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ABSTRACT Engineering Mathematics requires that problem-solving should be implemented through
ongoing assessments; hence the prediction of student performance using continuous assessments remains
an important task for engineering educators, mainly to monitor and improve their teaching practice. This
paper develops probabilistic models to predict weighted scores (WS, or the overall mark leading to a final
grade) for face-to-face (on-campus) and web-based (online) Advanced Engineering Mathematics students at
an Australian regional university over a 6-year period (2013-2018). We fitted parametric and non-parametric
D-vine copula models utilizing multiple quizzes, assignments and examination score results to construct
and validate the predicted WS in independently test datasets. The results are interpreted in terms of the
probability of whether a student’s continuous performance (i.e., individually or jointly with other counterpart
assessments) is likely to lead to a passing grade conditional upon joint performance in students’ quizzes and
assignment scores. The results indicate that the newly developed D-vinemodel, benchmarked against a linear
regressionmodel, can generate accurate grade predictions, and particularly handle the problem of low or high
scores (tail dependence) compared with a conventional model for both face-to-face, and web-based students.
Accordingly, the findings advocate the practical utility of joint copula models that capture the dependence
structure in engineering mathematics students’ marks achieved. This therefore, provide insights through
learning analytic methods to support an engineering educator’s teaching decisions. The implications are
on better supporting engineering mathematics students’ success and retention, developing evidence-based
strategies consistent with engineering graduate requirements through improved teaching and learning, and
identifying/addressing the risk of failure through early intervention. The proposed methods can guide an
engineering educator’s practice by investigating joint influences of engineering problem-solving assessments
on their student’s grades.

INDEX TERMS Engineering mathematics performance prediction, D-vine copula, multivariate probability
model, academic performance, education decision-making, statistical model.
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I. INTRODUCTION
Over the last two years the problem of predicting stu-
dents’ ongoing learning using joint relationships between
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continuous assessments and final examinations are receiving
attention from many researchers [1]–[4]. This is important as
overall student outcomes define the quality of a university
graduate’s attributes, and is a primary factor that influences
the growth of student number and ranking of a university [5].
Higher education institutions are now focusing on ways to
improve student performance by provisioning early learning
support through evidence-based student performance eval-
uation methods. Predicting and analysing performance is
critical for academic progress [6] but from an educator’s
perspective, this issue remains a challenging task given the
influence of many factors that affect a student’s performance.
Examples of such factors include the family background,
psychological status, past schooling or academic achieve-
ments, and a learner’s interaction with their peers and teach-
ers throughout the teaching period [7]. Therefore, predictive
models based on continuous assessments, that are often part
of engineering education curriculum, and those that can map
out an early learning phase of students in a course, can poten-
tially yield helpful information for academics to implement
strategies to improve teaching and learning [8], [9]. The
qualitative and quantitative approaches employed to predict
student performance are categorised in the human-based and
computer-based methods. Examples of human-based meth-
ods are those that use a teacher’s own judgement [10], [11]
and self-reports [12] but computer-based methods often aim
to apply statistical and data mining methods to predict a
student’s performance [3], [13], [14]. Data mining tech-
niques use advanced statistics or machine learning methods,
among others, as one of the most widely used approaches
for performance prediction e.g., [1], [4], [7], [15], [16].
Whilst these approaches are contributing towards develop-
ing evidence-based teaching strategies to advance student
progress in study disciplines, there is a need to develop
advanced data mining methods [17] that can consider stu-
dent’s continuous assessments, and their joint effects with
other forms of ongoing tests. This may be useful to develop
early intervention plans to prevent the failure in a course.

In this paper we developed multivariate distribution mod-
els utilizing assessment (e.g. quiz, and assignment) to pre-
dict a weighted score for engineering mathematics course
and determine its influence on the final grade using stu-
dent performance data and copula models. Copulas have
excellent capabilities to consider non-linear dependence
structure among variables and have shown good predic-
tive skills in modelling non-normally distributed data in
non-education areas [18]–[20]. It is worth noting that despite
some attention to copulas in modelling non-linear marginal
distribution data, there appears to be a paucity of straight-
forward approaches that can derive joint distribution func-
tions between the marginal distribution of a set of predictors
and a target. This is especially true for the field of educa-
tion despite such variables playing a key determinant role
in student success. It is therefore of prime interest to esti-
mate joint distribution effects of interacting variables, such
as quizzes and assignments, and further identify how these

variables influence a weighted score to assign a passing
grade.

This research paper considers well-established theory of
copulas [21] and further builds the original method into a new
predictive framework for engineering education decision-
making. We apply a new copula approach to the data from
a web-based (online) and face-to-face (on-campus) engi-
neering students’ performance. Copulas are advantageous in
modelling the joint distribution between variables where their
marginal distributions and the data features are otherwise rel-
atively separate.We adopt copulas based on their capability to
analyse joint dependence structure, and constructing models
that are assumption-free and non-parametric. Free from the
influence of marginal distribution linear assumptions [22],
copulas provide a distinct advantage in probabilistic or con-
ditional estimation considering different predictors, their rel-
ative strength or joint features and conditional probability.
These features provide flexibility in modelling practical data
encountered in fields such as education where variables like
assessments, time spent on online learning management sys-
tems, and teaching or learning activities used to determine
student learning outcomes.

The choice of copula approach in this study is motivated
by extensive applications of the method in many advanced
modelling areas. Examples include actuarial studies and
finance [23]–[25], econometrics and marketing [26]–[28],
and agriculture and hydrology [18], [19], [29]–[34]. Copulas
were recently used to investigate the influence of climate
variability on systemic weather risks, particularly using joint
models to maximise the spatial diversification portfolios in
insurance industry [29]–[31]. These studies, articulated the
benefits of copulas in jointly studying the dependence struc-
ture andmodellingmultivariate predictors/targets. It is imper-
ative to mention that probabilistic models are potent tools
that can evaluate the risk by considering the tail distribution
of any data, where for example, a set of extreme values are
considered realistically and within a Bayesian model frame-
work [35]. This copula approach can therefore extend the
capabilities/functionalities of conventional machine learning
models that are capable of simulating single data values in
a test set after taking the training parameters from a training
set. It can also simulate the whole distribution, and tails (or
extreme values) that machine learning may offer a limited
capability to pursue. Taking the key findings from these
studies, we also aver that the continuous assessments for
engineering problem solving can take any value, occupy a
very low, or a very high score that creates a tail distribution
pattern. They could also differ in how a weighted score or
a final grade is distributed; so the capability of copulas in
studying tail distribution features jointly with a target variable
is considerably advantageous in present research.

For the specific case of education and social sciences dis-
cipline, copulas have been rather limited, although a study
by Vuolo [20] has built such models to simulate the spousal
mortality with empirical examples of association between
unemployment and suicide rate. That study has considered
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the joint dependence structure between count (i.e., the num-
ber of days of drinking alcohol) in respect to a skewed,
continuous variable (i.e., grade point average) and therefore
demonstrated the merits of copula models in social sciences.
Similarly, copula models may be particularly beneficial in
studying a student’s performance based on assignments and
if such models are developed, the Faculty can adopt them to
mitigate risks of student failure in courses well ahead of an
examination period [8]. The proposed copula models may be
used to assist educators in better preparing students through
their learning journeys.

Justifications to adopt the copulas are made with respect
to the significant proportion of student learning data, that
by the virtue of their social variability, learning patterns
and causal factors, is divergent from a normal or Gaussian
distribution and free from assumptions used in traditional
models. By fitting an appropriate skewed distribution func-
tion to student assessment data (e.g., assignments as an input)
versus a target (i.e., an examination score) or considering
another outcome of interest (i.e., a grade point average as a
categorical variable), educators can adopt copula functions
to explore the extent of association between these variables.
Most importantly, problems where multivariate predictors are
used in the education area can also adoptmaximum likelihood
techniques for prediction without any assumption on the
marginal distribution of individual data, and therefore, formu-
late a variety of predictive models to emulate a target that is
linked to a predictor variable [20]. To the best of the authors’
knowledge, no prior study has developed copula models to
predict engineeringmathematics performance, their grades or
weighted scores through multivariate continuous assessment
data.

The novelty is to develop for the first time, a D-vine
quantile regressionmodel to predict engineeringmathematics
student performance using the specific case of an Advanced
Engineering Mathematics course result, and employing sev-
eral continuous assessment marks and weighted scores used
to assign a passing or a failing grade. Advancing and expand-
ing the scope of our earlier machine learning-based study [1]
and the others [2-5; 7-16], the proposed D-vine quantile
regressionmodel aims to predict thewhole distributionwithin
a probabilistic framework rather than the single- or the mean
test test values predicted by a conventional machine learning
model. The proposed D-vine quantile regression model (see
Section IV) has enabled us to perform an accurate and fast
prediction with a unique advantage over classical quantile
regressions such as avoiding quantile crossing and interaction
issues between the covariates. Therefore, our new copula
models are constructed in such a way that the non-influential
predictors are excluded to reflect a final parsimonious model.

Another major contribution is to adopt D-vine quantile
regression model designed with both the parametric (PDVR)
and the non-parametric (NPDVR) copula family functions.
For a highly robust model, we consider six years of
data, over 2013-2018, in ENM2600 (Advanced Engineering
Mathematics) that are categorised in terms of face-to-face,

or on-campus (ONC) and the web-based, or online study
mode (ONL). This work is therefore a pioneering study
employing a second-year student learning data (i.e., assign-
ments, quizzes, examination marks and weighted scores) in
an Advanced Engineering Mathematics course and aims to
generalize the D-vine quantile regression modelling algo-
rithm that typically has discrete student performance data.

As additional contribution and cross-validity of this study,
we tested the developed copula models on a lower level, first
year engineering mathematics course ENM1600 (Engineer-
ing Mathematics) data whose results are also summarized in
Appendix A.
To ascertain the accuracy of the D-vine quantile regression

model for its skill to predict engineering mathematics student
performance, we evaluated this objective method (i.e., PDVR
and NPDVRmodels) against a conventional linear regression
(i.e., LR) model simulated for an independent test data. Given
the nature of our numeric data, the study adopts parametric
estimation skill of the newly designed D-vine copulas with
an added contribution utilizing a modified algorithm that
accounts for discreteness in data [36].

The rest of the paper describes the properties of copula-
based models, material and methodology, results and discus-
sion. Several challenges after the presentation of results are
discussed, and a final section provides the conclusions.

II. BACKGROUND OF COPULAS
For brevity, only the most relevant details are presented here;
readers may also refer to Appendix B for details. To predict
Advanced Engineering Mathematics student performance,
we first consider the theorem of Sklar [21] states that for a
joint cumulative distribution function (JCDF) F (x1, . . . , xd )
of a d-dimensional random variable (X1, . . . ,Xd ), we have a
marginal distribution Fi (xi), i= 1,. . . ,d that defines a copula
function C such that

F (x1, . . . , xd ) = C [F1 (x1) , . . . ,Fd (xd )] . (1)

The joint probability density function (JPDF) is expressed
as

f (x1, . . . , xd ) =

[
d∏
i=1

fi (xi)

]
c [F1 (x1) , . . . ,Fd (xd )] (2)

where fi (xi) is the marginal density and

c =
∂dC [F1 (x1) , . . . ,Fd (xd )]
∂F1 (x1) . . . ∂Fd (xd )

=
∂dC (u1, . . . , ud )
∂u1 . . . ∂ud

(3)

is the copula density.
The copula model data, denoted as pseudo-data, has a

uniform distribution on the interval [0,1] with a conversion
procedure known as univariate probability integral transfor-
mation. If Fi (xi) is continuous, the associated function C :
[0, 1]d → [0, 1] is unique. Otherwise, there exist many
possible copulas and all would coincide over RanF1 × . . .×
RanFd where RanFi denotes the range of Fi [33]. Empirical
applications of the copula approach are possible for discrete
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TABLE 1. The parametric bivariate copula families with the copula generator function, its parameters, the lower and upper tail dependence coefficients
and the relationship between parameters and Kendall’s tau (τ ) coefficients.

marginal distributions that carefully consider modelling and
interpreting the dependence, as highlighted in [37]. For a
detailed representation of themathematics of copulas, readers
can consult papers elsewhere e.g., [38] or [39].

