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ABSTRACT This paper presents a new method to apply 

timing characteristics of electroencephalograph (EEG) Beta 

frequency bands to assess the depth of anaesthesia (DoA). 

Firstly, the measured EEG signals are denoised and 

decomposed into 20 different frequency bands. The 

Mobility (M), permutation entropy (PE) and Lempel-Ziv 

complexity (LCZ) of each frequency band are calculated. 

The M, PE and LCZ values of Beta frequency bands 

(21.5-30Hz) are selected to derive a new index. The new 

index is evaluated and compared with measured Bispectral 

(BIS). The results show that there is a very close correlation 

between the proposed index and the BIS during different 

anaesthetic states. The new index also shows a 25-264 

seconds earlier time response than BIS during the transient 

period of anaesthetic states. In addition, the proposed index 

is able to continuously assess the DoA when the quality of 

signal is poor and the BIS does not have any valid outputs.  

 

Keywords Depth of anaesthesia • Mobility • permutation 

entropy • Lempel-Ziv complexity 

 

 

1. Introduction 

Evidence shows that the depth of anaesthesia monitoring 

using electroencephalograph (EEG) improves patient 

treatment outcomes by reducing the incidences of 

intra-operative awareness, minimizing anaesthetic drug 

consumption and resulting in faster wake-up and recovery 

[1, 2]. For an accurate and reliable depth of anaesthesia 

(DoA) assessment, intensive research has been conducted, 

and various algorithms were developed. The latest methods 

includes Entropy [3], Detrended moving-average (DMA) 

[4], Isomap-based estimation [5],  Empirical-mode 

decomposition (EMD) [2], and Bayesian [6]. Olofsen et al. 

developed a composite permutation entropy index (CPEI) 

which tracked the anaesthetic-related EEG changes and 

showed a promising measurement of g-amino-butyric acid 

(GABA)-ergic anaesthetic drug effect [7]. Other studies also 
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consistently showed that permutation entropy could be used 

to efficiently discriminate different levels of consciousness 

during anesthesia [8, 9]. Rain et al. [10] presented that 

approximate entropy, Lempel-Ziv complexity (LZC), and 

Higuchi fractal dimension were highly sensitive to the 

presence of high-frequency components in 

electroencephalograph signals.  

    Most DoA algorithms are designed based on the 

characteristics of different frequency bands of EEG. The 

Bispectral (BIS) index is a statistically based, empirically 

derived complex parameter. The Bispectral analysis 

includes the calculation of bicoherence, bispectrum and real 

triple product as its sub parameters. For the Bispectral 

monitor, the β-ratio is calculated based on the power 

spectrums of the frequency bands 30-47Hz and 11-20 Hz 

[11]. Another important parameter, Synch-fast-slow from 

Bispectral analysis, is based on the frequency bands of 

0.5-47Hz and 40-47Hz. The frequency domain analysis of 

Narcotrend monitor is related to the α, β, δ and θ frequency 

bands. The frequency interval for the Narcotrend monitor is 

calculated based on the signals of 0.5Hz to 47Hz frequency 

band. As for the AEP-monitor/2 monitor, the signals of 

25-65Hz frequency band are used to autoregressive the 

model with exogenous input (ARX). Its undisclosed 

algorithm is applied to frequency band (3-47Hz). Burst 

suppression is also analyzed using the signals of 1-35Hz 

frequency band. The total frequency band from 0.5 to 50Hz 

is used for the PSA 4000 monitor. The frequency domain 

analysis method of Cerebral state monitors includes α-ratio, 

β-ratio and (β-α)-ratio which are more relevant to low 

frequency bands than high frequency bands. For the 

Entropy-Module, the signals of frequency bands 0.8 to 32 

Hz and 0.8 to 47Hz  are filtered out using the FFT method 

[11].  

    In this study, the Mobility, permutation entropy and 

Lempel-Ziv complexity of different frequency bands in the 

EEG signal are calculated. A regression technology-based 

parameter evaluation method is used to evaluate the 

correlation between these parameters with the anaesthetic 

states. Then, these parameters are used to develop a new 

DoA index. The performance of the new index is evaluated 

in comparison with the popular BIS index.  

