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Abstract: In this paper, we present a numerical scheme, based on @ flircing immersed bound-
ary (DFIB) approach and compact integrated radial basistimm (CIRBF) approximations, for solving
the Navier-Stokes equations in two dimensions. The proldemain of complicated shape is embedded
in a Cartesian grid containing Eulerian nodes. Non-slipdit@ms on the inner boundaries, represented
by Lagrangian nodes, are imposed by means of the DFIB methadhich a smoothed version of the
discrete delta functions is utilised to transfer the phglsguantities between two types of nodes. The
velocities and pressure variables are approximated jooalEulerian nodes using 3-node CIRBF sten-
cils, where first- and second-order derivative values offigtld variables are also included in the RBF
approximations. The present DFIB-CIRBF scheme is verifiedugh the solution of several test prob-
lems including Taylor-Green vortices, rotational flow-tidven cavity flow with multiple solid bodies,
flow between rotating circular and fixed square cylindersl matural convection in an eccentric annu-
lus between two circular cylinders. Numerical results wlad using relatively coarse grids are in good
agreement with available data in the literature.

Keywords: compact integrated RBF, immersed boundary, direct forairsgous flow, heat transfer.

1 Introduction

Flows past solid bodies of arbitrary shapes are widely emesad in engineering applications. Body-
fitted grid methods, where the governing equations areatised on a curvilinear grid conforming to
the boundary, have been applied to solve such problems.r Ten advantage is that the boundary
conditions can be imposed in a simple and accurate way. Hawgenerating a high quality mesh/grid
is difficult and time-consuming. As a result, a lot of resbagffort has been spent on the development
of non-body-conforming methods. Among them, the immersmehtdary methods (IBMs) have received
much attention in recent years. In IBMs, one joins the fluid aolid regions together to make a single
domain that is discretised using a Cartesian grid. Thisagmtr greatly simplifies the process of mesh
generation and also retains the relative simplicity of theegning equations. The basis of IBMs lies in
the way to introduce forces into the governing equationsripase prescribed values on the immersed
boundary.

The IBM was originally introduced by Peskin (1977) to invgate the fluid dynamics of blood flow in
human heart. The flow field is defined on the Eulerian coordmathile the boundaries are represented
on the Lagrangian coordinates. The singular forces on thedaries are known, and their effects on
the flow field are taken into account via regularised Dira¢adiinctions. Since then, many variants of
the Peskin's method have been proposed. Goldstein, HaadkgiSirovich (1993) developed a feedback
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forcing approach to iteratively determine the magnitudéhefforce required to obtain a desired veloc-
ity on the immersed boundary. Saiki and Biringen (1996) enptnted this approach with the virtual
boundary method (VBM) to compute the flow past a stationanating and oscillating circular cylin-
der. However, the feedback forcing approach induces sowitlations and places some restriction on
the computational time step. To overcome these drawbaekbui, Verzicco, Orlandi, and Mohd-Yusof
(2000) proposed an approach, namely the direct forcing {&dfnique, to evaluate the interactive forces
between the immersed boundary (IB) and the fluid, which isvadgnt to applying a forcing term to the
Navier-Stokes equations. In comparison with the feedbanirig approach, the DF approach can work
with larger computational time steps. Kim, Kim, and Choi@2pproposed a combined IB finite-volume
method, where a mass source/sink and a momentum forcingntaoeluced, for simulating flows over
complex geometries. To transfer the physical quantitiesashty between Eulerian and Lagrangian
nodes and avoid strong restrictions on the time step, Uni2005) presented a method to incorporate
the regularised delta functions into a direct formulatidrihe fluid-solid interactive force. Wang, Fan,
and Luo (2008) developed an explicit multi-direct forcingpeoach and obtained a better satisfaction
of the non-slip boundary condition than the original DF agmh. Recently, Ji, Munjiza, and Williams
(2012) proposed an iterative IBM in which the body force upupis incorporated into the pressure
iterations for the two- (2D) and three-dimensional (3D) reuical simulations of laminar and turbulent
flows. The reader is referred to, e.g., Mittal and laccarR@06) for a comprehensive review of IBMs.

High-order approximation schemes for the Navier-Stokestons have the ability to provide efficient
solutions to steady/unsteady fluid flow problems. A high lle@feaccuracy can be achieved using a
relatively coarse discretisation. Many types of high-orsithemes for the Navier-Stokes equations have
been reported in the literature. Botella and Peyret (1968¢ldped a Chebyshev collocation method and
provided the benchmark results for the lid-driven cavityfloroblem. Ding, Shu, Yeo, and Xu (2006)
presented a local multiquadric differential quadraturehoe for the solution of 3D incompressible flow
problems in the velocity-pressure formulation, while Nfaiy and Tran-Cong (2001b), Mai-Duy, Le-
Cao, and Tran-Cong (2008), Mai-Duy and Tran-Cong (2008)Cke, Mai-Duy, and Tran-Cong (2009)
proposed an integrated-RBF (IRBF) method to solve heasfeamnd fluid flow problems in the stream
function-vorticity formulation. Recently, Tian, Liangnhd Yu (2011) proposed a fourth-order compact
difference scheme constructed on 2D nine-point stencild Fadel and Agouzoul (2011) used the stan-
dard Padé scheme to construct high-order approximatianthéovelocity-pressure-pressure gradient
formulation. It is noted that the velocity) and pressurep) formulation has several advantages over
the stream function-vorticity formulation and the streamdtion formulation. Thel-p formulation can
provide the velocity and pressure fields directly from swivihe discretised equations and also work for
2D and 3D problems in a similar manner.

RBF networks (RBFNs) have emerged as a powerful approxamatiol. The application of RBFNs for
the solution of ordinary (ODES) and partial (PDESs) diffdi@hequations was first presented by Kansa
(1990). Mai-Duy and Tran-Cong (2001a) proposed the usetefjation, instead of the usual differ-
entiation, to construct the RBFN expressions (IRBFNs) oteotto avoid the reduction of convergence
rate. IRBFNs were developed into global one-dimensionah$(1D-IRBF) for second- and fourth-
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order PDEs [Mai-Duy and Tanner (2007)] and compact locahffor second-order elliptic problems
[Mai-Duy and Tran-Cong (2011); Mai-Duy and Tran-Cong (2f)1Bor the latter, the information about
the governing equation or derivatives of the field varialslalso included in local approximations to
enhance the solution accuracy.

