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A B S T R A C T   

Wave energy is regarded as one of the powerful renewable energy sources and depends on the assessment of 
significant wave height (Hs) for feasibility. Hence, this study explores the potential of wave energy by assessing 
and predicting Hs for two study sites in Queensland (Emu Park and Townsville), Australia. Assessment and 
prediction of Hs is extremely important for reliable planning, cost management and implementation of wave 
energy projects. The study utilized oceanic datasets based on wave measurements obtained from buoys along 
coastal regions of Queensland that are transmitted to nearby receiver stations. The parameters of the datasets 
include maximum wave height, zero up crossing wave period, peak energy wave period and sea surface tem-
perature to accurately predict Hs. A new hybrid Convolutional Neural Network (CNN) and Bidirectional Long 
Short Term (BiLSTM) deep learning model with Multivariate Variational Mode Decomposition (MVMD) is 
developed which is benchmarked by Multi-Layer Perceptron (MLP), Random Forest (RF) and Categorical 
Boosting (CatBoost) to compare the performance. All models attain relatively high-performance results. The 
MVMD-CNN-BiLSTM attains slightly better performance values for both study sites among all developed models 
with highest correlation values of 0.9957 and 0.9986 for Emu Park and Townsville, respectively. Other per-
formance evaluation metrics were also higher for MVMD-CNN-BiLSTM with lowest error values in comparison to 
the benchmark models. The annual mean of Hs is also computed to compare and obtain an insight with a linear 
projection. There is a greater ocean wave energy potential for Emu Park for a 10-year period with a projected 
mean Hs of 0.865 m in comparison to Townsville where the projected mean was of 0.665 m.   

1. Introduction 

Generation of energy from fossil fuels is a major contributor of car-
bon emissions causing global warming and climate change. Reduction of 
greenhouse gas emissions from energy production requires more reli-
ance on renewable energy and ocean energy represent a clean source 
with zero carbon emissions. Wave energy is one of the most powerful 
renewable energy source (López et al., 2013; Veerabhadrappa et al., 
2022) derived from ocean waves. Substantial amount of kinetic energy 
present in the rigorous vertical movement of ocean surface waves is 
converted into electricity by using wave energy convertors. Significant 
Wave Height (Hs) is an average measurement of the largest one third of 
the waves (Ribal and Young, 2019; Vanem, 2016) that occur over a 
given period of time. Hs is an important parameter of ocean waves and is 
an important factor for the wave energy and wave power generation. A 
wave monitoring buoy is used to measure Hs and other associated 

parameters. It provides a standardized statistic for the characteristic 
height of the random ocean waves offering valuable information about 
the waves and its dynamics on the coastal and offshore structures. The 
site selection of a wave energy farm and the performance of wave energy 
convertors and their economic feasibility is strongly influenced by the 
inter-annual and seasonal changes of the wave climate (Caloiero et al., 
2022; Guillou and Chapalain, 2020). Advance knowledge of Hs and it’s 
forecasting is therefore crucial for sustainable management of wave 
energy (Chen et al., 2023). 

The prediction of wave height has been a significant topic of research 
in the past utilizing data based and numerical methods. Many factors 
affect wave energy forecast as stated in Zheng and Song (2021) which 
includes wave power, significant wave height and wave period. A 
number of studies have used data driven models for prediction of Hs 
which include models such as neural networks technique (Deo et al., 
2002) numerical wave model (Jain et al., 2011), fuzzy K-nearest 

* Corresponding author. 
E-mail address: nawin.raj@usq.edu.au (N. Raj).  

Contents lists available at ScienceDirect 

Sustainable Horizons 

journal homepage: www.elsevier.com/locate/horiz 

https://doi.org/10.1016/j.horiz.2024.100098 
Received 27 October 2023; Received in revised form 26 January 2024; Accepted 15 February 2024   

mailto:nawin.raj@usq.edu.au
www.sciencedirect.com/science/journal/27727378
https://www.elsevier.com/locate/horiz
https://doi.org/10.1016/j.horiz.2024.100098
https://doi.org/10.1016/j.horiz.2024.100098
https://doi.org/10.1016/j.horiz.2024.100098
http://crossmark.crossref.org/dialog/?doi=10.1016/j.horiz.2024.100098&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Sustainable Horizons 11 (2024) 100098

2

neighbor (FKNN) model and hybrid ensemble empirical mode decom-
position (EEMD)–bidirectional long short-term memory (BiLSTM) 
model (Raj and Brown, 2021). A numerical forecasting experiment of 
the South China Sea wave energy was done by Zheng et al. (2016) using 
WAVEWATCH-III wave model. 

