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ABSTRACT Most emotion classification schemes to date have concentrated on individual inputs rather than
crowd-level signals. In addressing this gap, we introduce Sound-based Community Emotion Recognition
(SCED) as a fresh challenge in the machine learning domain. In this pursuit, we crafted the FF-BTP-based
feature engineering model inspired by deep learning principles, specifically designed for discerning crowd
sentiments. Our unique dataset was derived from 187YouTube videos, summing up to 2733 segments each of
3 seconds (sampled at 44.1 KHz). These segments, capturing overlapping speech, ambient sounds, and more,
weremeticulously categorized into negative, neutral, and positive emotional content. Our architectural design
fuses the BTP, a textural feature extractor, and an innovative handcrafted feature selector inspired by Hinton’s
FF algorithm. This combination identifies the most salient feature vector using calculated mean square error.
Further enhancements include the incorporation of a multilevel discrete wavelet transform for spatial and
frequency domain feature extraction, and a sophisticated iterative neighborhood component analysis for
feature selection, eventually employing a support vector machine for classification. On testing, our FF-BTP
model showcased an impressive 97.22% classification accuracy across three categories using the SCED
dataset. This handcrafted approach, although inspired by deep learning’s feature analysis depth, requires
significantly lower computational resources and still delivers outstanding results. It holds promise for future
SCED-centric applications.

INDEX TERMS FF-BTP, sound community emotion classification, sound processing, textural feature
extraction.

I. INTRODUCTION
A. BACKGROUND
When humans engage in communication, verbal expressions
are accompanied by emotional expressions [1], [2]. Emotion,
a complex amalgamation of biological and psychological
processes, is a conscious experience that fundamentally

The associate editor coordinating the review of this manuscript and

approving it for publication was Zijian Zhang .

characterizes the human persona. To convey our internal
states effectively, we employ a range of tools, including
facial expressions, body language, and speech [3]. Our
communication skills, decision-making abilities, and social
interactions are profoundly influenced by our emotional
states [4]. The individual’s internal emotional state becomes
more discernible through personal experiences, physiologi-
cal conditions, and environmental stimuli. Hence, valuable
insights into a person’s emotional state can be gleaned
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through the utilization of emotion recognition techniques [5],
[6]. Particularly within the realm of human-computer inter-
action, the detection of individuals’ emotional states assumes
tremendous significance [7]. Consequently, the classifica-
tion of emotional states using physiological signals is a hot
research topic for the 2020s [8].
In the context of human-computer interaction, emotion

recognition systems play a crucial role in comprehending
users’ emotional states and providing enhanced services.
Emotion recognition finds diverse applications across various
domains [3], [9]. It can be effectively employed in social
media analysis, market research, and emotion tracking [10],
[11]. Further, it has been used within the healthcare sec-
tor to detect emotional disorders, including depression and
anxiety [12].
Community emotion analysis is an important topic for law

enforcement since they can detect dangerous situations and it
can be used to understand the emotional state of a community.
Community emotion analysis interprets the emotional state
of users from visual and auditory cues such as facial expres-
sions, tone of voice, and body language, especially on social
media and other platforms [13], [14]. For this purpose, differ-
ent methods have been developed using artificial intelligence
and machine learning techniques [15], [16], [17], [18]. This
study presents a study on sound-based community emotion
recognition (SCED).

B. RELATED WORKS
We searched the literature for SCED but there is limited
research. Most of the reviewed research studies focused on
speech and textual emotion recognition in individuals, which
are summarized in Table 1.

C. LITERATURE GAPS
The following literature gaps have been identified:

• Existing speech emotion datasets mostly pertained to
specific individuals. There is a dearth of environmental
or crowd-sound datasets for SCED.

• Deep learning models often attain high classification
performance but are limited by high computational com-
plexity, as they typically require training of millions of
parameters.

• To address this challenge, it is imperative to develop a
highly accurate and efficient feature engineering model.