A. ELLIPTICAL COPULAS
Gaussian (or Normal) and Student’s t copula derived from the
density function of an elliptical distribution with mean zero
and correlation matrix which is expressed as:

hϕ (x) = |6|1/2 ϕ
[
(x)′6−1 (x)

]
. (4)

For every x ∈ R2 where ϕ is a generator func-
tion and both copulas are symmetric so their lower
and upper tail dependence coefficients can be the same
(see Table 1).

When the margins of variables are diverse, other mea-
sures of association such as Kendall’s τ and Spearman’s
ρ should be used because of the influence from form
of the marginal distributions on the correlation. Table 1
provides such a measure, in terms of the value of τ ,
which is a non-parametric, robust and efficient estimator
of the associations for both elliptical and non-elliptical
margins [40].
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FIGURE 1. (a) Four-dimensional vine copula models constructed as a
regular (R)-vine, (b) Canonical C–vine copula structure, and (c) Drawable
D–vine copula structures. This study used drawable vine (D-vine). Note
that the joint distribution between variables u is modelled by copula
function C . For example, C12 is the copula function for u1 or quiz mark,
and u2 or assignment mark; C13|2 is the copula function for C12 and
C23 i.e. u1 and u3 conditioned on u2.

B. ARCHIMEDEAN COPULAS
Archimedean copulas (ACs) have a relatively simple form for
their construction and therefore resulting in a large variety
of copulas within this family. Bivariate ACs are defined as
follows [41]

C (u, v) = ϕ[−1] [ϕ (u)+ ϕ (v)] , (5)

where the generator function ϕ is a continuous strictly
decreasing convex function such that ϕ(1) = 0 and ϕ1 being
a pseudo-inversion. By inserting the generator function in
Equation 5, one can derive various copula families, as shown
in Table 1.

The two-parameter ACs [42] are from a mixture of two
different one-parameter copulas. These mixed copulas can
capture different types of dependence, i.e., lower or upper tail
dependence or both. For example, the BB7 has one parameter
for modelling the lower tail dependence and another for the
upper (see Table 1).

C. VINE COPULAS
To apply our method for the specific cases of Advanced
Engineering Mathematics, this study adopts a Vine copula
method, also known as a pair-copula construction [43] based
on the merits that it can overcome the aforementioned limi-
tations. In principle, the vine method constructs joint density
in Equation 2 into a sequence product of (conditional) bivari-
ate copula densities, so-called pair-copulas, and its marginal
densities so in this study, conditional copulas are used to pre-
dict student’s passing grades using their continuous assess-
ment marks. Generally, Vine copulas are expressed in three
forms: regular (R)-vine, canonical (C)-vine, and drawable
(D)-vine copulas. The class of R-vine is still very general and
embraces a large number of possible pair-copula decomposi-

tion, i.e.,
(
d
2

)
× (d − 2)! × 2

(
d − 2
2

)
while the C-vine and

D-vine provide a specific way to decompose the density into
d (d − 1) /2 unique copulas.
Figure 1 depicts the construction of a four-dimensional

vine copula that includes three trees. To interpret this,

consider Tj, j = 1, 2, 3 with each tree Tj having 5 - j nodes
and 4 - j edges; each edge corresponding to a paired-copula
density U as the copula data, i.e., original data that were
transformed into a uniform distribution with values in [0,1]
using kernel density estimation (non-parametric method, not
parametric distribution such as Weibull or Gamma). U1 can
be Quiz 1, for example, but not necessary, and U1 can be any
variable depending on the course and the mode of offer as a
general copula model. The four-dimensional C-vine structure
is generally expressed as

f (x1, x2, x3, x4)

= f1 (x1) .f2 (x2) .f3 (x3) .f4 (x4)

.c12 [F1 (x1) ,F2 (x2)] .c13 [F1 (x1) ,F3 (x3)]

.c14 [F1 (x1) ,F4 (x4)]

.c23|1
[
F2|1 (x2 |x1 ) ,F3|1 (x3 |x1 )

]
.c24|1

[
F2|1 (x2 |x1 ) ,F4|1 (x4 |x1 )

]
.c34|12

[
F3|12 (x3 |x1, x2 ) ,F4|12 (x3 |x1 )

]
, (6)

and the four-dimensional D-vine

f (x1, x2, x3, x4)

= f1 (x1) .f2 (x2) .f3 (x3) .f4 (x4)

.c12 [F1 (x1) ,F2 (x2)] .c23 [F2 (x2) ,F3 (x3)]

.c34 [F3 (x3) ,F4 (x4)]

.c13|2
[
F1|2 (x1 |x2 ) ,F3|2 (x3 |x2 )

]
.c24|3

[
F2|3 (x2 |x3 ) ,F4|3 (x4 |x3 )

]
.c14|23

[
F1|23 (x1 |x2, x3 ) ,F4|23 (x4 |x2, x3 )

]
. (7)

In this decomposition, the selection of pairwise copula is
independent of each other so such paired-copula construc-
tions allow arbitrary types of bivariate copulas to be used
in the building blocks and available for applications in high
dimensional datasets.
It is imperative to mention that the vine copulas used in this

paper is very flexible in modelling asymmetric distribution of
data (for example, student performance marks being skewed
to a certain value) and tail dependence (e.g., marks being
too low, or too high rather being than uniformly distributed).
Given the high-dimensional model that we require in this
research work, vine copulas were considered to address the
limitations of the other methods such as elliptical copulas
and ACs [43].
For the case of a D-vine based regression model,U1 would

actually become V , which is the response variable (i.e.,WS or
EX ), and the otherU1,U2,U3 (in this case study) correspond
to U2, U3, and U4 in the 4-dimensional D-vine model.
To predict WS (i.e., variable V), the variables U1, U2, U3
(in this case study) can be examination score, assignment 1,
and quiz 2, respectively, depending on the D-vine structure
(or its order) selected via maximum conditional likelihood.
Therefore C12 for example denotes the bivariate copula of
U1 andU2 (or V andU1) and C23 is the bivariate copula for
U2 and U3. C13|2 is the bivariate copula for C12 and C23,
i.e., U1 and U3 conditioned on U2.
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D. FITTING MARGINAL DISTRIBUTIONS
To develop models for engineering mathematics student
performance prediction, we followed a first step in devel-
oping copula models by correctly fitting the marginal distri-
butions of student performance marks and weighted scores
to attest their uniformity or dis-uniformity. This followed
the notion that marginal distributions can be modelled based
on parametric or non-parametric methods where parametric
techniques are used to fit each variable to a proposed theoret-
ical distribution function (e.g., Normal, Gamma, or Weibull)
using maximum likelihoods [44], moment matching [45],
quantile matching [46], or goodness-of-fit (GOF) [9] proper-
ties. Non-parametric methods use empirical cumulative dis-
tribution function or continuous smoothing estimator:

F̂ (x) =
1
n

n∑
i=1

K
(
x − x(i)

h

)
, (8)

where K (x) =
∫ x
−∞

k (t) dt and k (·) is a symmetric proba-
bility density function and h > 0 is a parameter.

E. FITTING COPULAS
As an important consideration for developing models for
engineering mathematics student performance prediction,
we were mindful that copulas can be selected using several
measures e.g., statistical GOF tests or the information-based
criteria. GOF can be performed either based on White’s
information matrix equality [47], [48] or based on Kendall’s
process [49] that produces test statistics and p-value to reject
or accept a parametric copula. Though Akaike information
criteria (AIC) and Bayesian information criteria (BIC) [38]
do not provide any understanding about the power of the deci-
sion rule employed, they allow for an efficient comparison of
fitting between different copulas based on single numbers by
correcting the log-likelihood for the number of parameters
used in a model, i.e., the model with smallest AIC (or BIC) is
chosen. Furthermore, these criteria-based methods take less
time to compute than GOF tests. In particular, they take the
relatively simple forms of AIC = −2l (θn) + 2k and BIC =
−2l (θn) + klogn where k and n denote the number of free
parameters and the sample size, respectively. The estimation
of the copula parameter θ is described in the next section.
Also, the penalty for two-parameter families when using BIC
is stronger than when using the AIC [50].

Since the criteria-based methods do not perform a formal
GOF hypothesis test, they therefore cannot state whether
the copula family with the least AIC/BIC is suitable for the
particular case. If the true unknown copula is not among
the series of candidates, selecting the copula with the least
criteria value may be incorrect. Thus, using these criteria
in combination with GOF test is preferred to avoid the
misinterpretation for the copula model selection. Alterna-
tively, to reduce computational cost for GOF tests, several
graphical tools can also provide useful visual analysis
supporting the copula selection such as CDF or lambda
plots.

F. COPULA PARAMETER ESTIMATION
This study adopts the most common methods: full (or exact)
maximum likelihood (FML) and an inference function for
margins (IFM) [51] to estimate the copula parameters.The
FML method accords to a method where the likelihood is
maximised over the copula parameter and margin parameters
simultaneously, and thus also called the one-step ML proce-
dure. The estimated copula parameter θ̂ is acquired by max-
imising the log likelihood and the log-likelihood function, for
example for a bivariate case, is defined as:

l (θ) =
n∑
i=1

log
{
c
[
F1
(
x1,i
)
,F2

(
x2,i
)]
f1
(
x1,i
)
f2
(
x2,i
)}
.

(9)

Clearly, θ̂ is the global maximizer of l (θ) and the asymp-
totic theory can be applied to both the margins as the copula
under standard regularity conditions. Hence, the maximum
likelihood estimator converges to a normal distribution with
mean zero, i.e.,

√
n
(
θ̂ − θ

)
∼ N

[
0, J−1 (θ0)

]
where θ0 is

the true value and J denotes the Fisher’s information matrix.
The estimates of the ML parameter can be acquired using a
numerical maximisation method. However, this can be com-
putationally difficult for high dimensional models because
the parameters of margins and the dependence structure are
jointly estimated.

In accordance with the proposed IFMmethod, themarginal
distribution parameters are estimated first by optimising sep-
arately each marginal likelihood. Subsequently, the copula
parameter is acquired by optimising concentrated likelihood
in the second step. Thus, this method is also referred as
the two-step ML procedure. Under standard regularity con-
ditions, we also have that

√
n
(
θ̂ − θ0

)
is asymptotically

normal with mean zero. The IFM method is found to be as
a highly efficient estimator closed to the FML but computa-
tionally more attractive compared to the FML [42], [52].

If the margins are estimated non-parametrically using their
empirical CDFs, then it results in the semi-parametric (SP)
method (Genest, Ghoudi, and Rivest, 1995). Let û = F̃X (xi)
and v̂ = F̃Y (yi) be the pseudo-data of observations acquired
by their empirical CDFs, the unknown copula parameter are
estimated by the maximising the pseudo log likelihood as:

θ̂ =

n∑
i=1

log
∑(

ûi, v̂i; θ
)
. (10)

It can be seen that the joint CDF of (X ,Y ), C
(
û, v̂; θ

)
is consistent whether the marginal distributions are known
or not. Compared to the FML and IFM (with parametric
margins), the SP method allows the margins to take arbitrary
and unknown functional forms. A possible shortcoming of
the fully parametric models (i.e., FML and IFM methods)
is that the copula parameter estimation may be inconsistent
even when just one of the margins is mis-specified. The SP
is found to performs better than ML and IFM methods when
the margins are unknown which is the most frequent case in
practice [53].

