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A B S T R A C T

Transfer-learned models have achieved promising performance in numerous fields. However, high-performing
transfer-learned models contain a large number of parameters. In this paper, we propose a transfer learning
approach with parameter reduction and potential high performance. Although the high performance depends
on the nature of the dataset, we ensure the parameter reduction. In the proposed SpinalNet shared parameters,
all intermediate-split-incoming parameters except the first-intermediate-split contain a shared value. Therefore,
the SpinalNet shared parameters network contains three parameter groups: (1) first input-split to intermediate-
split parameters, (2) shared intermediate-split-incoming parameters, and (3) intermediate-split-to-output-split
parameters. The total number of parameters becomes lower than the SpinalNet and traditional fully connected
layers due to parameter sharing. Besides the overall accuracy, this paper compares the precision, recall,
and F1-score of each class as performance criteria. As a result, both parameter reduction and potential
performance improvement become possible for the ResNet-type models, VGG-type traditional models, and
Vision Transformers. We applied the proposed model to MNIST, STL-10, and COVID-19 datasets to validate
our claims. We also provided a posterior plot of the sample from different models for medical practitioners to
understand the uncertainty. Example model training scripts of the proposed model are also shared to GitHub.
1. Introduction

Deep neural networks (DNNs) are getting huge attention due to
their recent eye-catching performances. Researchers are investigating
NN models of different structures to achieve improved performances.
The performances of NNs are also improving due to the continuing
research over decades [1]. Researchers have observed significantly
higher accuracy with convolutional parameters. Convolutional layers
are developed by observing the cat’s cortex [2,3]. DNNs containing
convolutional layers are often called convolutional neural networks
(CNN) or deep convolutional neural networks (DCNN). Integration of
residual units have further improved the performance of DNNs. How-
ever, the number of parameters of DNNs has increased dramatically
with the improvement of accuracy over years. Some of the DNN models
contain a large number of parameters on the fully connected part [4–6].
Therefore, a model with reduced fully connected layer parameters and
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improved accuracy can potentially be applied in many real-life Machine
Learning (ML) applications.

Researchers are also concerned with the uncertainty in deep learn-
ing models [7–9]. DNNs often fail to predict, and traditional DNN mod-
els cannot express their confidence while predicting a sample. More-
over, popular models often fail to predict with high confidence [10,11].
Researchers are also improving models over time following differ-
ent approaches, such as dropout and adversarial training [12–14]. In
regression problems, the level of uncertainty is popularly presented
as the width of the prediction interval [15]. However, classification
problems are still lacking robust performance criteria. Therefore, the
proposed method provides medical practitioners output posteriors from
an ensemble of models to understand the exact uncertain situation [16].

The performances of top ML models for computer vision are com-
parable to human eyes classifying hand-written digits and natural
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Fig. 1. SpinalNet and SpinalNet(Shared Weight) (a) Nerve connections in the spinal cord, (b) SpinalNet structure [25], (c) SpinalNet structure with shared weight. Blue arrows
present weights with the same values. Except for the first layer in the intermediate split, the input of the intermediate split comes from the corresponding input split and the
previous layer in the intermediate split. As the input is uniformly split, those input connections have the same number of parameters. The proposed method applies shared weight
and bias values for those input connections.
images [17]. ML models are also good at regression and uncertainty
quantification. However, researchers need to rethink while working
on novel problems [18–20]. Specialists and scientists often struggle to
detect and handle novel problems [21]. Datasets containing samples
of novel diseases, often contain mislabeled data. There might be many
patients with mild symptoms and mild lung conditions. There exists
variance among medical practitioners in labeling the data. Many sam-
ples may contain partial symptoms [22,23]. The sample can be different
based on recent eating, sleeping, and exercising patterns. The current
process of collecting samples for COVID-19 diagnosis is troublesome
for the sample collector and the patient. The patient and the sample
collector face an awkward situation while collecting the nasal sample.
Diagnosis of the COVID-19 disease from X-ray images can potentially
be an optimal approach [16,24].

Recently researchers are focusing on Multitask Learning [26]. End
layers are replicated, restructured, and re-trained for different tasks
in Multitask Learning. Therefore, the requirement for reducing the
fully connected layer can potentially increase greatly due to Multitask
Learning. SpinalNet is getting popularity due to its eye-catching perfor-
mance [25,27,28]. The Spinal fully connected layer can easily replace
the fully-connected layer in many convolutional models. Moreover,
previous convolutional layers can be pre-trained by a large and publicly
available dataset, such as ImageNet [29]. SpinalNet fully connected
layer with pre-trained convolutional layers has obtained state-of-the-art
(SOTA) performance in several datasets. Researchers are also applying
SpinalNet to new applications and receiving good performances over
time [30]. However, SpinalNet does not ensure parameter reduction
or performance enhancement in all situations. The performance en-
hancement depends on the dataset. The parameter reduction happens
with the VGG-type models [31]. Therefore, in this paper, we propose
the SpinalNet with shared weight to ensure parameter reduction with
different types of models.

2. Theoretical background and proposal

This section presents a short overview of the current COVID-19
diagnosis, relevant DNNs, the proposal of SpinalNet, transferred initial-
ization, and uncertainty in NN. This section can potentially help readers
in getting a short overview of relevant literature.
2

Fig. 2. Brachial plexus: a portion of the human nerve plexus. Sense of any touch or
pain conveys to our brain via the spinal cord and the nerve plexus. A network of
convoluted nerves is the nerve plexus. Our spinal cord receives information gradually.
Sensory carried by a branch may reach multiple roots, entering vertebrae. Reproduced
with the permission of authors [25].

2.1. Current approach of COVID-19 diagnosis

Specimens from upper and lower respiratory are popularly used for
COVID-19 diagnosis through popular approaches. Popular approaches
are real-time reverse transcription polymerase chain reaction (RT-PCR),
and Rapid Antigen Testing (RAT). The COVID-19 patient gets the symp-
tom of the disease and reaches health authorities. Common symptoms
are sore throat, fever, cough, and altered sense of smell or taste. Health
authorities usually do RT-PCR or RAT tests for the initial diagnosis [32].
Chest X-ray is collected from the hospitalized patient to observe the
condition of internal organs. However, the commonly applied methods
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of COVID-19 diagnosis require nasal swabs. The collection method
of nasal swabs is troublesome to both the patient and the sample
collector. Taking a chest X-ray is more convenient and can be applied
for the diagnosis of multiple diseases. Some of those diseases, such as
pneumonia, or any infection near the respiratory system can potentially
have several common symptoms.

