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Abstract: This paper proposes a novel quantum pre-processing filter (QPF) to improve the image classification accuracy of neural network
(NN) models. A simple four qubit quantum circuit that uses Y rotation gates for encoding and two controlled NOT gates for creating
correlation among the qubits is applied as a feature extraction filter prior to passing data into the fully connected NN architecture. By
applying the QPF approach, the results show that the image classification accuracy based on the MNIST (handwritten 10 digits) and the
EMNIST (handwritten 47 class digits and letters) datasets can be improved, from 92.5% to 95.4% and from 68.9% to 75.9%,
respectively. These improvements were obtained without introducing extra model parameters or optimizations in the machine learning
process. However, tests performed on the developed QPF approach against a relatively complex German Traffic Sign Recognition
Benchmark dataset with 43 distinct class real-life traffic sign images showed a degradation in the classification accuracy. Considering
this result, further research into the understanding and the design of a more suitable quantum circuit approach for image classification
NNs could be explored utilizing the baseline method proposed in this paper.
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1. Introduction

The application of quantum computing to the tasks of machine
learning, herein referred as quantum machine learning, has attracted
much research attention in recent years. Literature surveys on
quantum machine learning can be found in [1–4]. Among many
proposals to combine classical machine learning methods with
quantum computing, quanvolutional neural network (QNN)
proposed by Henderson et al. [5] has an advantage of being
implementable on quantum circuits with a smaller number of qubits
with shallow gate depths and yet being applicable to practical
applications. QNN utilizes quantum circuits as transformation
layers, called quanvolutional layer, to extract features for the
purpose of image classification using convolutional neural networks
(CNNs). In Henderson et al. [5], MNIST handwritten 10-digit
dataset [6] was applied to QNN using 9 qubits. The results showed
classification accuracy improvement using QNN over CNN.
However, when the quanvolutional layer of QNN was replaced by a
conventional convolutional layer, no improvement in classification
accuracy was observed. Henderson et. al. later updated QNN and
implemented on Rigetti Computing’s Aspen-725Q-B quantum
processing unit which has 25 qubits with 24 programmable

two-qubit gate interactions [7]. The proposed method was applied
to 4 class low-resolution satellite image dataset. However, no
improvement in classification accuracy by QNN over CNN was
observed in Henderson et al. [7].

An implementation of QNN on a software quantum computing
simulator, PennyLane [8], was provided by Mari [9]. Mari’s
implementation of QNN differs from that of Henderson in that the
output of the quantum circuit, which is a set of expectation
values, is directly fed into the following neural network (NN)
layer, while that of Henderson was made into a single scalar value
by a classical method. The proposed method was applied to
MNIST dataset using 50 training and 30 test image sets. No clear
improvement in classification accuracy by QNN over NN was
observed in Mari [9]. A number of models utilizing QNN have
been presented, including our own research that seeks to expand
on Mari’s work [10–17]. We used a strongly entangling quantum
circuit in our investigation and showed improvements over Mari’s
observations [18].

Furthermore, the idea of quantum-enhanced convolutional
networks has been expanded in recent studies. The quantum
convolutional neural network (QCNN) for instance was proposed
by Cong et al. and extends quantum convolutional layers with use
of variational quantum parameters and how it can be used for
error correction [19]. Yousif et al. conducted a further significant
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quantum circuits with classical CNN improved performance in
image classification tasks [20], proving enhancement in quantum-
classical hybrid models training stability for COVID-19 datasets
like and extends quantum convolutional layers to handle more
complicated datasets, like covidx-cxr4 for feature extraction.

Despite these advancements, research into the possibilities of
quantum-enhanced image classification is still ongoing. Prior
studies have demonstrated only slight improvements in
classification accuracy when comparing QNN to classical CNN
(Henderson et al., Mari et al., etc.,). This highlights a key field of
research in effectively employing quantum methods to outperform
classical ones. Furthermore, while hybrid quantum-classical
approaches show promise, their full potential for real-life
applications is still unexplored.

