Delegating revocations and authorizations in

collaborative business environments

Hua Wang ! Jinli Cao ? Yanchun Zhang 3
! Department of Maths & Computing

University of Southern Queensland

Toowoomba QLD 4350 Australia

Email: wang@usqg.edu.au
2 Department of Computer Science & Computer Engineering
La Trobe University, Melbourne, VIC 3086, Australia
Email: jinliQcs.latrobe.edu.au
3 School of Computer Science and Mathematics
Victoria University, Melbourne City, MC8001, Australia.

Email: yzhang@csm.vu.edu.au

Abstract

Efficient collaboration allows organizations and individuals to im-
prove the efficiency and quality of their business activities. Delega-

tions, as a significant approach, may occur as workflow collaborations,

1

supply chain collaborations, or collaborative commerce. Role-based
delegation models have been used as flexible and efficient access man-
agement for collaborative business environments. Delegation revoca-
tions can provide significant functionalities for the models in business
environments when the delegated roles or permissions are required
to get back. However, problems may arise in the revocation process
when one user delegates user U a role and another user delegates U a
negative authorization of the role.

This paper aims to analyse various role-based delegation revoca-
tion features through examples. Revocations are categorized in four
dimensions: Dependency, Resilience, Propagation and Dominance.
According to these dimensions, sixteen types of revocations exist for
specific requests in collaborative business environments: Dependen-
tWeakLocalDelete, DependentWeakLocalNegative, Dependent Weak-
GlobalDelete, Dependent WeakGlobalNegative, IndependentWeakLo-
calDelete, IndependentWeakLocalNegative, Independent WeakGlobalDelete,
Independent Weak GlobalNegative, and so on. We present revocation
delegating models, and then discuss user delegation authorization and
the impact of revocation operations. Finally, comparisons with other

related work are discussed.

1 Introduction

Business process modelling describes how activities interact and relate with
other organizations while supporting business operations in a collaborative
environment. Collaboration links organizations and individuals together to
improve the efficiency of commercial business such as sales, procurement,

manufacturing, distribution and replenishment. Collaboration has moved be-
yond mere buying and selling to encompass planning, design, development,
communication, the sourcing of information, research, and the provision of
services among organizations [7,14]. Collaborative business is an applica-
tion of information technology to achieve a closer integration and a better
management of business relationships among internal and external parties.
Significant work has been done on developing business process management,
methodologies and ontologies as well as on the specification of process mod-
elling languages [5,30]. There are situations in which collaboration resources
cannot be updated or delivered due to insufficient collaborative management
arrangements between business partners. It is still an open question how
efficiently technical skills can be trained in collaborative business environ-
ments [4,19].

Therefore, effective and efficient communication with distant collabora-
tors is required for business collaborations. This paper aims to develop
role-based delegation models for collaborative business. The inclusion of
role-based delegation and revocation allows users themselves to delegate role
authorities to others to process some authorized functions and later remove
those authorities. Role-based delegation and revocation models are devel-
oped with comparison to established technical analysis, laboratory experi-
ments, support hierarchical roles and multistep delegation. The models are
implemented to demonstrate their feasibility and secure protocols for man-

aging delegations and revocations.

Delegation is the process whereby an active entity grants access resource
permissions to another entity. The basic idea of delegation is to enable some-
one to do a job, for example, a secretary. Effective delegation not only makes
management systems ultimately more satisfactory, but also frees the delegat-
ing users to focus on other important issues. In access control management
systems, the delegation arises when users need to act on another user’s be-
half in accessing resources. Delegation is recognised as vital in a secure
distributed computing environment [1,2]. Delegation is an important feature
in many business collaborations. For example, the Immigration Department

is developing partnerships between immigration agencies and people in local
areas to address possible problems. Immigration officers are able to prevent
illegal stay and crime if they efficiently collaborate with these people. The
problem-oriented immigrating system (POIS) is proposed to improve the ser-
vice as a part of the Immigration Department’s ongoing community efforts,
including identifying potential problems and resolving them before they be-
come significant. With efficient delegation, officers respond quickly to urgent
messages and increase the time spent confronting problems. On the other
hand, it is natural for a user to revoke a delegated role that he/she granted
to other users. A revoke operation may in turn reduce the management
processes and makes the delegating system more efficient. Many revocation
models have been proposed in the past a few years [6,9,27], and the result of
revocation operations depends on the particular definitions of the operation
in the models.

The NIST developed role-based access control (RBAC) prototype [10]
and published a formal model [11]. The basic elements and relations in
role-based access control (RBAC) are depicted in Figure 1. RBAC enables
managing and enforcing security in large-scale and enterprise-wide systems.
In RBAC models, permissions are associated with roles, users are assigned
to appropriate roles, and users acquire permissions through roles. Users can
be easily reassigned from one role to another. Roles can be granted new
permissions and permissions can be revoked from roles as needed. Therefore,
RBAC provides a means for empowering individual users through role-based
delegation in distributed collaboration environments. However, there is little
work on delegation revocations with RBAC. We analyse various delegation
revocations based on the RBAC model.

