
FlowRecommender: A Workflow Recommendation Technique for Process
Provenance

Ji Zhang1, Qing Liu 2 and Kai Xu2

1 Department of Mathematics and Computing,
University of Southern Queensland, Australia

Email: ji.zhang@usq.edu.au
2CSIRO ICT Centre, Hobart, TAS, Australia

Email: {q.liu, kai.xu@csiro.au}

Abstract

The increasingly complicated workflow systems necessi-
tates the development of automated workflow recommen-
dation techniques, which are able to not only speed up
the workflow construction process, but also reduce the er-
rors that are possibly made. The existing workflow rec-
ommendation systems are quite limited in that they can-
not produce a correct recommendation of the next node
if the upstream nodes/sub-paths that determine the occur-
rence of this node are not immediately connected with it.
To solve this drawback, we propose in this paper a new
workflow recommendation technique, calledFlowRecom-
mender. FlowRecommender features a more robust ex-
ploration capability to identify the upstream dependency
patterns that are essential to the accuracy of workflow rec-
ommendation. These patterns are properly register offline
to ensure a highly efficient online workflow recommen-
dation. The experimental results confirm the promising
effectiveness and efficiency of FlowRecommender.

1 Introduction

In recent years, workflow systems are becoming more and
more complicated as a result of a fast growing number
of scientific processes available. Scientific workflows are
based on the automation of scientific processes in which
scientific programs are associated, based on data and con-
trol dependencies [1]. These scientific processes, mostly
taking the form of Web services, could either be local or
remote scientific tools or programs that can be shared by
scientists from a common domain. However, the construc-
tion of most workflows are based on some pre-determined
templates and relevant domain knowledge plays a crucial
role in creating these templates. As such, the workflow
construction is difficult or even impossible when domain
knowledge is missing or the workflows are to be con-
structed by amateurs in the field. Workflow recommenda-
tion based on provenance turns out to be a possible and
promising approach in the case when no templates are
available.

Provenance of workflows is a practice to archive histor-
ical workflows that have been executed and, sometimes,
also the intermediate and final results generated by the
workflow processes. A number of provenance systems
and techniques have been proposed [6, 7, 8, 9, 10, 11, 12,
13, 14, 15]. The provenance of workflows is of consid-
erable value to scientists. From it, one can ascertain the

Copyright c©2009, Australian Computer Society, Inc. This paper ap-
peared at the Eighth Australasian Data Mining Conference (AusDM
2009), Melbourne, Australia. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 101, Paul J. Kennedy, Kok-Leong
Ong and Peter Christen, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

quality of the data based on its ancestral data and deriva-
tions, track back sources of errors, allow automated re-
enactment of derivations to update a data, and provide at-
tribution of data sources [4]. Recent work has also shown
that provenance information (the metadata required for
reproducibility) can be used to simplify the process of
pipeline creation [5]. Tools for assisting automatic con-
struction of workflows are increasingly desirable to facili-
tate the construction of complicated workflows. An effec-
tive and efficient workflow recommendation technique is
useful in these tools. First, it can speed up the workflow
construction process by reducing the development time.
Second, it can provide a guidance for choosing the mostly
likely node and, therefore, minimize the errors that are
possibly made in the workflow construction.

An important observation in workflow construction
practice is that, in most cases, the prediction of a down-
stream node is only dependent on one of its adjacent up-
stream sub-paths in the workflow. Here, the adjacent sub-
path is not necessarily continuous nor immediately con-
nected the node. The influence exerted by the remote up-
stream sub-paths becomes negligible when the distance
between the node and the upstream sub-path increases.
The existing work perform recommendation either based
on the last node only [1] or the continuous paths that ends
in the last node in the current workflow [2]. They can-
not perform recommendation based on the paths that are
not continuous nor does not terminate in the last node of
the current workflow. For example, suppose we need to
produce the recommendation of the next node for a partial
workflow c → a → b. The method in [1] provides predic-
tion based on nodeb only while the method in [2] provides
prediction based on one of the two continuous sub-paths
that end at nodeb: c → a → b anda → b. These two
methods will fail to provide correct recommendation if the
next node is actually decided by other sub-paths such asc,
a, c → a or c → . . . → b.