2.2. Deep neural networks

Deep Neural Networks (DNNs) are getting attention as state-of-the-
art (SOTA) models in various domains. The accuracy of the neural
network (NN) models has increased greatly after the inception of
convolutional blocks. Convolutional blocks have reduced the number
of parameters in NNs and helped researchers to make deeper and high-
performing NNs. However, researchers got the opportunity to make
NNs of different convolutional structures. Different research groups
have proposed different standard NNs over time [33]. Most of the
proposed DNNs have shown improved results, parameter reduction, or
improved run-time when their work was proposed. Some of the most
popular and relevant DNNs are as follows:

2.2.1. VGG
The VGG Net is a popular convolutional neural network (CNN) in

image processing. VGG Net is also known as a DNN due to its high
depth. The DNN was proposed in 2014 by Zisserman and Simonyan
at the Visual Geometry Group [34]. VGG Net is still one of the high-
performing models in several domains. Especially in medical image
datasets and handwritten character classification datasets.

Fig. 3 presents how SpinalNet can be integrated with the VGG neu-
ral network to achieve potentially better performance with parameter
reduction. Fig. 3(a) presents the VGG-19 neural network. The VGG-19
has sixteen convolutional layers and three fully connected layers. Three
fully connected layers receive flattened data. Therefore, it is possible to
replace fully connected layers with traditional shallow neural networks.
Three fully connected layers in the VGG network are also known as the
classifier. We replace the classifier with SpinalNet shared weight in the
current work. Fig. 3(b) presents the VGG-19 neural network with the
SpinalNet classifier layer.

2.2.2. ResNet
Residual NN (ResNet), proposed by Kaiming He is one of the most

investigated neural networks. The paper proposed the ResNet model
in 2016 is also one of the most cited papers of all time [1]. The
ResNet structure is a deep convolutional neural network model with
skip connections. In a DNN, one wrongly trained layer can potentially
degrade the overall performance greatly. Moreover, there exists an
increasing vanishing gradient problem while training a deeper neural
network. Skip connections bring good performance by reducing the
vanishing gradient problem and by facilitating a good information flow
across layers.

2.2.3. SqueezeNet
SqueezeNet was developed by researchers at DeepScale, the Univer-

sity of California, Berkeley, and Stanford University [35]. The motiva-
tion behind the development of the SqueezeNet model was to reduce
the number of parameters. They succeeded to achieve AlexNet-level
accuracy with fifty times fewer parameters. However, the accuracy
of the SqueezeNet is much lower than the accuracy of WideResNets.
SqueezeNets can achieve about 58% accuracy on the ImageNet dataset.
WideResNets can achieve about 80% accuracy on the ImageNet dataset.
Although the parameter was reduced drastically, people did not observe
competitive accuracy compared to SOTA models.
3

Fig. 3. Transfer learning with the modified SpinalNet fully connected layer on the
VGG model. (a) The VGG-19 model. (b) VGG-19 model with SpinalNet fully connected
layers.

2.2.4. Vision transformer
Vision transformer is a powerful transformer-type model that takes

images as inputs. Transformer models have brought revolutionary per-
formance in natural language processing [36]. Observing the remark-
able success of transformers in natural language processing, Alexey
et al. proposed the vision transformer, also known as (ViT) [37].
Alexey et al. split images into several fixed-sized patches and added
position embeddings. They also added a trainable classification token.
The transformer encoder consists of a multi-head attention network
and a multi-level perceptron network. We have downloaded a pre-
trained transformer model named vit_large_patch16_224 through Pytorch
Image Models (timm) library. That model takes 224 × 224 sized images
and provides classification results. Fig. 4 presents the structure of the
transformer. The transformer splits images into segments and linearly
adds patch embeddings to each segment. There is one class-dependent
trainable embedding. Embedded patches are sent to the transformer en-
coder. A multi-level-perceptron head receives the output of the encoder
and predicts the class. Transferred initialization with this model has
brought SOTA performance in several classification datasets [26,38].
The end layers of transformer-type models are known as the head. We
replace the previous head with the traditional head, SpinalNet head,
and SpinalNet shared weight head layers and compare results.

2.3. Transferred initialization

Transferred initialization is a powerful technique used to achieve
promising performance within a short training time and with fewer
training samples [25]. The transferred initialization method of train-
ing a neural network is quite similar to transfer learning. In transfer
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Fig. 4. The transformer architecture. This sketch is inspired by the paper [37].
learning, initial weights are frozen. However, in the transferred initial-
ization, initial weights are not frozen. As a result, it becomes possible
for the training algorithms to bring an optimization near the global
minima. In transfer learning, it often happens that some important
information is not propagated through the initial layers. The potential
reason for the missing information is the difference between the pre-
training dataset and the current dataset. The pre-training dataset may
contain only natural images whereas the current dataset may contain
grey-scale images or medical images.

We apply Adam [39] and SGD [40] optimizers in the NN train-
ing. Both of them are variants of stochastic gradient descent (SGD).
The SGD method replaces the actual gradient with an approximation.
The computational burden is significantly reduced in high-dimensional
problems. In such optimization, the outcome greatly depends on the
initialization. Moreover, initial layer weights get a small gradient dur-
ing the training. Therefore, training initial layers with a large and
similar dataset can potentially provide an overall good performance
within a few training iterations. As initial layers of the NN get small
gradients, initial layers remain almost the same and mid-layers get
slight training. That often brings superior performance over traditional
transfer learning, which only trains the end layers.

