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Abstract 

 

A model for predicting the required spray drift buffer distance for a specified off target 

deposition level is described. The GDS model is based upon Gaussian diffusion and 

sedimentation of particles originating from an elevated instantaneous line source. Aircraft-

induced near wake effects are ignored. Agreement between aircraft wake models FSCBG, 

AgDRIFT and the GDS model is reasonable for downwind distances greater than 50m. The 

model has the advantage over Lagrangian models in that it is faster computationally and can 

readily provide real time prediction in the cockpit over large distances (3 km). A sensitivity 

analysis has been performed on the model to elucidate the effects of the primary parameters on 

spray drift. The model has proved useful in the determination of spray drift buffer distances for 

regulatory purposes and in the development of appropriate spray drift management systems for 

aerial spraying. Further research work is required to refine the model to better account for air 

stability effects, collector type, evaporation and crop canopy.  
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1 Introduction 

The dispersal of material released from aircraft, in particular low flying aircraft applying 

pesticides, is a subject of interest because chemical residues need to be effectively managed for 

human health, environmental and trade reasons. As with most problems involving dispersal of 

a continuous slug of material near to the source, rather than isolated puffs at distance, the 

Gaussian distribution provides the most useful first approximation. 

Gaussian type equations which simulate the atmospheric diffusion (or dispersion) of 

particulate materials are described in texts including Turner (1970), Csanady (1973), Hanna et 

al (1982), Pasquill and Smith (1983) and Panofsky and Dutton (1984). Elevated line source 

versions of these equations to simulate aerial release were developed and validated by Cramer 

et al (1972) and Bache and Sayer (1975). The Bache and Sayer or “Cranfield” model was 

validated experimentally at Cranfield Aerodrome UK in 1973. A simpler time independent 

expression was developed by Lawson (1978) and Spillman (1982) which forms the basis of the 

model described here. 

Other models use Lagrangian methods to track a large number of particles to simulate 

complex source conditions incorporating aircraft wake, wing tip and propeller vortices (Reed 

1953, Trayford and Welch, 1977). During the 1970s the US Army and the US Forest Service 

developed programs to simulate aerial spraying, which were validated experimentally at the 

Dugway Proving Ground, Utah. By the 1980s, two programs became available :- AGDISP 

(Bilanin et al 1989) and FSCBG (Grim and Barry 1975, Dumbauld et al 1976). FSCBG starts 

with AGDISP (Lagrangian) and “hands over” to a Gaussian algorithm for far downwind 

distances. AGDISP was later developed into AgDRIFT for pesticide registration purposes in 

the United States (Teske et al., 1997). AgDRIFT allowed for the position of each individual 

nozzle on the aircraft and was validated experimentally in trials funded by the Spray Drift Task 

Force (SDTF) which took place in 1992/3 at Plainview, Texas.  

The choice of whether to use a Gaussian or Lagrangian approach to model aircraft spray 

drift is central to this paper. Gaussian models have traditionally been used for generic (non 

location specific) buffer distance determination for regulatory purposes, where the effects of 

complex topography and atmospheres are intentionally ignored. In 1975, Bache and Sayer 

obtained an almost perfect fit of the Cranfield Aerodrome data to their Gaussian model which 

completely ignored aircraft flowfield effects. This was further strongly supported by the 

experimental data of Woods and Dorr (1996) for aircraft spraying with a release height of 3m.  
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Gaussian models, however, can provide an inaccurate prediction of near field deposition 

(< 50m downwind of spray release). Instead of a single large peak, aircraft spray booms close 

to the ground generally produce two or three smaller peaks, starting further upwind compared 

to the Gaussian model. These peaks may be due to turbulence caused by wingtip vortices and 

propeller wake. To improve accuracy in the near field a Lagrangian solution is required. 

However, accuracy in the near field does not necessarily seem to be a prerequisite for accuracy 

in the mid and far fields. Good agreement between the outputs of Gaussian and the FSCBG 

model were obtained by Dorr (1996) who concluded that the Gaussian approach was adequate 

for downwind distances greater than 50m. 

