 arm, back, or jaw pain
1 bleeding gums
5 bloated
1 blood in the urine
1 bloody stools
4 muscle pain
2 nausea and vomiting
1 nosebleeds
1 unusual tiredness or weakness
2 upper right abdominal or stomach pain
2 vomiting of blood

Table 5.3: Sample side-effects of warfarin

Using warfarin as an example, a sample of the side-effects retrieved from the taxonomy

stored locally for the experiment is shown in Table 5.3.

Level Description
0 major,more common
1 major,less common
2 major,rare
3 minor,more common
4 minor,less common
5 minor,rare

Table 5.4: Levels of side-effects

The levels defined for this dataset ranged from common to rare as defined in Table 5.4.
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5.3.3 Preparing Data for Adverse Network Model

To prepare the data for use during the experiment to test the adverse network model, all

the drug interactions were extracted from the drug taxonomy and stored as described in

the beginning of Section 5.3. The interactions extracted were “major”, “moderate” and

“minor”. Unlike the categories for side-effects which were major and minor, the categories for

interactions in this study had the additional “moderate” category to maximise the data available

from DrugBank.

A sample of the drugs that interact with warfarin is shown in Table 5.5.

Property Interactive Drug
Major aspirin

etodolac
ibuprofen
naproxen

Moderate bacampicillin
balsalazide
corticorelin
ethanol
tramadol

Minor acetaminophen
methotrexate
trazodone
turmeric

Table 5.5: Sample drugs that interact with warfarin

5.3.4 Preparing Data for Word Embedding Model

The word embedding model was developed to allow for a comprehensive comparison of the

different models in arriving at the similarity ratio of a drug pair. As the platform used for

this model was Word2Vec, preparation of the data is slightly different from the previous three

models.

Overview Professional Side-effect
dose coumadin headache
patient anticoagul effect
therapi patient report
recommend clinic hemorrhag
intraven healthcar pain

Table 5.6: Sample tokens for warfarin
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In order to prepare data for the word embedding model, the textual data was used as an

input file to Word2Vec. The raw data from the textual file of each drug was broken into atomic

units or tokens and fed into Word2Vec. Using the drug warfarin as an example again, individual

words or tokens extracted from the drug taxonomy is shown in Table 5.6 for each drug property.

These textual files were the same files used for the preparation of data for the previous models

taken from DrugBank.

Overview Professional Side-effect
154,645 196,352 53,644

Table 5.7: Size of dataset used for building Word2Vec model

Table 5.7 shows the number of tokens associated with each attribute of the drug

(“Overview”, “Professional” and “Side-effect” ).

Once the data was tokenised, a binary file was generated by Word2Vec for the experiment.

In generating the binary file, different parameters were used for the sensitivity study and

comparison of the performance. In the project, the two parameters used were the layer

size and window size. Once the textual file was trained by Word2Vec with the binary file

produced, feature vectors needed to compute the similarity ratio can be obtained by using

built-in methods. Word vectors generated by Word2Vec were used for computing similarity

ratio of a drug pair during the experiment. Table 5.8 shows the vectors generated by Word2Vec

at a layer size of 8 for the sample words “patient”, “clinic” and “pain”. Note that the size of the

vectors depends on the layer size used when training the model. In this case the layer size

was 8.

patient clinic pain
-0.4644 -0.6514 0.1638
-0.029 0.1215 -0.1779
0.3551 0.0935 0.5075
0.5995 -0.0902 -0.5868
0.2739 0.6315 0.2253
0.4405 -0.1723 -0.1494
-0.1444 0.3328 0.5121
0.09 0.0696 -0.0655

Table 5.8: Sample word vectors from Word2Vec

5.3.5 TAC2018 Dataset

As new models are evolved towards the end of the research project, a new baseline model

by Zhang and Kordjamshidi (2018) has been chosen to compare the approach adopted in this
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thesis [161]. For a fair comparison, the experiment used the data set from Text Analysis

Conference (TAC) 2018 containing gold standard annotations from the National Library of

Medicine and the U.S Food and Drug Administration which is used by the new baseline model.

This dataset contains information on drug interaction for 22 drugs stored in XML format. As

shown in Figure 5.7 which shows a sample extract of the dataset for the drug Guanfacine,

the list of adverse interactive drugs are shown under the node ’precipitant’ within the tag

<LabelIteractions><LabelInteraction>.

5.3.6 Summary

Model Property Size of Data
Statistical Overview 290,108

Professional 598,903
Side-effects 128,623

Side-Effect Major 23,371
Minor 12,946

Adverse Network Major 48,344
Moderate 306,915
Minor 26,659

Table 5.9: Size of data for each model

The process of data preparation for each model was explained in this section. Table 5.9

shows a summary of the data size for the statistical model, side-effect model and adverse

network model.

5.4 Performance Measuring Schemes

Precision, recall and F -score [139] were used to evaluate the model’s performance. Precision

(P) indicated how accurately the model predicted drug pairs as similar, while recall (R)

indicated how accurately similar drug pairs were predicted. Accuracy was also used to

measure the percentage of correct predictions combining both the similar and dissimilar

predictions. Thus,

P =
TP

TP + FP
(5.2)

R =
TP

TP + FN
(5.3)

91



<?xm
l

v
e

rs
io

n
=

"1
.0

"
e

n
co

d
in

g
=

"U
TF−

8
"?>

−
<

L
a

b
e

l
s

e
tid

=
"886

e050c−
dd22−

4f3
5−

ac3b−
243

f0
9

1
1

2
5

c3
"

d
ru

g
=

"TEN
EX

">
+<

T
e

xt>
+<

S
e

n
te

n
ce

s>
−

<
L

a
b

e
lIn

te
ra

c
tio

n
s

>
<

L
a

b
e

lIn
te

ra
c

tio
n

typ
e

=
"P

h
a

rm
a

co
kin

e
tic

in
te

ra
c

tio
n

"
e

ffe
c

t=
"C

54356
"

p
re

c
ip

ita
n

t=
"m

icro
so

m
a

l
enzym

e
in

d
u

ce
r"

p
re

c
ip

ita
n

tC
o

d
e

=
"N

O
M

AP
"

/>
<

L
a

b
e

lIn
te

ra
c

tio
n

typ
e

=
"P

h
a

rm
a

co
kin

e
tic

in
te

ra
c

tio
n

"
e

ffe
c

t=
"C

54607
"

p
re

c
ip

ita
n

t=
"m

icro
so

m
a

l
enzym

e
in

d
u

ce
r"

p
re

c
ip

ita
n

tC
o

d
e

=
"N

O
M

AP
"

/>
<

L
a

b
e

lIn
te

ra
c

tio
n

typ
e

=
"P

h
a

rm
a

co
kin

e
tic

in
te

ra
c

tio
n

"
e

ffe
c

t=
"C

54356
"

p
re

c
ip

ita
n

t=
"p

h
e

n
o

b
a

rb
ita

l"
p

re
c

ip
ita

n
tC

o
d

e
=

"N
0000005893

"
/>

<
L

a
b

e
lIn

te
ra

c
tio

n
typ

e
=

"P
h

a
rm

a
co

kin
e

tic
in

te
ra

c
tio

n
"

e
ffe

c
t=

"C
54607

"
p

re
c

ip
ita

n
t=

"p
h

e
n

o
b

a
rb

ita
l"

p
re

c
ip

ita
n

tC
o

d
e

=
"N

0000005893
"

/>
<

L
a

b
e

lIn
te

ra
c

tio
n

typ
e

=
"P

h
a

rm
a

co
kin

e
tic

in
te

ra
c

tio
n

"
e

ffe
c

t=
"C

54356
"

p
re

c
ip

ita
n

t=
"p

h
e

n
yto

in
"

p
re

c
ip

ita
n

tC
o

d
e

=
"N

0000006023
"

/>
<

/L
a

b
e

lIn
te

ra
c

tio
n

s
>

<
/L

a
b

e
l>

Figure
5.7:

S
am

ple
X

M
L

extractofdatasetfrom
TA

C
2018

92



where TP is True Positive, FN is False Negative, and FP False Positive.

For example, if there were 100 possible drug pairs with adverse reactions and 150 without

any adverse reactions, and only 60 out of the 70 predictions are accurate (TP=60, FP=10),

then recall will be 60/(60+40). This is because only 60 were accurately predicted out of a

total possible of 100 pairs, including the 40 pairs that were relevant but not selected (FN=40).

Precision will be 60/(60+10) since only 60 records out of the 70 records predicted were

accurate. F -score was based on the precision and recall:

F =
2 * P * R

P + R
(5.4)

As seen from Equation 5.4, F -score represented by F depends on the precision and recall

of the experiment which is not associated with the number of true negatives. As the datasets

contain both positive and negative pairs, there is a need to measure how well the model

can accurately predict those negative drug pairs, i.e. drugs that are in adverse interaction.

Hence, ROC curves with computation of the area under the curve were used. Such plots

have been extensively utilised to evaluate many systems including diagnostic systems, medical

decision-making systems, and machine learning systems [139].

The ROC curve [33] is essentially a two-dimensional plot of the true positive rate (tpr )

against the false positive rate (fpr ). These values are given as:

tpr =
TP

TP + FN
(5.5)

fpr =
FP

FP + TN
(5.6)

ROC values take into account the true negative values, resulting in a more robust measuring

scheme.