Revocation is a significant function in role-based delegations. For ex-
ample, Tony delegated role director (DIR) to Richard; if Richard moves to
another company and does not work at the Immigration Department, his
delegated role DIR has to be revoked instantly. Several different semantics
of user revocation exist [13]: global and local (propagation), strong and weak
(dominance) and deletion or negative (resilience). Propagation refers to the

4

Senior- Junior relations

OPERATION

USERS ROLES Perm_Name

m n m n

User-role assighment (UA) Permission-rofé assignment (PA)

<> Indicates many-to—many relationships

Figure 1: RBAC relationship

extent of the revocation to other delegated users while Resilience means no
time-persistent with negative permissions. Dominance refers to the effect of
a revocation on implicit/explicit role memberships of a user. For example,
there are two types of revocation in dominance: weak and strong revoca-
tion [21]. A strong revocation of a user from a role requires that the user be
removed not only from the explicit membership but also from the implicit
memberships of the delegated role. A weak revocation only removes the user
from the delegated role (explicit membership) and leaves other roles intact.
Strong revocation is theoretically equivalent to a series of weak revocations.
To perform strong revocation, the implied weak revocations are authorized
based on revocation policies.

The purpose of the paper is to describe and analyse a number of revoca-
tion schemes and their relationships to one another. Revocation schemes are
categorized with four dimensions: dependency, resilience, propagation and
dominance. With the help of these dimensions we define sixteen different
revocation schemes. The remainder of this paper is organized as follows:
Section 2 presents the required technologies for the paper. It includes a
delegation example, RBAC and role-based delegation structure. Section 3

proposes the details of four revocation dimensions. Rather than formal defi-
nition, examples are used to explain the definitions of each dimension. There
are sixteen types of revocation based on the dimensions. We do not analyse
all sixteen revocation schemes in the paper, but, four of them are discussed
in Section 4. Section 5 describes the implementation of the role-based dele-
gating revocations using XML technology and Section 6 compares our work
with the previous work on delegation revocation methods. The differences
between the work in this paper and others are presented. Section 7 concludes
the paper and outlines our future work.

2 Basic technologies

2.1 Delegations

In problem-oriented immigrating system (POIS), officers might be involved in
many concurrent activities such as conducting initial investigations, analysing
and confronting crimes, preparing immigration reports, and assessing projects.
In order to achieve this, users may have one or more roles such as lead offi-
cer, participant officer, or reporter. In this example, Tony, a director, needs
to coordinate analysing and confronting crimes and assessing projects. Col-
laboration is necessary for information sharing with members from these
two projects. To collaborate closely and make two projects more successful,
Tony would like to delegate certain responsibilities to Christine and her staff.
The prerequisite conditions are to secure these processes and to monitor the
progress of the delegation. Furthermore, Christine may need to delegate the
delegated role to her staff as necessary or to delegate a role to all members of
another role at the same time. Without delegation capacity, security officers
have to do excessive work since they are involved in every single collaborative
activity. We can find the major requirements of role-based delegation in this
example:

1. Group-based delegation means that a delegating user may need to del-
egate a role to all members of another role at the same time.

2. Multistep delegation occurs when a delegation can be further delegated.
Single-step delegation means that the delegated role cannot be further
delegated.

3. Revocation schemes are important characteristics of collaboration. They
take away the delegated permissions. There are different revoking
schemes, among them are strong and weak revocations, cascading and
noncascading revocations, as well as grant-dependent and grant-independent
revocations [21].

4. Constraints are an important factor in RBAC for laying out higher-level
organizational policies [20]. They define whether or not the delegation

or revocation process is valid.

5. Partial delegation means only subsets of the permissions are delegated
while total delegation means all permissions are delegated. Partial del-
egation is an important feature because it allows users to only delegate
required permissions. The well-known Least Privilege Security Princi-
ple can be implemented through partial delegation.

This paper focuses exclusively on revocation schemes in role-based del-
egation models. We extend our previous work and propose a delegation
framework and analyse how original role assignment changes impact delega-
tion results.

2.2 Basic elements and components

RBAC involves individual users being associated with roles as well as roles
being associated with permissions (Each permission is a pair of objects and
operations). As such, a role is used to associate users and permissions. A user
in this model is a human being. A role is a job function or job title within

7

the organization associated with authority and responsibility [8,24]. RBAC
is being considered as part of the emerging SQL3 standard for database
management systems, based on their implementation in Oracle 7 [16, 18].
Many RBAC practical applications have been implemented [3,17].

A session is a mapping between a user and possibly many roles. For
example, a user may establish a session by activating some subset of assigned
roles. A session is always associated with a single user and each user may
establish zero or more sessions. There may be hierarchies within roles. Senior
roles are shown at the top of the hierarchies. Senior roles inherit permissions
from junior roles. Let z > y denote x is senior to y with obvious extension to
x > y. Role hierarchies provide a powerful and convenient means to enforce
the principle of Least Privilege since only required permissions to perform a
task are assigned to the role.

