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a b s t r a c t 

Background and objective: Epilepsy is a serious brain disorder affecting more than 50 million people 

worldwide. If epileptic seizures can be predicted in advance, patients can take measures to avoid unfor- 

tunate consequences. Important approaches for epileptic seizure predictions are often signal transforma- 

tion and classification using electroencephalography (EEG) signals. A time-frequency (TF) transformation, 

such as the short-term Fourier transform (STFT), has been widely used over many years but curtailed by 

the Heisenberg uncertainty principle. This research focuses on decomposing epileptic EEG signals with a 

higher resolution so that an epileptic seizure can be predicted accurately before its episodes. 

Methods: This study applies a synchroextracting transformation (SET) and singular value decomposition 

(SET-SVD) to improve the time-frequency resolution. The SET is a more energy-concentrated TF represen- 

tation than classical TF analysis methods. 

Results: The pre-seizure classification method employing a 1-dimensional convolutional neural net- 

work (1D-CNN) reached an accuracy of 99.71% (the CHB-MIT database) and 100% (the Bonn University 

database). The experiments on the CHB-MIT show that the accuracy, sensitivity and specificity from the 

SET-SVD method, compared with the results of the STFT, are increased by 8.12%, 6.24% and 13.91%, respec- 

tively. In addition, a multi-layer perceptron (MLP) was also used as a classifier. Its experimental results 

also show that the SET-SVD generates a higher accuracy, sensitivity and specificity by 5.0%, 2.41% and 

11.42% than the STFT, respectively. 

Conclusions: The results of two classification methods (the MLP and 1D-CNN) show that the SET-SVD has 

the capacity to extract more accurate information than the STFT. The 1D-CNN model is suitable for a fast 

and accurate patient-specific EEG classification. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Epilepsy is characterized by aberrant brain activity that results 

n seizures or episodes of abnormal behaviors, sensations, and oc- 

asionally loss of consciousness. If epileptic seizures can be pre- 

icted in advance, unfortunate consequences for the patient can 

e mitigated. One important area of seizure prediction research is 

eature extraction and classification based on electroencephalogra- 

hy (EEG) signals, which are various electrical activities measured 

cross the scalp using small metal discs (electrodes). While some 

EG-based seizure prediction algorithms are patient-independent, 
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his study customizes experimental methods to individual patients’ 

EG signals (patient-dependent). 

Signal processing is employed in many applications to provide 

nderlying information on specific problems so that useful fea- 

ures can be extracted. There has been intensive research on the 

ime domain, frequency domain and time-frequency domain for 

EG signal analysis. Time domain analysis often is not sufficient for 

btaining all useful information. Frequency domain analysis gener- 

tes only spectral information about the signal but not the time- 

omain information at the same time. Therefore, EEG data in the 

ime domain are often transformed into the time-frequency (TF) 

omain using various different methods, such as short-time Fourier 

ransform (STFT) [1] , wavelet analysis (WA) [ 2 , 3 ] or multiresolution

ourier transform (MFT) [4] . However, despite decades of develop- 

ent, the TF analysis method has been constrained by the Heisen- 
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Table 1 

Overview of the reviewed articles. 

Author Methods Dataset Accuracy Sensitivity Specificity 

Khalilpour et al. (2020) [16] Raw EEG data, 1-D CNN CHB-MIT 1 97% 98.5% 98.5% 

Prathaban & Balasubramanian (2021) [17] Sparsity based EEG reconstruction, 3-D CNN CHB-MIT, SRM 

2 , NINC 3 98% 99% 90% 

Wang et al. (2021) [18] STFT, 3-D CNN CHB-MIT 80.5% 85.8% 75.1% 

Truong et al. (2017) [12] STFT, 2-D CNN CHB-MIT, Freiburg 4 , KSPC 5 NA NA 81.4% 

Chen and Parhi (2021) [13] STFT, 2-D CNN AESPC 6 NA NA 82% 

Sun et al. (2021) [14] STFT, Channel attention dual-input CNN CHB-MIT NA 97.1% 95.6% 

Shahbazi and Aghajan [19] STFT, 2-D CNN + LSTM CHB-MIT NA 98.2% NA 

1 Children’s Hospital Boston and the Massachusetts Institute of Technology Scalp EEG Dataset. 
2 Private SRM dataset. 
3 Neonatal EEG recordings with seizure annotations of Neonatal Intensive Care Unit acquired from Helsinki University Hospital. 
4 Freiburg iEEG dataset. 
5 Kaggle seizure prediction competition dataset. 
6 The American Epilepsy Society Prediction Challenge dataset. 
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erg uncertainty principle [ 5 , 6 ] or unanticipated cross-terms [7] . 