5.5 Summary

Chapter 5 addressed the design issues for conducting the experiments of the various models to

determine their performance in predicting the similarity ratio of a drug pair. The implementation

details including the baseline model were also explained. The process of data preparation and
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evaluation methodology for the different models were described. The next chapter presents

the results from these experiments.
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Chapter 6

Results and Discussions

Chapter 6 reports the results according to the experimental design explained in the previous

chapter. The results support the hypothesis that similar drug pairs have a higher similarity

ratio than dissimilar pairs. This explains the fact that attributes such as adverse interactions

and side-effects of a drug can be used to construct feature vectors for computing similarity

ratios. Moreover, paths linking the common drugs within the set of interacting drugs can also

be used to arrive at the similarity ratio.

This represents a breakthrough in the design of CDSS in the context of drug prescription

by mining feature vectors from textual data.

6.1 Experimental Results

The following sections report on the results obtained with the use of different models. The

experiment used a dataset consisting of a set of positive sample drug pairs and a set of

negative sample drug pairs. Drug pairs in the positive sample are supposed to be safe for

consumption as they do not adversely interact with each other. Conversely, the negative

sample consists of drug pairs that would be unsafe for prescription as they would adversely

interact with one another. Using such drug pairs from both the positive and negative sample in
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the experiment, results were obtained by computing their similarity ratio based on the feature

vectors. If the similarity ratio was above the threshold value, the drug pair is similar. A correct

prediction of the results with the positive sample dataset yielded a true positive result.

6.1.1 Experiment Results from Statistical Model

In this model, the tf*idf was used in computing similarity ratio of each drug pair in the dataset.

Table 6.1 shows the results for the pairs of drugs taken from the positive sample dataset.

Similarly, Table 6.2 shows the results obtained with the drug pairs from the negative dataset,

where the drug pairs are supposed to be dissimilar.

Table 6.3 shows the results when similar and dissimilar datasets were applied to our model

for attributes from “Overview”, “Professional” and “Side-effects”.

After computing the similarity ratio of drug pairs, different cut-off values of θ were used to

decide if the drug pair is similar. For a given value of θ, the number of correct predictions

for the dataset that was supposed to be similar (true positives) and dissimilar (true negatives)

was counted. If the similarity ratio was above θ, it was considered “similar”, otherwise it was

considered to be “dissimilar”. For example, from the “Professional” attributes, there were 13

and 23 correct predictions from the similar and dissimilar datasets respectively.

Table 6.4 shows the F -score obtained for a range of values for θ, applied for each of the

drug properties “Overview”, “Professional” and “Side-effects”. For example, a θ of 0.45 is used

as a threshold to compute the recall, precision and F -score for features gathered from the

“Professional” attribute as the maximum value of F -score occurs at this value.

Figure 6.1 shows the recall, precision and F -score achieved with drug attributes gathered

from “Overview”, “Professional” and “Side-effects”. As indicated in Figure 6.1, the recall rate

of 96% was achieved from drug attributes obtained from “Side-effects”, showing that our

model performed much better than other methods of prediction. In contrast, the work by [138]

achieved 48.5% with predictions based on the inhibition properties of drugs in the knowledge

base.

From the F -score of each attribute, a weightage was computed in proportion to the

respective Fmax. In our experiment, Fmax for “Overview” was 0.6 and the total Fmax for the

three attributes was 1.93, so the tf ∗ idf for “Overview” will be weighted by a factor of 0.6/1.93
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Overview Professional Side-effects Normalised
Recall 0.79 0.54 0.96 0.68
Precision 0.79 0.93 0.53 0.70
F -score 0.79 0.68 0.69 0.69
True Positive 19 13 23 23
True Negative 19 23 4 56
False Positive 5 1 20 10
False Negative 5 11 1 11

Table 6.3: Results based on different attributes of the drug pairs

Overview Professional Side-effects
0

0.2

0.4

0.6

0.8

1

Recall Precision F -score

Figure 6.1: Performance comparison against
different drug attributes
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θ Overview Professional Side-effects
0.45 0.60 0.60 0.67
0.48 0.61 0.56 0.66
0.50 0.60 0.57 0.67
0.53 0.56 0.51 0.68
0.55 0.53 0.52 0.69
0.58 0.51 0.54 0.69
0.60 0.54 0.52 0.68
0.63 0.56 0.46 0.73
0.65 0.53 0.44 0.70

Table 6.4: F -score at different threshold values of θ

Attribute Fmax Weight
Overview 0.60 0.31
Professional 0.60 0.31
Side-effect 0.73 0.38
Total 1.93 1.00

Table 6.5: Weights to normalise feature vectors

which is 0.31. The weights of the other attributes were computed in a similar manner and the

values are shown in Table 6.5. By combining the normalised feature vectors for all the three

attributes, an aggregated similar ratio was obtained for each drug pair.

In the same manner, different F -score values were obtained at different threshold levels

by counting the number of true positives and true negatives produced from the model. The

last column of Table 6.3 shows the results based on the aggregated similar ratio obtained from

the normalised feature vectors. In terms of accuracy, the percentage of correct predictions

combining both the similar and dissimilar predictions, our system comes out at 79% compared

to 69% where drug predictions were based on the relationship between drug targets [155].

6.1.2 Experiment Results from Side-effect Model

Utilising the same dataset as the statistical model, the experiment was conducted using

information on side-effects of the drug. Table 6.6 and Table 6.7 show the results for positive

and negative drug pairs respectively. The feature vectors used for computing the similarity

ratio were the row matrices as described in Section 4.3. Figure 6.2 shows the precision-recall

curve and Figure 6.3 shows the ROC curve.
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ID1 Drug i ID2 Drug j Sim(i, j)

DB00331 Metformin DB01211 Clarithromycin 0.254
DB00316 Acetaminophen DB01050 Ibuprofen 0.165
DB00749 Etodolac DB00784 Mefenam 0.28
DB00573 Fenoprofen DB00605 Sulindac 0.385
DB00328 Indomethacin DB00461 Nabumeton 0.262
DB01009 Ketoprofen DB01050 Ibuprofen 0.487
DB00784 Mefenam DB01050 Ibuprofen 0.427
DB00784 Mefenam DB00788 Naproxen 0.502
DB00916 Metronidazole DB01190 clindamycin 0.118
DB00788 Naproxen DB00814 Meloxicam 0.404
DB00991 Oxaprozin DB01009 Ketoprofen 0.388
DB00554 Piroxicam DB00573 Fenoprofen 0.37
DB00605 Sulindac DB00749 Etodolac 0.261
DB00500 Tolmetin DB00554 Piroxicam 0.38
DB00193 Tramadol DB00316 Acetaminophen 0.085
DB00207 Azithromycin DB00438 Ceftazidime 0.13
DB00586 Diclofenac DB00316 Acetaminophen 0.096

Table 6.6: Side-effect model: results from positive drug pairs
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Figure 6.2: Side-effect model: precision-recall curve
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ID1 Drug i ID2 Drug j Sim(i,j)
DB00945 Aspirin DB00078 Ibritumomab 0.276
DB01050 Ibuprofen DB00078 Ibritumomab 0.329
DB01050 Ibuprofen DB00369 Cidofovir 0.155
DB01050 Ibuprofen DB05528 Mipomersen 0.194
DB01050 Ibuprofen DB08880 Teriflunomid 0.317
DB01050 Ibuprofen DB08896 Regorafenib 0.203
DB01050 Ibuprofen DB06605 Apixaban 0.281
DB00945 Aspirin DB08880 Teriflunomid 0.242
DB01050 Ibuprofen DB08901 Ponatinib 0.231
DB00945 Aspirin DB00300 Tenofovir 0.055
DB00945 Aspirin DB00563 Methotrexate 0.254
DB01050 Ibuprofen DB00300 Tenofovir 0.038
DB01050 Ibuprofen DB01254 Dasatinib 0.233
DB00788 Naproxen DB06228 Rivaroxaban 0.082
DB00788 Naproxen DB00563 Methotrexate 0.191
DB00788 Naproxen DB00465 Ketorolac 0.027

Table 6.7: Side-effect model: results from negative drug pairs

AUC 0.71
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Figure 6.3: Side-effect model: ROC curve

From Figure 6.2, it can be seen that when the precision was high, the recall was low and

vice-versa. Although most of the drug pairs selected as similar were correct, resulting in a

high precision rate, a large portion of similar pairs from the positive dataset were not identified,

resulting in a low recall rate. In fact, once the recall rate reached a low of around 30%, the

precision rate hit a perfect value, which means there was no false positive drug pairs in the

predicted set, though very few from the positive sample were identified correctly by the model.

To factor in the true negatives, Figure 6.3 shows the ROC curve which is a plot of the true

positive rate against the false positive rate. The closer the curve is to the top left, the better the
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performance is, as the area between the curve and the x-axis is higher.

6.1.3 Experiment Results from Adverse Network Model

With this model, the information on the set of drugs which adversely interact with the drug pair

was represented on a graph. The nodes refer to the drug while the edges refer to the level

of interaction, which is categorised as major, moderate and minor. In this experiment, the set

ID1 Drug i ID2 Drug j Major Combined
DB00916 Metronidazole DB01211 Clarithromycin 0.099 0.247
DB01060 Amoxicillin DB00415 Ampicillin 0.9 0.782
DB01050 Ibuprofen DB01060 Amoxicillin 0.188 0.138
DB00682 Warfarin DB01035 Procainamide 0.155 0.237
DB00682 Warfarin DB00390 Digoxin 0.054 0.363
DB00682 Warfarin DB01076 Atorvastatin 0.166 0.45
DB00331 Metformin DB01211 Clarithromycin 0.038 0.278
DB00316 Acetaminophen DB01050 Ibuprofen 0.312 0.233
DB00945 Aspirin DB01060 Amoxicillin 0.185 0.137
DB00749 Etodolac DB00784 Mefenamic acid 0.996 0.977
DB00573 Fenoprofen DB00605 Sulindac 0.978 0.987
DB01050 Ibuprofen DB00328 Indomethacin 0.978 0.988
DB00554 Piroxicam DB00573 Fenoprofen 0.996 0.975
DB00605 Sulindac DB00749 Etodolac 0.978 0.992
DB00500 Tolmetin DB00554 Piroxicam 0.996 0.977
DB00188 Bortezomib DB00072 Trastuzumab 0.73 0.432
DB00515 Cisplatin DB00531 Cyclophosphamide 0.653 0.549

Table 6.8: Adverse network model: sample results from similar drug pairs

of interactive drugs for each drug in the drug pair was compared by examining the number of

common paths that link the common drugs together.

