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Abstract 

This paper presents SpeedyNet, a computationally efficient crack detection method. Rather than using a 
computationally demanding convolutional neural network (CNN), this approach made use of a simple 
neural network with a shallow architecture augmented by a 2D Stockwell transform for feature 
transformation and linear discriminant analysis for feature reduction. The approach was employed to 
classify images with minute cracks under three simulated noisy conditions. Using time-frequency image 
transformation, feature conditioning and a fast deep learning-based classifier, this method performed better 
in terms of speed, accuracy and robustness compared to other image classifiers. The performance of 
SpeedyNet was compared to that of two popular pre-trained CNN models, Xception and GoogleNet, and 
the results demonstrated that SpeedyNet was superior in both classification accuracy and computational 
speed. A synthetic efficiency index was then defined for further assessment. Compared to GoogleNet and 
the Xception models, SpeedyNet enhanced classification efficiency at least sevenfold. Furthermore, 
SpeedyNet’s reliability was demonstrated by its robustness and stability when faced with network 
parameter and input image uncertainties including batch size, repeatability, data size and image dimensions.  

Keywords: Crack Detection, Image Noise, Stockwell Transform, Linear Discriminant Analysis, 
SpeedyNet, Computational Efficiency 

1 Introduction 
Infrastructures are the primary assets of urban civilization and play numerous vital roles in modern 
civilization. Transportation corridors, housing projects, service facilities and power plants are all 
critical urban components that influence daily life and economic productivity. As a result, 
maintaining their functional capability and integrity is critical, propelling structural health 
monitoring (SHM) to prominence as a cutting-edge technical area. Numerous underlying 
problems, such as aging materials, concrete cracking, and steel corrosion, can impede structural 
functionality and degrade system performance. Timely and accurate condition assessment of these 
infrastructural systems is, therefore, of paramount importance. 

Visual inspection performed by trained engineering technicians is one of the most common 
approaches to condition assessment. Another common approach is the use of non-destructive 
testing (NDT) techniques such as bulk wave ultrasonic testing, X-rays, thermal imaging, eddy 
current and guided waves to locate and measure damage or defects in structures (Abbas & Shafiee, 
2018). A combination of experimental results and the engineer's opinion provide the groundwork 



for a pre-planned evaluation of the monitored structure and subsequent maintenance decisions. 
Despite their popularity, these traditional approaches are known to be time-consuming, laborious, 
increasingly expensive and, in many cases, dangerous (Gharehbaghi et al., 2021; Kim et al., 2019).   

Integrating cutting-edge technologies such as artificial intelligence (AI) and modern image 
acquisition systems like remotely piloted aircrafts (aka drones) or laser scanners, offers an 
alternative solution to condition assessment. Unlike traditional visual inspection, this image-based 
assessment approach has the potential to monitor a large range of structures in an efficient, 
practical and error-free manner in harsh weather conditions. Image-based assessment is 
contactless, precise, long-range, immune to electromagnetic interference in multipoint 
measurements, and capable of measuring a wide range of parameters in large-scale civil 
infrastructures (Ye et al., 2016). In recent years, automated image-based identification of damage, 
such as cracks, has become very popular thanks to rapid advances in both software and hardware 
(Spencer Jr et al., 2019).  

Automated image-based damage identification is carried out in different stages, including (i) 
damage detection via image classification, (ii) damage localization via image localization or object 
detection, and (iii) damage severity identification via image segmentation. Labelling images into 
different categories, finding specific regions (e.g. containing damage) in images, determining the 
vicinity or border of objects (i.e. damage) and separating different regions in images are the 
respective goals of these stages. Major advances in these areas have been fuelled by machine 
learning techniques such as artificial neural networks (ANNs) or, more recently, various deep 
neural networks (DNNs). The latter is part of a powerful subfield called deep learning. 

For decades, ANNs have been a popular choice in data-based engineering and assessment 
(Jayasundara et al., 2020a; Jayasundara et al., 2020b; Liu et al., 2022). However, as computations 
advanced and graphical processing units (GPUs) became available, deep learning made its way 
into the world of engineering. Deep learning as a subfield of machine learning has accelerated AI 
computations in various tasks such as object detection (Wu et al., 2020; Zhao et al., 2019), pattern 
recognition (Busia et al., 2019; Yu et al., 2019), motion tracking (Chen et al., 2014; Jain et al., 
2014), and semantic segmentation (Jain et al., 2014; Lateef & Ruichek, 2019, Wu & Liu, 2021). 
Deep learning models include convolutional neural networks (CNNs), recurrent neural networks 
(RNNs), long short-term memory (LSTM), deep belief networks (DBNs), and denoising auto 
encoders DAEs (Mosavi et al., 2019).  

