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Abstract
Multi-year droughts (MYDs) can have major impacts on ecosystems, agriculture, water resources, economies, people and 
societies. Here, we examine statistical properties of MYDs consisting of uninterrupted sequences of years in which annual 
precipitation falls below a given threshold. We examine statistics including the proportion of years that are part of droughts 
of duration ≥ n years, the proportion of droughts that have duration ≥ n years, and both the duration and the number of 
droughts with duration ≥ n years, in thirty-eight 200-year-long simulations of CMIP6 coupled global climate models under 
pre-industrial control conditions. We also derive formulae that approximate the average value of these and other statistics 
using simple stochastic models. The theoretical values obtained agree reasonably well with their Multi-Model Mean (MMM) 
climate model counterparts over the globe. Regional contrasts in the value of the statistics for MYDs consisting of uninter-
rupted sequences of years with below-average precipitation can be largely explained by spatial variations in the percentile of 
the mean. Corresponding formulae that account for non-zero temporal autocorrelation tend to agree somewhat more closely 
with the MMM values. MYD statistics are estimated using observational data and compared with theoretical and climate 
model estimates. The formulae incorporating non-zero autocorrelation provide a better estimate of the observational values 
than do MMM values or formulae derived assuming zero autocorrelation.

1  Introduction

Multi-year droughts (MYDs) can have a profound impact on 
ecosystems, agriculture, water and coastal resources, econo-
mies, human health, and livelihoods (e.g., Archer et al. 2022; 
Arthi 2018; Boisier et al. 2016; Chong et al. 2021; Devanand 
et al. 2024; Endfield et al. 2006; Garreaud et al. 2015; Gon-
zalez et al. 2018; Goulden and Bales 2019; Lin et al. 2022; 
McMichael 2012; Power et al. 2005; van Dijk et al. 2013). 
MYDs have been studied using historical information, 
observations—both instrumental and paleo reconstructed, 

and/or climate model simulations (see, e.g., Lin et al. 2022 
for a review). Studies using climate model simulations have 
examined the extent to which anthropogenic and natural 
processes contributed to impactful MYDs that have already 
occurred, the characteristics and causes of MYDs in the 
past—including historical and preindustrial periods, and 
past and projected future changes in MYD properties (e.g., 
Ault et al. 2016; Bjarke et al. 2024; Cook et al. 2020, 2022; 
Devanand et al. 2024; Falster et al 2024; Garreaud et al. 
2015; Gessner et al. 2022; Lin et al. 2022; Rakovec et al. 
2022; Rauniyar and Power 2020; Rigden et al. 2024; Ste-
venson et al. 2022; Taschetto et al. 2016; Williams et al. 
2020; Wu et al. 2022; Chen et al. 2025). Other studies have 
described processes responsible for drought and drought 
duration over land, highlighting the importance of changes 
in the frequency of weather systems that influence rainfall, 
sea surface temperature anomalies including those linked 
to coherent sources of variability like the El Nino-Southern 
Oscillation, local land–atmosphere feedbacks, natural and 
anthropogenic external forcing, internal atmospheric vari-
ability (see e.g. Lin et al. 2022; Holgate et al. 2024).

In this investigation, we are interested in documenting 
and understanding some of the statistical properties of 
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MYDs in climate models under preindustrial control condi-
tions. This issue has been investigated previously in a few 
recent studies. For example, statistical properties of MYDs 
over Europe and North America (Gessner et al. 2022), Aus-
tralia (Taschetto et al. 2016; Falster et al. 2024), and Chile 
(Garreau et al. 2015) have been examined in preindustrial 
simulations, while Wu et al. (2022) examined statistics of 
MYDs averaged over the globe and over all of the continents 
except Antarctica.

We will examine many properties of droughts, including 
MYDs, across the entire globe. Our focus is on droughts 
consisting of uninterrupted sequences (UISs) of years in 
which annual precipitation falls below a given threshold, 
immediately preceded and followed by a year in which pre-
cipitation meets or exceeds the threshold. We further assume 
that the probability of precipitation falling below this thresh-
old in a randomly selected year is p. We will refer to these 
droughts as UIS(p) droughts.

We recognise that this is a simple approach and that 
numerous other definitions of drought and MYD are avail-
able. Nevertheless, it is instructive to determine the extent 
to which the statistical properties of MYDs and their spatial 
variation in climate models using one specific definition can 
be understood using (simple) mathematical formulae. The 
formulae are based on the statistics for MYDs that arise from 
random changes in precipitation from one year to the next. 
If the formulae provide good estimates of the climate model 
results, then they lend support to the dominance of stochastic 
variability in driving MYD statistics.

Formulae for some statistical properties of UISs have 
been obtained previously as part of the so-called “Theory 
of runs” (e.g., Mood 1940; Yevjevich 1967; Makri and Psil-
lakis 2010). By exploiting the fact that the output from each 
climate model we use spans 200 years, the theories and asso-
ciated mathematics outlined in this paper are much simpler. 
This simplification enables us to provide formulae for the 
average value of a much larger number of quantities than 
provided in these previous studies, both with and without 
temporal correlation.

The primary aims of this investigation are to (i) derive 
simple mathematical formulae for several key statistics of 
UIS MYDs, (ii) estimate the value of these same statistics 
across the globe in preindustrial control simulations using 
the latest generation of climate models (Coupled Model 
Intercomparison Project phase 6, CMIP6; Eyring et  al. 
2016) and observations, (iii) determine the degree of agree-
ment between the modeled, theoretical and observed esti-
mates, and (iv) use the theoretical estimates to better under-
stand the statistical properties of MYDs and their regional 
contrasts. We will also derive formulae that take temporal 
correlation into account, and we will also examine the statis-
tical properties of UIS MYDs using the average precipitation 
( � ) as the threshold.

The methods used in this study are described in Sect. 2. 
Mathematical formulae for various statistical properties 
of UIS(p ) droughts, assuming zero year-to-year temporal 
autocorrelation in precipitation (“Theory I”), are derived 
in Sect. 3. The formulae are analyzed and compared with 
results from Monte Carlo simulations in Sect. 4. The sta-
tistical properties of MYDs in climate models under prein-
dustrial forcing are presented in Sect. 5, along with a com-
parison with Theory. 1 Formulae for drought statistics that 
account for nonzero autocorrelation (“Theory II”) are then 
provided in Sect. 6. Results using Theory II are compared 
with those using Theory I and from the climate models in 
the same section. MYD statistics using observational data 
are examined in Sect. 7 and a comparison between the 
observational estimates and estimates obtained from both 
theory and individual climate models is provided in the 
same section. The impact of sampling error is discussed 
in Sect. 8 and the results in Sects. 3, 4, 5, 6, 7, and 8 are 
summarized and discussed in Sect. 9.

2 � Methods and data

The derivations in Sects. 3 and 6 assume that the pre-
cipitation time series are infinitely long. They are in fact 
200 years long. We will see, however, that the approxima-
tions are accurate for a wide range of statistics.

