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Abstract
This review addresses the causes of observed climate variations across the industrial period, from1750 to
present. It focuses on long-termchanges, both in response to external forcing and to climate variability in
the ocean and atmosphere. A synthesis of results fromattribution studies based onpalaeoclimatic
reconstructions covering the recent few centuries to the 20th century, and instrumental data showshow
greenhouse gases began to causewarming since the beginning of industrialization, causing trends that are
attributable to greenhouse gases by 1900 inproxy-based temperature reconstructions. Their influence
increasedover time, dominating recent trends.However, other forcings have caused substantial
deviations from this emerging greenhousewarming trend: volcanic eruptions have caused strong cooling
following a period of unusually heavy activity, such as in the early 19th century; orwarmingduring
periods of lowactivity, such as in the early-to-mid 20th century. Anthropogenic aerosol forcingmost
likelymasked some global greenhousewarmingover the 20th century, especially since the accelerated
increase in sulphate aerosol emissions starting around1950. Based onmodelling and attribution studies,
aerosol forcinghas also influenced regional temperatures, caused long-termchanges inmonsoons and
imprinted onAtlantic variability.Multi-decadal variations in atmosphericmodes can also cause long-
termclimate variability, as apparent for the example of theNorthAtlanticOscillation, andhave
influencedAtlantic ocean variability. Long-termprecipitation changes aremoredifficult to attribute to
external forcing due to spatial sparseness of data andnoisiness of precipitation changes, but the observed
patternof precipitation response towarming fromstationdata supports climatemodel simulated changes
andwith it, predictions. The long-termwarminghas also led to significant differences indaily variability
as, for example, visible in longEuropean stationdata. Extreme events over thehistorical recordprovide
valuable samples of possible extreme events and theirmechanisms.

1. Introduction

Much of the research on climate change and climate
variability has focused on analyses of the second half of
the 20th century. This is highlighted by the conclusion
of the 5th Assessment Report (AR5) of the Intergo-
vernmental Panel on Climate Change (IPCC) that ‘it is
extremely likely that more than half of the observed
increase in global average surface temperature from
1951 to 2010was caused by the anthropogenic increase

in greenhouse gas concentrations and other anthro-
pogenic forcings together’ (Bindoff et al 2014). That
statement was supported by analyses using the full
instrumental time horizon, but results are clearer and
uncertainties better understood when focusing on the
past 60 years (see e.g. Gillett et al 2012, Jones et al
2013). However, some analyses focus on the entire
historical record or a large fraction of it, starting with
Hulme and Jones (1994) and Andronova and Schle-
singer (2000), and multiple analyses of the
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instrumental period are available. The IPCC report on
1.5 degrees of warming concluded, based on multiple
attribution analyses, that ‘Estimated anthropogenic
global warmingmatches the level of observedwarming
towithin±20% (likely range)’ (IPCC2018).

Much of the analysis of extreme events also focuses
on recent events, including attributing causes to
extreme events soon after they occurred (Stott et al
2016, 2018), but the historical and early instrumental
record contains a wealth of information on past events
that if used with caution can provide valuable samples
of possible events. Also, while decadal prediction tools
are tested on hindcasts of the recent past, some ana-
lyses suggest decadal changes in predictability and
hence biased results when limiting hindcasts to only a
few decades (O’Reilly et al 2017, Weisheimer et al
2017), again emphasising the benefit of using the full
record.

Focusing on the recent past has clear advantages:
observational data are much more complete and reli-
able, particularly over the satellite period when global
or near-global coverage emerged. In contrast, early
instrumental data show increasing gaps further back
in time (Morice et al 2012), and are affected by uncer-
tainty due to changing sea surface temperature (SST)
measurement practices (Thompson et al 2008,
Kennedy et al 2011a, 2011b, Morice et al 2012, Kent
et al 2016). However, a longer time horizon better con-
strains the response to forcing (Gillett et al 2012, Jones
et al 2013), and reduces spurious correlation between
forcings that can yield degenerate results. A longer
time horizon also provides a better sample of internal
climate variability, particularly of decadal modes. This
is important as a short sample can make it harder to
tease apart the contribution of variability generated
within the climate system and that occurring in
response to forcing, for example, in the case of the
Atlantic Multidecadal Variability (AMV; e.g.
Knight 2009, Ting et al 2009, Booth et al 2012, Tandon
and Kushner 2015, Undorf et al 2018a). Lastly, ana-
lyses of the instrumental period and the last millen-
nium overlap with some long instrumental records
stretching back into the 17th century (Manley 1974,
Rousseau 2015). Estimates of global temperature
based on palaeoclimatic data are spatially sparse, but
more evenly spaced across the globe (e.g. Crowley et al
2014). Some regional reconstructions successfully use
a combination of long historical records with proxy
information (Luterbacher et al 2004), yet the most
recent results attributing fluctuations to external for-
cing are based on analysis of either instrumental
data or proxy-based reconstructions (e.g. PAGES 2k
Consortium et al 2013), and the results have not been
brought together in a coherent framework.

Here we discuss causes of climate change and esti-
mates of climate variability over a longer time horizon,
stretching over the length of the instrumental global
data into the 19th century; and linking results to those
from analyses of the last millennium. For precipitation,

we focus on changes over the 20th century due to the
sparsity of earlier records and the need for better sam-
pling to record spatially inhomogeneous changes. We
also discuss the contribution to multidecadal trends by
variability generated within the climate system, both in
the atmosphere and ocean. For the latter topic we focus
on the Atlantic Sector due to better coverage back in
time. Specifically,weaddress the followingquestions:

(1) When did the response to greenhouse gases
emerge on hemispheric and global scales?

(2) What factors cause decadal and multidecadal
deviations from the greenhousewarming trend?

The paper briefly discusses methods and data, fol-
lowed by a review of causes of climate change over the
industrial period (section 3), a brief review of causes
and consequences of multidecadal climate variability
(section 4), and of related extremes (section 5) and
draws some conclusions and recommendations.

2.Data andmethods

Data sources become sparser and their quality worse
back in time, with observations largely limited to the
surfaceof theEarth.Griddedglobal instrumental surface
temperature data sets (Jones et al 2012, Morice et al
2012) presently stretch to 1850, with estimates of
uncertainty available that include both the effect of
sampling uncertainty and systematic changes in mea-
surement techniques, such as different types of buckets
(Folland andParker 1995).While the record is fairlywell
researched, issues continue to be discovered, such as an
inhomogeneity in SST data in the 1940s (Thompson
et al 2008); and ongoing offsets due to differences in
observing fleets (Chan and Huybers 2019). Long,
homogenized instrumental surface temperature records
go back to the 18th century for someEuropean locations
such as Milan, Stockholm, and Central England, resol-
ving daily variability (e.g. Parker et al 1992,Maugeri et al
2002,Moberg et al 2002), while theUSGlobalHistorical
Climatology Network dataset also contains a limited
number of long daily recordings (see e.g. Kenyon and
Hegerl 2008). Homogeneity can be an issue for long
stations. For example, there is a hot bias for sunny days
due to the lack of shielding of summer temperature
measurements before the invention of the Stevenson
screen in 1864 (Stevenson 1864, Böhm et al 2010,
Naylor 2019). There is considerable scope to extend the
instrumental record back in time, using long stations
andundigitized records (e.g. Brönnimann et al2019b).

Long-term gridded precipitation datasets (Zhang
et al 2007, Becker et al 2013, Harris et al 2014) are
sparse, particularly prior to themiddle of the 20th cen-
tury. Reconstructions are available for past hemi-
spheric and continental-scale temperature and to a
lesser extent also for drought (e.g. Luterbacher et al
2004, PAGES 2k Consortium et al 2013, Anchukaitis
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et al 2017, Steiger et al 2018). Also, sea ice data from the
early 20th century are being increasingly digitised,
allowing better reflection, for example, of the early
20th century sea ice retreat in data (Titchner and Ray-
ner 2014,Walsh et al 2017,Hegerl et al 2018).

Global coverage of the 3D atmosphere is available
from historical reanalyses that assimilate surface and
sea level pressure and, in some products,marine winds
(Compo et al 2011, Poli et al 2016, Laloyaux et al 2018).
These provide a dynamically consistent estimate of the
atmospheric state from 1851 to 2008, with updates in
preparation going back further. Changes in data sup-
port can introduce inhomogeneities in reanalyses over
time, hence trends have to be treated with caution (e.g.
Ferguson and Villarini 2012, Krueger et al 2012).
Inhomogeneities are less of a concern where analysis is
constrained to the response to well observed modes of
climate variability or to episodic forcing such as volca-
nic eruptions. Hence, with caution, the reanalyses can
inform on causes and dynamical links of past anoma-
lies. Reanalyses are now being pushed back into the
early industrial periodwhich, for example, has allowed
an estimate of the large-scale anomalies following the
eruption of Mount Tambora in 1815 (Brohan et al
2016). Data assimilation techniques are also used to
obtain 3D reconstructions further back in time (e.g.
Franke et al 2017, Tardif et al 2019).