VOLUME 10, 2022 45117



T. Nguyen-Huy et al.: Student Performance Predictions for Advanced Engineering Mathematics Course

III. MATERIALS AND METHODS
A. STUDENT PERFORMANCE DATA
To design and evaluate the newly PDVR and NPDVR
copula-based models used in the prediction of engineer-
ing mathematics student success, this paper has analysed
data from a second-year engineering mathematics course
(ENM2600 Advanced Engineering Mathematics & and
ENM1600 for ENM2600 Engineering Mathematics) used
earlier in developing a machine learning model [1]. The
data comprised of continuous internal assessments and
weighted scores from 2015-2015 used to assign a pass-
ing or failing grade. The ENM2600 data had marks for
743 online (ONL) and 716 on-campus (ONC) students,
whereas ENM1600 (whose results are included in the
Appendix) had marks for 817 ONC and 1299 ONL stu-
dents generated after a data-cleansing phase that deleted
all missing rows/student records. These courses are taught
and administered by the School of Mathematics, Physics,
and Computing in the Faculty of Health, Engineering, and
Sciences at the University of Southern Queensland (USQ)
in Australia. Other than being a core component of the
engineering curriculum to meet Engineer’s Australia pro-
gram requirements, ENM2600 plays an essential role as
a service course for several programs including a Bache-
lor degree in Engineering, Master of Science, and others.
ENM2600 is an updated course from a previous curriculum
to satisfy the Australian engineering program accreditation
requirements.

In the ENM2600 course, student performance is assessed
using two quizzes (marked out of 50), denoted as Q1 & Q2,
and three assignments (marked out of 150) denoted as A1,
A2 & A3, including a final examination (marked out of 600),
denoted as EX that generates a weighted score, in %, WS to
assign a passing grade (HD, A, B, C, orD). These assessments
include topics onmathematical concepts from an introduction
to the advanced skills for engineering and surveying profes-
sionals (Complex Numbers, Ordinary Differential Equations,
Series, Multivariable Calculus, and Linear Algebra). Areas
such as Ordinary Differential Equations and Series topics
include direction fields, Euler’s method, first order separa-
ble ODEs, first order and second order linear ODEs with
constant coefficients, Taylor and Fourier series. Multivari-
able Calculus includes representation of functions of several
variables, surfaces and curves in space, partial differentiation,
optimisation, directional derivatives, gradient, divergence and
curl, line integrals of the 1-st and 2-nd kinds, iterated inte-
grals, and Green’s theorem. The assessment items (quizzes
and assignments) are spread through a 13 week teach-
ing semester and provide an ongoing evaluation of student
performance.

In this study, we considered various datasets from the engi-
neering mathematics course. As USQ is renowned for both
web-based (online) and on-campus (face-to-face) teaching,
in this study, the performance data for engineering mathe-
matics students were taken from ONL or ‘‘online’’ and ONC
or ‘‘on-campus’’ offers. All predictive models were built

using data over 2013-2018 taking into account two teaching
semesters. Before obtaining engineering mathematics stu-
dents’ performance data, an ethical approval (H18RE236)
was applied for, and granted by the university’s ethics com-
mittee in accordance with the Australian Code for Respon-
sible Conduct of Research (2018) and National Statement
on Ethical Conduct in Human Research (2017). The project
was considered low-risk as it did not collect any student’s
identifiable information directly.

B. CONSTRUCTING D-VINE REGRESSION MODEL
We applied D-vine based regression modelling meth-
ods to predict a response Y (i.e., examination mark or
weighted score in engineering mathematics) given the influ-
ence of a predictor X1, . . . ,Xd (e.g., assignment or quiz
score in engineering mathematics), with d ≥ 1. Our
D-vine based regression method concurs with literature [54]
so here, we present only the main steps in this tech-
nique, noting that the prediction is attained via a condi-
tional quantile function of joint distribution of X and Y
expressed as

qα (x1, . . . , xd ) = F−1Y |X1,...,Xd
(α |x1, . . . , xd ) , (11)

where α ∈ (0, 1) is the quantile levels of interest.
We followed the notion that with V = FY (Y ) and Ui =

Fi (Xi), the corresponding values v = FY (y) and ui = Fi (xi)
with a transformation using kernel density method (Gaussian
kernel) and the plug-in bandwidth to minimise the asymp-
totic mean integrated squared error so that conditional copula
function takes the form of

FY |X1,...,Xd (y |x1, . . . , xd )

= P [FY (Y ) |F1 (X1) , . . . ,Fd (Xd )]

= CV |U1,...,Ud (v |u1 , . . . , ud ) . (12)

The inverse function is therefore

F−1Y |X1 ,...,Xd
(α |x1, . . . , xd )

= F−1Y

[
CV |U1,...,Ud (v |u1, . . . , ud )

]
. (13)

The estimated quantile of the response variable can be
obtained as

q̂α (x1, . . . , xd )

= F̂−1Y

[
Ĉ−1V |U1,...,Ud

(
α
∣∣û1, . . . , ûd )] , (14)

where Ĉ−1V |U1,...,Ud

(
α
∣∣û1, . . . , ûd ) increases monotonically

in α.
This computation requires one to estimate the multivariate

copula first. It is noted [54] have suggested fitting a D-vine
copula to data (V ,U1, . . . ,Ud ) with a fixed order V −Ul1 −
. . . − Uld in such a way that V is the first node in the first
tree) with (l1, . . . , ld ) as the ordering of d-dimensional D-
vine copula as an arbitrary permutation of (1, . . . , d).

The conditional distribution of the response V given
the predictors (U1,U2,U3) is recursively expressed
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in four-dimensional D-vine with order V −U1 −U2 −U3 as

CV |U1,U2,U3 (v |u1, u2 , u3)

= hV |U3;U1,U2

[
CV |U1,U2 (v |u1, u2 )

∣∣CU3|U1,U2 (u3 |u1, u2 )
]

= hV |U3;U1,U2

{
hV |U2;U1[

CV |U1 (v |u1 )
∣∣CU2|U1 (u2 |u1 )

] ∣∣hU3|U1;U2[
CU3|U2 (u3 |u2 )

∣∣CU1|U2 (u1 |u2 )
]}

= hV |U3;U1,U2

{
hV |U2;U1

[
hV |U1 (v |u1 )

∣∣hU2|U1

(u2 |u1 ) ]
∣∣hU3|U1;U2

[
hU3|U2 (u3 |u2 )

∣∣hU1|U2 (u1 |u2 )
]}
.

(15)

And thus, the conditional quantile function is defined as

C−1V |U1,U2,U3
(α |u1, u2, u3 )

= h−1V |U1

{
h−1V |U2;U1

[
h−1V |U3;U1,U2

(
α
∣∣hU3|U1;U2(∣∣hU3|U2 (u3 |u2 )

∣∣hU1|U2 (u1 |u2 )
))
|∣∣hU2|U1 (u2 |u1 )

]
|u1
}
. (16)

The conditional copula function has been expressed in terms
of nested h-function and its inversion corresponding with the
pair-copula, i.e.

ĈV |U = hV |U =
∂ĈVU (v, u)

∂u
. (17)

As the order of predictors can be arbitrary, it can result several
D-vine copula models. Hence, to select a parsimoniousmodel
for our study, i.e., the influential predictors can be added into
themodel, and the order of predictors yielding themost power
of predicting the response, the order of theUi is parametrised
and selected via maximum conditional likelihood [8].

The proposed algorithm in this study accords to [54],
and it has many advantages in constructing a D-vine copula
model as it can automatically choose the influential pre-
dictors by ranking them based on their strength of predict-
ing response and thus ignoring any superfluous variables.
The method, therefore, automatically overcomes the typical
issues of regression such as collinearity, transformation, and
inclusion/exclusion of predictors. Furthermore, as mentioned
above, the D-vine copula allows flexible modelling of the
dependence between the response and the selected predictors.

In Figure 2, we describe the steps in this study. For the
case of using parametric copula families described in Table 1
we denoted the model as a parametric D-vine regression
model (PDVR). Otherwise, if non-parametric copula families
(independence and transformation kernel) were used, then
the model was a non-parametric D-vine regression model
(NPDVR).

IV. RESULTS AND DISCUSSION
A. EXPLORATORY ANALYSIS
To appraise the performance of parametric D-vine regression,
PDVR and non-parametric D-vine regression, NPDVR-based
models to investigate student performance and to exam-
ine its practicality in Advanced Engineering Mathematics
decision-making through probabilistic prediction of student

FIGURE 2. Flowchart describing the primary steps required to develop the
parametric D-vine regression, PDVR and non-parametric D-vine
regression, NPDVR models used to predict student performance in
ENM2600 Advanced Engineering Mathematics course.

success, we explored causal relationships between continu-
ous assessments. We therefore utilized the three assignments
(i.e., A1, A2 & A3), two quizzes (Q1 & Q2), examination
scores (EX ) and the weighted score (WS) to evaluate the util-
ity of PDVR and NPDVR, in respect to the linear regression
model.

The results are shown in Figure 3, where Kendall’s cor-
relation coefficient τ and the corresponding Kendall’s plots
are created for the specific case of ENM2600 considering
studentsmarks for on-campus and online coursemodes. Next,
we also explored these data in terms of a Kendall plot in
accordance with [55] and [33] that attempts to generate infor-
mation on bivariate copulas equivalent to a quantile-quantile
plot approach.

To interpret this, we must determine whether data points
lie approximately on the diagonal, and if so, then the two
variables can be approximately independent. By contrast,
a deviation of the data points away from the diagonal line
is expected to indicate the dependence between the two vari-
ables. If this happens for the plot representing Q1 and WS
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FIGURE 3. The Kendall’s correlation coefficient and Kendall’s plot used to
explore student performance data in ENM2600 Advanced Engineering
Mathematics course for: [a] on-campus (ONC) face-to-face, and [b]
online (ONL) web-based student cohorts.

in such a way that the distance is relatively large, we would
observe a stronger degree of dependency among these bivari-
ate data. If the data however are located above the diagonal,
one would expect a positive dependence, or vice versa if the
data are located below the diagonal for a negative dependence
result.

A closer examination of Figure 3 reaffirms the vital
importance of examination score (EX ) in predicting the
weighted score (WS) for both on-campus and online offers of
ENM2600 course. This is evident through a greater weighted
proportion of WS (versus Q1, Q2, A1, A2 and A3) required
to yield a WS value as indicated clearly by high Kendall’s
correlation coefficient. This result, although not surprising,
indicates that the examination mark which constitutes a bulk

of course content, is the most dominant indicator of weighted
score, and therefore plays a vital role in a passing grade
awarded to a student.

When assessed in terms of the Kendall tau plot, the above
result is further confirmed where all data points are approxi-
mately located on the curve associated with a perfect positive
dependence. For example, in case of ENM2600, the degree
of association between EX and WS in ONC student cohort
yields a Kendall’s correlation coefficient ≈ 0.847, which
is only slightly larger than that of the ONL student cohort
(≈ 0.80). However, the association between all continuous
assessments and WS for ONL student cohort is generally
stronger than that of ONC cohort. The association between
continuous assessments and EX for the ONL cohort is also
higher than that of ONC cohort, except for the case of A1.
Furthermore, it can be construed that the influence of Q1 and
Q2 on the values of EX and WS is relatively small in both
the ONC and the ONL cohort. By contrast, for ENM1600
(see the Appendix), the degree of association between EX
and WS of the ONL cohort (with Kendall’s correlation coef-
ficient ≈0.86) is slightly greater than that of the ONC cohort
(≈0.84). It is interesting to see that A1 still has the highest
degree of association, with EX and WS for the ONC student
cohort while Q1−3 have a greater association with EX and
WS, compared to A1−2 for the ONL student cohort.

B. COPULA-BASED PREDICTIVE MODEL OUTCOMES
The accuracy of a resulting copula model by non-parametric
fitting of the marginal distributions was checked using graph-
ical analysis.

Figure 4 is a histogram of assignment, A1 that has been
overlaid by an empirical density and a density derived from
the kernel function estimate. Evidently, the data appears to be
appropriately fitted using the proposed kernel and the plug-in
bandwidths of this plot that describe these data characteris-
tics. The right side shows the histogram of the probability
integral transform that reveal considerable degree of unifor-
mity across the unit interval.

Table 2 represents the most appropriate parametric bivari-
ate copulas selected for all pairs between the continuous
assessment marks with the value of EX and with the value
of WS for both study modes. This selection is based on
the magnitude of the AIC and the significance level of the
statistical independence test that is set to p ≈ 0.05 [50].
The result is jointly attested with a lambda-plot, as per

Figure 5. To interpret this, compare the empirical and theoret-
ical λ-functions that indicates that the BB6 and the Gumbel
copulas appear to be the optimal model candidates among the
various bivariate copula families. This is because these two
copulas demonstrate good ability to model the dependence
structure between EX and WS for ENM2600 ONC student
cohort. Notably, the BB6 copula yields a smaller AIC and
thus, must be selected for further modelling and analysis of
student performance.