As one of the most popular deep learning architectures, CNNs play a key role in image 
classification as supervised learning models on variable and fixed-length data (Mohan & 
Subashini, 2019). These models are widely used for concrete crack detection (Dung, 2019; 
Vignesh et al., 2021), road and pavement crack classification (Li et al., 2020; Zhang et al., 2016), 
and many other areas such as medical image classification (Toaçar et al., 2020; Wegmayr et al., 
2018; Rao et al., 2016). With many millions of learnable parameters to estimate, most CNNs are, 
however, well-known for being computationally expensive (Yamashita et al.,2018). This 



highlights a great need for computationally efficient deep learning algorithms for crack detection 
as well as other engineering applications.  

In recent years, deep learning has been increasingly utilised for image-based SHM applications, 
however there are several issues demanding further research. First, most studies focus solely on 
the classification of images under ideal conditions, and are yet to consider the existence of noise 
(Bhowmick et al., 2020; Gharehbaghi et al., 2022; Panella et al., 2018). Second, our literature 
review shows that few research works compare the efficiency of different image classification 
approaches, and fewer still evaluate the impact of image noise in civil engineering contexts such 
as on the classification of concrete cracks (da Costa et al., 2016; Nguyen et al., 2022). This 
highlights the need for better noise-resistant deep learning approaches to crack detection, and more 
comprehensive evaluation and characterisation studies. 

To address the above research gaps, this study developed a robust and computationally efficient 
method for classifying images containing concrete cracks under adverse imaging conditions. To 
this end, we examined the capabilities of image transformations and feature reduction algorithms 
in the image based SHM context. We then integrated the algorithms and a simple DNN to develop 
a novel crack detection method called SpeedyNet that is capable of accomplishing the following 
goals: 

 Higher performance in concrete crack classification compared to conventional pre-trained 
deep learning models 

 High robustness in adverse imaging conditions 

 Robust to uncertainties of the model parameters 

 Robust to the variations in the number of training images and image sizes 

 Speedy enough to reduce the computational cost of image-based SHM. 

The rest of the paper is organised as follows. The methodology section begins with a description 
of the image dataset. The three essential computing phases of SpeedyNet are then outlined. Beyond 
that, a brief discussion of the theories underpinning the suggested method is provided. In the results 
and discussion section, we compare the results of crack image classification against those obtained 
using two popular CNNs, which is followed by a comprehensive evaluation of the robustness and 
stability of SpeedyNet under various types of data and computing uncertainties. Finally, the 
conclusion section discusses the key research findings and broader implications. 

2 Methodology 
When dealing with challenging field conditions, the robustness and stability of image-based SHM 
techniques are crucial. The need for robust and computationally efficient crack detection methods 
are evidenced as discussed above, and SpeedyNet was ultimately developed for this purpose. To 
assess the robustness and efficiency of SpeedyNet, a dataset of cracked and uncracked photographs 
of concrete surfaces was created. Different digital filters were used to simulate environmental 
conditions. Following that, the proposed approach was sequenced through three key computing 



phases which are detailed in Subsections 2.2.1, 2.2.2 and 2.2.3, respectively. Next, two well-known 
CNN models were used as reference classification methods to evaluate the  performance of 
SpeedyNet in different operational conditions. In the final step, the performance indices were 
established for use in this study. 

 

2.1 Data Preparation 

When images are taken, their quality may be compromised in a variety of ways. One common 
issue is the presence of salt and speckled pepper noise caused by incorrect digital ISO settings. 
Another common issue is the creation of motion blur noise caused by relative movement between 
image capture equipment and focal locations. To simulate these adverse conditions, salt and pepper 
noise (denoted as SP), motion blur noise (MB), and a combination of these two (Comb) were 
applied to the normal 3000 image dataset (Nrm) as seen in Figure 1. For SP and MB simulations, 
a noise density of 6% was applied, the motion length was set to 20 pixels, and the angle of motion 
was set to 11 degrees. While three of these datasets (i.e., Nrm, SP and MB) have been previously 
used (Nguyen et al., 2022), the fourth one (Comb) was purposed to create a new challenge to assess 
SpeedyNet. Regardless of the noise patterns applied, all images of these four datasets have the 
same size at 256×256 pixels. Readers can access these datasets via the online data library in the 
Kaggle website (Nguyen et al., 2021). 
 

