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Abstract—Understanding where people are located and how
they are moving about an environment is critical for operators
of large public spaces such as shopping centres, and large
public infrastructure such as airports. Automated analysis of
CCTV footage is increasingly being used to address this need
through techniques that can count crowd sizes, estimate their
density, and estimate the through-put of people into and/or out
of a choke-point. A limitation of using CCTV based approaches
however is the need to train models specific to each view, which
for large environments with 100’s or 1000’s of cameras, can
quickly become problematic. While some success has been had
in developing scene invariant crowd counting and crowd density
estimation approaches, much less attention has been given to
developing scene invariant solutions for through-put estimation.
In this paper, we investigate the use of CNN and LSTM
architectures to estimate pedestrian through-put from arbitrary
CCTV viewpoints. To properly develop and demonstrate our
approach, we present a new 22 view database featuring 44 hours
of pedestrian throughput annotation, containing over 11, 000
annotated people; and using this proposed approach we show
that we are able to outperform a scene dependant approach
across a diverse set of challenging view-points.

I. INTRODUCTION

Despite the prevalence of CCTV cameras in most public
places, there still exists a large number of pedestrian moni-
toring solutions that rely on either fixed, specialist cameras,
or other sensor technologies (i.e. infra-red laser, bluetooth). In
particular, the task of counting people as they pass through
a point (i.e. a doorway) is a common problem encountered
in a number of environments for which a suite of specialist
hardware solutions exist. Furthermore, such technologies are
often used in areas already well covered by CCTV, raising the
possibility of using CCTV feeds to directly address the count-
ing problem and avoiding the need for additional hardware
expenditure.

While a number of approaches have been proposed to
estimate pedestrian throughput from CCTV imagery, they
have typically had one principal drawback: they are scene
dependant, i.e. a model needs to trained for each view that
we wish to obtain a count for. While for isolated installations
this may not be too problematic, for large public infrastructure
such as airports, where there are potentially 100’s of sites to
be monitored, the need to perform training and/or calibration
for each individual view or gate can make such approaches
impractical and difficult to scale to large installations. The
problem is further complicated by the diverse nature of the
areas to be monitored, with both large and small check-points,

located indoor and outdoor, potentially being of interest in the
one facility.

In this paper we present an approach to achieve this task
in a scene invariant manner using convolutional and recurrent
neural networks. Through the use of CNNs and LSTMs, we
are able to achieve a level of scene invariance, making the
approach far more practical for large-scale deployment in
real world environments. We investigate the use of both grey
scale and optical flow data in isolation and in tandem, and
explore how LSTMs can be leveraged to exploit the sequential
nature of the problem to improve performance. In this work,
we also introduce a new dataset that contains 44 hours (2
hours for 22 different gate locations) of pedestrian footage
taken from a variety of indoor and outdoor locations, which
includes over 11, 000 pedestrian annotations. The remainder of
this paper is organised as follows: Section II discusses prior
work on pedestrian throughput estimation; Section III outlines
our proposed approach; Section IV presents the proposed
database and evaluation protocol; Section V demonstrates the
performance of the proposed networks on our database; and
Section VI concludes the paper.

II. PRIOR WORK

Early approaches to the problem of pedestrian throughput
estimation sought to use overhead cameras [1], [2], [3], [4],
[5], [6], [7], from which people can be easily located and
counted through techniques such as motion segmentation.
However while the use of highly constrained camera systems
such as these do offer a degree of site invariance (i.e. if all sites
have the same or very similar overhead view, then deployment
across multiple sites is simplified), their deployment requires
a significant investment in new infrastructure, as the vast
majority of existing CCTV cameras will not have a suitable
field of view.

As such, more recent research has sought to develop
methods that can work with arbitrarily placed cameras, by
extracting features over a line, or from within a region of an
image. Kim et al. [8] proposed the concept of the ‘virtual gate’
for counting crowds past a point. Kim et al [8] uses a single
line in the image, and observed optical flow perpendicular to
the line over time. The observed flow is integrated and scaled
by a learned coefficient to obtain a count. Similar approaches
have been proposed by [9], who introduced a fixed-length
sliding temporal window, generating a larger set of samples
to train a Bayesian Poisson regression model; and [10] who
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used the concept of the influx and outflux count from a region
of interest to count people as they passed through a region by
tracking pixels on the boundary of the ROI. A region based
approach proposed by Denman et al. [11] extracted aligned
optical flow within a region of interest and used Gaussian
Process Regression to count people within a small temporal
window. In this case, the optical flow field is multiplied by a
vector that describes the target direction such that motion in
the target direction becomes positive, motion in the opposite
direction becomes negative, and motion perpendicular to the
direction of interest is ignored.