The present results show that copula-based models are rel-
atively advanced in capturing tail dependence jointly between

45120 VOLUME 10, 2022



T. Nguyen-Huy et al.: Student Performance Predictions for Advanced Engineering Mathematics Course

FIGURE 4. An illustrated example of kernel density estimation as
required to fit marginal distribution of Assignment 1 (A1) to predict
on-campus engineering mathematics ENM2600 student performance and
the probability integral transformation.

predictors and a target variable. For example, for ENM2600
ONC students, the correlation between continuous assess-
ments and EX, orWS, are modelled well by copula functions
associated with tail dependence (see Table 2). The result
obtained implies that students who physically attend classes
in on-campus course offer, are more likely to attain a rel-
atively good score in continuous assessments, and as such,
will have a plausible chance to obtain a high EX and WS.
For example, the bivariate copula constructed between WS
and EX data (ONL) attained a higher (lower) Log likelihood
and AIC of logLik = 975.90 and −1947.80, whereas for
ONC, these were 794.05 and −1581.54 respectively. On the
contrary, students are likely to have extremely low scores
for EX and WS if they attain very low outcomes in their
continuous assessments.

To investigate the case of ONL course offers, we note that
elliptical copulas are dominant in modelling the association
between pairwise variables, and in particular, between contin-
uous assessments and EX. This reflects a weaker dependence
in the upper and lower tail between the data pairs of interest.

FIGURE 5. Empirical and theoretical λ-functions among different
bivariate copula models employed to simulate the joint distribution of
examination and weighted scores in ENM2600 Advanced Engineering
Mathematics. [a] on-campus (ONC) face-to-face and [b] on-line (ONL)
web-based course offers using between Assignment 1 and Assignment 2.
The dashed lines represent the limits that correspond to statistical
independence (i.e., τ = 0) and co-monotonicity (i.e., τ = 1, λ = 0)).

Furthermore, high coefficients of the lower tail dependence
between the two important assessments (i.e., A1 and A2)
and WS for both course modes imply that there is a greater
probability students will have very low WS if they have a
very low score for A1 and A2. On the other hand, EX and
WS exhibit high upper tail dependence reflecting the fact
that students probably have a very high WS if they have a
very good result for the EX. The estimated τ -value (indicated
in Table 1) derived from copula models is also found to be
similar to the empirical values (i.e., Fig. 6). Our findings offer
strong indications of the practical utility of copula models in
jointly capturing the dependence structure among the student
learning variables.

In this study, we also developed bivariate copula mod-
els for a probabilistic prediction of EX and WS that was
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TABLE 2. Parametric bivariate copula model development parameters
with each explanatory variable (Quiz Q and Assignment A) paired with
response variable (i.e, Examination Score EX and Weighted Score WS
after best copula selection. The lowest Akaike Information Criteria (AIC),
in agreement with the lambda plots shown in Figure 5 were used with A1
selected as the best predictor for EX and the BB1180 copula selected to
model the pairwise EX -A1 relationship showing that A1 is a first
predictor added into the proposed D-vine regression model after the
response variable EX. Note: UTD = upper tail distribution, LTD = lower tail
distribution, logLik = log-likelihood, AIC = Akaike Information Criterion,
θ1 and θ2 = optimal copula parameters and τ = Kendall tau coefficient.

conditional on student performance in continuous assess-
ments by using D-vine regression model. Figure 6 and

FIGURE 6. Bi-variate Copula Models: Conditional probability plot of
examination score (EX ) being less than or equal to a certain mark, ex
given that assignment A1 is less than or equal to a certain mark, a1 in the
ENM2600 course in both on-campus and online students.[To interpret
this result, consider an on-campus student who has an Assignment
1 score of 150/150 marks, is expected to have a 60% probability to score
a 300/600 examination score (or a pass in the examination).

Figure 10 in Appendix A are examples of EX predictions
given the conditional outcomesA1 for both studymode.More
precisely, the figure shows the probability that the EX is less
than or equal to a specific score given A1 is less or equal to
a specific score. To observe the difference in the probability
over the distribution, the values of conditioning variables
(A1) are set to a wide range, from very low score to very high
score (i.e., representing different quantiles).

An interpretation of these plots is relatively straightfor-
ward. For example, if a student studying ENM2600 gets a
low score for A1 = 20 (out of 150), the probability that
a student has EX = 250 (out of 600) is approximate 77%
without knowing the result of A2 for both course offer modes.
This probability is especially higher or ≈88 % if the student
takes the ENM1600 (see the Appendix) but study through the
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FIGURE 7. Tri-variate Copula Models: Conditional probability plot of EX
being less than or equal to a certain mark given that A1 and A2 are less
than or equal to a certain mark (a1 and a2) for ENM2600 course in both
on-campus and online students. [To interpret this result, consider an
on-campus student with A1 = 20/150 marks and A2 = 30/150 marks,
expected to have 80% probability to score an EX = 250/600 marks.

ONL course offerings. Clearly, a higher score for continuous
assessment can lead to a lower probability that the student
can have EX lower than the average value (300/600). It is also
worth pointing out that ENM1600 represents an opposite pat-
tern to ENM2600 (see Figure 10 in Appendix A), as indicated
by the fact that if a student doing ENM1600 ONL mode has
a low score for A1 = 40, the probability that the student will
have EX = 250 is≈66%. This is lower than that of≈74% for
the ONC course offer. While for ENM2600, these figures are
≈78% for ONL mode and ≈70% for the ONC course mode.
From an education decision-making perspective, it is of

prime interest to our study to see how the predicted EX can
vary given the joint effect ofA1 andA2 as this information can
be practically useful in investigating the relative contribution
of the students’ continuous learning towards their final exam-
ination. This can be done by extending the bivariate copula
models to the case of multivariate copula models. For the
tri-variate copula models, Figure 7 for the case of ENM2600,

(and Appendix A for the case of ENM1600), are illustrations
showing the probability of an EX being less than or equal
to a specific score, ex given A1 and A2 is less than or equal
to a specific score a1 and a2. For example, students taking
ENM2600 ONC course with low scores in both A1 = 20 and
A2 = 30 are likely to have a probability of ≈84% to get
EX score lower than the average. This probability is slightly
higher for ONL students as 87%, and these results are also
confirmed for the case of ENM1600 (see Appendix A).

For the bivariate model, students studying under the
ONC (ONL) course mode who have also attained, for exam-
ple, A1 = 80 or A1 = 60 will have estimated probabil-
ity of ≈76% (74%) or ≈77% (70%) to attain EX = 300
(i.e., a borderline pass) for ENM2600 or ENM1600 (see the
Appendix), respectively. However, when lower assignment
marks are considered, for example A2 = 30 or A2 = 20,
these figures elevate to ≈84% (86%) or ≈83% (83%). These
findings are expected when a student attains an average score
for A1 and also get the lowest score for A2, in which the
probability of these students will have a low score for EX is
higher. In addition, students who have the same performance
in A1 = 130 for ENM2600 or A1 = 100 for ENM1600 can
have a higher chance to attain a high EX score if they have
better results in A2.
To further corroborate these findings, we note that, for both

study modes in ENM2600 course, students with a good score
in A1 but a low score in A2 (e.g., A1 = 130 and A2 = 30)
are expected to have a higher probability of getting an EX
that is lower than a specific threshold, compared to those
with low score in A1 but a high score in A2 (e.g., A1 =
40 and A2 = 120). Furthermore, the conditional probability
of the ONL course mode is more spread than that of the
ONC course mode. This implies that there appears to be a
larger difference in the probability of achieving an EX score
between the student groups who have low scores and those
who have good scores in both A1 and A2.

In the next stage, the performance of newly developed
copula-statistical predictive models was evaluated by split-
ting the entire dataset into two separate parts: one for training
and another for testing purposes so the generalisation skill of
the model can be benchmarked. To implement this strategy,
≈25%of the data are randomly selected for testing and≈75%
for building these models. This procedure is also repeated
100 times to account for any stochastic variations among
input and target sets. Note that this newly proposed algorithm,
elaborated in Figure 2, was applied to select the most parsi-
monious D-vine copula model in each of the training phases.

Table 3 and the material in Appendix A, summarize
the most optimal PDVR and NPDVR models was built
for the prediction of EX and WS based cll and cAIC
using continuous assessment marks as the predictors. Evi-
dently, the NPDVR models appear to exhibit a greater
degree of parsimonious behaviour relative to the PDVR
model. For example, this model utilizes fewer predictor
variables to produce the same quality student performance
predictions.
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FIGURE 8. Boxplots showing the root mean squared error produced in the prediction of EX and WS using an ensemble of
100 simulations using the proposed parametric D-vine regression (i.e., PDVR) and the non-parametric D-vine regression (i.e., NPDVR)
models against a traditional linear regression (LR) method.

In Table 4, we show the selected D-vine copula model
created with joint structure EX -A1-Q2-A2-Q1 for ENM2600
ONC student cohort. In the first tree, the edge 1, 2 denotes
the pair-copula between the response EX and predictor A1
(i.e., the most influential variable) and the corresponding cop-
ula function, which is constructed through the survival BB1
(BB1180) algorithm. The next edge 2, 3 is the pair-copula
between A1 and Q2, and so forth. The importance of each
predictor added into the copula model in each step is also
included for comparison purposes. The results indicate the
importance of predictor EX to the response WS variable.
Interestingly, the performance of assignments in ENM2600
appears to have the most influence on the EX, except for
ENM1600 ONL (see Appendix A) where quiz scores are
more important to predict EX. The cause of this discrep-
ancy is not clear yet, but plausible reasons could include
the difference between the two courses (i.e., advanced versus
intermediate) in terms of level of complexity of problems in
quiz/assignments, or others that warrant a further comparative
investigation.

The results of the predicted mean values of EX and WS in
the testing phases are presented in Figure 8 and the materials
in Appendix A, together with traditional method using linear
regression (LR) are shown for comparison. The predicted
mean values are obtained by setting the quantile level α ∈
(0, 1) in 100 repetitions of the model. The box plot reflects
the stochastic property of three regression models at different
quantiles represented by the values of the median, interquar-
tile range (IQR) (i.e., from 25th percentile Q1 to 75th per-
centile Q3, the minimum (Q1 – 1.5 × IQR), maximum
(Q3 + 1.5 × IQR) and the outliers.
In the above, we also show the root mean square

error (RMSE) indicating that when there is a very high asso-
ciation (or high correlation coefficient) between response and
predictors (i.e.,WS and EX in this case), the LR model yields
a better prediction than the vine copula-based model. How-
ever, in case that associations between response and predic-
tors (i.e., EX and continuous assessments) has larger scatter
or have a low correlation coefficient, the vine copula-based
models provide a very competitive advantage, performing

45124 VOLUME 10, 2022



T. Nguyen-Huy et al.: Student Performance Predictions for Advanced Engineering Mathematics Course

TABLE 3. The optimal combination of predictors for the proposed
parametric (PDVR) and non-parametric (NPDVR) D-vine regression models
for each of the target target (i.e., EX & WS) employed to predict student
performance in Advanced Engineering Mathematics ENM2600 course
for the face-to-face (on-campus) and web-based (online) students. [Note
that the EX or the WS target is located in the first node of the first tree
and the predictors Q and A are added successively according to the
conditional log-likelihood (cll ) and the corrected Akaike Information
Criteria (cAIC) values.]

much better than the LR model. These results reflect the
distinct nature of each model. The LR model describes the
best fitting by minimising the deviation between data points
and themean valuewhile the copulamodel fully capturing the

TABLE 4. An Illustrated example of the proposed PDVR model (see
Table 3) employed to predict the EX values using the student assessments
as the predictors for ENM2600 face-to-face (on-campus) students. Note
that the copula parameters used are as per Table 2. [To interpret this
result, consider Tree 1, for example, where Edge 1,2 denotes the bivariate
copula between EX and A1 whereas in Tree 2, the Edge 1,3;2 denotes the
copula between the EX and the A2 conditioned on the values of A1.]

entire dependence structure, including the tail dependence.
This dependence structure-based model, together with the
conditional probabilistic-based model (Figure 6 and 7) is
perhaps, a distinct advantage of the developed copula-based
methods, in respect to the linear regression, or another tradi-
tional predictive model.