In this paper, we present a numerical scheme, namely DFERBE] for solving unsteady/steady fluid
flow problems in 2D. The present scheme combines the direcinfp immersed boundary (DFIB)
method and the high-order compact integrated radial basistibn (CIRBF) approximations for the
spatial discretisation and utilises the second-order AdBashforth/Crank-Nicolson algorithms for the
temporal discretisation. An interactive force, represgnthe effect of the solid bodies on the fluid re-
gion, is added directly to the governing equations (i.eeatiforcing) on the fluid-solid regions to satisfy
their boundary conditions. This interactive force is ea#bd explicitly from the pressure gradient, the
convection and diffusion terms in the previous time levebcBuse the Eulerian grid nodes do not gen-
erally coincide with the nodes on the interfaces represebyelLagrangian nodes, a smoothed version
of the discrete delta functions is employed to transfer thentjties between two types of nodes. The
CIRBF approximations are constructed over 3-point stenaihere nodal first- and second-order deriva-
tive values of the field variables are included in the RBF apipnations [Thai-Quang, Mai-Duy, Tran,
and Tran-Cong (2012)]. A series of test problems, includiaglor-Green vortices, rotational flow, flow
between rotating circular and fixed square cylinders, andrabconvection in an eccentric annulus be-
tween two circular cylinders, is considered to verify thegant scheme. The remainder of the paper
is organised as follows. Section 2 outlines the equationstwijovern the fluid flow phenomena. The
numerical formulation including the derivation of intetige forces, and the temporal and spatial dis-
cretisations is described in detail in Section 3. In Sectipin order to evaluate the efficiency of the
present method, several numerical results are presentedasmnpared with the analytic solutions and
some approximate results available in the literature, e/gpropriate. Section 5 concludes the paper.

2 Governing equations

The IB approach takes the Navier-Stokes equation for thidtaves in the dimensionless form as follows

Ou=0 in Q, (1)
Jdu Pr _, .

E+(U.D)u_—Dp+\/R—aD u+fp+fi in Q, 2
oT 1

— 4+ (DT = O°T+fir in Q, 3
o PUOT= e LT (3)

subject to the initial and boundary conditions:
U(Xa Y, O) = UO(X’y) in Q’ (4)

T(X7 Y, 0) = TO(Xv y) in Q, (5)
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4
U(Xayat) = ur(xayat) on r’ (6)
T(vavt) = Tr(vavt) on r7 (7)

whereQ is the entire domain of analysis that is of simpler shape thanfluid domain;u = (u,v)T,
p and T the velocity vector, the static pressure and the temperatespectively;f, = (fb7x, fb7y)T,
fi = (fi.x, f|7y)T and f; 7 the body-force vector, the momentum interactive force aeahd the thermal
interactive force, respectivelyp, ur, To andTr prescribed function®®r andRathe Prandtl and Rayleigh
numbers defined & = v/a andRa= BgAT L3/av, respectively, in whiclv is the kinematic viscosity,
a is thermal diffusivity,3 the thermal expansion coefficiegtthe gravity and- andAT the characteristic
length and temperature difference, respectively. In theedisionless form, the characteristic velocity is
taken adJy = /gLBAT for the purpose of balancing the buoyancy and inertial ®rce
In (1), (2) and (3), the field variables are made dimensienéesording to the following definitions

X y u v of T-T

y ) Uo’ UO’ p pUOZ’ Th—TC’

(8)

wherex, ¥, U, vV, p/, T' are the corresponding dimensional variables; &nend T; the hot and cold
temperatures, respectively.

The interactive force$ and f| 1 represent the influence of the immersed solid bodies on ti iy
the viscous and thermal effects, while the body fdiigcés a function of the temperature, for instance,
fp = (O,T)T for the thermal problem considered in Section 4. For isatiaflows, the ternfy, in (2) is
set to null, equation (3) is deactivated and the te{/rg; in (2) is replaced by,:%e whereRe=UpL /v is
the Reynolds number.

3 Numerical formulation

Consider a domaif comprised of the fluid regiof2; and solid regiof2s. The latter is composed bk

embedded solid bodie& (Qs = UES{’&) as shown in Figure 1. Lét anddS be the boundaries @@
andkth solid bodyS;, respectively. While the entire domaihis discretised using a fixed uniform Carte-
sian gridg, containing Eulerian grid nodes j = (Xi7j,yi7j)T (ie{l,2,....,nn}andje {1,2,...,ny}),
eachdS is described by a set o Lagrangian nodes

)
XE= (XYF) €00 1<T<NE 1<k<Nog (©)

3.1 Direct forcing method

It can be seen that the Lagrangian nodes, representing therised boundaries, do not generally coin-
cide with the fixed Eulerian nodes on the computational darfai The direct forcing (DF) method, a
variant of the IB approach, takes into account non-slip Aednal boundary conditions on the fluid-solid
interfaces by using the momentum interactive foficand the thermal interactive fordgt to impose
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desired velocity and temperature values, respectivelselected Eulerian nodes near the IB. An inter-
polation process is necessary to transfer data betweerelbetedd Eulerian nodes and the Lagrangian
nodes on the IB. Below are the details for computing the maomerinteractive forcd, in (2). One can
calculate the thermal interactive foréer in (3) in a similar manner.

3.1.1 Derivation of the momentum interactive force
A temporal discretisation of the momentum equation (2)vegiby Uhimann (2005)

u" — un—l

s ths"1/2 4 f~1/2, (10)

where the superscriptdenotes the current time level; the convection, pressiffasin and body-force
terms at a timé"~/2 are lumped together ihs™ /2.

The interactive force term yielding the desired veloai) can thus be defined as [Fadlun, Verzicco,
Orlandi, and Mohd-Yusof (2000)]

(d)n _yn-1

fn71/2 _ u

| o thsT2 (11)

at some selected nodes (and zero elsewhere). The corré@spadntéractive force at the Lagrangian
nodes will be
U(d),n _yn-1

anl/z _
! At

— RHS™ %2, (12)

Hereafter, we use upper-case letters for quantities etealat the Lagrangian nodﬁ$‘.

The desired velocity at a node on the fluid-solid interfacgl ) is computed from the rigid-body motion
of the solid body as follow

UMD (X[ = Ug+ et x (X[ = Xg), (13)

whereUX = (UX VX)T, wk and XX are the translational velocity, rotational velocity ane gosition
vectors of the mass centre of tkin solid body, respectively - all is defined in the Cartesiaardinate
system.