To address this gap, we introduce a novel approach, the
quantum pre-processing filter (QPF), inspired by the QNNs
proposed by Henderson and Mari. The QPF demonstrates
significant improvements in image classification accuracy
compared to counterpart CNNs. This work is designed as a
foundational step toward exploring models that can be effectively
applied in smart transportation systems, offering a robust
framework for enhancing image-based decision-making in this
domain. QPF uses a quantum circuit with four qubits, four Y
rotations, two controlled NOTs (CNOTs), and four measurements.

When QPF is applied as a pre-processing unit of an image
classification NN, i.e., as a feature extraction filter, the image
classification accuracy of fully connected NN against MNIST and
EMNIST (handwritten 47 class digits and letters, Cohen et al. [21]
improves from 92.5% to 95.4% and from 68.9% to 75.9%,
respectively. These improvements were obtained without
introducing any extra parameters to optimize in machine learning
process. Unlike other quantum machine learning methods, the use
of QPF does not require optimization of the parameters inside the
quantum circuits and hence requires only a limited use of the
quantum circuit. Given the small number of qubits and relatively
shallow depth of the quantum circuit, QPF is well suited to be
implemented on noisy intermediate-scale quantum computers.
While the proposed method is promising, a test against a more
complicated dataset, German Traffic Sign Recognition Benchmark
(GTSRB) (43 class real-life traffic sign images [22]), showed

degradation in classification accuracy by the application of QPF.
This prompts further research into the understanding and design of
suitable quantum circuits for image classification NNs. To support
the validation of our claims and further research, we have made our
source code available at https://github.com/hajimesuzuki999/qpf.

To further evaluate the model, we extended the analysis in our
other paper [23]. We applied QPF model to binary classification
tasks, validating it with two CNOT gates. Accuracy improved on
MNIST, EMNIST, and CIFAR-10, while GTSRB showed an
increase without QPF but a slight decrease when QPF was
applied. Smaller datasets also benefited from QPF, showing
modest accuracy gains.

This paper is organized as follows: The newQPF unit combined
with the classical image classification NN is proposed in Section 2.
Section 3 describes the experiment conducted using software
simulation. The results and discussions are presented in Section 4,
followed by conclusions in Section 5.

2. Methodology

Figure 1 shows the architecture of the proposed QPFmodel also
explained in our extension paper of this work [23]. The method
assumes that the input image is a two-dimensional matrix with
size m-by-m and the pixel value, x, follows 0 ≤ x≤ 1. An

extension to multi-channel pixel image is considered as
straightforward. Similar to QNN models, a section of size n-by-n
is extracted from the input image. While 1 < n ≤ m in the case of
QNN, the proposed QPF uses n= 2. This 2 × 2 section of the
input image is referred as QPF window. An extension of QPF
using n > 2 is left for further studies.

The methodology of this work is as follows. The input image
is represented as a two-dimensional m-by-m matrix, where each
pixel value x ranges between 0 and 1. Extending this approach
to multi-channel images is straightforward. Each pixel value is
then encoded into a quantum state using the RY gate, which
rotates the Bloch sphere around the Y-axis by an angle θ = 2πx,
proportional to the pixel intensity x. This transformation
converts classical pixel values into quantum states, enabling
quantum processing of image data. Mathematically Ry gate can
be written as in Equation (1):

Figure 1
The architecture of the proposed quantum pre-processing filter (QPF) model
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RyðθÞ ¼ cos θ
2 � i sin θ

2
sin θ

2 cos θ
2

� �
(1)