Figure 2 shows the role hierarchy structure of RBAC in POIS. A high
location role is senior to a low connected location role in the Figure, e.g. role
Col is senior to role AP.

Director (DIR)

N

Project 1 Project 2
Head Officer (HOY) Head Gfficer (HO2)

Collaborator 1 Report 1 Report 2 Collaborator 2
(Co1) (Rel) (Re2) (Co2)

Analysis Assessment
Project (AP) Project (AsP)

~._

Community
Service (CS)

Figure 2: Role hierarchy in POIS

The following Table 1 expresses an example of user-role assignment in
POIS.

RoleName | UserName
DIR Tony
HO1 Richard
HO2 Mike
Col Sam
Rel Christine

CS Ahn

Table 1: User-Role relationship

There are two sets of users associated with role r:

Original users are those users who are assigned to the role r;

Delegated users are those users who are delegated to the role r.

The same user can be an original user of one role and a delegated user of
another role. Also it is possible for a user to be both an original user and a
delegated user of the same role. For example, if Richard delegates his role
HOI1 to Sam, then Sam is both an original user (explicitly) and a delegated
user (implicitly) of role Col because the role HO1 is senior to the role Col.
The original user assignment (UAQ) is a many-to-many user assignment
relation between original users and roles. The delegated user assignment
(UAD) is a many-to-many user assignment relation between delegated users
and roles.

We have the following components for role-based delegation model (RBDM):

U,R,P and S are sets of users, roles, permissions, and sessions, respec-

tively.

1. UAO C U x R is a many-to-many original user to role assignment

relation.

2. UAD C U x R is a many-to-many delegated user to role assignment
relation.

3. UA=UAOUUAD.

4. Users: R = 2Vis a function mapping each role to a set of users.
Users(r) = {u|(u,r) € UA} where UA is user-role assignment.

5. Users(r) = Users_O(r) UUsers_D(r)
where
Users O(r) = {u|3r' >, (u,r") € UAO},
Users_D(r) = {u|3r' > r, (u,r") € UAD}.

Users(r) includes all users who are members of role r. The users may
be original and delegated users. The original users Users_O(r) are not only
the member of role r but also the member of a senior role 7’ of r. This is
because the senior role 7’ inherits all permissions of its junior role r. With the
hierarchical structure of roles, a user who is a member of ' is also a member
of role r. The members in Users_D(r) are similar to that in Users_O(r).
For instance, according Table 1 and the example of Richard delegating role
HO1 to Christine, we have:

Users_ O(HO1) = {Richard},
and
Users_D(HO1) = {Christine}.

2.3 Role-based delegation and revocation

The scope of our model is to address user-to-user delegation supporting role
hierarchy. We consider only the regular role delegation in this paper, even
though it is possible and desirable to delegate an administrative role.

A delegation relation (DELR) exists in the role-based delegation model
which includes three elements: original user assignments UAQ, delegated

10

user assignment UAD and constraints. The motivation behind this rela-
tion is to address the relationships among different components involved in a
delegation. In a user-to-user delegation, there are five components: a delegat-
ing user, a delegating role, a delegated user, a delegated role, and associated
constraints. ((Tony, DIR),(Mike, DIR), Friday), for example, means Tony
acting in role DIR delegates role DIR to Mike on Friday. We assume each del-
egation is associated with zero or more constraints. The delegation relation
supports partial delegation in a role hierarchies: a user who is authorized to
delegate a role r can also delegate a role 7’ that is junior to r. For example,
((Tony, DIR), (Ahn, Rel), Friday) means Tony acting in role DIR delegates
a junior role Rel to Ahn on Friday. A delegation relation is one-to-many re-
lationship on user assignments. It consists of original user delegation (ORID)
and delegated user delegation (DELD). Figure 3 illustrates components and
their relations in a role-based delegation model.

e

Figure 3: Role-based delegation model
From the above discussions, the following components are formalized:

1. DELR CUA xUA x Cons is one-to-many delegation relation. A del-
egation relation can be represented by ((u,7), (v',7"),Cons) € DELR,
which means the delegating user u with role r delegated role 7’ to user
u' who satisfies the constraint Cons.

11

2. ORID CUAO x UAD x Cons is an original user delegation relation.
3. DELD CUAD xUAD x Cons is a delegated user delegation relation.

4. DELR =ORIDU DELD.

We find from the components above that delegation relations include
original user delegations and delegated user delegations. There are related
subtleties concerning the interaction between delegation and revocation of
user-user delegation membership and the role hierarchy.

Definition 1 A user-user delegation revocation is a relation Can —
revoke C R x 2% where R is a set of roles. o

The meaning of Can-revoke (z,Y’) is that a member of role z (or a member
of an role that is senior to x) can revoke delegation relationship of a user from
any role y € Y, where Y defines the range of revocation. Table 2 gives the
Can-revoke relation in Figure 2.

RoleName | Role Range
HO1 [Col, CS]

Table 2: Can-revoke

We analyse the revocation dimension in the next section followed by a
rich types of revocation schemes.