   The rest of the paper is organized as follows. We first 

describe the Mobility, permutation entropy and Lempel-Ziv 

complexity methods in Section 2. Their applications in DoA 

assessment is introduced in Section 3. The results are 

presented and evaluated in Section 4. The limitations of this 

study are presented in discussion section. Finally, the 

concluding remarks are drawn in Section 6. 
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2. Method 

The Mobility is defined as below: 

M=√
𝜎1

𝜎0
                                   (1) 

where 𝜎0 is the variance and 𝜎1 is the variance of the first 

derivative [12]. In this research, we select 56s as the window 

size and 55s as the overlap for the Mobility calculation.  

   The PE is calculated using the following algorithm [13]. 

Firstly, define the EEG signal [x(i),i=1,2,...] into a 

m-dimension  space X[x(i),x(i+L),...,x(i+(m-1)L)], m is the 

number of  dimension，L is the time delay. Then sort the 

EEG series in the m dimension space in increasing 

sequence: 

 

 [x(i+(𝑗1-1)L)≤x(i+(𝑗2-1)L)≤...≤x(i+( 𝑗𝑚-1)L)]  (2)      

    𝑗1 , 𝑗2, … , and 𝑗𝑚 show the new order of the series. For a 

m-dimension space, there are total m! orders. Each 

X[x(i),x(i+L),...,x(i+(m-1)L)] reflects one of these 

‘m!’orders . Assume the probabilities of each order are 𝑃1, 

𝑃2,..., 𝑃𝐾  respectively. According to the Shannon Entropy, 

the permutation entropy PE(m) is calculated as follows: 

 

PE(m)= -∑ 𝑃𝑗
𝐾
𝑗=1 𝑙𝑛𝑃𝑗                           (3) 

The smaller the PE(m) is, the more regular the time series 

are.  

    The 𝐿𝑍𝐶 is calculated in the following steps. Firstly, the 

original signal (numerical sequence) need be transformed 

into a 1/0 symbolic sequence S by comparing the signal to a 

threshold value. In this research, the median value of the 

signal is used as the threshold value. Whenever the signal is 

larger than the median value, one maps the signal to 1, 

otherwise, to 0 [14].  

     After converting the whole signal into its symbolic 1/0 

sequence, distinct “words” can be obtained by parsing this 

sequence and they can be encoded. The sequence S = 

S1S2...Sn is rewritten as a concatenation W = W1−W2...Wm 

of m “words” chosen such that W1= S1= 0 or 1 and Wj (j=2, 

3…m) is the shortest “word” that has not appeared 

previously. Therefore, the number of the encoded distinct 

“words” (m) is decided by timing characteristics of the 

symbolic 1/0 sequence. The value of Lempel-Ziv 

complexity is relevant to the number of the encoded distinct 

“words” (m) and the length of the signal n. It is defined 

mathematically as 

 

  𝐿𝑍𝐶 =
𝑚(𝑙𝑜𝑔2

𝑚+1)

𝑛
                                  (4) 

Based on methods presented in [14], the complexity 

features were computed using five-second small windows 

with 50% overlap. The  𝐿𝑍𝐶  value for a 56s window size 

signal is the mean of 𝐿𝑍𝐶s of 21 small window size signal. 

3. Applications in DoA assessment  

3.1.  Parameter selection 

The EEG data were collected at the Toowoomba St 

Vincent’s Hospital from 28 adult patients (age 22-83 yr, 

weight 60-130kg, gender 12F/16M). This work only focuses 

on adults does not includes paediatrics. The raw EEG 

signals were sampled at the frequency of 128Hz for each 

channel (two channels) and each EEG sample was a 16-bit 

signed integer in units of 0.05 μV. In addition, the BIS 

values, EMG and signal quantity index (SQI) were also 

obtained at the same time. Because the raw EEG data were 

presented as binary files and they were unfiltered signals, 

they were converted into decimal numbers firstly and then 

denoised using nonlocal mean (NLM) methods [15].  

To evaluate the correlation between parameters and 

anaesthetic states, the parameters for each patient’s two 

channel EEG signals are calculated for different frequency 

bands separately. Then these parameters from different 

patients are put together. Finally, the regression result for 

each frequency band is obtained. The coefficient of 

determination (R squared) is used to calculate the 

correlation between the parameters and the anaesthetic 

states (referred to the BIS values). 