The model is structured in three phases: (1) multilevel FF-
BTP-based feature extraction (as detailed in Section III);
(2) feature selection employing INCA; and (3) classifi-
cation using a SVM. Our aim, by leveraging lightweight
handcrafted feature engineering techniques, was to emulate
the notable classification performance of computationally
demanding deep learning models. We achieved this by aug-
menting feature representation through MDWT-based signal
decomposition, enablingmultilevel feature generation in both
spatial and frequency domains, and complementing it with
BTP-based multi-textural feature vector extraction.

TABLE 1. State-of-the-art on text- and speech-based emotion recognition.
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TABLE 1. (Continued.) State-of-the-art on text- and speech-based
emotion recognition.

D. MOTIVATION AND THE PROPOSED MODEL
We were motivated to develop a computationally lightweight
engineering model for SCED that could match the acknowl-
edged high performance of deep learning models. In deep
learning models, the input signals are dynamically trained
using layers of hidden feedforward as well as backpropa-
gation networks. Hinton’s forward-forward (FF) algorithm
[34], which only contains feedforward deep layers, arguably
more realistically simulate human neural network and is com-
putationally less expensive. Inspired by this, we proposed
a new handcrafted feature extraction function that incor-
porated an FF feature vector selection algorithm based on
identifying the vector with the maximum calculated mean
square error (MSE) value. We coupled this FF algorithm
with upstream (1) multilevel discrete wavelet transformation
(MDWT) [35], which enabled multilevel feature extraction

from the one-dimensional raw sound signal and wavelet
bands in both spatial and frequency domains; and (2) a binary
ternary pattern (BTP) [36] multi-textural feature generator
using three mathematical operations. We termed our novel
feature extraction function FF-BTP. Other elements of our
model–feature selection and classification–were kept simple
to minimize the time complexity.

We proposed to use our model to solve the problem of
accurate and efficient classification of the prevailing emotion
within a crowd or community, leveraging on environmental
sounds. Hitherto, there has been no systematic approach
for environmental SCED, and also no relevant publicly
available research training dataset. Toward the latter end,
we have assembled a tailored soundscape dataset specifically
designed for SCED. In constructing this dataset, we excluded
samples with prominent foreground sounds. Instead, we used
overlapping speech or noise to discern emotional states.
It is crucial to emphasize that the inclusion of speech from
individuals or songs would render it counter to the primary
purpose of the SCED paradigm.

E. NOVELTIES AND CONTRIBUTIONS
Innovations and contributions of this research are listed
below.
Innovations:

• This study introduces the inaugural SCED dataset. Dis-
tinguishing this dataset is its distinctive assembly of
overlapped auditory signals, facilitating an enriched
spectrum of auditory analyses.

• Throughmethodological investigation, the FF algorithm,
primarily employed for feature vector selection, was
integrated with the BTP. This integration culminated
in the novel FF-BTP feature extraction function,
heralding an innovative paradigm in feature extraction
methodologies.

• The proposed FF-BTP is a self-organized feature extrac-
tion function.

• This work elucidates the first feature engineering model
specifically optimized for automated SCED. The pro-
posed model provides potential pathways for refined
emotion detection methodologies within community
auditory signals.

Contributions:

• Emotion classification, where the real moods of the
subject(s) are automatically classified using machine
learning techniques [37], [38], [39], is a growing
research field. Many emotion classification models in
the literature use various input data: facial images,
speech, biophysical signals (e.g., electroencephalogra-
phy), or functional magnetic resonance images [17],
[40], [41], [42]. To our knowledge, there has been
little research on environmental SCED, which may be
useful for assessing crowd sentiments in diverse appli-
cations, e.g., media, security, behavioral science, etc.
We proposed SCED as a challenge and proceeded to
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solve it using a new deep learning-inspired FF-BTP-
based feature engineering model that was trained and
developed on a unique new crowd sound dataset.