 
Figure 1. A Normal Image and Its Compromised Variants 

2.2 SpeedyNet Architecture 

This section explains the flow of the innovative crack identification solution under adverse 
conditions, as shown in Figure 2. Using a simplified deep neural network, the SpeedyNet combined 
the advantages of image modification and feature conditioning for crack identification. This novel 
combination is depicted below in three sequential phases. 



 
Figure 2. Flow Diagram of SpeedyNet Architecture  

 

2.2.1 Phase 1: Transforming Features using 2D-Stockwell 

In the first phase, the images were transformed into a new feature space. Several methods have 
been proposed and used for time-frequency analysis. Stockwell transform (ST), introduced in 1996 
(Stockwell et al., 1996), shares similarities with short-time Fourier transform (STFT), and both 
techniques can reveal the time distribution of various frequency bands. Since STFT inherits a fixed 
window width, it cannot be implemented primarily for non-stationary signals (Kalbkhani & 
Shayesteh, 2017).  

By contrast, ST benefits from a variable window as a frequency function, emulating the benefits 
of continuous wavelet transform (CWT) in terms of multi-resolution decomposition. Thus, higher 
frequency bands enable efficient processing via a fine-scaled window that yields fine resolution at 
high frequencies and coarse resolution at low frequencies (Kalbkhani & Shayesteh, 2017).  

ST has been utilized for anomaly detection in different studies, however limited research has been 
undertaken for civil engineering applications like SHM. As a case in point, Singh and Shaik (2019) 
located and classified the bearing faults within an induction motor using ST and support vector 
machines (SVMs). Ditommaso et al. (2015) studied the capabilities of modal curvature evaluation 
and ST for the damage assessment of framed structures under seismic excitations. Sartipi et al. 
(2020) applied ST to obtain detailed information about the time-series of the region of interest 



(ROI) in functional magnetic resonance imaging (fMRI). Time-frequency features partitioned into 
sub-matrices were combined with fuzzy entropies to diagnose a kind of disease from patients' 
recorded data. 

To have a brief definition of this algorithm, the ST of a continuous signal ( )x t is calculated as 

(Sartipi et al., 2020): 

The output of ST is a complex-valued matrix in which the row and columns denote the time and 
frequency, respectively. ST has some advantages compared to other transformations such as 
(Stockwell, 2007): 

 It can combine frequency-dependent resolution with an absolute reference phase 

 It measures the local amplitude spectrum coupled with the phase spectrum, while WT 
provides the local amplitude/power spectrum 

 Unlike most WT approaches, ST can be implemented on complex time series. 
 

Concerning two-dimensional space, 2D-ST is applied to images. Let ( , )f x y represent an image, 

then the 2D-ST is formulated as (Soleimani et al., 2020): 
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The Gaussian window's location on the x-axis and y-axis is adjusted by shifting parameters u and 

v, respectively. uf  and vf are the corresponding frequencies regarding the scale parameters in each 

direction and control the window's expansion in each axis. ( , , , )u vS u v f f is a 4D matrix with 

complex values. For each point ( ,u v ) in the image, the ST coefficients are a 2D matrix shown as

, ( , )u v u vS f f .  

In this study, the absolute values of the ST coefficients were chosen as the features of the concrete 
surface images. Figure 3 presents 2D-ST of non-cracked and cracked images for Nrm samples. As 
demonstrated, the feature map shows higher coefficient values for non-crack images compared to 
cracked ones. 



 
Figure 3. 2D-ST of Non-Cracked Images and Cracked Images  

 

2.2.2 Phase 2: Feature Reduction using LDA  

In the next phase, features were reduced as illustrated here. Reducing the number of features is 
crucial when dealing with machine learning and big data concerns. Although linear discriminant 
analysis (LDA) is mostly used to classify patterns into two groups, it can also be used to sort many 
patterns (Balakrishnama & Ganapathiraju, 1998). According to LDA, all groups are linearly 
separable, and to discriminate between them, several linear discrimination functions representing 
various hyperplanes in the feature space are constructed. On the condition that there are two 
groups, the LDA draws one hyperplane and projects the data onto this hyperplane to maximize the 
separation of the two classes (Balas et al., 2020). This hyperplane is built based on the two criteria 
considered concurrently: 

 Maximizing the distance between the average of two groups 
 Minimizing the variation between each class. 