A limitation of these techniques is their scene dependence,
i.e. a model needs to be trained for each view point. While
this is not a significant problem for small sites with only a
small number of cameras or areas to be monitored, for a
large environment such an airport, with 100’s of doors or
passage ways that need to be monitored, such approaches
rapidly become impractical.

Within the related area of crowd counting (i.e. counting ev-
eryone in a scene), much research has focussed on developing
methods allow for scene invariance, such that models trained
on one scene can be applied to another. Approaches such as
the use of camera calibration to normalise feature vectors [12];
the use of Bayesian model adaptation [13] to transfer models
learnt in one domain to a second; and the application of deep
neural networks to learn invariant features [14] have all shown
some success.

Recently, Cao et al. [15] and Zhao et al. [16] have both pro-
posed the use of deep convolutional neural networks (DCNNs)
for estimating crowd throughput. Cao et al. [15] combined
three DCNNs based on AlexNet [17] to estimate the pedestrian
flow from both visual and optical flow imagery, and the crowd
state (indicating whether people are entering, leaving, both,
or the scene is empty); and then combined these outputs
into an estimated count. Zhao et al. [16] proposed training a
network to solve the related tasks of crowd density estimation
and crowd velocity estimation, and used the output of these
processes to estimate the number of people crossing a line
of interest. Both approaches in [15] and [16] are shown to
offer good performance, including the ability to generalise
between similar scenes (i.e. different cameras, but all with
broadly front-on views of the region of interest). However,
both of these approaches only utilise optical flow or estimated
crowd velocity which is restricted to consecutive estimations.
Both approaches ignore the inherent temporal aspect of the
problem. As such, in this paper we investigate how recurrent
neural networks, and in particular LSTMs [18] can be used to
help estimate crowd throughput in a scene invariant manner.

III. PROPOSED APPROACH

We propose using a deep convolution neural network
(DCNN) to count people as they pass a line in an image.
We investigate three different DCNN architectures:

1) A 2D convolutional approach which takes striped grey-
scale and optical flow images as input;

2) A naive LSTM approach, which takes the same striped
image as above as input (i.e. one row per time-step); and

3) A 2D convolution with LSTM approach, which applies
2D convolutions to a sequence of images, which are
fed into an LSTM to estimate crowd count over a time
window.

As input to the networks, we consider the use of grey scale or
optical flow images on their own, or in combination. Section
III-A outlines the process of generating our input images,
while Section III-B details the network architectures used in
this paper.

A. Image Representation

1) 2D Representation: The proposed approach aims to
count people as they pass a line defined in the image. As such,
a simple 2D spatio-temporal representation can be generated
by stacking slices of the image taken over a line of interest,
such that

F (x, t) = It(L(x)), (1)

where F is the feature image extracted for a given time
window; t is the current time-step, such that the tth row in the
output feature F is given by the tth image in the sequence,
It; and L(x) is a function that maps the x coordinate in the
output feature to the line of interest in the input image. In
this manner, a single image captures activity occurring over a
small time window. The input images, It, can be either grey
scale images, or aligned optical flow images. A number of
examples for both grey scale images and aligned optical flow
images are shown in Figure 1.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 1. Example Sliced Input Images: The top row shows a sample image from
a scene, with the line of interest drawn in red. The second row shows example
striped grey scale images taken over the line for a 10 second window, and the
bottom row shows striped aligned optical flow images for the same time region
and time window. The striped images are generated by stacking lines extracted
from consecutive images, as outlined in Equation 1. The aligned optical flow
images used in generating images on the bottom row and generated using
Equation 2, followed by Equation 1, with the aim being to normalise the
optical flow to cope with arbitrary orientations.