2.4. Uncertainty in neural network

Neural networks often exhibit high uncertainty in rare and critical
samples. Neural networks are known as universal predictors. Theo-
retically, Neural Networks of sufficient size can capture any pattern.
However, there exists uncertainty in datasets [41,42]. Moreover, the
training set often lacks a sufficient number of critical patterns. As a
result, both aleatory and epistemic uncertainty arises in the trained
NN model [43]. In regressive problems, the true regression mean of the
prediction system is expressed as follows:

𝑦𝑗 = 𝑡𝑗 − 𝜖𝑗 (1)

where, 𝑦𝑗 is the regression mean, 𝑡𝑗 is the target of the 𝑗th sample, and
𝜖𝑗 is the error signal. That error signal can happen due to uncertainty in
data or the model. That error affects both the regression type NNs and
classification type NNs. Fig. 5 presents several confusing samples on the
MNIST test dataset. Some samples on the dataset can be highly uncer-
tain. Both well-trained NN and experienced humans can potentially be
unable to predict those samples confidently.

The inherent randomness of the data is called the aleatoric and the
model limitation is known as the epistemic uncertainty. The epistemic
4

uncertainty is getting huge attention with the advancement of deep
learning models. Epistemic uncertainty is often formulated over the
distribution of model parameters. Bayes theorem is applied to posterior
distribution to achieve the level of epistemic uncertainty. In Bayesian
statistics, when an observer perceive event 𝑋𝑘, the probability of
happening 𝑌𝑘 simultaneously is as follows [44]:

𝑃 (𝑌𝑘|𝑋𝑘) =
𝑃 (𝑌𝑘 ∩𝑋𝑘)

𝑃 (𝑋𝑘)
(2)

where ∩ is the intersection sign. 𝑃 (.) is the probability function. When
the fraction of 𝑋𝑘 domain has in common with 𝑌𝑘 has a higher value
than the overall probability of 𝑌𝑘, the conditional probability of get-
ting 𝑌𝑘 increases. Otherwise, the conditional probability of getting 𝑌𝑘
decreases.

Classification-type NNs contain a sharp decision boundary from
output posteriors. Output posteriors are the numeric outputs before
applying a sharp decision boundary of the class. In most situations, the
class number becomes the index of the maximum value of the output
posterior matrix. The class number equation is as follows:

𝐶𝑗 = 𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥(𝑃𝑗 ) (3)

where 𝐶𝑗 is the predicted class number of 𝑗th sample.𝑃𝑗 is the predicted
posterior matrix of 𝑗th sample. 𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥(.) function returns the index
of maximum value.

The Bayesian method is the most popular one in uncertainty quan-
tification. The posterior probability results from updating the prior
probability in the Bayesian method. However, in the proposed method,
we name the numeric outputs of different classes as output posteriors.
In the traditional classification method, the index of the maximum
numeric output becomes the class number. However, in this method,
we plot numeric posteriors obtained from different NNs on the same
sample. Observing that posterior plot, medical practitioners can get an
understanding of the level of opacity and make decisions.

Uncertainty can arise due to both data and model [45]. As hand-
written digits are taught from our childhood, most of us are experts
in MNIST digits. Still, we are confused about several MNIST samples.
The same type of confusion may arise among medical specialists while
detecting a novel disease. One solution can be looking at posteriors. In
the first example, shown in Fig. 5, the output posterior of the model
may have high values for both ‘2’ and ‘7’. However, a sharp decision
boundary makes the prediction ‘2’. Experts can potentially have an idea
of the uncertainty based on the values of output posteriors.



Applied Soft Computing 163 (2024) 111908H.M.D. Kabir et al.
Fig. 5. Several common mistakes of AI models on the MNIST dataset. Many humans
might get confused with those samples. Someone may also conclude that those samples
are wrongly labeled or unconsciously written.

2.5. The spinal cord and the SpinalNet

The SpinalNet was developed by mimicking the human somatosen-
sory system [25]. The SpinalNet tried to address the issue of the
increased number of parameters due to a large input. The human body
also takes a large input through our skin. Human skin can sense touch,
heat, texture, vibration, wind flow, etc. All of these senses are sent to
the human brain through the spinal cord. Fig. 1(a) presents a rough
diagram showing rough connections of the human somatosensory sys-
tem. Fig. 1(b) presents the structure of SpinalNet. Fig. 2 presents a
portion of the human nerve plexus. Our nerves are also convoluted.
There exist roots, trunks, divisions, cords, and branches of nerves.
There exist connections between parallel nerves. Fig. 2 sketches a few
of them. SpinalNet was developed by allowing gradual and repetitive
input by mimicking that connection. Although it seems in Fig. 1 that
the structure is quite different from traditional structures, the proposed
structure is quite similar to NNs with skip connections. A portion of the
input is going to the first hidden layer and the same input is going to
a later hidden layer.

2.6. Proposed SpinalNet shared weight structure

Fig. 1(c) presents the structure of SpinalNet with shared weights.
In Fig. 1(c), connections with shared weights are drawn as light blue
color. Except for the first layer in the intermediate split, we take the
split of inputs for the corresponding layer and concatenate them with
the outputs of the previous layer’s intermediate split and apply the
shared fully connected layer. The SpinalNet takes inputs gradually and
repetitively and a narrow intermediate split reduces the number of
multiplication.

The shared weights in Fig. 1(c) are the weights, containing the
same value. Each layer from the second hidden layer to the last hidden
layer has the same number of inputs and outputs. The input size is the
summation of the number of inputs in a split, and the number of outputs
from the previous hidden layer. Output size is the number of outputs
in the current hidden layer. We apply the same parameter values to
all these hidden layers. The concept is similar to weight sharing in
convolutional layers.

The number of parameters becomes lower than the traditional fully
connected layers and the original SpinalNet layer in the proposed
method. The first hidden layer of the NN model contains a large
number of parameters in the traditional method. The first hidden layer
contains weights and biases. The number of weights is equal to the
multiplication of the number of inputs and the number of first hidden
layer parameters. The number of biases is equal to the number of the
first hidden layer parameters. The parameter reduction is possible with
a narrow first hidden layer. However, a narrow first hidden is unable
to propagate all important features from the input layer to the second
hidden layer, resulting in a degraded overall performance of NN. The
SpinalNet takes a small portion of the input to the first hidden layer.
In Fig. 2(b), 𝑋[1 ∶ 𝑘] is the portion of the input that is going to the
first hidden layer. 𝑋[1 ∶ 𝑘] is a portion of 𝑋 and the first hidden layer
5

can be narrower, as we are taking inputs repetitively. When 𝑋[1 ∶ 𝑘]
contains half a portion of 𝑋 and the size of the hidden layer becomes
half of the traditional hidden layer, the number of weights on that
layer becomes one-fourth of the traditional hidden layer. However, the
original SpinalNet model takes inputs both gradually and repetitively to
achieve improved performances. Therefore, the number of parameters
becomes slightly higher than a single hidden layer NN. In the proposed
method, input-split to intermediate hidden layer parameters share a
common value. Therefore, although inputs are repeated, the number of
parameters from the input to the intermediate layer does not increase.
As a result, the number of parameters becomes lower than both the
original SpinalNet and single hidden layer NN.