F. ORGANIZATION
The structure of the remainder of this paper is as fol-
lows: Section II details the collected SCED dataset.
Section III introduces the proposed FF-BTP feature extrac-
tion. In Section IV, we present the FF-BTP sound classifica-
tion model, outlining its phases and steps. Section V reports
the classification performance of the proposed model on the
SCED dataset. Discussions and analyses of the results are
provided in SectionVI. Conclusions are drawn in SectionVII,
followed by potential future works in Section VIII.

II. DATASET
In this study, we conducted a prospective search on YouTube
for videos featuring crowds or communities to acquire
sound recordings. Each recording was characterized by a
dominant emotion that was categorized into one of three
classes: negative, neutral, or positive emotion. To ascertain
the accuracy of the emotional classification, we implemented
a manual validation process that involved a three-person
verification team. Only recordings where all three veri-
fiers reached a unanimous decision on the emotional class
were retained. We specifically selected overlapping sounds
that lacked discernible individual utterances, singing and
the like. Overall, we gathered 187 sound recordings, with
a minimum of 60 recordings per emotion class. The total
duration of these recordings was 17.2 hours, averaging
5.5 minutes per recording. These recordings were further
divided into three-second segments and saved in the .wav
format with a high-fidelity 44.1 KHz sampling frequency.
The finalized SCED study dataset consisted of 2733 .wav
files, distributed among the negative, neutral, and positive
classes with 919, 905, and 909 files, respectively. More-
over, this dataset is publicly available on the Kaggle website
and users/researchers/developers can download this dataset
by using https://www.kaggle.com/datasets/arifmetehanyldz/
sced-v1 URL.

III. THE PROPOSED FF-BTP FEATURE EXTRACTION
FUNCTION
We designed a novel handcrafted textural feature extraction
function that combined the established BTP multi-feature
vector generator [36] with a feedforward final feature selec-
tion algorithm, which was inspired by Hinton’s FF algorithm
[34], used in deep learning (Figure 1). Hinton’s FF algorithm
is a novel machine-learningmethod that offers various advan-
tages [34]. To our knowledge, there has been no published
handcrafted feature extraction function based on Hinton’s FF
algorithm.

The novel use of Hinton’s FF algorithm for final fea-
ture vector selection distinguishes FF-BTP from others.
This algorithm provides an advanced method to ensure that

FIGURE 1. Schema of the FF-BTP feature extraction function. ∗BTP transf.:
BTP transformation, S: signum function, LT: lower ternary, UT: upper
ternary, f: feature vector, fv: the selected feature vector, FF:
forward-forward.

the selected vector best distinguishes the signal from other
classes of signals.

FF-BTP combines the capabilities of BTP and FF, offering
a powerful subtraction function that not only provides textural
details via BTP but also enables optimal vector selection via
FF.

The synthesis of BTP’s comprehensive textural feature
generation and FF’s optimal feature vector selection enables
FF-BTP to capture the nuances of the input signal whilemain-
taining a feature representation that optimizes differentiation
from other classes. This dual capability potentially increases
the accuracy and efficiency of any system using FF-BTP for
feature extraction.

BTP is a histogram-based textural feature extraction
method that utilizes signum, upper ternary, and lower ternary
kernels. These kernels produce three textural feature vectors
for each input signal block. The specific steps for feature
extraction are outlined below.
1: Load the dataset and read the signal.
2: Calculate primary signals for every class.
3: Create overlapping blocks of length 9.

bt (g) = signal (t + g− 1) , t ∈ {1, 2, . . . , len− 8} ,

g ∈ {1, 2, . . . , 9} (1)

where b represents overlapping block; signal; input signal;
and len, signal length.
4: Generate binary features using signum, upper ternary

and lower ternary functions.

bit tk (i) = δk (b
t
(i) , bt (5)), k ∈ {1, 2, 3} ,

i ∈ {1, 2, . . . , 4} (2)

bit tk (i+ 4) = δk (b
t
(i+ 5) , bt (5)) (3)

δ1
(
bt (i) , bt (5)