When considering optical flow, we need to normalise for the
direction of interest to ensure consistent input to the network.
We use the idea of aligned optical flow from [11] to ensure
that the flow field is normalised such that positive values
indicate motion in the direction of interest, negative values
indicate movement in the opposite direction, and any motion
orthogonal to the direction of interest is suppressed.
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The optical flow field at time t is denoted vt, and the optical
flow at a pixel p is denoted vt(p). The component of this flow
which points in the direction of interest d is referred to as the
aligned optical flow, and is computed using the dot product,

v̂t(p) = vt(p) · d. (2)

In this manner, we can generate an aligned optical flow image,
from which we extract and stack the line of interest, generating
the images shown in Figure 1. For all scenes used in this paper,
we re-sample the line of interest to length 100, and stack 50
consecutive frames captured at 5 frames per second such that
the extracted images are 100×50 pixels in size and represents
a 10 second time window.

2) 3D Representation: For networks that require a 3D
input, an alternate representation to that presented in Section
III-A1 is used. Rather than extracting a 2D line from each
image and stacking these to create an image, we extract a 2D
patch from each image, and stack these to create a volume,

F3D(x, y, t) = It(R(x, y)), (3)

where F3D is the feature volume extracted for a given time
window; t is the current time-step, such that the tth slice in the
output feature F3D is given by the tth image in the sequence,
It; and R(x, y) is a function that maps the x, y coordinate in
the output feature to the region of interest in the input image.

As with the 2D representation, a grey-scale volume can
be extracted by simply taking the raw pixel values, while
an optical flow representation can be obtained by using the
aligned optical flow approach described in Section III-A1.
following the 2D approach, volumes are extracted such that
the region of interest is 100×50 pixels in size centred around
the line of interest, with 50 frames captured at 5 frames per
second used such that the volume is 100× 50× 50 pixels in
size.

B. Network Architectures

We investigate both the use of a 2D convolutional network
where a time window is represented as a 2D image composed
of slices; and LSTM networks that aim to model the sequence
and thus consider multiple observations in sequence over the
time window. The two approaches are discussed in subsections
III-B1 and III-B2 respectively.

All networks have a final output of size 2, and are trained to
estimate the number of people passing through the line/region
of interest for a fixed period of time in each direction. The
first element of the final layer indicates the number of people
passing in the forward direction, while the second indicates
the number of people passing in the backwards direction. A
secondary output, a pair of 12× 6 pixel images such that one
image is produced for each direction, is also produced by the
networks. These images are trained to indicate the approximate
region that each person who is counted in the input sequence
occupies, and the output size is set to the rounded size of the
input image down-sampled by a factor of 8 (i.e. after three
2× 2 max pooling operations).

1) 2D Convolution Network: We use a 2D convolutional
network which is made of a number of smaller convolutional
units. Following the work of [19], we use a number of stacked
smaller convolutional filters as opposed to a smaller number
of larger convolutional filters. The basic convolutional unit of
our network is presented in Figure 2 (a), and consists of two
convolutional layers followed by a max-pooling layer. Batch
normalisation is used to improve convergence [20], and we
also use a 2D spatial drop-off [21] after the max-pooling layer,
as we find that this further improves performance.

We stack three of the convolutional units as shown in
Figure 3 (a). A convolutional filter of size 5 × 5 is used
for the first group, and a filter of size 3 × 3 is used for the
second two convolutional groups. 16, 32 and 64 filters are
used in the groups respectively. We find that for this task,
the smaller number of filters is sufficient (compared to other
tasks such as image classification [19]) and using additional
filters (or further convolutional layers) has little to no extra
benefit. We follow the convolutional layers with three fully
connected layers of size 256, 64 and 2 respectively (with
batch normalisation and activation, see Figure 3 (b)). The
final fully connected layer has non-negative constraints placed
on the weights and biases, ensuring that the outputs of the
network must be positive. As with the convolutional layers,
both batch normalisation and drop out are used as we find
this improved performance. The secondary output is generated
using a fully connected layer that takes input from the last of
the convolution groups, and maps the convolution output to a
144 length vector.

Within the network, we predominately use ELUs [22] as
the activation function to improve learning, with the exception
of the final activation, which is a ReLU. We revert to a
ReLU as the final activation to ensure that only positive inputs
are provided to the final fully connected layer that computes
the counts, which (combined with non-negative weights and
biases) ensures that the output pedestrian count estimates are
greater than or equal to 0.

As can be seen in Figure 3, we investigate the use of both
a single mode of input data (i.e. grey scale values or optical
flow) and the use of two modes (grey scale and optical flow).
When using the two modes as shown in Figure 3 (b), we
use a group of three convolutional units for each mode. The
flattened output of these convolutional units are merged prior
to the fully connected layers, which are responsible for fusing
the combined data to estimate the person counts.