To cite a few studies on LDA for anomaly detection, Luo et al. (2021) substantiated the potential 
of spatial frequency domain imaging (SFDI) and LDA for detecting three types of damage in pear 
fruit. Yañez Borjas et al. (2019) employed a statistical feature extraction, LDA, and a neural 
network classifier to evaluate three levels of corrosion in a bridge. Gharehbaghi et al. (2022), 
employed kernel-based principal component analysis (PCA) and LDA to modify features of 
variational mode decomposition (VMD) and generalized autoregressive conditional 
heteroscedasticity (GARCH) for detecting linear and nonlinear damage in two building models. 



In LDA, classes are expected to be normally distributed, and LDA also can be utilized for  
dimension reduction and classification. In a two-class dataset, a priori probabilities for 
Class 1 and Class 2 are p1 and p2, respectively; the class means and overall mean are µ1, µ2, and 
µ, respectively; and the class variances are cov1 and cov2, respectively. 

1 1 2 2p p                                                                                                                                              (3) 

Then, within-class and between-class scatter are used to depict the required criteria for class 
individually. The scatter measures for a multiclass situation are calculated as: 

1

(cov )w j j
j

S p


                                                                                                                                          (4) 

where C refers to the number of classes and: 

( )( )T
j j j j jcov x x                                                                                                              (5)                           

Finally, the between-class scatter is calculated as:  

1
( ) ( )T

b j
j

S j
C

        
(6) 

                    

The aim is to find a discriminant plane to maximize the between-class to within-class scatters 
(variances) ratio: 

T
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J
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In this study, the absolute values of 2D-ST were presented in this new feature space provided by 
LDA to have maximum variances between features extracted from the input images. 

The output of LDA was the reduced features that are different from the original features and 
obtained considering the original features and transformation matrix.   

2.2.3 Phase 3: Classification using DNN 

In the last phase, the reduced features were used as an input to a DNN-based classifier. One of the 
benefits of DNNs is their widespread use in image recognition and their exceptional accuracy when 
compared to regular ANNs. However, establishing dense architectural networks demands high-
performance computing resources and a significant time effort. To avoid using a high-
computational and low-speed classifier, the authors used a simple, fast deep learning classifier by 
reducing the number of features and increasing discrimination using LDA. 



A simple DNN was then used to classify the images based on the LDA-modified input attributes. 
Classification was accomplished in this network using three fully connected layers (FC) connected 
to batch normalization layers for faster learning and improved performance, rectified linear unit 
(ReLU), and dropout layers to avoid overfitting and maximize generalization potential, as well as 
a softmax layer connected to the final FC. The architecture of this DNN is shown in Figure 4. 

 
Figure 4. DNN Architecture Used in SpeedyNet 

2.3 Reference Classification Methods 

In AI, CNN is a feed-forward neural network known as a standard image recognition tool. A CNN 
extracts every part of an image, referred to as the receptive field and is made up of three forms of 
layers: (1) convolution, (2) pooling and (3) fully connected. CNNs can extract features from every 
part of an image based on the size of the receptive field. There are two ways of implementing a 
CNN: direct training from scratch and fine-tuning using pre-trained models (Nguyen et al., 2022). 
While the first approach requires a significant amount of data to train the network, the second is 
fast and straightforward and typical for engineering applications.  

When dealing with pre-trained models, transfer learning is defined as the process of conveying 
knowledge that has already been learned by one neural network into another neural network 
(Olschofsky & Köhl, 2020). This process is often performed by imitating the learned weights and 
biases from layers of an entirely trained network to a second network. Transfer learning is capable 
of overcoming overfitting issues and accelerating the training procedure for a related role. Most of 
the pre-trained networks were previously trained with more than 1,000,000 images from the 
ImageNet database (Deng et al., 2009) to classify more than 1000 image classes. In the current 
study, the output classes were redefined as cracked and non-cracked. 