Table 6.8 and Table 6.9 show the results of the experiment performed on the respective

similar and dissimilar drug pairs. Figure 6.4 shows the ROC plot with the distribution of the

F -scores shown in Figure 6.5. When finding the common paths between sets of interacting

drugs, the model performed better if only the set of interacting drugs were limited to those

of major interaction. When the set of major interacting drugs was combined with drugs at

other levels of interaction (minor and moderate), the performance deteriorated due to noise

introduced into the additional nodes. However, at very low threshold values below 0.2, the

F -score is higher for the combined mode of drug interaction as the impact of noise was not
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prominent enough to affect the performance. Hence, more drug pairs are classified correctly

when the levels of interaction are combined. It is also interesting to note from Figure 6.5 that

the maximum F -score occurs at a threshold value of around 0.5. This implies that this value

can be used to maximise the performance of prediction when classifying a drug pair as similar

or dissimilar.

ID1 Drug i ID2 Drug j Major Combined
DB01050 Ibuprofen DB08827 Lomitapid 0.118 0.275
DB00945 Aspirin DB06605 Pixaban 0.373 0.518
DB01050 Ibuprofen DB08896 Regorafenib 0.5 0.493
DB01050 Ibuprofen DB06605 Apixaban 0.358 0.441
DB00945 Aspirin DB08880 Teriflunomid 0.157 0.301
DB01050 Ibuprofen DB08901 Ponatinib 0.459 0.433
DB00945 Aspirin DB08896 Regorafenib 0.468 0.565
DB00945 Aspirin DB08901 Ponatinib 0.43 0.49
DB01050 Ibuprofen DB01254 Dasatinib 0.319 0.399
DB00945 Aspirin DB06228 Rivaroxaban 0.382 0.526
DB00945 Aspirin DB01254 Dasatinib 0.33 0.45
DB00945 Aspirin DB00864 Tacrolimu 0.143 0.373
DB01050 Ibuprofen DB00864 Tacrolimu 0.128 0.32
DB00945 Aspirin DB01050 Ibuprofen 0.869 0.802
DB00788 Naproxen DB00300 Tenofovir 0.252 0.293
DB00316 Acetaminophen DB08880 Teriflunomid 0.097 0.21

Table 6.9: Adverse network model: sample results from dissimilar drug pairs
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Figure 6.4: Adverse network model: ROC curve
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Figure 6.5: Adverse network model: F -score

6.1.4 Experiment Results from Word Embedding Model

Tables 6.10 and 6.11 show the sample results of similarity ratios for drug pairs that are similar

and drug pairs that are dissimilar respectively with the word embedding model.

ID1 Drug i ID2 Drug j Sim(i,j)
DB00331 Metformin DB01211 Clarithromycin 0.5599
DB00316 Acetaminophen DB01050 Ibuprofen 0.6965
DB00573 Fenoprofen DB00605 Sulindac 0.8529
DB00328 Indomethacin DB00461 Nabumetone 0.7704
DB01009 Ketoprofen DB01050 Ibuprofen 0.6855
DB00916 Metronidazole DB01190 Clindamycin 0.8012
DB00788 Naproxen DB00814 Meloxicam 0.5902
DB00991 Oxaprozin DB01009 Ketoprofen 0.7573
DB00554 Piroxicam DB00573 Fenoprofen 0.7875
DB00605 Sulindac DB00749 Etodolac 0.8246
DB00500 Tolmetin DB00554 Piroxicam 0.7985
DB00193 Tramadol DB00316 Acetaminophen 0.6350
DB00586 Diclofenac DB00316 Acetaminophen 0.7820

Table 6.10: Word embedding model: sample results from similar drug pairs

With the similarity ratios for the different drug pairs, the performance as to how accurately

the model can predict the similarity of the drug pair is computed. At different threshold values

of the similarity ratio, different F -scores were obtained. For example if the threshold chosen
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ID1 Drug i ID2 Drug j Sim(i,j)
DB00945 Aspirin DB00078 Ibritumomab 0.2750
DB01050 Ibuprofen DB00078 Ibritumomab 0.1750
DB00945 Aspirin DB00369 Cidofovir 0.5074
DB01050 Ibuprofen DB05528 Mipomersen 0.2933
DB01050 Ibuprofen DB08880 Teriflunomid 0.2372
DB00945 Aspirin DB06605 Apixaban 0.4866
DB00945 Aspirin DB00932 Tipranavir 0.6071
DB01050 Ibuprofen DB08896 Regorafenib 0.2629
DB01050 Ibuprofen DB06605 Apixaban 0.2754
DB00945 Aspirin DB08880 Teriflunomid 0.3594
DB01050 Ibuprofen DB08901 Ponatinib 0.2327
DB00945 Aspirin DB00300 Tenofovir 0.5354
DB00945 Aspirin DB00563 Methotrex 0.6750
DB01050 Ibuprofen DB00300 Tenofovir 0.4575
DB01050 Ibuprofen DB01254 Dasatinib 0.2426
DB00788 Naproxen DB06228 Rivaroxaban 0.3980
DB00788 Naproxen DB00465 Ketorolac 0.6367

Table 6.11: Word embedding model: sample results from dissimilar drug pairs

was 0.3, then the similarity ratios that were above 0.3 in Table 6.10 were considered true

positive, while those below 0.3 in Table 6.11 were considered true negatives. The plot of true

positive rate against false positive rate is shown in the next section to compare the results with

other models. At a threshold of 0.5, Table 6.12 shows the confusion matrix which include the

values for computing the F -score.

Window Size=4 Window Size=2

Recall 0.85 0.88

Precision 0.67 0.93

F -score 0.75 0.64

True Positive 35 36

True Negative 31 5

False Positive 17 36

False Negative 6 5

Table 6.12: Performance of word embedding model at layer size=16

Experiment using TAC2018 dataset

Another experiment was conducted using dataset similar to the additional baseline model

[161] to allow for a fairer comparison. Tables 6.13 and 6.14 show an extract of results from
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similar and dissimilar drug-pairs.

ID1 Drug i ID2 Drug j Sim(i,j)
DB01118 Amiodarone DB00584 Enalapril 0.5282
DB00820 Tadalafil DB00201 Caffeine 0.5007
DB00640 Adenosine DB00502 Haloperidol 0.6297
DB00841 Dobutamine DB00975 Dipyridamole 0.6954
DB00063 Eptifibatide DB06402 Telavancin 0.6314
DB00187 Esmolol DB00368 Norepinephrine 0.7024
DB08816 Ticagrelor DB00208 Ticlopidine 0.8281
DB00765 Metyrosine DB01203 Nadolrtan 0.8441
DB00727 Nitroglycerin DB00091 Cyclosporine 0.5386
DB00177 Valsartan DB00966 Telmisartan 0.8441
DB06228 Xarelto DB01356 Lithium 0.5773

Table 6.13: Sample results from similar drug pairs

ID1 Drug i ID2 Drug j Sim(i,j)
DB00640 Adenosine DB00277 Theophylline 0.1650
DB01118 Amiodarone DB01356 Lithium 0.1421
DB00841 Dobutamine DB00325 Nitroprusside 0.1447
DB00584 Enalapril DB00877 Sirolimus 0.3890
DB00584 Enalapril DB01590 Everolimus 0.2833
DB00063 Eptifibatide DB01109 Heparin 0.1852
DB00695 Furosemide DB00364 Sucralfate 0.1860
DB00695 Furosemide DB00903 Ethacrynic acid 0.1460
DB00765 Metyrosine DB00502 Haloperidol 0.1960
DB00727 Nitroglycerin DB01109 Heparin 0.1960
DB08816 Ticagrelor DB00227 Lovastatin 0.1465
DB08816 Ticagrelor DB00641 Simvastatin 0.1587
DB06212 Tolvaptan DB00035 Desmopressin 0.1049
DB00177 Valsartan DB00384 Triamterene 0.1944
DB06228 Xarelto DB01225 Enoxaparin 0.1420

Table 6.14: Sample results from dissimilar drug pairs

It can be seen that the similarity ratios for drug pairs in Table 6.13 are generally higher that

those in Table 6.14. This supports the hypothesis that similar drug pairs have higher similar

ratios. By classifying those drug pairs from 6.13 with similarity ratio above threshold value of

0.5 as ’similar’, the number of true positives can be computed. Likewise, those drug pairs from

Table 6.14 with similarity ratio above threshold value of 0.5 are classified as false positives.

At this threshold value, the F-score of 0.85 was achieved. By varying the threshold values,

different true positive values and false positive values can be obtained.
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Figure 6.6: Word embedding model with TAC2018 dataset: ROC Curve

A plot of the true positive rate against the false positive rate is shown in Figure 6.6 which

shows an AUC value of 0.89%.

6.2 Discussions

The experimental results support the hypothesis that similar drug pairs have a higher similarity

ratio compared to dissimilar pairs. This theoretical finding has been applied in clinical systems

to benefit healthcare professionals during drug prescription. Such a CDSS is the result of the

experimental findings through the various models. The discussion that follows compares the

performance between the various models and also with the baseline models.