Using early records in analysis ofmechanisms aswell
as detection and attribution requires careful treatment of
missing values and consideration of data coverage,
usually limiting the analysis to data-covered areas in both
observations and climate models. This avoids, at least to
some extent, introducing biases due to uneven distribu-
tion of data across the globe (e.g. limited coverage in high
latitudes, Cowtan et al 2015); and also circumvents rely-
ing on assumptions made in infilled datasets. Estimates
of data uncertainty are important in order to evaluate
how they translate into the uncertainty of specific find-
ings basedon these data (Morice et al2012).

Some of the results presented here rely on widely
used detection and attributionmethods. These have been
recently reviewed (e.g. in Bindoff et al 2014) and are only
briefly outlined here. The regression-based detection and
attribution method used here assumes that an observed
climate change y is regarded as a linear combination of
externally forced signals X and residual internal climate
variability u, where X is an m×n matrix with each of
them columns a separatefingerprint of dimensionn, that
captures the expected time-space pattern of change in
response to a combination of m individual forcings.
These include typically greenhouse gases, other anthro-
pogenic factors (such as aerosols) and natural forcing (Xi,
i=1..m=3) (e.g.Hasselmann1997,Ribes et al2013):

= + ( )y Xa u. 1

This equation assumes that forcings superimpose
linearly. Linearity has been queried, and does not apply
while under radiative imbalance (Goodwin 2018).

Also, feedbacks can change with the climate state. On
the other hand, the nonlinear effect of radiative
imbalance over the historical period should be small
outside the immediate aftermath of strong eruptions;
and swamped by large climate variability. Consis-
tently, linearity has been found appropriate for large-
scale changes in temperature across the historical
period (Shiogama et al 2013) and, along with a large
body of work, we assume it here. y represents the
observed record, usually after distilling it into a small-
dimensional space n. This can be done by truncating to
a limited number of Empirical Orthogonal Functions
(Hegerl et al 1996, Hasselmann 1997, Tett et al 1999)
or using only few spatial indicators such as global
mean temperature, hemispheric contrast and sum-
mer/winter contrast (Schurer et al 2018). The out-
come of the analysis is a vector of m scaling factors a
that adjusts the amplitudes of each fingerprint to best
match observations.

Fingerprints are usually derived from coupled cli-
mate model simulations, often by averaging across
simulations from multiple models in order to both
reduce noise from internal climate variability and to
average across model uncertainty (the multi-model
mean). Uncertainties in a are estimated by accounting
for the effect of climate variability on y, usually using
samples from climate model control simulations.
When the uncertainty range around a fingerprint’s
scaling factor ai is statistically separated from zero, the
fingerprint i is detectable, and where it is significantly
smaller or larger than ‘1’ the best-guess response in
observations is significantly smaller or larger than in
the models. X may contain noise if, for example, it
arises from averaging across a limited number of cli-
mate model simulations. In this case a total least
square regression may be applied (Allen and
Stott 2003), which also accounts for noise in X in the
calculation of a and its uncertainty. Also, different cli-
mate models may simulate a different response to for-
cing leading to uncertainty in X which can lead to
uncertainty not captured in standard methods (Han-
nart et al 2014, Schurer et al 2018). The latter study
found that the widespread practice of inflating (in the
specific case, by a factor of 2.6) the climate model var-
iance approximately removes overconfidence in
results for large-scale temperature, and so we apply it
here for simplicity.

Process studies from climate model simulations
can provide powerful evidence for how forcing may
have influenced climate, even if links cannot be
demonstrated in observations based on detection and
attribution, for example, in regions of low signal-to-
noise ratio. In section 3 we show some results for the
likely contribution of aerosols to regional climate
based onmodelling.

Another important cause of climatic fluctuations
is variability generated within the climate system,
either by atmospheric or ocean dynamics, or their
interaction. Detection and attribution work considers
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this variability generally as ‘noise’. However, some
approaches quantify the effect of modes of variability
directly, as is done for example using the Cold Ocean
Warm Land pattern (Wallace et al 1995). In the pre-
sent paper we give some examples showing how dec-
adal or multidecadal temperature fluctuations can
arise from (probably) random long-term tendencies in
the North Atlantic Oscillation (NAO) and the ocean
response to it.

3. Role of forcings in large-scale climate
change over the instrumental period

3.1.Observed and simulated global-scale changes in
temperature
The 19th century began as one of the coldest periods of
the last millennium, at least for the Northern Hemi-
sphere (see Masson-Delmotte et al 2013), following a
slightly warmer 18th century (figure 1). Some of the
coldest observed periods followed in the two years
after the powerful eruption of Mount Tambora in
1815 (Raible et al 2016). After that, temperatures began
to show a slow rise, interrupted by cooling induced by
volcanic eruptions in the 1830s (Brönnimann et al
2019a) and then the Krakatoa eruption in 1883 (see
figure 1). Global temperatures rose particularly rapidly
over the early 20th century, showing anomalous
warming from the 1920s through the 1940s (see
figure 1; and Hegerl et al 2018), before plateauing in
the 1950s and 60s, and beginning their strong ongoing
increase.

Much of this temperature variability has been dri-
ven by external forcing (figure 1): following a small dip
of CO2 in the Little Ice Age (Schmidt et al 2012,
Masson-Delmotte et al 2013), CO2 began to rise since
the beginning of industrialization along with other
greenhouse gases. The strongest increase in radiative
forcing by greenhouse gases occurred in the recent few
decades, an increase that is steadily continuing to date.
With the burning of fossil fuels, anthropogenic aero-
sols began to increase as well, with aerosol forcing esti-
mates peaking globally around 1980, although
emissions have continued increasing in South and East
Asia while decreasing in Europe and North America
since then.

Natural forcing has imposed decadal scale varia-
tions on the total forcing (figure 1): while global radia-
tive forcing by solar irradiance variations was quite
small, with an increase towards the mid-20th century
and a minimum in the 17th and early 19th centuries,
episodic volcanic eruptions caused periods of stronger
or weaker than average negative forcing. The largest
was the eruption of Mount Tambora in 1815, which
came shortly after an eruption of unknown origin in
1808 or 1809 (Guevara-Murua et al 2014, Cole-Dai
et al 2016, Raible et al 2016). A strongly smoothed ver-
sion of the total forcing (anthropogenic and natural

forcings combined) deviates from the anthropogenic
forcing substantially over some periods, most notably,
the period around the Tambora eruption, and the
mid-20th century. The natural forcing in the latter
period is largely due to a hiatus in volcanism. It has
been argued that volcanic eruptions only cause short-
term cooling. However, climate model simulations
show an extended cold period following the 1809/
Tambora period, with no single year in model simula-
tions withHadCM3, for example, reaching the average
of the 20 years prior to the eruptions up to the 1830s
(Schurer et al 2014), when another period of
volcanism kept temperature low until the 1840s
(Brönnimann et al 2019a). Equally, climate models
simulate long-term warming in periods with little vol-
canic forcing, such as the early 20th century (Hegerl
et al 2018). The climate model simulated response to
all forcings combined (multimodel mean, con-
catenated between Coupled Model Intercomparison
Project Phase 5 (CMIP5) and Paleoclimate Modelling
Intercomparison Project (PMIP) simulations, see
methods; figure 1(c)) closely follows the forcing and
replicates the observed and reconstructed global
temperature estimates largely within uncertainties.
Some studies have argued that the response to forcing
could account for more of the observed global varia-
bility if forcing uncertainty is taken into consideration
(Haustein et al 2019).

The observations deviate from the model mean
and range during some periods, the first of which is
1900–1910. This was a period of anomalously cold SST
conditions developing in the South Atlantic and
spreading northward (Hegerl et al 2018). Both long-
term homogeneous stations in southern Africa and
South America as well as ship data support the anom-
alously cold conditions during this period, which
clearly deserves more attention (see discussion of
ocean below). Observations are warmer than models
during the peak of the early 20th century warming
around 1940, which was particularly pronounced in
the Arctic and Atlantic sector (Brönnimann 2009,
Wood and Overland 2010, Hegerl et al 2018). The
most recent deviation between climate models and
observations occurred during the ‘hiatus’ of warming
from around 1998 to 2012 (figure 1(c); Lewandowsky
et al 2016, Yan et al 2016, Medhaug et al 2017) which
has since ended with global warming rapidly resuming
(Hu and Fedorov 2017).