Lagrangian models which compute the trajectory of plume centres within a flow field are 

now the accepted approach for air pollution/odour modelling. This method is necessary where 

the pollutant is in the form of a gas molecule or very small particle with a long airborne 

residence time requiring spatial and temporal meteorological data to be entered into the model. 

With aircraft application, however, most of the droplets are large enough to be deposited 

within the mid field within a few minutes of release, during which time constant 

meteorological conditions can be assumed. This offers a considerable saving in terms of 

computational requirements. Software updated with new windspeed and direction information 

only every minute or so might be appropriate. 

An inconvenience with the Lagrangian approach is that the far field (>500m downwind of 

release) is dependent upon the number of particles released. If this number is not sufficient the 

models can produce discontinous results and can become unreliable predictors of the major 

parameters influencing spray drift  eg. droplet diameter. If Lagrangian models are run for long 

enough and the results spatially and temporally averaged, the results should eventually agree 

with Gaussian model predictions, if uniform atmosphere and terrain is assumed. 
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2 Method 

2.1 Basis of model 

The GDS model assumes that the plume containing diffusing and settling particles 

originates from an elevated, instantaneous, infinitely long line source. The model can therefore 

only be safely applied if the length of the sprayed area (dimension perpendicular to mean wind 

direction) is as least as large as the downwind distance of prediction. The model assumes a 

uniform atmosphere and 100% capture of droplets reaching ground level ie. no reflection.  

Turbulence intensity (defined as i = u*/u where u* is the RMS of vertical air motion) 

essentially controls the rate at which the drifting droplet cloud expands and dissipates and this 

affects the shape deposit pattern (Fig. 1) 

 

Figure 1 

 

The standard deviation of vertical spread of the cloud is equated to ix, where x is the 

downwind distance. The default value of i is 0.1 which is equivalent to Pasquill “B” class 

stability at 500m downwind of the source. For an instantaneous line source with strength q, the 

deposit d, may be expressed as 
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where h is the release height, vs is the sedimentation velocity of the droplet and u is the mean 

windspeed. The result is weighted according to a particular droplet diameter distribution and 

summed for multiple line sources according to the number of crosswind spray runs. 

 

2.2 Types of spraying 

Spray application of pesticides, still necessary for the production of many crops, may be 

categorised into three major types as follows : 

 

2.2.1 Ultra Low Volume (ULV) 

Ultra Low Volume (ULV) involves oil based application usually at rates of 1-10 litres per 

hectare. The low rate of carrier is generally achieved using rotary cage type nozzles to generate 

small droplets with a droplet Volume Median Diameter (VMD) commonly less than 100 µm. 

Large numbers of droplets are generated resulting in high droplet coverage on crop and insect 
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surfaces and therefore high efficacy. This technology is particularly suited to the control of 

airborne locusts, tsetse fly (Andrews et al 1983) and in forestry (Crabbe et al 1994) where there 

are vast areas of tall canopy to be penetrated. ULV application has also been successfully 

utilised in the production of cotton in Africa, Asia and Australia. The technique has proved 

highly efficacious and cost effective, but can have higher drift compared to other methods. 

 

2.2.2 Low Volume (LV) 

Low Volume (LV) involves water based application at bulk rates of 10-30 litres per 

hectare using standard hydraulic nozzles. Droplet VMD is usually between 100µm and 250µm. 

Low Volume or LV spraying is the most common method of applying agricultural pesticides in 

Australia (Woods et al 2000). The method uses a water based carrier to dilute the pesticide 

product which may be an Emulsifiable Concentrate (EC) or a Suspension Concentrate (SC). 

Nozzles are usually hydraulic with flat fan or deflector types being the most common. Spray 

drift levels associated with LV application are generally at an intermediate level between those 

associated with ULV and LDP application. 