Monte Carlo experiments are conducted to assess the 
accuracy of the formulae derived in Sect. 3. We conducted 
numerous simulations, each 200 years long to match the 
climate model simulations, if the annual precipitation 
data has no autocorrelation. For each year we obtain a 
real number randomly selected from a uniform distribution 
over the interval [0, 1]. If the random number is less than 
p then the year is considered dry, otherwise the year is 
considered wet. Recall that p is the probability of precipi-
tation falling below the threshold used to define dry years.

We used the preindustrial control (piControl) experi-
ment from 38 CMIP6 models (Table S1). We obtained 
monthly total precipitation (variable pr and unit kg 
m−2 s−1) from the last 200 years of each experiment, con-
verted to mm per month and summed across calendar years 
(January–December) to obtain annual precipitation and 
focus on MYDs. Analyses were conducted at the models’ 
native resolution and re-gridded to a common 1° reso-
lution using bilinear interpolation for calculating multi-
model means (MMMs) and for plotting.

We also use annual observational data for the period 
1900–2014 derived from the monthly Global Precipitation 
Climatology Centre dataset version 2.3 (GPCC; Schneider 
et al. 2011).
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3 � Derivation of formulae for statistical 
properties of droughts with zero 
autocorrelation

In this section we derive mathematical formulae which 
approximate a range of important statistics of drought, 
including MYDs that consist of UIS of years with precipi-
tation below a given percentile. In this section we assume 
that precipitation has zero autocorrelation from one year to 
the next. The statistics, the associated formulae, and their 
equation numbers are summarized in Table 1.

Here p is the probability that precipitation falls below a 
given threshold in any given year, n is the length (in years) 
of the drought. See text for definition and further details.

The derivations begin by supposing that we have an infi-
nitely long time series of annual precipitation data in a stable 
climate, and that the precipitation is a white noise process 
for which the autocorrelation at all nonzero time lags is zero. 
We will revisit this assumption in Sect. 6. We further sup-
pose that the probability that the precipitation falls below a 
given threshold equals p each year, and the probability that 
it does not is q = 1 − p.

3.1 � Pn = proportion of years in an n‑year drought

A one-year drought (hereafter 1YD) must have a sequence 
qpq , so that the probability that a randomly selected year is 
in a 1YD is given by pq2 = 1pq2.

A 2YD must have a sequence qppq . A randomly selected 
year is in a 2YD if it is either the first or second year with a 
p , and so the probability that a randomly selected year is in 
a 2YD is given by 2p2q2.

A 3YD must have a sequence qpppq . A randomly selected 
year is in a 3YD if it is either the first, second or third year 
has a p , and so the probability that a randomly selected year 
is in a 3YD is given by 3p3q2.

From this information, we can deduce that the prob-
ability that a randomly selected year is in an nYD, where 
n = 1, 2, 3, ... is given by

3.2 � Qn = the probability that a randomly selected 
year is part of a drought of duration k ≥ n

In this previous subsection we examined the proportion of 
years in a drought of duration equal to n years. It is also 
of interest to know the proportion of years in a drought of 
duration ≥ n years, which is equal to the probability that a 
randomly selected year is part of a drought of duration ≥ n 
years. This is given by

where S =
∑∞

k=1
kpk and Sn−1 =

∑n−1

k=1
kpk. In Appendix 1 we 

s h ow  t h a t  S =
p

(1−p)2
 ( f r o m  E q .  ( 1 3 ) )  a n d 

Sn−1 = p
[

1−pn−npn−1(1−p)

(1−p)2

]

 (Eq. (14)).
Using (13) and (14) in (2) then gives

Note that Qn(n) is also the proportion of years that are in 
a UIS(p ) drought of duration k ≥ n years.

(1)Pn = npn(1 − p)2.

(2)

Qn(n) =

∞
∑

k=n

Pn = (1 − p)2
∞
∑

k=n

kpk

= (1 − p)2

{

∞
∑

k=1

kpk −

n−1
∑

k=1

kpk

}

= (1 − p)2
{

S − Sn−1
}

,

(3)Qn(n) = npn + (1 − n)pn+1.

Table 1   Summary of the key formulae for the average value of the statistics mentioned for droughts consisting of uninterrupted sequences (UIS) 
of dry years (Rows 1–7), where a dry year is a year in which precipitation falls below a given threshold percentile

Ref. No. Statistic and formula Description Eq. No.

1 Pn = npn(1 − p)2 Probability that a randomly selected year is part of an n-year uninterrupted sequence 
(UIS) drought with threshold p ; Fraction of years that are part of a drought of duration 
n years

(1)

2 Qn(n) = npn + (1 − n)pn+1 Probability that a randomly selected year is part of a UIS(p ) drought of duration 
k ≥ n = fraction of years that are part of a UIS(p ) drought of duration k ≥ n years

(3)

3 P∗
n
= (1 − p)pn−1 Proportion of all UIS(p ) droughts that are of duration n years (5)

4 Q∗
n
= pn−1 Proportion of all UIS(p ) droughts that have duration k ≥ n (7)

5 ND(n) = Npn(1 − p)2 Number of UIS(p ) droughts of duration n years in sample of size N years (8)
6 ND(k ≥ n) = N(1 − p)pn Number of UIS(p ) droughts of duration n ≥ k (9)
7 DD(k ≥ n) = n − 1 +

1

1−p
Duration of UIS(p ) droughts in a sample of N years (11)
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3.3 � Pn = proportion of droughts that have duration 
n years

It is also of interest to know what proportion of droughts 
have duration n years. As the proportion of years that are in a 
drought of duration n years is given by Pn, the average num-
ber of droughts in samples of size N years is approximated 
by NPn∕n , and the average number of droughts (of any size) 
is approximated by N

∑∞

n=1
Pn∕n . So the proportion of all 

droughts that are of duration n years, P̂n say, is given by

where T =
∞
∑

n=1

pn . And as T =
p

1−p
 (see e.g., Fitzpatrick 

1975), then

This formula has been provided previously (see e.g., Yevje-
vich 1967).

3.4 � Qn = proportion of droughts with duration k ≥ n

In the previous subsection we examined the proportion of 
droughts that have duration equal to n years. It is also of inter-
est to know the proportion of droughts that have duration ≥ n 
years. The proportion of all droughts that have duration k ≥ n 
is given by

w h e r e  Tn−1 =
∑n−1

k=1
pk  .  U s i n g  t h e  fa c t  t h a t 

Tn−1 = (p − pn)∕(1 − p) and T =
p

1−p
 in (6) then gives

3.5 � ND(n) = the average number of droughts 
of duration n years

The average number of droughts of duration n years in samples 
of size N years is approximated by

(4)

P̂
n
=

NP
n
∕n

N

∑∞

n=1
P
n
∕n

=
P
n
∕n

∑∞

n=1
P
n
∕n

=
p
n(1 − p)2

(1 − p)2
∑∞

n=1
p
n

=
p
n

∑∞

n=1
p
n

=
p
n

T

,

(5)P̂n = (1 − p)pn−1.

(6)Q̂n =

∞
∑

k=n

P̂k =

∞
∑

k=1

P̂k −

n−1
∑

k=1

P̂k =
(1 − p)

p

{

T − Tn−1
}

,

(7)Q̂n = pn−1.