6.2.1 Comparing Adverse Network Model with Word Embedding model

Table 6.15 shows the results obtained from individual models by running the experiment with

the two sets of drug pairs. The word embedding model had a higher F -score in predicting

positive drug pairs, hence leading to the higher recall rate of 0.85 compared to 0.61 for

the adverse network model. In contrast, it had a lower precision rate (0.67 against 0.94),

which measured the fraction of positive records that were accurately predicted. This was

due to an increase in the false predictions (number of false positives). As the true positives

increase, the number of positive pairs that were not correctly predicted (false negatives)
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decreases, resulting in an increase in the recall rate. When common paths for those drugs

in adverse interaction with the original set of interactive drugs were included, the F -score

dropped drastically compared to the case when only the original set of interactive drugs were

considered. As expected, the performance deteriorated when additional attributes of adverse

interactions, such as minor and moderate interactions, were introduced. However, due to fewer

possible paths when only major interactions are considered, the threshold occurs sooner,

where beyond that, there were no true positives obtained in the experiment, which explains

the unavailability of the F -score when the cut-off was over 0.6. With the word embedding

Threshold Adverse Network Word Embedding
r=1 r=1 r=2 r=2 w=2 w=4 w=4
(Major) (All) (Major) (All) L=16 L=16 L=8

0.1 0.55 0.61 0.52 0.70 0.67 0.63 0.65
0.2 0.51 0.55 0.45 0.59 0.67 0.64 0.65
0.3 0.57 0.42 0.41 0.49 0.67 0.71 0.66
0.4 0.68 0.44 0.40 0.44 0.66 0.74 0.68
0.5 0.74 0.43 0.47 0.36 0.64 0.75 0.71
0.6 0.74 0.43 - 0.35 0.61 0.71 0.70
0.7 0.71 0.41 - 0.38 0.51 0.62 0.74
0.8 0.68 0.39 - 0.34 0.31 0.36 0.60
0.9 0.67 0.39 - - - - -

Table 6.15: F -score distribution

model, F -score was at a maximum at a layer size of 16. Performance deteriorated when the

layer size was decreased since important information from the drug corpus was lost. Window

size also affected the F -score. Since the number of words before and after the target word

was decreased, the quality of the training model was adversely affected, hence the drop in

performance with a smaller window size.
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Figure 6.7: AUC for adverse network and word embedding models

Since precision does not factor in the correct negative predictions within the drug pairs,

(true negatives), we attempt to assess this performance by plotting the true positive rate

tpr against the false positive rate fpr to obtain the receiver operating characteristic (ROC)

curve [33]. With this plot, the area under curve (AUC) can be used to further determine the

performance of the model in a more comprehensive manner. A higher AUC indicated a better

performance [19]. The AUC for the word embedding model was 0.85 compared with that for

the network model which is 0.61 (Figure 6.7). When minor and moderate interactions were

also included in considering the number of common paths within the drug pair, it was noted

from the ROC that the AUC was less than 0.5. This is due to the noise introduced into the

experiment with the additional paths, which does not aid performance.

6.2.2 Comparing Statistical Model with Word Embedding model

Comparison of the statistical and the word embedding approach at different threshold values

showed that the latter performed better (Figure 6.8). An interesting comparison between the

results obtained from the statistical approach and word embedding approach is noted. With

the same dataset, the F -score obtained from the statistical approach was 0.52 compared

with 0.68 using the deep learning approach. At different threshold values of θ, results are

obtained and compared for the two different approaches. With the common dataset used for

both methods, results show that the Word2Vec approach performed better than the statistical
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approach (Figure 6.8). This was expected as the former approach in computing similarity was
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Figure 6.8: Performance comparison of statistical and word embedding models

to gather the term frequency from the text describing the drugs. In the latter approach, feature

vectors used to find the similarity were obtained from closely related words. To illustrate the

conceptual framework of this study, the same model can be used to decide if the drug is

suitable for prescription. Based on the overall similarity from the three properties of the drug

pair, the system can detect if the drug is similar to the drugs that the patient is allergic to.

This approach highlights the usefulness of our framework where knowledge generated from

the prediction layer can be applied to the presentation layer and become useful to the user, in

this case, as a decision support tool for the healthcare professional. This novel strategy is in

line with the aim of the study: allowing us to support the dentist with the right prescription by

ensuring the drug is not in adverse relationship with the drugs the patient is taking, and also

dissimilar to the drugs the patient is allergic to.

6.2.3 Comparing with Baseline Models

In terms of accuracy, which indicates the percentage of correct predictions taking into

consideration both the similar and dissimilar predictions, the adverse network model achieved

82% when only immediate neighbours with major interactions are considered. This is superior

to the baseline model from Tari(2010) which is 77.7% [138] and Yan et al.(2013) which

achieved 69% [155]. One factor that adversely affected the performance of these baseline
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models was the way information was retrieved from the textual description associated with

the drug pair. As information used by the baseline models included genetic structures which

very often are embedded in tables and figures, these could not be easily detected [87] and

thus affected the results of the study. This is aggravated with the models attempting to parse

for semantic information on biological entities like induction of enzymes. MeSH is not used

in the experiment as it does not consistently link drugs to diseases and other conditions

[123]. Nevertheless, to ensure a fair comparison, an experiment with the official dataset

from Text Analysis Conference (TAC) 2018, which contains gold standard annotations from

the National Library of Medicine and the U.S Food and Drug Administration1, is used for the

word-embedding model. When compared to the baseline model by Zhang [161] which yielded

a F -score of 0.73, our work achieved a F -score of 0.85. It can also be observed that with a

dedicated dataset from TAC2018, the AUC improved from 85% to 89% (Figure 6.6).

Using the top ten drug interactive pairs from a work done by Rohani et al. [114]

does not produce satisfactory result when using online checkers. For example, MIMS

(Monthly Index of Medical Specialties), a classic interactive checker which doctors and

dentists have been using for over half a century, was not able to report on any interactions

for the ten pairs of drugs in Table 6.16.

Drug ID Drug ID
DB00642 Pemetrexed DB01331 Cefoxitin
DB00642 Pemetrexed DB01060 Amoxicillin
DB00633 Dexmedetomidine DB01183 Naloxone
DB00633 Dexmedetomidine DB00361 Vinorelbine
DB00535 Cefdinir DB00373 Timolol
DB01236 Sevoflurane DB01586 Ursodeoxycholic acid
DB01236 Sevoflurane DB00415 Ampicillin
DB00742 Mannitol DB00441 Gemcitabine
DB00585 Nizatidine DB01577 Methamphetamine
DB01136 Carvedilol DB00952 Naratriptan

Table 6.16: Top ten DDI’s from [114]

The same goes with Medscape2, another common online drug interaction checker. In

contrast, the prototype predicted a similarity ratio of less than 60% for the majority of the ten

pairs. As a lower ratio shows a higher chance of adverse interaction, this shows the attractive

performance of our prototype.

Although the approach adopted in the experiment performs better even with similar dataset

used by the baseline model by [161], it will be interesting to compare the performance

1https://bionlp.nlm.nih.gov/tac2018druginteractions/trainingFiles.zip (Accessed 16 Jul 2020).
2https://reference.medscape.com/drug-interactionchecker (Accessed 14 Jul 2020).
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when other datasets are used for the experiment. As mentioned under Future Work

(See Section 8.3), comparison of performance can be done in future with other common

datasets like PubMed.

6.3 Sensitivity Study

Experimental parameters were varied to find the combination that yielded the best

performance. These parameters included the proximity distance from the root node and the

relationship between the nodes in the adverse network model. Word size and layer size were

also varied in the word embedding model. As shown in Table 6.17, the adverse network model

Property Promixity Recall Precision Accuracy F -score

Major only 1 0.61 0.94 0.82 0.74
2 0.34 0.75 0.60 0.47

Combined 1 0.30 0.74 0.57 0.43
2 0.34 0.38 0.37 0.36

Table 6.17: Effect of proximity and nodes properties on performance of the adverse network
model

performed best by only considering the major interaction between nodes in the immediate

neighbourhood of each drug in the drug pair. Table 6.18 shows the performance of the word

Window Layer Recall Precision Accuracy F -score
size size

2 8 1.00 0.49 0.52 0.66
2 16 0.98 0.49 0.53 0.66
4 8 0.98 0.56 0.63 0.71
4 16 0.85 0.67 0.74 0.75

Table 6.18: Influence on performance by training parameters

embedding model with varying window sizes and layer sizes.
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Figure 6.9: Effect of Word2Vec parameters on performance

Changing the window size affected the performance significantly. This is shown in Figure

6.9. Since a smaller number of words before and after the target word was used during training,

it is expected that the probability of a word-match with the drug pair during the experiment

would be lower, hence the drop in performance. Changing the layer size had minimal impact

on the performance. The model performed best at a window size of 4 and a layer size of 16.

6.4 Summary

Chapter 6 presented and discussed the experimental results for the various models in

extracting feature vectors to determine the similarity of a drug pair. The results were obtained

by running the experiment with positive and negative drug pairs. The models in the experiment

used information from the knowledge layer to build feature vectors to enable the similarity ratio

to be computed. The model that used the word embedding method for building feature vectors

performed best with a F -score of 0.75. This was due to the use of the relationships between

words instead of word frequency for computing the similarity ratio of the drug pair. It was also

found that the performance of the network model was sensitive to the number of paths used.