2) LSTM Network: The task of pedestrian throughput es-
timation is inherently sequential, and thus well suited to
recurrent neural networks such as LSTMs [18]. We investigate
two ways to employ LSTMs:

1) Using the 2D representation of Section III-A1, where
each image row now represents a single time step for
the LSTM;

2) Using the 3D representation of Section III-A2, where a
2D image is obtained for each time step, which is first
passed through a number of convolutional layers before
being passed to an LSTM.

The first approach is illustrated in Figure 4 (b) and (c) for the
single and dual mode networks respectively. The single mode
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(a) Convolution Group (b) Fully Connected Group

Fig. 2. Network Components: (a) shows the convolution group that is used to
build the two networks, consisting of two small convolution filters followed
by a max-pooling; (b) shows the fully connected group, which consists of
a fully connected layer, followed by batch normalisation, activation and a
drop-out.

network (Figure 4 (b)) uses two stacked LSTMs and merely
passes the input through the LSTMs (with the first being a
sequence-to-sequence LSTM) followed by a fully connected
layer (output size, 2) to get the throughput estimates. The dual
mode approach (Figure 4 (c)) uses a sequence-to-sequence
LSTM for each mode, and then combines these using a third
LSTM (sequence-to-one) followed by a fully connected layer.
As with the networks outlined in Section III-B1, constraints are
placed on the final fully connected layer (positive weights and
biases) to ensure positive outputs for the estimated through-
puts. The secondary output is generated by connecting the
output of the first LSTM (or first pair in the case of the dual
input network) with a fully connected layer to generate an
output vector of length 144.

The second approach is shown in Figure 5, and can be
seen as the union of the 2D convolution approach in Section
III-B1 and the simple LSTM approaches described above.
Input images are passed through a network of 6 convolutional
layers arranged in pairs of two (see Figure 3 (a) and (b))
to generate a sequence of deep features. This deep feature
sequence is then passed through the LSTM and fully connected
layers to generate the output estimates. The secondary output
is derived from the output of the convolutional layers (as
per the 2D approaches of Section III-B1), and the final fully
connected layer has positive constraints on the weight and bias
as per the other proposed networks.

C. Network Training and Loss

We seek to estimate the pedestrian throughput for an en-
vironment over a large period of time. As such, minimising
bias and ensuring that the network can accurately estimate
when no one is passing through the gate are important and
should be considered by the loss function. For this reason, we
propose the sum of the mean absolute error (MAE) and the

mean squared error (MSE) as the loss function for the primary
network output (the estimated counts),

L =
1

N

∑
|E(x)−GT (x)|) + 1

N

∑
(E(x)−GT (x))2,

(4)
where E(x) are the estimates and GT (x) are the ground truth
values; and N is the batch size. The first component, the mean
absolute error (MAE), promotes the correct estimation of 0
values. The mean squared error (MSE) on the other hand
promotes the correct identification of large groups moving
through. We find that using only a single one of these terms
leads to less accurate estimates, as networks trained with MAE
alone have a tendency to underestimate large groups; while
networks trained used MSE are prone to a small positive bias
(i.e. estimating 0 as 0.1) which over times leads to large errors
accumulating.

The secondary output (the coarse location map) is evaluated
using the mean squared error. For this output we are less
concerned with the presence of small values in place of 0’s as
we are seeking to use this input to assist with the detection
of large groups; rather than as a direct output of the network.
Weights for the loss functions are set to 1.0 and 0.2 for the
counts and location map respectively.

In training the networks, we use a batch size of 32, and
use the Nesterov Adam optimizer [23] with the parameters
provided in the paper. We train all the networks for 30
epochs, and select the iteration that yields the best loss on
the validation set.

IV. DATA AND EVALUATION PROTOCOL

A. Data

An extended set of the data first presented in [11] is
used, including 16 new two hour sequences. Data is collected
for 22 locations across 14 cameras on a busy university
campus, as shown in Figure 6. The gates are placed in a
variety of locations and orientations, covering outdoor and
indoor locations, doorways, elevators foyers, and pathways.
The gates themselves are of varying real-world width, and
some perspective distortion is present (particularly for those
monitoring elevator foyers, see Figure 6 (r), (s) and (t)).