When the interactive force is absent, equation (12) leads to
UM = U™+ RHS" ¥2At, (14)
whereU" is a preliminary velocity. Its Eulerian counterpart is

" = u"1 4 rhs"Y2At. (15)
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In the present work, we employ the Adams-Bashforth schemthétemporal discretisation. The term
rhs"1/2 in (15) is computed explicitly as [Butcher (2003)]

rhsn—l/z — gmpn—l_ 1Dpn—2] - [g’(un—llm)un—l_ %(un—zﬂ)un—z]

2 2
Prl3 1 311 6
+\/7 Ll [—Dzunl— —Dzunz} + [—zfﬂ ! zfgz] - (18)

Then, the interactive force at the Lagrangian nodes is ctedpuow as

s U@n_n
proyz  UON=U (17)

At

In order to complete the evaluation of the interactive fdezen in (10), a mechanism for transferring the

preliminary veIocitiesiﬁ”,Gn) and the forcesR{‘fl/z,f[‘*l/z) between the two Eulerian and Lagrangian

node systems is required.

3.1.2 Transfer of quantities between Eulerian and Lagrangiodes

Peskin (2002) employed the class of regularised delta ifumst

&(X—XO):h—lz<p<X_hX°>fp<y_hy°>, (18)

as kernels in a transfer step, wheg@) is the one-dimensional (1D) discrete delta functionsgn be
(x—xp)/h or (y—yo)/h); andh the grid size. The relation of the velocity and force betw#entwo
types of nodes can be given by Uhlmann (2005)

UX[) = T T00a(x—X{)h* v1<I <N, 1<K< Nesp (19)
XEGh
Nesp NL K K K
f = Fi (X —XPDAV® v , 20
1(X) kZU; 1(XP)On(x = X[)AV® VX € gn (20)

where the temporal superscript is dropped for brevityA‘v]EI is the volume covering thieh Lagrangian
node of thekth solid body. For 2D problems, this volume is simply takenA¥& = As®> [Uhimann
(2005)], whereAsis a Lagrangian grid size that is chosen so thed- h (h-the Eulerian grid size).

In Peskin (2002), several axioms, including momentum damdi and a quadratic condition, are de-
scribed. These axioms lead to the unigue definition of aqdati smoothed delta function with finite
support. A family of such functions may be generated by inmgpadditional moment conditions and
correspondingly broadening the support. The several camymesed discrete delta functions can be
cited as the 2-point hat functiodn(r) [Leveque and Li (1994)], the 3-point discrete delta funttio
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3 (r) [Roma, Peskin, and Berger (1999)] and the 4-point piecefuiretion o (r) [Peskin (2002)].
Their 1D forms are given below

1-rf, Irl<1,
r) = 21
@(r) {07 1<l (21)
L 1+\/—3r2+1), Ir| < 0.5,
@s(r) = %5—3|r|—\/—3(1—|r|)2+1>, 0.5< |r| <15, (22)
0, 15<]r,
1 3—2|r|+«/1+4|r|—4r2>, Ir <1,
@(r) = %5—2|r|—\/—7+12|r|—4r2>, 1<|r|<2, (23)
0, 2<r].

In the present study, we employ the 3-point discrete deltation dn(r) [Roma, Peskin, and Berger
(1999)].

3.2 Spatial discretisation

In this paper, the spatial derivatives are discretisedgugia CIRBF-2 scheme described in Thai-Quang,
Mai-Duy, Tran, and Tran-Cong (2012) and modified as follosthe boundary nodes, the compact 4-
point stencils are replaced with a newly derived compaabidtstencil in order to make the coefficient
matrices tridiagonal. The present scheme is named CIRBF-3.

At an interior grid pointx; j = (X j,¥ij)" (i € {2,3,...,n«— 1} andj € {2,3,...,n,— 1}), its associated
3-point stencils argx_1 j, % j,Xi+1,j] in thex-direction andy; j_1,V¥i,j,Vi j+1] in they-direction. For the
sake of convenience, we ugeto denotex andy, thus having a generic stencif{,n2,nz] (N1 < N2 <

N3, N2 = nij) as shown in Figure 2. The integral approach starts with go@ehposition of the highest-
order (second-order in this case) derivatives ofto RBFs

d?u(n)
dn?

= _;WiGi(n)a (24)

where {Gi(n)}", is the set of RBFs; andw;}!"; the set of weights/coefficients to be found. Ap-
proximate representations for the first-order derivative the function itself are then obtained through
integration

du(n)
dn

= SwH(n) o, @)

uin) = ZIWiﬁi(’?)‘FCln +Cy, (26)
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whereH;(n) = [ Gij(n)dn; Hi(n) = [Hi(n)dn; andc; andc;, are the constants of integration.
The value ofmis taken to be 3 for interior local stencils and 2 for boundaoal stencils.
3.2.1 First-order derivative compact approximations

To approximate nodal values of the first-order derivatitie, conversion system of the present compact
3-node stencil is constructed as

U1 W1

uz — Wi

e = ()] w |, (21)
duy H c

g 33 —— 1

an 1 C2

whereu; = u(m;) (i € {1,2,3}); §& = §4(m) (i € {1,3}); 1 is the conversion matrix and?, .7 are
submatrices defined as

~ [ Ha(m) Hz(n) Ha(m) ni 1
A = | Hi(nz) Ha(nz) Hs(nz) n2 1|, (28)
Hi(ns) Ha(ns) Hs(ns) ns 1
:[Hl(nl) Ha(n1) Hs(ni) 1 0] (29)
Hi(ns) Ha2(ns) Hs(ns) 1 0]
Solving (27) yields
W1 U1
W»o uz
wg | =%t s |, (30)
C1 Ccij_l;l]i
Co %—Lr?

which maps the vector of nodal values of the function andsdfiist-order derivative to the vector of RBF
coefficients including the two integration constants. Apgmate expression for the first-order derivative
in the physical space is obtained by substituting (30) ig&) (

dl;(r?):[Hl(n) Ha(n) Ha(n) 1 O]%l(é)’ h
dn

wheren; < 1 < nz; G= (ug, Uz, U3)"; za_ndc‘j’_rl]J — (d_u1 du

T
T n) . It can be rewritten in the form

Ui + —— (32)

duin) _ S da(n)  da(n)du  de(n)dus
; dn dn ~ dn dn
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9
where{@(n)}?>_, is the set of integrated RBFs in the physical space.
At the current time level, equation (32) is taken as
di'(n) _ ¢ d@(n) n», d@(n)dd  des(n) duy (33)
dp 4 dnp ' dnp dn  dn dn’
where nodal values of the first-order derivatives on thetfiigind side are treated as unknowns.
Collocating (33) at the central node of the compact steneily; = ny, results in
dgy(nz) duf  duy  dgs(nz) duy _ de@(nz) o, d(n2) . des(n2) ,
ek ina e Y i e e <Al Y - R 34
di dn dn  dg dn  dnp * dp 2 dp (39
or in matrix-vector form
du} 0
d(n2) des(n2) % dm(nz) de(n2)  des(ng) .
2 2 _ 2 2 2 n
[onp o oo ]| S o e ]| . @)
o ‘