ince TF-based analysis methods use wide bandwidth in the TF do- 

ain, the energy of the generated TF representation smears heav- 

ly according to the Heisenberg uncertainty principle. In addition, 

hen there are many components in the input signal, which is 

imilar to frequency beats in time, a cross-term occurs. As a result, 

F-based analysis methods experience a low TF resolution [ 5 , 8 ]. 

n recent years, many signal transformation methods were devel- 

ped to overcome those issues, which are instrumental in decrypt- 

ng patterns from epileptic EEG signals. One of them is synchroex- 

racting transform (SET) [9] , the novel TF analysis method which 

mproves the energy concentration in the TF representation [9] . 

eanwhile, one of the restraints of applying the SET is generat- 

ng many sub-signals that can cause significant time consumption 

nd computational cost or sometimes inhibit accurate classification 

erformance due to many dimensions. After a SET decomposition, 

he singular value decomposition (SVD) is applied to minimize a 

arge number of sub-signals without losing the crucial information 

n the SET preserves (SET-SVD). The last step of this study is the 

lassification of the pre-ictal period and normal period using two 

ypes of neural networks (NNs), multi-layer perceptron (MLP) and 

-dimensional convolutional neural network (1D-CNN), to compare 

ith the performances of the SET and STFT resolutions. A convo- 

utional neural network (CNN) is a common term used to describe 

 2-dimensional CNN (2D-CNN) used for image classification and 

ignal processing, given that the kernel moves along the data in 

wo dimensions. In many situations, however, a 2D-CNN may not 

e feasible for 1-dimensional signals (such as time series signals), 

articularly if the training data are limited or time-corresponding. 

n this study, a 1D-CNN is used to reduce processing time and ac- 

omplish more effective classification, and the outcomes are com- 

ared to those of a multi-layer perceptron (MLP). The following is 

 summary of the major contributions of this study: 

• With the proposed method, pre-ictal signals in epileptic EEG 

signals can be accurately detected. 

• The proposed method reduces the classification computational 

time. Real-time seizure prediction can, therefore, be enabled. 

• A better signal transformation method can be discovered by 

contrasting different signal transformation methods with the 

same classification algorithms. Nevertheless, this procedure 

takes a considerable amount of time and effort, and this study 

can be used as a benchmark reference for different types of sig- 

nal analysis. 

The remainder of this paper is arranged as follows. In Section 2 , 

elated works are discussed. Section 3 presents the details of the 

atasets used in this paper, data preprocessing, the proposed tech- 

iques for signal transformation (SET, STFT and SVD) and classifi- 

ation (MLP and 1D-CNN). Section 4 explains the experimental se- 
2 
ups and results. Section 5 discusses the findings of this research. 

inally, the conclusions of this study are drawn in Section 6 . 

. Related works 

The STFT has been widely used for EEG signal analyses as it is 

imple and adaptive to be implemented [10] . For example, Gorur 

t al. (2002) achieved an accuracy of 88.7% by applying a STFT and 

eural network (NN) method for the sleep spindles detection [11] . 

ome research applying the STFT for seizure prediction, especially 

sing a CNN, has shown desirable results. Truong et al. (2017) ap- 

lied a STFT with a CNN for seizure prediction [12] and reached a 

ensitivity of 81.4%. Chen and Parhi (2021) also used a STFT and a 

NN and achieved an overall sensitivity of 82% [13] . A STFT with 

 channel attention dual-input CNN showed a better sensitivity 

f 95.6% [14] . On the other hand, so far, no study has applied

he SET for seizure prediction yet. Kiranyaz et al. (2015) devel- 

ped the first adaptable 1-dimensional CNN (1D-CNN) model for 

 fast and accurate patient-specific electrocardiogram (ECG) classi- 

cation, and achieved 99% of accuracy [15] . Khalilpour et al. (2020) 

sed a seven-layer 1D-CNN to detect pre-ictal and normal peri- 

ds in the brain signals, where the performance was evaluated in 

erms of accuracy, specificity, and sensitivity which resulted in 97%, 

8.47%, and 98.5%, respectively. Table 1 summarizes the reviewed 

rticles that employed CNNs or STFT for the prediction of epileptic 

eizures (detection of pre-ictal signals). 

. Methodology 

This study aims to find an excellent accurate epileptic seizure 

rediction method. Comparison is a way to justify that our method 

s optimum. As a result, this comparison may help establish a less 

omplex seizure prediction system with a higher resolution of EEG 

ignal transformation. In this research, the raw EEG signals with- 

ut noise removal are converted using the SET and STFT respec- 

ively, and the dimensionality of the results obtained by the SET 

s reduced by a SVD. The decomposed and chosen values of the 

ignals are then classified using two types of neural networks, the 

LP and 1D-CNN, and their classification performances are then 

ompared. The fundamental procedure of the proposed method is 

llustrated in Fig. 1 . 