For each camera, two hours of continuous data is collected.
To annotate pedestrian throughput, we simply annotate every
instance of a person crossing the line of interest in either
direction. A count is registered once the approximate centre
of mass of the person crosses the line of interest 1. Further
details on the database, including the number of pedestrians
in each view, are given in Table I and Figure 7.

We note that the data contains a large number of windows
with zero people crossing in either direction, which can bias
the network training as it can become common for input
batches to consist of only windows that contain no people.
To reduce the number of instances of this, once at least 5
consecutive windows that contain 0 people are observed within
a sequence, all subsequent consecutive windows that contain
0 people are removed from the training set (i.e. we remove

1To obtain a copy of the data, please contact the authors
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(a) 2D Single Mode Network (b) 2D Dual Mode Network

Fig. 3. 2D CNNs: The single and dual mode networks shown in (a) and (b) respectively both use three convolutional groups per mode followed by three fully
connected groups. For the dual mode network, the first fully connected group receives the merged output of both the optical flow and grey scale convolution
sub-networks.

(a) LSTM Group (b) Single Mode LSTM (c) Single Mode LSTM

Fig. 4. LSTM Network Architectures: (b) and (c) show networks that take the 2D representation and pass it through an LSTM, such that each slice of the
input image becomes an observation. Both networks use stacked LSTMs, with the first LSTM outputting a sequence, and the second a single vector. This
approach is taken to allow the secondary output to be generated. Each LSTM group is an LSTM layer, followed by batch normalisation and an activation as
shown in (a).

(a) 2D Convolution with LSTM

Fig. 5. 2D-LSTM Network Architectures: the network takes a 3D volume
of data and extracts a convolutional features for each time step, which are
subsequently passed into the LSTM as a sequence. As with the LSTM
networks, stacked LSTMs are used, with the first layer of LSTMs generating a
sequence. The intermediate output is generated based on the combined output
of the convolutional layers.

all windows until a person appears again). While this does
reduce the number of samples present for learning (see Table
I), we find that we still have a sufficient number and ultimately
achieve a better overall result due to the increased variation in
the training data.

To estimate pedestrian flow, data is extracted as detailed
in Section III-A, such that we have 10 second windows at 5
frames per second; and the line of interest (or width of the
region of interest) is re-sampled to 100 pixels (roughly the
minimum length of the 22 gates annotated in the video feeds).
Colour images are converted to grey scale and normalised into
the range [−0.5, 0.5]; while optical flow images are clipped at
±50 (optical flow magnitudes of this this size and larger are
very rare within the data, and when present represent an error
in optical flow estimation) and are also normalised in to the
range [−0.5, 0.5]. To obtain additional data for training, we
use a sliding window sampling every 2 seconds, allowing us
to extract a sufficient amount of data to train the networks.

The secondary output is generated from the ground truth
such that a corresponding 100×50 pixel image mask indicating
approximate people locations is created for each window. The
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(a) Pool Stairs (b) Level 3 Pathway (c) External Stairs
(Bottom)

(d) Beside External
Stairs (Bottom)

(e) External Lifts (*) (f) Level 4 Pathway

(g) Main Door (1) (h) Main Door (2) (*) (i) External Stairs
(Top)

(j) Internal Stairs (1)
(*)

(k) Internal Stairs (2)
(*)

(l) Building Entrance

(m) Main Drive (n) Main Drive (2) (o) Main Drive (3) (p) Main Drive (4) (q) Main Drive (5)

(r) Main Drive (6) (s) Main Drive (7) (t) Level 3 External
Lift

(u) Level 4 Internal
Lift (*)

(v) Level 4 External
Lift (*)

Fig. 6. The 22 gates taken from 14 cameras used in our evaluation. The red lines indicate the lines over which we collect the input images for the 2D
convolutional network and LSTM network; and the green boxes indicate the regions that we extract for the 2D convolutional LSTM network. A (*) indicates
that the data was originally available in [11].

Fig. 7. Distribution of crowd densities in the proposed database, with long
sequences of consecutive 0’s removed.

location that the subject crosses the gate (line of interest) and
the frame in which they are annotated are mapped into the
range [0..99, 0..49] to provide an image coordinate that indi-
cates the person’s centre in the generated mask. A rectangular
template that represents the approximate duration that a person
takes to traverse the gate (2.5 seconds) and size (10% of the
gate width) is added to the mask at the corresponding location.
Two masks are generated for each window: a mask for the

forward direction and a mask for the reverse direction. Some
example masks are shown in Figure 8, and full details of the
process to generate the masks (as well as python source code)
are provided with the dataset.