The spatial pattern of observed trends (figure 2)
shows that both warming and cooling/flat periods can
show distinctly different spatial signatures. A trend
towards cool conditions in some regions prior to 1910
shows also relatively cool conditions in data covered
parts of the Southern Ocean. The early 20th century
warming emerges from this cold period (figure 2(b)),
which is equally strong or stronger over ocean and,
while it started with strong Arctic and North Atlantic
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warming (Hegerl et al 2018), it is relatively uniform for
the 1910–1950 trend. From1950 to 1980, observations
show a hemispherically asymmetric spatial trend pat-
tern, with more regions warming in the Southern
Hemisphere and some oceanic regions of cooling in
the Northern Hemisphere (figure 2(c)). From 1980
onwards, a strong warming emerges that is almost glo-
bal in nature with very strong trends (figure 2(d)).
Exceptions are the off-equatorial and tropical regions
of the central and eastern Pacific associated with the
transition to a negative Interdecadal PacificOscillation
phase (Zhang et al 1997, Power et al 1999) coincident
with the early-2000s hiatus (Kosaka and Xie 2013,
England et al 2014), and the high-latitude Southern
Ocean (Armour et al 2016, Jones et al 2016).

3.2. Causes of global-scale changes in temperature
What caused these spatially diverse long-term trends?
The similarity between simulated and observed/

reconstructed changes in figure 1 suggests a strong role
of external forcing. Detection and attributionmethods
are able to disentangle which of the forcings have
played key roles in observed changes, and which are
less important. Table 1 summarizes published global
and hemispheric scale detection and attribution
results from various timelines. Analysis of palaeocli-
matic records for hemispheric and global mean data
suggests that significant trends in response to green-
house gas increases can already be detected and
attributed by 1900, both across the Northern Hemi-
sphere and in some regions such as Europe (Hegerl
et al 2011, PAGES 2k Consortium et al 2013, Schurer
et al 2014). This result is based on an analysis that
captures the time evolution of hemispherically aver-
aged temperature from the 15th century (table 1) and
hence captures both the temperature response to a
sustained, small CO2 drop over parts of the Little Ice Age
(Koch et al 2019) and the response to the CO2 increase

Figure 1.External forcing compared to observed global temperature data. (a)Radiative forcing over the industrial period from IPCC
AR5 (Myhre et al 2013) for individual forcings (smoothed by a 3 year runningmean), and (b) decadally smoothed (11 year running
mean, followed by a 7 year runningmean; natural forcings centred on long-term average, 1750–2011) anthropogenic and combined
forcing over the industrial period. (c)Observed (Morice et al 2012) and reconstructed global temperature anomalies ([K], Neukom
et al 2019), as well asmulti-modelmean simulationswhich are generated bymerging 23 lastmillennium simulations from7models:
bcc-csm1-1(×1), CCSM4(×1), CESM1(×10), CSIRO-Mk3l(×3), GISS-E2-R(×3), HadCM3(×4),MPI-ESM-P(×1)with 109CMIP5
historical simulations from41models (seemethods), anomalies calculated from a 1961–1990 climatology. (d)Running 50 year trends
(trend calculated from timeseries smoothed by a 5 then 3 year running average, plotted against central time point, [K/50 yrs]) that
illustrate trends caused by individual forcings in twomodels (HadCM3 andCESM1) (thicker lines:multi-modelmean, thinner lines:
individual simulations).
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following industrialization.Abram et al (2016)also found
sustained warming in regional proxy-reconstructions
from the earlymid-19th century, consistent with climate
modelling.

However, volcanism is important over much of
the 19th century as well: figure 1(d) illustrates that in
models, the warming period up to the eruption of Kra-
katoa was in large parts a relaxation from a period of
heavy volcanism around the Mount Tambora erup-
tion (Brönnimann et al 2019a). From the 50 year trend
centred around 1860 onwards (ending around 1885,
figure 1(d)), climate models indicate that the warming
trend originating from the recovery after heavy vol-
canism is exceeded by the warming trend caused by
greenhouse gas increases. Detection and attribution
analyses (table 1) confirm detectable responses to both
forcings.

Analyses over the entire instrumental period
robustly detect the influence of greenhouse gases when
using fingerprints that are derived by averaging across
many available climate models. Results based on fin-
gerprints from individual models can vary more, with
separate detection of greenhouse gas responses in an
analysis simultaneously estimating natural, green-
house gas and aerosol forcing only in about half of the
models (Gillett et al 2013, Jones et al 2013, Ribes and
Terray 2013). However, integrating attribution results
acrossmodel uncertainty in a Bayesian analysis yields a
robustly detectable greenhouse gas signal even in the
presence of model uncertainty (Schurer et al 2018).

The response to other anthropogenic forcings, parti-
cularly from aerosols, is less clearly detectable unless
prior assumptions exclude very large or negative
responses (Schurer et al 2018) and their role in regio-
nal anomalies is discussed below (see also table 1;
Bindoff et al 2014).

Both for reconstructed palaeoclimate and climate
over the instrumental period, the response to natural
forcing (solar and volcanic combined) is robust across
studies, although the best estimate magnitude is only
about 70% of that in climate model simulations (see
also figure 3). Scaling factors in the top panel indicate
the best fit and uncertainty range of the magnitude of
the model simulated pattern to observations a in
equation (1). In instrumental data this slightly smaller
response to natural forcingmay, at least in part, be due
to the confounding effect of El Niño events in the later
20th century following eruptions which, when
accounted for, brings models and observations in clo-
ser agreement in attribution studies (Lehner et al
2016). A strong role for volcanism in decadal temper-
ature variability is confirmed in detection and attribu-
tion studies for the last millennium (table 1; see
Bindoff et al 2014, Schurer et al 2014) although again
the amplitude of detected changes appears smaller in
reconstructions than model simulations. Volcanism
has also been implicated in long-term hiatus and surge
events of global warming (Schurer et al 2015, Neukom
et al 2019).

Figure 2. Long-termmulti-year trends over the instrumental period [°Cper decade]. HadCRUT4 (Morice et al 2012) 3 year running
mean annualmean (November–October) trends over: (a) 1870–1910, (b) 1910–1950, (c) 1950–1980, and (d) 1980–2017. The 3 year
annualmeans are constructed from averagingNovember–April andMay–October anomalies, each smoothedwith a 3 year running
mean. Grey areas indicate regions where each overlapping 3 year segment does not contain at least one datapoint fromboth
November–April andMay–October. The slopes are stippledwhere significant at p<0.05 using a 2-tailed t-test, adjusted for
autocorrelation induced by the 3 year runningmean by increasing the regression standard error by a factor of 3, and by using 1
degree of freedom for every 3 years of length.
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Table 1.Example of detection and attribution results from the literature, starting from the lastmillennium (top) to instrumentally based (bottom). A detectable response in greenhouse gases is indicated by Y (at either the 5 or 10%
significance level), and ‘consistent’ refers to a scaling factor encompassing ‘1’, i.e. the average of the combination ofmodels used not needing to be rescaled tomatch observations. For analyses which have analysed individualmodels
separately we give the fraction ofmodels in which the forcing is detectable. Nat refers to natural forcing, OANT to anthropogenic forcing other than greenhouse gases, ANT to anthropogenic forcing combined.MMrefers to themulti
modelmean.