Wave signals contain many patterns and relationships in its spectrum 
hence for more efficient prediction of Hs with data driven modelling, use 
of data decomposition technique is advantageous. A study by Yang et al. 
(2021) used Seasonal-Trend Decomposition (STL) procedure based on 
loess and one-dimensional Convolutional Neural Network (CNN) with 
Positional Encoding (PE) to accurately forecast significant wave height. 
Data decomposition is a useful technique in data modelling and helps to 
identify and separate useful features into its respective components. Past 
studies have also used various decomposition techniques to separate 
data into its IMFs before predictions using artificial intelligence (AI). 
Wavelet decomposed neural network was used to forecast Hs in Indian 
and Pacific ocean (Deka and Prahlada, 2012). Studies in the Atlantic 
ocean (Chen et al., 2023; Zhou et al., 2021), utilized Empirical Mode 
Decomposition (EMD) with Long Short Term Memory (LSTM) to forecast 
Hs. An enhanced version of EMD in Ensemble Empirical Mode Decom-
position (EEMD) was explored in (Raj and Brown, 2021; Song et al., 
2023) with deep learning (DL) model for Hs forecasting. Waves can be 
predicted more accurately with the combination of EMD and machine 
learning than models using machine learning alone (Feng et al., 2022). 
Complete Ensemble Empirical Mode Decomposition with Adaptive 
Noise (CEEMDAN) is an improved version of EEMD and was combined 
with deep learning in (Raj et al., 2022) for sea level rise and in (Zhao 
et al., 2023) for Hs prediction. All decomposition techniques mentioned 
above contributed to improved predictions for DL models. With the 
advancement in DL architecture, hybrid DL models have acquired the 
ability to accurately forecast climate and environment variables in data 
modelling with quality data inputs. Superior accuracy of hybrid DL 
models when compared to standalone AI models for forecasting have 
been reported in Ahmed et al. (2022), Ahmed et al. (2021a), Ahmed 
et al. (2021b), Sharma et al. (2022) and Yang et al. (2021). 

Research on hybrid DL models for accurate forecasting ocean wave 
energy is expanding and this study contributes a new accurate and 
reliable Hs forecasting model. The study aims to decompose the wave 
data into its intrinsic mode functions (IMFs) via a decomposition tech-
nique known as the Multivariate Variational Mode Decomposition 
(MVMD). Although many studies have focused on Hs forecasting, no 
study has utilized a MVMD decomposition with hybrid DL model for 
Australian based study sites. Being located at the right coastline orien-
tation, Australia has the potential to generate one-third of its energy 
demand through wave energy (Wimalaratna et al., 2022). The total 
amount of energy on the Australian shelf is largest for Western Australia 
and Queensland is ranked second for this (Hughes and Heap, 2010). 
Being amongst the richest renewable countries, Australia has an exten-
sive capacity for wave energy and the Queensland State government has 
invested in numerous renewable energy projects together with wave 
energy (Karbasi et al., 2022). Emu Park and Townsville in Queensland 
are two coastal stations that represent the diverse oceanic and 
geophysical environments and predictions of Hs for these two sites are 
essential for obtaining sustainable wave energy. This study proposes a 
new prediction model which combines MVMD data decomposition 
technique with a hybrid Convolutional Neural Network (CNN) and 
Bidirectional Long Short-Term Memory (BiLSTM) network for Hs pre-
diction for Emu Park and Townsville that are two potential Australian 
wave energy generation sites. 

2. Method and data 

2.1. Study area and dataset 

Two coastal stations in Queensland; Emu Park and Townsville 
(Table 1 and Fig. 1) were chosen for wave height prediction. Data on the 
oceanic parameters (Table 2) for the two locations were utilized for this 
study. 

The dataset in this study was obtained from Queensland Open Portal 
(Coastal Data System – Near real time storm tide data - Dataset - Open 
Data Portal | Queensland Government accessed on 10 August 2022). 
The wave parameters are electronically processed by floating buoys and 
remotely transmitted to a nearby station as a radio signal. The receiver is 
connected to a computer that stores and processes the information in 
near real time. The buoys are equipment with internal memory back up 
in cases of power loss during natural disasters such as cyclones ensuring 
no data is lost. Table 2 shows the oceanic parameters obtained via 
Queensland Open Portal site for Hs forecasting in this study. 