B. Evaluation Protocol

A leave one out cross validation approach is used to evaluate
the system. For each fold we train on 17 gates, use 4 gates as
a validation set, and test on the 22nd unseen gate. 2 Results
are reported in terms of mean squared error (MSE) and mean
absolute error (MAE) for the 10 second windows; and relative
error (RE) over the entire sequence. We avoid using RE over
sub-windows as for all gates, there are periods of time when
there are no pedestrians present.

V. RESULTS

We evaluate the proposed approach on the dataset presented
in Section IV-A. The proposed networks are evaluated in
Section V-A; and we analyse the impact of the loss function
on estimation accuracy in Section V-B; assess the impact of

2Validation and test gates are approximately evenly spaced within the entire
set of 22 gates, i.e. when gate 2 is the test gate, gates 1, 8, 13 and 18 are used
for validation. This approach is taken to try and ensure that the validation set
captures a reasonable cross-section of the conditions present. Note that gates
are ordered as per Figure 6 and Table I, such that ‘Pool Stairs’ is gate 1.
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Camera Total People Total Samples
Forward Backwards All Data Reduced 0’s

Pool Stairs 74 52 3,596 854
Level 3 Pathway 82 63 3,596 1,095
External Stairs
(Bottom)

162 202 3,596 1,772

Beside External
Stairs (Bottom)

211 156 3,596 2,045

External Lift 25 19 3,597 355
Level 4 Pathway 238 203 3,597 1,902
Main Door (1) 976 853 3,596 3,462
Main Door (2) 856 980 3,597 3,461
External Stairs
(Top)

388 425 3,600 2,906

Internal Stairs (1) 341 245 3,597 2,162
Internal Stairs (2) 337 245 3,601 2,146
Building
Entrance

555 583 3,596 3,220

Main Drive 217 149 3,596 1,845
Main Drive (2) 184 145 3,597 1,760
Main Drive (3) 167 170 3,597 1,884
Main Drive (4) 109 142 3,597 1,469
Main Drive (5) 141 216 3,596 1,774
Main Drive (6) 169 157 3,596 1,872
Main Drive (7) 272 359 3,596 2,536
Level 3 External
Lift

41 33 3,596 461

Level 4 Internal
Lift

162 175 3,597 1,699

Level 4 External
Lift

147 118 3,600 1,429

Total 5,854 5,690 79,133 42,109
TABLE I

PROPOSED DATABASE DETAILS: THE NUMBER OF PEDESTRIANS
TRAVELLING IN EACH DIRECTION ARE GIVEN, ALONGSIDE THE TOTAL
NUMBER OF SAMPLES EXTRACTED FROM EACH SEQUENCE WITH AND

WITHOUT THE REMOVAL OF EXCESS SAMPLES THAT CONTAIN 0 PEOPLE.
IT CAN BE SEEN THAT THE NUMBER OF PEOPLE PRESENT WITHIN THE

CAMERAS VARIES GREATLY.

the secondary output in Section V-C; and finally compare to
the scene dependent approach of [11] in Section V-D, and the
scene independent approach of [15] in Section V-E.

A. Proposed Approach

Tables II and III present the performance of the proposed
system across the 22 camera views. From Table II it is evident
that the 2D CNN approach outperforms the simple LSTM
network; and optical flow images offer better performance
than grey scale images, while the use of both results in
better performance than either one on their own. This is to
be expected, as the additional size and complexity of the 2D
CNN network over the LSTM, and the additional information
offered by using both streams of data simultaneously, could
reasonably be expected to offer improved performance. The
benefit of the added complexity is particularly evident when
considering the performance using grey scale images, where
the 1D LSTM performs particularly poorly. The nature of the
optical flow input, with the flow field being aligned such that
only motion in the direction of interest (or it’s opposite) is
retained making people moving across the line appear more
obvious, means that this input is able to work significantly
better with a simpler network. However, we observe that the
1D LSTM is still able to effectively incorporate both modes
of data to improve performance. Comparing these approaches

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Example location masks generated from the ground truth: The top
row shows an input frame from within the relevant window; the second row
shows the striped gray-scale image generated for the window; and the third
row shows an example mask (forward direction in (g), reverse direction in
(h) and (i)) for the window.

to the 2D CNN-LSTM network, we can see that the 2D CNN-
LSTM achieves an average relative error (RE) close to that of
the 2D CNN, although it’s mean absolute error (MAE) and
mean squared error (MSE) are worse than both the 2D CNN
and 1D LSTM.