Paper Period/Exp Models Detection of greenhouse gas influence Detection of other forcings

PAGES 2kConsortium et al (2013), PAGES
2k-PMIP3 group (2015)

864–1840 PMIP3 Not attempted All forcings detectable inNHcontinents but not SH

1013–1989

1350–1840

Schurer et al (2013) 1400–1900,NH; reconstructions PMIP Y (most reconstructions, consistent) Nat generally detectable and consistent, best guess<1

Schurer et al (2014) 1450–1900NHmulti-reconst. HadCM3 Y Volc detectable, solar consistent but not significant

Hegerl et al (2011) 1500–1996, Europe only;

proxy+instrumental

3 lastmillennium

simulations

ANT∼det. inwinter and spring volc. Detectable in EPOCHanalysis, solar not robustly

detectable

Schurer et al (2018) 1862–2012 instrumental CMIP5 individualmodels Y (consistent) OANT close to detection;NATdetectable,∼0.7 but
consistent

Jones et al (2013) 1901–2010 CMIP5 individualmodels Y 8/16 cases Nat detectable 8/16

1906–2005 instrumental Y 8/15 andMMmean Nat detectable 8/15 andMMmean ; both:OANT

mostly not detectable in indiidual.models

Jones andKennedy (2017) 1906–2005 instrumental with uncertainty CMIP5MM Y small uncertainty All others combinedD

Gillett et al (2013) 1861–2010 CMIP5 and individual

models

Y 7/9 and Nat detectable in 7/9 andMMMwithmodel

uncertainty

MMmean includingmodel uncertainty OANTdetectable in 5/9 cases andMMMonlywhen

not includingmodel uncertainty

Ribes andTerray (2013) 1901–2010 CMIP5 and individual

models

Y 4/10 Nat detectable in 4/10 andOANTdetectable in 1/10

cases
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Only few studies are available that estimate the role
of solar forcing alone. Over the last five centuries,
reconstructions support only a moderate magnitude
of solar forcing (Schurer et al 2014), as do analyses of
the instrumental period based on formal attribution
(Stott et al 2003, Benestad and Schmidt 2009) and glo-
bal time series regression analyses (Folland et al 2018,
Lean 2018). Analysis also suggests a role of solar for-
cing in trends (figure 1(d)), although it is not sig-
nificant against internal variability in climate models
(indicated by the spread of simulations) yet may have
slightly influenced trends. The solar influence may be
stronger on regional climate where solar forcing may
influence modes of climate variability. For instance,
during solar minima, there appears to be an increased
likelihood of the negative phase of the NAO and
increased North Atlantic/Eurasian blocking fre-
quency (Lockwood et al 2010), linked with cold win-
ters in Europe and warm ones in Greenland (e.g.
Woollings et al 2010, Ineson et al 2011, Scaife et al
2013, Gray et al 2016). Possible effects have also been
found on equatorial Pacific SSTs, sea level pressure in
the Gulf of Alaska and the South Pacific, the strength
and location of tropical convergence zones, the
strength of the Indianmonsoon and the location of the
descending branch of the Walker circulation, impact-
ing on precipitation (Meehl et al 2009, Gray et al 2010,
Bindoff et al 2014, and references therein). These
hypothesized effects may either arise through SST
influences, or through solar influence on the strato-
sphere (Gray et al 2010), and remain uncertain.

Figure 3 shows the implications of detection and
attribution of greenhouse gas, other anthropogenic,
and natural forcings over the instrumental period on
causes of the trends over the periods shown in figure 2
(note that the results shown are from Schurer et al
(2018) but are qualitatively and quantitatively similar
to those in other studies, table 1). The attribution ana-
lysis is based on a multimodel mean fingerprint over
the instrumental period, with uncertainties enlarged
to avoid overconfidence (by increasing the variance of
the control simulation by a factor of 2.6, see methods
and Schurer et al 2018). It yields a well-constrained
greenhouse gas response that is consistent and close in
magnitude to the multi-model mean response in cli-
mate models. It also shows a detectable response to
natural forcing, which is slightly smaller in observa-
tions than in climate models (figure 1, yellow). The
response to other anthropogenic forcing is more
uncertain and depends on prior assumptions
(figure 3(a), the informative prior assumes no negative
scaling factors and decay at about 3, peaking at 1 while
the flat noninformative prior covers a −1 to +3
range).

These attribution results can be interpreted as
observation-based estimates of the contribution of
forcing to different periods, in a similar way that the
IPCC has estimated the greenhouse gas contribution
to the recent 60 years (Bindoff et al 2014). This is done

by inflating or deflating the multi-model mean forced
contribution to a period within the range of the esti-
mated scaling factors. Note that interpreting the
results of the long analysis over shorter segments car-
ries additional uncertainties in that errors in the time
evolution of the response may impact shorter periods,
yet average out over longer periods.Where this occurs,
uncertainties over the shorter period may be larger
than indicated by the scaling factor uncertainty only.

Results show that the observed cooling from 1870
to 1910 in observations (uncertainty in observed
change expressed in grey histogram,Morice et al 2012)
occurred despite a small greenhouse forced warming,
and appears to be due to a combination of internal cli-
mate variability, natural forcing (e.g. Mount Krakatoa
eruption) and aerosols. The noticeable contribution
by greenhouse gases is consistent with the early detec-
tion of greenhouse warming from proxy-based data
discussed above. This period shows stronger cooling
than simulated, consistent with the above discussed
period of anomalously cold SSTs in the very early 20th
century. The subsequent period (figure 3(c)) is domi-
nated by the early 20th century global warming trend.
The combined response to anthropogenic forcing
(purple) is smaller than the observed trend, indicating
a role of internal climate variability in the warming to
1950 (see also Hegerl et al 2018). The detection and
attribution results further suggests that the plateau in
observed trends from 1950 to 1980 occurred despite a
net positive anthropogenic forcing, which is a strong
greenhouse warming counteracted in large part by
very strong aerosol induced trends. The analysis indi-
cates that this net anthropogenic forcing was counter-
acted by slightly negative natural forcing (e.g. eruption
of Mount Agung). Subsequently, greenhouse gases
caused a strong warming trend from 1980 to 2012
(when CMIP5 simulations end); with the aerosol
influence weakening and largely counteracted (in best
estimate) by a slightly positive response to natural for-
cing, which is consistent with the eruption of El Chi-
chon in 1982, andMount Pinatubo in 1991 in the first
half of the period (see alsofigure 1(d)).

These results, particularly, the varying contrib-
ution of natural forcings to different decades across
the industrial periods as well as the early detectable
greenhouse gas influence illustrates the difficulty of
finding a suitable and ‘typical’ pre-industrial period
(Hawkins et al 2017, Schurer et al 2017): periods are
influenced differently by natural forcing, and CO2 has
been rising since 1750, following its enigmatic drop
(Koch et al 2019) around the Little Ice Age. Therefore
there is no constant and unambiguous preindustrial
background temperature. Figure 1 shows that the per-
iod 1850–1900 (which is frequently used as proxy for
the pre-industrial baseline due to the availability of
instrumental observations with some global-scale cov-
erage; Allen et al 2018) is a fairly stable climatic period
with only small trends superimposed on the
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anthropogenic forcing, which, however, by that time
had already caused awarming trend.

3.3. The role of anthropogenic aerosols in regional
changes
Model simulations and attribution results suggest that
aerosols have been playing a key role in shaping
regional climate, over the entire 20th century and
before. It has been argued that small aerosol perturba-
tions in early industrial time may have caused
substantial impacts in a less polluted atmosphere (e.g.
Carslaw et al 2013)—with potential consequences for
our best estimate of aerosol radiative forcing (Ste-
vens 2015, Kretzschmar et al 2017, Booth et al 2018).
This is, however, difficult to quantify as the natural
aerosol loading due to biomass burning and natural
sources is uncertain, as is the magnitude of aerosol-
cloud interactions and therefore the realistic nature of
their representation in models (e.g. Zelinka et al 2014,
Wilcox et al 2015, Toll et al 2017).

Long-term aerosol impacts on regional climate are
supported by climate modelling (figure 4). European

mean surface temperature, similar to global temper-
ature, shows a plateau in warming at the period of
strongest European and North American aerosol
emissions that is reflected in aerosol only simulations,
but not in greenhouse gas or natural only runs
(figure 4(a)). Furthermore, the observed daily temper-
ature range over Europe has decreased throughout
that time period, althoughwith quite strong variability
and data uncertainty. Comparison with surface solar
radiation (e.g. Wild et al 2007, Makowski et al 2008),
and single-forcing simulations (figure 4(b), Undorf
et al 2018b) suggest a contribution from anthro-
pogenic aerosols to this decrease. While the temper-
ature impact of aerosols is expected to have been
largest over their emission regions, and downstream
thereof (e.g. Shindell et al 2010), the global, hetero-
geneous patterns of temperature change simulated by
models (e.g. Shindell et al 2015, Wang et al 2016) sug-
gest relevant impact elsewhere, too. Aerosol impact on
other variables is mediated by the change in temper-
ature, as suggested for Arctic sea ice (e.g. Acosta
Navarro et al 2016, Mueller et al 2018), or by temper-
ature gradients, like for the inter-tropical convergence

Figure 3.Estimated contribution by forcing to observed changes across the instrumental record. This is based onHadCRUT4 surface
temperature datawith histograms reflecting uncertainty (Morice et al 2012). (a)Estimatedmagnitude of the response to forcing by
greenhouse gases (GHG, red), other anthropogenic forcing (OtherAnt, blue) and natural forcing (solar and volcanic, NAT, yellow).
Results are based on a Bayesian approach over the full period (1863–2012) using themultimodelmean response (Schurer et al 2018);
using globalmean and hemispheric difference as spatial components, and decadally averaged timeseries. Values in the bottom four
panels are calculated by scaling the linear trend by the bestfit of themodel fingerprint to observations over the entire record. The
purple line is the combined anthropogenic contribution to the change in that period, the grey histogram is the range of observational
values. The thick line indicates the 33–66th percentile, the thin line 5%–95%of the uncertainty, and the continuous line is an estimate
using prior information that favours scaling near one and avoids unphysical negative scaling, while the dashed line shows results for a
flat prior between−1 and 3. Circles in each of the bottompanels indicate themulti-modelmean estimate of the forced contribution
without scaling.Note that the prior informationmakes little difference to the estimate of the total anthropogenic contribution, but
does affect the estimate of individual forcings.
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zone (ITCZ, Chang et al 2011, Hwang et al 2013,
Undorf et al 2018c; see also figures 8(a), (b)) and the
strength and position of the Northern Hemisphere
subtropical jet stream and the tropical belt width (e.g.
Allen andAjoku 2016,Undorf et al 2018b).