Generally, the anaesthesia states include awake, light 

anaesthetic, moderate anaesthetic and deep anaesthetic 

states. The awake states are corresponding to the BIS range 

from 80 to 100, the light anaesthetic states are 

corresponding to the BIS range from 60 to 80, the moderate 

anaesthetic states are corresponding to the BIS range from 

40 to 60, and the deep anaesthetic states are corresponding 

to the BIS range from 10 to 40 [6]. To accurately measure 

the correlation between parameters and different anaesthetic 

states for developing reliable DoA algorithms, the sample 

selected for parameters evaluation should be representative 

and diverse.  The data selected for the sample should 

balance both the anaesthetic states and awake states. As a 

result, the data of Patient 2, Patient 3, Patient 4, Patient 5 and 

Patient 7 are selected to make up the sample (16693 seconds 

EEG data totally). The lengths of their anaesthetic states are 

similar to each other. 

The EEG signals are divided into five basic frequency 

bands (α, β, γ, δ and θ) [16] and 15 small frequency bands 

using fast Fourier transform method. These bands are listed 

in Table 1:  
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Table 1 15 small frequency bands  

Basic 

frequency band 

Small frequency 

band 

Frequency (Hz) 

α (Alfa) αa 7-10 
αb 10-13 

β (Beta) β1 13-17 
β2 17-21.5 
β3 21.5-26 
β4 26-30 
βa 13-21.5 
βb 21.5-30 

 βγ 21.5-38.5 

γ (Gama) γ1 30-38.5 
γ2 38.6-47 
γ3 47-55.5 
γ4 55.5-64 
γa 30-47 
γb 47-64 

δ (Delta)  0.5 - 3.5 

θ (Theta)  3.5 - 7 

      The original signal bands are also added as a reference. 

As a result, we obtained 5+15+1=21 sets of frequency bands 

from each episode of EEG signal. The Mobility, 

Lempel-Ziv complexity and PE values are calculated based 

on both amplitude and power of each basic frequency band. 

The power sequence of frequency band was calculated from 

the square of its amplitude. The regression results of channel 

1 and channel 2 are shown in Fig. 1. 

   It can be seen from Fig 1, the results from Channel 2 are 

much better than those of Channel 1. For example, the 

highest R squared calculated from the power of β (13-30 Hz) 

is 0.3436 for Channel 2, and the highest R squared for 

Channel 1 is only 0.2281. The difference is more apparent 

for permutation entropy parameters as the highest R squared 

for Channel 2 (0.6050) is 0.2376 higher than that for 

Channel 1 (0.3674). For the parameters of Lempel-Ziv 

complexity, the highest R squared calculated from the 

power of β (13-30 Hz) is 0.3702 for Channel 2 which is also 

higher than that for Channel 1 (0.3008). To sum up, based 

on the timing characteristics analysis methods and samples 

in this research, the parameters calculated from Channel 2 

are much more helpful for DoA assessment. Therefore, we 

only use the parameters calculated from Channel 2 to design 

the new DoA index. 

 
                                                            (a)   

 
 (b) 

 
(c) 

Fig. 1. Comparisons of different frequency bands from Channel 1 and 
Channel 2, (a) Mobility, (b) Permutation entropy and (c) Lempel-Ziv 

complexity. The No.1 to No.21 of frequency bands represent the amplitude 

of δ (0.5- 3.5Hz), θ (3.5-7Hz), α (7-13Hz), β (13-30 Hz), γ (30-64 Hz), 
original signal (0.01-64Hz), βb (21.5-30Hz), γ1 (30-38.5Hz), γ2 

(38.6-47Hz), γ3 (47-55.5Hz), γ4 (55.5-64Hz), γa (30-47Hz), γb (47-64Hz), 

βa (13-21.5Hz), αa(7-10Hz), αb(10-13Hz), β1(13-17Hz), β2(17-21.5Hz), 
β3(21.5-26Hz), β4(26-30Hz), and βγ(21.5-38.5Hz) respectively. The No.22 

to No.42 of frequency bands represent the power of the frequency bands 

mentioned above. 

 

   As shown in Fig. 1, the parameters with the highest R 

squared are the Mobility values which are calculated from 

the power of β (13-30 Hz) frequency band, the PE values 

which are calculated from the amplitude of βb (21.5-30Hz) 

frequency band and the Lempel-Ziv complexity values 

which are calculated from the power of β (13-30 Hz) 

frequency band. They are selected to form the best 

parameters pool for new DoA design. 