To solve the drawbacks of the existing work, we pro-
pose a new workflow recommendation technique based
on workflow provenance, calledFlowRecommender.
FlowRecommender provides a more effective yet efficient
means for producing the prediction by investigating the
correlation of each possible workflow node with respect to
its adjacent upstream paths. More specifically, FlowRec-
ommender takes two main stages for performing workflow
recommendation: the offline stage and the online stage.
In the offline stage, FlowRecommender extracts the pat-
terns of nodes that will appear in the workflows. The
patterns are called theinfluencing upstream sub-pathsof
the nodes that determine the occurrence of these nodes in
the workflows. The extracted patterns are registered into
the so-calledpattern tablefor the subsequent recommen-
dation. In the online stage (when recommendation is re-
quired), the pattern table is scanned to match the patterns
with the current partial workflow under construction. The
node is recommended if its influencing upstream sub-path

Figure 1: The system architecture of FlowRecommender

matches the partial workflow. Compared with the exist-
ing methods, FlowRecommender is advantageous in that
it features a stronger capability to identify the influencing
upstream sub-paths, leading to a better recommendation
performance.

The reminder of this paper is organized as follows.
Section 2 presents an overview of FlowRecommender and
its system architecture. In Section 3, greater details are
given on the two major modules of FlowRecommender,
i.e. pattern extraction and registration, and the workflow
recommendation. The experimental results are reported in
Section 4. The final section concludes the whole paper
and presents some future research directions.

2 An Overview of FlowRecommender

In this section, we will present an overview of FlowRec-
ommender for workflow recommendation based on work-
flow provenance. The system architecture of FlowRec-
ommender is presented in Figure 1. Generally, there are
two modules involving in FlowRecommender, i.e., pat-
tern extraction and registration and workflow recommen-
dation. The first two modules are performed offline while
the last module is conducted online during the construc-
tion of workflows.

• Pattern extraction and registration. The patterns
of the candidate nodes are extracted from the work-
flows in the provenance. Here, the candidate nodes
are those tools/programs that can be utilized to ex-
tend/complete the workflow in the recommendation,
and the pattern for each candidate node refers to its
influencing upstream sub-path that determines the
occurrence of this node. Such pattern is identified
when the correlation (measured byconfidence) be-
tween the sub-path and the node is sufficiently strong.
The discovered patterns are registered into thepat-
tern table, making FlowRecommder ready for the
subsequent workflow recommendation module;

• Workflow recommendation. During workflow con-
struction, workflow recommendation module tries to
match the influencing upstream sub-paths of the can-
didate nodes against the current workflow under con-
struction. The nodes are recommended to users once
its influencing upstream sub-path matches the current
workflow.

From the system architecture of FlowRecommender as
shown in Figure 1, we can see that, in the workflow con-
struction process, a close cycle is formed among the fol-

lowing components: the workflow currently under con-
struction, the workflow recommendation generation mod-
ule and the end human users. The workflow currently
under construction serves the input to the recommenda-
tion generation module. Based on the current status of the
workflow, the recommendation generation module tries to
provide recommendation as to which node should be se-
lected to extend/complete the workflow. The recommen-
dation results are fed to the users who will decide whether
the recommendation is followed. The users’ decision will
lead to the extension of the worklow. This cycle continues
until the workflow has been constructed to the point such
that the desired task has been fulfilled.

The major constituting modules of FlowRecommnder
are discussed in details in the following subsections.

2.1 Pattern Extraction and Registration

In this section, we will discuss in details how to extract
patterns from provenance that are useful to the workflow
recommendation. These patterns serves as a sort of signa-
tures to activate the recommendation of certain nodes to
extend/complete the partial workflows.

2.1.1 Pattern Extraction

The patterns of the candidate nodes are extracted from the
provenance. The candidate nodes are those nodes that can
be potentially used to extend/complete the partial work-
flows under construction. The patterns are the influenc-
ing upstream sub-paths that determine the occurrence of
nodes in the workflows.
Definition 2.1: Candidate Node Set for all the work-
flows. The Candidate Node Set with respect to all the
workflows in the provenance, denoted asCNS(D), is the
set of nodes that can be potentially recommended in var-
ious locations of workflows. It is defined as the set of
nodes that have appeared in the workflows but do not only
appear in the start position of the workflows.
Definition 2.2: Upstream sub-paths.The upstream sub-
paths of a nodev in a workfloww is defined as the se-
quences of ordered nodes that appear beforev in w. For
example, in a workflowb → a → c, the set of upstream
sub-paths for nodec are{b, a, b → a}.