The experimental results support the hypothesis that similar drug pairs have a higher

similarity ratio than dissimilar pairs. These findings have already made an impact on the

creation of CDSS which has contributed to the efficient prescription of drugs by healthcare
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professionals. The next chapter illustrates such a system by combining the clinical history of

the patient in terms of drug allergies and current medications.
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Chapter 7

Clinical Deployment

As mentioned in Section 1.3, the aim of the research is to assist the healthcare professional to

ensure that the drug to be prescribed is safe for the patient in terms of adverse interactions and

allergies. Chapter 7 shows how the framework described in the thesis is being implemented for

clinical use. To ensure the user finds it relevant and useful, additional features are presented

to the user depending on the specific drugs being prescribed. Hence, some of the interactive

behaviours of common drugs used in the dental clinic that influence the design of the prototype

will also be described. The results of a survey on dentists regarding ease of use of the system

will also be reported.

7.1 Design of Prototype

In connection with the three-layer framework, the prototype system is a means to allow the

results of the research models to be visualised and implemented for use by the healthcare

professional to prescribe drugs based on the current drugs that the patient is taking and the

drug allergies that the patient may have. It is assumed that the healthcare professional does

not prescribe drugs that the patient is currently taking. Hence, the system to be described

belongs to the presentation layer within the conceptual framework described in Section 3.1.

Within the patient profile, medical condition is excluded as it is not as common and crucial
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compared to the drugs that the patient is taking and drugs that the patient has allergy. Hence

only the first two tuples are taken into consideration. This prototype is a web-based product

to be used within a clinical environment. The users are healthcare professionals and clinic

assistants. Since this is a data-centric product, a database is required to store the data. Based

on the results from the empirical experiments reported in Chapter 6, the word embedding

model (Section 4.5) was employed to build the feature vectors from the knowledge base. This

model was used within the prediction algorithm to determine the similarity ratio of a drug pair.

As described in Chapter 4, similarity ratio of the drug pair was obtained from the vectors that

represent words most related to each drug.

User input

CDSS output

Prediction algorithm

DrugBank

Presentation Layer

Prediction Layer

Knowledge Layer

Figure 7.1: Mapping of prototype to the three-layer framework

The main engine of the prototype lies in the prediction algorithm as shown in Algorithm

3. The prediction algorithm, which resides within the prediction layer (Figure 7.1), presents

the results to the presentation layer. At the same time, it also requires information from the

presentation layer associated with the drugs to be prescribed, the drugs that the patient is

taking and the drugs that the patient is allergic to. Besides the information related to the drugs

which is stored in DrugBank in the knowledge layer, additional information on usual dosages

prescribed when using the prototype is also stored (Table 7.1). Such information will increase

user-friendliness and adoption of the system. A more detailed description of common drugs

used in the dental clinic is explained in Section 7.2.

In order for the prediction algorithm to determine if the drug pair is safe for prescription,

similarity ratio was computed based on the feature vectors generated from the word embedding

model (Section 4.5). These feature vectors were obtained in the same manner as described

in Section 5.3.4. With the vectors obtained for each drug pair, similarity ratio can be computed
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for the drug pair.

Referring to Algorithm 3, there were two crucial tests to determine if the drug is safe for

prescription.

input : Let Dp be the set of prescription drugs;
dj be the medicine to be prescribed by the dentist;
di is the medicine the patient is currently taking;
dg is the medicine the patient is allergic to;

output: Recommended prescription

Let β be flag for drug allergy;
Let δ be flag for adverse relationship of drug pair;
Let θ be threshold of similarity for drug pair di and dj ;
Initialise δ to false and β to false;
Create default candidate set that belongs to same class as drugj ;
Let recommended drug dr be drug from candidate set;
while δ is false or β is false do

dj ← dr;
while there are more drugs in drug allergy set do

if dj belongs to same class dg then
β = false;
break from loop;

end
end
while there are more drugs in drug taking set do

find Sim(di, dj);
if Sim(di, dj) ≤ θ then

δ = false;
break from loop;

end
end
if (δ == false ) or (β == false) then

get dr from next drug in candidate set;
end
if there are no more items in candidate set then

break and exit from testing for δ,β;
end

end
display recommended drug dr.

Algorithm 3: Prediction Algorithm for personalised prescription support

The first test was to check if the drug to be prescribed belongs to the same group of drugs

which the patient is allergic to. To do so, the algorithm used the information in the knowledge

layer to determine which group the drug to be prescribed belongs to.

The second test used the word embedding model to check the similarity between the drug

to be prescribed and the drug that patient is currently taking. If there was an adverse drug

interaction, a candidate list of drugs with a similarity ratio above the threshold specified by the
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user was displayed. This condition uses the hypothesis of the research which is supported by

the results that a similar drug pairs has a higher similarity ratio. Hence the drug pairs below

the threshold value were deemed to be in an adverse relationship and were not be shown

to the user. The process repeats until a drug was found to satisfy both tests. The algorithm

terminated once the list of candidate drugs was exhausted or a drug was found.

In order to enhance user adoption, the prototype incorporated additional features within the

presentation layer to alert the user if certain conditions of the drug were met. For example,

if a painkiller was prescribed for a child or an elderly patient, the system gave an alert of the

dosage limitation to avoid over dosage. The following section attempts to highlight some of the

features associated with the common drugs used in the dental clinic.

7.2 Common Drugs in Dental Clinics

The number of drugs to be prescribed within a CDSS in a dental clinic is small compared to a

medical clinic. However, it is still important for the dentist to be aware of the different groups of

drugs available and the way the system suggests and responds to the user’s query. This will

ensure that the results from the system can be understood in a better perspective.

The approach taken in the design of the system considered the patient’s current

medications and drug allergies. Additional information related to common drugs used in the

dental clinic were included in the CDSS to maximise the usability of the system. These can be

grouped into the following four main classes [54]:

• antimicrobials: antibiotics used to treat infections that may result after dental treatment;

e.g. penicillin, metronidazole, clindamycin

• analgesics: relief of toothache or pain following dental treatment, e.g. ibuprofen, aspirin

• corticosteroids: relief of oral discomfort and swelling, e.g. betamethasone

• anxiolytics: management of anxiety during dental treatment, e.g. diazepam and

temazepam
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Name ID Class
Anti-bacterial drugs

beta lactams - penicillin
Dicloxacillin DB00485 Penicillinase resistant penicillins
Amoxicillin DB01060 Aminopenicillins
Ampicillin DB00415 Aminopenicillin
beta lactams - cephalosporins

Cephalexin DB00567 First generation cephalosporins
lincosamides

Clindamycin DB01190 Lincomycin derivatives
Lincomycin DB01627 Lincomycin derivatives
nitroimidazoles

Metronidazole DB00916 Amebicides
Tinidazole DB00911 Amebicides
tetracyclines

Doxycycline DB00254 Miscellaneous antimalarials
Anti-fungal drugs
Fluconazole DB00196 Azole antifungals
Itraconazole DB01167 Azole antifungals
Miconazole DB01110 Topical antifungals
Amphotericin B DB00681 Polyenes
Nystatin DB00646 Polyenes

Anti-viral drugs
Penciclovir DB00299 Topical antivirals
Famciclovir DB00426 Purine nucleosides
Aciclovir DB00787 Topical antihyper
Valaciclovir DB00577 Purine nucleosides

Table 7.2: Common antimicrobial drugs

7.2.1 Antimicrobials

Antimicrobials are commonly used after surgical procedures such as placement of dental

implants and gum treatment [133]. While active treatment is usually required when patients

have an infection, the dentist will still prescribe this drug to provide relief from pain due to

the infections pending the design of the treatment plan. It should be noted that adverse

drug interaction may take place as a result of unnecessary prescription of antimicrobial drug,

depending on what other drug the patient is taking.

Table 7.2 shows common antimicrobial drugs used by the dentist. They consist of

anti-bacterial drugs, anti-fungal drugs and anti-viral drugs. Groups within anti-bacterial drugs

are:

• beta lactams

• glycopeptides
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• lincosamides

• nitroimidazoles

• tetracyclines

Penicillin and its variants (e.g. amoxicillin) is a very common drug prescribed [62], and is also

a very common drug allergy.

M Microbiology guides therapy wherever possible
I Indications are evidence based
N Narrowest spectrum required
D Dosage appropriate to the site and type of infection
M Minimise duration of therapy
E Ensure mono-therapy in most cases

Table 7.3: Antimicrobial creed

It is thus given special attention in the decision support system. Users are alerted to the

protocol of prescribing antibiotics commonly known as the MINDME creed (Table 7.3) 1, which

involves choosing the antibiotics with the narrowest spectrum for an appropriate of time at an

appropriate dosage.

It should be noted that penicillin belongs to the beta lactams group. Hence in the prototype,

when the search engine encountered penicillin as a drug allergy, all other drugs belonging to

the beta lactams group should also be avoided. Properties of these drugs in the knowledge

base were also manually annotated to ensure higher accuracy when processing drug rankings

in the CDSS.

Other important messages generated by the system were:

• Amoxicillin and clavulanate should not be prescribed together as it can caused diarrhea

which occur more frequently than with amoxicillin alone. But combining amoxicillin and

clavulanate is sometimes preferred over amoxicillin alone for stronger infections because

clavulanate prevents the bacteria inactivating the amoxicillin.

• Clindamycin should not be given intravenously unless necessary to avoid arrhythmias as

it is well absorbed orally.

• Roxithromycin is rarely used unless patient is allergic to penicillin.

1https://www.nps.org.au/news/antibiotic-resistance-in-australia-here-and-now (Accessed 12 Mar 2019).
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• Doxycycline is the preferred drug within the tetrayclines group.