3 Revocation dimensions

Different revocation models have been proposed for access control systems
[13,28]. For instance, three dimensions were introduced in [13] that are
applied for database management system. We gather these dimensions in
a unified collections: dependency, resilience, propagation and dominance.
Each dimension is defined in this section adopting examples rather than
formal descriptions.

12

3.1 Dependency

Dependency refers to the legitimacy of a user who can revoke a delegated
role. Dependent revocation means only the delegating user can revoke the
delegated user from the delegated role. Independent revocation allows any
original user of the delegated role can revoke the user from the delegated
role. For example, with dependent revocation Richard can revoke Sam from
the delegated role Col but Tony cannot, even though Tony acts as role DIR
that is senior to and an original role of Col, but Tony can take the delegated

role Col from Richard with independent revocation.

Richard, HOL1

Alex, Col & AP Christine, Col

Figure 4: Revocation relationships

3.2 Resilience

This dimension distinguishes revocation through deleting or negative autho-
rization. The effect of a role deleting revocation from a user is acted; another
user may grant the user the same role that was just revoked, and as a result
the revocation has no affect on the user. The negative authorization has
high priority in this dimension that means the authorization overrule any
other authorizations until the negative one is in turn revoked. As shown in

13

Figure 4, Richard needs to keep Alex from role Col, she can either delete
the current delegating relationship, or give a negative authorization of Col
to Alex. In the first case, Alex is denied to act as role Col, but only as long
as no other users delegate Alex the role. In the second case, Alex can not act
as role Col until the negative authorization is revoked. Therefore, negative
authorization is stronger than deleting revocation.

3.3 Propagation

This dimension distinguishes revocations according to a delegation structure
of role locations. There are local revocations and global revocations in this
dimension. A local revocation only applies to the direct delegation rela-
tionship while the global revocation effects all other users authorized by the
revoked user. We use the Figure 4 to explain the difference between local and
global revocations. Suppose Tony wants to revoke Richard from HQOI1 but
trusts Alex with roles AP, Col, and trust Christine with role Col delegated
by Richard, local revocation can be applied; otherwise global revocation is
applied to take role HOI from Richard as well as roles AP, Col from both
Alex and Col from Christine.

3.4 Dominance

This dimension deals with role structure in RBAC. Due to role hierarchy,
a role 2’ has all permissions of role z when 2’ is senior to z (z' > z). A
revocation problem may arise when a user with two roles {z', z}, the user
still has the permissions of z if only to revoke = from the user. The explicit
member of a role z is a set of user {U|(U, z) € UA} where (U, z) € UA means
user U has role z and the implicit member of role z is a set of user {U|3z’ >
z,(U,z") € UA}. To solve the authorization revocation problem, we need to
revoke the explicit member of a role first if a user is an explicit member, then
revoke the implicit member. There are two kinds of revocations. The first

14

one is weak revocation which revokes explicit member only; the second one
is strong revocation that revokes explicit and implicit members. Alex has
two delegated roles Col, AP where role Col is senior to role AP in Figure 4.
Richard wants to take role AP from Alex with strong revocation, both roles
Col and AP are revoked from Alex, but with weak revocation only role AP

is revoked.

4 Delegating revocations

We describe sixteen different revocations based on the dimensions in the pre-
vious section. Each scheme, as shown in Table 3, has a unique description
with respect to the four dimensions. Each revocation scheme in the table is
important because everyone exists in our real life. We only analyze four del-
egating revocations in this paper due to the length of the paper and provide
what environments they may apply.

4.1 DependentWeakLocalDelete(DWLD)

The DependentWeakLocalDelete (DWLD), as the first revocation scheme, is
the most easy operation. It has neither resilience, propagation, nor domi-
nance, and only the direct delegating user can remove the delegation relation-
ship. Suppose Tony as the director wants to revoke role HO1 from Richard
since Richard is not an employee any longer in a company. With the scheme
of DWLD, role Hol only takes away from Richard and roles of both Alex
and Christine are intact; the delegation relationships between Richard and
Alex, Richard and Christine come to the relationships between Tony and
Alex, Tony and Christine as shown in Figure 5 from Figure 4. The features
of scheme DWLD when user U; wants to revoke role r from user U, are:

1. Uy does not grant role r to Us;

15

No. | Dependency | Resilience | Propagation | Dominance Name

1 No No No No DependentWeakLocalDelete(DWLD)

2 No No No Yes DependentStrongLocalDelete(DSLD)

3 No No Yes No DependentWeakGlobalDelete(DWGD)

4 No No Yes Yes DependentStrongGlobalDelete(DSGD)

5 No Yes No No DependentWeakLocalNegative(DWLN)
6 No Yes No Yes DependentStrongLocalNegative(DSLN)
7 No Yes Yes No DependentWeakGlobalNegative(DWLN)
8 No Yes Yes Yes DependentStrongGlobalNegative(DSGN)
9 Yes No No No IndependentWeakLocalDelete(IDWLD)
10 Yes No No Yes IndependentStrongLocalDelete(IDSLD)
11 Yes No Yes No Independent WeakGlobalDelete(IDWGD)
12 Yes No Yes Yes IndependentStrongGlobalDelete(IDSGD)
13 Yes Yes No No Independent WeakLocalNegative(TDWLN)
14 Yes Yes No Yes IndependentStrongLocalNegative(IDSLN)
15 Yes Yes Yes No IndependentWeakGlobalNegative(IDWLN)
16 Yes Yes Yes Yes IndependentStrongGlobalNegative(IDSGN)