 

3.2 New DoA design 

In this research, we also analysed the relationship between 

the performances and the best parameters in different 

anaesthetic states. The original three best parameters are 

separated into different groups according to different 

anaesthetic ranges (referred to BIS value, for example, BIS 

value 70-99), and then the R squareds for three parameters 

are calculated for different anaesthetic ranges respectively. 

The results are shown in Fig. 2.  
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(a) 

 
(b) 

Fig. 2. Performance of the three best parameters for different anaesthetic 
ranges, (a) Increased anaesthetic range, (b) Decreased anaesthetic range. 

Increased anaesthetic range: the anaesthetic range from BIS range (2-3), 

BIS range (2-4) to BIS range (2-99); Decreased anaesthetic range: from 
BIS range (1-99), BIS range (2-99) to BIS range (98-99). 

 

Table 2 The highest R squared based on different anaesthetic range 

The highest 

R squared 

(Frequency 

band) 

BIS 

(1-55) 

BIS  

(55-100) 

BIS 

(1-100) 

M 0.4758 

(power of α) 

0.5957 

(amplitude of 

β) 

0.3436 

(power of β) 

PE 0.6548 

(power of βa) 

0.6878 

(amplitude of 

β) 

0.6050 

(amplitude of 

βb) 

LZC 0.5595 

(power of β) 

0.4425 

(amplitude of 

γ4) 

0.3702 

(power of β) 

 

It can be seen from Fig. 2. The R squared of three 

parameters reaches the peak for the BIS range (2-53) and the 

R squared of three parameters is the smallest for the BIS 

range (45-99). In this research, the whole parameters pool is 

divided into two parts: the parameters refer to the BIS range 

(1-55) and the parameters refer to the BIS range (55-100). 

The linear regression analysis is done between the 

parameters and two different BIS ranges. The best R 

squared is shown in Table 2. 

As shown in the Table 2, the performance of PE 

parameters is always better (R squared is higher than 60), 

however, only the M parameters calculated from the 

amplitude of β Frequency band show a high R squared 

(0.5957)  for the BIS range (55-100). As for LZC parameters, 

the best R squared calculated from the power of β Frequency 

band is 0.5595 for the BIS range (1-55). The relationship 

between these three parameters with the BIS value is shown 

in Fig. 3. 

  The scatter plot graphs for the parameters and BIS are 

shown in Fig. 3 for the samples (five patients, 16973 data 

points). The black line shows 95% confidence boundaries 

around the linear pink bold line. Few data points go beyond 

the 95% confidence boundaries. As for the Mobility, linear 

equation is fitted to all data points during the BIS range 

(55-100) with the relation as BIS = -93.3097 + 175.3189 * 

M. As for the permutation entropy, linear equation is fitted 

to all data points with the relation as BIS = 1553.2 - 854.9 * 

PE. As for the Lempel-Ziv complexity, linear equation is 

fitted to all data points BIS range (1-55) with the relation as 

BIS = 289.0848 - 635.2348 * LZC. 

 
(a) 

 
(b) 
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(c) 

Fig. 3. The linear relationship between parameters with BIS value, (a) 
Mobility, (b) Permutation entropy and (c) Lempel-Ziv complexity.The 

best-fit line is bold and black lines correspond to the 95% confidence 

boundaries. This fitted linear relation indicates that the two methods are 
extremely correlated. 

 

It can be seen from Fig. 3(b), the linear relationship 

between PE parameters with BIS values is weak during the 

BIS range (80-100), therefore, when we design the new 

DoA index, the Mobility parameters are used to adjust the 

DoA assessment result of PE parameters during the awake 

and light anaesthetic states. In addition, the Lempel-Ziv 

complexity parameters are used to adjust the DoA 

assessment result of PE parameters during the deep 

anaesthetic states. The new Tindex is designed as follows: 

 

Tindex= 
1553.2−854.9 ∗ 𝑃𝐸+𝑡1∗(−93.31+175.32∗𝑀)+𝑡2∗(289.08−635.23∗𝐿𝑍𝐶)

1+𝑡1+𝑡2
                    

                                                                                           (5)                                                                                    

   According to BIS = 1553.2 - 854.9 * PE, when PE is equal 

to 1.7596, BIS is equal to 50. The 1.7596 is used as the PE 

threshold. According to BIS = -93.3097 + 175.3189 * M, 

when M is equal to 0.8459, BIS is equal to 55. When M is 

equal to 1.1026, BIS is equal to 100. If PE <= 1.7596 and 

0.8459 < M < 1.1026, 𝑡1=1, otherwise, 𝑡1=0. According to 

BIS = 289.0848 - 635.2348 * LZC, When LZC is equal to 

0.4535, BIS is equal to 1. When LZC is equal to 0.3685, BIS 

is equal to 55. If PE > 1.7596 and 0.3685 < LZC < 0.4535, 

𝑡2=1, otherwise, 𝑡2=0.  