• Avoid applying topical aciclovir and penciclovir to mucous membranes as they may irritate

the patient

Since adverse effects on the elderly is common with this group of drugs, such additional

feature is incorporated in the prototype design described in the previous section. This is crucial

as safe prescription is essential in preventing morbidity and mortality [38]. Since it is common

for geriatric patients to be taking more than one kind of drugs, the prototype will issue a warning

when patients above 65 years old are prescribed anti-bacterial drugs.

7.2.2 Analgesics

Analgesics are used for pain relief, which is an important consideration in the clinical workflow

of a dental clinic [109]. Three common groups in this class are:

Non-steroidal anti-inflammatory drugs (NSAIDs) This group of painkiller drugs is the

most commonly used drugs for pain relief. Since the majority of toothache is inflammatory in

origin, NSAIDs is a popular choice to treat acute dental pain. Hence, in the deployment of the

CDSS, priority is given to this group of drugs in the ranking list when suggesting alternative

drugs. Since the effect is dose-related, a warning is also given to ensure only the required

dosage is presribed. The need to prescribe this drug should be assessed carefully especially

among the elderly as they have a higher risk to adverse effects. Hence attention is drawn to

the user of the system whenever this group of drug is prescribed for the elderly.

Paracetamol Paracetamol is generally considered safe, and often used to reduce the

required dosage of NSAIDs, thus minimising the adverse effects that comes with NSAIDs.

Since this is a common drug, the system will give a warning to the dentist to ensure that

the prescription of this drug does not result in a overdose, which can be life threatening. The

optimal dosage for children below 12 years old is 15mg/kg every four to six hours and not

exceeding 60mg per day. For adults, the recommended dosage is 500mg to 1000mg every

four to six hours with no more than 4g in 24 hours2.

In reviews covering 72 randomised controlled trials, majority of those trials involving up to

2Australian Department of Health Therapeutic Goods Administration
https://www.tga.gov.au/community-qa/recommended-paracetamol-doses (Accessed 15 May 2019).
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System Adverese effects
Gastrointestinal Constipation

Nausea
Vomiting

Cutaneous Pruritus
Sweating

Neurologic Sedation/fatigue
Headache
Delirium/confusion
Clouded vision
Dizziness

Autonomic Xerostomia
Bladder dysfunction (eg, urinary retention)
postural hypotension

Table 7.4: Adverse effect of opioids [7,102]

Name ID Class
Codeine DB00318 Antitussives
Acetaminophen DB00316 Miscellaneous analgesics
Ibuprofen DB01050 Nonsteroidal anti-inflammatory agents
Oxycodone DB00497 Narcotic analgesics
Morphine DB00295 Narcotic analgesics
Tramadol DB00193 Narcotic analgesics

Table 7.5: Common analgesic drugs

100 children, conclusions were either unclear, inconclusive or there was no opinion regarding

the safety and efficacy of paracetamol and ibuprofen [112]. Thus to avoid potential adverse

effects due to overdose, it is best to take precautions when assessing the need for prescribing

this drug.

Opioids Opioids are used to treat severe pain, especially pain after surgery. The common

drugs used in the dental clinic within this group include codeine, morphine, oxycodone and

tramadol. An alert to the user will be triggered once the dentist prescribe this drug to ensure a

balance between pain management and the clinical burden of prescribing this drug. In fact they

are the most commonly misused prescription drugs according to a report from the Substance

Abuse and Mental Health Service Administration [91]. A list of side-effects is shown in Table

7.4, and is made available by the system whenever the dentist prescribes drugs belonging to

this group.

Table 7.5 shows the common painkillers used in the dental clinic.
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7.2.3 Corticosteroids

Corticosteroids are used extensively in managing many oral diseases due to their excellent

anti-inflammatory and immuno-modulatory effects [119].

They have a significant impact on postoperative pain reduction at 4 to 6 hours and 12 hours

following endodontic treatment [93]. Although this drug can be used in the tooth, topically

on the oral mucosa or systemically, intra-dental or topical intra-oral use is more common to

minimise adverse effects [106], as well as for ease of administration and cost effectiveness

[16].

Name ID Strength
High potency
Betamethasone DB00443 0.1%
Mometasone DB00764 0.1%
Moderate potency
Triamcinolone
acetonideMethylprednisolone
aceponate

DB00959 0.1%

Clobetasone DB01013 0.05%
Desonide DB01260 0.05%
Low potency
Hydrocortisone acetate DB00741 0.5-1%

Table 7.6: Properties of topical corticosteriods ointment used on the oral mucosa [130]

Given the potent effect of corticosteroids, the system will show a help message (Table 7.6)

to the user once any drug within this group is recommended by the prototype. This is to warn

the dentist of the associated risks so that a well-informed decision can be made to weigh the

benefits of the therapeutic power against the potential risks.

In addition, the user will be prompted with these important points to consider when

prescribing corticosteroids:

• To avoid over-dosage, start with the lowest potency at the lowest dose and as infrequent

as possible.

• When using corticosteroids, avoid cotton tips and fibrous materials to minimise damage

to fragile atrophic mucosa. It is best applied with the pad of a washed finger.

• As absorption is considerably rapid, there is no need to avoid food and drink for a

prolonged period.
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7.2.4 Anxiolytics

Anxiolytics have the ability to relieve anxiety due to its hypnotic effect.

Common anxiolytics in the dental clinic are diazepam and temazepam. These two drugs

belong to the benzodiazepines group where prescription is not uncommon in dental clinics [32].

Table 7.7 shows some of the drugs within this group as extracted from Drugbank. The user

Name ID Class
Diazepam DB00829 Benzodiazepine anticonvulsants
Oxazepam DB00842 Benzodiazepines
Temazepam DB00231 Benzodiazepines

Table 7.7: Common anxiolytics

will be alerted with these messages when any drug in this group is prescribed:

• This drug may affect the ability to drive and operate machinery safely.

• Avoid prescribing this drug to patients with myasthenia gravis or severe respiratory or

hepatic impairment.

7.3 Point-of-Care Scenario

In this scenario, a typical clinical flow is described to illustrate how the prototype can be

adopted and used in a dental clinic. It is assumed that the system does not claim to treat

the patient’s medical condition - it only attempts to check for possible side-effects of the drug

to be prescribed with the condition. For example, if the patient has a cardiovascular condition,

the system will not consider the therapeutic effect of the drug to be prescribed, but it should

consider the adverse effects it may have in the setting of the cardiovascular condition. The

system in this scenario also assumes that the patient does not have a cross-allergy to the

drugs they are currently taking. This is a safe assumption since the fact that patient can

attend for dental treatment shows that the patient can function normally and is not impaired

by the adverse effects of the drugs. Furthermore, the drugs that the patient is currently taking

is assumed to be prescribed by a medical doctor who should already have considered the

patient’s medical conditions and known drug allergies.

Since the deployment based on the results of the study is a decision support system, the
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user has the liberty to overwrite the system’s suggestions as the function of the system is

limited to assisting the user in checking for possible adverse reactions between the drug to be

prescribed and the drugs that patient is currently taking. The system assumes that information

regarding the patient’s current medications and drug allergies is accurate and up-to-date.

The scenario comes in two different events which are common within a typical clinical flow

of a dental clinic: patient registration and drug prescription.

7.3.1 Patient Registration

Consider when a patient attends for consultation. Before any treatment is performed, the

dentist updates the patient’s profile in regards to the medical conditions, the drugs the patient

is currently taking and the drugs the patient is allergic to. There are no changes to the

previous record with regards to drug allergies (penicillin); however, the patient has recently

been diagnosed with a heart condition, meriting an update of the profile with regards to the

medical conditions and the drugs the patient is currently taking (warfarin).

Figure 7.2: Registering patient into the system

Once the user is signed into the system, the user can either register a new patient or search
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for the records of an existing patient (Figure 7.2). The patient’s drug profile is shown beneath

the demographic record. The user can either edit the records or click on the Prescribe Drug

button to begin prescribing a drug for the patient. Note that in this case the patient is taking

warfarin and is allergic to penicillin.

7.3.2 Drug Prescription

During treatment, it is decided that the patient requires an antibiotic. In this case, the dentist

may consider the commonly prescribed amoxicillin.

At the drug prescription screen (Figure 7.3), the user may enter any part of the drug name

and the system will display all the drugs with names containing the string of words entered by

the user. For example, if the user enters Amoxi, the drug amoxicillin will appear. As indicated

in Algorithm 3, not only should amoxicillin be dissimilar to penicillin, it should also not adversely

interact with warfarin. The next screen (Figure 7.4) shows the list of suggested drugs which

take into consideration the patient’s current medications and drug allergies. The number in

the list of suggested drugs will increase as the threshold for similarity is lowered. In this

example, the drugs are at least 70% similar to the prescribed drug amoxicillin and 50% similar

to warfarin, the drug that the patient is currently taking.

On the other hand, if the dentist is considering the prescription of penciclovir, the model

will evaluate and produce another list of suggested drugs. Notice that the threshold for the

similarity ratio with warfarin is now raised to 90% to reduce the number of suggest ed drugs

(Figure 7.5). On receiving the suggestion of the alternative drug, it is then for the dentist

to decide whether this is an appropriate drug to prescribe after further consideration of the

duration and dosage of the patient’s current drugs.

7.4 Dentists’ Adoption

One of the unique features of this research is the clinical translation where the conceptual

framework is deployed as a CDSS for drug prescription. Dentists at the clinic were involved

during the design stage of the prototype. They have also been using it whenever they need to

query on the status of the prescription. This section describes the usefulness of the system

from the dentist’s point of view.
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A survey was performed with six dentists, with questions pertaining to:

• Perceived Usefulness

• Perceived Ease of Use

• User Satisfaction

• Attributes of Usability

Participants were aware of their obligations, benefits and risks as outlined in Appendix A.