We evaluate the correlation of a node and its upstream
sub-paths through the measure ofconfidence. Confidence
of a nodev given a upstream sub-pathp is the probability
that v appears given thatp has already appeared in the

workflow. It is defined as

Conf(v, p) =
freq(v, p)

freq(p)

where freq(v, p) and freq(p) correspond to the fre-
quency/count thatv and p occur together andp occurs
alone in the workflow, respectively.

Unlike association rules, only confidence is leveraged
in our work to measure the significance of the patterns
extracted, instead of using both support and confidence.
In workflow domain, it is likely that some workflows are
executed in a quite low frequency, but their constituting
nodes and/or paths feature strong correlations with other.
If support measure is used, then it may lead to many low-
frequency workflows being screened out and the recom-
mendations based on these workflows becomes impossi-
ble.
Definition 2.3: Influencing upstream sub-path. For a
nodev, the influencing upstream sub-pathp in a workflow
is defined as the sub-path that satisfies that the confidence
of v givenp is no less than a given confidence threshold
σconf , as follows:

Conf(v, p) ≥ σconf

The technical challenge lies in extracting the influenc-
ing upstream sub-path for a nodev is that we are not able
to accurately pinpoint the location and order of the influ-
encing upstream sub-path ofv. The concept of the loca-
tion of an influencing upstream sub-pathp in a workflow
is relative to the end (last node) of this workflow. This is
what we call the backward location of a sub-path within a
workflow, which is defined as follows:
Definition 2.4: Backward location of an influencing up-
stream sub-path. The backward location of an influenc-
ing upstream sub-pathp within a workflow is defined as
the distance (i.e., the number of edges) between the first
node ofp and the last node ofw, i.e.

Location(p) = Dist(start(p), end(w)), p ∈ w

To solve the difficulty in pinpointing the location and
order of the influencing upstream path of given nodes, we
devise a technique to do this in aprogressivefashion. For
a given node, the technique first evaluates its confidence
with respect to its upstream sub-paths consisting of nodes
with the smallest overall distance (based on the location
of the sub-path within the workflow as defined in Defini-
tion 2.4) to ensure that the more adjacent upstream paths
are evaluated first, followed by the more remote ones. In
other words, we evaluate the sub-paths with a distance of
1, 2, For the sub-paths with the same distance from
the end of the workflows, we will first evaluate those with
a smaller order. In the case of a tie of the order of con-
stituting nodes in the paths, the algorithm will randomly
choose a path for evaluation. This design is consistent
with the rationale that the influencing upstream path of
a candidate node is relatively close to the location of the
candidate node in the workflow.

As the algorithm will potentially evaluate all the possi-
ble upstream sub-paths, thus the total number of such sub-
paths could be large especially when the sub-path is far
from the node in the workflow. To prevent an explosion
of the possible upstream paths, a parameterk (k ≥ 1) will
be used to specify the maximum backward location for
the sub-paths to be evaluated. In other words,k will de-
termine the extent to which the upstream back-track will
be performed to find the influencing upstream sub-paths
for the given candidate node. For a candidate node, the
upstream sub-path exploration is continued until either of
the following conditions is met:

1. The influencing upstream sub-path of this node is
found; or

2. All the sub-paths with a backward location not ex-
ceedingk have been evaluated.

The algorithm for finding the influencing upstream
sub-paths for all the candidate nodes is presented in Figure
2. To speed up the pattern extraction, particularly the cal-
culation of confidence, we leverageinverted indexingof
workflows, which speeds up the search of the workflows
where a given node appears. This can significantly reduce
the number of workflows to be evaluated for calculating
confidence. The inverted indexing based on the candi-
date nodes are first performed in order to streamline the
subsequent confidence calculation.CNS(D) is cloned to
SetOfPendingNodes which will dynamically updated
in the algorithm to track the set of nodes whose patterns
have not yet been found. The FOR loop in Line 3 controls
the order of the sub-paths the algorithm will evaluate, in-
creasing from 1 throughk. The algorithm will continue
when not all the candidate nodes have been evaluated.
Once the influencing upstream sub-path for the node has
been identified, the node and its pattern will be registered
into the pattern able and the algorithm will start to process
the next candidate node. Pattern registration in pattern ta-
ble will be discussed in the next subsection. The BREAK
clauses in Line 10 enables the algorithm to be terminated
early the moment when the influencing upstream path has
been identified with respect to each candidate node.