Table 3: Revocation types

2. Role r may still stay with U, if users other than U; delegate r to him;
3. Roles granted by users other than U; are intact;

4. The delegation structure may need to update since roles delegated by

U, have to remain.

The revocation scheme DWLD is happened very often in real world. It
is able to apply in any collaborative workplace due to the relationship is not
changed except the person left the workplace.

4.2 DependentStrongLocalDelete(DSLD)

The DependentStrongLocalDelete (DSLD) is different from DWLD in the
dominance aspect. It does not have resilience or propagation, but does have

16

Alex, Col & AP Chrlstlne Col

Figure 5: Delegation relationships after DWLD

//

dominance, and only the direct delegating user can take away the delegation
relationship. Suppose Mike acts as role DIR wants to remove role Col from
Richard since Richard is out of the work in role Col. With the scheme of
DSLD, not only role Col is removed from Richard by Mike, but role HO1
is also removed from Richard by Tony since role HO1 delegated by Tony is
senior to role Col. New delegation relationships are generated between Mike
and Alex, Mike and Christine as shown in Figure 6.

The features of scheme DSLD when user U; wants to revoke role r from

user Uy are:

1. Uy does not grant role r to Us;
2. Implicit role 7’ that is senior to role r is removed;
3. Roles other than r and its senior role are intact;

4. The delegation structure may need to be updated since roles delegated
by U, have to remain.

17

‘\
Alex, Col & AP Christine, Col Alex, Col & AP Christine, Col

Figure 6: Delegation relationships after DSLD

The revocation scheme DSLD is happened when a user in the collabora-
tive environment has more than two roles, and one of the two roles comes
from another organisation that has to be removed by the direct delegating
user. It is a good solution to reject a user (e.g. Richard) acting a special role

(e.g. Col).

4.3 DependentWeakGlobalDelete(DWGD)

The DependentWeakGlobalDelete (DWGD) is different from DWLD in the
propagation aspect. It does not have resilience and dominance, but propaga-
tion, and only the direct delegating user can remove the delegation relation-
ship. Suppose Mike acts as role DIR wants to remove role Col from Richard
since Richard is out of the work in role Col. With the scheme of DWGD,
role Col is removed from Richard by Mike, but role HO1 is intact, role Col
is also revoked from Alex and Christine since the delegation authorization
is no longer supported by Richard. The new relationships after the DWGD

are shown in Figure 7.

The features of scheme DWGD when user U; wants to revoke role r from

user U, are:

1. U; does not grant role r to Us;

18

2. role r delegated by U, to users is removed;
3. Roles other than r are intact;

4. The delegation structure may need to be updated since roles other than
r delegated by U, have to remain.

The revocation scheme DWGD is happened more strict than the revoca-
tion scheme DSLD. It can successfully protect subordinates of a user (e.g.

Richard) obtaining an access permission (e.g. Col). It may be used in

Rlchard HO1 ‘ k
Col Richard, HO1

Alex, Col & AP Chrigtine, Col Alex, AP

Figure 7: Delegation relationships after DWGD

military or security environments.

4.4 DependentWeakLocalNegative(DWLN)

The DependentWeakLocalNegative (DWLN) is the scheme with negative
authorization in the resilience dimension. When a negative authorization of
a role is granted to a revokee as a weak and local revocation, the negative
authorization will remain with the revokee until the authorization is removed,
and the revokee cannot act in the role even though the role is delegated to
her/him. The negative revocation scheme is different from other revocation
schemes in the resilience dimension. We use the black color for the role with
negative authorization in Figure 8. Suppose Mike acts as role DIR wants to
grant a negative authorization of role Col to Richard since Richard is no

19

longer loyal in role Col. With the scheme of DWLN, role Col takes away
from Richard by Mike, but role HO1 is intact. Role Col is not revoked from
Alex and Christine since the revocation is weak.

The features of scheme DWLN when user U; wants to revoke role r from
user U, as a negative authorization are:

1. role r delegated to U, is inactive;
2. roles other than r delegated by U, are intact;
3. Roles other than r delegated to U, are intact;

4. The delegation structure may need to be updated since roles other than
r delegated by U, have to remain.

The revocation scheme DWLN is used in a different way from the revo-
cation scheme DWGD where a user (e.g. Richard) is no longer loyal in a role
(e.g. Col) and the user cannot act as the role, however his/her subordinates
still have the role. Therefore, the subordinates are trusted by the system.
This revocation scheme may be happened in general collaborative systems

such as education environment.