Strongly Disagree Neutral Agree Strongly

Disagree Agree

Perceived Usefulness 0 2 7 19 7

Perceived Ease of Use 0 2 3 12 19

User Satisfaction 0 1 8 14 13

Attributes of Usability 0 6 4 10 10

Table 7.8: Responses to CDSS Survey

They were given a list of questions where they have to respond on a Likert scale [134] (1

being “Strongly Disagree” to 5 being “Strongly Agree”). The full list of questions is listed in

Appendix B. The survey was conducted according to ethical guidelines approved by the ethics

committee3, University of Southern Queensland.

Table 7.8 summarises the responses for each category. Most of the dentists surveyed

welcomed the idea of a CDSS considering the patient’s current medications and drug allergies.

Negative responses related to suggestions for improvement of the user interface due to

navigation difficulties.

Responses grouping the “Strongly Disagree/Disagree” responses as ’Negative’ and

“Agree/Strongly Agree ” responses as ’Positive’ are shown in Figure 7.6. The majority are

positive with the features of the CDSS.
3Human Research Ethics Approval Number: H19REA262
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Figure 7.6: Summary of response

The positive response is expected since the prototype provided users with additional

information on drug prescription. The user is no longer at the mercy of online tools to search

if a drug is safe for prescription. Instead of going to random sites on the web to search

if a drug is safe, this prototype allows the user to get more information on the similarity

ratio between the drug to be prescribed and the current drug that the patient is taking. It

also ensures that the patient does not have allergy to the drug that is prescribed. Those

online checker programs will just merely check the interaction between two drugs. Hence this

prototype has a positive impact on the clinical workflow, increasing the efficiency and meeting

the prescription needs of the dentist at point-of-care. Besides the superior of the performance

of the prototype when compared with other online checkers describe in Section 6.2.3, a special

feature of the prototype is also the ability to adjust the number of candidate drugs for the user’s

consideration. Such features are not found in any of the five common DDI software programs,

notwithstanding the fact that none of these common programs are ideal [65]. Moreover, the

prototype developed as a result of this research has the ability to check for interaction with

multiple drugs. This is especially useful with the growing number of patients who are taking

multiple drugs. However, there is no such resource currently available for such situations [42].

7.5 Prototype Design - Mobile Learning

Another example of clinical application for the three-layer conceptual model is in the area of

mobile learning associated with drug prescription. The design of this proposed mobile learning

application aimed to make learning about drug prescription enjoyable and engaging. It can be

easily developed and deployed on a wide variety of portable devices and platforms.
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Figure 7.7: System flow

The architecture of the prototype followed the CDSS described in the previous section. As

shown in Figure 7.1 the main processing engine resided in the prediction layer.

In the case of the mobile learning application, the prediction algorithm consists of the

system flow shown in Figure 7.7.

The algorithm communicates with the user through the presentation layer of the three-layer

framework. The user will be presented with a scenario and a prompt to enter a drug for
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(a) Scenario for user to response (b) Error display

Figure 7.8: User mobile interface

prescription (Figure 7.8a). Based on the user response, the processing engine uses feature

vectors generated from the word-embedding model to determine if the drug to be prescribed

is acceptable (Section 4.5). With these feature vectors, the mobile application will compute

the similarity ratio and decide if the drug is appropriate for prescription. If the response is

inappropriate, the user can try again (Figure 7.8b). They can also choose to skip to another

scenario.

7.6 Mobile Learning Scenario

Most, if not all, medical students have access to a mobile device such as a smart-phone or

a tablet. Hence, the mobile learning application can be easily applied for use by educators

to train students in enhancing their knowledge on drug interactions and prescription. The

educator can design different combinations of medical conditions, current medications and

drug allergies which are stored in the patient-dependent medical profile within the presentation

layer. The scenario below shows how mobile learning on smart devices can be engaging and

easy [2]. A flow chart of the vignette is shown in Figure 7.9, illustrating a walk-through of the

mobile application by a medical student.
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Figure 7.9: Flowchart of learning vignette

Winnie is a 24-year-old medical student at a reputable university in Queensland. She is

on her daily train journey to class, and has just finished catching up on yesterday’s lecture

recordings. One of the lecturers had strongly recommended a mobile learning application on

the student portal.

Being a motivated student preparing for her examinations in a week, this thought flashed

through her mind:

“Well, let’s see how useful this app is. I guess I’m all caught up on study for now, so I have
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some time to give this a go.”

She downloads the application and opens it. There is a range of topics available. Since

she had just finished listening to a pharmacology lecture, she chooses to revise that.

In the first scenario, a 31-year-old female patient presents with a simple urinary tract

infection. The relevant medical history consists of moderate acne, for which she is taking

a tetracycline medication, and a penicillin allergy. The task for this scenario is to prescribe an

appropriate antibiotic for the urinary tract infection.

Winnie thought back to the lecture she had just finished listening to, where there was heavy

emphasis on careful prescription of drugs to prevent adverse outcomes. Based on that, her

answer to this scenario should be a drug that is not in the penicillin class, since this patient has

a penicillin allergy. She enters “trimethoprim” and bingo! The screen goes “ping!” in approval.

A pop-up explains that this is within acceptable range for prescription because trimethoprim is

in a different class to penicillin -

“yes, I thought of that!” -

and has a low probability of interacting with drugs from the tetracycline class -

“oops, I totally didn’t consider her acne medication.”

Just at this moment, another “ping” sounds - she has arrived at the university station. With

a pity, she terminated the practice and took a quick glance at the final screen of the app on the

mobile – she secured 4 marks out of 5 in the play, and had an average score of 4.3 out of 5

so far, marking a 20% improvement since last week. A bar chart also displayed, illustrating the

improvements she had made along with the last few weeks.

“Not bad!”, she thought,

“Just need to work a bit harder!”

She winded up her earphones and popped her phone in her bag. Getting the right answer

has given her a nice confidence boost to start off the day, and it’s also reminded her about how

she can improve on her thought processes for drug prescription. Maybe she would give the

app another go on the ride home.
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7.7 Summary

This chapter has illustrated how the three-layer framework is being adopted for use in the

CDSS as proposed in the thesis. Two prototypes were described: one to aid drug prescription

in the dental clinic at point-of-care, and the other for mobile learning of drug prescription. The

main processing engine is part of the prediction layer where it obtains the user response from

the presentation layer. The results are also communicated to the user via the presentation

layer. In order to enhance the usability of the CDSS, interactive behaviours of some common

drugs used in the dental clinic have also been described. A typical clinical scenario was also

included to illustrate how the system is being deployed in the dental clinic at point-of-care. The

results of the survey indicated that the dentists found the prototype easy to use.
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Chapter 8

Conclusions

With the methodology and research problem introduced in Chapter 1, the thesis has devised

the novel approach of the 3-layer framework in predicting drug similarity, resulting in the

deployment of a CDSS which dentists have found useful and easy to use. The entire research

process from conceptual framework to experiments are summarised in this chapter. The

impact of the research findings are also discussed together with some suggestions for future

work.

8.1 Summary of the Research

The number of drugs in drug databases is constantly expanding with novel drugs appearing

on the market each year. As no healthcare professional can be expected to recall all the drugs

available, let alone potential drug-drug interactions, problems can arise when prescribing drugs

to patients, especially those with multiple medical conditions taking multiple medications.

Examining possible solutions by performing a survey of existing decision support systems

found that ease of use was a significant factor in increasing adoption rate by users. At the

same time, the CDSS should integrate with the patient’s existing medical profile for enhanced

efficiency in drug prescription at point-of-care.
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In order to create an appropriate CDSS, a conceptual three-layer framework was introduced

in the thesis. The innovative framework enables a system to be easily designed and

implemented. Each layer can be developed and maintained as an independent tier. The

proposed approach also ensures the interfacing between each layer conforms to standards

to enable smooth linkage between them. The knowledge layer stores the domain knowledge

which describes the properties of the drugs. In order to create the knowledge layer, raw data

from bio-medical corpus is selected, pre-processed and transformed into structured tables.

These processes align with the beginning stages of a typical knowledge discovery process.

With the raw data processed, different approaches have been introduced to represent the

drugs. These approaches include finding out how frequent the words occur (tf*idf ) and

how likely those words would occur. These approaches in drug representations enable the

discovery of drug interactions. Such information makes it possible to determine potential

adverse interactions of a drug pair.

The prediction layer then performs the extraction of feature vectors to allow the similarity

of a drug pair to be computed. Four methods of feature vector extraction are described in

the thesis: the statistical model, the side-effect model, the adverse network model and the

word embedding model. These models use data mining and evaluation which aims to discover

patterns and meanings from the knowledge base. The statistical model and side-effect model

use tf*idf information on the text that describes the drugs. The adverse network model

examines the number of common drugs between a drug pair where there is an adverse

interaction. The larger the number of common paths between a drug pair, the higher the

similarity ratio, which means the less chance of an adverse interaction. The word embedding

model is based on the expectation that a higher set of common terms are used to describe a

pair of similar drugs. Similarity ratio of a drug pair is obtained from the vectors that represent

the words most related to each drug. These models can be readily applied to a CDSS to assist

dentist in their drug prescription at point-of-care.

Empirical experiments were conducted to evaluate the performance of each model. From

the results, the best approach was used for deployment at the presentation layer. The

evaluation and visualisation process also align with the last stages of the knowledge discovery

process. In the presentation layer, the drug to be prescribed is presented to the user, with

consideration of the drugs the patient is taking and the drugs the patient is allergic to.