In this research, to benchmark the performance of SpeedyNet, two pre-trained models with a 
relatively small and relatively large number of layers (i.e., GoogleNet and Xception, respectively) 
were selected as reference classification methods. These networks were considered among the best 
performing CNNs for crack detection when compared against the other six pre-trained models 



namely AlexNet, SqueezeNet, InceptionV3, ResNet-18, ResNet-50 and ResNet-101 (Nguyen et 
al., 2022).  Their capacities for crack and damage detection have also been verified in other studies 
(Li & Zhao, 2019; Liu et al., 2020; Maeda et al., 2018). Table 1 provides a summary of key 
characteristics of these two models. 

Table 1 Key Characteristics of Two Reference Classification Models 

Model No. Layers 
Size on 

Hard Disk 
(MB) 

No. of Original 
Parameters 
(Millions) 

Image Input Size 
(Pixels) 

GoogleNet 22 27 7.0 224 × 224 

Xception 71 85 22.9 299 × 299 

 

To avoid overfitting and performance degradation, deep learning optimization techniques were 
used. To optimize the network parameters and increase the network's overall performance in terms 
of overfitting, convergence, generalization and run time, we employed the stochastic gradient 
descent with momentum (SGDM), a non-adaptive learning rate technique. To avoid overfitting, 
L2 regularisation was used within the layers  (Maeda-Gutierrez et al., 2020). The training iterations 
and epochs were set to 480 and 30, respectively. The associated values were obtained by trial and 
error to achieve the convergence of the training progress within the first few steps. The hyper-
parameters denoted in Table 2 were utilized for a fair comparison between the pre-trained models 
utilized. Based on previous research (Nguyen et al., 2022), these parameters were determined by 
a grid search to achieve optimal performance with minimal overfitting. 

Table 2 Hyper-parameters of Two Reference Classification Models 

Parameter Value 

Optimization algorithm SGDM 

Initial learning rate 1𝑒ିସ 

L2 Regularisation 1𝑒ିଷ 

Epochs 30 

Total Iterations 480 
 

2.4 Performance Indices 

It is critical to evaluate the efficiency of machine learning predictions in classification challenges. 
Three of the most widely used metrics were used in this study to measure classification efficiency, 
as denoted by the following equations. Precision is known as the proportion of relevant findings, 
whereas recall is the percentage of total relevant results that have been correctly classified. Recall 
is also known as validation accuracy. F1-score combines precision and recall measures synthesized 
into a single and convenient measure for CNN performance comparisons (Saxena, 2018): 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏   =   
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡𝑠
 

 

  (8) 

𝑹𝒆𝒄𝒂𝒍𝒍 =   
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑒𝑠𝑢𝑙𝑡𝑠
 

 (9) 



 

𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 =   
2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 (10) 

3 Results and Discussion 
As detailed in this section, the classification performance of SpeedyNet was first evaluated and 
compared to that of the reference methods under different adverse conditions. Next, the 
computational efficiency was examined.  After that, the function and impact of its components, 
including transformation and feature reduction, were evaluated. Finally, the robustness of 
SpeedyNet was assessed under various network architecture and input data uncertainties. 

3.1 Comparing Performance 

First, the performance of the SpeedyNet was assessed under different adverse conditions using the 
same numbers of epochs and total iterations (i.e., 30 and 480) as employed by GoogleNet and 
Xception. In this initial evaluation, the efficiency comparison was conducted in terms of 
classification performance and processing time. Both the SpeedyNet and two reference models 
were implemented using the deep learning toolbox in Matlab 2020b (Mathworks, 2020). To 
accelerate the computations when faced datasets and multiple runs, this study utilised an advanced 
computing machine from NVIDIA called DGX Station A100 for both training and inference 
(Nguyen et al., 2022).  

Table 3 presents the typical performance scores of the three methods when working with the four 
datasets. As illustrated, SpeedyNet consistently outperformed the reference methods across all 
cases of datasets. Across the three performance indices, SpeedyNet achieved consistently high 

values in the range of 0.970.99, whereas  those scores of GoogleNet and Xception fluctuated 

substantially in the ranges of 0.770.97 and 0.750.98, respectively.   