Table 1 
Details of study site location and description.  

Location area Geographical location 

Emu Park 23◦15′25″S, 150◦49′35″E 
Townsville 19◦ 15′ 27.44″ S, 146◦ 49′ 4.363″ E  

Fig. 1. Study site map of Australia showing the geographical location of Emu 
Park and Townsville. 

Table 2 
Oceanic parameters utilized for modeling in the study.  

Input wave features Description 

Hmax Maximum Wave Height 
Tz Zero up crossing wave period 
Tp Peak energy wave period 
SST Sea surface temperature 
(t− 1) (t− 2) (t− 3) (t− 4) (t− 5) Hs Lags 
M1, M2, M3, M4, M5, M6 Intrinsic Mode Functions (IMFs)  

Table 3 
ADF and KPSS analysis results for stationarity test.  

ADF Statistic: − 21.59 KPSS Statistic: 0.38 

p-value: 0.000000 p-value: 0.08 
Number of lags Used: 74 Number of lags Used: 74 
Critical values: Critical values: 
10 %: − 2.56 10 %: 0.347 
5 %: − 2.86 5 %: 0.463 
1 %: − 3.43 1 %: 0.739 
ADF Result: The Series is Stationary KPSS Result: The Series is Stationary  
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2.2. Stationarity test 

One of the important assumptions of time series dataset modeling is 
based on its stationarity. However, it cannot be always assumed that the 
timeseries dataset is stationary and must be conformed through 

statistical testing. Without stationarity, the analysis cannot be used to do 
reliable forecasting (Manuca and Savit, 1996; Nason, 2006). Table 3 
shows the results of two stationarity tests, the Augmented Dickey Fuller 
(ADF) (Lopez, 1997) and Kwiatkowski–Phillips–Schmidt–Shin KPSS) 
(Kwiatkowski et al., 1992) tests performed on Emu Park dataset. Similar 
results were also obtained for Townsville. The ADF tests for unit root is 
presented in the data as the null hypothesis (Raj and Brown, 2021). A 
negative value greater than the critical value rejects the null hypothesis. 

2.3. Data partition and correlation 

The dataset parameters were checked for correlation to determine 
how Hs was related to all input variables as shown in Fig. 2. It also in-
cludes 5 lags of Hs and 6 IMFs for data modeling. Table 4 below shows 
the data partition for the dataset into 60 % into training, 10 % validation 
and 30 % into testing (Table 5). 

2.4. Data partition and correlation 

Data normalization is an important step for data modeling in ma-

Fig. 2. The correlation matrix for Hs with all input variables.  

Table 4 
Data partition for the period 2014–2021 into training, validation, and testing.  

Partition Training Validation Testing 

Oceanic 
Dataset 

January 2014 
–October 2018 

November 2018 – 
June 2019 

July 2020 
–December 2021  

Table 5 
Symbols used in Eqs. (3)–(10).   

Observed Data 

MDO Mean Observed Data 
DSi Simulated Data 
MDS Mean Simulated Data  

Fig. 3. Hs data decomposition into its IMFs.  
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chine learning as it standardizes the data and improves model perfor-
mance (Brink et al., 2016). The dataset used in this study was normal-
ized using Eq. (3) and then denormalized by Eq. (4) after modeling. 

xn =
xraw − xmin

xmax − xmin
(1)  

xraw = xn(xmax − xmin) + xmin (2)  

2.5. Data decomposition using Multivariate Variational Mode 
Decomposition (MVMD) 

Multivariate Variational Mode Decomposition (MVMD) is an exten-
sion of Multivariate Variational Mode Decomposition (VMD). It uses a 
model based on multivariate modulated oscillations on the common 
frequency components on the input data (ur Rehman and Aftab, 2019). 
A collective band of limited modes that contain inherent multivariate 
oscillations are extracted from the data (ur Rehman and Aftab, 2019). 
MVMD extracts multivariate modulated oscillations and finds the os-
cillations in multidimensional space whereas VMD only manages to 
acquire univariate oscillations in the data. Fig. 3 shows the application 
of the algorithm to extract IMFs from the Hs signal. The sea level signal 
was decomposed into its intrinsic mode functions and the number was 
determined based on the structure of the decomposed features. A smooth 
curve was an indication of successful feature as input otherwise the 
signal was further decomposed to reveal the hidden features and used as 
inputs for modelling. 