%

Rlchard HOL M 7)
Col - & ° coy
Alex, Col & AP Christine, Col Alex, Col & AP Christine, Col

Figure 8: Delegation relationships after DWLN

Each type of revocation scheme in Table 3 is as same important as oth-
ers. We have analysed four revocations in this section but not for the other
revocation operations due to the length of the paper.

20

5 XML implementation

This section presents the implementation of the group delegation with XML-
based technology. XML has many advantages: simplicity, entensiblity, in-
teroperability and so on. The reason of using XML is that we do not
need to worry about the data structure of each organisation in collabo-
rative environments. It is easy to add nodes to the existing XML doc-
uments when another organisation is required to join the business envi-
ronment in future. This is a web-based project implemented in XAMPP
(http://www.apachefriends.org/en/xampp.html) environment in windows plat-
form using XML and XUL (http://www.xulplanet.com/). XML is used to
store the information in the collaborative business environment. XUL is
Mozilla’s XML-based user interface language and is designed to be platform-
neutral, making applications easily portable to all of the operating systems
on which Mozilla runs. XML DOM is used to deal with every node of XML
file. All these are server-side scripting pages. Hence all these pages are stored
in the root directory of web-server.

The format of a role-based delegation from the previous section is
((u,r), (v',r"), Cons). To maintain the relationship between roles, we define
senior and junior roles. For convenience we use the file rolehie.xml to store
the role hierarchy of the children and parent roles. Based on Table 1, a
part of role hierarchy of Figure 2 is modelled in rolehie.zml using IDREF
attributes [15] as shown in Table 4. The hierarchy is not a tree but a graph,
for clarity and conciseness. Table 4 shows the hierarchy as a nested relation.
The first column gives a role name, the second column gives the immediate
senior roles of that role, and the third column gives the immediate junior
roles. The ¢ means that the role has no parent or child as the case may
be. Using rolehie.xml, we can find all seniors and juniors for a group by
respectively identifying the parents and children using simple XPath query
expressions. An example of the role hierarchy of Figure 2 is represented in
rolehie.xml using IDREF' attributes as shown in Table 4.

21

Role Name | Senior role | Junior role
DIR [0) HO1, HO2
HO1 DIR Col, Rel
HO2 DIR Co2, Re2
Col HO1 AP
Rel HO1 AP
AP Col, Rel CS
CS AP, AsP o)

Table 4: Role hierarchy of Figure 2.

Many XML schemas exist in the implementation such as user, role, user-
role assignment, revocation types schema. For example, revocation types
schema in Table 5. The revocation types schema in Table 5 explains struc-
ture of revocation types in Table 3. All the revocation types we have are
included in enumeration block. This shows these are the only available re-
vocation types. Attributes revocationID is the ID attribute and is required.
Remaining attributes dependency, resilience, propagation and dominance are

Boolean types and are also required.

There is a procedure for revocating a role from a user in our implemen-
tation. The procedure call is Revoke(role, user). The parameters role and
user specify which role is to be revoked from a user. The revocation function
has the following main steps: 1) Select a role to be revoked (or delegated);
2) Select a user to revoke (or delegate); 3*) Check whether or not the role
satisfies the delegating authorization rules (only for delegation); 4*) Setup
constraints (only for delegation); 5) Select a revocation model; and 6) Update
the DELR database. For delegation revocation, instead of the steps 3 and
4, one must check whether or not the revocation authorization rules are suc-

cessful and the revoked role is in the role range of the relation C'an_revoke.

22

<zs:element name= “Revocation Types” >

<zs:complexType >

<zs:restriction base= “rs:string” >

<zs:enumeration value=“Dependent Weak Local Delete” / >

<zs:enumeration value=“Dependent Strong Local Delete” / >

<zs:enumeration value=“Independent Strong Global Negative” />

< /zs:restriction >

<zs:attribute name= “revocationID” type=“cs:ID” use= “required” / >

<zs:attribute name= “dependency” type= “rs:boolean” use=“required” / >
Y

<zs:attribute name= “resilience” type= “cs:boolean” use=“required” / >

<zs:attribute name= “propagation” type= “rs:boolean” use= “required” / >

<zs:attribute name= “dominance” type= “rs:boolean” use= “required” />

Table 5: XML Schema for Revocation Types

The DELR database maintains role hierarchy information (rolehie.xml), ex-

plicit membership (ezplicit.zml), and the Can_delegate (for delegation) and

Can_revoke relation tables.

In order to make our implementation more convenient we developed a

graphical user interface which interacts with this procedure to do role-based

delegation and revocations. The graphical user interface is illustrated in

Figure 9. This interface was developed using XUL and is used to initiate

role-based delegation instead of typing the above procedure call. This im-

plementation is convenient for users since they only need to define the role

hierarchy and the relation Can_revoke.