)
=

{
0, bt (i)− bt (5) ≥ −t
1, bt (i)− bt (5) < −t

(4)

δ2
(
bt (i) , bt (5)

)
=

{
0, bt (i)− bt (5) < 0
1, bt (i)− bt (5) > 0

(5)
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δ3
(
bt (i) , bt (5)

)
=

{
0, bt (i)− bt (5) ≤ t
1, bt (i)− bt (5) > t

(6)

t =
SD (signal)

2
(7)

where δ1 represents lower ternary function; δ2, signum func-
tion; δ3, upper ternary function; bit , extracted binary features;
t , threshold value; and SD(.), standard deviation function.
Equations 2 to 7 in this step define the BTP feature extraction
function mathematically.
5: Calculate feature maps using binary to decimal

transformation.

mapk (t) =

8∑
h=1

bit tk (h) · 2h−1 (8)

where map represents generated feature map signals, the
histograms of which were used to generate feature vectors.
6: Generate feature vectors by applying histogram

extraction.

fk = σ (mapk) (9)

where f represents a feature vector of length 256 (as maps
are coded with eight bits); and σ (.), histogram extraction
function. Three feature vectors were generated in this step.
7: Apply the FF algorithm to choose the most suitable

feature vector.
The FF algorithm (Algorithm 1)was employed to select the

feature vector, among those derived from the lower ternary,
signum, and upper ternary kernels, with the highest computed
mean square error (MSE) value. Consequently, a feature vec-
tor of length 256 was produced for each signal.

Below is the pseudocode for Algorithm 1. Initially, pri-
mary signals were derived by averaging the values within
each signal group. To determine the congruence between
the feature vectors of the target and the primary signals of
other classes, MSE values were computed. The best fea-
ture vector was identified using features from the other
classes, and the potency of these vectors was assessed
by contrasting them with feature vectors from different
classes.

IV. THE FF-BTP-BASED FEATURE ENGINEERING MODEL
The model consists of three phases: (1) multilevel FF-BTP-
based feature extraction (refer to Section III); (2) feature
selection using INCA; and (3) classification through a
SVM. Our objective, utilizing lightweight handcrafted fea-
ture engineering techniques, was to mimic the recognized
superior classification performance of resource-intensive
deep learning models. This was achieved by enhancing fea-
ture representation via MDWT-based signal decomposition,
facilitating multilevel feature generation across both spatial
and frequency domains, coupled with FF-BTP-based multi-
textural feature vector extraction.With the latter, an algorithm
(Algorithm 1) inspired by FF neural networks [34] was
applied to select the most distinctive feature vector based on

Algorithm 1 FFAlgorithm for Final Feature Vector Selection
Input: Input signal (S) with length L.
Output: Selected best feature vector (fv).
00: Load signal and feature vectors.
01: Generate average signals (primary signals) for each category.
02: Extract feature vectors of the input signal.

[f1, f2, . . . , fn] = FG (signal) ;
03: Extract features of others’ classes primary signals per the used
signal. We have extracted features of others to g[

f 11 , f
1
2 , . . . , f

1
n
]

= FE (S1) ;
[
f 21 , f

2
2 , . . . , f

2
n
]

=

FE (S2) ; . . .
[
f m1 , f

m
2 , . . . , f

m
n

]
= FE (Sm) ;

// where f represents feature vector; FE , feature extraction
function; and S, primary signal.
04: Calculated MSE of each generated feature vector.

msej =
1
L

m∑
i=1

((
fj (i)− f 1j (i)

)2
+

(
fj (i)− f 2j (i)

)2
+ . . .+(

fj (i)− f mj (i)
)2)

,

j ∈ {1, 2, . . . , n}z
05: Find the maximum MSE.

ind = max (mse) ; // where ind represents the index of the
maximum MSE.
06: Select the feature vector using the calculated index.

fv = find ;

FIGURE 2. Proposed FF-BTP-based feature engineering model. ∗ L: Low
pass filter bands, FF-BTP: the proposed forward-forward binary ternary
pattern, f: feature vector, INCA: iterative neighborhood component
analysis feature selector, SVM: support vector machine classifier.