2.1.2 Pattern Registration

When they have been extracted, the influencing upstream
sub-paths of the nodes in Candidate Node Set for the
provenance will be registered into the pattern table. Next,
we will present the definition of pattern table.
Definition 2.4. Pattern Table. The pattern table is an
n × 2 table, wherexi1 is the node that possibly appears
in the workflows (i.e.,xi1 ∈ CNS(D)) andxi2 is the
corresponding influencing upstream sub-path of the node
given inxi1, where1 ≤ i ≤ n.

An influencing upstream sub-path is represented as an
ordered sequence of nodes in the pattern table. Each node
in the sequence is associated with the location information
represented by its distance to the candidate node given in
the filed ofxi1. The order of this sequence of nodes is con-
sistent with the order they appear in the workflows from
where they are extracted, but they do not necessarily ap-
pear consecutively. The pattern table is pre-constructed
before recommendation is performed.

An example of pattern table is given in Table 1. Sup-
pose that this table is derived from a repository of work-
flows involving a total of 7 nodes (labeled asa, b, c, d, e, f
andg) and there are, however, only 3 nodes (i.e.,c, d and
e) whose influencing upstream sub-paths are identified
given a certain confidence threshold level: the 2-order sub-
patha(3) → b(1) is identified for nodec and 1-order sub-
pathc(2) andg(1) are found for nodesd ande, respec-
tively. The influencing upstream sub-path of nodec, i.e.,
a(3) → b(1), means that nodec is recommended when
the current workflow under construction contains a path
that takes the form of∗ → a →? → b, where the wildcard
symbol asterisk(*) represents a sub-path with any possible
sequence of nodes while the question-mark(?) represents
a single node.

2.2 Workflow Recommendation

The workflow recommendation that our method provides
is offered in a stepwise fashion; the systems automatically
recommends the next most likely node to choose in order
to extend/complete the current workflow that is under con-
struction. The users can exert to activate/inactivate work-
flow recommendation anytime in the construction process,
providing users with a great flexibility to choose construc-
tion with or without automatic workflow recommendation.

Algorithm: findInfluencingSubPath(D, k)
Input: The whole workflow repositoryD and the limitk for upstream back-tracking for identifying patterns.
Output: The influencing upstream sub-paths of nodes inCNS(D).
1. Perform inverted indexing based on the nodes inCNS(D);
2. SetOfPendingNodes← CNS(D);
3. FORi = 0 to k − 1 DO
4. FOR each nodev in SetOfPendingNodes DO
5. FOR each sub-pathp of backward location ofi in the workflowsw of index(v), starting from the smallest order, DO{
6. Conf(v, p)← computeConfidence(v, p,D);
7. IFConf(v, p) ≥ σ THEN {
8. Registerp for v in the pattern table;
9. Removev fromSetOfPendingNodes;
10. BREAK;}}

Figure 2: The algorithm for finding the influencing upstream sub-paths for candidate nodes

Candidate node label Influencing Upstream Sub-path
c a(3)→ b(1)
d c(2)
e g(1)

Table 1: A sample pattern table

Definition 2.5: Candidate Node Set for a workflow.
The Candidate Node Set for a workfloww, denoted as
CNS(w), is the set of nodes that can be potentially rec-
ommended to extend/complete an incomplete workfloww
that has been constructed. It is defined as the set of nodes
that satisfy the I/O constraints w.r.tw. That is, the in-
put data type of the node inCNS(w) matches the out-
put data type of the last node ofw. Obviously, we have
CNS(w) ⊆ CNS(D), andCNS(w) may change when
w is constructed at different stages.

The moment when the recommendation is required to
extend or complete a workfloww, we need to go through
evaluating the influencing upstream sub-path of each node
in CNS(w), which have been stored in the pattern ta-
ble, to see whether they match the current workflow under
construction. To perform pattern matching, we need to
first define the distance between a partial workfloww and
an influencing upstream sub-pathp of a candidate node.
Specifically, such distance, denoted asDist(w, p), is de-
fined as the normalized sum of the location difference be-
tween the same pair of nodes inw andp as

Dist(w, p) =

∑
Dist(nw

i , n
p
j)

Order(p) ·Order(w)
, nw

i ∈ w, n
p
j ∈ p

wherenw
i andnp

j represent the same node inw andp with
(probably) different locations withinw andp, 1 ≤ i ≤ |w|
and1 ≤ j ≤ |p|.