 

2.2.3 Large Droplet Placement (LDP) 

Large Droplet Placement (LDP) spraying is defined by Craig et al (1998a) as water based 

spraying with a droplet VMD greater than 250µm. Bulk application rates are usually 30 to 100 

litres per hectare to ensure adequate plant coverage (usually defined as numbers of droplets per 

square cm on crop surfaces). Large droplets have high sedimentation velocities and are not 

greatly influenced by vertical air movement and turbulence. LDP methods should therefore be 

used to reduce spray drift when spraying has to be undertaken close to susceptible areas. 

 

2.3 Droplet VMD data 

Equation (1) is solved for 40 droplet diameters from 5 to 1800µm, each associated with a 

particular sedimentation velocity. The result is weighted according to its frequency in a 

particular droplet diameter distribution. Distributions obtained using laser droplet sizing or 

other methods can be entered into the model. Actual data for a specific nozzle, formulation and 

airspeed may be entered into the GDS model, in addition to BCPC or ASAE International 

Reference Spectra (Hewitt and Valcore, 1998). 

Alternatively, droplet distributions may be computer generated using the GDS software. 

Parkin and Siddiqui (1990) and others have noted that for agricultural sprays, the shape of the 
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frequency distributions are commonly normal or bell shaped if plotted against log droplet 

diameter. Where is X is log10 droplet diameter, σL is the standard deviation of log10 droplet 

diameters and µ is log10 droplet VMD, or dv0.5, the frequency distribution based on volume is 

generated as 
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where and k ≈ 6.4 to make the sum equal 100%. Log normal distributions with droplet VMD = 

70, 100, 140, 180 and 250µm are plotted cumulatively in Fig. 2. σL is kept constant, making 

the slopes of the curves equal, a common trend in laser derived data for aircraft nozzles (Craig 

1991, Kirk 1997, Woods et al 2000). Relative Span (RS), or [dv 0.9-dv 0.1]/dv0.5, the more 

conventional measure of distribution width, varies from approximately 1.5 to 1.3 through the 

70 to 250µm range. For the purposes of this paper, the 70µm, 180µm and 250µm droplet VMD 

curves with σL equal to 0.2, have been determined as representative of ULV, LV and LDP 

aerial application respectively (Woods et al 2001). 

 

 

Figure 2 

 

 

2.4 Overlap Routine 

Using an overlapping (summing) procedure, the GDS model spreadsheet is capable of 

predicting a 2D profile of drift deposition downwind from a sprayed area. If the cell resolution 

is 5m or less, deposition within the sprayed area can be depicted (Fig.3).  The model is 

normally set up with a cell resolution of 20m, which enables it to calculate deposition over a 

combined Field Source Length (FSL) ie. length of sprayed area parallel to mean wind direction 

plus downwind distance of approximately 5km. 

 

 

Figure 3 
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2.5 Effect of Stability 

The value i, which controls the rate of expansion of the cloud, can be adjusted to simulate 

dispersion in unstable, neutral and stable conditions (Pasquill and Smith, 1983). Crabbe et al 

(1994), Bird et al (1996), Miller et al (1999) and Thistle (2000) confirm that the effect of 

stability is to significantly increase spray drift deposition values recorded close to ground. 

Further work is required to adapt the GDS model for super stable or temperature inversion 

conditions. Algorithms do exist for Gaussian air pollution models (without sedimentation) to 

account for inversion capping which may be of assistance in this task. 

 

2.6 Effect of Collection Surface 

What the GDS model and most models calculate, is not deposition of particles or droplets 

upon a solid surface, but rather the flux of these particles through an imaginary plane at height 

zero. This is as though the droplets together with the air that they are travelling with were able 

to pass through the ground surface as if it was not there. In reality of course, the ground surface 

does exist and acts to deflect the air and droplets. Large droplets have sufficient momentum to 

depart from the deflected airsteams and deposit on the ground. Small droplets on the other 

hand move with the air and are not readily deposited, unless they encounter a target with a very 

small dimension such as a blade of grass or leaf hair. The air deflection around small objects is 

minimal allowing deposition of small droplets to occur (May and Clifford, 1967). 