MSE. Data dimensionality of the multitude of feature vectors
generated was reduced using INCA [43], which selected the
most discriminative features to feed to downstream standard
shallow SVM classifier [44] (Figure 2).

The three phases of the FF-BTP model are explained in the
seven steps below.
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A. FEATURE EXTRACTION
We combined the MDWT and FF-BTP to extract multilevel
features. We used both raw signals and their wavelet band
coefficient. The proposed FF-BTP served as the primary
feature generation function. We employed a self-organized
feature extraction function, making our method inherently
self-organized. By analyzing the raw signal, we extracted
features in the spatial domain. Concurrently, features in the
frequency domain were derived using the proposed FF-BTP
in tandem with wavelet bands generated by the MDWT.
Given these methodologies, we have proposed the extraction
of features that are:

- Multilevel (utilizing MDWT),
- Self-organized (employing FF-BTP),
- Spanning multiple spaces.

To clarify the proposed FF-BTP and MDWT-based feature
extraction method, we have given the steps of this method
below.

Step 1: Decompose the input signal into wavelet bands
using MDWT.

[low1, high1] = θ (signal) (10)[
lowg, highg

]
= θ

(
lowg−1

)
, g ∈ {2, 3, . . . , 9} (11)

where θ(.) represents the one-dimensional discrete wavelet
function (here, we used the well-known symlet 4 wavelet
filter); and low and high, low and high pass filter bands,
respectively. MDWT with nine levels was applied; the gen-
erated 9 low-pass filter bands, together with the raw sound
signal, were input to the FF-BTP feature extractor.

Step 2: Extract textural features from low-pass filter bands
and raw sound signals.

fv1 = β(signal) (12)

fvt = β
(
lowt−1

)
, t ∈ {2, 3, . . . , 10} (13)

where fv represents the feature vector extracted by FF-BTP;
and β(.), the feature generation function. A final feature
vector of length 256 was generated for each input: the first
feature vector corresponding to the raw sound signal; and the
2nd to 10th feature vectors, to the low1 to low9 wavelet bands.
Step 3: Merge the generated feature vectors into a final

feature vector of length 2560 (=256 × 10).

ff (a+ 256 · (q− 1)) = fvq (a) , q ∈ {1, 2, . . . , 10} ,

a ∈ {1, 2, . . . , 256} (14)

where ff represents the final feature vector.

B. FEATURE SELECTION
We applied INCA [43], which was modified from neighbor-
hood component analysis function, for feature selection; the
key parameters were the range of iteration and the misclassi-
fication ratio calculator. The steps are detailed below.

Step 4: Calculate qualified indexes of the extracted
features.

X =
ff − min(ff )

max (ff )− min(ff )
(15)

ix = ψ (X , out) (16)

where X represents normalized feature vector after min-max
normalization; ix, qualified index vector; ψ(.), neighborhood
component analysis feature selector; and out , real output.

Step 5: Select feature vectors iteratively and calculate their
misclassification values.

sz
(
d, bz

)
= X

(
d, ix

(
bz

))
, d ∈ {1, 2, . . . , ns} ,

b ∈ {stv, stv+ 1, . . . , fnv} ,

z ∈ {1, 2, . . . , fnv− stv+ 1} (17)

mcv (z) = γ
(
sz, out

)
(18)

where s represents the selected feature vector; ns, number of
signals; mcv, misclassification value; and γ (.), misclassifica-
tion rate calculation function (here, we used SVM).

Step 6: Select the feature vector with the minimum mis-
classification value.

il = min(mcv) (19)

fvfinal = sil (20)

where il is an index of the minimum misclassification value
and fvfinal is the selected final feature vector.