Based on the above definition, we know that0 ≤
Dist(w, p) < 1. We haveDist(w, p) = +∞ if w does
not have the same sequence of nodes appearing inp for
a candidate node. This is to ensure that the partial work-
flow w and its matched influencing upstream sub-pathp
have the same sequence of nodes, though these nodes may
have (slightly) different locations within the workflow and
sub-path.

A distance threshold, denoted asσd, needs to be speci-
fied to determine whether the partial workfloww matches
the influencing upstream sub-pathp of a candidate node.
That is, ifDist(w, p) ≤ σd then we say thatw matches
p and does not otherwise.σd is a parameter providing
flexibility for controlling the accuracy/fuzziness in pattern
matching. The largerσd is, the less accurate (more fuzzy)
the matching will be, and vice versa.

If the patterns are matched for more than one candi-
date downstream nodes, then the recommendation can be
presented in aprobabilisticmanner. Specifically, suppose
matchedCNS(w) is the set of matched candidate nodes

that satisfies that

matchedCNS(w) ⊆ CNS(w)

and

∀v ∈ matchedCNS(w), Dist(w, p) ≤ σd

wherep is the influencing upstream sub-path of nodev.
Each node inmatchedCNS(w) will be recommended
with a probability to indicate the strength that this node is
recommended. The probability is quantified proportion-
ally based on the confidence level, i.e.,

Strength(v, w) =
Conf(v, w)

∑
i Conf(vi, w)

wherevi ∈ matchedCNS(w). strength(vi, w) satisfies
that0 < strength(vi, w) ≤ 1 and

∑
i strength(vi, w) =

1.
If no influencing upstream sub-path can be matched

against the partial workflow under construction for any
candidate node, then only the nodes that satisfy the I/O
interface of the workflow will be recommended (i.e., the
output datatype of the last node of the workflow matches
the input datatype of the node to be recommended), each
with the same strength of 1

|CSN(w)| , where|CNS(w)| de-
notes the number of nodes inCNS(w).

The algorithm for the recommendation gen-
eration is presented in Figure 3. Two sets,
SetOfRecommendedNodes and SetOfStength,
are used to record the set of nodes whose patterns
matched the workflow and their respective recommenda-
tion strength, respectively. These two sets are initialized
as empty sets at the beginning (Step 1 and 2). The pattern
table is then scanned to identify those nodes whose
patterns match the partial workflow and these nodes
are stored inSetOfRecommendedNodes (Step 3-5).
Their strength in the recommendation is calculated and
stored inSetOfStength based on their confidence level.
Finally, the recommendation is presented by returning
SetOfRecommendedNodes and SetOfStength to
users.

3 Experimental Evaluation

In this section, we present experimental evaluation of the
our workflow recommendation technique. Three major

Algorithm: RecommendationGeneration(w)
Input: A partial workfloww.
Output: The set of nodes recommended forw and their respective strength.
1. SetOfRecommendedNodes← ∅;
2. SetOfStength← ∅;
3. FOR each nodev registered in the pattern table DO
4. IFDist(w, p) ≤ σd, wherep is the pattern ofv, THEN
5. SetOfRecommendedNodes← ∪v;
6. FOR each nodev ∈ SetOfRecommendedNodes DO
7. SetOfStength← ∪ Conf(v,w)∑

i
Conf(vi,w)

, wherevi ∈ SetOfRecommendedNodes;

8. OutputSetOfRecommendedNodes andSetOfStength;

Figure 3: The algorithm for producing workflow recommendation

sets of experiments are carried out, evaluating the accu-
racy of recommendation, scalability towards large prove-
nance, and sensitivity to the major parameters. The pro-
gram is developed in C++ and all the experiments are con-
ducted in Windows Vista 2.26GHz system with a main
memory of 2G.

The workflow provenance that we will use in the ex-
periments are generated synthetically. To render the work-
flow repository generated as being close to the real-life ap-
plication scenarios as possible, four major aspects of de-
sign are carefully considered in the designing process: a)
What is the total number of workflows in the provenance
(denoted asNprovenance)? b) What are the nodes that will
appear in the workflow provenance (here, the total number
of nodes that will appear in the provenance is denoted as
Nnodes)? c) What is the length of each workflow? and d)
What is the order of nodes appearing in each workflow?