Reviewing Table 3 more closely, one can clearly see both reference methods struggled when faced 
the Comb data with all performance indices scored less than 80%. Under the impact of the 
compounded noise, Xception performed no better than GoogleNet, if not to say that it was worse 
at Recall which was the reason for its slightly lower F1-score. Furthermore, the computation time 
indicates that GoogleNet was more than twice as fast as Xception while keeping similar 
classification performance scores with all other datasets. These results once again proved the 
effectiveness of GoogleNet as a relatively small CNN model for image-based crack detection 
(Nguyen et al., 2022). 

On the other hand, SpeedyNet performed well in all cases, including when working with the Comb 
data. Additionally, the computing time of the method has been dramatically lowered when 
compared to reference models, taking only one sixth and one thirteenth of the computing time of 
GoogleNet and Xception, respectively. This outstanding performance of SpeedyNet can be 
attributed to not only the unique individual functionality of ST as well as LDA but also their novel 



partnership with DNN to provide a significant boost in performance for SpeedyNet. The impact of 
these two key components were further investigated in section 3.3.  

Table 3 Performance Assessment of Methods 

Method Image Data Recall Precision F1-score 
Time 

(Seconds) 

GoogleNet  

Nrm 0.97 0.97 0.97 778.96 

SP 0.92 0.94 0.93 795.75 

MB 0.91 0.93 0.92 765.19 

Comb 0.78 0.77 0.77 809.75 

Xception 

Nrm 0.97 0.98 0.98 1687.51 

SP 0.91 0.94 0.93 1725.00 

MB 0.92 0.94 0.93 1677.22 

Comb 0.75 0.77 0.76 1686.45 

SpeedyNet 

Nrm 0.98 0.98 0.98 128.63 

SP 0.99 0.99 0.99 126.56 

MB 0.99 0.98 0.99 128.03 

Comb 0.98 0.97 0.98 129.23 

 
 

 
3.2 Comparing Computational Efficiency 

This assessment established a criterion to determine the most efficient method for classifying 
images under adverse conditions, by taking both performance score and computing cost into 
account. An efficiency index (EI) was therefore formulated as follows: 

100
Pm

CT
EI  

 
(11) 

Where Pm shows the average performance of each method based on the F1-score and C T stands 
for the computational time mentioned in Table 3. To provide a comprehensive overview of each 
technique, the performance and computing time presented in this index are the averages across 
normal and noisy situations. A higher EI value indicates improved performance with less 
computing time. As shown Figure 5, SpeedyNet was an outstanding winner on efficiency of image 
classification, achieving an EI of approximately 0.8, whereas Xception was the worst option in 
this regard, with an EI of less than 0.1. Comparatively speaking, SpeedyNet increased 
classification efficiency sevenfold when compared to GoogleNet, and fourteen times when 
compared to Xception. 

 



  

Figure 5. Comparing Methods Using EI  

3.3 Impact of Model Components 

This part analysed the effect of each component individually. To do so, the use of ST and LDA in 
combination as in SpeedyNet was substituted twice, one with LDA and another with ST, and the 
classification accuracy was evaluated using all datasets and averaged. As illustrated in Figure 6 
(left), ST had the lowest calculation cost at 119 seconds. Compared to this, using LDA exclusively 
resulted in approximate 14% increase in computing time. Apparently, SpeedyNet has benefited 
predominantly from the speed of ST as reflected by the fact that the computing times of these two 
cases were nearly the same. 

  
Figure 6. Impact of SpeedyNet Components in Computing Time (Left) and Classification Performance (Right) 

 

Concerning the classification performance, Figure 6 (right) illustrates the Pm parameter for these 
three cases. Clearly, neither LDA nor ST had an exclusive impact on the performance of 
SpeedyNet. However, integrating LDA into ST increased efficiency from 72% in ST to around 
98% with SpeedyNet. The examination of SpeedyNet's core parts has demonstrated the positive 
impact of feature transformation and reduction on classification performance and computational 
costs. 

3.4 Robustness of SpeedyNet 
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To evaluate SpeedyNet's performance and accuracy when the network parameters and input image 
are uncertain, this part addressed three most common concerns of deep learning users i.e., the batch 
size of the deep learning model, the image size, and number of training images. 

3.4.1 Impact of Network Parameters  

To begin with, SpeedyNet was evaluated for efficacy by adjusting the batch size of the deep 
network and running it repeatedly. As a result, we investigated two batch sizes of 16 and 32, each 
with ten runs for each image dataset. Figure 7 illustrates the results for a variety of batch sizes and 
four datasets. In each subplot, the different colours represent those ten validation curves, with the 
ideal repeatability occurring when each validation curve closely coincides with their counterparts. 
As demonstrated, SpeedyNet achieved the desired accuracy in most cases across the two batch 
sizes proving the excellent stability of the method. Nonetheless, the smaller batch size (16) showed 
a better result with the MB data. 