Long-term variability in themonsoons has also been
linked to aerosol forcing, in East Asia (Guo et al 2013, Li
et al 2016), South Asia (e.g. Bollasina et al 2011, Guo et al
2015), and Australia (Rotstayn et al 2012, Dey et al 2019)
as well as over the Sahel (e.g. Rotstayn and Lohmann
2002, Held et al 2005, Ackerley et al 2011, Dong et al
2014). In particular the decrease between the early to
mid-20th century and the 1980s and the subsequent
recovery in precipitation over the global land surface
(Wilcox et al 2013) and global-scale monsoon precipita-
tion, averaged across Asian, African, and American

monsoon regions in theNorthernHemisphere, has been
attributed to aerosol forcing (Polson et al 2014). The
aerosol influence on monsoon precipitation changes in
SouthAsia (figure 4(c))was found to be driven by a com-
bination of emissions from North America, Europe and
South Asia that are all simulated toweaken themonsoon
circulation (Undorf et al 2018c). North American and
European aerosols, along with natural forcings, are
detectable drivers for African monsoon precipitation,
but themodel simulated changes over this region appear
weak compared to observed changes, a source of concern
about bothmodelling future changes and understanding
monsoon variability (Biasutti 2013, Polson et al 2014).
The dominant mechanism by which the aerosol impact
is mediated, on the other hand, seems to be related to
shifts of the ITCZ and is as such a well-studied response

Figure 4.Aerosol influences on European climate, SouthAsianmonsoon andAtlanticMultidecadal Variability. Anomalies of (a)
annual-mean near-surface temperature and diurnal temperature range, (b) over Europe (35°–65°N,15°W-30°E, land only, area-
weighted) similar toUndorf et al (2018b), (c) summer (JJAS)-meanmonsoon precipitation over SouthAsia (area definition as in
Undorf et al 2018c), and (d) the annual AtlanticMultidecadal Variability (AMV) index for (black, grays) observations and simulations
with (red) greenhouse gas (GHG) forcing, (blue) anthropogenic aerosol (AA), and (yellow)natural (NAT) forcing only, and (white) all
forcings together (ALL). Shown are the ensemblemeans (lines) and the 1.66σ range (shading) of eachmulti-model ensemble,
smoothed by applying (a)–(c) 7-and 5-point and (d) 11-and 7-pointfilters consecutively. The shadings for GHGandNAT are omitted
for clarity. (d) Sea surface temperatures (SSTs) are not available for allmodels, so surface temperatures over sea areas are used instead
and comparedwith SST observations. TheAMV is derived as inUndorf et al (2018a). Themodels and the respective number of
ensemblemembers used areCanESM2 [×5], CESM1-CAM5 [×1], CSIRO-Mk-3-6-0 [×5], GFDL-CM3 [×3], GISS-E2-R [×5],
HadGEM2-ES [×4] (only in (a) and (c)), IPSL-CM5A-LR [×1], andNorESM1-M [×1].
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to aerosol-induced changes of the interhemispheric
temperature gradients (Chang et al 2011, Chiang and
Friedman2012,Hwang et al2013,Undorf et al2018c; see
also figures 8(a), (b)). Related impacts have been sug-
gested on other large-scale atmospheric circulation fea-
tures like the strength and position of the Northern
Hemisphere subtropical jet stream and the tropical belt
width (e.g.Allen andAjoku2016,Undorf et al2018b).

3.4. Changes in global-scale precipitation
Global warming will affect the global water cycle and
has probably already done so (IPCC2013). Diagnostics
of atmospheric water content and humidity, while
showing clear anthropogenic signals (see Santer et al
2007, Bindoff et al 2014) only go back through the
satellite era. There is evidence from the mixed
satellite/in situ record that the expected intensification
of the hydrological cycle with wet regions getting
wetter and dry getting drier is indeed detectable,
although only if tracking wet and dry regions with the
seasonal cycle and over time (Polson et al 2013, Polson
and Hegerl 2017). In situ rainfall stations are able to
support a longer time horizon, but are spatially sparse,
fairly uncertain and only available over land (Zhang
et al 2007, Harris et al 2014). However, over land
precipitation is influenced by a complex combination
of SSTs, land use influences, land-sea contrast and
direct forcing (Greve et al 2014), and future changes
over land are hence uncertain and strongly model
dependent (IPCC 2013). Furthermore, climate model
simulations indicate that over the historical period,
precipitation changes over land are moderated by
other forcings, particularly shortwave forcings (e.g.
Richardson et al 2018). Nevertheless, since the second
half of the 20th century, a human induced increase in
intense precipitation has been detected, consistent
with a moister, warmer atmosphere (Min et al 2011,
Zhang et al 2013). Similarly, there is some evidence
from in situ data over the second half of the 20th
century that the high latitudes are becoming wetter
(Min et al 2008) although data uncertainty here is
substantial (Hegerl et al 2015). Zonal land precipita-
tion shows a change since the 1920s that is broadly
consistent with the expected response to anthropo-
genic forcing (Zhang et al 2007), although particularly
seasonal responses are uncertain and noisy (Sarojini
et al 2012, Polson et al 2013). Drought atlases from
proxy data and instrumental data support a long-term
change in drought frequency with a detectable human
influence by the middle of the 20th century (Marvel
et al 2019). While it remains to be seen to what extent
this reflects precipitation change and to what extent
increased evaporation due to warming, it provides
powerful evidence that greenhouse gases have influ-
enced aspects of thewater cycle early on.

In contrast to changes over land, model-simulated
precipitation changes over ocean are fairly robust
across models, with a signal of wet regions getting

wetter and dry regions getting drier. Many precipita-
tion records over islands go back to the 1920s. While
they are too sparse to constrain global precipitation
changes, the island stations are able to evaluate the pat-
tern of precipitation change associated with global
temperature changes: the so-called precipitation sen-
sitivity diagnoses the precipitation response to warm-
ing (for any reason including greenhouse gas induced
warming) and is expressed as the change [%] in mean
precipitation per degree of global mean warming. It
has also been found to be a useful constraint on future
changes if applied to extremes (O’Gorman 2012).
Island stations support a pattern of precipitation sen-
sitivity that is in fairly good agreement with historical
simulations from climate models (figure 5) and shows
a stronger correlation with historical simulations over
the period since 1930 than with satellite data over the
period since 1979 (Polson et al 2016). This both sup-
ports the simulated large-scale precipitation response
and emphasizes the need for long records for noisy
precipitation signals. An amplification of the global
hydrologic cycle is also supported when using sea sur-
face salinity as an ‘indirect rain gauge’ (Schmitt 2008,
Terray et al 2012): globally from the 1950s (Durack
et al 2012, Skliris et al 2014) and over the Atlantic from
the early 20th century onwards (Friedman et al 2017).

Forcing is also expected to directly affect rainfall
through a change in energy available for evaporation.
Such a response leads, at least in models, to a rapid
precipitation decrease after volcanic eruptions over
land (Iles et al 2013). The response to greenhouse gas
induced warming is muted compared to that to aero-
sols since changes in lapse rate and atmospheric energy
budget constraints reduce the precipitation response
to warming (Allen and Ingram 2002, Lambert and
Allen 2009, Andrews et al 2010, Bala et al 2010, Cao
et al 2012, O’Gorman 2012). This is why the global
land response to shortwave forcing such as that from
anthropogenic and volcanic aerosols may be more
detectable over the historical period than that to
greenhouse gas increases (Allen and Ingram 2002).
Long-term streamflow data are an excellent opportu-
nity to study the water cycle response to forcing. Sev-
eral large rivers have streamflow records back into the
19th century. Thesemay reflect changes in response to
a combination of precipitation and evaporation, pos-
sibly including CO2 induced changes in transpiration
(Gedney et al 2006, Piao et al 2007), and can be affected
by human influences including irrigation, land use
changes, dam construction, and extraction (Gerten
et al 2008, Dai et al 2009, Dai 2016). However, they
show a detectable and more robustly observed short-
term response to volcanic eruptions, with drying on
average in the wettest regions of the planet, detectable
in the tropics and northern Asia, and detectable wet-
tening in some dry regions such as the southwestern
US (Iles andHegerl 2015).
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4. Variability generatedwithin the climate
system

In this section we discuss some long-term climate
changes that are linked to long-term tendencies inmodes
of climate variability. It is recognized that external forcing
may change the preferred direction and location of
modes of climate variability, which is an important
uncertainty in future climate change (Shepherd 2014).
However, such changes are hard to detect among high
circulation variability, hence we only discuss changes
caused by trends in circulation, not its causes. At the end
of the section, we briefly discuss an example that
illustrates why it is difficult to conclude with confidence
whether large-scale temperature variability in climate
models is consistentwithobservations.