The threshold is not 1.7561 (Corresponding BIS=55) 

because the DoA assessment for BIS=55 range will be 

inaccurate if the threshold is set as 1.7561. According to the 

tests on the sample, the Pearson correlation coefficients [17] 

between the Tindex and the BIS index changes as the 

corresponding BIS values of the threshold increase. The 

relationship is shown in Fig. 4. When the 1.7596 of PE value 

is used as the threshold, the Tindex show the highest 

corelation with BIS index. 

 
Fig. 4. The Pearson correlation coefficient and the BIS value of threshold 

 

4. Results and evaluation  

According to DoA monitors industry reports, 90% of the 

famous brands have BIS modules and more than 3400 

papers published are related to the BIS. The BIS monitors 

were and are still the most popular monitor in the market. 

Although the BIS monitor has received some critical press, 

it is still an important reference or benchmark for a newly 

developed DoA index. Therefore, the new Tindex is 

evaluated by comparing with the recorded BIS. The Tindex 

and BIS index for the samples (Patient 2-5, 7) are showed in 

Fig. 5.  

 

Fig. 5. Tindex and BIS index. 

   The high Pearson correlation coefficient (𝑐𝑜𝑟𝑟Patient 2−5,7 

= 0.8227) show that there is a very close correlation between 

the proposed index and the BIS during different anaesthetic 

states. In addition to the sample, the performances of the 

new index for another random selected 20 patients (Patient 9 

to Patient 28) are evaluated. The Pearson correlation 

coefficients for 20 cases are shown in Table 3. 

   The average Pearson correlation coefficient for 19 patients 

(No.9-14, No 16-28) is 0.8049. However, the performances 

of the new Tindex are not good enough for Patient 15. 

According to the SQI index of Patient 15, the signal quality 
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of Patient 15 is poor and the BIS did not have any valid 

outputs at the beginning of awake states. The unreliable BIS 

may cause the low Pearson correlation coefficient for 

Patient 15. 

4.1. Patient’s state in the case of poor signal quality 

We also evaluated the performance of the new Tindex in 

poor signal quality cases (according to Signal Quality 

Index), where the SQI is lower than 15, the BIS index could 

not output any valid values. 

    In the results, the Tindex shows the DoA values in most 

cases where the BIS index could not. In Fig. 6(a), for patient 

1, the BIS index is always -3276.8 from 556 to 574 seconds, 

but the Tindex outputs valid DoA value during this period.  

In addition, while the BIS index shows significant upward 

trends from 532 to 538 seconds and from 582 to 588 

seconds, the Tindex is flat in general during this period. The 

same situation also happened during 1156 to 1311 seconds 

of patient 8 in Fig. 6(b). According to the anaesthetists’ 

records, there was no recovery of consciousness (RoC) 

during this period, and there are low SQI values about one 

minute before these significant upward trends of the BIS, 

the BIS index might be influenced by noise such as EMG. 

Therefore, the new Tindex is more reliable in this noise 

cases. 

 
(a) 

 
(b) 

Fig. 6. Comparison of the Tindex and BIS index, (a) patient 1, (b) patient 8. 

4.2. Time delay from deep anaesthesia to moderate 

anaesthesia 

To evaluate the performance of the new Tindex, the time 

delay (deep anaesthesia to moderate anaesthesia) of both 

Tindex and BIS index are measured. The new index shows a 

very high correlation with BIS during the states of awake, 

light anaesthesia, moderate anaesthesia and deep 

anaesthesia. However, the new Tindex shows an earlier 

reaction than the BIS index when the patient moved from 

deep anaesthesia to moderate anaesthesia. Take Patients 6 

and 16 as examples, the comparison of the Tindex and BIS 

index is shown in Fig. 7. 

 
(a) 

 

 
（b） 

Fig. 7. Comparison of the Tindex and BIS index, (a) patient 6, (b) patient 

16. The blue square frames show the earlier reaction of Tindex compared 

with the BIS. 