System Data MSE MAE RE

2D CNN
Optical Flow 0.34 0.24 52.16%
Grey scale 0.60 0.39 78.54%

Both 0.32 0.23 42.43%

1D LSTM
Optical Flow 0.46 0.27 56.12%
Grey scale 1.04 0.71 354.89%

Both 0.46 0.28 55.20%
2D CNN-LSTM Both 0.56 0.33 45.71%

TABLE II
AVERAGE PERFORMANCE OF THE PROPOSED APPROACHES OVER THE 22
CAMERA CORPUS. NOTE THAT THE 2D CNN-LSTM APPROACH IS ONLY

EVALUATED FOR BOTH SIMULTANEOUS OUTPUTS AS THIS HAS SHOWN
BETTER PERFORMANCE FOR THE SIMPLER NETWORKS.

Table III shows the results for each sequence, and offers
further insight into the performance of the systems. It can be
seen that while the 2D CNN system achieves better overall
error rates, there are a number of sequences where the 1D
LSTM (External Lift, Building Entrance, Main Drive (4), and
Level 4 Internal Lift) or the 2D CNN-LSTM (Pool Stairs,
Level 3 Pathway, External Stairs (Bottom), Level 4 Pathway,
Internal Stairs (1), Main Drive (3), Main Drive (5), Main
Drive (6), Main Drive (7), Level 3 External Lift, Level 4
External Lift) achieve a more accurate overall estimate. From
Figure 6, it can be seen that the 2D CNN typically offers
best performance on those views that show a front-on view
of the line of interest. Cameras that observe pedestrians from
side-on, or partially side-on (i.e. Pool Stairs, Level 3 Pathway,
Main Drive (3), Main Drive (4) and Main Drive (6)), or have
significant perspective distortion (i.e. Building Entrance, Level
4 Internal Lift, Level 4 External Lift), tend to perform better
with one (or both) of the LSTM networks.
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Test Set 2D CNN 1D LSTM 2D CNN with LSTM
MSE MAE RE MSE MAE RE MSE MAE RE

Pool Stairs 0.03 0.05 26.68% 0.05 0.06 28.03% 0.04 0.05 2.88%%
Level 3 Pathway 0.08 0.09 35.40% 0.07 0.11 47.59% 0.09 0.12 4.77%%

External Stairs (Bottom) 0.18 0.12 39.28% 0.26 0.14 42.50% 0.24 0.15 0.15%%
Beside External Stairs (Bottom) 0.09 0.14 10.72% 0.35 0.27 65.58% 0.14 0.19 16.12%%

External Lift 0.06 0.06 122.92% 0.04 0.07 110.98% 0.08 0.13 310.04%%
Level 4 Pathway 0.29 0.20 52.94% 0.40 0.22 58.00% 0.58 0.34 25.61%%
Main Door (1) 1.23 0.72 18.83% 1.90 0.80 46.45% 2.93 1.07 57.32%%
Main Door (2) 1.20 0.69 19.11% 1.49 0.73 30.46% 2.24 0.86 58.14%%

External Stairs (Top) 0.26 0.26 8.51% 0.62 0.39 60.86% 0.46 0.35 23.51%%
Internal Stairs (1) 0.36 0.24 39.64% 0.61 0.31 72.13% 0.48 0.30 32.16%%
Internal Stairs (2) 0.28 0.26 6.89% 0.29 0.21 25.56% 0.52 0.28 42.06%%
Building Entrance 0.40 0.30 30.22% 0.51 0.38 9.18% 1.45 0.72 57.69%%

Main Drive 0.22 0.20 1.63% 0.42 0.24 82.20% 0.35 0.28 9.63%%
Main Drive (2) 0.14 0.12 24.34% 0.33 0.27 27.94% 0.21 0.20 24.91%%
Main Drive (3) 0.19 0.15 62.12% 0.15 0.14 35.93% 0.18 0.17 17.08%%
Main Drive (4) 0.12 0.10 49.99% 0.13 0.17 9.20% 0.28 0.31 119.12%%
Main Drive (5) 0.15 0.14 32.46% 0.35 0.22 79.61% 0.29 0.22 30.43%%
Main Drive (6) 0.24 0.18 70.40% 0.29 0.21 72.35% 0.34 0.28 17.47%%
Main Drive (7) 0.81 0.42 88.75% 0.92 0.43 98.24% 0.56 0.42 27.17%%