4.1. Circulation related to atmospheric or coupled
variability
Long-term changes in atmospheric circulation are
best documented for the Northern Hemisphere

Atlantic sector. Here, the NAO is the dominantmode
of variability at the surface, and related to variations
in storm tracks, particularly, in the winter. The NAO
is often defined by the pressure difference between
the Icelandic low and the Azores High (e.g. Hur-
rell 1995), has a distinct spatial pattern of sea level
pressure (e.g. Hurrell and Van Loon 1997) and has
been observed over a long period of time (Hurrell
et al 2003). The NAO is closely related to
the Northern Annular Mode (Thompson and
Wallace 2001) which is more zonal in nature and
links to variations in the polar stratospheric vortex.
Due to the longer record, we focus here on the NAO
over the Atlantic Sector (Hurrell and Deser 2009).
While the NAO is fairly white on timescales longer
than interannual, it shows some long-term trends
over the period of record. After a variable period with
no pronounced trend in the second half of the 19th
century, the NAO increased and then showed a
marked long-term decrease between the early 20th
century and the 1970s. This was followed by a strong
upward trend peaking in the 1990s and then a

Figure 5. Spatial pattern of precipitation sensitivity (change in precipitation per degree of globalmeanwarming, dP/dT) from
satellite/gauge data. (a)Precipitation from theGlobal PrecipitationClimatology Project (GPCP;Huffman et al 2009; from1979 to
2005) and (b) frommultimodel historical simulations 1930–2005 compared to those from long island stations (dots; from
CRUTS3.22; Harris et al 2014 in both panels; only small islands used). Figure reproduced fromPolson et al (2016), © TheAuthor(s).
Published by IOPPublishing Ltd. CCBY 3.0. 65%of gridboxes on top agree on the sign of dP/dT between satellite data and island
stations, while 71%of gridboxes agree on the sign of dP/dT between the average dP/dT of individual historical simulations from
CMIP5 and island stations.Hatching showswhere 75%of CMIP5 simulations agree on the sign of dP/dT.
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downward trend into the so-called hiatus period (e.g.
Hurrell 1995, Thompson and Wallace 2001, les and
Hegerl 2017). Winters with an anomalously high
NAO index tend to be warmer over Eurasia and
anomalously cold in eastern North America and
parts of Greenland as well as of the North Atlantic
(figure 6, central panel middle). The opposite is true
for lowNAO values (Hurrell and Van Loon 1997, Iles
and Hegerl 2017, figure 6, central panel left and
right). If this linear relationship holds for trends in
the NAO (and aggregates of NAO trends from
climate models suggest it does; Deser et al 2017, Iles
and Hegerl 2017) then NAO trends cause long-term
temperature changes (figure 6). The NAO decrease to
the 1970s may have led to dynamically induced
boreal winter trends counteracting greenhouse
warming to 1970, then strengthening it to the 1990s,
and then counteracting it again. Residual trends,
after linearly removing the NAO influence, show a
more uniform warming pattern (figure 6 bottom; see
also Thompson and Wallace 2001). Not shown is the
impact of the NAO on precipitation, which would
lead to expected rainfall trends of opposite sign
over the Mediterranean and Northwest Europe (Deser
et al2017).Note that basedon climatemodel simulations
the ocean response to the NAO trend may enhance the
response relative to that estimated from the interannual
relationship (see next section; see also Deser et al 2017,
Iles and Hegerl 2017 for regression/composite based
results).

The zonal meanHadley Circulation is the globally
dominant circulation feature, and changes in its loca-
tion and strength could potentially have large
impacts, particularly, on rainfall. Interannual varia-
bility in the strength of the Hadley Circulation, as well
as its relationship to the ElNiño-SouthernOscillation
is well studied, but trends in its strength are not well
established (Nguyen et al 2012) and reanalyses may
show wrong trends (Chemke and Polvani 2019).
Nevertheless, a robust widening of the tropical belt is
found since ca. 1980 (although reanalyses data sets
tend to overpredict the widening; see Davis and
Davis 2018). Although climate models predict a
widening due to greenhouse gas forcing and also a
response to hemispherically heterogeneous aerosol
forcing (section 3.3), internal variability is high and
yet precludes attribution (Staten et al 2018). The
widening from 1980 onward started from a south-
ward shifted state: the northern tropical belt shifted
southward from the 1940s to 1980 (Brönnimann et al
2015), and similar decadal changes in the edge of the
northern tropical belt have also been found in earlier
periods in tree-ring based reconstructions (Alfaro-
Sánchez et al 2018).

Furthermore, a weakening of the Pacific Walker
circulationwas suggested at a centennial scale since the
mid-19th century, in line with model simulations

(Vecchi et al 2006). However, observations from
recent decades point to a strengthening. Apart from
data issues, this strengthening might have been due to
internal variability, which is a dominant factor con-
trolling the strength of the Pacific Walker circulation
(Chung et al 2019). The Walker circulation is closely
linked to El Niño, the climate mode with largest global
influence, which again shows substantial variability in
its variance on multidecadal timescales (Witten-
berg 2009). Thus, the contribution of changes in circu-
lation to observed long term changes in precipitation
and temperature remains uncertain, as is a possible
role of forcing in these changes. This remains a
research priority.

4.2. Response and role of ocean and sea ice
The biggest potential source of decadal climate
variability is the ocean. Even an inert ocean would
cause decadal climate variability by integrating
weather noise, and ocean dynamics are expected to
enhance this variability (Hasselmann 1976, Fran-
kignoul and Hasselmann 1977). For example, in the
GFDL model, a warming episode similar to the early
20th century warming occurred in a historical
simulation due to ocean overturning variability
(Delworth and Knutson 2000). Figure 7 shows
another example based on the Max-Planck Institute
ocean model forced by century-long reanalysis
ERA20C (Poli et al 2016)with an experimental set up
similar to Müller et al (2015). Surface temperatures
in the North Atlantic are closely associated with a
downward ocean surface heat flux (latent plus
sensible heat flux) on an inter-annual timescale
(figure 7(b)) and upward into the atmosphere heat
flux on decadal to multi-decadal timescales
(figure 7(c), see also Gulev et al 2013). This clearly
indicates a short-term ocean response to atmo-
spheric forcing such as by the NAO and a long-term
memory (sub-decadal to multi-decadal) by ocean
inertia resulting in heat release back into the atmos-
phere. In fact, the role of wind-driven forcing, such
as that linked to the NAO, for the ocean inertia has
been widely been documented (e.g. Delworth and
Mann 2000, Eden and Jung 2001, Eden and Will-
ebrand 2001). Sub-decadal to decadal variations
appear in the coupled North Atlantic climate system
following wind forcing and a damped oscillation
(Czaja and Marshall 2001, Eden and Greatbatch
2003). Further multi-decadal variations in the North
Atlantic are closely associated with buoyancy-forced
deep convection (Bersch et al 2007) and the complex
interplay between processes in higher latitudes and
the North Atlantic (Jungclaus et al 2005, Polyakov
et al 2010).

The variations of the NAO, North Atlantic heat
fluxes and SST underwent strong multi-decadal

13

Environ. Res. Lett. 14 (2019) 123006 GCHegerl et al



variations (figure 7(d)) linked to the trends in the
NAO discussed above. Similarly, albeit with a delay
of a decade, the SST show a cooling period during the
1960s and 1970s flanked by warming periods 1920s–
1930s and 1990s–2000s, respectively. The warming
period in the 1920s has led to a mean increase of sur-
face air temperature (>0.5°) within the basin and
adjacent continents (e.g. Brönnimann 2009) and has
the largest effects in high latitudes (Johannessen et al
2004). Changes in the atmospheric circulation have
been suggested as a primary precursor of the warm-
ing (e.g. Polyakov et al 2010). In fact, by forcing an
ocean model with century-long reanalysis data it has
been shown that the NAO-like atmospheric circula-
tion induces anomalous northern heat transport in
the North Atlantic and incites an Arctic warming
with a delay of about a decade (Müller et al 2015).