The QPFmodel processes the input image by extracting a small
n-by-n portion, where n is the window size. In this approach, a 2 × 2
section of the image, called the QPF window, is selected. Each pixel
within the window is encoded using the RY gate, which rotates
qubits by an angle θ= 2πx based on pixel intensity. The encoded
data are then processed through the quantum circuit of the QPF
model, enabling localized feature extraction while controlling
circuit complexity. The outputs from the RY gates are fed to a
quantum circuit, denoted as U in Figure 1. This paper examines
three different quantum circuits: the first, “Encoding Only” shown
in Figure 2, performs measurement immediately after encoding;
the second, “One CNOT” as in Figure 3, applies a controlled
NOT operation with the first qubit as the control and the fourth
qubit as the target; and the third, “Two CNOTs” as in Figure 4,

performs two controlled NOT operations for additional quantum
processing.

Measurement operations, labeled as M in Figure 1, are
conducted on the output from the quantum circuit U. These
measurements produce expectation values ranging from −1 to 1,
which are then used as output features. It’s important to highlight
that the total number of parameters in the input image (m × m) is
the same as in the output features (4 × (m/2) × (m/2)). The output
features are subsequently flattened into a one-dimensional vector,
with the flattening layer containing m × m nodes. These nodes are
fully connected in the first fully connected layer, while the second
fully connected layer produces an output with a number of nodes
equal to the number of classes. The experimental approach
involved conducting multiple tests, with each combination being
evaluated across 100 random iterations to ensure consistency and
validity. By selecting distinct training and testing samples,
statistically stable results were obtained, enhancing the robustness,
minimizing biases, and improving the generalization of the
findings for broader applications.

3. Experiment

Aswas performed bymany, we first apply the proposed method
to the MNIST dataset [6] to obtain benchmark results. The MNIST
dataset consists of 60,000 training and 10,000 test images of
handwritten digits of 0 to 9. The size of each image is 28 by 28
pixels. The original images are in grayscale within the values
between 0 and 255, which are scaled by dividing them by 255.
We then chose the EMNIST dataset [21] to extend the number of
image class. The EMNIST dataset (Balanced and By Merge [21])
contains 112,800 training and 18,800 test images of handwritten
digits and letters making up 47 classes. Note that some of upper-
and lower-case letters are merged due to their similarity (e.g., C is
similar to c) in this dataset. Original EMNIST dataset is divided
by 255 to create a dataset with pixel values between 0 and 1.

The GTSRB dataset [22] consists of 34,799 training and 12,630
test images of 43 class traffic signs captured from actual traffic signs
in use in various conditions. The original dataset has various image
sizes between 15 × 15 and 222 × 193 pixels. Those images were
scaled to a size of 32 × 32 pixels. The original images were in
RGB color, which were converted into grayscale between 0 and
255. Unlike MNIST and EMNIST dataset, in order to normalize
the dynamic range of each image, the normalization is applied to
each image according to the following formula:

Figure 2
Quantum pre-processing filter, with encoding only

Figure 3
Quantum pre-processing filter, with one CNOT

Figure 4
Quantum pre-processing filter, with two CNOTs
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c̃x;y ¼
cx;y �minðIÞ

maxðIÞ �minðIÞ (2)

where cx,y and c̃x;y represent the original and normalized pixel values
in the position (x,y), and max(I) and min(I) denote the maximum and
the minimum element in the two-dimensional image matrix I, respec-
tively.

In order to make use of the advantages of each platform, the
experiment was run on both MATLAB and PennyLane. Using
PennyLane’s ease of use in building and manipulating quantum
operations, the quantum circuits were developed and simulated.
After that, these quantum circuits were exported as unitary
matrices to MATLAB, which can handle the quantum operations
in a classical format. This made it possible for MATLAB to
include the quantum features into its larger computing structure.

The Adam optimizer [24], which is well-known for its
effectiveness in gradient-based optimization, has been applied to
the QPF model. For all three datasets, a mini-batch size of 128
was used to guarantee robust evaluation of the model’s
performance across various data distributions. Both systems
worked effectively when combined to evaluate the hybrid
quantum-classical model, providing flexibility for both classical
training methods and quantum circuit design.