 

Figure 7. Stability of SpeedyNet versus Batch Sizes  



3.4.2 Impact of Number of Training Images 

This part investigated the impact of input data using different image sizes. To accomplish this, the 
number of images was reduced by 10% in one case and 20% in another and these reductions were 
applied across 4 datasets (Nrm, SP, MB and Comb). As illustrated in Figure 8, SpeedyNet 
performed extremely well in most cases. The most noticeable changes were with the MB data, but 
this reduction in performance was less than 1%. 

  

Figure 8. Impact of Training Data Reduction on SpeedyNet: 10% (Left) and 20% (Right) 

3.4.3 Impact of Image Size 

In this part, the effect of input image size on the performance of SpeedyNet was investigated. With 
some similarity to the previous section, two types of new image sets were defined by reducing the 
input image dimension from 256×256 pixels to 56×56 pixels and 48×48 pixels. Then the 
performances of SpeedyNet were re-evaluated. The results for the two new image datasets are 
displayed in Figure 9. As shown, the reduction in performance was less than 5% in all cases,  
including with the Comb data which was once again proven the most difficult dataset. 

  
 

 

 Figure 9. Impact of Input Image Size on SpeedyNet: 56×56 (Left) and 48×48 (Right) 
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4 Conclusion 
 

The primary goal of this study was to develop a robust and computationally efficient crack 
detection approach for classifying images of concrete cracks taken in various adverse conditions. 
To simulate these conditions, three types of image filters were used, i.e., salt and pepper (SP), 
motion blur (MB), and a combination of these two (Comb) along a concrete crack dataset with 
minute cracks to create a total of four challenging datasets. Taking on these challenges, we 
successfully developed a novel deep learning-based image classification method and named it 
SpeedyNet to reflect the most desirable feature of the algorithm, that is, its speediness. 

SpeedyNet encompasses three computing phases, the Stockwell image transformation, the LDA 
feature conditioner, and a simple 12-layer DNN for classification. To evaluate the effectiveness of 
SpeedyNet, two of the most common CNN models, Xception and GoogleNet, were employed as 
reference models working on the same four datasets. The fourth dataset (Comb) had become the 
biggest challenge for the two CNN models with the result showing approximate 20% drop across 
all performance indices of both models. On the other hand, SpeedyNet championed in all four 
cases, including when working with the Comb data, showing its consistent top-performance, 
scoring between 97% to 99%, while taking only one sixth of computational time of the runner-up, 
that is, GoogleNet. A combined index called EI showed that SpeedyNet had remarkably increased 
the classification efficiency sevenfold and when compared to GoogleNet, and fourteen times when 
compared to Xception. 

To characterize the algorithm, the impact of each triple component of SpeedyNet was applied 
separately to the image data. Results demonstrated the following points: 

 Using ST alone may marginally reduce computational time, but this comes at the 
significant expense of accuracy (over a quarter). 

 Using LDA alone is not recommended as this causes a 15% jump in the computational time 
compared the use of SpeedyNet. 

 When compared to the single use of ST or LDA, their combination in SpeedyNet improved 
accuracy by 27% and 18%, respectively. This novel arrangement together with the use of 
simple but effective DNN are among the most significant contributions of this research. 

Eventually, the proposed method was investigated further against the three common uncertainties 
in the deep learning network and image dataset. Accordingly, the batch size, the number of input 
images and the image size were varied during the evaluation. It was concluded that: 

 The developed approach was robust to the change across two most common batch sizes 
(16 and 32) with similar performance scores achieved for most datasets. However, the 
smaller batch size (16) was recommended due to its higher robustness against the MB data. 

 SpeedyNet demonstrated exceptional stability when working with varying numbers of 
input images and image dimensions, with performance reductions of less than 5% in most 
circumstances. 



All these results have proven the consistent robustness and versatility of SpeedyNet. Future works 
may focus on the utilization of similar image transformations such as contourlets and wavelets. 
Other kernel-based feature conditioning and optimization method applications for tuning the 
network parameters can be investigated in the future, along with crack segmentation. 
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