(8)ND(n) = N
Pn

n
=

nNpn(1 − p)2

n
= Npn(1 − p)2.

3.6 � ND

(

k ≥ n
)

 = number of droughts of duration 
k ≥ n

The number of droughts of duration k ≥ n years is given by

It can be shown that the formulae for ND(n) and 
ND(k ≥ n) are the same as the average values of the asymp-
totic distributions obtained by Mood (1940) in his analy-
sis of “runs”. Our derivations are much simpler, and we 
provide formulae for the mean of additional statistics that 
Mood (1940) does not.

3.7 � DD
(

k ≥ n
)

 = average duration of droughts 
of duration k ≥ n

The average duration of droughts in a sample of N  years 
is given by.

Using Eqs. (13) and (14) in (10) then gives

and so the average duration of all MYDs is

Note that the average total number of days in droughts of 
duration ≥ n years is given by the product of ND(k ≥ n) and 
DD(k ≥ n) , i.e., ND(k ≥ n)DD(k ≥ n) = NpN

[

n(1 − p) + p
]

.

(9)

ND(k ≥ n) =

∞
∑

k=n

ND(n) = N(1 − p)2
∞
∑

k=n

pn

= N(1 − p)2

{

∞
∑

k=1

pn −

n−1
∑

k=1

pn

}

= N(1 − p)2
{

T − Tn−1
}

= N(1 − p)2
{

p

1 − p
−

p − pn

1 − p

)

= N(1 − p)pn.

(10)

DD(k ≥ n) =
sum of all theDD(k) in the sample with duration ≥ n years

Total number of droughts in the sample with duration ≥ n years

=
N
∑N

k=n
Pn

ND(k ≥ n)
= N(1 − p)2

∑N

k=n
kpk

N(1 − p)pn
= (1 − p)

∑N

k=n
kpk

pn

=
(1 − p)

pn

�

N
�

k=1

kpk −

n−1
�

k=1

kpk

�

≈
(1 − p)

pn

�

∞
�

k=1

kpk −

n−1
�

k=1

kpk

�

=
(1 − p)

pn

�

S − Sn−1
�

for large N.

(11)
DD(k ≥ n) =

(1 − p)

pn

{

p

(1 − p)2
− p[

1 − pn − npn−1(1 − p)

(1 − p)2

}

= n − 1 +
1

1 − p
,

(12)DD(k ≥ 2) = 1 + 1∕(1 − p).
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4 � Presentation, analysis and accuracy 
of the formulae

4.1 � Solutions with zero autocorrelation

4.1.1 � Solutions for n = 1 and n = 2

Solutions for (a) P1,P2,Q1,Q2, (b) P∗
1
,P∗

2
,Q∗

1
,Q∗

2
, (c) 

DD(k ≥ 1),DD(k ≥ 2) , and (d) ND(k ≥ 1),ND(k ≥ 2) are all 
presented in Fig. 1 as a function of p . Recall (and as indi-
cated in Table 1) that Pj is the proportion of years in a j-year 
drought, Qj is the proportion of years in a drought of dura-
tion ≥ j years, P∗

j
 is the proportion of droughts that have 

duration j years, Q∗
j
 is the proportion of droughts that have 

duration ≥ j years, DD(k ≥ j) is the average duration of 
droughts with duration ≥ j years, ND(k ≥ j) is the average 
number of droughts in a 200 year period that have duration 
≥ j years, and p is the probability of a given year being dry.

If n = 1 then Q1 = p , while Q2 is a monotonically increas-
ing cubic ( = 2p2 + p3 ). Both P1 and P2 , on the other hand, 
exhibit turning points given by dPn

dp
= 0 , which gives maxima 

at p =
n

n+2
= 1/3 for P1 , and 1/2 for P2 . In other words, the 

proportion of years in a one-year drought is a maximum if 
p = 0.3 , while the proportion of years in a two-year drought 
is a maximum if p = 1∕2 . At p = 1/2 both P1 and P2 = 1/8 
at, while Q1 = 1/2 and Q2 = 3/8.

If p = 1/2 then the values of P2,Q2,P
∗
2
,Q∗

2
, (c) DD(k ≥ 2) , 

and (d) ND(k ≥ 2) are 0.125, 0.375, 0.25, 0.5, 3 years, and 
25 respectively.

Figure 1b indicates that Q∗
1
= 1 for all p . This is because 

Q∗
1
(p) is the proportion of droughts that have duration ≥ one 

year, i.e., all droughts. Less trivially, Q∗
2
= p and P∗

1
= 1 − p 

both monotonically increase with p , while P∗
2
= p(1 − p) 

peaks at p = 1/2. This indicates that the proportion of two-
year droughts is a maximum if p = 1/2.

Figure 1c indicates that both DD(k ≥ 1) and DD(k ≥ 2) 
increase monotonically as p increases with DD(k ≥ 1) = 2 
and DD(k ≥ 2) = 3 at p = 1/2.

Figure 1d indicates that both ND(k ≥ 1),ND(k ≥ 2) exhibit 
maxima. Maxima occur where dND(k≥n)

dp
= 0 , which gives 

p = n∕(n + 1) , which = 1/2 for ND(k ≥ 1 ) and 2/3 for 
ND(k ≥ 1) . This analysis and the curve in Fig. 1d collectively 
indicate that ND(k ≥ 2) , the number of droughts of duration 
≥ 2 years in a 200-year sample, increases from p = 0.1 , 
reaches a maximum value of 4N∕27 = 29.6 years at p = 2/3, 
and then declines as p increases further.

4.1.2 � Theoretical solutions for p = 0.3, 0.5 and 0.7

Solutions for (a) Pn , (b) Qn , (c) P∗
n
 , (d) Q∗

n
 , (e) ND(k ≥ n) and 

(f) ND(n) for n = 1 to 10 are presented in Fig. 2 as curves. 
Each panel provides solutions for three different values of 
p : 0.3 (rust), 0.5 (black), and 0.7 (blue).

Fig. 1   Theoretical Solutions for a P1,P2,Q1,Q2, b P∗
1
,P∗

2
,Q∗

1
,Q∗

2
, c DD(k ≥ 1),DD(k ≥ 2) , and d ND(k ≥ 1),ND(k ≥ 2) . Note that ND(k ≥ 1) is 

the average, total number of droughts, while ND(k ≥ 2) is the average, total number of MYDs



	 S. B. Power, Z. E. Gillett   184   Page 6 of 20

Figure 2a indicates that: Pn(0.7) is greater than Pn(0.5) 
for n ≥ 4 , but less than Pn(0.5) for n ≤ 3 , while Pn(0.3) is 
less than Pn(0.5) for n ≥ 3.