.1. Experimental data 

Long-term annotated data are required for the development of 

eizure prediction algorithms. Hospitals and research institutions 

ave created open-access databases, and two well-known epilepsy 

atasets (the Bonn University (Bonn) database and the Children’s 

ospital Boston-Massachusetts Institute of Technology (CHB-MIT) 

calp EEG database) are accessible online. This study evaluates the 
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Fig. 1. The main processing diagram of the proposed methodology. 

Table 2 

The characteristics of each patient and the patient’s information data used in this paper 

[20] . 

Recording 

number Patient ID Gender Age 

Number of 

seizures 

Length of records 

(Hours) 

chb01 1-1 F 11 7 45.00 

chb02 2 M 11 3 39.57 

chb03 3 F 14 7 57.87 

chb04 4 M 22 4 154.41 

chb05 5 F 7 5 38.09 

chb06 6 F 1.5 10 89.25 

chb07 7 F 14.5 3 67.23 

chb08 8 M 3.5 5 26.38 

chb09 9 F 10 4 65.92 

chb10 10 M 3 7 72.49 

chb11 11 F 12 3 73.30 

chb12 12 F 2 40 NA 1 

chb14 14 F 9 8 41.50 

chb15 15 M 16 20 62.29 

chb16 16 F 7 10 17.03 

chb17 17 F 12 3 34.11 

chb18 18 F 18 6 62.85 

chb19 19 F 19 3 61.58 

chb20 20 F 6 8 41.43 

chb21 1-2 F 13 4 55.71 

chb22 21 F 9 3 75.93 

chb23 22 F 6 7 70.90 

1 Not available. Not specified. 
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roposed method on the two publicly available databases (Bonn 

nd CHB-MIT). The information about the two databases is pro- 

ided below. 

.1.1. CHB-MIT database 

EEG recordings of pediatric patients with uncontrollable 

eizures are available in the CHB-MIT database [16] . Twenty-four 

ecordings were collected from 23 patients (5 males (ages 3–22) 

nd 17 females (ages 1.5–19); information for Patient ID 23 is not 

pecified). Recordings chb01 (Patient ID 1-1) and chb01 (Patient ID 

-2) were obtained from the same female patient. A single record- 

ng is represented by nine to forty-two continuous . edf files (chb01, 

hb02, or others). Patients were monitored for up to several days 

fter stopping anti-seizure medication in order to describe their 

pileptic seizures and determine whether they were a good can- 

idate for surgery. In this study, 22 out of 24 recordings are an- 

lyzed. Two recordings (chb13 and chb24) are excluded from this 

tudy because they are unsuitable for experimentation due to fre- 
3 
uent channel changes during the EEG recording; Table 2 provides 

nformation about 22 recordings. 

.1.2. Bonn database 

This EEG database is publicly available and provided by the Uni- 

ersity of Bonn as acquired by Andrzejak et al. [21] . It consists of 

ve datasets: A, B, C, D, and E. Each dataset consists of 100 single- 

hannel EEG files with a duration of 23.6 seconds and a total of 

097 samples as shown in Table 3 . 12-bit analogue-to-digital con- 

erters sampling at 173.61 Hz were used. The EEG database con- 

ists of 5 classes x 100 files x 4097 data points (23.6 seconds). 

.2. Epileptic EEG data pre-processing 

Four stages are commonly used to categorize epileptic EEG sig- 

als: normal, pre-ictal, ictal, and post-ictal periods ( Fig. 2 ). To avoid 

 relatively high ratio of normal period data in the classification, 

he normal to pre-ictal training/testing data ratio is capped at 10:1 

20] . One issue with seizure prediction studies is how to select 
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Table 3 

The descriptions of each dataset in the Bonn University database [21] . 

Dataset File name Subject details Description 

Number of files 

(duration in 

seconds) 

A Z001.txt to Z100.txt Five healthy subjects (normal) Surface EEG recordings with eyes open 100 (23.6) 

B O001.txt to O100.txt Surface EEG recordings with eyes closed 100 (23.6) 

C N001.txt to N100.txt Five epilepsy patients EEG readings of hippocampal formation in the hemisphere 

opposite the epileptogenic zone. Recorded during seizure-free 

periods. 

100 (23.6) 

D F001.txt to F100.txt EEG recordings of the epileptogenic zone. Recorded during 

seizure-free periods. 

100 (23.6) 

E S001.txt to S100.txt EEG recordings of epileptic seizure activity from the 

hippocampal focus. 