In this case, deposition is not strictly at height zero and the air is able to keep flowing to a 

point below the deposition of the droplet. However, if the canopy height is small compared to 

the release height of the spray, these deposition heights can be regarded as very small and can 

be ignored. A rough surface with high catch efficiency, such as a grassed field, can therefore 

be assumed to approximate flux through an imaginary plane. Some of the difficulties in 

properly assessing long distance deposition of aerosol (<30µm) droplets on smooth surfaces, 

such as alpha-cellulose sheets, are therefore highlighted (Craig et al 2000). 

 

2.7 Effect of Droplet Evaporation 

With the problem of droplet evaporation of water based sprays, there are probably two 

compensating effects. Water based droplets, as they evaporate in flight, are capable of 

travelling further distances downwind compared to their involatile oil based counterparts. 

However, there are also increased losses of spray to atmosphere as the smallest droplets 
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evaporate completely. This acts to reduce the source strength of the cloud as it progresses 

downwind. The net effect may be to slightly reduce ground deposition rather than increase it.  

The recent data provided by Woods et al (2001) compares the drift profiles generated by 

oil versus water based aerial spraying methods. There was good agreement between the data 

and the outputs from both AgDRIFT (evaporating) and GDS model (non evaporating) models. 

The oil and water based data were similar suggesting that the net effect of evaporation on 

deposition is small. It is reasonable to assume that in hot conditions evaporating droplets 

diminish to their involatile diameters relatively quickly after release. It may therefore possible 

to make small adjustments to the droplet VMD entered into GDS model to account for 

evaporation. Further experimental work on evaporation (Riley et al 1995) is required to 

evaluate the magnitude of this correction appropriate for different types of spray formulation 

and to develop suitable algorithms. 

 

 

2.8 Effect of Crop Canopy 

The effect of a crop canopy is important for ground boom spraying where nozzles are 

close to crop surfaces. The effect can be considered as an initial source strength reduction due 

to filtration of droplets by the crop. The effect is probably less than a few percent and can be 

ignored with aerial application where the spray nozzles are usually well above the crop canopy. 

Drifting droplets, once above the canopy, are “unlikely to ever again to experience the vicinity 

of the canopy” (Holterman et al . 1997). 

A simple function to approximate initial removal of the spray by the crop canopy has been 

adopted for the GDS model. The spray source is assumed to consist of a hydraulic nozzle 

emitting droplets horizontally with a mean direction of travel parallel to the mean wind 

direction. The spray cloud is assumed to have a Gaussian vertical concentration profile, 

depicted with a spread of ± 3σ (Fig. 4). Since the downwind distance x is relatively small 

(≈10σ), sedimentation of the cloud is ignored. 

Five cases are considered with Hn/Hc varying from 4σ/2σ or 4/2 (typical of aerial 

application), 3/2, 2/2, 1/2 and 0/2 (nozzle at ground surface). Initial percentage removal of 

spray by the crop canopy, C, is related to cumulative area under the standardised normal 

distribution curve with (Hc-Hn)/σ defining the standardised variable, Z. The thickness of the 

crop has been scaled with a dimension of 2σ to give C < 2% when Hn/Hc > 2, C = 50% when 

Hn = Hc and C > 98% when Hn/Hc approaches zero.  
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This approximation to account for crop canopy proximity must be applied with caution as 

experimental validation of the method is required. Crop canopy effects are in reality much 

more complicated and the GDS model requires canopy algorithm based upon experiments with 

individual canopy types and studies which have properly related filtration to canopy 

dimension, porosity and airflow within the canopy (Holterman et al 1997 and Raupach et al. 

2001). 

 

 

Figure 4 

 

 

3 Results and Discussion 

3.1 Model Validation 

GDS model predictions of downwind deposition (expressed as % applied rate) with 

distance are presented in (Fig 5). The uppermost curve (high drift case) has spray release 

height set to 5m, and turbulence intensity set to 0.05. The next three curves progressing 

downwards correspond to droplet VMD set to 70µm (ULV), 180µm (LV) and 250µm (LDP) 

and default parameters (eg. height = 3m, i = 0.1) as described in Table 1. For purposes of 

comparison, a fifth (lowermost) curve was added corresponding to ground rig application with 

a 0.5m release height and a droplet VMD of 250µm (LDP). 