 

This kind of earlier reaction appears in all the cases of the 

12 patients. For the index value change (from 20 to 50), we 

assume that an index value of 35 corresponds to the 

inflection point where the patient’s anaesthetic states 

changed from deep anaesthesia to moderate anaesthesia. In 

some cases, there is no significant upward trend near 35, so 

we compare the significant upward trends between BIS and 

Tindex. The time difference and Pearson correlation 

coefficients for 20 patients are indicated in Table 3.  
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The time difference from deep anaesthesia to moderate 

anaesthesia is about 25 to 264 seconds. 

 

Table 3 Pearson correlation and time response comparison 

between Tindex and BIS 

Patients 9 10 11 12 13 

Time difference (s) 128 122 33 264 223 

Pearson correlation 0.80 0.83 0.79 0.77 0.87 
 

Patients 14 15 16 17 18 

Time difference (s) 103 168 126 169 41 

Pearson correlation 0.89 0.53 0.67 0.89 0.80 
 

Patients 19 20 21 22 23 

Time difference (s) 74 125 102 143 175 

Pearson correlation 0.71 0.84 0.70 0.79 0.73 
 

Patients 24 25 26 27 28 

Time difference (s) 84 91 161 26 25 

Pearson correlation 0.87 0.89 0.80 0.90 0.77 

 

 
Fig. 8. Comparison of the 𝐵𝐷𝑜𝐴 and BIS index [6].The blue square frame 

shows the later reaction of BIS index compared with the 𝐵𝐷𝑜𝐴. 
     

   It is hard to detect when the patients moved from deep 

anaesthesia to moderate anaesthesia based on clinical notes. 

However, the time delay for BIS index is indeed existed 

which can be proved by the results from [6, 18]. It can be 

seen from Fig. 8 which is from Nguyen-Ky et al.’s paper [6], 

the BIS index also shows a later reaction when patients’ 

anaesthetic states change from deep anaesthesia to moderate 

anaesthesia compared with 𝐵𝐷𝑜𝐴  (DoA assessmnent 

function based on Maximum a Posterior). These types of 

later reactions for BIS index also appear in Fig. 13 and 

Fig.15 of Nguyen-Ky et al.’s paper.    
 
5. Discussion 

Comparing with BIS, the new Tindex does not perform well 

at the beginning in some cases. One important reason is that 

when designing the new indexes, the regression technique is 

used to find the best coefficients which make the new index 

highly correlate to the BIS index.  It is observed that the BIS 

values at the beginning of awake states are not reliable as it 

is always at 97.7 without any change. Another reason is that 

all of the data are collected from the anaesthetic patients, 

thus the period of anaesthetic state is much longer than the 

awake state. As a result, the regression results from the 

sample can only obtain the higher R squared in anaesthetic 

state. Although the optimization of samples has already 

been tried in this study, more work can be done in the future 

research. The larger sample size and higher quality samples 

are helpful to increase the robustness of the new indexes.  

   Although R squared and Pearson correlation coefficients 

are widely used for assess the correlation, their 

performances are not good enough to reflect the real 

correlation in some cases from our study, especially, in the 

period of dramatic anaesthetic states changes. In future 

research, separating different anaesthetic states for 

correlation evaluation or applying improved correlation 

evaluation method may lead to a more accurate correlation 

evaluation.     
 

6. Conclusion 

In this study, the Mobility, Lempel-Ziv complexity and 

permutation entropy methods are applied to obtain the 

parameters for DoA assessment. After the parameters are 

calculated from different frequency bands, the proposed 

new DoA index is designed based on: the M parameters 

which are calculated from the amplitude of β Frequency 

band, the LZC parameters which are calculated from the 

power of β Frequency band and the PE parameters which are 

calculated from the amplitude of βb frequency band. Then 

the new DoA index is evaluated using the measured EEG 

data and recorded BIS readings. 

The results show that the average Pearson correlation 

coefficient for 19 patients is 0.8049. The results also show a 

25-264 seconds earlier response than BIS during anesthestic 

states changes. Furthermore, compared with BIS, the 

proposed new index can assess the DoA while the EEG is 

corrupted with noise. For example, even when the SQI value 

is below 15 and the BIS failed to output any valid value, the 

new DoA index works well. This means the proposed index 

can estimate the patient’s anaesthetic states in poor signal 

quality. 
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