While any parameter squeezing is proposed on the end layers,
there can be potential loss of information. However, we may get good
results in many datasets. The SqueezeNet also got very good results
with parameter reduction [35]. However, they did not provide any
theoretical proof. Similarly, we investigate our parameter reduction
method on multiple datasets to prove the concept.

3. Investigated datasets and augmentations

This section presents investigated datasets, their augmentations
with reasons, and effects of augmentations. Augmentation is a good
way to increase the robustness of NNs. It prevents NN from being
overfitted. The augmentation increases the number of training samples.
When a random rotation augmentation is applied to images, the NN
receives training on both original and rotated images. As a result,
the NN becomes capable of noticing any rotation-related difference
between the training and the test data. We investigate the following
datasets by training NNs with augmentations.

3.1. MNIST

The Modified National Institute of Standards and Technology
(MNIST) dataset [46] is a handwritten digit classification dataset. It is
the most used dataset in image classification. The major reason for its
popularity is its simplicity and low memory requirement. The MNIST
dataset contains seventy thousand images. Among those images, ten
thousand images are test images and sixty thousand images are training
images. Images are 28 × 28 sized grayscale images. Images are collected
from participants in several American high schools. A well-trained
machine learning model can receive 99.7%+ accuracy on this dataset.
Receiving 99.8%+ accuracy requires both a very good model and an
extremely lucky training session. The reason for that limitation is the
variation in the writing of humans. Some participants’ handwritten
digit four is quite similar to another participant’s nine. Both machines
and humans can get confused by such highly uncertain images.

On the MNIST dataset, we perform the following augmentations:
(i) random rotation, (ii) random shift, and (iii) random perspective.
The handwritten characters are not augmented for horizontal or ver-
tical flips. Flips do not happen on handwritten digits or characters
unless someone has dyslexia. Moreover, the flip or 180-degree rota-
tion of a sample can potentially make the sample belong to another
class. Fig. 6(a) presents thirty-two representative samples of the MNIST
dataset without augmentations. Fig. 6(b) presents those representative
samples with augmentations.

3.2. STL-10

STL-10 [47] is one of the most popular datasets in image vision.
The Stanford AI Lab proposed that dataset by observing the CIFAR-
10 dataset. The CIFAR-10 dataset contains 32 × 32-sized RGB images.
The STL-10 dataset contains 96 × 96-sized RGB images, labeled as ten
classes. Each class contains five hundred training images and eight
hundred test images. Classes are truck, ship, monkey, horse, dog,
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Fig. 6. Typical samples of the handwritten digit (MNIST) dataset. (a) After
normalization and without augmentations; (b) after augmentations.

Fig. 7. Typical samples of the STL-10 dataset. (a) After normalization and without
augmentations; (b) after augmentations.

deer, cat, car, bird, and airplane. Images are a small subset of
the ImageNet dataset.

On the STL-10 dataset, we perform the following augmentations:
(i) random rotation, (ii) random crop, and (iii) random horizontal
flip. We do not perform some other augmentations, such as random
perspective, and random vertical flip. Fig. 7(a) presents twenty-four
representative samples of the STL-10 dataset without augmentations.
Fig. 7(b) presents those representative samples with augmentations.

We investigate the effect of changing parameters on the STL-10
dataset. Fig. 8 presents the accuracy vs the number of trainable param-
eters on the Head layer plot on the STL-10 dataset. The accuracy and
parameter count of the traditional model is represented by the blue star.
The black curve presents the SpinalNet model. The green curve presents
the SpinalNet Shared Weight model. Red, green, blue, and black circles
represent a hidden layer width of 10, 20, 50, and 100 respectively.
The traditional model has 1024 trainable Head parameters but the
average accuracy is 99.50%. The proposed model can receive almost
the same accuracy on average when the hidden layer width is 10. The
number of parameters becomes 3490 for a hidden layer width of 10.
The parameter reduction becomes possible by maintaining the same
average accuracy over the traditional model. However, we planned to
achieve both parameter reduction and accuracy improvement over the
traditional model.
6

Fig. 8. Accuracy vs the number of trainable parameters on the Head layer plot on
the STL-10 dataset. The black curve presents the SpinalNet model. The green curve
presents the SpinalNet Shared Weight model. The accuracy and parameter count of the
traditional model is represented by the blue star. Red, green, blue, and black circles
represent a hidden layer width of 10, 20, 50, and 100 respectively.

We achieve both improved accuracy and parameter reduction over
the traditional model when the number of hidden layer neurons is dou-
ble the number of classes. STL-10 data contains 10 classes. The hidden
layer width of 20 brings higher accuracy and parameter reduction with
the proposed model. However, SpinalNet brings higher accuracy but
costs much higher parameters. The proposed model with a width of
20 outperforms SpinalNet of a 10 width in terms of both accuracy and
parameter count. However, if we increase the width of the proposed
model to 100 it brings inferior performance compared to the SpinalNet
of a 20 width in both categories. Therefore, we conclude that a width
equal to twice the class number brings optimal performance in terms
of both accuracy and parameter count.