100 (23.6) 

Fig. 2. An example of EEG signals sampling (Patient ID 1-1, channels of FP1-F7, F7-T7, T7-P7 and P7-O1). The red windows are the sampling signals (2.8 seconds of length in 

normal and pre-ictal periods). Yellow lines/waves over time show the activity from the EEG signals at the normal period (50 min), pre-ictal (10 min before the ictal period 

starts), ictal (1 min) and post-ictal (30 min after the ictal period) periods. The patient was an 11-year-old female. The recording rate is 256 Hz. The vertical scale is 50 μV. 
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re-ictal EEG signal recording segments. The time between a prog- 

ostic symptom of a seizure and the start of a seizure is defined 

s the seizure prediction horizon (SPH), which has been reported 

o be between a few minutes and several hours. For both training 

nd testing datasets, the SPH in this study is set at 10 minutes (2.8

econds in duration). Therefore, pre-ictal samples are collected 10 

inutes before seizure onsets. Data samples for a normal period 

in 2.8-second duration and one-hour interval) are randomly se- 

ected in between pre-ictal and post-ictal periods (30 min after a 

eizure) ( Fig. 2 ). 

However, the SPH cannot be applied to the Bonn database be- 

ause its ictal (dataset E) and non-ictal (dataset A-D) recordings 

re separated. Regarding the EEG signals from any specific area on 

he scalp, all electrode channels attached to the scalp are equally 

eighted, and EEG signals from all channels are evenly used. 

.3. Short time Fourier transformation (STFT) 

STFTs are widely used for denoising time-dependent signals. 

he Fourier transform (FT) of function f(x) is function F( ω) , where: 

 ( ω ) = 

−∞ ∫ 
∞ 

f ( x ) e −iωt dx (1) 

f ( x ) = 2 π

−∞ ∫ 
∞ 

F ( ω ) e −iωt dω (2) 

The fast Fourier transform (FFT) is a fast algorithm for comput- 

ng the discrete FT. The FFT is a method for converting a signal’s 

nformation into its frequency information where the time infor- 

ation cannot be recovered after the transformation. The STFT of 

 signal consists of the FFT of crossing windowed blocks of the 

ignal ( Fig. 3 ). The STFT, however, provides both information in a 

ime-frequency domain as shown in Fig. 3 . This study sets the win- 

ow length as the FFT length, which is 10, and the overlap length 

s 5. 
4 
.4. Synchroextracting transform (SET) 

For a complex signal s(t) , which is the sum of n non-stationary 

odes, its expression is as follows [9] : 

 ( t ) = 

n ∑ 

k =1 

s k ( t ) = 

n ∑ 

k =1 

A ( t ) e iϕ k ( t ) (3) 

here ϕ’ k + 1 (t) - ϕ’ k (t) > 2 �, s k , A k , ϕk , denote the k th mode, the

orresponding instantaneous amplitude, and instantaneous phase, 

espectively. ϕk 
′ is the first-order derivative of ϕk and denotes in- 

tantaneous frequency; � is the frequency support of a window 

unction. The STFT representation of Ge(t, ω) for the original sig- 

al s(t), which forms the foundation of the SET, is displayed in the 

ollowing form [9] : 

e ( t, ω ) = 

n ∑ 

k =1 

A k ( t ) ̂  g 
(
ω − ϕ 

′ 
k ( t ) 

)
e iϕ k ( t ) (4) 

here ˆ g denotes the Fourier transform of the window function g , 

 ∈ L 2 (R) . According to Eq. (4) , the instantaneous frequency can be

alculated by 

 

′ ( t, ω ) = 

n ∑ 

k =1 

ϕ 

′ k ( t, ω ) = −i 
σt G e ( t, ω ) 

G e ( t, ω ) 
(5) 

Yu et al. (2017) developed an operator to only retain the time- 

requency information from the STFT representation that is most 

elated to the time-frequency characteristics of the target signal, 

hich may remove the irrelevant interference and smeared time- 

requency energy. The formula for the SET [9] is: 

 e ( t, ω ) = G e ( t, ω ) δ
(
ω − ϕ 

′ ( t, ω ) 
)

(6) 

here 

(
ω − ϕ 

′ ( t, ω ) 
)

= 

{
1 , ω = ϕ 

′ ( t, ω ) 

0 , else 
(7) 
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Fig. 3. The STFT of a signal consists of the FFT of crossing windowed blocks of the signal. 
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hich is the synchroextracting operator (SEO). According to Eqs. 

5) and ( 6 ), Te(t, ω) in SET can be deduced through Eq. (7) [9] : 

 e (t, ω) 
∣∣
ω−∑ n 

k =1 ϕ 
′ 
k ( t ) =0 

= Ge ( t, ω ) 
∣∣
ω−∑ n 

k =1 ϕ 
′ 
k ( t ) =0 

≈
n ∑ 

k =1 

A k ( t ) ̂  g ( 0 ) e iϕ k ( t ) (8) 

In this way, a sharper time-frequency representation than the 

TFT can be obtained, and instantaneous frequency (IF) with a 

ighly precise degree can be extracted. 