Both Nprovenance and Nnode can be easily spec-
ified as positive integers. OnceNnode is specified,
the generator automatically generates a set of nodes as
P1, P2, . . . , PNnode

. A maximum length of workflows, de-
noted aslmax, is specified and the length of each workflow
is a random integer variable in the range of[1, lmax].

To decide the order of nodes appearing in workflows,
a set of matrices are constructed to decide the transitional
probability for each pair of nodes. Specifically, each en-
try xa,b in the matrixM(i) corresponds to the transitional
probability of nodeb given nodea that is of a distance ofi
beforeb. Here,i is an integer and, without losing general-
ity, we set it in the range of[1, 3], meaning that the occur-
rence of a particular node in the workflows we generate
is depended on a preceding node that is of a distance not
exceeding than 3. Certainly, one may specifyi as another
valid value. Each workflow is initialized using a node ran-
domly chosen from the set of nodes. When each subse-
quent node needs to be generated in the workflow, a matrix
is randomly chosen from the matrix set (which contains
three matrices) and the new node is generated based on
the transitional probability presented in this matrix. This
design ensures that occurrence of a node within workflows
is not only determined only by its immediately preceding
node, but also some more remote non-connected nodes.
The workflow grows in this way until its specified length
is reached.

3.1 Effectiveness Study

In order to carry out effectiveness study, we need to have
a mechanism to validate the accuracy of the recommenda-
tion provided by FlowRecommender. To this end, we sam-
ple a small fraction of the workflows from the provenance
(e.g., 10%) to evaluate the effectiveness of recommenda-
tion of FlowRecommender. This set of workflows is called
the test set. For each workflow in this test set, a so-called
test nodeis randomly chosen. The test node, which is the
node that has really been executed, will be compared with
the recommendation produced using FlowRecommender.

The effectiveness of recommendation is measured by

the accuracy of recommendation. Because the nodes in the
workflows are generated stochastically based on the tran-
sition probability matrices, thus we will consider the top
m recommended nodes when we evaluate the recommen-
dation accuracy. A hit (i.e., accurate recommendation) is
counted as long as the test node is one of the topm recom-
mended nodes by FlowRecommender. We compare rec-
ommendation accuracy of FlowRecommender with that of
other two competitive recommendation methods. The first
method recommends the next likely node based on its im-
mediately preceding single node, and the other one per-
forms recommendation based upon the immediately pre-
ceding continuous upstream sub-paths. The comparison
result is shown in 4. The value ofm is set as 3 in this
experiment. This figure shows that FlowRecommender
performs much better than the method recommends node
based on immediately preceding node. This is because
that there are quite a few nodes in the workflows whose oc-
currence is not based on its immediately preceding node.
FlowRecommender is also superior to the method that per-
forms recommendation using the immediately preceding
continuous upstream sub-paths. After a closer examina-
tion, we find there are some nodes that correlates with the
upstream sub-paths that are not connected with itself.

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Experimental ID

R
e

c
o

m
m

e
n

d
a

ti
o

n
 a

c
c
u

ra
c
y

Recommendation by immidiately preceding node
Recommendation by immidiately preceding continous sub−path
FlowRecommender

Figure 4: The accuracy of FlowRecommender

3.2 Efficiency Study

We also want to evaluate the efficiency of recommenda-
tion. We mainly investigate the execution time of pattern
extraction and workflow recommendation which are per-
formed in the offline and online fashion, respectively. Fig-
ure 5 and 6 report the execution time of these two steps
under varying number of workflows in the provenance.
First, from Figure 5, we can see that the extraction of pat-
terns from the provenance scale in an approximately linear
manner with respect to the size of the provenance. This is
because that the complexity of constructing the inverted
indexing of workflows dominates that the step of pattern
extraction and, when constructing the indexing, the whole

workflow provenance needs to be scanned. Interestingly,
we do not observe such a linear scalability behavior for
the workflow recommendation step. As Figure 6 reveals,
the execution time of the workflow recommendation step
is independent of the provenance size. This is because
that it is the pattern table, instead of the original workflow
provenance, that needs to be scanned to find the matched
patterns for the current workflow under construction. The
size of the pattern table is determined by the number of
candidate nodes for the whole provenance, i.e.,CNS(D).
CNS(D) will remain unchanged if the workflows in the
provenance are constructed using only a fixed set of nodes.
The fluctuation of the execution time results from the dif-
ferent size ofCNS(w) at different recommendation loca-
tions within the workflow.