At the boundary nodes, we compute the first derivative hergyuspecial compact local stencils (Figure
3). These proposed stencils are constructed as followssi@@ma boundary nodg;. Its associated
stencil is[n1,n2]. The conversion system of this stencil is presented as th@viog matrix-vector
multiplication

up R Wi
U2 = 5 36
( dw ) ( Hsp C1 (39)
dn Py C2
spL

where%sp, is the conversion matrix; anétsy, 77, matrices defined as

oo e Hatms 1o 1 @
Hp=[ Hi(nz2) Ha(nz) 1 0]. (38)
Solving (36) yields
w1 o
o ‘fspf< L ) (39)
dn
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The boundary value of the first-order derivativeuois thus obtained by substituting (39) into (25) and
takingn = n1

du N T

;gl):[Hl(nl) Ho(m) 1 o](gspll<ul Up ‘;—‘,;2) , (40)
or

ddl  d@p(n)dy  d@sp (M) o A (01) o,

dndn dn dn 1T T ap @ “

where{@, (n)}2_ is the set of IRBFs in the physical space. We rewrite equad in matrix-vector
form

duf n
dgsp, (1) an | _ [ dep(m)  degsp,(n1) Uy
. H#]_[ s i )

In a similar manner, one can calculate the first derivative afthe other boundary nodp,, .

The IRBF system on a grid line for the first derivativeuds obtained by letting the interior node taking
value from 2 to(n, — 1) in (35) and making use of (42),

3.2.2 Second-order derivative compact approximations

To approximate nodal values of the second-order derivatieerepresent the conversion system of the
present compact stencil as a matrix-vector multiplication

Uz V\/l
uo _ W,
H 2
us —
Py < &4 > VC\{S ’ “y
dn? —— 1
d?ug 62 C’2
dn?

whereu; = u(n;) (i € {1,2,3}); % = g—,?,’:(’?i) (i € {1,3}); %> the conversion matrix; ang?, ¢4 sub-
matrices defined as (28) and

G1(n1) Ga2(n1) Gs(ni) 0 O .
9 = , respectively. 45
[Gl(ns) Ga2(n3) Gs(ns) 0 O pectively (45)
Solving (44) yields
W s
W o
wy | =t B (46)
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which maps the vector of nodal values of the function andso$écond-order derivative to the vector of
RBF coefficients including the two integration constantpproximate expression for the second-order
derivative in the physical space is obtained by substigui#®6) into (24)

2 .
St = [Gn) Galm) Galn) 0 o]%ﬁ(gj;), (47)
n2

P <d2u1 d?ug

T
wheren; <n <ns; 0= (ul,uz,u3)T; andd—n2 = (@2 d_nz) . It can be rewritten in the form

d?u(n) & d?¢i(n) . d®pa(n) d®ur  d?¢s(n) d’us

dnz e dnz U|+ dnz drlz drlz an’ (48)
or
d?(n) _ & d*¢i(n) n, d°Pa(n) d?ul  d?¢s(n) a3 (49)
dn?2 2 dnz dn2 dn?2 dn2 dn?’
where{¢i(n)}2_, is the set of IRBFs in the physical space.
Collocating (49) at the central node of the compact steneil)y = n», leads to
B d2¢4(n7) du}  d?ul B d?¢s(n) d?uj _
dn? dn?  dn2 dn? dn2
d?p1(n2) d?¢2(n2) d?p3(n2)
anz Ut gz Ut gz W (50)
or in matrix-vector form
d?u]
d®¢a(n2) d®¢s(n2) 32”112” d?¢1(n2)  d*92(n2)  d*¢s(n2) .
s B A el ol N A (51
d?ul ug
dn2

At the boundary nodes, we compute the second derivative Unsngy special compact local stencils
(Figure 3). Consider a boundary node, erg., The conversion system of its associated 2-node stencil is
presented as the following matrix-vector multiplication

Uz N W1

wo| = ( Hsp > we (52)
d2u, Ysp c |’
dn2 ——\ o

Cspy
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where%sp, is the conversion matrix?sp defined as before; and
Ysp=[ Gi(n2) Ga(n2) 0 0]. (53)
Solving (52) yields

W1

up
W _
2l =Gt w | (54)
C1 &y,
(o)) dn?

The boundary value of the second-order derivative isfthus obtained by substituting (54) into (24) and
takingn = N1

d?u(n1) _ 25, \ T
anz - [ Gi(n1) Ga(n) 0 0] Cfsml( up U % ) , (55)
or
d2uf d2¢sm(’71) d2uj d2¢spl(’71) n d2¢sm(’71) n
a2~ dnz dn2 dnz T T apz (0)

where{sp(n)}2_; is the set of IRBFs in the physical space. We rewrite equaB6) in matrix-vector
form

d?u] n
2epspy (1) dn? _ [ PPsp(n)  Pdsp,(m) u
[l_ d?Zl]{dﬂE]{ d’r)1121 d’:)vzzl][ué]' ®7)
dn?

The IRBF system on a grid line for the second derivatival @ obtained by letting the interior node
taking value from 2 tqn, — 1) in (51) and making use of (57),

P L T
LanUpp = Bppll, (58)
whereZy, %y areny x ny matrices.

3.3 Temporal discretisation

The temporal discretisation of (1)-(3) using the AdamskBaigh scheme [Butcher (2003)] for the con-
vection term and the Crank-Nicolson scheme [Crank and Blitp{1996)] for the diffusion term yields

O.u" =0, (59)

n_ ,n-1 3
% + E(u”’l.D)unfl— —(u”Z.D)u”Z} =

1 /Pr _ _
—Dp”‘l/2+—\/R—a(D2u”+Dzu”‘l)+fE Y2 12 (60)
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Tn_Tn—l 3
— 4+ =

( 1
At 2

untO)Tr -

ST =

1 i
5 _PrRa(DZT”—kDZT”’l)—Ff{jTl/z. (61)

We apply the pressure-free projection/fractional-stethioddeveloped in Kim and Moin (1985) to solve
(60). This equation is advanced in time according to thefalhg two step procedure

urn—yn-t 3, n1 -1 1, no n—2
T—i— E(U .O)u —é(u .O)u ]—

%‘ /%(Dzu*,n+mzun—l)+fn 1/2_|_fn 1/2’ (62)

un — N
At

whereu* = (u*,v*)T denotes the intermediate velocity vector; gntthe pseudo-pressure. Itis noted that
u*" does not satisfy the continuity equation (59) and the agitedsurep is derived as

- At [Pr
pn 1/2 _ (pn_ <7 R_a> Dz(pn' (64)

3.4 Algorithm of the computational procedure

=-0¢", (63)

» Step 0: Start with the given initial and boundary condisiom this study, the initial conditions are
zero for the velocity and temperature fields.

e Step 1: Compute thermal Eulerian counterpartusmg a formula similar to (15), which is then
transferred to Lagrangian nodes to obt'dimusmg a formula similar to (19).