.5. Singular value decomposition of synchroextracting transform 

The singular value decomposition (SVD) was developed by Eu- 

enio Beltrami and Camille Jordan in 1873. An SVD is a matrix fac- 

orization into three matrices. It has intriguing algebraic properties 

nd transmits essential geometrical and theoretical insights regard- 

ng linear transformations [22] . An SVD of an M × N matrix X , rep-

esenting the SET values ( Section 3.4 ) of the EEG signals is given

y 

 = USV 

T (9) 

here U(M × M) and V(N × N) are orthonormal matrices, and S is 

n M × N diagonal matrix of singular values ( σ ij = 0 if i � = j and

11 ≥ σ 22 ≥ ··· ≥ 0). The columns of the orthonormal matrices U 

nd V are called the left and right singular vectors, respectively. 

n important property of U and V is that they are orthogonal to 

ne another. The singular values ( σ ii ) represent the significance of 

ingular vectors in the matrix’s composition. In other words, sin- 

ular vectors corresponding to larger singular values contain more 

nformation than other singular vectors regarding the content of 

atterns embedded in the matrix. In this study, 10 singular values 

SET-SVD) are selected and employed. 

.6. Neural networks-based classification 

Neural networks (NNs) process information using a mathemat- 

cal or computational model, which is a network of simple pro- 
5 
essing elements capable of complex overall performance, as de- 

ermined by the connections between processing elements and el- 

ment parameters. This study applies two types of NNs, a multi- 

ayer perceptron (MLP) and a convolutional neural network (CNN) 

o classify normal and pre-ictal stages of the STFT ( Section 3.3 ) or

ET-SVD ( Section 3.5 ) of epileptic EEG signals. 

.6.1. Multi-layer perceptron (MLP) 

The MLP, in this research, is learned using the backpropagation 

lgorithm, where the errors of the hidden layer units are deter- 

ined by back-propagating the errors of the output layer units. Its 

etwork consists of an input layer, a hidden layer, and an output 

ayer. The activation function of the hidden layer is the sigmoid 

unction, and its equation is given below. 

 ( x ) = 

1 

1 + e −x 
= 

e x 

e x + 1 

(10) 

Each connection between a node in the hidden layer and a node 

n the input layer has a weight. The backpropagation technique re- 

eatedly modifies the weights of the links in the network to re- 

uce the difference between the expected output vector of the net- 

ork and the predicted output vector [23] . Each layer has a cost 

unction, which is designated as follows and has its own least min- 

mum error value: 

 = cost ( s, y ) (11) 

here s is a predicted output value and y is an expected output 

alue. The following describes the backpropagation algorithm to 

inimize the cost function: 

1. The initial values of weight ( w ) and bias ( b ) are randomly cho-

sen. 

2. w and b are matrix representations of the weights and biases. 

Derivative of C in w or b can be calculated using partial deriva- 

tives of C in the individual weights or biases. 

3. The termination condition is met once C is minimized to a 

threshold. 
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Fig. 4. (a) and (c) In 1D-CNN, the convolutional layer’s kernel slides along one dimension; (b) In 2D-CNN, the convolutional layer’s kernel moves along two dimensions. 

Table 4 

1D-CNN Structure Information. 

1D-CNN Model 

structure layer Kernel size Activator Output shape 

Number of 

parameters 

Convolutional 1D 2 ReLu 229 × 64 192 

Dense - ReLu 229 × 16 1040 

Max Pooling 1D 2 114 × 16 0 

Flatten - 1824 0 

Dense - softmax 3 5475 
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Table 5 

The confusion matrix of the classification performance of pre-ictal/normal pe- 

riod signals. 

True pre-ictal period True normal period 

Predicted pre-ictal period A B 

Predicted normal period C D 

Accuracy = (A + D) / (A + B + C + D). 

Sensitivity = A / (A + C). 

Specificity = D / (B + D). 
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.6.2. 1-dimensional convolutional neural networks (1D-CNNs) 

CNNs are a subclass of neural networks, which have at least one 

onvolutional layer. Like MLPs, CNNs consist of an input layer and 

n output layer, and hidden layers. The main benefit of employing 

 CNN is that it can use its kernel to retrieve spatial information 

rom the data. In 1D-CNN, the kernel slides along one dimension 

nstead of two dimensions as shown in Fig. 4 . 

In this research, the first step of the 1D-CNN model is to re- 

rrange the input data by creating one-dimensional vectors from 

ach row of the input data. The input data dimension, 1430 × 230, 

s composed of 1430 steps with 230 features per step. And then, 

ne convolutional layer, two dense layers, one max-pooling 1D 

ayer and one flattened layer are added into the model structure. 

he convolutional layer consists of kernels that slide through the 

-dimensional data. The pooling layer (max-pooling layer in this 

tudy) is used to decrease the size of the convolutional layer out- 

uts. This step involves sliding a window to take the maximum 

alues in each window. The rectified linear unit activation function 

ReLu) is used in the dense layer which is also called a fully con- 

ected layer. A summary of the proposed 1D-CNN model structure 

nformation is listed in Table 4 . Kernel and max-pooling have a size 

f 2 and are used to decrease the size of neurons to 114 × 16. 