V. LIMITATIONS, FURTHER INSIGHTS, AND FUTURE
SCOPE
Although several types of continuous assessment data were
considered to evaluate the students’ overall performance
through their weighted scores leading to a grade, this study
has some limitations that should be the subject of a further
independent investigation. One such limitation was that we
did not consider lurking variables, external and inter-related
factors such as a student’s gender (male or female), attitude,
age (whether a student is mature aged, marital or school
leaver status), socio-economic advantage or disadvantage
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(rural and urban), race (white, black, and Hispanic), house-
hold parental structure (biological parents, single parent, and
other structure), first in the family to attend university, and
the proper prerequisite knowledge to learn university mathe-
matics, which potentially influence the weighted scores and
the grade. There is a plausible indication that these factors
can possibly act as barriers to the student’s participation,
access to higher education, retention and overall success at
university [56], [57]. Some recent studies are showing the
great relevance of such causal factors related to successful
achievement of students and how these can affect the overall
grades at university [58]–[60].

Based on the success of copulas as a pathway to model
student performance for educational decision-making, infor-
mation on external and other casual factors can be pooled
into a multivariate copula model to directly explore the com-
pound influence on the variables of interest. Such factors
can be adopted to model the marginal distribution before
they are actually coupled in joint distribution model. For
example, Vuolo (2017) investigated the association between
a GPA and student’s alcohol usage by using copula methods
where marginals were modelled with several predictors e.g.,
gender, community type and paid work. In that study, the
advantage of copula methods in modelling joint probability
of GPA and alcohol usage was highlighted. Contini et al. [58]
investigated potential knowledge gaps based on mathematics
students’ test scores using the consideration of gender differ-
ences in schools under a STEM discipline in Italy. The find-
ings showed the influence of gender on test results, in which
the girls systematically under-performed the boys.

Another matter of concern is that the fitted marginal distri-
bution or copula functions by parametric or non-parametric
method can yield uncertainties in the final predictive model,
thus influencing the results. Examples of these uncertainties
are essential error sources that are derived from the data
source itself, the nature of the methods used for estimations
and the model selection based on a statistical approach (i.e.,
goodness-of-fit test). The estimate of marginal distributions
or copula parameters depends on the observation period [61].
Therefore the dependence structure within univariate or mul-
tivariate distribution may vary with the data length, leading
to differences in selecting margins and copulas.

It should also be noted that marginal distributions are fitted
parametrically using a range of methods, e.g., maximum like-
lihood, moment matching, quantile matching, maximizing
goodness-of-fit estimation or minimizing distance estima-
tion [62]–[65]. Clearly, the best fitted distribution selected
for any variable may be different depending on the method.
On the other hand, marginal distributions can also be fit-
ted non-parametrically, for example, using kernel density
estimators as in this study. However, this method relies on
the selection of the density function and plug-in bandwidth
parameters, lower and upper bound and the degree of the
polynomial (e.g., log-constant, log-linear or log-quadratic
fitting) [66], [67]. These selections may lead to different
results of the marginal fitting process, and thus, contribute

to uncertainty. Copula parameter can be estimated using dif-
ferent approaches, such as fully parametric, semi-parametric
to non-parametric methods, which potentially generates sim-
ilar problems, mentioned above for fitting the marginal
distributions.

The incorporation of a purely statistical approach can lead
to potential issues where some of the copula parameters may
equally fit the goodness-of-fit tests [61], [68], but they may
carry errors due to the estimator and thus the overall accuracy
of the simulated data can be confounded. This problem can
have impacts on the process of finding a unique combination
of parameters, which are realistically better with the others.

One combination of copula parameters may either be supe-
rior to the others based on the respective statistical goodness-
of-fit tests or inferior in regard to another statistical measure.
For example, when a copula family is chosen using the BIC
criteria, the penalty for two-parameter copulas (e.g., Student’s
t , BB1, BB6, etc.) may be larger than that based on AIC [50].
To overcome these issues, we require further examination to
reduce complications in the selection of best copula model
along with the best set of parameters of the optimal cop-
ula. We thus aver that such error sources may contribute
to uncertainty in copula models, so the choice of a good
copula function cannot be overstated [69], [70]. Furthermore,
in future studies, researchers can use copulas to generate a
larger number of inputs for a machine learning model to
resolve the student performance data shortage problems and
the larger data in machine learning models. Hybrid copula
models whereby distribution functions can be used for this
purpose. Developing such types of algorithms was beyond
the scope of this study and therefore could be a promising
direction for future research and awaits another independent
study.

Finally, as the data for this study was limited to the
2015-2018 period, a direct comparison of any ’new’ student
performance data after 2019 (i.e. post-COVID-19 period)
with this pre-COVID-19 is impossible, but such a study
would also be an interesting endeavour to pursue subject
to the availability of such new data and the consistency
among the assessments. While the comparison of new data by
means of a confusion matrix could be a useful research, this
was beyond the scope of the present study given that ethics
approval for such data post 2019 is required. Furthermore,
the changes in examination format being online-only after
COVID-19, as opposed to invigilated exams pre-COVID-19,
prohibit a direct comparison of these models acting as an
obstacle in pursuing this objective, and therefore will await
another separate study.

VI. CONCLUSION
This research, extending the earlier machine learning-based
study [1], has incorporated a new copula-based modelling
method to examine the influence of continuous assessment
scores on the weighted score in engineering mathematics
students that lead to a successful grade in the first- and
second-year engineering mathematics courses. To advance
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the earlier research work, this study has built new meth-
ods to predict the whole distribution of weighted scores
including the tail distribution representing the low and high
scores within a probabilistic framework. To do this, a D-vine
regression model was constructed and assessed with several
predictor datasets for on-campus and online student cohorts
in ENM2600 course offers. A cross-validation of the copula
model applied for another lower level course, ENM1600
(see Appendix A) was also performed. Using the case of
Advanced Engineering Mathematics, and the lower level
engineering mathematics courses, the efficacy of the cop-
ula models in predicting engineering mathematics student
success using continuous assessment data, over 2013–2018,
was demonstrated. While this study was motivated by earlier
work [1] that developed extreme learning machine, random
forest and Volterra models, the added capability of copulas to
predict the joint (or whole) distribution targets including the
tail distribution and extreme values (see Figures 6-7) made a
significant contribution to knowledge compared to the earlier
work. Due to the nature of the copula method suited for
probabilistic predictions (Figure 6-8) rather than point-based,
single-value target predictions as shown in [1], a direct com-
parison between that machine learning and copula method
was not possible.

The results showed that quizzes and assignment marks
could be jointly modelled to produce examination scores and
weighted scores. Statistical and visual analysis of predicted
and real datasets indicated significant benefits of the newly
developed D-vine copula models to capture the dependence
structure between the predictor and target variables. Most
importantly, the ability of copula-based models to correctly
describe the dependence in lower and upper bounds, corre-
sponding to very low and high scores, respectively, showed
its practical usefulness in the engineering education, partic-
ularly in understanding the ongoing learning needs of future
engineers that affect their assignment or other marks ahead
of their examination period and to reflect with their unique
learning styles and the required early interventions needed
to reduce the risk of failure. With some modifications, the
copulamodelmethods generated in this studymay be adopted
in other discipline areas where the performance of students
need to be predicted ahead of their examination times to
improve teaching and learning practices.

Using prior information from internal assessments on stu-
dent performance, the course instructors and the academic
Faculty can develop certain remedial measures for students
who secure relatively low marks in internal assessment and
quizzes to prevent their failure in the final examination, and
even in the overall course. It is important tomention that in the
context of the present study, quiz 1 and assignment 1 are given
relatively early into the semester i.e. weeks 3-6, and there-
fore, the remedial measures could include early interventions
based on modelling performance for the final examination.
Furthermore, quiz 2 and assignment 2 are normally ahead of
the examination period (between weeks 7 to 13, which can
be used to develop further remedial measures to prevent a

poor performance in the examination. Specific examples of
remedial measures could include more one-to-one support,
amending and balancing the depth and the level of diffi-
culty of the final examination, inclusion of more appropriate
content that are tested early in quizzes or assignments, etc.
These measures, however, would depend on the resource
availability, so the copula models can act as early indicators
of such resource needs and the exact remedial measures that
depend on the particular course and academic institutions.

APPENDIX A
CROSS-VALIDATIONS WITH ENM1600 ENGINEERING
MATHEMATICS COURSE
Using D-vine copula models developed for Advanced Engi-
neering Mathematics student performance predictions, fur-
ther testing and cross-validations were performed on another
course ENM1600, which was a lower level engineeringmath-
ematics course at the University of Southern Queensland
Australia.

A. MODEL DEVELOPMENT - ENM1600 ENGINEERING
MATHEMATICS
In this section, the proposed model development parameters
for copulas are shown in terms of the optimal combination of
predictors against the target variable.

1) PARAMETRIC D-VINE COPULA
2) NON-PARAMETRIC D-VINE COPULA
B. KENDALL CORRELATION AND KENDALL PLOTS
The Kendall correlation coefficients and Kendall tau plot
is used to demonstrate the association between predictors
(A1, A2, A3, EX ) versus the target (WS) in the problem of
predicting student performance in ENM1600.

C. BI-VARIATE COPULA MODEL CONDITIONAL
PROBABILITY PLOT
In Figure 10, as show the probabilistic prediction of exam-
ination score over [0, 600] conditional upon assignment
A1 = [20, 40, 60, 80 & 100] out of 150 total marks.

D. TRI-VARIATE COPULA MODEL CONDITIONAL
PROBABILITY PLOT
In Figure 11, as show the probabilistic prediction of exam-
ination scores over [0, 600] that are conditional upon joints
effect of assignment A1 = [30, 60, 80, 100] & A2 = [10, 20,
40, 50] out of 150 total marks.

APPENDIX B
THEORY ON MULTIVARIATE COPULA MODELS
A. ELLIPTICAL COPULAS
Figure 12 shows examples of the simulated JCDF and JPDF
for bivariate Gaussian copula given different levels of the
association parameters where the probability is evenly dis-
tributed across all values of both marginal distributions
in r the case of low relationship (τ = 0.15). When the
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TABLE 5. The optimal combination of predictor variables employed to
simulate the target EX and WS for the ENM1600 course using the
proposed parametric D-vine regression (i.e., PDVR) model. To interpret
this result, consider the target EX or the WS that is located in first node
of the first tree and predictors Q and A are added successively according
to conditional log-likelihood (cll) and corrected Akaike Information
Criteria (cAIC).

relationship is relatively strong (τ = 0.60), the highest prob-
ability is observed along the primary diagonal as the concor-
dance increases, meanwhile a considerable discordance exists
across the lowest and highest values. A negative association,
for example, appears in a similar manner, but in the opposite
corners.

B. ARCHIMEDEAN COPULAS
Table 1 introduces the most common one- and two-parameter
ACs tested in this study. In Figure 13, we show the JCDF
and JPDF for Clayton, Gumbel, Frank and Joe copulas and
also their association parameters corresponding to the same
τ value of 0.50. Notably, each copula clearly represents
different dependence structures over the joint distribution
representation.

The Clayton copula appears to be the most useful in mod-
elling the lower dependence while Gumbel and Joe copu-
las capture the upper dependence. Frank, like the Gaussian,
is a symmetric copula accounting for positive and negative

TABLE 6. As in Table 5 but for non-parametric D-vine regression (i.e.,
PDVR) model.

associations, as well as the concordant parts, however, they
are lighter in upper tails. The Independence copula can be
used to check the independence between variables where
copula do not rely on associated parameters as well as τ
values.