» Step 2: Computd"; 12

n— 1/2

, using a formula similar to (17), which is then transferredEulerian

nodes to obtairf) + " using a formula similar to (20).

 Step 3: Solve (61) for the solutioR” with known f” 12 and prescribed boundary conditi@fi.
e Step 4: Compute the body for(:%ﬁl/2 from the temperature field as
Tn_i_Tnfl T
b 2= (o™ 1/2) (o, — > . (65)

» Step 5. Compute momgrnltum Eulerian counterpdrirom (15), which is then transferred to La-
grangian nodes to obtaln via (19).
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» Step 6: Compu‘d?,”fl/2 from (17), which is then transferred to Eulerian nodes t@tuﬂ{‘fl/z via

(20).
 Step 7: Solve (62) fou*" subject to the following boundary condition [Kim and MoirB@5)]
u"r = up+At (O™ ) |r. (66)

For a more efficient solution, one can apply the alternatingction implicit (ADI) algorithm to
solve (62) and (61) as shown in Thai-Quang, Mai-Duy, Trad, Bran-Cong (2012).

 Step 8: Equations (63) and (59) are then solved in a coupkathar foru™ and ¢" in which the
boundary condition for the pseudo-pressgrés not required. The values @' are obtained for
the interior nodes only. After that, the values@ft the boundary nodes are extrapolated from
known values at the interior nodes and known Neumann boynadwes derived from (63) (i.e.,
D¢"|r = (u," — up) /At) [Thai-Quang, Le-Cao, Mai-Duy, and Tran-Cong (2012)]:

< @nj >: [ Hi(x,j) ﬁﬁnx(XLj) xj 1

%)Qj ﬁl(xnmj) (anJ) Xny,j 1
[ Hi(xj) Hnlej) %y 177 @
Hi(xaj) -+ Hnlxaj)  Xj 1 oy
o S P | e
Hi(%n-1j) - Hn (1)) Xn-1j 1 ﬂx—m
H]_(X]_’j) an(xl,j) 1 0 d(pﬂj/dx
Hl(XnXJ) ce HnX(XnX7j) 1 0 | d(p,?x_’j/dx
for ax-grid line, and
o :[El(yi,l) o Hn(ia) a1
(H?ny Hi(Yin) - Hn(in) Vin 1
[ Hilyiz2) - Hag2) e 1770 @2
Hi(yis) - Hn(Vis) yig 1 @’
o o Lo S G
Hi(Yin-1) - Hn(Yin-1) Yin-1 1 #h—1
Hi(yiz) -+ Hn(¥i1) 1 0 aqy/dy
Hi(Yin) - Hn(Vin) 1 0] oq, /9y

for ay-grid line. It is noted that for flows with irregular outer bailaries, instead of solving (63)
and (59), we solve (59)-(60) simultaneously trand p"~/2 in which p"~%/2 involves the interior
nodes only (the boundary condition fp?~1/2 is not required here).

e Step 9: Go back to step 1 and iterate for the next time level.
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4 Numerical examples

It has generally been accepted that, among RBFs, the maitigqu(MQ) function tends to result in
the most accurate approximation [Franke (1982)]. We chdd®eas the basis function in the present
calculations

Gi(x) = /(x— )T (x—c) +a, (69)

wherex = (x,y)T is the position vector of the point of interest; aqd= (x;,Ys )" anda the position
vector of the centre and the width of tite MQ, respectively. For each stencil, the set of nodal goint

is taken to be the set of MQ centres. We simply choose the M@hveisi; = h; in which 3 is a given
positive number anth; the distance between thth node and its nearest neighbouring node. For the
calculations in this papeff = 25 andp = 50 are employed. We assess the performance of the present
scheme through following measures:

* the root mean squar®MS error defined as

RMS— M’ (70)

whereN is the number of nodes over the whole domain; aitide analytic solution,

* maximum absolute errot.{) defined as

Lo = m,ax|ui — T |, (71)
i

« the error behaviour, expressed@@?), where h is an average grid size; amdhe average rate of
grid convergence, determined in the least square sense,

« the convergence measure based on the velocity magni@iMg, ] in the whole analysis domain is
defined as (given two successive grids)

\/ZINl <ve ctfg Vekfg) 2

CMyel = ) (72)
ZiN:l <Ve¥fg) i

wherevelf9 is the velocity magnitude field computed using the finer gvielt 9 is the velocity
magnitude field obtained at the finer grid by interpolating $blution computed using the coarser
grid. The present results is considered to be grid conveif@e is less than 1063,
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A flow is considered to reach a steady state when

\/ZiN—l(UinN— uth2 <10°°, (73)

whereu" andu™1 are the approximate solutions at the current and previous vels, respectively.

Since the approximations are presently based on RBFsndegdetween two neighbouring nodes in the
stencil can be different. This capability is exploited heréandle non-rectangular outer boundaries in a
direct manner (i.e. body-fitted grid). We can thus retain@boonforming treatment for rectangular and
non-rectangular outer boundaries. We numerically dematesthis ability with the following example

2 2
% + ‘;—;2’ = — 817 sin(27x) sin(27y), (74)
defined on a circular domain of radil®g= 1.5 and subject to Dirichlet boundary condition. Its exact
solution ist = sin(27x) sin(2my). A number of grids, namely12x 12, 22x 22,..., 102x 102}, are
employed to study the grid-convergence behaviour of thatisol (Figure 4). Those interior nodes that
fall very close to the boundary (within a distancehgB) are removed from the set of of nodal points.
Figure 5 shows the matrix condition number and M Serror of the interior solution against grid size.
Results by the Cartesian-grid finite-difference methodNF[Sanmiguel-Rojas, Ortega-Casanova, del
Pino, and Fernandez-Feria (2005)] are also included fompewmison purposes. The solution converges
asO(h?03) for FDM and quite fast a®(h317) for the present method. The two methods have similar
condition numbers of the system matrix.