C. CLASSIFICATION
The classification was performed with SVM classifier [44]
using a 10-fold cross-validation strategy. SVM hyperparame-
ters were fine-tuned using a Bayesian optimizer. The specific
steps are detailed below:

Step 7: Classify the selected final feature vector.

result = γ
(
fvfinal, out

)
(21)

The above seven steps defined the proposed FF-BTP-based
SCED classification model.

V. EXPERIMENTAL RESULTS
A. SETUP
Our parametric model was implemented in MATLAB 2023a
programming environment (see Table 2 for model parameter
settings) on a standard personal computer with 64 GB of
main memory, a 3.6 GHz processor and Windows 10 Pro-
fessional operating system. We employed a series of m-files
to construct the model, and used the MATLAB Classification
Learner toolbox to select the model classifier: SVM outper-
formed other shallow classifiers in the toolbox and was thus
selected.

The feature extraction phase produced a final feature vector
of length 2560. INCA feature selection function was then
applied to select the most valuable and informative attributes
from the original set of features. Across the iteration range
of 100 to 1000, the selected final feature vector containing
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TABLE 2. Parameters settings for the FF-BTP-based feature engineering
model.

TABLE 3. Class-wise and overall classification performance of the
FF-BTP-based model.

the top 475 most discriminative features possessed the lowest
misclassification rate (Figure 3) and was thus chosen as the
optimal input for the downstream classifier.

B. PERFORMANCE EVALUATION METRICS
The task at hand was a multiclass classification problem
into three classes: negative, neutral, and positive emotions.
Standard metrics were used to assess overall and class-wise
performance: accuracy, recall, precision, and F1-score.

C. RESULTS
Across all three classes, there were low rates of misclassifica-
tion, as shown in the confusion matrix (Figure 4), as well as
excellent class-wise and overall performance (Table 3). The
overall accuracy attained was 97.22%.

VI. DISCUSSION
In this work, we introduced a new concept of SCED, which
broadens the scope of the nascent field of speech emotion
detection to crowd situations. A new SCED study database

FIGURE 3. Iterative feature selection (range 100 to 1000) using INCA. The
feature vector of length 475 has the lowest misclassification rate of
0.0278.

FIGURE 4. Confusion matrix of the FF-BTP-based feature engineering
model. ∗1: Negative; 2: Neutral; 3: Positive.

TABLE 4. Classification accuracies for the ablation studies.

comprising balanced classes of crowd sounds divided into
distinct negative, neutral and positive emotion classes was
established to test our novel handcrafted FF-BTP-based
feature engineering model. The latter accomplished multi-
level and input-dependent dynamic textural feature extraction
and selection, using BTP and a neural network-inspired
FF algorithm, for comprehensive characterization of one-
dimensional high-fidelity sound signals that mimicked deep
learning. On the SCED study dataset, the model attained
excellent overall and class-wise classification performance.
Of note, the parametric classification framework confers
optionality for its adoption in diverse one-dimensional signal
datasets and classification tasks.

In the feature extraction phase, the BTP feature extrac-
tion function generated three feature vectors based on lower
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FIGURE 5. FF algorithm-based feature vector selection stratified by
kernel function.

FIGURE 6. FF algorithm-based feature vector selection stratified by kernel
function and class. The upper ternary, lower ternary, and signum kernels
dominated in the negative, neutral, and positive classes, respectively.

ternary, signum, and upper ternary functions for each input
signal block; and the FF algorithm selected the one with the
maximum MSE in relation to the other classes. The lower
ternary function-based feature vector was themost commonly
selected by the FF algorithm overall (Figure 5), a result that
was driven by its predominance in the neutral class (Figure 6).
In the feature selection phase, INCA selected the

475 most informative features from among the initial pool
of 2560 merged features generated from the raw sound signal
and nine MDWT-decomposed wavelet bands. Among all ten
possible input signals, the L1 and L9 wavelet bands con-
tributed the highest (103 out of 475) and lowest (1 of 475)
proportions of selected features (Figure 7).