2.6. AI models and data modelling 

2.6.1. Benchmark models 
The MLP model is a widely used AI model in the modeling and 

prediction of climate and environment variables. It does not make prior 
assumption about the data distribution and has the capability to model 
highly nonlinear functions (Gardner and Dorling, 1998). The MLP ar-
chitecture contains a network of connected neurons of nonlinear map-
ping between an input and output vector (Gardner and Dorling, 1998). 
Random Forest (RF) is motivated by the principle on enhancement of 
variance gains by reduction of correlation between the quantities being 
averaged (Segal, 2004). It was initially presented by Breiman (2001) and 
is a supervised machine learning algorithm. RF has proven to have high 

Fig. 4. This is a snapshot of the CNN-BiLSTM modeling architecture which shows the layers of the neural network and its hierarchy.  

Fig. 5. Schematic representation of the overall modeling process for Hs 
forecasting. 
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robustness performance against outliers and approximate variables with 
nonlinear relationships (Segal, 2004). CatBoost belongs to the family of 
Gradient Boosted Decision Trees (GBDT’s) machine learning techniques 
(Hancock and Khoshgoftaar, 2020). It was proposed by Prokhorenkova 
et al. (2018) and can be used to solve problems with heterogeneous 
features, complex dependencies and noisy data (Zhang et al., 2020). 
Performance of CatBoost was better than SVM and RF models when 
predicting reference evapotranspiration in humid regions in (Huang 
et al., 2019). 

2.6.2. Objective model CNN-BiLSTM 
The objective model is developed by utilizing the deep learning ar-

chitectures of Convolutional Neural Network (CNN) and Bidirectional 
Neural Network (BiLSTM). CNN mimics the visual cortex of the human 
brain and uses layers of neural network (Chua and Roska, 1993). The 
CNN kernels and mapping structure is usually two dimensional, how-
ever this study applies one dimensional CNN where the kernels and 
feature structures are all one dimensional. This layer helps to extract 
significant features from the input dataset (Zhang et al., 2021). The 
input data is then passed through the two BiLSTM layers which com-
prises of bidirectional LSTM network. It has the capability of learning 
from long data sequences where the signal propagates in forward and 
backward direction (Aslan et al., 2021). Fig. 4 is a snapshot of the 
CNN-BiLSTM data modeling breakdown in Python and Fig. 5 shows the 
flowchart which summarizes the overall modelling process for Hs 
forecasting. 

2.7. Performance evaluation metrics 

For model performance comparison in this study, eight evaluation 
metrics were used. Each metric (Eqs. 3–10) shows an aspect of perfor-
mance evaluation demonstrating the accurateness of model perfor-
mance in Hs forecasting for the study locations. Correlation coefficient 
(r) provides a value for strength in a two way linear association between 
the observed and predicted values (Mukaka, 2012). Willmott’s Index of 
agreement (d) is a normalized dimensionless metric which measures 
accuracy and precision using squared residuals (Willmott et al., 2012). 
Nash Sutcliffe efficiency (NS) is a normalized statistic which measures 
the residual variance with measured data variance (McCuen et al., 
2006). Legate and McCabe (Legates and McCabe, 2013) Index (LM) 
measures the divergence of a predictive model’s performance. Average 
error and agreement measures based on sums of error magnitudes are 
considered superior to measures based on sums of squared errors 
(Willmott et al., 2015). The three performance measures complement 
each other and provide assurance of comprehensive evaluation of the 
predictive models used in this study. To further support the evaluation, 
computation of errors for the predictive models is also important (Raj 
et al., 2022). Root Mean Square Error (RMSE) and Mean Absolute Error 
(MAE) are widely used error metrics in predictive modelling (Chai and 
Draxler, 2014). RMSE computes the square root of the average of all 
measured differences between observed and predicted values. RRMSE is 
computed by dividing RMSE by the mean of the observed values. MABE 
is the average of all absolute errors from the difference in observed and 
predicted values. MAPE is the percentage form of the MABE.  