The curves are overlaid with field trial data points obtained using gas chromatography 

analysis of paper covered horizontally oriented flat plates (Woods et al, 2001). Other data 

points for a helicopter 250µm (LDP) application are not shown here, but plotted between the 

two lower curves, agreeing perfectly with the GDS model when the spray release height was 

set to 1m. 

Taking an average across the fixed wing aircraft ULV and LV data, deposition fell to 1% 

of the field applied rate at approximately 500m downwind of a 500m wide sprayed area. For 

aerial LDP application, deposition fell to 1% of the field applied rate at approximately 150m 

downwind. This percentage compares with 0.5% at 150m downwind, quoted for the US Spray 

Drift Task Force (SDTF) data (Bird et al 1996).  

Variability in the data may have been due to some of the trials being carried out in very 

stable conditions. Bird et al (1996) quotes a 13 fold increase in deposition when conditions 

change from unstable to very stable. Variation in wind direction throughout the duration of the 
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spraying (the applications were not instantaneous) may also have caused some variability. 

Despite this, however, the data taken overall supports the GDS model predictions. 

Fig. 6 is an experimental data versus model prediction plot of the same deposition data (% 

applied rate) represented in Fig. 5. Logarithmic transformation of the data has been performed 

to avoid the least squares regression method being heavily weighted towards samples near the 

spray source, where deposit values are several orders of magnitude greater than those further 

downwind. With all of the data pooled together (Fig. 6), a clear correlation is apparent between 

the GDS model and data, with the 1:1 line (slope = 1.0, representing 100% agreement with the 

model) being centrally placed amongst the points. 

 

 

Figure 5 

 

Figure 6 

 

 

Agreement of the data with GDS model predictions is best summarised by the statement 

“approximately 90% of measurements were within a factor of five of the model prediction”. A 

similar level of agreement was demonstrated for the SDTF data when compared to AgDRIFT 

model predictions (Bird et al 1996, Teske et al 2000). Richardson et al (1995) also quotes 

“factor of five” agreement for single flight line drift data obtained in New Zealand, when 

compared with FSCBG model version 4.0 and 4.3 predictions. The authors noted that FSCBG 

based Lagrangian predictions of peak deposition value distance were not always reliable, and 

so only the Gaussian (35m to 300m downwind) portion of FSCBG was used in this analysis. 

Some Lagrangian over prediction close to the spray source (using AgDRIFT version 1.05) was 

also evident with the present data set (Woods et al 2001). 

 

 

Figure 7 

 

 

Fig. 7 represents the same data split into the four different treatments – aerial ULV, aerial 

LV, aerial LDP and ground rig LDP. Looking at the aerial ULV data alone, reasonable 

agreement with the GDS model is expressed (slope = 0.945, R2 = 0.68). With the aerial LV 
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data, model agreement is still reasonable (slope = 0.815, R2 = 0.63). With the aerial LDP data, 

the GDS model slightly under predicts deposition close to the source (slope = 0.75, R2 = 0.96) 

but with the ground rig LDP data the GDS model over predicts deposition close to the source 

(slope 1.41, R2 = 0.8). This may be due removal by the crop canopy of larger droplets 

depositing near source- an effect not properly accounted for with the existing GDS model. 

 

 

3.2 Determination of Buffer Distance 

The GDS model can be used to calculate buffer distances required for off target downwind 

deposition levels to fall below a specified threshold level. This level can either be expressed as 

a percentage of the active ingredient rate applied (independent of chemical type) or as a 

Predicted Environmental Concentration (PEC). Threshold levels, usually quoted in ppm, vary 

widely according to the chemical and the sensitive target concerned.  

For the purposes of this paper, an off target deposition level of 0.1% of the field applied 

rate was chosen as the threshold level upon which generic buffer distances may be determined. 