3.3. SIIM-FISABIO-RSNA COVID-19 detection

After investigating the effectiveness of the proposed DNN model in
different types of datasets, we apply a popular coronavirus disease 2019
(COVID-19) dataset, proposed by Society for Imaging Informatics in
Medicine (SIIM) to the model. The title of the dataset is ‘‘SIIM-FISABIO-
RSNA COVID-19 Detection’’ [48,49]. The dataset contains images in
the Digital Imaging and Communications in Medicine (DICOM) format.
However, available high-performing pre-trained models are developed
using RGB image datasets. We convert DICOM images to RGB format
images of 512 × 512-size. First, we convert DICOM images to grayscale
images. Then, the Sobel filter is applied to grayscale images to achieve
magnitude and edges [50]. The RGB image contains magnitude, edge
magnitude, and edge angles of pixel intensities, in R, G, and B layers
respectively. We perform data pre-processing in a Kaggle notebook1 and
share the script for transparency.

We perform the following augmentations on the pre-processed Chest
X-ray (CXR) images: (i) random rotation, (ii) random crop, (iii) random
perspective, and (iv) random horizontal flip. Fig. 9(a) presents sixteen
representative samples of the COVID-19 dataset without augmenta-
tions. Fig. 9(b) presents those representative samples with augmenta-
tions. We do not perform random vertical flip augmentation. Vertical

1 https://www.kaggle.com/dipuk0506/dicom-files-to-rgb-mag-edge1-
edge2-512x512

https://www.kaggle.com/dipuk0506/dicom-files-to-rgb-mag-edge1-edge2-512x512
https://www.kaggle.com/dipuk0506/dicom-files-to-rgb-mag-edge1-edge2-512x512
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Table 1
Effect of different augmentations while performing transfer learning from VGG-19 neural network. Besides
augmentations, mentioned in this table, we also apply random horizontal flips, resizing, and normalization
for all learning combinations.
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× ✓ ✓ 79.02% 77.29% 76.37% 1.42%
✓ × × 75.82% 73.02% 71.87% 2.59%
✓ × ✓ 77.95% 75.13% 73.97% 2.13%
✓ ✓ × 77.98% 75.09% 73.93% 2.26%
✓ ✓ ✓ 78.16% 75.28% 74.41% 2.01%
Fig. 9. Typical samples of the SIIM COVID dataset. (a) After pre-processing,
normalization, and without augmentations; (b) after augmentations.

flip in CXR images does not happen in reality unless someone makes
an erroneous entry.

4. Results

4.1. Selection of augmentations

Different augmentations bring optimal performance for different
kinds of datasets [51]. Some augmentations bring a better performance.
Random horizontal flips of natural images increase the number of
samples. The augmentation increases the validation and test accuracies
of NN. However random vertical flips do not happen in natural images.
Unless the dataset contains some wrong entries. Applying random
vertical flip augmentation adds some irrelevant samples. As a result,
the training time of NN increases, and the accuracy of NN decreases.
Some augmentations, such as random grayscale and random perspec-
tive have mixed effects on different datasets. Therefore, we perform
trial and error to achieve optimum augmentations. MNIST and STL-10
are two well-known datasets. We have achieved optimal augmentation
combinations for training NNs in our previous papers [16,25]. Table 1
presents the effect of different augmentation combinations on the SIIM
COVID dataset. We trained each DNN model ten times to achieve
average results. According to this table, random rotation and random
perspective improve the overall accuracy. We observed that models
providing higher accuracies also have slightly lower variations. The
most optimum performance with the VGG-19 model is indicated in bold
letters.
7

4.2. Results on MNIST dataset

We have investigated VGG, ResNet, and transformer-type models
on this dataset to evaluate our proposed model. With the VGG-19
model, we received similar accuracies with fewer parameters. The fully-
connected portion of the VGG networks contains a large number of
parameters. SpinalNet contains fewer parameters and can provide supe-
rior accuracy. SpinalNet with shared weight brings further reduction in
the number of parameters. The number of parameters is reduced from
119.59M to 7.56M. The first segment of Table 2 presents the results of
different models obtained using the MNIST dataset. Here, the ‘M’ sign
represents a million and the ‘k’ sign in the table represents a kilo or
thousand. WideResNet-101 transfer learning can provide good accuracy
using both color and grey-scale images. We achieved both higher
accuracy and parameter reduction over the traditional WideResNet-
101 model using the SpinalNet shared weight. Models are trained over
twenty epochs to achieve results. The learning rate is set to 0.01 for the
first ten epochs and then the learning rate is set to 0.001 for the next
ten epochs. Momentum is kept at 0.9, the step size is set to seven, and
gamma is set to 0.1. We have achieved slightly lower accuracy with
significant head-layer parameter reduction using the proposed model
compared to SpinalNet. We have achieved both parameter reduction
and improved accuracy over the traditional head. We train transformers
with a learning rate of 1e−4.

The confusion matrix represents an indication of the heteroscedastic
uncertainty of the model. Fig. 10 is the confusion matrix obtained for
the MNIST dataset. According to the figure, ‘9’ and ‘4’ are confusing
to NNs. ‘4’ is predicted as ‘9’, thrice, and ‘9’ is predicted as ‘4’, four
times. There is also a high uncertainty between ‘2’ and ‘7’. Also, we
present the heteroscedastic performance of trained models in Table 3.
The first segment of Table 3 shows the results of an example model on
the MNIST dataset. The table presents the precision, recall, and F1 score
values of each class for all datasets. When a sample is predicted as class
A, the probability of the sample being labeled to class A is the precision.
When a sample is labeled as class A in the dataset, the probability of
the sample being predicted to class A is the recall. The F1 score is the
harmonic mean of precision and recall.

4.3. Results on STL-10 dataset

We have investigated VGG, ResNet, and transformer-type models
on this dataset. With the VGG-19 model, we also received similar
accuracies with a much lower number of parameters on the STL-10
dataset. Parameter reductions are also the same as the MNIST dataset.
The second segment of Table 2 presents the results of different models



Applied Soft Computing 163 (2024) 111908H.M.D. Kabir et al.

d
A
e
e

4

m
p
M
i

Table 2
Performance of the VGG-19 and WideResNet-101 with normal, spinal, and spinal-shared-weight fully connected layers.