23

Find Files - Mozilla Firefox i | o] 5]

Fle Edit Wiew History Bookmarks T__DD|§ Help

G € @ mremmmnenclalp) (G

DELR Interface, rale-based delegation

Dielegation implementation with XML

Select arole to be revoked (delegated)

| DR |

Selert a wser to revoke (delegate)

| vike |

Revocation model

| Dependentweakl ocalDelete j
_— Assigr I Rewncation |

A systern management supporting role-based delegating revocations.

Figure 9: Role-based delegating revocation interface.

6 Comparisons

There are related works on revocation schemes. The closest works to this pa-
per are a rule-based framework for role-based delegation and revocation [29]
and revocations-a classification [13]. The former one was on the delegation

framework and the latter one worked on database systems.

Zhang et. al [29] presented a role-based delegation model called RDM2000
supporting hierarchical roles and multistep delegation. Different approaches
for delegation and revocation were explored. A rule-based language for spec-
ifying and enforcing policies on RDM2000 was proposed. The authors de-
scribed a proof-of-concept prototype implementation of RDM2000 to demon-
strate the feasibility of the proposed framework and provide secure protocols
for managing delegations. Revocation schemes analysed in this paper in-

24

cluded three dimensions: Grant-dependency, Propagation and Dominance.
There are eight types of revocations according these dimensions. The au-
thors mainly shown grant-dependent revocation. By contrast, the work in
this paper provides a rich variety of options that can deal with delegation
revocations and the effects after each revocation operation is processed. The
work in this paper not only includes the comprehensive revocation schemes

but provides more significant work on delegation revocation models.

Hagstrom et. al [13] have argued that several different semantics are
possible for the revoke operation that focus on database systems. Three
main revocation characteristics were identified: the extent of the revocation
to other grantees (propagation), the effect on other grants to the same grantee
(dominance), and the permanence of the negation of rights (resilience). A
classification was devised using these three dimensions. However, dependency
was not included in this paper and hence only eight different revocations
were discussed. Their work is different from ours in two aspects. First,
it focuses on database authorization. No hierarchical structure of database
systems was analysed. As a result, important features such as role hierarchies
and constraints were not supported. By contrast, our work focuses on role-
based access model that supports hierarchical structure. Second, they did not
discuss either who has the ability to process a revocation operation, which is
a critical notion to the delegation model, or the relationships among original
user and delegated user. By contrast, the delegation model in this paper is
based on original user and delegated user since the delegating relationship in
this paper has five components ((u, r), (v/,7"), Cons) in which (u, r) is original
user-role relationship and (u', ') be delegated user-role relationship.

Firozabadi and Sergot [12] extended a framework to support a richer set of
revocation schemes. The framework was designed for updating privileges and
creating management structures by means of authority certificates, and used
to create access-level permissions and to delegate authority to other agents.
The revocation schemes were based on three separate dimensions: resilience,
propagation, and dominance. The authors concerned with the revocation of

25

certificates, and recognised that only the propagation and dominance dimen-
sions were able to apply to the revocation schemes of the framework and the
resilience dimension could not apply. The work in this paper analysed the
possible revocation schemes for the existing framework from a real applica-
tion. This is a good example that demonstrates the differences between the
theory of delegation revocation and their real applications. By contrast, we
have shown the various revocation schems from theoretical aspect. This is
the basic difference between the work in [12] and the work in this paper. The
revocation schemes in [12] were built on three dimensions but four dimensions
are discussed for delegation revocation in our work. Our work in this paper
focuses on detailed theory analysis. Delegation revocation schemes used in

applications are much more simple than that in theoretical analysis.

7 Conclusions and future work

This paper has discussed role-based delegation, revocation and authorization.
We have discussed role-based delegation requirements and components in
delegation models, and analysed not only revocation dimensions but also a
variety of revocation schemes. To introduce a practical example of how to
use these revocation ideas, a briefly introduction to revocation authorization
approach was presented. The theory in this paper was demonstrated by its
implementation with XML. The work in this paper has significantly extended
previous work in several aspects. For example, comprehensive revocation
dimensions and revocation schemes for various requirements are analysed.
The work in this paper is helpful for building a management system with
different revocations.

This is the beginning of work on revocation of role-based access control.
The future work will include developing algorithms based on the dimensions
and revocation schemes and delegation revocation models with constraints.

26

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Abadi M., Burrows M., Lampson B., and Plotkin G. A calculus for access
control in distributed systems. ACM Trans. Program. Lang. Syst., 15(4):706—
734, 1993.

Barka E. and Sandhu R. Framework for role-based delegation models and
some extensions. In Proceedings of the 16 Annual Computer Security Appli-
cations Conference, pages 168177, New Orleans, 2000a.

Barkley J. F., Beznosov K. and Uppal J. Supporting relationships in ac-
cess control using role based access control. In Third ACM Workshop on
RoleBased Access Control, pages 55—65, October 1999.

Bertino E., Crampton J. and Paci F. Access control and authorization con-
straints for ws-bpel. In ICWS ’06: Proceedings of the IEEE International
Conference on Web Services (ICWS’06), pages 275-284, Washington, DC,
USA, 2006. IEEE Computer Society.