Three datasets MNIST, EMNIST, and GTSRB—as well as the
corresponding outcome features generated during the quantum
encoding process—are presented in Figure 5. Every input image
is converted into one of three quantum states, represented by

qubits and labeled q[0] through q[3]. The results of quantum
encoding alone can be seen in the image, along with the effects of
using two controlled NOT (CNOT) operations: CNOT(q[0], q[3])
and CNOT(q[1], q[2]). These CNOT gates create quantum
correlations between q[0] and q[3] and between q[1] and q[2] by
entanglement of pairs of qubits. The input images’ modified
quantum states are captured by the output features that are shown
following entanglement and encoding, and these features are

subsequently utilized in later layers of the model to do further
processing.

4. Result and Discussion

Using the MNIST dataset, Figure 6 shows how different QPF
configurations affect the testing dataset accuracy as an outcome of
training iterations. The graph illustrates how various quantum
circuit designs impact the model’s overall accuracy as well as its
rate of convergence. The phenomenon of faster convergence was
also observed in Henderson’s QNN [5]. In comparison to a
classical NN which involves directly passing raw pixel values to
the NN. Our current classical NN already employs quantum filter
approach; however, instead of applying a 4 × 4 pre-processing
window in a loop, we process the entire image and pass it into
fully connected layers, the QPF encoding-only model converges
faster during training. This can be observed in Figure 6, where
measurements are performed directly after encoding without any
additional quantum operations. The faster convergence is
comparable to what Henderson’s QNN model demonstrated.
Though the QPF encoding-only model converges more quickly, it
still falls short of the traditional NN in terms of final test set
accuracy. This implies that the full potential of quantum
computation for increasing precision may not be realized by only
encoding classical data into quantum states without introducing
quantum entanglement.

As demonstrated by the QPF One CNOT model, performance
increases with the addition of a CNOT gate. Here, the final test set
accuracy is improved from 92.5% (in the classical NN example) to
93.7% by applying a single CNOT operation across the first and
fourth qubits after encoding. This implies that adding quantum
entanglement between qubits improves the accuracy of the model
by enabling it to extract more meaningful features from the data.
When two CNOT gates are used in the QPF Two CNOTs model,

Figure 5
An example of the input image and the relevant output features
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the accuracy is substantially improved. The accuracy of the test set
increases to 95.4% by executing two entangling operations: one
between the second and third qubits and one between the first and
fourth qubits. This indicates that increasing the complexity of the
quantum circuit, through greater entanglement, allows the model
to better capture the underlying structure of the data, leading to
higher accuracy in image categorization.

Using the EMNIST dataset, Figure 7 shows how various QPF
settings affect the speed of convergence and accuracy of the final test

set. Comparing the use of QPF encoding only to the classical NN, the
findings are like the MNIST results in terms of faster convergence.
This indicates that the QPF encoding-only model reaches its
performance plateau during training more quickly than the NN.
This faster convergence implies that early in training, quantum
encoding—even in the absence of entanglement—converts classical
data into quantum states, speeding up the learning process. Though
QPF encoding only achieves a faster convergence, the trained
model’s final accuracy is less than that of the classical NN. This
indicates that the encoding-only quantum model lacks the
complexity necessary to outperform the classical NN in terms of
classification accuracy on the EMNIST dataset, even though it
learns more quickly. The shortcomings of encoding-only quantum
models, which do not incorporate the advantages of quantum
entanglement and may aid the model in capturing greater
complexity of connections in the data, may be the cause of this
decrease in accuracy. The introduction of quantum entanglement
through CNOT gates improves the circumstances. Like in the
MNIST tests, a single CNOT gate is applied between the first and
fourth qubits in the QPF One CNOT arrangement. From 68.9%
(achieved by the classical NN) to 72.0% (achieved by the quantum
circuit), the ultimate test set accuracy is improved by this extra
layer of complexity. This finding implies that quantum
entanglement improves the model’s performance by boosting its
capacity to extract meaningful features from the data.