A. ABLATION STUDIES
To dissect the contributions of individual components of the
parametric FF-BTP feature engineering architecture, we per-
formed ablation studies as listed below.

FIGURE 7. Distribution of INCA-selected features stratified by model
input (raw signal or wavelet band L1 to L9).

Case 1: Using lower ternary kernelled features only; other
model components kept constant.
Case 2: Using signum kernelled features only combined

with the well-known one-dimensional local binary pattern-
based feature extraction; other model components kept
constant.
Case 3: Using upper ternary kernelled features only; other

model components kept constant.
Case 4: Our full model, incorporating all components.
The accuracies of the defined cases are listed in Table 4.

Case 4 (our full mode) attained the best classification per-
formance, which outperformed by 1.17% the next best case,
Case 2, with 96.05% classification accuracy.

B. HIGHLIGHTS
Strengths:

- We have curated a new three-class SCED sound dataset.
It was hoped that this contribution would stimulate
research interest in developing models for SCED.
This dataset was publicly published to contribute to
advanced signal processing and SCED. Users can
download this dataset using https://www.kaggle.com/
datasets/arifmetehanyldz/sced-v1 URL.

- We employed various techniques–MDWT, BTP, FF–for
multilevel deep feature vector extraction to emulate deep
learning models and attained excellent classification
performance.

- Our handcrafted model possessed linear time complex-
ity and is feasible to implement without the need to train
millions of parameters as with deep learning models.

Limitations:
- The study dataset was relatively modest in size; collec-
tion of larger SCED datasets is labor-intensive.

- Our model used the primary signals to calculate MSEs
with little time complexity. However, this lacks gen-
eralizability and may not always yield similar high
accuracy with other datasets.

VII. CONCLUSION
Our study on emotion recognition has highlighted the trans-
formative capabilities of the SCED model. Designed with a
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strong automation-centric approach, this model demonstrates
its sueriority in analyzing crowdsourced acoustic data and
aims to accurately identify these signals into distinguishable
emotional categories. The introduction of the SCED model
heralds a significant departure from traditional susceptibility
detection methods, offering advanced methodologies charac-
terized by their sensitivity and efficiency.

The design of our model outlines the complex interplay
between two important feature extraction methods: MDWT
and FF-BTP. These techniques collaboratively reveal multi-
layered and complex textural nuances from underlying data,
paving the way for a comprehensive analysis of auditory
signals – a degree of analysis that surpasses many existing
models.

An integral component of our model is the FF algorithm
inspired by established neural network methodologies. More
than just a simple component, this algorithm performs the
vital function of identifying and selecting the most relevant
features, ensuring that the decisions made by the model
are based on the most critical data insights. This naturally
increases the likelihood of accurate emotional classification.

While the theoretical framework of our model paints a
promising picture, its real-world applicability and effective-
ness have been confirmed by empirical studies. The model’s
performance, demonstrated by its impressive 97.22% accu-
racy across multiple categories, is a testament to its robust
design and the effectiveness of the methods we integrated.
This not only reflects the operational excellence of the model
but also reaffirms the robustness of the approaches that under-
pin our research.

VIII. FUTURE WORKS
We intend to accrue a larger dataset that encompasses more
classes of emotions. Further, we aim to start a new project that
combines feature engineering with deep learning techniques,
i.e., handcrafted deep learning networks. For example, using
the FF algorithm (Algorithm 1) for selecting the most suitable
feature vector algorithm together with Hinton’s FF algorithm
[34]. These networks, in conjunction with newer larger SCED
datasets, will facilitate the development of cutting-edge emo-
tion detection tools for communities.

In this work, we applied the proposed FF-BTP to sound
signals. Looking ahead, this feature extraction method has
several potential application areas: (i) physiological signals,
and (ii) by introducing a 2D version, textural features from
images can be generated. This 2D version can then be
employed for classifying faces, textural images, and other
biometric images, such as those of veins and irises. With
these considerations in mind, we propose a versatile feature
extraction function. Also, we can apply this feature extraction
function.
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