North Atlantic wind anomalies may have con-
tributed to an increased transport of warm waters
into higher latitudes and to Arctic warming (Bengts-
son et al 2004), contributing a signal of internal
variability to the early 20th century warming.
Figures 7(e), (f) underlines the importance of the
heat transport for the heat release in the North
Atlantic and higher latitudes. Variations of the heat
transport and the Atlantic Meridional Overturning
Circulation (AMOC; here 26°N and 1000 m depth)
reveal the close temporal relationship to the NAO,
SST and heat fluxes.

This strong ocean/coupled dynamics hypothesis
contrasts with the possibility that some observed SST
variations in the Atlantic may be linked to aerosols
(e.g. Booth et al 2012, Zhang et al 2013, Murphy et al
2017, Bellomo et al 2018, Haustein et al 2019).

Figure 6. Influence ofNorthAtlantic Oscillation (NAO) variability onNorthernHemispherewinter temperature trends. Reproduced
from Iles andHegerl (2017)©TheAuthor(s). Published by IOPPublishing Ltd. CCBY 3.0. Top row shows raw observed trend
patterns [°C/decade], middle row estimated contribution by theNAO from interannual regression analysis (stippling indicates grid
cells with a significant (p<0.05) interannual relationship between theNAOand temperature), bottom row: trend pattern after
linearly removing the contribution by theNAO; note that the residual results for the three periods are farmore similar to each other
and to the expected pattern in response to anthropogenic forcing than theywere initially. Note that oceanic responses to trends in the
NAOmay enhance the long-term response over theNorth Atlantic andArctic ocean basins.
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Figure 4(d) illustrates strong AMV variability, but a
downturn around 1970 that also occurs in response to
historical forcing, suggesting that the AMV is not
purely an internal mode of climate variability. Single-
forcing simulations indicate a role for both anthro-
pogenic aerosol and natural forcing (figure 4(d)), the
latter of which has also been suggested to have played a
role during the last millennium based on proxy
records (Knudsen et al 2014, Wang et al 2017) and
model studies (Otterå et al 2010). The connection of
the AMV to ocean variability is unclear, with some evi-
dence pointing to a contribution from a forced comp-
onent of the AMOC (e.g. Tandon and Kushner 2015,
Undorf et al 2018a, Watanabe and Tatebe 2019) in
response to natural and anthropogenic aerosols
(Delworth and Dixon 2006, Cowan and Cai 2013,
Menary et al 2013). Determining the contribution by
forcing and climate dynamics to decadal ocean varia-
bility, particularly in the Atlantic, therefore remains
uncertain and requires more attention and, probably,
a longer data horizon.

Ocean variability has also been implicated in the
recent slowdown period of warming: Periods with
decadal warming or cooling due to natural or internal
variability that is strong enough to double or counter-
act present anthropogenic warming are dispersed
throughout the historical record (Schurer et al 2015,
Fyfe et al 2016). Volcanic forcing is a pacemaker parti-
cularly for long periods of fast and slowwarming, with
cooling due to eruption effects and rapid warming
during recovery (Schurer et al 2015). However, hiatus
and surge periods occur also due to internal climate
variability and show a pattern involving the tropical
Pacific oceans (Roberts et al 2015), with possibly a
contribution by the Atlantic in observations (Schurer
et al 2015).

Sea ice responds to ocean and atmospheric tem-
peratures, with decreases in sea ice not only observed
recently, but also during the early 20th century high
latitude warming (Titchner and Rayner, in prep-
aration; Walsh et al 2017). For example, large changes
in the sea ice conditions around Spitsbergen were
reported in the 1920s and attributed to additional

Figure 7.Relationship between theNorth AtlanticOscillation andmultidecadal ocean variations over 1901–2015.Multi-decadal
variations inNorth Atlantic climate illustrated by theMax-Planck Institute oceanmodel (MPIOM) (Jungclaus et al 2013) forcedwith
century-long reanalysis ERA20C (Poli et al 2016) (see text; figure adapted afterMüller et al 2015). Shown are (a) yearlymean surface
heat flux climatology (sensible+latent,W m−2), and correlation of averaged yearlymean SST (80°W–0°, 35°–50°N)with surface
heat flux for (b) short-term variations (1–10 year; high-passfiltered) and (c) long-term variations (>10 years; low-pass filtered).
Positive values indicate heat release into atmosphere. (d) Standardized time series of 10-yearlymean SST (black, 80°W–0°, 35°—50°
N), surface heat flux (red, 80°W–0°, 40°–60°N), andwinter (JFM)NAO index based onHurrell station index (blue). SST and surface
heat fluxes are taken from theMPIOM. (e) 10 year runningmean of AMOC (black, 26°Nand 1000 mdepth), integrated northern heat
transport (red, 26°N) and the JFMNAO index (blue). All time series are standardized. (f)Correlations of yearlymeanAMOC26°N
with surface heat flux for long-term variations (>10 years).
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warm water being pushed north by the Gulf Stream
(Ifft 1922). For the recent period since 1953, signals of
greenhouse gas, aerosol and natural forcing induced
changes have been detected in the observations (Muel-
ler et al 2018). Notz and Stroeve (2016) have suggested
that summer Arctic sea ice is melting proportionally to
cumulative carbon emissions, although other studies
have proposed a role for internal variability in the
recent decline (e.g. Day et al 2012). Knowledge of pre-
1950s Arctic conditions could be substantially
improved through the digitisation of many decades
worth of voyager records along with thousands of log-
books(e.g. García-Herrera et al 2018). These logbooks
contain instrumental observations of temperature,
pressure and winds, and often include information on
sea ice extent back to the 19th century.

4.3. Is decadal climate variability realistic in climate
models?
The climate variability simulated in models is the
yardstick against which attribution of change to causes
occurs. Climate variability has also been identified as a
potential emergent constraint on climate sensitivity,
which is theoretically supported by the fluctuation
dissipation theorem (Cox et al 2018). Both make it
vital to evaluate if long observed records support the
decadal variability simulated in climate models. This
question has been addressed in multiple IPCC reports
(e.g. Flato et al 2013) and is illustrated here for the case
of Northern and Southern hemisphere SST variability
in in figure 8, comparing two observational SST
datasets, ERSSTv5 (Huang et al 2017) and HadSST3
(Kennedy et al 2011a, 2011b), and 10 CMIP5 models.
The observations largely follow the multimodel mean
and range in the historical forcing simulations over the
20th century, although some of the deviations particu-
larly in the Southern Hemisphere are quite large, such
as during the 1920s (figures 8(a)–(b)). There is also an
excursion between models and data during the early
1940s that may be connected to biases related to the
second world war (Kennedy 2014, Haustein et al
2019). The standard deviation of the residual SST
variability (after subtracting the multimodel mean) is
large in observations compared to that of the historical
simulations, particularly for the SouthernHemisphere
(figure 8(c)).

To what extent this discrepancy is due to model
error, residual forcing or remaining observational
error in SSTs (Chan and Huybers 2019, Haustein et al
2019) is presently unclear (Friedman et al in revision).
The difference between variability with multimodel
mean removed compared to that from control simula-
tions (figure 8(c)) suggests that residual forcing may
have contributed to the variability in observations.
However, there is a wide range of simulated variability
amplitudes in the CMIP5 models, even on the global
scale (Knutson et al 2013, Schurer et al 2013, Sutton
et al 2015). We conclude that, evaluating which, if any,

of the climate models simulate reliable variability on
decadal timescales is difficult—both due to limited
sampling in observations, and the difficulty to separate
forced response from internally generated variability.
This should be a high priority for research.