Data Model Parameters in Number Test Accuracy Error

Fully Connected Layer of Average Best Reduction

Split Mid-Layer Count Epoch (Best)

VGG-19_bn [34] – – 119.59M 20 99.69% 99.74% –

VGG-19_bn (Spinal FC) [25] 2 1024 54.57M 20 99.70% 99.75% 3.8%

MNIST VGG-19_bn (Spinal FC SW) 8 1024 7.56M 20 99.70% 99.74% 0.0%

[46] WideResNet-101_2 [52] – – 20.49k 20 99.52% 99.62% –

WideResNet-101_2 (Spinal FC ) [25] 8 20 45.53k 20 99.66% 99.77% 39.5%

WideResNet-101_2 (Spinal FC SW) 8 20 12.29k 20 99.68% 99.72% 26.3%

ViT-L/16 [38] – – 10.25k 2 99.72% 99.75% –

ViT-L/16 (Spinal FC ) [38] 8 20 25.05k 2 99.75% 99.76% 4.0%

ViT-L/16 (Spinal FC SW) 8 20 7.17k 2 99.74% 99.75% 0.0%

VGG-19_bn [34] – – 119.59M 15 94.97% 95.44% –

VGG-19_bn (Spinal FC) [25] 2 1024 54.57M 15 95.03% 95.57% 2.9%

STL-10 VGG-19_bn (Spinal FC SW) 8 1024 7.56M 15 95.01% 95.57% 2.9%

[47] WideResNet-101_2 [52] – – 20.49k 15 97.83% 98.40% –

WideResNet-101_2 (Spinal FC ) [25] 8 20 45.53k 15 98.23% 98.66% 16.3%

WideResNet-101_2 (Spinal FC SW) 8 20 12.29k 15 98.05% 98.45% 3.1%

ViT-L/16 [38] – – 10.25k 2 99.50% 99.61% –

ViT-L/16 (Spinal FC ) [38] 8 20 25.05k 2 99.58% 99.70% 23.1%

ViT-L/16 (Spinal FC SW) 8 20 7.17k 2 99.55% 99.64% 7.7%

VGG-19_bn [34] – – 119.55M 10 76.52% 76.91% –

VGG-19_bn (Spinal FC) [25] 8 512 381.0k 10 76.23% 77.74% 3.6%

COVID by VGG-19_bn (Spinal FC SW) 8 512 29.2k 10 76.37% 77.41% 2.2%

SIIM [49] WideResNet-101_2 [52] – – 4.1k 10 77.26% 78.84% –

WideResNet-101_2 (Spinal FC ) [25] 8 4 8.4k 10 77.88% 80.01% 5.5%

WideResNet-101_2 (Spinal FC SW) 8 4 2.14k 10 78.11% 79.82% 4.6%

ViT-L/16 [38] – – 2.05k 2 82.69% 85.03% –

ViT-L/16 (Spinal FC ) [38] 8 4 4.31k 2 84.81% 86.88% 12.4%

ViT-L/16 (Spinal FC SW) 8 4 1.11k 2 82.97% 85.09% 0.4%
on the STL-10 dataset. We achieved higher accuracy and parameter
reduction over the traditional WideResNet-101 model on the STL-10
dataset using the SpinalNet shared weight. Models are trained over
fifteen epochs to achieve results. The learning rate is set to 1e-3 for the
first five epochs and then the learning rate is set to 1e-4 for the next
ten epochs. Momentum is kept at 0.9, the step size is set to seven, and
gamma is set to 0.1. We have achieved slightly lower accuracy with
significant head-layer parameter reduction using the proposed model
compared to SpinalNet. We have achieved both improved accuracy and
parameter reduction over the traditional head. We train transformers
with a learning rate of 1e-4.

Fig. 11 presents the confusion matrix obtained using the STL-10
dataset. The model has obtained the highest accuracy in classifying
ships. The model accurately predicted 798 samples out of eight hundred
ship samples. The airplane class also obtained the same accuracy.
The model often gets confused with car and truck. Distinguishing
eer, dog, and horse classes are often troublesome for NN models.
lso, we presented the heteroscedastic performance using trained mod-
ls in Table 3. The second segment of Table 3 shows the results of an
xample model on the STL-10 dataset.

.4. Results on SIIM COVID dataset

We have applied both the VGG-19 and WideResNet-101 pre-trained
odels from PyTorch Torchvision model libraries. Also, we have ap-
lied vit_large_patch16_224 model, downloaded through Pytorch Image
odels (timm) library. As the SIIM COVID dataset contains DICOM
8

mages, we converted those images to RGB images. Section 3.3 presents
details of the conversion and augmentations. We receive both perfor-
mance enhancement and parameter reduction over traditional models.
The third segment of Table 2 presents the performances of models
obtained using the SIIM COVID dataset. The proposed model outper-
forms the traditional head in terms of both accuracy and parameter
count. Although the SpinalNet provides slightly higher performance,
SpinalNet contains a significantly large number of parameters in the
head layer. The users of the model have two options. If the user wants
the highest performance, he can use the SpinalNet model. When the
user has limited computing ability, he can use the SpinalNet Shared
Weight model.

Fig. 12 presents the confusion matrix of a well-trained WideResNet
transfer learned model on SIIM COVID data. Also, we present the het-
eroscedastic performance of trained models on COVID data in Table 3.
This table presents the precision, recall, and F1 score values obtained
for each class of all datasets.

4.5. Parameter reduction in proposed model

As inputs are split and neuron per layer is reduced, weights in layers
decrease significantly. For example, the VGG-19 model has 25088
inputs to the classifier layer group. This results in a large number
of parameters in the first fully connected hidden layer. As the first
fully connected hidden layer input contains 4096 × 25088 number of
weights. Two hidden layers of 4096 size also introduce 4096 × 4096
number of weights between two hidden layers. However, when Spinal-
Net is applied as the fully connected layer of the VGG-19 model,
SpinalNet fully connected layer splits the input into two parts and

makes the number of hidden neurons for each layer one-fourth (1024).
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Fig. 10. An example confusion matrix on the MNIST test dataset. The accuracy
observed in this figure is 99.66%.

Fig. 11. An example confusion matrix on the STL-10 test dataset. The accuracy
observed in this figure is 99.64%.

Fig. 12. An example confusion matrix on the SIIM COVID test dataset. The accuracy
observed in this figure is 77.22%.