The word embedding model residing within the prediction layer of the conceptual framework

proposed in the thesis has also been used in the deployment of a CDSS. The deployment

allow the results of the research to be visualised and implemented for use by the healthcare
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professional to prescribe drugs based on the current drugs that the patient is taking and the

drug allergies that the patient may have. To enhance the usability of the CDSS, additional alerts

are incorporated into the system which consider some of the special features of common drugs

used in the dental clinic. A survey on dentist regarding the ease of use of the system shows

that a majority are positive with the features of the CDSS.

The three-layer framework in this research can also be easily extended for use in medical

clinics, and to supplement information relating to new drugs in pharmaceutical research. The

findings of the research that similar drug pairs have higher similarity ratio has also been applied

to the development of a mobile application to facilitate medical education. Medical students can

use such applications on their smartphone any time and anywhere to practice drug prescription

for different patient profiles. Both learners and educators will benefit from the engaging and

enriching nature of such an application.

8.2 Contributions and Significance

This thesis has made several theoretical and practical contributions. Traditionally, chemical

structures were used in studying and analysing interactions between drugs. The approach

used in the thesis uses information extracted from bio-medical corpus to build feature vectors.

The discovery of DDI by performing data mining on drug repositories has contributed to

strategic insights into new research model to enhance the field of pharmacovigilance. With

feature vectors obtained from the drug repository, similarity ratios are computed for each drug

pair and can be used to determine how interactive the drug pair is. The three-layer innovative

approach allows multiple models to be adopted in the extraction of information and building of

feature vectors. Through data mining method to discover the semantics of the text, the feature

vectors are obtained for computing the similarity ratio of a drug pair. The empirical results show

better performance than related baseline models using similar drug corpus. The findings have

high impact on pharmaceutical research relating to the use of word embedding for discovering

drug properties. The discovery of DDI obtained through feature vectors has an impact on the

design of efficient computational workflow for in silico drug repurposing.

With the word embedding approach, personalised CDSS has been implemented for use

in dental clinics. Experimental results support the hypothesis that similar drug pairs have a

higher similarity ratio compared to dissimilar pairs. While creating the different models, this

thesis has demonstrated that paths linking the common set of interacting drugs of a drug pair
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can also be used to build feature vectors to arrive at a similarity ratio for the drug pair.

The findings of the research have also been presented at major workshops and

conferences and published in peer-reviewed journals.

These theoretical contributions also lead to practical contributions in terms of possible

implementations for any user needing to prescribe drugs. Although there are many systems

that provide support in terms of drug interactions, the framework provided in the thesis

enables the consideration of the patient’s medical profile, hence allowing the implementation

of a personalised decision support system for use in dental clinics. A user-friendly interface

will allow more dentists to adopt this system to assist them in drug prescription within their

clinical work-flow. The outcome of the knowledge discovery on drug interactions has provided

a platform for further research on data mining and machine learning methods within the

medical domain which will transform the clinical work-flow for the healthcare professional at

point-of-care.

8.3 Future Work

A number of areas for future work have been identified. The methodology adopted in the

current work provides a heuristic approach where feature vectors are extracted for deciding

if a drug pair is similar. Although text-mining approaches using the network model and word

embedding models are used in the prediction layer, other extensions to the experiment in this

research can be explored. One of these tools is GloVe1, an approach combining the local word

embedding method of Word2Vec with the global statistics of matrix factorisation techniques.

Although both medical and dental practitioners need to deal with the same pool of patients

who take multiple drugs, the number of drugs to be prescribed by the dentist is much lesser

compared to the medical practitioner. Hence, in terms of implementation, the design of the

CDSS can be easily amended to cater to an extended set of prescribed drugs, allowing the

system to be used within medical clinics as well.

Besides using different prediction methods, different knowledge resources can be used

to conduct the experiment as more open-source repositories are made available. Since the

theoretical approaches used within the prediction layer of the three-layer framework is based
1https://nlp.stanford.edu/projects/glove/ (Accessed 12 Jan 2020).

142

https://nlp.stanford.edu/projects/glove/


on DrugBank, it will be interesting to conduct the experiment with alternative resources such

as PubMed2 and compare the results to evaluate if it is more efficient. The breakthrough

approach of prediction of an adverse interaction of a drug pair as discovered in the current

work through data mining has set the direction for future research in prediction of high-order

drug-drug interaction prediction.

8.4 Overall Conclusion

The study explores the novel use of various data mining approaches to obtain feature vectors

for the purpose of determining the similarity ratios of drug pairs. This results in a significant

contribution relating to the design of personalised clinical decision support systems for drug

prescription.

2http://bio.nlplab.org (Accessed 12 Jan 2020).
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Appendix A

Participation Information Sheet

Participant Information for USQ
Research Project Questionnaire

Project Details
Title of Project: Survey on Clinical Decision Support System
Human Research Ethics Approval Number: H19REA262

Research Team Contact Details

Principal Investigator: Supervisor Details
Mr Wee Goh Dr Xiaohui Tao
email: w0077925@umail.usq.edu.au xtao@usq.edu.au
Tel: +65 63447747 Tel: +61 7 4631 1576

Description
This evaluation is to gauge the usefulness and ease of use of a proposed clinical decision
support system to assist dental health professionals at point-of-care in the prescription of
medicine to patients. It is part of a research project in collaboration with the University
of Southern Queensland. The research team requests your assistance as you will be the
potential user of such a system in the dental clinic.
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Participation
Your participation will involve completion of about 20 survey questions pertaining to the
perceived usefulness, usability and user satisfaction. You will need to choose on a scale
of 1 to 5 (1 being “Strongly Disagree” and 5 being “Strongly Agree” and will take less than
10 minutes of your time. For example, in this question, you will circle one of the numbers
1,2,3,4 or 5:
Using the system in my job would increase my productivity: 1 2 3 4 5

Your participation in this project is entirely voluntary. If you do not wish to take part, you
are not obliged to. If you decide to take part and later change your mind, you are free to
withdraw from the project at any stage. If you wish to withdraw the response that you have
submitted, kindly inform me.
Your decision whether you take part, do not take part, or to take part and then withdraw,
will in no way impact your current or future relationship with the University of Southern
Queensland.

Expected Benefits
It is expected that the response collected will be used for possible upgrade of the system.
Trying out the system in order to answer the survey will also enable you to get familiar with
the functions and features provided by the system.

Risk
There are no risks associated with this participation except the occasional interruption
from patients or phone calls. In such a case, you can resume at another time at your
convenience.

Privacy and Confidentiality
All comments and responses will be treated confidentially unless required by law. Identity
of participants in the evaluation is not required and will not be requested. The responses
from all the participants will be compiled to gauge the overall usefulness of the system.
The extent of the usefulness and reliability of the system may be reported in journals,
conferences and thesis.
You may also request a copy of the survey results where the overall score will be computed
Any data collected as a part of this project will be stored securely as per University of
Southern Queensland’s Research Data Management policy.

Consent to Participate
The return of the completed questionnaire is accepted as an indication of your consent to
participate in this project.

Questions or Further Information about the Project
Please refer to the Research Team Contact Details at the top of the form to have any
questions answered or to request further information about this project.

Concerns or Complaints Regarding the Conduct of the Project
If you have any concerns or complaints about the ethical conduct of the project, you may
contact the University of Southern Queensland Manager of Research Integrity and Ethics
on +61 7 4631 1839 or email researchintegrity@usq.edu.au. The Manager of Research
Integrity and Ethics is not connected with the research project and can facilitate a resolution
to your concern in an unbiased manner.

Thank you for taking the time to help with this research project. Please keep this
sheet for your information.
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Appendix B

Survey Questions
Dear Participant, this evaluation is to gauge the usefulness and ease of use of a proposed
clinical decision support system to assist dental health professionals at point-of-care in the
prescription of medicine to patients. It is part of a research project in collaboration with the
University of Southern Queensland

Evaluation Procedures

1. Start the software system.

2. Register a new patient.

3. Specify the drug allergy and current drugs that the patient may be taking.

4. Experiment with the system by specifying the drug allergy and/or current drugs that
the patient is currently taking.

5. Evaluate the usefulness of the system by prescribing a drug that the patient usually
needs, like antibiotics.

6. Mark your response on the paper on a scale of 1 to 5, 1 being “Strongly Disagree”
and 5 being “Strongly Agree”.

7. Place the completed responses on the out tray beside the computer.

Results
The responses from all the dentists will be compiled and the results will be made available
through conferences and seminars

Privacy
Identity of participants in the evaluation is not required and will not be requested

Risk There are no risks associated with this participation except the occasional interruption
from patients or phone calls. In such a case, you can resume at another time at your
convenience
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1 2 3 4 5
Perceived Usefulness

1 Using the system in my job would enable me to accomplish
tasks more quickly

2 Using the system would improve my job performance
3 Using the system in my job would increase my productivity
4 Using the system would enhance my effectiveness on the

job
5 Using the system would make it easier to do my job
6 I find the system useful when I need to check if the drug to

be prescribed is appropriate
Perceived Ease of Use

1 Learning to operate the system is easy for me
2 I find it easy to get the system to do what I want it to do
3 My interaction with the system is clear and understandable
4 I find the system to be flexible to interact with
5 It would be easy for me to become skillful at using the

system
6 I find the system easy to use

User Satisfaction
1 I am satisfied with the way the system advises on the drug

that I prescribe
2 I feel confident in using the system
3 I find it easy to share the information with my patients
4 I can get the results quickly
5 The system enhances the quality of care for my patients
6 It would be easy for me to become skilful at using the

system
Attributes of Usability

1 It is easy to interact with the drug prescription system
2 The features enable me to decide if the drug is appropriate

for my patient
3 I find it easy to specify the medical profile of the patient
4 I found the various functions in this system were well

integrated
5 I think that I would like to use this system if made available
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