. Experimental results 

The EEG signals are successfully decomposed by the SET-SVD 

nd STFT, and they are classified into two groups of data, pre-ictal 

eriod and normal period. The scalograms illustrate that the SET 

ethod can generate more energy-concentrated TF results than the 

TFT ( Fig. 5 ). 

The efficiency of a seizure prediction algorithm (detecting pre- 

ctal signals) is determined by the accuracy, sensitivity, and speci- 

city. Sensitivity is the percentage of the true pre-ictal prediction, 

nd specificity is the percentage of the true normal period predic- 

ion ( Table 5 ). 
6 
.1. The CHB-MIT database 

Table 6 presents the performance of the STFT and SET-SVD 

ased on the MLP, and 1D-CNN classification tested using the 22 

ecordings in the CHB-MIT Scalp EEG Database. 720 datapoints 

2.8 seconds of duration) are selected from each file. However, 

ome files are excluded because interictal signals should be at least 

ne hour ahead or after ictal signals. In addition, pre-ictal signals 

hould be between suitable interictal signals. As the result, the to- 

al number of the data points is 5464800. 70% of the data are ran- 

omly selected for training (3825360 samples) and the remaining 

0% are used for testing (1639440 samples). Fig. 6 illustrates the 

ccuracy, specificity, and sensitivity of the related articles for com- 

arisons. 

In the MLP classification, the average accuracy by the SET-SVD 

s 94.73%, and that of STFT is 89.73%. The sensitivity and speci- 

city of the MLP with the SET-SVD are higher (average 96.85% 

nd 88.51%, respectively) than those with STFT (average 94.44% 

nd 77.09%, respectively). The accuracy, sensitivity and specificity 

f the SET-SVD are improved by 5.0%, 2.41% and 11.42%, respec- 

ively. The average false positive rates (FPR) by the SET-SVD and 

TFT are 10.59% and 22.21%, respectively (average FPR = 1 – aver- 

ge specificity). 

Based on the 1D-CNN, the average accuracy by the SET-SVD is 

9.71%, and that of STFT is 91.59%. The sensitivity and specificity 

btained by the 1D-CNN with the SET-SVD also show a higher rate 

average 99.75 % and 99.56 %, respectively) than those with the 

TFT (average 93.51% and 85.65%, respectively). On average, the ac- 

uracy, sensitivity and specificity by the SET-SVD are increased by 

.12%, 6.24% and 13.91%, respectively. The average FPR by the SET- 

VD and STFT are 0.44% and 14.35%, respectively. 

Fig. 6 shows the comparison of the classification results by the 

roposed method and the methods from the reviewed studies that 

lso applied the STFT and CNN to the CHB-MIT database. The p - 

alues also confirm that the classification performances using the 

ET-SVD are significantly higher than those using the STFT (at p < 

.05) ( Table 6 ). 
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Fig. 5. Scalograms of the SET (a), (c) and STFT (b), (d) transform results. x-axis: time (1/256 seconds), y-axis: frequency (Hz). (c) and (d) are enlarged by zooming in of one 

sector of (a) and (b). 

Table 6 

The performance of the SET-SVD and STFT based on the MLP, and 1D-CNN classification tested on 22 recordings. 

Patient ID 

MLP 1D-CNN 

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%) 