This is because this level roughly corresponds to the No Effect Level (NOEL) for a number of 

herbicides applied to sensitive downwind crops and also the maximum residue levels (MRL) 

permitted for livestock feed for some of the older organochlorine/organophosphate insecticides 

(Akesson and Yates, 1964). Referring to Fig. 5, generic buffer distances of approximately 

2km, 1km, 750m and 200m may be ascertained for aerial ULV, LV, LDP and ground LDP 

application, based on the constants defined in Table 1. 

 

3.3 Sensitivity Analysis 

A sensitivity analysis was performed by varying one parameter at time. Default values for 

the parameters kept constant are given in Table 1. The trends depicted (Fig. 8) are broadly in 

agreement with the FSCBG and AgDRIFT Lagrangian based models (Woods et al 2001). 

 

 

Table 1 

 

 

Figure 8 
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3.3.1 Windspeed 

With 100µm droplets, the effect of windspeed is important, initially, up to about 3 m/s. 

Above 3m/s however, there is only a marginal increase in the required buffer distance. This has 

an important implication on the determination of upper windspeed limits in ULV spray drift 

management programmes.  With larger droplet VMD, spray drift values are less overall and 

the effect of windspeed is more linear. In practice, it is important to have a lower limit 

(commonly 0.5m/s) which avoids spraying in stable conditions or when the direction of the 

wind is unpredictable. 

 

3.3.2 Turbulence intensity 

Turbulence intensity value i determines the rate at which the spray cloud expands and 

dissipates. The lower the value of i, the more concentrated the spray cloud remains near ground 

level and in general, the higher ground deposition levels are, both within the sprayed field and 

downwind of the field. Under neutral conditions with a breeze over a crop, it is reasonable to 

assume i = 0.1 although this value can be adjusted to 0.2 for unstable conditions over a rough 

surface, or to 0.05 for stable conditions over a smooth surface eg. grass. With distance to 0.1% 

applied rate used as the drift index, maximum distances for a 100µm spray occurred when i 

was equal to about 0.03. Low turbulence intensity values occur when cooling of the ground at 

dusk causes a strong positive temperature gradient. The turbulence intensity in this layer can be 

extremely low, resulting in arrested diffusion of aerosol (< 30µm) droplets close to ground 

level and high residue levels several km from the spray source. 

 

3.3.3 Volume Median Diameter 

The predicted relationship between droplet VMD and distance required for 0.1% applied 

rate is approximately linear in the mid range (100-200µm) most commonly encountered in 

agricultural spraying. For aerially applied ULV sprays, data and models have shown that buffer 

distances of over 2km are generally required for off target deposition levels to fall to less than 

0.1% field applied rate. For aerial LDP sprays however, buffer distances of less than 1km can 

usually be achieved. 
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3.3.4 Spectrum width 

The effect on spray drift of varying σL was investigated with a 250µm droplet VMD spray 

only, because when droplet VMD is less than 200µm, the effect of σL becomes small. For a 

250µm VMD spray, σL is typically 0.2 (RS ≈ 1.3) for water based hydraulic nozzle and rotary 

cage sprays where airstream breakup is the main mode of atomisation. However, σL can exceed 

0.3 (RS ≈ 2) depending on the nozzle type, flowrate, formulation and other parameters (Woods 

et al 2000). If σL could be reduced to 0.1 (RS ≈ 0.6) for a 250µm VMD spray, with specialised 

nozzles as described by Craig et al (1998b), required aircraft spraying buffer distances would 

be significantly reduced. 

 

3.3.5 Release height 

The predicted relationship between spray release height and distance required for 0.1% 

applied rate forms a gentle curve. As a general rule, buffer distance may be described as 

varying approximately as the square root of spray release height for 100µm droplets, for the 

range of spray release heights normally encountered in agricultural spraying. 