The QPF Two CNOTs model, which entangles the qubits using
two CNOT gates, gives the best accuracy. The test set accuracy is
further increased to 75.9% by this more intricate quantum circuit,
which is a considerable improvement over the simpler QPF
configurations and the classical NN. The increase from 68.9% to
75.9% shows the effectiveness of using many CNOTs, or
quantum operations, to extract more complex characteristics from
the data. This is especially useful for datasets like EMNIST,
which have more difficult image classification tasks.

Figure 8 shows the variation of test set accuracy using the
GTSRB dataset. Unlike the cases using MNIST and EMNIST

Figure 6
Test set accuracy using MNIST dataset

Figure 7
Test set accuracy using EMNIST dataset

Figure 8
Test set accuracy using GTSRB dataset
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datasets, the converged test set accuracy by the application of QPF is
reduced from that of NN in the case of GTSRB dataset. The exact
causes of this phenomenon are currently unknown to the authors
and remain for further research. The summary of the testing
accuracy results is shown in Table 1.

Referring back to Figure 3, there are 12 different ways to create
a CNOT circuit from four qubits. In order to investigate if a different
CNOT arrangement would make the difference in classification
accuracy, the training of the network and the classification of the
images were performed for MNIST dataset using the 12 different
CNOT arrangements. Figure 9 shows the results. The x axis of
Figure 9 denotes the arrangement of the CNOT where the lower
number refers to the control qubit and the upper number refers to
the target qubit.

For example, “0 3” refers to the arrangement as shown in
Figure 3. As can be seen from Figure 9, the variation of test set
accuracy for different CNOT arrangement is considered to be
small, within less than 0.6%.

Similarly, there are 24 different ways to arrange the two CNOTs
using four qubits. The test set accuracy was derived for 24 different
two CNOTs arrangement using MNIST dataset, and the results are
shown in Figure 10. In Figure 10, the x axis label refers to the
arrangement of the two CNOTs in the order of the control and
target qubits of the first CNOT, then the control and target qubits

of the second CNOT. For example, “0 3 1 2” refers to the
arrangement as shown in Figure 4. As evident in Figure 10, the
CNOT arrangements pairing the 1st and the 4th qubits and pairing
the 2nd and the 3rd qubits seem to achieve a higher testing
accuracy irrespective of which qubit is assigned as the target or
the control. Referring back to Figure 1, the pairing of the 1st and
4th qubits and the pairing of the 2nd and 3rd qubits correspond to
the pairing of the diagonal elements of the 2 × 2 QPF window.
The exact reason for the improved classification accuracy in the
case of MNIST and EMNIST datasets when correlating the
diagonal elements of the QPF window is currently not known to
the authors and is left for further research.

The results presented in this study highlight some promising
improvements in feature extraction for simpler datasets like
MNIST and EMNIST using the QPF. Establishing a classical
pre-processing baseline involves directly passing raw pixel
values to the NN. Our current classical NN already employs this
classical counterpart of pre-processing; however, instead of
applying a 4 × 4 pre-processing window in a loop, we process
the entire image and pass it into fully connected layers to reduce
computational overhead. No additional pre-processing steps are
applied before passing the data to the fully connected layers.
Classical systems don’t exhibit quantum phenomena like
superposition and entanglement, which are essential for quantum
algorithms. Using a quantum simulator, we model these effects,
including the wave-like behavior of superposition, where

quantum states exist in multiple possibilities with associated
probabilities. This allows us to study how these quantum
behaviors, including interference, impact the performance of
quantum algorithms, even without real quantum hardware.
Superposition and entanglement can be generated using quantum
gates such as RY and CNOT. Classical machine learning already
excels with optimized tools, and these classical systems can
approximate some quantum behaviors with increased
computational effort, they generally cannot fully capture the
complexity or scale of quantum effects.