1. Correlation Coefficient (r) 

r =

⎡

⎢
⎣

∑n
i=1(DOi − MDO)(DSi − MDS)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(DOi − MDO)
2∑n

i=1(DSi − MDS)2
√

⎤

⎥
⎦

2

(3)    

2. Willmott’s Index of Agreement (d) 

d = 1 −

[ ∑n
i=1(DOi − DSi)

2

∑n
i=1(|DSi − MDO| + |DOi − MDS|)2

]

(4)    

3. Nash-Sutcliffe Coefficient (NS) 

NS = 1 −

[ ∑n
i=1(DOi − DSi)

2

∑n
i=1(DOi − MDO)

2

]

, − ∞ ≤ NS ≤ 1 (5)    

4. Legates and McCabe’s Index (LM) 

LM = 1 −

[∑n
i=1|(DSi − DOi)|

∑n
i=1|DOi − MDS|

]

, 0 ≤ L ≤ 1 (6)    

5. Root Mean Square Error (RMSE) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
n

)
∑n

i=1
(DSi − DOi)

2

√

(7)    

6. Mean Absolute Error (MABE) 

MABE =
1
n

∑n

i=1
|(DSi − DOi)| (8)    

7. Relative Root Mean Square Error (RRMSE) 

RRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
n

)
∑n

i=1(DSi − DOi)
2

√

1
n

∑n
i=1DOi

× 100 (9)    

8. Mean Absolute Percentage Error (MAPE) 

MAPE =
1
N

(
∑i=1

N

⃒
⃒
⃒
⃒
(DSi − DOi)

DOi

⃒
⃒
⃒
⃒

)

× 100 (10)   

3. Results and discussion 

This study used statistical evaluation on performance of models and 
the prediction errors to reveal the effectiveness of a new DL hybrid 
MVMD-CNN-BiLSTM model to accurately forecast Hs at Emu Park and 
Townville in Queensland in comparison to the benchmark AI models 
MVMD-MLP, MVMD-RF, MVMD MVMD-CB. The model with highest 
performance metrics (r, d, NS and LM) and lowest error metrics (RMSE, 

Table 6 
The model performance metrics for Emu Park.  

Model Correlation Coefficient (r) Willmott’s Index of agreement (d) Nash–Sutcliffe’ Coefficient (NS) Legates and McCabes’ index (LM) 

MVMD-RF 0.9952 0.9938 0.9902 0.9146 
MVMD-MLP 0.9951 0.9913 0.9870 0.8962 
MVMD-CatBoost 0.9954 0.9942 0.9909 0.9163 
MVMD-CNN-BiLSTM 0.9957 0.9946 0.9914 0.9196  
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Table 7 
The model performance metrics for Townsville.  

Model Correlation Coefficient (r) Willmott’s Index of agreement (d) Nash–Sutcliffe’ Coefficient (NS) Legates and McCabes’ index (LM) 

MVMD-RF 0.9936 0.9923 0.9872 0.9051 
MVMD-MLP 0.9885 0.9861 0.9770 0.8732 
MVMD-CatBoost 0.9979 0.9974 0.9957 0.9506 
MVMD-CNN-BiLSTM 0.9986 0.9982 0.9970 0.9536  

Fig. 6. Performance metrics comparison for Townsville.  

Fig. 7. Performance metrics comparison for Emu Park.  
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MABE, RRMSE and MAPE) is considered as the best model for accurately 
forecasting the Hs. 

3.1. Performance metrics 

Tables 6 and 7 show the performance metrics for the objective model 
(MVMD-CNN-BiLSTM) and the three benchmark models (MVMD-MLP, 
MVMD-RF, MVMD MVMD-CB) based on the testing dataset (Figs. 6 and 
7). 

Based on the computation of correlation coefficient, Willmott index, 
Nash-Sutcliffe’s coefficient and Legate and McCabe’s index, the model 
performance of the two study locations are shown in Tables 6 and 7. 
High performance metrics (> 0.9) was obtained for all developed 
models. This shows that all evaluated models are reliable in forecasting 
Hs. Highest performance metrics for MVMD-CNN-BiLSTM model sup-
ports the superior capability of forecasting Hs in comparison to other 
benchmark models. The MVMD-CNN-BiLSTM model achieved the 
highest values of correlation at both locations with values of 0.9957 and 