 

3.3.6 Field source length 

The computer model involves an overlapping procedure which simulates the spraying of a 

field, with a default 500m FSL ie. dimension in the upwind direction from the downwind field 

boundary. As FSL increases, required spray drift buffer distances also increase. Repeated runs 

of the model were carried out for different field source lengths up to 3km with a 100µm droplet 

VMD. The required buffer distance for 0.1% applied rate for a 100µm spray increased by a 

factor of approximately 1.3 for each doubling of field source length from 500m. This 

correction factor increased slightly with decreasing droplet VMD and decreasing threshold 

level. The FSL correction factor disappeared completely (ie. became equal to 1) when droplet 

VMD was increased to 300µm and the threshold level was increased from 0.1 to 1% field 

applied rate. 
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4 Conclusion 

A simple Gaussian Diffusion Sedimentation (GDS) model has been presented to predict 

off-target spray drift deposition associated with aircraft spraying activities. The model 

incorporates the basic parameters of windspeed, air stability, droplet VMD, spectrum 

width, release height and field source length. The main advantage of using the Gaussian 

Diffusion Sedimentation (GDS) model is computational speed, as it constitutes a statistical 

rather than a Lagrangian (particle tracking) approach. The latter is required for modelling 

in the near field (under the aircraft and out to ~50m downwind). The GDS model is more 

suited to prediction in the 50m to 3km downwind range. 

Correlation has been presented between GDS model output and some spray drift deposition 

data collected on paper covered plates placed downwind of sprayed fields. Some data 

points were up to five times higher than the GDS model prediction due to uncertainties in 

the measurement of air stability during the trials. Others were up to five times lower than 

the GDS model prediction due to variability in wind direction during the trials ie. the 

collectors “missed” the drifting spray plume. The variability in the data (± 5 x mean) is 

similar to that in other similar studies. 

Agricultural production in Australia is commonly located on flat or laser levelled land and 

uniform atmosphere and terrain are therefore reasonable assumptions. The model is able to 

provide a useful benchmark to assist in the evaluation of field data and recommendation of 

spray buffer distances. The GDS algorithm described would readily lend itself to rapid 

realtime calculation for onboard computerised spray drift management systems. Further 

research is required to refine the model to more fully incorporate air stability effects, 

receptor collection efficiency, droplet evaporation and crop canopy effects. 
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5 Symbols used 

d deposit, g/m2 

h release height, m 

q line source strength, g/m 

i turbulence intensity 

x downwind distance, m 

v sedimentation velocity, m/s 

u mean windspeed, m/s 

u* RMS vertical air motion, m/s 

X log10 droplet diameter 

µ log10 droplet VMD 

σL standard deviation of log10 droplet diameters 

k constant approximately equal to 6 

Hn height of nozzle, m 

Hc height of crop, m 
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Fig. 1.  Ground deposition of droplets from a diffusing spray cloud with high and low turbulence with same 

windspeed. The cloud originates from a horizontal crosswind line source (ie. perpendicular to wind direction, into 

page)  
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Fig. 2.  Computer generated droplet diameter distributions with σL = 0.2. 
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Fig. 3.  Diagram illustrating overlap procedure 
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Fig. 4.  Basis of source removal algorithm to account for nozzle proximity to a crop canopy 
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Fig. 5.  Comparison of GDS model outputs against field data of Woods et al. 2001 
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Fig. 6.  GDS model predicted deposition values plotted against experimental data 
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Fig. 7.  Statistical analysis showing GDS model predicted deposition values (log % field applied rate) versus 

experimental data (log % field applied rate) for each of the four treatments. 
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Table 1 
 
Default values used in the GDS model analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter Default value 

Windspeed, u 3 m/s 

Turbulence intensity, i 0.1 

Droplet Volume Median Diameter (VMD) 100µm 

Standard deviation of log10 droplet diameter, σL 0.2 

Release height, h 3m 

Field Source Length (FSL) 500m 

Overlap lane separation 20m 

Resolution 20m 

Threshold level / applied rate 0.1% 
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Fig. 8.  Results of sensitivity analysis of the GDS model, for six important parameters (across normally 

encountered ranges), expressed as distance (km) required for downwind deposition to fall to less than 0.1% of the 

field applied rate.  
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