SET-SVD STFT SET-SVD STFT SET-SVD STFT SET-SVD STFT SET-SVD STFT SET-SVD STFT 

1-1 93.84 93.99 87.47 96.98 91.17 87.35 100 98.9 100 99.08 100 98.54 

2 99.59 96.89 99.87 97.19 98.62 95.45 100 98.71 100 99 100 97.7 

3 98.36 89.19 99.26 95.26 93.94 70.04 99.83 92.9 99.84 95 99.76 86.16 

4 97.01 83.87 98.95 99.77 91.07 28.8 99.75 99.1 99.77 100 99.67 95.76 

5 93.5 88.83 97.8 92.17 76.77 72.41 99.85 88.93 99.84 92.01 99.89 68.15 

6 97.11 86.99 96.94 93.67 97.35 77.67 99.69 89.32 99.74 90.97 99.62 87.22 

7 91.99 89.78 95.22 89.38 89.91 91.2 99.61 88.89 99.63 93.06 99.54 76.43 

8 98.05 96.34 98.76 96.83 96.79 95.52 99.8 98.34 99.95 98.25 99.55 98.51 

9 97.78 91.45 99.15 99.81 94.89 52.63 99.66 96.27 99.81 97.4 99.01 90.48 

10 89.74 84.2 97.18 94.81 75.56 64.58 99.87 82.41 99.88 85.61 99.85 75.51 

11 98.26 90.68 99.35 94.17 93.06 73.26 99.65 89.71 99.77 93.01 99.08 73.26 

12 98.52 96.5 99.39 97.17 97.21 95.6 99.63 97.2 99.54 96.62 99.77 97.92 

14 95.93 81.8 86.93 95.28 95.28 71.01 99.75 79.81 99.72 86.67 99.81 65.55 

15 89.41 76.36 95.26 86.39 86.39 45.04 99.38 84.63 99.47 89.06 99.26 77.69 

16 94.62 77.06 82.83 87.33 87.33 62.96 99.57 77.60 99.65 82.85 99.39 65.55 

17 94.33 94.37 98.17 81.79 81.79 83.46 99.46 95.15 99.74 95 98.61 95.65 

18 92.77 94.04 95.96 84.58 84.58 87.64 99.72 91.98 99.83 93.32 99.33 86.79 

19 96.62 99.04 98.84 88.16 88.16 100 99.89 100 99.87 100 100 100 

20 92.98 94.73 93.37 84.05 84.05 100 100 98.89 100 100 100 96.14 

1-2 87.3 85.28 93.55 80.25 80.25 60.92 99.58 83.55 99.57 88.45 99.59 69.32 

21 96.49 94.56 94.24 87.04 87.04 95.49 99.73 95.53 99.79 97.06 99.53 91.49 

22 96.11 88.11 91.39 95.72 95.72 85 99.17 87.18 99.18 84.86 99.15 89.57 

Mean 95.01 89.73 96.85 94.44 89.41 77.09 99.71 91.59 99.75 93.51 99.56 85.65 

standard 

deviation 

3.30 6.30 4.64 5.90 6.81 19.06 0.20 6.26 0.19 4.92 0.38 11.37 

standard 

error 

0.70 1.35 0.99 1.26 1.45 4.06 0.04 1.37 0.04 1.07 0.08 2.48 

p-value 0.00 0.02 0.01 0.00 0.00 0.00 

7 
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Fig. 6. Specificity and sensitivity of the related studies that applied the STFT and CNN with the CHB-MIT database. 1. Wang et al. (2021); 2. Truong et al. (2017); 3. Chen 

and Parhi (2021); 4. Sun et al. (2021); 5. The proposed method. 

Table 7 

The performance of the SET-SVD and STFT based on the MLP, and 1D-CNN classification tested using the Bonn University database. 

MLP 1D-CNN 

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%) 

SET-SVD STFT SET-SVD STFT SET-SVD STFT SET-SVD STFT SET-SVD STFT SET-SVD STFT 

A:B 100 98.70 100 97.37 100 100 100 98.45 100 98.23 100 98.62 

A:C 100 99.57 100 99.12 100 100 100 100 100 100 100 100 

A:D 100 98.26 100 96.49 100 100 99.78 99.22 100 100 99.57 98.59 

B:C 100 99.13 100 100 100 98.28 100 99.61 100 99.15 100 100 

B:D 100 99.78 100 100 100 99.57 100 100 100 100 100 100 

AB:C 100 97.68 100 98.70 100 97.18 100 99.74 100 100 100 99.19 

AB:D 100 99.42 100 99.13 100 99.57 100 100 100 100 100 100 

C:D 100 99.35 100 99.12 100 99.57 100 98.84 100 100 100 97.67 

Mean 100 98.99 100 98.74 100 99.27 99.97 99.48 100 99.67 99.95 99.26 

standard 

deviation 

0.00 0.72 0.00 1.23 0.00 1.02 0.08 0.60 0.00 0.65 0.15 0.89 

standard 

error 

0.00 0.27 0.00 0.46 0.00 0.38 0.03 0.22 0.00 0.25 0.06 0.34 
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In addition, the standard deviations (SDs) of both results from 

he 1D-CNN and MLP using the SET-SVD are meaningfully lower 

han those using the STFT. With the 1D-CNN, the SDs of accu- 

acy, sensitivity and specificity from the results by the SET-SVD are 

ower by 6.06, 4.73 and 10.99 compared to those by the STFT, re- 

pectively, while with the MLP, they are lower by 3.00, 1.26 and 

2.25, respectively). 

.2. The Bonn University database 

The performances of the STFT and SET-SVD based on the MLP, 

nd 1D-CNN classification tested on the Bonn EEG Database are 

resented in Table 7 . 720 data points (4.15 seconds of duration) 

rom each of 23 files per dataset (A, B, C or D) are analyzed. The to-

al number of data points is 82800: Randomly selected, 70% of the 

ata (57960 samples) were used for training, while the remaining 

0% (24840 samples) were used for testing. 