APPENDIX C
CONSTRUCTION OF MULTIVARIATE COPULA MODELS
In this paper, the multivariate elliptical copula, extended from
bivariate function, takes the form of an inversion of the Sklar’s
theorem. The multivariate Gaussian copula is defined as:

(u1, . . . , ud ; ρ) = φρ
[
φ−1 (u1) , . . . , φ−1 (ud )

]
, (18)

and the multivariate Student’s t copula:

C (u1, . . . ud ; ρ) = Tρ,v
[
T−1v (u1) , . . . ,T−1v (ud )

]
(19)

where ρ denotes a symmetric, positive definite matrix with
elements in the diagonal equal to one. φρ and Tρ,v are
the standardised multivariate normal Student’s t distribu-
tion, respectively, with correlation matrix ρ and v degrees
of freedom. Although these elliptical members are generally
possible to capture a wide range of dependence, including

45128 VOLUME 10, 2022



T. Nguyen-Huy et al.: Student Performance Predictions for Advanced Engineering Mathematics Course

FIGURE 9. The ranked Kendall correlation and Kendall tau plot for
ENM1600 Engineering Mathematics performance for [a] on-campus
(ONC) face-to-face and [b] online (ONL) web-based students.

heavy tails, they are not appropriate when there is asymmetric
dependence structures [71]. Further, the elliptical copula in
most cases cannot be given explicitly because the distribution
F and the corresponding marginal distributions are usually
represented in integral forms [72].

APPENDIX D
DETAILS OF MULTIVARIATE COPULAS AND THEIR
APPLICATIONS
A. ELLIPTICAL
Generally including multivariate Gaussian and Student’s t
copulas. The multivariate Gaussian copula is defined as:

C (u1, . . . , ud ; ρ) = 8ρ
[
8−1 (u1) , . . . , 8−1 (ud )

]
, (20)

and the multivariate Student’s t copula:

C (u1, . . . , ud ; ρ) = Tρ,v
[
T−1v (u1) , . . . ,T−1v (ud )

]
, (21)

FIGURE 10. Bi-Variate Copula Model for ENM1600: Conditional
probability plot showing the probability of an examination score, EX
being less than or equal to a threshold mark, ex conditional upon
Assignment 1, A1 being less than or equal to a threshold mark, a1.
To interpret this result, consider an on-campus student who has an
Assignment 1 score of 80/150 marks, is expected to have a 70%
probability to score a 300/600 examination score (or a pass in the
examination).

where ρ denotes a symmetric, positive definite matrix with
elements in the diagonal equal to one.8 and Tρ,v are the stan-
dardised multivariate normal Student’s t distribution, respec-
tively, with correlation matrix ρ and v degrees of freedom.

1) APPLICATIONS
The Gaussian copula exhibits tail independence meanwhile
the Student’s t copula is symmetric dependence in the lower
and upper tail. Although these elliptical members are gener-
ally possible to capture a wide range of dependence including
heavy tails, they are not appropriate when there is asymmetric
dependence structures [71]. Further, the elliptical copula in
most case cannot be given explicitly because the distribution
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FIGURE 11. Tri-Variate copula model results for ENM1600: Conditional
probability plot showing the probability of EX being less than or equal to
a threshold mark, ex given that the Assignment 1, A1 and Assignment 2,
A2 are less than or equal to threshold marks a1 and a2. To interpret this
result, consider an on-campus student with A1 = 100/150 marks and
A2 = 50/150 marks, expected to have a 50% probability to score an
EX = 300/600 marks (or a pass in the examination).

F and the corresponding marginal distributions are usually
represented in integral forms [72].

B. ARCHIMEDEAN
Generally including exchangeable and non-exchangeable
Archimedean copulas (ACs). Exchangeable ACs is a clas-
sical construction where bivariate ACs are extended to the
d-dimensional case given a strict generator:

ϕ : [0, 1]→ [0,∞] . (22)

The associated function C of a d-dimensional AC has close
form representation defined as:

C (u1, . . . , ud ) = ϕ−1 [ϕ (u1)+ . . .+ ϕ (ud )] , (23)

if and only if ϕ−1 is completely monotonic on R. Non-
exchangeable ACs is asymmetric generalization, hierarchical
ACs (HACs) [42] also known as nested ACs (NACs). The
HAC comprised ACs belonging to the same family may be
named as a homogeneous HAC, otherwise, a heterogeneous
HAC [73]. There are two special forms of HACs, namely
the fully nested ACs (FNACs) and the partially nested ACs
(PNACs) [42], [74]. The FNACs takes a relatively simple
form where u1 and u2 is coupled first by a bivariate copula
function C1 with the parameter θ1. Then that copula C1 is
coupled with u3 by a new copula C2 and the parameter θ2,
and so on.

The pair-copula is derived from the corresponding genera-
tor described in Table 1. The PNAC is a mixture of ordinary
ACs and FNACs. The HAC has been thoroughly investigated
in the literature [40], [75]–[77]. There are also multiplicative
ACs proposed by Liebscher [78] and Morillas [79].

1) APPLICATIONS
Archimedean copulas (ACs) can overcome the limitations
of the elliptical copulas. In exchangeable ACs, the ren-
dered dependence is symmetric in respect of the permu-
tation of variables, which means that the distribution is
exchangeable [72]. The multivariate ACs is very restricted
in high-dimensional cases because the multivariate depen-
dence structure relies on a single parameter of the generator
function. Non-exchangeable ACs can improve flexibility and
allow for non-exchangeable dependence structures. However,
one of the restrictions of the HACs is that only AC families
are used in the building block. Further, parameter restric-
tions require the parameters estimated for higher levels to
be smaller than those for lower levels, which may reduce the
flexibility for modelling dependence structures.

C. EXCHANGEABLE ARCHIMEDEAN COPULAS
Archimedean copulas overcome the limitations of elliptical
class. Bivariate ACs can be extended to the d-dimensional
case, given a strict generator ϕ : [0, 1] → [0,∞]. The
associated function C of a d-dimensional AC has close form
representation defined as:

C (u1, . . . , ud ) = ϕ−1 [ϕ (u1)+ . . .+ ϕ (ud )] (24)

if and only if ϕ−1 is completely monotonic on R+.
Figure 14 illustrates an example of a five-dimensional AC

in a classical copula construction process. Clearly, we note
that the rendered dependence is symmetric with respect of
the permutation of variables, which means that the distribu-
tion is exchangeable [72] and the multivariate AC is rela-
tively restricted in high-dimensional cases as the multivariate
dependence structure relies on a single parameter of generator
function.

D. NON-EXCHANGEABLE ARCHIMEDEAN COPULAS
We can construct multivariate ACs in alternative ways to
improve the flexibility of modelling of student performance
data and allow for non-exchangeable dependence structures
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FIGURE 12. The simulated joint cumulative distribution function (JCDF) and the probability density function (JPDF) of bivariate
Elliptical (Gaussian) copula models with differently parameters, θ and τ . For JCDF, see plots [a-c] [a] Gaussian: θ = 0.23; τ = 0.15,
[b] Gaussian: θ = 0.45; τ = 0.30, [c] Gaussian: θ = 0.71; τ = 0.60. For JPDF, see plots [d-f] [a] Gaussian: θ = 0.23; τ = 0.15, [b] Gaussian:
θ = 0.45; τ = 0.30, [c] Gaussian: θ = 0.71; τ = 0.60.
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FIGURE 13. The simulated joint cumulative distribution function (JCDF) and the probability density
function (JPDF) of bivariate Archimedian (Gaussian) copula models with differently parameters, θ and τ . For
JCDF, see plots [a-d] [a] Clayton: θ = 2.00, τ = 0.50. [b] Gumbel: θ = 2.00, τ = 0.50. [c] Frank: θ = 2.00, τ = 0.50.
[d] Joe: θ = 2.86, τ = 0.50. For JPDF, see plots [e-h] [e] Clayton: θ = 2.00, τ = 0.50. [f] Gumbel: θ = 2.00, τ = 0.50.
[g] Frank: θ = 2.00, τ = 0.50. [h] Joe: θ = 2.86, τ = 0.50.
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FIGURE 14. (a) Five-dimensional symmetric Archimedean copulas,
(b–d) Hierarchical Archimedean copulas (HAC) constructed and partial
nested, (c) Fully nested structure. The joint distribution between variables
u is modelled by the copula function C . For example, C1 is the copula
function for u1 and u2 and C2 the copula function for C1 and u3.

to be considered. Asymmetric generalization, hierarchical
ACs (HACs) [42] also known as the nested ACs (NACs),
is the most popular approach due to their flexibility so under
sufficient nesting conditions [80], this structure constructs of

a hierarchy of ACs with different levels. At the first level,
variables are grouped into distinct multivariate ACs with
all copulas in the first level again grouped into copulas at
level two, etc. This procedure continues until the top level
contains only a single HAC is achieved. The HAC comprises
of ACs belonging to the same family, or homogeneous HAC,
otherwise, a heterogeneous HAC [73] is achieved.

Two special forms of HACs, namely the fully nested
ACs (FNACs) and the partially nested ACs (PNACs) [42],
[74] are considered with FNACs taking a relatively simple
form where U1 and U2 is coupled first by a bivariate copula
C1 with parameter θ1.The copula C1 is coupled with u3 by a
new copula C2 and the parameter θ2, and so forth.

Figure 14c describes one possible structure for a
five-dimensional FNA copula model. The pair-copula is
derived from the corresponding generator described in
Table 1 where the PNAC is a mixture of the ordinary ACs
and FNACs.

A possible structure of a five-dimensional PNAC is
depicted in Figure 14(b-d). It should be noted that the HAC
has thoroughly been investigated e.g., [75] withmultiplicative
ACs in Liebscher [78] and Morillas [79].

However, one of their restrictions is that only the AC
families are used in building blocks and so the parameter
restrictions require the parameters estimated for higher levels
to be smaller than those for lower levels, which may reduce
the flexibility to model dependence structures.

E. VINE
Vine copulas are generally expressed in three forms: regular
(R)-vine, canonical (C)-vine, and drawable (D)-vine copulas.
For vine copulas, please see Part C in section II for more
details.) It is important to mention that vine copulas, also
known as pair-copula constructions ( [43]), are able to over-
come limitations mentioned above.

APPENDIX E
DESCRIPTIVE STATISTICS OF STUDENT PERFORMANCE
DATA-SET
To better understand the data features used in the modelling
process, in Tables 7 and 8, we show the descriptive statistics
of the data-set used to construct the proposed multivariate
copula models. It is evident that there is little difference
between the skewness, flatness and standard deviations of
the online (ONL) and on-campus (ONC) student performance
among both subjects under investigation. For example, the α
value for weighted score (WS) is≈ 17.0 vs 16.9 for ENM2600
ONL and ONC students, respectively whereas it is 17.4 and
17.0 for ENM1600. However, the characteristics of the pre-
dictor and target data-set based on their distribution indicators
for each course and student cohort occupies disparate values
to suggest that the nature of each predictor is different from
the other. For example, in terms of quiz 1 and quiz 2, we have
α = −1.8 vs −1.0 for ENM2600 ONL data-set, whereas in
terms of the exam score, it is 0.1 and in terms of weighted
score, it is−0.1. Similar differences are noted for ENM1600.
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TABLE 7. Descriptive statistics of Advanced Engineering Mathematics
(ENM2600) student performance data (2015-2018) used to develop
multivariate copula models. Note: α = skewness factor, β = flatness
factor, γ standard deviation of the data.

TABLE 8. Descriptive statistics for engineering mathematics ENM1600.

It is imperative to note that the copula models in this paper
provided a distinct advantage to handle the different statistical
properties of the predictor and target variables whereby joint
distributions with different shape, scale, or other statistical
factors for the quiz, assignment, exam score, weighted score
are considered through a unique set of copula parameters.
This indicates that in spite of the diverse (or disparate) fea-
tures provided by each predictor towards modelling the target
variable, copula models are precisely tailored to incorporat-
ing such differences in the statistical properties represented
in Tables 7 and 8, and are therefore considered robust in pre-
dicting engineering mathematics student performance data.

ACKNOWLEDGMENT
The authors thank Prof. Yury Stepanyants and Dr. Trevor
Langlands for his initial discussions or feedback, Univer-
sity of Southern Queensland’s School of Sciences (now
called the School of Mathematics, Physics, and Computing)
and the Office for Advancement of Learning and Teaching
who seeded the project through a Technology Demonstrator
Project Initiative. They also thank the three reviewers and the
Journal Editor for their support in reviewing the article.