Bertino E., Ferrari E. and Atluri V. The specification and enforcement of
authorization constraints in workflow management systems. ACM Trans.
Inf. Syst. Secur., 2(1):65-104, 1999.

Bertino E. and Jajodia S. and Samarati P. A non-timestamped authorization
model for data management systems. In ACM Conference on Computer and
Communications Security, pages 169-178, 1996.

Caetano A., Zacarias M., Silva A. and Tribolet J. A role-based framework
for business process modeling. In HICSS ’05: Proceedings of the Proceed-
ings of the 38th Annual Hawaii International Conference on System Sciences
(HICSS’05) - Track 1, page 13.3, Washington, DC, USA, 2005. IEEE Com-

puter Society.

27

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

David F. F., Dennis M. G. and Nickilyn L. An examination of federal and
commercial access control policy needs. In NIST NCSC National Computer
Security Conference, pages 107-116. Baltimore, MD, September 1993.

Fagin R. On an authorization mechanism. ACM Trans. Database Syst.,
3(3):310-319, 1978.

Feinstein H. L. Final report: Nist small business innovative research (sbir)
grant: role based access control: phase 1. technical report. In SETA Corp.,
1995.

Ferraiolo D. F. and Kuhn D. R. Role based access control. In 15th National
Computer Security Conference, pages 554-563. ferraiolo92rolebased.html,
1992.

Firozabadi B. and Sergot M. Revocation Schemes for
Delegated Authorities. In Proceeding of Policy 2002,
http://www.citeseer.ist.psu.edu/firozabadi02revocation.html.

Hagstrom, A., Jajodia, S., Presicce, F., and Wijesekera, D. Revocations-a
classification. In Proceedings of 14th IEEE Computer Security Foundations
Workshop, pages 44-58. Nova Scotia, Canada, 2001.

Li E., Du T. and Wong J. Access control in collaborative commerce. Decis.
Support Syst., 43(2):675-685, 2007.

Michael H. XSLT Programmer’s Reference. Wiley, 2001.

Sandhu R. Rational for the RBAC96 family of access control models. In
Proceedings of 1st ACM Workshop on Role-based Access Control, pages 64—
72. ACM Press, 1997.

Sandhu R. Role activation hierarchies. In Third ACM Workshop on RoleBased
Access Control, pages 33—40. ACM Press, October 1998.

Sandhu R. Role-Based Access Control. Advances in Computers, 46, 1998.

28

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Stafford, T.F. Understanding motivations for internet use in distance educa-
tion. IEEE Transactions on Education, 48(2):301-306, 2005.

Wang H., Cao J. and Zhang Y. A consumer anonymity scalable payment
scheme with role based access control. In 2nd International Conference
on Web Information Systems Engineering (WISE(01), pages 53-62, Kyoto,
Japan, December 2001.

Wang H., Cao J. and Zhang Y. Formal authorization allocation approaches
for role-based access control based on relational algebra operations. In 3nd In-
ternational Conference on Web Information Systems Engineering (WISE02),
pages 301-312, Singapore, December 2002.

Wang H., Cao J. and Zhang Y. Formal authorization allocation approaches
for permission-role assignments using relational algebra operations. In Pro-
ceedings of the 14th Australian Database Conference ADC2003, Adelaide,
Australia, 2003.

Wang H., Cao J., and Zhang Y. An Electronic Payment Scheme and Its
RBAC management. Concurrent Engineering: Research and Application,
12(3):247-275, 2004.

Wang H., Cao J., Zhang Y. A flexible payment scheme and its role based
access control. IIEEE Transactions on Knowledge and Data FEngineering,
17(3):425-436, 2005.

Wang H., Li J., Addie R., Dekeyser S. and Watson R. A framework for
role-based group delegation in distributed environment. In Proceedings of
the 29th Australasian Computer Science Conference. Australian Computer
Society, 2006.

Wang H., Zhang Y., Cao J. and Kambayahsi Y. A global ticket-based ac-
cess scheme for mobile users. Special Issue on Object-Oriented Client/Server

Internet Environments, Information Systems Frontiers, 6(1):35-46, 2004.

29

[27]

[28]

[29]

[30]

Wang H., Zhang Y., Cao J. and Varadharajan V. Achieving secure and
flexible m-services through tickets. IEEE Transactions on Systems, Man,
and Cybernetics, Part A, Special issue on M-Services, pages 697-708, 2003.

Zhang L., Ahn G., and Chu B. A role-based delegation framework for health-
care information systems. In Proceedings of ACM Symposium on Access Con-
trol Models and Technologies (SACMAT 2002), pages 125-134, Monterey, CA,
June 2002.

Zhang L. and Ahn G. and Chu B. A rule-based framework for role-based
delegation and revocation. ACM Trans. Inf. Syst. Secur., 6(3):404-441, 2003.
Zhao X. and Liu C. Version management in the business process change
context. In 5th International Conference on Business Process Management,
volume 4714, pages 198-213. Lecture Notes in Computer Science, Springer,
2007.

30