Table 1
Summary of testing accuracy results

MNIST EMNIST GTSRB

NN 92.5% 68.9% 81.4%
Encoding only 92.4% 68.1% 77.6%
One CNOT 93.7% 72.0% 77.6%
Two CNOT 95.4% 75.9% 77.0%

Figure 9
Test set accuracy on MNIST dataset using different CNOT arrangements
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Additionally, the current configuration of the QPF, utilizing
only four qubits, may be insufficient for capturing the complex
feature hierarchies required for more intricate datasets like the
GTSRB. The lack of improvement on more complex datasets
suggests that the quantum pre-processing method may not be able
to extract the necessary features for such datasets in its current
form. Increasing the number of qubits in the QPF could
potentially improve its ability to encode more complex features
and enhance performance on more challenging datasets.

To understand the performance improvement, the QPF’s
entanglement arrangement has a significant impact on how well it
extracts features. By creating correlations between qubits,
entanglement allows the quantum system to encode complex
relationships in the input data. Nonetheless, the QPF’s
performance across datasets indicates that, depending on the
complexity of the dataset, the current entanglement technique may
have varying effects on its capacity to capture features. The two
CNOT entanglement arrangement works well for capturing basic
relationships in the data, like the forms and structures of
characters and numbers, for datasets that are simpler, like MNIST
and EMNIST. The present entanglement structure effectively
encodes the relatively simple feature hierarchies needed by these
datasets, improving classification performance.

In contrast, for more complex datasets such as GTSRB, which
include images with diverse conditions (e.g., varying lighting,
angles, and noise), the current entanglement scheme shows
limitations. The 2-CNOT configuration lacks the flexibility or
capacity to encode the intricate and high-dimensional feature
spaces required for the accurate classification of these challenging
datasets. This suggests that the current entanglement structure may
not fully exploit the potential of quantum systems for complex
data representations.

To improve the QPF’s performance on such datasets,
adjustments to the entanglement design are necessary. These may
include increasing the number of qubits, introducing additional
entanglement layers, or exploring more advanced entanglement
strategies. Furthermore, integrating the QPF with classical models,

such as CNNs, could provide a complementary approach to
capture multi-scale feature hierarchies. This analysis highlights the
importance of optimizing the entanglement configuration to better
leverage quantum phenomena for feature extraction, particularly
for datasets with greater complexity.

5. Conclusion

In this study, a novel QPF was introduced to enhance image
classification accuracy in NNs, particularly for simpler datasets
like MNIST and EMNIST. By leveraging quantum operations,
the QPF modifies input data before passing it to the NN,
improving the pre-processing stage of the classification pipeline.
Our experiments demonstrated significant improvements in
classification performance for datasets with simple images (lower-
dimensional data), such as handwritten digits and characters,
attributed to quantum characteristics like superposition and
entanglement enabling better feature extraction. However, for
more complex datasets (higher-dimensional data), such as the
GTSRB, the QPF did not achieve comparable improvements.
These complex datasets involve richer, multi-dimensional
feature spaces and intricate relationships that require deeper
feature hierarchies, which the current QPF configuration struggles
to capture effectively. This highlights the need for further
optimization of the QPF configuration to better capture the
intricate feature hierarchies required by these datasets.
Future research should explore increasing the number of qubits to
enhance the QPF’s capacity for encoding complex, high-
dimensional data and consider integrating it with advanced
models like CNNs. The combination of quantum pre-processing
with classical machine learning holds significant potential for
advancing image classification. While the current findings
highlight the promise of the QPF for simpler datasets,
further refinement and experimentation are necessary to expand
its applicability to more challenging datasets, paving the
way for broader adoption of quantum techniques in machine
learning.

Figure 10
Test set accuracy on MNIST dataset using different two CNOTs arrangements
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