REFERENCES
[1] R. C. Deo, Z. M. Yaseen, N. Al-Ansari, T. Nguyen-Huy,

T. A. M. Langlands, and L. Galligan, ‘‘Modern artificial intelligence
model development for undergraduate student performance
prediction: An investigation on engineering mathematics courses,’’
IEEE Access, vol. 8, pp. 136697–136724, 2020.

[2] A. J. Fernández-García, R. Rodríguez-Echeverría, J. C. Preciado,
J. M. C. Manzano, and F. Sánchez-Figueroa, ‘‘Creating a recommender
system to support higher education students in the subject enrollment
decision,’’ IEEE Access, vol. 8, pp. 189069–189088, 2020.

[3] H. A. Mengash, ‘‘Using data mining techniques to predict student perfor-
mance to support decision making in university admission systems,’’ IEEE
Access, vol. 8, pp. 55462–55470, 2020.

[4] A. Nabil, M. Seyam, and A. Abou-Elfetouh, ‘‘Prediction of students’ aca-
demic performance based on Courses’ grades using deep neural networks,’’
IEEE Access, vol. 9, pp. 140731–140746, 2021.

[5] S. Hossain, D. Sarma, F. Tuj-Johora, J. Bushra, S. Sen, and M. Taher,
‘‘A belief rule based expert system to predict student performance under
uncertainty,’’ in Proc. 22nd Int. Conf. Comput. Inf. Technol. (ICCIT),
Dec. 2019, pp. 1–6.

[6] Ryan S. J. D. Baker et al., ‘‘Data mining for education,’’ Int. Encyclopedia
Educ., vol. 7, no. 3, pp. 112–118, 2010.

[7] H. Agrawal, H. Mavani, and K. J. Somaiya, ‘‘Student performance predic-
tion using machine learning,’’ Int. J. Eng. Res., vol. 4, no. 3, pp. 111–113,
Mar. 2015.

[8] J. R. Dai, M. Y. Li, W.W. Li, Z. Lu, and Z. G. Zhang, ‘‘Setting of academic
warning based on multivariate copula functions,’’ Appl. Mech. Mater.,
vols. 571–572, pp. 156–163, Jun. 2014.

[9] A. Luceño, ‘‘Fitting the generalized Pareto distribution to data using max-
imum goodness-of-fit estimators,’’ Comput. Statist. Data Anal., vol. 51,
no. 2, pp. 904–917, 2006.

[10] A. J. Gabriele, E. Joram, and K. H. Park, ‘‘Elementary mathematics teach-
ers’ judgment accuracy and calibration accuracy: Do they predict students’
mathematics achievement outcomes?’’ Learn. Instruct., vol. 45, pp. 49–60,
Oct. 2016.

[11] K. W. Thiede, J. L. Brendefur, R. D. Osguthorpe, M. B. Carney,
A. Bremner, S. Strother, S. Oswalt, J. L. Snow, J. Sutton, and D. Jesse,
‘‘Can teachers accurately predict student performance?’’ Teach. Teacher
Educ., vol. 49, pp. 36–44, Jul. 2015.

[12] L. L. Baird, ‘‘Using self-reports to predict student performance. Research
monograph no. 7,’’ Dept. College Entrance Examination Board, NewYork,
NY, USA, Tech. Rep. CEEB-BM-7, 1976.

[13] M. Stapel, Z. Zheng, and N. Pinkwart, ‘‘An ensemble method to predict
student performance in an online math learning environment,’’ 9th Int.
Conf. Educ. Data Mining. North Carolina, USA, Jul. 2016, pp. 231–238.

[14] T. Tanner and H. Toivonen, ‘‘Predicting and preventing student failure–
using the k-nearest neighbour method to predict student performance in
an online course environment,’’ Int. J. Learn. Technol., vol. 5, no. 4,
pp. 356–377, 2010.

[15] S. Kotsiantis, C. Pierrakeas, and P. Pintelas, ‘‘Predicting students per-
formance in distance learning using machine learning techniques,’’ Appl.
Artif. Intell., vol. 18, no. 5, pp. 411–426, 2004.

[16] J. Xu, K. H. Moon, and M. van der Schaar, ‘‘A machine learning approach
for tracking and predicting student performance in degree programs,’’
IEEE J. Sel. Topics Signal Process., vol. 11, no. 5, pp. 742–753, Aug. 2017.

[17] R. Alamri and B. Alharbi, ‘‘Explainable student performance prediction
models: A systematic review,’’ IEEE Access, vol. 9, pp. 33132–33143,
2021.

[18] M. Ali, R. C. Deo, N. J. Downs, and T. Maraseni, ‘‘Cotton yield prediction
with Markov chain Monte Carlo-based simulation model integrated with
genetic programing algorithm: A new hybrid copula-driven approach,’’
Agricult. Forest Meteorol., vol. 263, pp. 428–448, Dec. 2018.

[19] M. Ali, R. C. Deo, N. J. Downs, and T. Maraseni, ‘‘Multi-stage hybridized
online sequential extreme learning machine integrated with Markov chain
Monte Carlo copula-bat algorithm for rainfall forecasting,’’ Atmos. Res.,
vol. 213, pp. 450–464, Nov. 2018.

[20] M. Vuolo, ‘‘Copula models for sociology: Measures of dependence and
probabilities for joint distributions,’’ Sociol. Methods Res., vol. 46, no. 3,
pp. 604–648, Aug. 2017.

[21] M. Sklar, ‘‘Fonctions de repartition an dimensions et leurs marges,’’ Publ.
Inst. Statist. Univ. Paris, vol. 8, pp. 229–231, 1959.

[22] L. Zhang and V. P. Singh, ‘‘Trivariate flood frequency analysis using
discharge time series with possible different lengths: Cuyahoga river case
study,’’ J. Hydrologic Eng., vol. 19, no. 10, Oct. 2014, Art. no. 05014012.

[23] E. W. Frees, P. Shi, and E. A. Valdez, ‘‘Actuarial applications of a hier-
archical insurance claims model,’’ ASTIN Bull., J. IAA, vol. 39, no. 1,
pp. 165–197, May 2009.

[24] E. W. Frees and P. Wang, ‘‘Credibility using copulas,’’ North Amer. Actu-
arial J., vol. 9, no. 2, pp. 31–48, Apr. 2005.

[25] C. Genest, M. Gendron, and M. Bourdeau-Brien, ‘‘The advent of cop-
ulas in finance,’’ Eur. J. Finance, vol. 15, nos. 7–8, pp. 609–618,
Dec. 2009.

[26] A. Patton, ‘‘Copula methods for forecasting multivariate time series,’’ in
Handbook Economic Forecasting, vol. 2, B. V. Elsevier, Ed. Amsterdam,
The Netherlands: North Holland, 2013, pp. 899–960.

[27] P. K. Trivedi and D. M. Zimmer, Copula Modeling: An Introduction for
Practitioners. Boston, MA, USA: Now, 2007.

[28] C.-C. Wu, H. Chung, and Y.-H. Chang, ‘‘The economic value of
co-movement between oil price and exchange rate using copula-
based garch models,’’ Energy Econ., vol. 34, no. 1, pp. 270–282,
2012.

[29] T. Nguyen-Huy, R. C. Deo, S. Mushtaq, J. Kath, and S. Khan, ‘‘Copula-
based agricultural conditional value-at-risk modelling for geographical
diversifications inwheat farming portfoliomanagement,’’Weather Climate
Extremes, vol. 21, pp. 76–89, Sep. 2018.

45134 VOLUME 10, 2022



T. Nguyen-Huy et al.: Student Performance Predictions for Advanced Engineering Mathematics Course

[30] T. Nguyen-Huy, R. C. Deo, S. Mushtaq, J. Kath, and S. Khan, ‘‘Cop-
ula statistical models for analyzing stochastic dependencies of systemic
drought risk and potential adaptation strategies,’’ Stochastic Environ. Res.
Risk Assessment, vol. 33, no. 3, pp. 779–799, Mar. 2019.

[31] T. Nguyen-Huy, J. Kath, S. Mushtaq, D. Cobon, G. Stone, and R. Stone,
‘‘Integrating el Niño-southern oscillation information and spatial diversi-
fication to minimize risk and maximize profit for Australian grazing enter-
prises,’’ Agronomy Sustain. Develop., vol. 40, no. 1, pp. 1–11, Feb. 2020.

[32] A.-C. Favre, S. El Adlouni, L. Perreault, N. Thiémonge, and B. Bobée,
‘‘Multivariate hydrological frequency analysis using copulas,’’ Water
Resour. Res., vol. 40, no. 1, pp. 1–12, Jan. 2004.

[33] C. Genest and A.-C. Favre, ‘‘Everything you always wanted to know about
copula modeling but were afraid to ask,’’ J. Hydrol. Eng., vol. 12, no. 4,
pp. 347–368, Jul. 2007.

[34] J.-T. Shiau, S. Feng, and S. Nadarajah, ‘‘Assessment of hydrological
droughts for the yellow river, China, using copulas,’’ Hydrol. Processes,
Int. J., vol. 21, no. 16, pp. 2157–2163, 2007.

[35] T. Nguyen-Huy, R. C. Deo, Z. M. Yaseen, R. Prasad, and S. Mushtaq,
‘‘Bayesian Markov chain Monte Carlo-based copulas: Factoring the role
of large-scale climate indices in monthly flood prediction,’’ in Intelli-
gent Data Analytics for Decision-Support Systems in Hazard Mitigation.
Singapore: Springer, 2021, pp. 29–47.

[36] N. Schallhorn, D. Kraus, T. Nagler, and C. Czado, ‘‘D-vine quantile
regression with discrete variables,’’ 2017, arXiv:1705.08310.

[37] C. Genest, A.-C. Favre, J. Béliveau, and C. Jacques, ‘‘Metaelliptical copu-
las and their use in frequency analysis of multivariate hydrological data,’’
Water Resour. Res., vol. 43, no. 9, Sep. 2007.

[38] H. Joe, Dependence Modeling With Copulas. Boca Raton, FL, USA: CRC
Press, 2014.

[39] R. B. Nelsen, An Introduction to Copulas. New York, NY, USA: Springer,
2007.

[40] S. T. Rachev, Handbook of Heavy Tailed Distributions in Finance: Hand-
books in Finance, Book 1. Amsterdam, The Netherlands: Elsevier, 2003.

[41] E. Brechmann and U. Schepsmeier, ‘‘CDVine: Modeling dependence with
C-and D-vine copulas in R,’’ J. Stat. Softw., vol. 52, no. 3, pp. 1–27, 2013.

[42] H. Joe, Multivariate Models and Multivariate Dependence Concepts.
Boca Raton, FL, USA: CRC Press, 1997.

[43] K. Aas, C. Czado, A. Frigessi, and H. Bakken, ‘‘Pair-copula construc-
tions of multiple dependence,’’ Insurance, Math. Econ., vol. 44, no. 2,
pp. 182–198, Apr. 2009.

[44] B. D. Ripley, Modern Applied Statistics With S. New York, NY, USA:
Springer, 2002.

[45] M. Evans, N. Hastings, B. Peacock, and C. Forbes, Statistical Distribu-
tions. Hoboken, NJ, USA: Wiley, 2011.

[46] S. A. Klugman, H. H. Panjer, and G. E. Willmot, Loss Models: From Data
to Decisions, vol. 715. Hoboken, NJ, USA: Wiley, 2012.

[47] W. Huang and A. Prokhorov, ‘‘A goodness-of-fit test for copulas,’’ Econ.
Rev., vol. 33, no. 7, pp. 751–771, Oct. 2014.

[48] H. White, ‘‘Maximum likelihood estimation of misspecified models,’’
Econometrica, J. Econ. Soc., vol. 50, pp. 1–25, Jan. 1982.

[49] C. Genest, J.-F. Quessy, and B. Rémillard, ‘‘Goodness-of-fit procedures for
copula models based on the probability integral transformation,’’ Scandin.
J. Statist., vol. 33, no. 2, pp. 337–366, Jun. 2006.