4.1 Taylor-Green vortices

This problem is taken from Uhlmann (2005), where the analstiution is given by

Tu(x,y,t) = sin(rx) cog my)e 2 V/Re, (75)
V(x,y,t) = — sin(1y) cos(mx)e 2T /Re (76)
P(X,Y,t) = 0.5 (co(my) — sir(rx)) e 4T U/Re (77)

from which one can derive the initial solution, the time-degent boundary conditions and the time-
dependent desired velocitie§? on the inner immersed boundaries. The solution is computBé-a 5
andt = 0.3 using a time steft = 0.001 andB = 25 for the following two domains

4.1.1 Circular domain

A circular domain of unit radius is chosen here to investégae performance of the present scheme in
dealing with non-rectangular outer boundaries. Severdsgnamely{12x 12, 22x 22,..., 52x 52}
are employed. Figure 6 shows tRéMSerrors of the velocity components and the pressure agdiest t
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grid sizeh. The solutions converge &(h33%), O(h32%) andO(h?#7) for the x-component velocityy-
component velocity and pressure, respectively. It can be #&t fast rates of convergence (about third
order) are achieved with the present method. Figure 7 shitumartalytic and computed vorticity isolines
using a grid of 52 52, which are graphically indistinguishable.

4.1.2 Concentric annulus between two circular cylinders

The outer and inner radii of this domain are takerRgs= 1 andR; = 0.5, respectively. We employ a
set of grids, namelyf22 x 22 32x 32,..., 52x 52} to represent the problem domain. Figure 8 shows
the Eulerian nodes distributed inside and on the outer eynednd Lagrangian nodes distributed on the
inner boundary, for instance, by a grid of 222. Figure 9 shows the analytic and computed vorticity
isolines using a grid of 52 52, where an excellent agreement can be seenLIerors of the velocity
components and pressure against the grid lsizee presented in Figure 10. The solutions converge as
0O(h?92), O(h?03) andO(h?%2) for u, v and p, respectively. The rates of convergence are reduced due to
the effect of using regularised), functions, which are second-order accurate [Uhimann (B005the

IB approach.

4.2 Rotational flow

The present scheme is further verified with a rotational fleévere a circular ring (zero thickness) of
R= 0.3 is embedded in a square dom&n= [—1,1] x [-1,1]. The solid ring rotates about its centre
with an angular velocityw = 2. The simulation is conducted féte= 18 using a grid of 65 65 and
At =h/4 as in Le, Khoo, and Peraire (2006). Plots of the velogiggnd velocity vector in a subdomain
[-0.5,0.5] x [-0.5,0.5] att = 10 are shown in Figure 11, in which the flow behaviours obskhere
are very similar to those reported in Le, Khoo, and Peraid®@§2.

4.3 Lid-driven cavity flow with multiple solid bodies

This test problem is concerned with the lid-driven cavitylio a square domai®Q = [—1,1] x [—1,1]
containing five fixed rigid circular cylinders (Figure 12)hé radius of the cylinders iR = 0.15 and
their centres are located @, 0), (0,—0.6), (—0.6,0), (0,0.6) and(0.6,0), respectively. The top wall is
driven from left to right by a unit velocity whereas the othalls are stationary. The Lagrangian nodes
are distributed on the boundaries with a grid spacing ixjd = 0.85. These parameters are taken from
Su and Lai (2007).

The grid convergence study for this problem is carried ofteat 100 on a set of uniform grids, namely
{41x41,61x61,81x81,101x 101,121 x 121141 x 141}, using a time step ofst = 0.001. The
present solutions converge at the grid of 22121. The velocity field obtained with the grid 121121

is presented in Figure 13, showing that the primary vortesaistured very well around the top-right
corner. The flow field looks feasible and similar in compamisadth those shown in Su and Lai (2007).
(To avoid cluttering, the velocity vectors are plotted atmvthird grid point, i.e. at 4% 41 points as in
Su and Lai (2007)). Figure 14 shows therelocity profile along the diagonad =y for different grid
sizes.
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4.4 Flow between a rotating circular and a fixed square cyliexd

Consider a flow in a concentric annulus between a squaredeylid = [-2,2] x [-2,2] and a circular
cylinder ofR= 1 (Figure 15). The inner cylinder rotates with an angulaoeiy w = 1 while the outer
cylinder is stationary. This problem is taken from Lewis{®® The boundary conditions are as follows

u=0 on x==42, y=42 (78)
Uu=-wy,v=wx on R=1 (79)

The calculations are carried out on a set of uniform did {61x 61,81x 81,101x 101,121x 121 131x
131141 141} and a set of time steft € {0.001 0.0005 0.000250.0001} for various values of the
Reynolds number, nameRec {1, 100, 200, 500, 1000, 14p0Smaller time step is utilised for denser
grid and higher Reynolds number. The maximum values of tleaust function and vorticitymax and
{max), the values of the stream function on the circular cylindey) and minimum values of the stream
function (Umin) are presented in Table 1. The present results, convergg@ngréd of 131x 131, agree
well with those reported in Lewis (1979) using a 26161 grid.

The streamlines of the flow field using a grid of 13131 is shown in Figure 16, in which the vortices
at the corners are well captured and in agreement with thétsesf Lewis (1979).

4.5 Natural convection in an eccentric annulus between twiccalar cylinders

The geometry of this problem can be defined through the fatigyparameters: the eccentriciéy an-
gular positiong, radius of the outer cylindeR, and radius of the inner cylindd® (Figure 17). The
inner and outer cylinders are heatéli} = 1) and cooled T, = 0), respectively. Calculation is carried
out forPr =0.71,R, /R, = 2.6 andRa= 10" using a set of uniform grids, namef$0 x 60, 70 x 70,80 x
80,90 90,100x 100} and a set of time stefs € {0.001,0.00050.000250.0001}. Smaller time steps
are used for higher grid densities. A distribution of noded the boundary conditions are shown in
Figure 17.

For symmetrical flows, where the centres of the inner andraylanders lie on the vertical symmetrical
axis, several values of eccentricity, namely {0.25,0.50, 0.75,0.95} and angular direction, namely
¢ € {—90°,90°} are considered. Table 2 compares the maximum value of teanstfunction {may)
between the present scheme, one-dimensional integraded basis function (1D-IRBF) scheme [Le-
Cao, Mai-Duy, and Tran-Cong (2011)] and differential qdre method (DQM) [Shu, Yao, Yeo, and
Zhu (2002)]. It can be seen that good agreement is achievelpfiesent solutions are convergent at the
grid of 90x 90.