0.9986 for Emu Park and Townsville, respectively. The MVMD-CNN- 
BiLSTM model also attained the highest values for Willmott Index 
(0.9946), Nash-Sutcliffe index (0.9914) and Legate and McCabe’s index 
(0.919586) for Emu Park. Townsville also attained slightly better results 
for MVMD-CNN-BiLSTM with Willmott Index (0.9982), Nash-Sutcliffe 
index (0.9970) and Legate and McCabe’s index (0.953560). Fig. 8 pro-
vides a graphical comparison of error metrics for all models. The error 
metrics also supports the superior performance of the MVMD-CNN- 
BiLSTM model with lower values of RMSE (0.0374), MABE (0.0272), 
RRMSE (4.371), MAPE (3.280) for Emu Park and RMSE (0.0170), MABE 
(0.012), RRMSE (2.6329), MAPE (1.991) for Townsville. The superior 
performance of all developed models is attributed to the data decom-
position and optimization of hyperparameters of the model architecture. 
Superior performance of a hybrid MVMD model for forecasting daily Hs 
and daily wave energy in Queensland, Australia has also been demon-
strated by Zheng et al. (2023) and Jamei et al. (2022) respectively. These 
two studies also verified the best performance of the examined respec-
tive objective hybrid MVMD models via Correlation, Willmott’s Index of 

Fig. 8. Error metrics for Townsville and Emu Park.  

Fig. 9. Scatterplot for Emu Park.  
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agreement, Nash–Sutcliffe’ Coefficient, Legates and MacCabe’s index, 
RRMSE and MAPE. Superior Hs forecasting quality of a new hybrid 
model a novel hybrid model called STL–CNN–PE was also demonstrated 
by highest correlation coefficient and lowest RMSE and MABE (Yang 
et al., 2021). The three performance metrics were also used to analyze 
the quantitative accuracy of models for forecasting of wave power 
density in China Sea (Zheng et al., 2016) and wave data stimulations in 
North Indian Ocean (Zheng and Song, 2021). 

3.2. Observed versus predicted data 

The scatterplots in Figs. 9 and 10 show the relationship between the 
observed and predicted Hs data. All models show points clustered 
together around the line of best fit with R2 value > 0.9 for both Emu Park 
and Townsville. The closely packed cluster of points indicate the accu-
racy of the models. For predictions at both sites, MVMD-CatBoost also 
shows good performance when compared to MVMD-MLP and MVMD- 
Random Forest models. Highest R2 values of MVMD-CNN-BiLSTM for 
Emu Park (R2 = 0.9915) and Townville (R2= 0.9971) display greater 

Fig. 10. Scatterplot for Townsville.  

Fig. 11. Absolute prediction error histogram for Emu Park.  
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accuracy of Hs prediction in comparison to other models. Hs forecasting 
precision of hybrid DL models was also demonstrated via scatter plots by 
Yang et al. (2021). 

Figs. 11 and 12 are histograms of absolute prediction error (PE) for 
all models. The bins hold the frequency of absolute PE errors for both 
study sites. All models have higher frequency for lower values in the 
constructed histograms. Higher cluster of lower end values of prediction 
error indicates the higher accuracy of the model to predict the signifi-
cant wave height (Hs). It is seen that CNN-BiLSTM have less values on 
the higher range of the histogram. Comparatively, MLP shows more PE 
values on the higher range at both study sites. The calculation and 

visualization of absolute prediction error confirms the accuracy of the 
models found through the scatterplots. 

3.3. Trend analysis and linear projection 

Figs. 13 and 14 provide annual mean Hs trend with a linear projec-
tion. The annual mean Hs for Emu Park and Townsville remains within 
the range of 0.78 to 0.9 and 0.62 to 0.69, respectively. The projected 
mean Hs values for Emu Park and Townsville are about 0.865 and 0.665 
m, respectively, by the year 2031. This increase in Hs is consecutive to 
expected sea level rise of 0.2 m by 2030 in the Queensland region (Wang 

Fig. 12. Absolute prediction error histogram for Townsville.  

Fig. 13. Annual mean Hs linear projection for Emu Park.  
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et al., 2010). The combination of water depth increases and coastal 
inundation following sea level rise strongly influences the Hs, causing 
wave heights to increase significantly in deep-water areas (Shen et al., 
2019). Sea level rise venture into increased wave power globally (Reg-
uero et al., 2019). Wave energy is a function of significant wave height 
squared. Hence, Hs is an important factor for the wave energy and wave 
power generation. The wave energy is calculated as follows (Caloiero 
et al., 2020): 

E =
ρg
16

(Hs)
2 (11)  

where, E is energy, ρ is water density, g is gravity and Hs is significant 
wave height. 