Therefore, the number of weights in the first hidden layer becomes
one-eighth. The second hidden layer receives a split of the inputs and
outputs of the first hidden layer. When the splitting is two, the second
hidden layer receives half of the inputs and outputs of the first hidden
layer. Therefore, incoming weight to the second hidden layer becomes
(25088/2 + 1024) × 1024. Two hidden layers together contain much
lower parameters than the first classifier layer of the traditional VGG
classifier. Moreover, in the proposed SpinalNet shared weight model,
input weights of the second hidden layer to the last hidden layer
contain a set of shared values. That further reduces the number of
parameters. WideResNet-101 has 2048 features and the transformer
model has 1024 features. When features are divided, and weights are
shared the number of parameters becomes significantly lower.

4.6. Uncertainty of samples

The COVID-19 dataset contains highly uncertain samples. Although
the F1 score of models on other investigated datasets is more than 97%,
9

The F1 score for opacity detection is about 83.5%. Therefore, medical
specialists cannot conclude with a highly certain result based on the
output of models. Therefore, we provide a plot of the output posterior
with the depiction of a sharp decision boundary. Highly trained models
make mistakes in critical situations. Fig. 5 presents such critical situa-
tions. In such a situation, a sample may seem to be a member of more
than one class. In a critical situation, both classes can potentially have
a high value on the posterior. Therefore, we investigate the location
of output posteriors compared to the decision boundary in Fig. 13.
Subplot (a) of Fig. 13 shows the location of output posteriors, where
the sample has the None class label. Subplot (b) of Fig. 13 shows the
location of output posteriors, where the sample has the Opaque class
label. Posteriors of None predicted samples stay below the margin line
and posteriors of Opaque predicted samples stay over the margin line.
We draw samples based on labels to observe the location of posteriors
while the prediction is wrong.

According to Fig. 13, there is a weak positive correlation between
the label and values of posteriors. The majority of the samples stay in
the corresponding domain. Some samples stay in the wrong domain.
However, a few None samples stay on the extremely wrong end, and
no Opaque sample stays on the extremely wrong end. Therefore, it
is possible to find a clearer view of the uncertain situation by seeing
the posterior; most of the situation. A medical specialist can also see
the posteriors of a sample derived from multiple models to observe a
closer uncertain situation.

4.7. Performance variation among datasets

Different datasets have different levels of uncertainty. Therefore,
performances are also different. It is possible to achieve more than
99.5% accuracy on the MNIST dataset. However, the STL-10 dataset has
much higher uncertainty. The SOTA performance on the STL-10 dataset
was less than 98% before 2020. In the year 2020, the WideResNet-
101(Spinal FC) model obtained 98.66% accuracy with the transfer
learning [25]. WideResNet-101 model is pre-trained on the ImageNet
training dataset and is publicly available by the Torchvision module.
In 2022, a group of researchers from Google Research reported a new
SOTA accuracy of 99.64% through multitask learning technique [53].
The SIIM COVID dataset has a much higher level of uncertainty. Ac-
cording to our investigation, Transfer-learned models can achieve about
80% accuracy on that dataset.

4.8. Performance variation among different classes

There exist similarities among different classes, and those similari-
ties create uncertainties. The precision of a class-A is the accuracy of the
model on samples predicted as that class. The recall of a class-A is the
model accuracy on samples labeled as that class. Both the precision and
recall become lower due to the similarity between classes. In the MNIST
dataset, the ‘0’ class has the highest precision and the ‘1’ class has the
highest recall. The ‘4’ has the lowest precision and the ‘5’ class has the
lowest recall. This happens due to similarities in hand-written digits
and variations in writing among people. For example, some people
confusingly write ‘4’ and some other people consider that writing as
‘9’. Machine learning models also get confused when they are trained
with the writings of thousands of different people. In STL-10, the class
airplane has the highest precision. The class ship has the highest
recall. The class deer has the lowest precision. The class horse has
the lowest recall. That happens due to similarity among classes. Non-
living classes of STL-10 datasets are quite dissimilar to living classes.
However, classes containing quadrupeds are more similar. Due to their
different pose and variation in training and testing datasets, the ML
model can potentially get confused. Humans have higher experience
than machine learning models in classifying animals. Also, humans
usually pay more attention to the unique characteristics of animals
instead of their poses.
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Fig. 13. Posteriors of samples in the test dataset. Subplot (a) shows posteriors of samples labeled as None, (a) shows posteriors of samples labeled as Opaque at the test dataset.
A strict decision boundary cannot determine the level of uncertainty on the prediction. The distance from the decision boundary can be an indicator of uncertainty. However, NNs
can also be wrong with high confidence in some samples.
Table 3
Classwise performance of NNs with various datasets. Numeric values in this table are generated from the example
confusion matrix, shown in Figs. 10, 11, and 12.

Data Class Precision Recall F1 Score

MNIST 0 0.99898 0.99898 0.99898

1 0.99649 1.00000 0.99824

2 0.99708 0.99419 0.99563

3 0.99507 0.99901 0.99704

4 0.99289 0.99593 0.99441

5 0.99887 0.99439 0.99663

6 0.99791 0.99478 0.99634

7 0.99708 0.99514 0.99611

8 0.99795 0.99795 0.99795

9 0.99406 0.99504 0.99455

STL-10 airplane 0.99874 0.99250 0.99561

bird 0.99747 0.98500 0.99119

car 0.98618 0.98125 0.98371

cat 0.97264 0.97750 0.97506

deer 0.96683 0.98375 0.97522

dog 0.96782 0.97750 0.97264

horse 0.99104 0.96750 0.97913

monkey 0.98625 0.98625 0.98625

ship 0.98885 0.99750 0.99315

truck 0.97640 0.98250 0.97944

COVID None 0.67778 0.58654 0.62887

by SIIM Opaque 0.80973 0.86321 0.83562
4.9. Prediction uncertainty of a sample

There exist several representations of uncertainty. The prediction
interval is the most popular form of presenting uncertainty in regression
problems. Researchers also provide heteroscedastic variance value as
an indication of uncertainty [54]. Users get a rough understanding
of uncertainty from precision, recall, and confusion matrix. The user
gets an idea of the probability of misclassification from precision.
The user also gets an idea of other potential classes as the original
label when the prediction is wrong based on the confusion matrix.
However, all samples predicted as Opaque do not have the same level
of uncertainty. Fig. 14 presents a posterior plot of a sample labeled
10
Opaque. We train ten WideResNet-101_2 (Spinal FC SW) models and
obtain predictions. Eight models predict the sample as Opaque and
two models predict the sample as None. Moreover, the location of
posteriors in None prediction is very close to the decision boundary.
Observing those posteriors, the medical practitioner can easily predict
that the sample is Opaque.