The classification outcomes for the SET-SVD sets exhibit nearly 

00% accuracy, sensitivity, and specificity (99.95 – 100%). For clas- 

ifying the STFT sets, the 1D-CNN (accuracy: 99.48%, sensitivity: 

9.67%, specificity: 99.26%) is marginally superior to the MLP (ac- 

uracy: 98.99%, sensitivity: 98.74%, specificity: 99.27%). The SPH is 

ot applicable to the Bonn database, but the accuracy performance 

btained from various combinatory experiments suggests that the 

roposed method can predict seizures. 
8 
. Discussion 

There has been a paradoxical problem reported in signal anal- 

sis using the STFT. A longer window length results in a bet- 

er frequency resolution but with a worse time resolution, while 

 shorter window length results in a better time resolution but 

ould have a worse frequency resolution [24–28] . To improve 

he TF resolution as high as possible, one of the advanced post- 

rocessing methods, the SET, is successfully applied to the raw EEG 

ignals, and it extracts useful information to predict the epilep- 

ic pre-seizure status. To the best of our knowledge, the SET has 

ever been applied to analyze EEG signals for the prediction of 

re-seizure status previously. 

The SET represents only the TF information related to signal 

ime-varying features [9] . It is clearer and more concentrated than 

he STFT ( Fig. 5 ). Followed by the SVD, the SET can effectively de-

cribe the time-frequency characteristics of epileptic EEG signals. 

he experiments on the Bonn University database show that both 

he 1D-CNN and MLP can discriminate the SET-SVD sets with al- 

ost a zero-standard error. Tested on the CHB-MIT database, the 

verage accuracy, sensitivity, and specificity by the 1D-CNN classi- 

cation with the SET-SVD are 99.71%, 99.75% and 99.56%, respec- 

ively, which are 8.12%, 6.24% and 13.91% higher than the results 

y the STFT. Another classification method in this study, the MLP, 

lso shows that the results by the SET-SVD are higher by 5.0%, 
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.41% and 11.42% than those by the STFT in accuracy, sensitivity 

nd specificity, respectively. 

In addition, the SET shows more reliable test results than the 

TFT in this research. A high SD means that there is a large vari-

nce between the data and the mean. The SDs from the 1D-CNN 

esults using the SET-SVD are lower than those by using the STFT 

 Table 6 ). The SDs of results from the MLP also confirm lower SDs

rom the SET-SVD, which indicates that the STFT is not as reliable 

s the SET-SVD. Da Silva et al. [29] showed that the STFT generates 

ore significant data variability, resulting in less accurate classifi- 

ation performance than wavelet transform (WT) based methods. 

liveira et al. [30] also supported this conclusion using the re- 

ults of variance, indicating less accuracy in terms of variability 

n data obtained from the analysis by the STFT. The STFT shows 

 large dispersion of individual values within the temporal win- 

ow of processing and over time (successive windows), and con- 

equently would result in larger measurement errors in dynamic 

ituations, as suggested by Karlsson et al. [31] . 

This research also aims to reduce computational time for real- 

ime seizure prediction while maintaining high accuracy in feature 

xtraction and classification processes. EEG signals can be trans- 

ormed from a wireless and/or portable EEG monitor to the nec- 

ssary peripherals for acquisition alarms without sacrificing crit- 

cal time [32] . The proposed 1D-CNN model is compact and has 

nly one convolutional layer, which can reduce the processing time 

mmensely. Recent studies [33–36] showed that the majority of 

D-CNN applications have employed a shallow structure that has 

ne or two CNN layers and the number of parameters is less than 

0 0 0 0 (6707 in this research as shown in Table 4 ), while nearly all

D-CNN applications have used architectures with more than one 

illion parameters. Consequently, a 1D-CNN has a lower computa- 

ional complexity than a 2D-CNN, and the testing time takes less 

han one second in this research. 

. Conclusion 

In this research, the training and testing processing in the clas- 

ification are patient-specific as the patterns of epileptic seizure 

ccurrences are patient-dependent [20] . The experiments on two 

pileptic EEG databases (the Bonn and CHB-MIT) show that the 

ET-SVD has the capacity to extract more accurate information 

han the STFT. Especially, the SET-SVD with 1D-CNN can provide 

lmost 100% of accuracy, sensitivity and specificity for predicting 

eizure status in both databases. 

The performances by the STFT have a larger SD than those of 

he SET-SVD, which means that the STFT is less reliable. Using 

he STFT with the 1D-CNN, the specificity for Patient ID 5 in the 

HB-MIT database is 68.15%, while the specificity for the same Pa- 

ient ID by the SET-SVD with 1D-CNN achieved 99.89%. This type 

f weakness for the STFT is also found in other studies [29–31] . 

The effectiveness of the 1D-CNN in this research is promising. 

ompared with the MLP, the computational speed is much faster 

more than 10 0 0 times) and the accuracy is more than 10% higher.

lthough the experiments using a 2D or 3D-CNN were not con- 

ucted in this study, it was concluded from the literature review 

hat the 1D-CNN would be faster (100 times lesser number of pa- 

ameters) and more accurate (1-10%) than the 2D or 3D-CNN. 
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