2000 4000 6000 8000 10000
10

20

30

40

50

60

70

80

Number of workflows in provenance

E
x
e

c
u

ti
o

n
 t

im
e

 (
S

e
c
.)

Figure 5: The efficiency of pattern extraction

2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

8

Number of workflows in provenance

E
x
e

c
u

ti
o

n
 t

im
e

 (
S

e
c
.)

Figure 6: The efficiency of recommendation

4 Related Work

There are abundant research work carried out on service
discovery and optimization for composition (which can be
considered workflows) in the Service Oriented Comput-
ing (SOC) domain. The nodes (in this case, Web services)
that are appropriate to the task that are to be fulfilled are
first discovered and the best Web service(s) is then iden-
tified for execution in the workflow through some service
optimization process [3]. In a sense, this resembles to a
workflow recommendation problem where the service dis-
covery and optimization help recommend to users the best
service that needs to be execute in each step. Neverthe-
less, there are some fundamental difference between these
work and the problem that we are trying to address in this
paper. The Web services are recommended based on some
pre-defined template where the high-level abstract Web
services are well-specified by users when the workflow is
constructed. Based upon those abstract Web services, the

so-called concrete Web services (namely the instances of
abstract Web services) are discovered and the best one is
recommended to construct the workflow. In contrast, the
construction of workflows in our problem is purely driven
by the workflows themselves archived in the provenance
without leveraging any pre-defined templates.

A recommendation service that aims at suggesting fre-
quent combinations of scientific programs for reuse is pro-
posed in [1]. This is an early effort to provide workflow
recommendation using provenance. This recommendation
service is designed to work over repository of workflow
execution logs. It allows users discover useful workflow
components and how they can be combined, and collected
provenance histories are used to recommend a set of can-
didate services that may be useful to individual scientists.
The drawbacks of this method, however, are as follows:

1. The recommendation of a node in the workflow is
only depended on its immediately upstream node.
For example, nodeb is recommended for execution
after nodea (i.e., a → b) as long as there exists a
high correlation betweena andb. However, in many
cases, correlation exists for non-consecutive nodes
and, therefore, this method is not able to identify
these patterns for recommendation;

2. This method performs this on-the-fly in the workflow
construction process. As such, this method is not ef-
ficient to generate recommendation as the computa-
tion of confidence typically involves costly workflow
scans.

A more sophisticated workflow recommendation tech-
nique is propose in [2]. This technique is designed only as
a module in a workflow visualization system, calledvis-
Complete. This method decomposes the original work-
flow (pipeline) into a number of linear paths with varying
number of orders, and the confidence of each possible con-
tinuous sub-path in the workflow are quantified in order
to provide recommendation. All the possible sub-paths
(with varying orders) that terminates at the same node in
the workflow are ranked based on the their corresponding
confidence score. The downstream node/path that features
the highest confidence amongst all candidates is picked
up for completing the current workflow. The major draw-
backs of this method are summarized as follows:

1. In this method, the recommendation of a node for
completing the sub-workflow under construction is
dependent on the confidence level of only the paths
are immediately connected with this node. For ex-
ample, given a sub-workflow in the provenancea →
b → c, this method will, for nodec, evaluate the con-
fidence ofc given botha → b andb i.e.,Conf(c|a →
b) andConf(c|b). However, if the actual influencing
upstream sub-path structure of nodec is nodea, then
this method is not able to find this pattern for recom-
mendation purpose;

2. This method evaluates the confidence ofall possible
paths which involving calculating the support (i.e.,
frequency) of both upstream and downstream sub-
paths. Given the potentially large number of work-
flows accumulated in the repository, such calculation
is rather expensive.

5 Conclusions and Future Research Directions

In this paper, we propose a new workflow recommen-
dation technique, called FlowRecommender, that lever-
ages provenance of workflows to provide recommendation
for the best node (e.g., tool/service/program) that needs
to be chosen to complete the workflow. FlowRecom-
mender is able to find the influencing upstream sub-paths
of nodes that are not necessarily immediately adjacent to

them. FlowRecommender performs offline pattern extrac-
tion step which are maintained in the compact pattern ta-
ble. This contributes to a highly efficient online recom-
mendation when it is required.