Figure 2b and Table 2 indicate that Qn(0.7) is greater 
than Pn(0.5) for all n , while Qn(0.5) is greater than Qn(0.3) 
for all n , and the proportion of years in MYD is 0.64, 0.38, 
and 0.15 for p = 0.7, 0.5 and 0.3 respectively, while the 
proportion of droughts that are MYDs (i.e., Q∗

2
 ; Fig. 2d) 

is equal to p.
The proportion of droughts that have duration ≥ 5 years 

(Fig. 2d; Table 2), i.e., Q∗
n
= pn−1 = 0.24, 0.063 and 0.0081 

for p = 0.7, 0.5 and 0.3 respectively, while the equivalent 
numbers for droughts that have duration ≥ 10 years are 
0.04, 0.002, 0.00002. This indicates that the proportion of 
droughts with duration ≥ 10 years is tiny (0.2%) if p = 0.5 , 
and exceptionally small ( ≤ 0.002 %) if p ≤ 0.3 . These and 
other results using Theory I are summarised in Table S2.

The proportion of MYDs that have duration ≥ 5 years, 
i.e., Q∗

5
∕Q2 = p5−1∕p1 = p3 = 0.343, 0.125 and 0.027 for 

p = 0.7, 0.5 and 0.3 respectively, while the equivalent 
numbers for droughts that have duration ≥ 10 years (i.e., 
p8 ) are 0.058, 0.004, and 0.00007. This indicates that 
the percentage of MYDs that have duration ≥ 10 years, 
is tiny (0.4%) if p = 0.5 , and extremely low ( ≤ 0.007%) 
if p ≤ 0.3.

The number of MYDs that have duration ≥ 5 years in 
a 200-year sample (Fig. 2e; Table 2) is, on average, 10.1, 
3.1, and 0.34 for p = 0.7, 0.5 and 0.3 respectively, and 
the equivalent numbers for droughts that have duration 
≥ 10 years are 1.7, 0.1, and 0.0008. The latter indicates 
that if e.g., p = 0.5 then we’d expect a MYD of duration ≥ 
10 years once every 2,000 years on average.

Fig. 2   Theory I solutions for a Pn , bQn , c P∗
n
 , d Q∗

n
 , e ND(k ≥ n) and f ND(n) . Analytic values are shown as lines, Monte Carlo simulations (see 

text below) are shown as circles
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4.1.3 � Accuracy of the theoretical solutions

Monte Carlo solutions for (a) Pn , (b) Qn , (c) P∗
n
 , (d) Q∗

n
 , (e) 

ND(k ≥ n) and (f) ND(n), are also presented in Fig. 2 as open 
circles, again for three different values of p : 0.3 (red cir-
cles), 0.5 (black circles), and 0.7 (blue circles). In every case 
the Monte Carlo estimates are very close to the theoretical 
estimates.

5 � Statistical properties of MYDs in climate 
models

In the previous section we derived formulae for MYDs 
defined in terms of p . We can, if we wish, also define MYDs 
in terms of the mean, rather than a percentile. In this case 
the MYDs are UISs of years with below average precipita-
tion. The corresponding analytic estimates are then given 
by the formulae in Table 2, but with p set to the value that 
corresponds to the mean ( � ), i.e., p = p(�) . If the data are 
symmetric then p(�) = 0.5 . In general, however, the annual 
precipitation data are skewed, so that p(�) ≠ 0.5 (Fig. 3).

Over virtually all land locations the mean exceeds the 
median (Fig. 3c) and p(𝜇) > 0.5 (Fig. 3d), indicating that 
annual precipitation distribution tends to be skewed to the 
right, so that minimum precipitation values tend to be closer 
to the median than the highest precipitation values. The larg-
est values of p(�) occur over North Africa, the Middle East 
(especially in parts of the Arabian Peninsula, specifically, 
eastern Yemen, Oman, the United Arab Emirates, and south-
ern Saudi Arabia), northwest India and southeast Pakistan. 
There are only a few places where MMM(p(𝜇)) < 0.5 (in 
western Papua, Papua New Guinea, eastern Borneo and 
small scattered regions in parts of South America), but these 
regions are not stippled.

Given that p(�) varies spatially we would therefore expect 
that the key quantities (i.e., Q2(�) etc.) to also vary spatially. 
This is indeed the case (Fig. 4).

There is a strong resemblance between the maps for all 
four quantities in Fig. 4 and the corresponding theoretical 
estimates in Fig. S1, with corresponding spatial (Pearson) 
correlation coefficients (using land points only) of 0.98, 
0.88, 0.93, and 0.84 for Q2(�),Q

∗
2
(�),DD(k ≥ 2;�) , and 

ND(k ≥ 2;�) respectively.
Maps of the differences between the fields in Figs. 4 and 

S1 (given in Fig. S2) indicate that the MMM (climate model) 
values of Q2(�),Q

∗
2
(�) and DD(k ≥ 2;�) tend to be some-

what larger than the corresponding theoretical estimates, i.e., 
models tend to simulate more MYDs and the average dura-
tion of MYDs tends to be longer than expected from Theory 
I. In contrast the corresponding values of ND(k ≥ 2;�) tend 
to be somewhat less than corresponding Theory I values, 
indicating that the models tend to simulate fewer MYDs than 
expected from Theory I. Note, however, that the degree of 
agreement on differences among the climate models is lim-
ited to very few regions. The close resemblance between the 
MMM (Fig. 4) and Theory I values (Fig. S1), and the high 
spatial correlation coefficients between them, nevertheless 
indicates that regional contrasts in the value of the various 
statistics primarily arise from regional contrasts in the per-
centile of the mean, p(�).

To further assess the degree to which the theoretical 
formulae apply to the climate model results we will now 
examine the way in which the key quantities vary as a 
function of p over a wide range of p values. To obtain 
information on a wider range of p values, we look at the 
values of the key quantities over the globe using three 
different sets of thresholds: p = 0.5 ∗ p(�) , p = p(�) , and 
p = 1.5 ∗ p(�) . In other words, the threshold used to define 
a dry year was set to half the mean (red dots), the mean 

Table 2   Summary of the key formulae for the average value of sta-
tistical properties of UIS droughts, taking the possibility of nonzero 
autocorrelation into account. While the probability that a randomly 
selected year is dry (i.e., precipitation falls below a given threshold) 

is p , the probability that a year immediately following a dry year is 
also dry is p

D
 , and n is the length of the drought in years. See Appen-

dix 2 for further details

Ref. No. Statistic and formulae Description Equation No.

1 P̂n =
p

pD
npn

D
(1 − pD)

2 =
p

pD
Pn(pD)

Probability that a randomly selected year is part of an n-year 
UIS(p) drought

(18)

2 Q̂n(n) =
p

pD
[npn

D
+ (1 − n)pn+1

D
] =

p

pD
Qn(pD)

Probability that a randomly selected year is part of a UIS(p ) 
drought of duration k ≥ n

 = fraction of years that are part of a UIS(p ) drought of duration 
k ≥ n years

(19)

3 P̂∗
n
= (1 − pD)p

n−1
D

= P∗
n
(pD)

Proportion of all UIS(p ) droughts that are of duration n years (20)

4 Q̂∗
n
= pn−1

D
= Q∗

n
(pD)

Proportion of all UIS(p ) droughts that have duration k ≥ n (21)

5 N̂D(n) =
p

pD
Npn

D
(1 − pD)

2=
p

pD
N

D

(

n;pD
) Number of UIS(p ) droughts of duration n years in sample of size 

N years
(22)