[50] U. Schepsmeier, J. Stoeber, E. C. Brechmann, B. Graeler, T.Nagler,
T. Erhardt, C. Almeida, A. Min, C. Czado, M. Hofmann, M. Killiches,
H. Joe, T. Vatter, ‘‘Package ‘vinecopula,’’’ R Package Version, vol. 2, no. 5,
2015.

[51] U. Cherubini, E. Luciano, and W. Vecchiato, Copula Methods in Finance.
Hoboken, NJ, USA: Wiley, 2004.

[52] E. Kole, K. Koedijk, and M. Verbeek, ‘‘Testing copulas to model financial
dependence,’’ Dept. Financial Manage., RSM Erasmus Univ., Rotterdam,
The Netherlands, Working Paper, 2005.

[53] G. Kim, M. J. Silvapulle, and P. Silvapulle, ‘‘Comparison of semiparamet-
ric and parametric methods for estimating copulas,’’ Comput. Statist. Data
Anal., vol. 51, no. 6, pp. 2836–2850, Mar. 2007.

[54] D. Kraus and C. Czado, ‘‘D-vine copula based quantile regression,’’ Com-
put. Statist. Data Anal., vol. 110, pp. 1–18, Jun. 2017.

[55] C. Genest and J.-C. Boies, ‘‘Detecting dependence with Kendall plots,’’
Amer. Statistician, vol. 57, no. 4, pp. 275–284, Nov. 2003.

[56] M. Devlin and J. McKay, ‘‘Reframing’ the problem’: Students from low
socioeconomic status backgrounds transitioning to university,’’ in Univer-
sities in Transition: Foregrounding Social Contexts of Knowledge in the
First Year Experience, H. Brook, D. Fergie, M. Maeorg, D. Michell, and
R. Burton, Eds. Adelaide, NSW, Australia: Univ. Adelaide Press, 2014,
pp. 97–125.

[57] M. Niederle and L. Vesterlund, ‘‘Explaining the gender gap in math
test scores: The role of competition,’’ J. Econ. Perspect., vol. 24, no. 2,
pp. 44–129, 2010.

[58] D. Contini, M. L. D. Tommaso, and S. Mendolia, ‘‘The gender gap in
mathematics achievement: Evidence from Italian data,’’ Econ. Educ. Rev.,
vol. 58, pp. 32–42, Jun. 2017.

[59] K. P. Mongeon, S. W. Ulrick, and M. P. Giannetto, ‘‘Explaining univer-
sity course grade gaps,’’ Empirical Econ., vol. 52, no. 1, pp. 411–446,
Feb. 2017.

[60] S. Scherer, C. P. Talley, and J. E. Fife, ‘‘How personal factors influence
academic behavior and GPA in African American STEM students,’’ SAGE
Open, vol. 7, no. 2, pp. 1–14, 2017.

[61] M. Sadegh et al., ‘‘Multi-hazard scenarios for analysis of compound
extreme events,’’Geophys. Res. Lett., vol. 45, no. 11, pp. 5470–5480, 2018.

[62] A. C. Cullen, H. C. Frey, and C. H. Frey, Probabilistic Techniques in
Exposure Assessment: A Handbook for Dealing With Variability and
Uncertainty in Models and Inputs. New York, NY, USA: Springer, 1999.

[63] M. L. Delignette-Müller and C. Dutang, ‘‘Fitdistrplus: An R package for
fitting distributions,’’ J. Statist. Softw., vol. 64, no. 4, pp. 1–34, 2015.

[64] W. N. Venables and B. D. Ripley,Modern Applied Statistics With S-PLUS.
New York, NY, USA: Springer, 2013.

[65] D. Vose, Risk Analysis: A Quantitative Guide. Hoboken, NJ, USA: Wiley,
2008.

[66] T. Nagler, ‘‘Asymptotic analysis of the jittering kernel density estimator,’’
Math. Methods Statist., vol. 27, no. 1, pp. 32–46, Jan. 2018.

[67] T. Nagler, ‘‘A generic approach to nonparametric function estimation with
mixed data,’’ Statist. Probab. Lett., vol. 137, pp. 326–330, Jun. 2018.

[68] J. A. Vrugt, H. V. Gupta, W. Bouten, and S. Sorooshian, ‘‘A shuffled
complex evolution metropolis algorithm for optimization and uncertainty
assessment of hydrologic model parameters,’’Water Resour. Res., vol. 39,
no. 8, pp. 1–19, Aug. 2003.

[69] R. Garcia and G. Tsafack, ‘‘Dependence structure and extreme comove-
ments in international equity and bond markets,’’ J. Banking Finance,
vol. 35, no. 8, pp. 1954–1970, Aug. 2011.

[70] J. D. Woodard, N. D. Paulson, D. Vedenov, and G. J. Power, ‘‘Impact of
copula choice on the modeling of crop yield basis risk,’’ Agricult. Econ.,
vol. 42, pp. 101–112, Nov. 2011.

[71] L. Hua and H. Joe, ‘‘Tail order and intermediate tail dependence of mul-
tivariate copulas,’’ J. Multivariate Anal., vol. 102, no. 10, pp. 1454–1471,
Nov. 2011.

[72] O. Okhrin and A. Ristig, ‘‘Hierarchical Archimedean copulae: TheHAC-
Package,’’ J. Stat. Softw., vol. 58, no. 4, pp. 1–20, 2014.

[73] J. Górecki, M. Hofert, andM. Holeňa, ‘‘On structure, family and parameter
estimation of hierarchical Archimedean copulas,’’ J. Stat. Comput. Simul.,
vol. 87, no. 17, pp. 3261–3324, Nov. 2017.

[74] A. J. McNeil, ‘‘Sampling nested Archimedean copulas,’’ J. Stat. Comput.
Simul., vol. 78, no. 6, pp. 567–581, Jun. 2008.

[75] M. Hofert and M. Mächler, ‘‘Nested Archimedean copulas meet
R: The nacopula package,’’ J. Stat. Softw., vol. 39, no. 9, pp. 1–20, 2011.

[76] C. Savu and M. Trede, ‘‘Hierarchies of Archimedean copulas,’’ Quant.
Finance, vol. 10, no. 3, pp. 295–304, Mar. 2010.

[77] N. Whelan, ‘‘Sampling from Archimedean copulas,’’ Quant. Finance,
vol. 4, no. 3, p. 339, 2004.

[78] E. Liebscher, ‘‘Modelling and estimation of multivariate copulas,’’ Univ.
Appl. Sci., Merseburg, Germany, Working Paper, 2006.

[79] P. M. Morillas, ‘‘A method to obtain new copulas from a given one,’’
Metrika, vol. 61, no. 2, pp. 169–184, Apr. 2005.

[80] M. Fischer, C. Köck, S. Schlüter, and F. Weigert, ‘‘An empirical analysis of
multivariate copula models,’’ Quant. Finance, vol. 9, no. 7, pp. 839–854,
Oct. 2009.

THONG NGUYEN-HUY is currently a Post-
doctoral Researcher at the SQNNSW Drought
Resilience Adoption and Innovation Hub, Univer-
sity of Southern Queensland, Australia. He works
closely with researchers, governments, insurers,
and financial institutions on projects focusing on
agricultural resilience, climate risks, and alter-
native risk transfer systems. He has published
widely in the fields of climate, agriculture, envi-
ronment, hydrology, energy, and riskmanagement.

His research interests include modeling and data analysis, developing
and applying novel statistical models, AI algorithms, and remote sensing
techniques.

VOLUME 10, 2022 45135



T. Nguyen-Huy et al.: Student Performance Predictions for Advanced Engineering Mathematics Course

RAVINESH C. DEO (Senior Member, IEEE) cur-
rently leads the USQ’s Advanced Data Analytics
Laboratory as a Professor at the University of
Southern Queensland, Australia. He is a Clarivate
Highly Cited Researcher with publications ranking
in top 1%by citations for field and publication year
in the Web of Science citation index and is among
scientists and social scientists who have demon-
strated significant broad influence, reflected in the
publication of multiple papers frequently cited by

peers. He leads cross-disciplinary research in deep learning and artificial
intelligence. He is supervising more than 20 Ph.D./M.Sc. degrees and
has supervised more than 30 Ph.D./M.Sc. degrees/postdoctoral researchers.
He has published more than 250 articles, 150 journals, and seven books with
a cumulative citation that exceed 9,200 and anH-index of 54. He has received
the Employee Excellence Awards, the Elsevier Highly Cited Paper Awards,
and the Publication Excellence and Teaching Commendations, including
$2.6 million research funding.

SHAHJAHAN KHAN is currently a Profes-
sor of statistics at the University of South-
ern Queensland, Australia. He is the Leader
of evidence-based decision-making in pub-
lic health. His 2020 book on Meta-Analysis:
Methods for Health and Experimental Studies
(Springer Nature) has over 14k downloads. He has
supervised more than 16 Ph.D. and three M.Phil.
students. He has published over 250 research
articles in systematic review, meta-analysis, pre-

dictive inference, pre-test and shrinkage estimations, linear models, and
robust tests areas. He is an Expatriate Fellow (elected) of the Bangladesh
Academy of Sciences. As the President of the Islamic Countries Society of
Statistical Sciences, he has organized international statistical conferences
in Malaysia, Egypt, Qatar, Indonesia, Bangladesh, and Pakistan. He has
presented 21 research workshops and 25 keynote and plenary addresses in
international conferences. He has received the prestigious Q. M. Hossain
Gold Medal of Bangladesh Statistical Association. He is the Founding Chief
Editor of Journal of Applied Probability and Statistics (JAPS).

ARUNA DEVI received the Graduate Diploma
degree in education from The University of
Adelaide, the Bachelor of Secondary Education
degree from The University of the South Pacific,
Fiji, the master’s degree (Hons.) in inclusive edu-
cation from The University of Queensland, and
the Ph.D. degree (Hons.) from the University of
Southern Queensland. Her research has focused
on ‘‘Preparing Teachers to Instruct Students with
Autism in Inclusive Settings: Australian Pre-

Service Teachers’’ and Recent Graduates’ Perspectives—An Exploratory
Case Study.’’ She is currently an Associate Lecturer with the School of
Education and Tertiary Access, University of the Sunshine Coast, Australia.
Her research interests include learning difficulties, student learning and
development, autism, special and inclusive education, mathematics, and
teacher education. She is interested in socio-cognitive theories for self-
efficacy belief, including qualitative and quantitative educational research
topics.

ADEWUYI AYODELE ADEYINKA is currently an
eResearch Analyst at the Office of Research, Uni-
versity of Southern Queensland, Australia. He spe-
cializes in the application of index-based risk
transfer products in the context of agricultural risk
management. He has presented the outcomes of
his research at the Actuaries Summit in Australia,
U.K., and USA. He has published in prestigious
journals.

ARMANDO A. APAN received the B.Sc. degree
in forestry from the University of the Philippines
Los Baños, the M.Sc. degree in natural resources
from the Asian Institute of Technology, Thailand,
and the Ph.D. degree in geography and environ-
mental science fromMonashUniversity, Australia.
He is currently a highly accomplished Professor of
remote sensing and GIS at the University of South-
ernQueensland, Australia. He has over 180 articles
published in international refereed journals, book

chapters, and conference proceedings, with over 2,900 citations and an
H-index of 26. His research interests include the application of geospatial
technologies and spatial modeling. In 2006, he has received the Queensland
Spatial Science Excellence Award.

ZAHER MUNDHER YASEEN received the mas-
ter’s and Ph.D. degrees from the National Univer-
sity of Malaysia (UKM), Malaysia, in 2012 and
2017, respectively. He is currently an Adjunct
Research Fellow at the University of Southern
Queensland, Australia; and a Senior Researcher of
civil engineering. He was named as the 2021 Clar-
ivate Highly Cited Researcher with publications
ranking in top 1% by citations for field and pub-
lication year in the Web of Science citation index.

He has published over 150 articles in international journals, with a Google
Scholar H-Index of 27 and a total of 2400 citations. His research interests
include hydrology, water resources engineering, hydrological process mod-
eling, environmental engineering, and the climate. In addition, his interests
include machine learning and advanced data analytics.

45136 VOLUME 10, 2022