There are some further research directions we are in-
terested in exploring, including

1. First, FlowRecommender is only able to find the most
adjacent influencing upstream sub-paths for candi-
date nodes in its current implementation. It is pos-
sible that, however, there exists multiple influencing
upstream sub-paths for the same candidate node. The
recommendation will fail if the influencing upstream
sub-paths other than the one registered in the pattern
table are present in the worklflow;

2. Second, there have been a plenty of techniques on in-
dexing the sequence patterns. We would like to inves-
tigate how these techniques can be used in FlowRec-
ommender to index the influencing upstream sub-
paths and to what extent the performance boost can
be therefore achieved;

3. Finally, the premilinary experimental evaluation that
we have performed is only based upon a synthetic
workflow provenance. We plan to utilize the Web
service workflow construction system we have de-
veloped for biologicalin-silico experiments to collect
real-life workflows for a further performance valida-
tion of FlowRecommender.

References

[1] Frederico T. de Oliveira, Leonardo Gresta Paulino
Murta, Claudia Werner, Marta Mattoso. Using
Provenance to Improve Workflow Design.2008 In-
ternational Provenance and Annotation Workshop
(IPAW), 136-143, 2008.

[2] David Koop, Carlos Eduardo Scheidegger, Steven
P. Callahan, Juliana Freire, Claudio T. Silva. Vis-
Complete: Automating Suggestions for Visualiza-
tion Pipelines.IEEE Transactions on Visualization
and Computer Graphics, 14(6): 1691-1698, 2008.

[3] U. S. Manikrao, T.V. Prabhakar, Dynamic Selection
of Web Services with Recommendation System,In-
ternational Conference on Next Generation Web Ser-
vices Practices, 2005.

[4] Yogesh L. Simmhan, Beth Plale, Dennis Gannon.
A Survey of Data Provenance Techniques.Techni-
cal Report, Computer Science Department, Indiana
University, IUB-CS-TR618, 2005.

[5] C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire,
and C. T. Silva. Querying and creating visualizations
by analogy.IEEE Transactions on Visualization and
Computer Graphics (Proceedings of Visualization),
13(6):1560-1567, 2007.

[6] D. P. Lanter. Design Of A Lineage-Based Meta-Data
Base For GIS.Cartography and Geographic Infor-
mation Systems, vol. 18, pp. 255-261, 1991.

[7] S. Miles, P. Groth, M. Branco, and L. Moreau. The
requirements of recording and using provenance in
e-Science experiments.Technical Report, Electron-
ics and Computer Science, University of Southamp-
ton, 2005.

[8] I. T. Foster, J.-S. Vockler, M. Wilde, and Y. Zhao.
Chimera: A Virtual Data System for Represent-
ing, Querying, and Automating Data Derivation.SS-
DBM, pp. 37-46, 2002.

[9] D. P. Lanter. Lineage in GIS: The Problem and a So-
lution. Technical Report, National Center for Geo-
graphic Information and Analysis, 1990.

[10] J. Myers, C. Pancerella, C. Lansing, K. Schuchardt,
and B. Didier. Multi-Scale Science, Supporting
Emerging Practice with Semantically Derived Prove-
nance.Workshop on Semantic Web Technologies for
Searching and Retrieving Scientific Data, 2003.

[11] P. Groth, M. Luck, and L. Moreau. A protocol
for recording provenance in service-oriented Grids.
OPODIS, Grenoble, France, 2004.

[12] R. D. Stevens, A. J. Robinson, and C. A. Goble.
myGrid: personalised Bioinformatics on the infor-
mation grid. Bioinformatics, vol. 19, pp. 302i-304,
2003.

[13] C. Pancerella, etc. Metadata in the collaboratory for
multi-scale chemical science.Dublin Core Confer-
ence, 2003.

[14] J. Frew and R. Bose. Earth System Science Work-
bench: A Data Management Infrastructure for Earth-
nScience Products. SSDBM, pp. 180-189, 2001.

[15] A. Aiken, J. Chen, M. Stonebraker, and A. Woodruff.
Tioga-2: A Direct Manipulation Database Visualiza-
tion Environment.ICDE, 1996.