6 N̂D(k ≥ n) =
p

pD
N(1 − pD)p

n
D
=

p

pD
N

D

(

k ≥ n;pD
) Number of UIS(p ) droughts of duration n ≥ k (23)

7 D̂D(k ≥ n) = n − 1 + 1∕(1 − pD) = DD
(

k ≥ n;pD
) Duration of UIS(p ) droughts in a sample of N years (24)
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Fig. 3   Maps showing MMM values of a mean precipitation (�;mm) , 
b median precipitation ( mm ), c mean-median precipitation ( mm ), and 
d the percentile of the mean, i.e., p(�) . Stippling indicates that > 70% 
of models agree on the sign of the difference: (c) between the mean 

and median values of annual precipitation; (d) p(�) − 0.5 . Results 
are based on simulations from 38 CMIP6 models under preindustrial 
control conditions

Fig. 4   MMM values of a Q2(�), b Q∗
2
(�) , c DD(k ≥ 2;�) and d 

ND(k ≥ 2;�) over land. Q2(�) is the proportion of years that are 
part of MYDs, Q∗

2
(�) is the proportion of droughts that are MYDs, 

DD(k ≥ 2;�) is the average duration of MYDs, and ND(k ≥ 2;�) is 
the average number of MYDs in a 200-year sample; a given year is 
defined here to be “dry” if the precipitation falls below the mean, �
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(black dots) and 1.5 times the mean (blue dots); Fig. 5). 
Each scatter point is taken from an individual grid point 
in an individual model.

For all four variables (i.e., Q2(p),Q
∗
2
(�),DD(k ≥ 2) , and 

ND(k ≥ 2)) , the theoretical values provide a reasonable fit 
to the data presented.

5.1 � Longer MYDs

MMM values  of  Q5(�),Q
∗
5
(�),DD(k ≥ 5;�) ,  and 

ND(k ≥ 5;�) over land are presented in Fig. S3 (first col-
umn). The largest occur in North Africa, North Africa, 
the Middle East, and a small region incorporating parts of 

India, Pakistan, Afghanistan, Uzbekistan and Tajikistan. 
The four maps using Theory I (second column) are very 
similar to their MMM counterparts. The MMM values of 
Q5(�),Q

∗
5
(�) , and DD(k ≥ 5;�) tend to be somewhat larger 

than their Theory I counterparts, whereas the MMM val-
ues of ND(k ≥ 5;�) tend to be somewhat smaller than their 
Theory I counterparts.

Scatter plots for (a) Q5(p) , (b) Q∗
5
(p) , (c) DD(k ≥ 5;p) and 

(d) ND(k ≥ 5;p) are presented in Fig. S4. Each scatter point 
is again taken from an individual grid point in an individ-
ual model. The theoretical estimate of the way each quan-
tity depends on p again indicates that the theory outlined 

Fig. 5   Scatter plots for a Q2(p) , b Q∗
2
(p) , c DD(k ≥ 2;p) and d 

ND(k ≥ 2;p) . Each scatter point is a value taken from an individual 
land grid point in an individual model on the interpolated 1° grid. 
Theoretical values (Sect.  3; solid aqua curve) and curves of best fit 

[dashed aqua curves; cubic for (a, d), linear for (b)] are shown. We 
were unable to obtain a sensible curve of best for (c) using either pol-
ynomial or exponential splines
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in Sect. 3 does a reasonable job of estimating the climate 
model results.

6 � Formulae with non‑zero autocorrelation—
Theory II

Figure 6 shows the MMM autocorrelation coefficient at one 
year lag. The vast majority of land points (approximately 
90%) have small, positive values, with a global average of 
0.03. Larger MMM values up to 0.25 are evident in some 
locations.

It is therefore worth knowing what the impact of non-zero 
temporal autocorrelation in precipitation has on the theo-
retical estimates of the statistical properties of MYDs. So, 
in this section we provide mathematical formulae that are 
similar to those provided in the previous section, but they 
are modified to allow for the possibility that there is nonzero 
autocorrelation. The statistics, the associated formulae, and 
their equation numbers are summarized in Table 2. The deri-
vations are given in Appendix 2.

Theoretical results taking autocorrelation into account 
are presented in Fig. 7, which shows (a) P̂1 , (b) P̂2 , (c) Q̂2 , 
(d) Q̂∗

n
 , (e) N̂D(k ≥ 1) , (f) N̂D(k ≥ 2) , (g) D̂D(k ≥ 1) , and (h) 

D̂D(k ≥ 2) . Five different functions for the likelihood of a 
dry year occurring immediately after a dry year are consid-
ered. In two cases the likelihood is reduced if pD = p − 0.2 
(blue lines), pD = p − 0.1 (light blue-colored lines)), in the 
second the likelihood does not depend on what happened the 
year before so that pD = p (black lines), while in the remain-
ing two cases the likelihood is increased ( pD = p + 0.1 (light 
rust-colored lines),pD = p + 0.1 (light rust-colored lines)).

Impacts of nonzero autocorrelation on the key statistics 
include the following:

•	 For all values of p , the probability of a single-year 
drought ( ̂P1 ; Fig. 7a) decreases as as pD declines below 
p , whereas the probability increases as pD increases 
above p . As the number of dry years stays the same, the 
proportion of years in MYDs (i.e., Q̂2 ; Fig. 7c) is there-
fore greater if pD > p (i.e., if the autocorrelation > 0 ), 
whereas the proportion is reduced if pD < p

•	 The proportion of droughts of duration k ≥ n years is 
given by Q̂∗

n
= pn−1

D
 (Table 2), and so Q̂∗

2
= pD . And since 

in every case considered pD is a linear function of p , 
Q̂∗

2
 is also a linear function of p (Fig. 7d). The results 

also show that Q̂∗
2
 increases if pD > p (i.e., the propor-

tion of droughts that are MY increases as pD or the a(1) 
increase), and that Q̂∗

2
 increases if pD < p (Fig. 7d)

•	 The total number of droughts (i.e., N̂D(k ≥ 1) ) decreases 
if pD > p , and increases if pD < p (Fig. 7e)

•	 The impact of nonzero autocorrelation on the number of 
MYDs (i.e., N̂D(k ≥ 2) ; Fig. 7f) is more complicated. For 
example, if pD > p then at p = 0. 3 the average number of 
MYDs marginally increases from its pD = p = 0.3 value 
of approximately 14 to approximately 15 if pD = 0.4 or 
0.5 , whereas if p = 0. 7 then the number of MYDs drops 
markedly from the pD = p = 0.7 value of approximately 
30 to approximately 16 ( pD = 0.8 ) or 13 ( pD = 0.9)

•	 The average duration of droughts (Fig. 7g), and the 
average duration of MYDs (Fig. 7h), increase if pD > p , 
and decrease if pD < p . In other words, persistence 
increases the average duration of droughts.

Fig. 6   The autocorrelation coefficient of annual precipitation at a 1-year lag. Stippling indicates that > 70% of models agree on the sign of the 
autocorrelation coefficient
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Figure 7 also indicates that neglecting persistence for 
values of p at or near 0.5 would tend to underestimate 
MMM values of Q2 , Q∗

2
 , and DD(k ≥ 2) , while overesti-

mating MMM values of ND(k ≥ 2) . This is indeed what 
happens at most locations across the globe (Fig. S2).