For unsymmetrical flows, the stream function at the innet (¥&}) is no longer zero and its value varies
with the location of the inner cylinder. Values of the eccieity and angular direction are taken as
{0.25,0.50,0.75} and{—45",0°,45°}, respectively. In Table 3, values gf, are presented and agree
satisfactorily with those obtained by the 1D-IRBF scheme-{Lao, Mai-Duy, and Tran-Cong (2011)],
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DQM [Shu, Yao, Yeo, and Zhu (2002)] and domain-free dissetibn method (DFD) [Shu and Wu
(2002)]. Itis noted that the present governing equatioipg3)Lare different from those used in Shu, Yao,
Yeo, and Zhu (2002) and Shu and Wu (2002) by a fa¢tBrRa Therefore, to facilitate a comparison,
our results in the table, which are computed in the averaggesttom the values ap at the Lagrangian
nodes, are multiplied by this factor. The present solutemesconvergent at the grid of $090.

Figures 18-19 and Figures 20-22 show the isotherms andhitres of the flow for symmetrical and
unsymmetrical flows, respectively, where several comlmnatof eccentricity and angular direction are
considered. Each plot contains 22 contour lines whosedexgly linearly from the minimum to maxi-
mum values. All plots look very feasible when compared wiitbse obtained by the 1D-IRBF scheme
[Le-Cao, Mai-Duy, and Tran-Cong (2011)], DQM [Shu, Yao, Yand Zhu (2002)] and (DFD) [Shu and
Wu (2002)].

5 Concluding remarks

In this paper, we introduce compact integrated RBF apprations into the immersed boundary and
point-collocation framework to simulate viscous flows irotdimensions. The direct forcing immersed
boundary method is utilised for the handling of inner bourega while high-order approximation schemes
(Adams-Bashforth/Crank-Nicolson and compact 3-pointiRBare employed to represent temporal and
spatial derivatives. The proposed method is verified seakds in a series of fluid flow problems in
multiply-connected domains. Very good results are obthimgng relatively coarse Cartesian grids.

Acknowledgement: Thai-Quang would like to thank USQ, FOES and CESRC for a padtate re-
search scholarship. This work was supported by the Auatr&tiesearch Council.
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Table 1: Flow between rotating circular and fixed squarendg@is: Maximum values of the stream
function (Umax) and vorticity {max), and values of the stream function on the circular cylindey) by
the present method and FDM.

Re Method Grid Wmin Wmax {max We
1 Presenty— p) 61x 61 -1.4203E-4 0.4785 1.0472 0.4785
81x 81 -1.3415E-4 0.4699 1.0233 0.4699
101x 101 -1.3588E-4 0.4712 1.0325 0.4712
121x 121 -1.3523E-4 0.4701 1.0249 0.4701
131x 131 -1.3478E-4 0.4695 1.0216 0.4695
141x 141 -1.3472E-4 0.4691 1.0209 0.4691
FDM (¢ — ) [Lewis (1979)] 161x 161 -1.4000E-4 0.4656 1.0186 0.4656
100  Present(— p) 61x61 -1.2527E-3 0.4808 1.2433 0.4808
81x81 -1.1994E-3 0.4747 1.2374 0.4747
101x 101 -1.1830E-3 0.4711 1.2265 0.4711
121x 121 -1.1788E-3 0.4679 1.2216 0.4679
131x 131 -1.1760E-3 0.4658 1.2198 0.4658
141x 141 -1.1758E-3 0.4652 1.2193 0.4652
FDM (¢ — Z) [Lewis (1979)] 161x 161 — — — 0.4577
200  Present(— p) 61x 61 -2.0812E-3 0.4777 1.3110 0.4777
81x81 -1.9988E-3 0.4715 1.3095 0.4715
101x 101 -1.9882E-3 0.4678 1.2992 0.4678
121x 121 -1.9796E-3 0.4652 1.2916 0.4652
131x 131 -1.9721E-3 0.4629 1.2897 0.4629
141x 141 -1.9716E-3 0.4625 1.2893 0.4625
FDM (¢ — ) [Lewis (1979)] 161x 161 — 0.4539 1.2559 0.4539
500 Present(— p) 61x 61 -3.0170E-3 0.4738 1.3957 0.4738
81x81 -2.9114E-3 0.4676 1.4143 0.4676
101x 101 -2.8354E-3 0.4599 1.3732 0.4599
121x 121 -2.7762E-3 0.4526 1.3719 0.4526
131x 131 -2.7298E-3 0.4512 1.3708 0.4512
141x 141 -2.7291E-3 0.4511 1.3702 0.4511
FDM (¢ — ) [Lewis (1979)] 161x 161 -2.7100E-3 0.4465 1.3430 0.4465
1000 Present(— p) 61x 61 -3.2525E-3 0.4714 1.4321 0.4714
81x 81 -3.1714E-3 0.4648 1.4899 0.4648
101x 101 -3.1014E-3 0.4502 1.4264 0.4502
121x 121 -3.0326E-3 0.4429 1.3925 0.4429
131x 131 -3.0048E-3 0.4397 1.3767 0.4397
141x 141 -3.0042E-3 0.4394 1.3761 0.4394
FDM (¢ — {) [Lewis (1979)] 161x161 — — — 0.4375
1400 Presentu— p) 61x 61 -3.2105E-3 0.4707 1.4329 0.4707
81x81 -3.1543E-3 0.4637 1.5223 0.4637
101x 101 -3.0785E-3 0.4461 1.4279 0.4461
121x 121 -3.0241E-3 0.4379 1.4117 0.4379
131x 131 -2.9953E-3 0.4324 1.4026 0.4324
141x 141 -2.9947E-3 0.4320 1.4024 0.4320
FDM (¢ — ) [Lewis (1979)] 161x161 — — — 0.4314
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Table 2: Natural convection in eccentric circular-circuéanulus, symmetrical flows: the maximum
values of the stream functioni,ay) for two special caseg € {—90°,90°} by the present and some
other numerical schemes.

lﬂmax
¢ ¢ DQM? 1D-IRBP DFIB-CIRBF*
60x60 70x70 80x80 90x90 100x 100

—90° 0.25 15.50 15.71 15.26 15.30 15.35 15.36 15.36
0.50 18.32 18.50 18.10 18.39 18.44 18.47 18.47
0.75 20.62 20.72 20.10 20.41 20.47 20.49 20.49

0.95 22.16 22.19 21.91 22.35 22.44 22.49 22.50

90° 0.25 11.13 11.26 11.07 11.11 11.13 11.14 11.14
0.50 9.55 9.64 9.51 9.55 9.57 9.58 9.58

0.75 8.12 8.25 8.17 8.18 8.20 8.21 8.21

0.95 7.17 7.28 7.21 7.23 7.24 7.24 7.24

@ Shu, Yao, Yeo, and Zhu (2002)
b Le-Cao, Mai-Duy, and Tran-Cong (2011)
¢ Present

Table 3: Natural convection in eccentric circular-circubannulus, unsymmetrical flows: the stream
function values at the inner cylindergxf) for € € {0.25,0.50,0.75} and ¢ € {—45°,0°,45°} by the
present and some other numerical schemes.