The wave power which is valid for all water conditions is as follows 
(Caloiero et al., 2020): 

Fig. 14. Annual mean Hs linear projection for Townsville.  

Fig. 15. Time series comparison of observed and predicted Hs for all models at both study sites.  
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P = Ecg (12)  

where, cg is the group velocity of the wave. 
Therefore, small increases in Hs result into big increases in wave 

energy output (Reikard et al., 2015). In this respect, Emu Park shows 
greater potential of higher wave energy influx for power generation. 
Linear projections of Hs also indicate an increase in ocean surface wind 
energy and warming at the two sites as wind energy and surface tem-
peratures are the primary drivers of wave height (Reguero et al., 2019). 
There is a future scope of predicting teleconnection patterns using the 
hybrid models at the two sites. A study by Chen et al. (2023) states the 
importance of sustained density of significant wave height for a long 
period of time as a vital feature rather than isolated large heights for 
wave energy use. 

For visualization of Hs on the testing phase for the two sites, Fig. 15 
below shows the time series comparison of observed and predicted data 
points. All models provide close tracking of the observed data points 
supporting good model performances. The small spikes and fluctuations 
displayed by all models against Hs at both sites indicates the stability and 
reliability in prediction. Time series comparisons were also used by 
Zheng et al. (2023) and Yang et al. (2021) to show superior performance 
of a hybrid DL model. Zheng et al. (2016) also showed the visual ac-
curacy of predicted data on wave power density using time series 
comparison. The important aspect presented in this study is the use of 
data decomposition with a new hybrid CNN-BiLSTM model which has 
not been studied in any past study for the two study sites. Given infra-
structure for energy projects are extremely expensive and need accurate 
predictions showing stability in wave energy, such reliable predictions 
are needed for future wave energy projects. Furthermore, adding data 
decomposition technique to the AI modelling effectively show the 
improvement in accuracy for predictions (Eriksen and Rehman, 2023; 
Zheng et al., 2023). This is due to its ability to extract underlying fea-
tures within the wave signal as intrinsic mode functions which are then 
used as predictor inputs for the target variable (Hs). This is the basis of 
the scientific background used in this study where signal decomposition, 
convolutional based neural network and two-way information process-
ing long short-term memory AI architecture are combined for Hs 
prediction. 

4. Conclusion 

This study developed and validated an accurate and reliable hybrid 
MVMD-CNN-BiLSTM deep learning model for significant wave height 
prediction for two sites in Australia, Emu Park and Townsville. All 
models show high performance in terms of metrics such as correlation 
coefficient, Willmott index, Nash-Sutcliffe’s coefficient and Legate and 
McCabe’s index. The study also shows the importance of utilizing a data 
decomposition method for extraction of significant features from wave 
signals. The results confirm that the developed hybrid model can pro-
vide valuable insight into accurately forecasting wave height for 
consideration of wave power infrastructure installation which requires 
careful planning. The annual mean Hs trend analysis shows Emu Park 
has greater potential for sustainable ocean wave energy generation. The 
study can be extended to other parts of Australia to assess and predict 
significant wave height for potential wave energy resources. 

CRediT authorship contribution statement 

Nawin Raj: Conceptualization, Data curation, Formal analysis, 
Methodology, Resources, Investigation, Software, Validation, Visuali-
zation, Writing – original draft, Writing – review & editing. Reema 
Prakash: Writing – original draft, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

None. 

References 

Ahmed, A.M., Deo, R.C., Feng, Q., Ghahramani, A., Raj, N., Yin, Z., Yang, L., 2021a. 
Hybrid deep learning method for a week-ahead evapotranspiration forecasting. 
Stoch. Environ. Res. Risk Assess. 1–19. 

Ahmed, A.M., Deo, R.C., Ghahramani, A., Feng, Q., Raj, N., Yin, Z., Yang, L., 2022. New 
double decomposition deep learning methods for river water level forecasting. Sci. 
Total Environ. 831, 154722. 

Ahmed, A.M., Deo, R.C., Raj, N., Ghahramani, A., Feng, Q., Yin, Z., Yang, L., 2021b. Deep 
learning forecasts of soil moisture: convolutional neural network and gated recurrent 
unit models coupled with satellite-derived MODIS, observations and synoptic-scale 
climate index data. Remote Sens. 13, 554 (Basel).  