Maps showing the differences Theory II—Theory I 
(Fig. S5), based on the values obtained using the MMM 
value of p(�) at each grid point, tend to be positive for 
Q̂2(𝜇) − Q2(𝜇), Q̂∗

2
(𝜇) − Q∗

2
(𝜇), D̂D(k ≥ 2;�)− DD(k ≥ 2;�) , 

but negative for N̂D(k ≥ 2;𝜇) − ND(k ≥ 2;𝜇) , as expected 
from Fig. 7.

Maps showing Q2(�), Q∗
2
(�), DD(k ≥ 2;�) and 

ND(k ≥ 2;�) over land (Fig. 8) show that Theory II val-
ues of Q̂2(𝜇), Q̂∗

n
(�), D̂D(k ≥ 2;�) and N̂D(k ≥ 2;𝜇)(second 

column from the left) are similar to the corresponding 
MMM (climate model) values of Q2(�), Q∗

2
(�), DD(k ≥ 2;�) 

and ND(k ≥ 2;�) (left column), while the differences 
MMM-Theory II (third column) tend to be smaller than 
the MMM-Theory I differences (Fig. S2). The exception 
is ND(k ≥ 2;�) . In some places Theory I produces values 
closer to the MMM value, while in other places Theory II 
does. The differences in both cases (i.e., the differences 
between the MMM values and both Theory I and Theory 
II values) tend to be small (< 5% of the MMM values).

The theoretical values of the statistics P2 , (b)Q2 , P∗
2
 , Q∗

2
 , 

ND(k ≥ 2) , and DD(k ≥ 2) are given in Table S3 in the case 
where p = 0.5 and where pD = 0.3, 0.5, and 0.7.

Fig. 7   Theoretical results taking autocorrelation into account: 
a P̂1 , b P̂2 , c Q̂2 , d Q̂∗

n
 , e N̂D(k ≥ 1) , f N̂D(k ≥ 2) , g D̂D(k ≥ 1) , 

and h D̂D(k ≥ 2) . Four situations are considered in each panel: 

pD = p − 0.2 (blue lines), p − 0.1 (light blue lines), p (black lines), 
p + 0.1 (light rust lines), and p + 0.2 (rust)
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7 � MYDs in the observations, theory, 
and models

In this section we examine observational estimates of the 
MYD statistics and compare observational estimates of the 
main MYD statistics with their corresponding theoretical 
and climate model estimates.

While the modelled and theoretical results strictly apply 
to preindustrial conditions, it is nevertheless of interest to 
see how the model and theoretical results compare with 
observations during the historical period. A direct com-
parison between MYDS in historically-forced runs with 
observations and theory will be made in a future study.

Observational estimates of (a) Q2(�), (b) Q∗
2
(�), (c) 

DD(k ≥ 2;�) , (d) ND(k ≥ 2;�) for 1900–2014 are given in 
Fig. 9.

The observational values of these statistics vary from 
region to region around values of approximately 0.5, 0.6, 
3.75 and 27.

A comparison between observational and correspond-
ing theoretical estimates is given in Fig. 10.

While Theory I (aqua curves) appears to do reasonably 
well in estimating the observational value of the MYD statis-
tics (small circles) if p ≈ 0.5 , Theory I seems less appropri-
ate for some other values of p . For example, Theory I tends 
to give lower than observed values for lower values of p for 
all four MYD statistics, while Theory I tends to give higher 
than observed values for higher values of p for all metrics.

Theory II (small crosses) more accurately simulates the 
observational results, providing a reasonably good fit in all 
cases. For example, in the majority of cases the observation-
ally estimated mean value (black circles) lies within or very 
near the 95% confidence interval of the Theory II values. 
Theory II is least accurate for Q∗

2
,DD(k ≥ 2) and ND(k ≥ 2) 

at p = 0.8 , where the observational/Theory II estimates of 
these statistics are approximately 0.6/0.8, 0.75/0.55, and 
18/25 respectively.

Simulations of (a) Q2(p(�)), (b) Q∗
2
(p(�)), (c) 

DD(k ≥ 2;p(�)) , (d) ND(k ≥ 2;p(�)) from individual mod-
els are compared with their observational counterparts in 

Fig. 8   MMM (climate model) values of a Q2(�), b Q∗
2
(�), c DD(k ≥ 2;�) , d ND(k ≥ 2;�) (left column), Theory II values of Q̂2(𝜇), Q̂∗

n
(�), 

D̂D(k ≥ 2;�) and N̂D(k ≥ 2;𝜇) (middle column), and the differences MMM–Theory II (right column)
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Fig. 11. Each bar represents an areal average over the region 
for which observational data is available in all years during 
the period 1900–2014 (illustrated in Fig. 9).

In all cases the models give results that are similar to 
the observations and there is not much model-to-model 
variability in the statistics. While similar, systematic biases 
are evident: most models marginally underestimate Q∗

2
 and 

nearly all models tend to marginally underestimate Q2 , while 
DD(k ≥ 2) and ND(k ≥ 2) tend to be overestimated. Figure 7 
indicates that the sign of these biases tends to occur under 
Theory II if the models underestimate the magnitude of a 
positive a(1) . This is in fact the case: the value of a(1) aver-
aged over the same region used in Fig. 11 is given in Fig. 12. 
It shows that 37 out of the 38 models have an area-averaged 
a(1) less than the observed value, and the vast majority of 
models have values that are much smaller than the observed 
value. On this metric, the two best performing models are 
CMCC-CM2-SR5 and CMCC-ESM2.

In summary, the climate models do not display enough 
temporal persistence, and this causes systematic biases in 
MYD statistics. Specifically, Q2 and Q∗

2
 tend to be marginally 

too low, while DD(k ≥ 2) tends to be approximately 20% too 
low and ND(k ≥ 2) tends to be approximately 10% too high, 
i.e., MYDs in models tend to occur too often and they tend 
to be too brief relative to historical data.

8 � Sampling issues

The theoretical estimates derived above are for population 
averages, whereas the climate model and observational 
results are derived from finite samples. The latter will there-
fore typically be subject to sampling error.

While this paper is primarily focused on the average 
value of statistics, in this section we use Monte Carlo 
experiments to illustrate sampling error by estimating its 
magnitude in idealised cases. To keep things simple, we 
model precipitation as a Gaussian process with population 
mean � and standard deviation � . Five thousand samples 
each N years long are obtained using p = 0.5 as the thresh-
old defining dry years, so that if the simulated precipita-
tion < the median ( = � for Gaussian data) the year is con-
sidered dry. Three cases are considered: (i) � = 500mm , 
� = 50mm and N = 200 , (ii) � = 500mm , � = 100mm and 
N = 200, and(iii)� = 500mm , � = 50mm and N = 50.