Yy
) ¢ DFD® DQMP 1D-IRBF° DFIB-CIRBF?
60x60 70x70 80x80 90x90 100x 100

—45° 025 0.51 0.51 0.48 0.46 0.48 0.49 0.50 0.50
0.50 0.77 0.92 0.80 0.80 0.81 0.82 0.82 0.82
0.75 0.77 0.99 1.05 1.10 1.13 1.14 1.15 1.15
0° 025 0.72 0.72 0.60 0.67 0.68 0.68 0.68 0.68
0.50 1.10 1.15 1.28 1.07 1.07 1.07 1.07 1.07
075 1.26 1.30 1.18 1.25 1.29 1.31 1.32 1.32
45 025 0.54 0.52 0.52 0.56 0.57 0.57 0.57 0.57
050 1.29 1.31 1.25 1.23 1.23 1.23 1.23 1.23
0.75 1.09 1.07 1.01 0.98 1.01 1.02 1.03 1.03

a Shu and Wu (2002)

b Shu, Yao, Yeo, and Zhu (2002)

¢ Le-Cao, Mai-Duy, and Tran-Cong (2011)
d Present
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Figure 2: Compact 3-point IRBF stencil.
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Figure 3: Special compact 2-point IRBF stencils for the eftl right boundary nodes

Figure 4: Poisson equation, circular domain: Computatidoenain and its discretisation.
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Figure 5: Poisson equation, circular domaffi2 x 12,22 x 22,...,102x 102}: The solution accuracy
(top) and the matrix condition number (bottom) against gi by FDM and the present method. The
solution converges @3(h?3) andO(h*7) while the matrix condition grows a3(h~252) andO(h~246)

for FDM and the present method, respectively.
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Figure 6: Taylor-Green vortices, circular domaffi2 x 12,22x 22,...,52x 52}: The solution accuracy
of the velocity components and pressure against grid sike.sblution converges &(h>31), O(h32°9)
andO(h?®7) for x-component velocityy-component velocity and pressure, respectively.

Figure 7: Taylor-Green vortices, circular domain,»632, At = 0.001: the analytic (left) and computed
(right) isolines of the vorticity field at= 0.3.
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Figure 8: Taylor-Green vortices, concentric annulus: Cotajional domain and its discretisation (Eule-
rian nodes inside the annulus and on the outer boundaryahg@n nodes on the inner boundary with a
grid of 22x 22).

Figure 9: Taylor-Green vortices, concentric annulusx®2, At = 0.001: the analytic (left) and com-
puted (right) isolines of the vorticity field &= 0.3.
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Figure 10: Taylor-Green vortices, concentric annu{@2 x 22 32 x 32,...,52x 52}: The solution
accuracy of the velocity components and pressure agaiiassige. The solution converges @sh?%?),
O(h?93) andO(h?9?) for x-component velocityy-component velocity and pressure, respectively.
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Figure 11. Rotational flow generated by a circular ring iataibout its centre in a fluid filled square

cavity, Re= 18, 65x 65,t = 10, At = h/4: Distributions of thex-component velocity (top) and velocity
vector (bottom) over the computational domain.
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Figure 12: Lid-driven cavity flow with multiple solid bodie&eometry and boundary condition.
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Figure 13: Lid-driven cavity flow with multiple solid bodie¥elocity vector field.
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Figure 14: Lid-driven cavity flow with multiple solid bodie$he effect of the grid size on thevelocity
profile along the diagonad=y. The curves are discontinuous due to the presence of aanirsatly on
the diagonal aroungd =y = 0.
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Figure 15: Flow between a rotating circular and a fixed squgliader: Geometry and boundary condi-
tions.
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Re= 1000

Figure 16: Flow between a rotating circular and a fixed sqegti@der: Streamlines of the flow for
several Reynolds numbers using a grid of ¥3131. The contour values used here are taken to be the
same as those in Lewis (1979), except those on the circulardzoy.
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Figure 17: Natural convection in eccentric circular-ciestannulus: Geometry and boundary conditions
(left) and distribution of nodes (right) (Eulerian nodesiite the annulus and on the outer boundary,
Lagrangian nodes on the inner boundary with a grid ok @D).
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Figure 18: Natural convection in an eccentric circulacglar annulus, symmetrical flows: Contour plots
for the temperature (left) and stream function (right) feldr € € {0.25,0.50,0.75,0.95} (from top to
bottom) andp = —90°. Each plot contains 22 contour lines whose levels vary liggeom the minimum

to maximum values.



Manuscript submitted to CMES

39

Figure 19: Natural convection in an eccentric circulacglar annulus, symmetrical flows: Contour plots
for the temperature (left) and stream function (right) feldr € € {0.25,0.50,0.75,0.95} (from top to
bottom) andp = 90°. Each plot contains 22 contour lines whose levels vary tiggeom the minimum

to maximum values.
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Figure 20: Natural convection in an eccentric circulacuaiar annulus, unsymmetrical flows: Contour
plots for the temperature (left) and stream function (jidields for e € {0.25,0.50,0.75} (from top to
bottom) andp = —45°. Each plot contains 22 contour lines whose levels vary liggeom the minimum

to maximum values.
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Figure 21: Natural convection in an eccentric circulacuaiar annulus, unsymmetrical flows: Contour
plots for the temperature (left) and stream function (jidields for e € {0.25,0.50,0.75} (from top to
bottom) andp = 0°. Each plot contains 22 contour lines whose levels vary tigdeom the minimum
to maximum values.
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Figure 22: Natural convection in an eccentric circulacuaiar annulus, unsymmetrical flows: Contour
plots for the temperature (left) and stream function (jidields for e € {0.25,0.50,0.75} (from top to
bottom) andp = 45°. Each plot contains 22 contour lines whose levels vary tiggeom the minimum
to maximum values.