5. Example of long-term changes on local
weather variability

Lastly, the large-scale changes over the instrumental
period also had a demonstrable impact on local
weather variability that would have affected society
and ecosystems. Individual extreme events occurred
in the past, and their analysis and attribution is an area
that is of developing interest. For example, the
European ‘year without a summer’ had a clear impact
from the Mount Tambora eruption which greatly
enhanced the probability of such a cold summer as
occurred in 1816 (Schurer et al 2019). The Dust Bowl
heat waves in the central United States in the 1930s set
records to date (Donat et al 2016, Cowan et al 2017),
and have likely been strongly influenced by changes in
land cover (Cowan et al in prep.) consistent with
sensitivity of land climate to vegetation and land
degradation (Arneth et al 2019). The 1947 European
heat wave (Harrington et al 2019) record was only
superseded in 2003. Figure 9 illustrates that long-term
changes are detectable even in day-to day variability:
many record-cold winter temperatures that occurred
early on in Uppsala, Sweden, would be considered
extremely rare at present, while some recent warm
temperatures were rare in the past, and the distribu-
tions of daily temperature diverge significantly (based
on aMann–Whitney U test) between the three analysis
periods of the early 19th century, early 20th century
and recent period. Almost for every day of the year for
Central England, and formost of those for theUppsala
record, the day-to-day variability is significantly differ-
ent today fromwhat it was 200 years ago, and for about
half the year the change between the early 20th century
warm period and the present is significant. The figure
also illustrates the challenges of old records: the higher
90th percentile for peak summer values early on in the
Uppsala recordmay possibly have been due to changes
in instrument exposure (Moberg et al 2003). Studying
old record-setting eventswill help to better understand
the magnitudes and feedbacks of climate variability
and extreme events.

6. Synthesis and open questions

We have summarized that both external forcings and
decadal climate variability have played a key role
throughout the instrumental era. Greenhouse gas
increase emerges as important throughout, supported
by the analysis of proxy based data, and had already
caused a detectable warming by 1900. The analyses
also emphasize that the anthropogenic warming trend
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can be modified strongly both by natural forcing, and
by climate variability, either on decadal timescales or
due to decadal preferences of interannual modes, as
here illustrated for the NAO. The period prior to 1950
contains strong variability (some of which may be
realistic rather than data artefacts), cases of very strong
natural forcing, and substantial changes in daily
climate variability.

Hence the observed record in its full length con-
tains vital information. It also has great potential to
provide a constraint on future warming, and this has
been used, for example, as one of several inputs to
derive uncertainty ranges for IPCC projections
(Knutti et al 2008, Collins et al 2014; using the Stott
and Kettleborough 2002, approach) and recently in
Goodwin (2018) and Goodwin et al (2018), generating
observationally constrained projections. However, the
power of attributed greenhouse warming for provid-
ing constraints is limited due to the still highly uncer-
tain influence from other anthropogenic forcings,
most notably, aerosols. Aerosols increased along with
the burning of fossil fuels, yet burdens in Europe and
North America noticeably decreased since the late
20th century, while continuing to increase in South
and East Asia (Hoesly et al 2018), with a global peak of
sulphate aerosol emissions around 1980. Aerosols
have likely influenced global temperatures with a het-
erogeneous pattern and larger changes near and
downwind of their emission regions, diurnal temper-
ature range, and possibly even multi-decadal

variability of the Atlantic as well as the large-scale
atmospheric circulation. A particularly important
impact of aerosols has been onmonsoons and tropical
rainfall. Land use changemay be important as well, for
example, on summertime extreme events (e.g. de
Noblet-Ducoudré et al 2012). Land use change is not
necessarily realistically simulated in climate models
(Pitman et al 2009). For amore reliable attribution and
prediction of regional scales, the inclusion of land use
effects is vital and progress may arise from a CMIP6
modelling exercise Land Use Model Intercomparison
Project (LUMIP; Lawrence et al 2016).

Decadal modulation of greenhouse warming
trends over the industrial period often involved nat-
ural forcings, particularly volcanism, which is able to
drive periods of decadal and multidecadal warming
and cooling trends. The contribution by volcanism to
temperature trends is particularly pronounced in the
early 19th century. The large response illustrates that
strong volcanic forcing would have a considerable
impact on future warming trajectories.

Instrumental records of precipitation change are
only reasonably widespread since the 1920s (Zhang
et al 2007), and the signal-to-noise ratio for precipita-
tion data is low and local variability high. Yet, if aggre-
gated skilfully, long records have the potential to allow
useful evaluation of the model simulated precipitation
response, and the improvement of data coverage and a
better understanding of long-term homogeneity will
be helpful.

Figure 8.Consistency between simulated and observed changes in hemispheric-wide SST. (a)Northern hemisphere (NH) and (b)
SouthernHemisphere (SH) running 3 year annualmean (December–November) time series of SST anomalies from1881 to 2012 for
HadSST3 (Kennedy et al 2011a, 2011b) andERSSTv5 (Huang et al 2017) observations andCMIP5 historical simulations. CMIP5
results are based on 36 realizations from10models andmasked toHadSST3’s early-20th century coverage (Friedman et al in review).
Thin lines show individual realizations; the solid black line shows themulti-model ensemblemean. (c)Comparison ofNHand SH
3-year SST standard deviations. TheCMIP5 historical ensemblemean is subtracted from the observations and the historical
realizations, shown in black. Purplemarkers show standard deviations of 132-year pre-industrial control segments from the 10
CMIP5models. Red and blue rings indicate observational estimates.
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Analysis of the influence of circulation on
observed trends shows a role of, possibly random, dec-
adal modulation of modes of variability such as the
NAO. While optimal detection should be able to
reduce the influence of internal variability, rotating
away from noisy spatial dimensions (Hasselmann
1979) or prewhitening noisy data (Allen and
Tett 1999); in practice the limit on the space-time
degrees of freedom that can be used in these methods
is so severe that this advantage cannot fully be taken
advantage of, even for recent methods (e.g. Ribes and
Terray 2013, Ribes et al 2017). Hence reliance on sta-
tistics alone to filter out the influence of modes of
variability on forced signals is not sufficient, and expli-
cit analysis of changes in modes of variability is useful.
Also, the question remains as to what extent variations
in modes of climate variability are induced by external
forcing. This is uncertain not only in response to
anthropogenic factors, but also in response to natural
forcings. For example, volcanic eruptions are expected
to cause a tendency for a positive NAO response as
well as a possible El Niño response (Robock 2000,
Khodri et al 2017, Swingedouw et al 2017), although
the response can be quite noisy (Hegerl et al 2011,
Polvani et al 2019). Similarly, the relationship between
solar forcing and the NAO is not yet fully understood
(Gray et al 2010). Addressing the connection between
external forcing and the response in modes of varia-
bility as well as circulation features is a priority, and
one which may not be well addressed by the present
generation of climate models (Shepherd 2014). In the
near-term, climate variability will have a strong
imprint on the emerging climate change signal in
many regions (Deser et al 2017), and hence evaluation

of this long term variability is crucial. A careful evalua-
tion of data quality as well as climate model processes
may, for example, help to determine whether the
strong early variability in the Southern Hemisphere in
observations is realistic.

In summary, the record of observed and recon-
structed climate over the industrial period contains
important information to challenge and evaluate cli-
mate model simulations. Even though data from the
longer past are more challenging to work with due to
their poorer spatial resolution as well as homogeneity
issues, the gain is well worth the effort.

7.Methods

7.1. Literature search
This review focuses largely on identifying answers to
key research questions about the instrumental era
from existing literature; involving a broad set of
coauthors to cover it well, and it includes new results
that are being published. Additionally, web of science
searches have been conducted to ensure broad cover-
age, using the keywords.

‘Detection and Attribution, global temperature’;
using outcomes from 2012 onwards as IPCCWGI will
have captured results prior to that. A further search
termwas ‘19th century global temperature change’.

7.2. Construction offigure 1:Merging of PMIP and
CMIPmultimodel simulations
Global mean temperature in all simulations is calcu-
lated as a blend of surface air temperature over land
and sea-surface temperature over ocean with full

Figure 9. Long-term change in daily temperature variability. Daily temperatures (°C) plotted against [day/year] from (a) theCentral
England time series (Parker et al 1992) and (b)Uppsala, Sweden (see text;Moberg et al 2002). Rings are individual years, and lines
represent the 10th and 90th percentiles based on smoothed (11-day averaged) daily climatology. Bars on top illustratewhere three
periods considered show significantly different daily temperature distributions (based on aMann–WhitneyU test): the early 19th
century (1790–1820, blue; with daily data cyan; blue bar on topwhere different from recent, redwhere different from early 20th
century), the early 20th century (1920–1950, red, daily data yellow; grey bar on topwhere significantly different from recent) and the
recent period (1980–2010, black, daily data grey). Note significant changes acrossmuch of the seasonal cycle between all periods with
strong change inwinter extremes.
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coverage. To account for a potential difference in the
sensitivity of forcings in the multi-model-means
(MMMs) drawing on a different ensemble of climate
models, the last millennium MMM is regressed onto
the CMIP5MMMduring the period of overlap using a
total least squares regression (scaling factor 1.20). The
last millenniumMMM is then scaled by the regression
factor and is re-normalised so that it has the same
mean over the shared period 1861–1999 as the CMIP5
MMM, where the CMIP5 MMM is plotted as anoma-
lies since 1961–1990.
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