The 95% range for the sample mean values of the 
median precipitation, Q2, Q∗

2
, DD(k ≥ 2) , and ND(k ≥ 2) 

estimated from the simulations are approximately 
±1.7%,±11.3%,±23.9%, 16.1% and ±19.7% respectively 
in Case (i), ±3.5%,±11.5%,±24%,±15.6% and ±19.1% 
respectively in Case (ii), and ±3.4%,±23%,±47%,±34% 
and ±39% respectively in Case (iii). Here “%” is the per-
centage of the respective Theory I mean-value.

While uncertainty associated with the median precipita-
tion is relatively small, uncertainty in the MYD statistics is 
not. Even with 200-year-long runs, the 95% ranges for Q∗

2
, 

DD(k ≥ 2) , and ND(k ≥ 2) all exceed 15% of the population 

Fig. 9   Observational estimates of (a) Q2(�), (b) Q∗
2
(�), (c) DD(k ≥ 2;�) , (d) ND(k ≥ 2;�) . Results are only shown over land where data (GPCC) 

is available in all years 1900–2014
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means (i.e., the mean corresponding to an infinitely large 
sample) in all cases. The impact of doubling precipitation 
variability (compare Case (ii) with Case (i)) has only a 
marginal impact on the 95% range of the sample means. 
Reducing the number of years to 50 (compare Case (iii) 
with Case (i)), on the other hand, approximately doubles 
uncertainty in all the MYD statistics. We hope to investi-
gate these issues in more detail in a future study.

9 � Summary and discussion

We derived theoretical estimates based on simple stochastic 
models for a range of key characteristics of droughts, includ-
ing multi-year droughts (MYDs). The MYDs considered 
here consist of uninterrupted sequences (UISs) of years with 
annual precipitation below a given threshold. The solutions 
are given in terms of the percentile of the threshold, p . We 

Fig. 10   a Q2, b Q∗
2
, c DD(k ≥ 2) , d ND(k ≥ 2) vs p . Each panel shows 

estimates of a MYD statistic using observations (small open circles), 
Theory II (crosses) and Theory I (aqua curves). The observational 
and Theory II data for p = 0.3, for example, is based on MYD data 
at locations where p(�) is in the range [0.2, 0.4). This subset of the 
data was further subdivided according to the value of pD . One smaller 
subset consists of MYD values for which pD is in the bottom tercile 
of the values of pD evident in the larger subset and is represented by 

the blue circles and crosses. Another smaller subset consists of the 
corresponding cases in which pD is in the middle tercile (black circles 
and crosses) and the third and final smaller subset consists of the cor-
responding values of the MYD statistic at locations where pD is in 
the top tercile (red circles and crosses). The values presented are the 
corresponding average values of the MYD statistic in each smaller 
subset. The Theory II values were estimated using values of p(�) (and 
pD(� ) for Theory II) obtained from the observations
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also examined the way in which the solutions depend on n , 
the duration of the drought.

Formulae were obtained for eight quantities: the pro-
portion of years that are part of a MYD of (i) duration (a) 
n years ( Pn) or (b) ≥ n years ( Qn) , (ii) the proportion of 
droughts that have a duration of (a) n years 

(

P∗
n

)

 or (b) ≥ n 
years 

(

Q∗
n

)

 , and both (ii) the number ( ND ) and (iv) the aver-
age length of MYDs of duration (a) n years or (b) ≥ n years 
( DD(k ≥ n)).

Two sets of formulae were obtained. The first set (Theory 
I; white noise; Sect. 3) assumes that the temporal autocorre-
lation in precipitation from year to year is zero, whereas the 
second set (Theory II; Sect. 6) is derived taking the possibil-
ity of non-zero temporal autocorrelation ( a(1) ) into account. 
Cases where a(1) > 0 correspond to red noise processes. 
The statistical properties and the corresponding formulae 
(with corresponding Equation numbers) are summarized in 
Table 1 (Theory I) and Table 2 (Theory II).

Fig. 11   Observed and individual model values of a Q2(p(�)), b 
Q∗

2
(p(�)), c DD(k ≥ 2;p(�)) , d ND(k ≥ 2;p(�)) . p(�) is the percen-

tile of the mean. Each bar represents an areal average over the entire 
region in which observational data is available in all years during the 
period 1900–2014 (illustrated in Fig. 9)
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If the autocorrelation is zero, then the functional depend-
ence of the statistics of MYDs on p for n = 2 years are as 
follows:

Q∗
2
 : linear; monotonic increasing; Q∗

2
(p = 1∕2) = 0.5.

Q2 :  weakly nonlinear; monotonic increasing; 
Q2(p = 1∕2) = 0.375.

DD(k ≥ 2) : strongly nonlinear; monotonic increasing; 
DD(k ≥ 2) = 3 years.

ND(k ≥ 2) : strongly nonlinear; monotonic increasing for 
p < 2∕3 , monotonic decreasing for p > 2∕3 ; ND(k ≥ 2) = 
25 (if N = 200 years).

We found that at most locations over land the MMM auto-
correlation coefficient at one year lag (i.e., a(1) ) is positive, 
so that the mean tends to be greater than the median. If a(1) 
is positive then Theory II shows that Q2 , Q∗

2
 increase relative 

to their Theory I values. This makes intuitive sense as given 
a dry year the likelihood of a multi-year drought is clearly 
higher given rainfall persistence. Similarly, DD(k ≥ 2) 
increases. This too makes sense as given a dry sequence the 
likelihood of an even longer sequence increases given rain-
fall persistence. The situation for ND(k ≥ 2) is more compli-
cated. For example, if a(1) > 0 then ND(k ≥ 2) gets smaller 
if p ≥ 0.45 , but get marginally larger if p < 0.4.

The value of each statistic was estimated for droughts 
in climate models (estimated using single 200-year runs 
from 38 CMIP6 models under preindustrial control con-
ditions) that consist of UISs of years in which annual pre-
cipitation is below average. We found that the modeled 
values tended to agree well with the theoretical results, 
with Theory II tending to provide somewhat closer agree-
ment with the climate model values than does Theory 
I. The theoretical values were obtained by choosing a 
threshold p = p(�) , where � is the mean. We showed that 

p = p(�) tends to be somewhat greater than 0.5 over the 
globe, and that regional variations in the value of the 
eight statistics tend to be well-explained by the formulae 
provided that regional variations in p(�) are considered.

We also examined MYDs in observational data and com-
pared the observational results with theoretical and climate 
model results. We found that Theory II tends to give a much 
better fit to the observational MYD statistics than does Theory 
I. This contrasted with the result that Theory II only gives a 
marginally better fit to the MMM results. This contrast arises 
because the observational precipitation tends to display larger 
temporal persistence than the models and this results in MYDs 
in the models that tend to be too brief and occur more often 
than they do in the observations. The extent to which these dif-
ferences arise because we have compared pre-industrial runs 
with historical data will be the subject of a future study.

Note that the focus of this paper has been on long-term 
averages. Finite samples will of course be subject to sam-
pling error. We highlighted this in Sect. 7, which shows that 
even with 200-year samples, sampling error can cause a 
considerable amount of uncertainty in some MYD statistics.

Our results strictly apply to MYDs consisting of UISs of 
years in which annual precipitation falls below a given thresh-
old. We recognise that numerous other definitions of drought 
and MYD are available. While we focused on a particular type 
of MYD, we have established that the average value of important 
statistical properties of at least one kind of MYDs can be well-
understood in models and observations in terms of surprisingly 
simple stochastic models.