In this paper, we consider the Precision, Recall, and F1 Score of each
class, overall accuracy, and confusion matrix as indications of uncer-
tainties. Also, we provide a 2D plot of output posteriors to the medical
practitioners. By seeing the posterior plot, the medical practitioner may
get a better understanding of the level of uncertainties.

There exist several other uncertainty quantification matrices. Sev-
eral researchers have considered the distribution of classification results
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Fig. 14. Output posterior of an Opaque labeled sample on the SIIM COVID dataset.
The sample has StudyInstanceUID of 39a80a14bfda. We train ten WideResNet-101_2
(Spinal FC SW) models and obtain predictions. Eight models predict the sample as
Opaque and two models predict the sample as None. Moreover, the location of
posteriors in None prediction is very close to the decision boundary.

for a sample [55] as an indicator of the level of uncertainty. The distri-
bution of classification results contains indexes of the maximum value.
A slight difference between two output posterior can alter classification
results while considering only the maximum value. The posterior plot
in the proposed method presents the numeric value of posteriors.
Several other researchers use Label stability as a measure of the level
of uncertainty [55]. The Label stability is the absolute difference be-
tween two numbers: (i) the number of times the sample is predicted
as positive, and (ii) the number of times the sample is predicted as
negative. This approach also faces the limitations of a sharp boundary.
A recent paper [16] proposed uncertainty scores based on k-nearest
neighbors output posterior. That approach overcomes the limit of sharp
boundaries. However, a few unusual samples in the neighborhood may
result in a poor prediction. Therefore, showing the position of the
posterior provides a deeper understanding of the level of uncertainty.

4.10. Comparison with the state-of-the-art performance

We achieve near SOTA performance in several datasets while ap-
plying the proposed head on the transformer. As we significantly
reduce the number of parameters, the performance is always slightly
lower than the SpinalNet. The SOTA accuracy on the STL-10 dataset
is 99.71%. We have achieved 99.64% top accuracy with SpinalNet
shared weight. That is equal to the previous SOTA on this dataset [53].
With the SpinalNet, we have achieved 99.70% accuracy. As MNIST
is a highly investigated dataset, the best performance on this model
has come due to a lucky session [56,57]. We have achieved near
SOTA performance in the MNIST dataset. We have also investigated
SpinalNet shared weight on CIFAR-10 and CIFAR-100 datasets and
received 99.01% and 93.12% accuracies respectively. Current SOTA
performances on these datasets are 99.50% [37] and 96.08% [58]
respectively.

5. Notes and conclusion

In this paper, we have presented a parameter-optimized transfer-
learned classification model with uncertainty awareness. We have pro-
posed SpinalNet with shared weights. Also, we have prescribed health
11

a

practitioners to observe the overall precision, recall, accuracy, and a
posterior plot so that they can get an idea of the associated uncer-
tainty. During the discussion with colleagues, we noticed that readers
can potentially get several common questions. Probable questions and
answers are as follows:

How medical practitioners can comprehend posterior plots: When a
sample is Opaque most of the posteriors usually stay in the Opaque
region. Some posteriors can potentially stay in the Opaque regions
by maintaining a large distance from the decision boundary. A few
posteriors can potentially stay in the None region. However, those
posteriors usually stay close to the decision boundary.

How the aleatoric uncertainty is captured: Aleatoric uncertainty is the
nherent randomness of the sample [7]. Although two samples may
elong to the same class in terms of both labels and predictions, the
evel of opacity might not be the same. One sample may have a small
egion with opacity while another sample may have a larger region
ith opacity. The average position from the distribution of posteriors

ndicates the level of aleatoric uncertainty. Medical practitioners can
et an idea of the level of aleatoric uncertainty from the median
osition of posteriors.
How the epistemic uncertainty is captured: Epistemic uncertainty is

he error happening in models [7]. Different models predict the sample
ifferently. When the epistemic uncertainty is low, there exists a low
ariance among posterior values. When the epistemic uncertainty is
igh, there exists a high variance among posterior values. Medical
ractitioners can get a rough estimation of epistemic uncertainty by
eeing the distribution of posteriors.
How the Heteroscedasticity of uncertainty is captured: The uncertainty

s heteroscedastic [7]. The level of uncertainty can be different for two
amples. In regression problems, the width of the prediction interval
aries from sample to sample. In classification, two samples with the
ame label or two samples with the same prediction may have a
ifferent level of uncertainty. When two images are slightly different,
he posterior distribution also becomes slightly different. When the
evel of epistemic uncertainty is high, the variation among posterior
ncreases. When the level of aleatoric uncertainty is high, the median of
osteriors gets closer to the decision boundary. Therefore, the proposed
ethod is capable of representing the heteroscedasticity of both types

f uncertainties.
Discussion with Doctors: In this paper, we proposed a posterior

lot to help medical practitioners. Therefore, we invited several doc-
ors to review the posterior plot. According to doctors, binary re-
ults of Healthy/Diseased contain insufficient information. According
o Dr. Sadia Khanam from Dhaka Dental College and Dr. Farjana-Binte-
abib from Dept of Microbiology, Dhaka Medical College, posterior
lots are the best option. According to Dr. Sayem Sorwer Bappy from
ymensingh Medical College Hospital, observing numeric values of

osteriors is the most convenient option.
The uncertainty-aware classification and COVID-19 methodology

roposed in this paper can potentially help future researchers, statis-
icians, engineers, and medical practitioners. Future researchers can
pply the proposed NN to similar datasets to achieve superior per-
ormance. However, this method provides posterior plots instead of
ny numeric score. Medical practitioners may need knowledge and
xperience in understanding these plots. Future researchers may de-
elop scores based on the values of posteriors. Example training scripts
re shared at the following GitHub repository: github.com/dipuk0506/
pinalNet
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