Aslan, M.F., Unlersen, M.F., Sabanci, K., Durdu, A., 2021. CNN-based transfer 
learning–BiLSTM network: a novel approach for COVID-19 infection detection. Appl. 
Soft. Comput. 98, 106912. 

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. 
Brink, H., Richards, J., Fetherolf, M., 2016. Real-World Machine Learning. Simon and 

Schuster. 
Caloiero, T., Aristodemo, F., Ferraro, D.A., 2020. Changes of significant wave height, 

energy period and wave power in italy in the period 1979–2018. Environ. Sci. Proc. 
2, 3. 

Caloiero, T., Aristodemo, F., Ferraro, D.A., 2022. Annual and seasonal trend detection of 
significant wave height, energy period and wave power in the Mediterranean Sea. 
Ocean Eng. 243, 110322. 

Chai, T., Draxler, R.R., 2014. Root mean square error (RMSE) or mean absolute error 
(MAE). Geosci. Model Dev. Discuss. 7, 1525–1534. 

Chen, Y., Zhang, D., Li, X., Peng, Y., Wu, C., Pu, H., Zhou, D., Cao, Y., Zhang, J., 2023. 
Significant wave height prediction through artificial intelligent mode decomposition 
for wave energy management. Energy AI 14, 100257. 

Chua, L.O., Roska, T., 1993. The CNN paradigm. IEEE Trans. Circuits Syst. I Fundam. 
Theory Appl. 40, 147–156. 

Deka, P.C., Prahlada, R., 2012. Discrete wavelet neural network approach in significant 
wave height forecasting for multistep lead time. Ocean Eng. 43, 32–42. 

Deo, M., Gondane, D., Sanil Kumar, V., 2002. Analysis of wave directional spreading 
using neural networks. J. Waterw. Port. Coast. Ocean. Eng. 128, 30–37. 

Eriksen, T., Rehman, N.u., 2023. Data-driven nonstationary signal decomposition 
approaches: a comparative analysis. Sci. Rep. 13, 1798. 

Feng, Z., Hu, P., Li, S., Mo, D., 2022. Prediction of significant wave height in offshore 
china based on the machine learning method. J. Mar. Sci. Eng. 10, 836. 

Gardner, M.W., Dorling, S., 1998. Artificial neural networks (the multilayer 
perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ. 
32, 2627–2636. 

Guillou, N., Chapalain, G., 2020. Assessment of wave power variability and exploitation 
with a long-term hindcast database. Renew. Energy 154, 1272–1282. 

Hancock, J.T., Khoshgoftaar, T.M., 2020. CatBoost for big data: an interdisciplinary 
review. J. Big Data 7, 1–45. 

Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., Zeng, W., Zhou, H., 2019. 
Evaluation of CatBoost method for prediction of reference evapotranspiration in 
humid regions. J. Hydrol. 574, 1029–1041 (Amst).  

Hughes, M.G., Heap, A.D., 2010. National-scale wave energy resource assessment for 
Australia. Renew. Energy 35, 1783–1791. 

Jain, P., Deo, M., Latha, G., Rajendran, V., 2011. Real time wave forecasting using wind 
time history and numerical model. Ocean. Model. 36, 26–39 (Oxf).  

Jamei, M., Ali, M., Karbasi, M., Xiang, Y., Ahmadianfar, I., Yaseen, Z.M., 2022. Designing 
a multi-stage expert system for daily ocean wave energy forecasting: a multivariate 
data decomposition-based approach. Appl. Energy 326, 119925. 

Karbasi, M., Jamei, M., Ali, M., Abdulla, S., Chu, X., Yaseen, Z.M., 2022. Developing a 
novel hybrid auto encoder decoder bidirectional gated recurrent unit model 
enhanced with empirical wavelet transform and Boruta-Catboost to forecast 
significant wave height. J. Clean. Prod. 379, 134820. 

Kwiatkowski, D., Phillips, P.C., Schmidt, P., Shin, Y., 1992. Testing the null hypothesis of 
stationarity against the alternative of a unit root: how sure are we that economic 
time series have a unit root? J. Econom. 54, 159–178. 

Legates, D.R., McCabe, G.J., 2013. A refined index of model performance: a rejoinder. 
Int. J. Climatol. 33, 1053–1056. 
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