Further research could be conducted into, e.g., the theory of 
MYDs using other definitions of drought, the extent to which 
the theories can be used to understand anthropogenically-forced 

Fig. 12   Observed (GPCC; rust 
and red) and individual model 
values (blue) of a(1) aver-
aged over the region in which 
observational data is available 
in the GPCC data set in all years 
1900–2014. The observational 
value is calculated using Pear-
son (rust) and Spearman (red) 
formulae. The individual model 
values were obtained using the 
Pearson formula only



Statistical properties of multi‑year droughts in climate models and observations with… Page 17 of 20    184 

changes in MYDs, and the sampling issues highlighted in 
Sect. 7.

Appendix 1: Formulae for S =
∑∞

k=1
kpk 

and Sn−1 =
∑n−1

k=1
kpkSn−1 =

∑n−1

k=1
kpk

While the derivations x here are readily available on the 
internet, they are provided for completeness.

If Un−1 = 1 + p + p2 + ... + pn−1 =
∑n

k=1
pk−1 then

, Now pU
n−1 = p + p

2 + p
3 + p

4 + ... + p
n−1 + p

n = U
n−1

−1 + p
n, and so

Since d(f (x)∕g(x)) = f �g−fg�

g2
 then dUn−1

dp
=

1−pn−npn−1(1−p)

(1−p)2
 , 

and so

and as

dUn−1

dp
= 0 + 1 + 2p + 3p2 + ... + (n − 1)pn−2

=

n−1
∑

k=1

kpk−1, and so
dUn−1

dp

= p + 2p2 + ... + (n − 1)pn−1

=

n−1
∑

k=1

kpk = Sn−1,

Un−1 = (1 − pn)∕(1 − p).

(13)Sn−1 = p
dUn−1

dp
= p

[

1 − pn − npn−1(1 − p)

(1 − p)2

]

,

Appendix 2: Derivation of formulae 
for droughts with non‑zero autocorrelation

The MMM value of pD − p is given in Fig. 13. MMM values 
of pD exceed p in most locations, consistent with the gener-
ally positive values of a(1) in Fig. 6. This indicates that tak-
ing autocorrelation into account should provide formulae that 
more closely approximate the climate model estimates. The 
derivations follow Fig. 13.

P̂n and Q̂n.
We again assume that the probability of a randomly cho-

sen year is dry is p . However, in order to account for nonzero 
autocorrelation we further suppose that the probability that 
a dry year occurs immediately after a dry year is pD , and if 
pD ≠ p then there is nonzero autocorrelation. We further 
suppose that that the probability of a wet year immediately 
after a wet year is given by qW , and the probability of a dry 
year immediately after a wet year is pW . In this case (in anal-
ogy with the derivation of P1 in Sect. 3)

where “ ̂  ” indicates that the variable is for the case when pD 
is not necessarily equal to p.

Similarly the probability of randomly selecting a 
year and finding that it is part of a two-year drought is 
P̂2 = 2.qpWp

1
D
qD , and the probability that it is part of a 

three-year drought is P̂3 = 3.qpWp
2
D
qD , from which we can 

deduce that

(14)n → ∞, S
n−1 → S =

p

(1 − p)2
.

P̂1 = qpWqD = 1.q.pWp
0
D
qD,

Fig. 13   MMM value of pD − p . Stippling indicates that > 70% of models agree on the sign of pD − p



	 S. B. Power, Z. E. Gillett   184   Page 18 of 20

We wish to obtain formulae for the average value of the 
various metrics in terms of pD . Armed with the resulting 
formulae would then allow us to estimate the value of the 
various statistics given three things: n, p , and pD . However, 
to accomplish this, we need to relate both pW and qD to pD , 
as they both appear in Eq. (15).

To obtain an equation for pW , consider the probability 
of randomly choosing two successive years and (a) the first 
year is wet and the second year is dry and (b) the first and 
second years are dry. Notice that (a) and (b) collectively 
exhaust the possibilities for the first year, so the probability 
of (a) or (b) is simply the probability of randomly select-
ing a year and finding that it is wet, i.e., q . This means that 
p = qpW + ppD , and so

To obtain an equation for qD , consider the probability of 
randomly choosing two successive years and (a) the first and 
second years are dry and (b) the first year is dry, but the sec-
ond year is wet. Notice that (a) and (b) collectively exhaust 
the possibilities for the second year, so the probability of (a) 
or (b) is simply the probability of randomly selecting a year 
and finding that it is dry, i.e., p . This means that.

p = ppD + pqD , and so

Using Eqs. (16) and (17) in (15) then gives

and given that P̂n =
(

p

pD

)

Pn

(

pD
)

 , we can immediately write

P̂∗
n
 and Q̂∗

n
.

In analogy with Sect. 3, the average number of droughts 
of duration n years is NP̂n∕n , and so the average number of 
droughts of any size is N

∑∞

k=1

P̂
k

k

 . So the proportion of all 
droughts that have duration n years, P̂∗

n
 , is given by

(15)P̂n = nqpWp
n−1
D

qD.

(16)pW = p
(

1 − pD
)

∕q.

(17)qD = 1 − pD.

(18)

P̂
n
= nq

[

p

(

1 − p
D

)

q

]

p
n−1
D

(1 − p
D
)

=

(

p

p
D

)

np
n

D
(1 − p

D
)2

=

(

p

p
D

)

P
n

(

p
D

)

,

(19)Q̂n =

(

p

pD

)

Qn

(

pD
)

.

(20)�P∗
n
=

NP̂n∕n

N
∑∞

k=1

P̂k

k

=
�

1 − pD
�

pn−1
D

= P∗
n

�

pD
�

.

Since P̂∗
n
= P∗

n

(

pD
)

 we can immediately deduce that

N̂D(n) and N̂D(k ≥ n).
In analogy with Sect. 3,

The number of droughts of duration k ≥ n is therefore 
given bywhich can be written as

In analogy with Sect. 3, the average duration of droughts 
in a sample of N years is given by

Using the formula obtained earlier for this summation 
if N  is large we get

Note that the average number of days in a drought of 
duration ≥ n years is given by the product of N̂D(k ≥ n) and 
D̂D(k ≥ n) , i.e., N̂D(k ≥ n)�DD(k ≥ n).

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00382-​025-​07632-9.
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Npn

D
(1 − pD)

2 =

(

p

pD

)

ND(n).
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∞
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k=n
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2
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∞
∑
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pn
D
= Np

(
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)
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p
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N
(

1 − pD
)

pn
D
=

p

pD
ND

(
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)
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D̂D(k ≥ n)

�DD(k ≥ n) =
sum of all drought durations in sample of duration k ≥ n

average number of droughts of duration k ≥ n in sample

=
N
∑N

k=n
P̂k

N̂D(k ≥ n)
=

�

1 − pD
�

pn
D

N
�

k=n

kpk
D
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calculate the drought metrics are available from https://​github.​com/​
nicky​wright/​aus-​droug​hts-​last-​mille​nnium (Wright and Falster 2024).
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