Level 3 External Lift 0.05 0.06 77.33% 0.05 0.08 108.13% 0.06 0.06 25.77%%
Level 4 Internal Lift 0.30 0.31 75.56% 0.30 0.28 40.32% 0.50 0.51 101.99%%
Level 4 External Lift 0.39 0.28 39.76% 0.49 0.33 90.17% 0.33 0.27 1.59%%

Average 0.32 0.23 42.43% 0.46 0.28 56.43% 0.56 0.33 45.71%
TABLE III

PERFORMANCE OF THE PROPOSED APPROACH FOR EACH SEQUENCE IN THE DATABASE. WHILE THE 2D CNN WORKS BETTER OVERALL, FOR A NUMBER
OF SEQUENCES THE SIMPLER LSTM OFFERS BETTER PERFORMANCE.

From these views, occlusions as multiple people cross the
gate are more common, and thus strong visual features that
indicate a single person is crossing the gate, such as those
that may be observed in front-on views, are less prevalent.
For the 2D CNN approach which relies on being able to learn
a set of filters that correspond to an individuals appearance as
they cross the gate, this means that counts are less accurate.
This is further illustrated in Figure 9, where we can see that
for two front-on gates (Level 4 Pathway, Main Door (2)) the
LSTMs are more prone to under-counting; while from the
partially or fully side-on views (Building Entrance, Main Drive
(3)), the 2D CNN suffers more greatly from under-counting.
From Figure 9 we can also see that the performance of the 2D
CNN-LSTM is quite inconsistent across the views. Generally,
it struggles to count large groups of people (Main Drive (3),
on which it performs best of the five sequences we visualise
has the smallest size crowds), and while it achieves the lowest
relative error on ‘Level 4 Pathway’ of the three systems, we
can see that this is actually due to a small positive bias that
accumulates to effectively help make up for the under-counting
towards the middle of the sequence. We observe in general
that all networks struggle somewhat with under-counting large
groups, which can be attributed to the distribution of crowd
sizes in the database (see Figure 7) where only a very small
number of training examples with 10 or more people present
exist. However, the 2D CNN-LSTM seems even more sensitive
to this problem than the other networks, suggesting that it is
struggling to learn an effective set of filters to detect a person
as they cross the gate.

This problem for the 2D CNN-LSTM may be caused by the
wide variation in size of the gates in real world terms, as shown
in Figure 6. The cropped region extracted for some gates (such
as Main Door (1), Main Door (2), Building Entrance) will not
actually contain an entire person at once, which likely hampers

the 2D CNN-LSTM approach in it’s learning. This is further
supported by the performance on ‘Main Drive (5)’ and ‘Main
Drive (7)’, where the 2D CNN-LSTM performs best, despite
these being front-on gates that typically work best with the 2D
CNN. Compared to other front-on views, these are both very
wide gates in real-world terms, from Figure 6 we can see that
entire people are present in the extracted regions, helping the
network detect and count people in the sequences.

All three networks are capable of estimating crowd sizes
quickly, with inference times per sample of 0.0433 seconds,
0.0120 seconds, and 0.2913 seconds for the 2D CNN, 1D
LSTM and 2D CNN-LSTM networks respectively, running
on a single core of a Xeon 2670 CPU. Unsurprising, the
1D LSTM is the quickest, while the 2D CNN-LSTM is the
slowest; however given that a single sample represents a 10
second window, all three are performing well above real-time
on only a single CPU.

B. Loss Function Evaluation

An evaluation of three different loss functions for the
primary output (i.e. the counts) is shown in Table IV. It can
be seen that using the combination of mean squared error
(MSE) and mean absolute error (MAE) clearly offers superior
performance.

Loss Function MSE MAE RE
MSE + MAE 0.32 0.23 42.43%

MSE 0.36 0.33 98.03%
MAE 0.36 0.23 46.10%

TABLE IV
AVERAGE PERFORMANCE ACROSS 22 FOLDS OF DIFFERENT LOSS

FUNCTIONS FOR THE 2D CNN. NETWORKS USE BOTH GREY SCALE AND
OPTICAL FLOW IMAGES AS INPUT.

Figure 10 illustrates the reason for this. Using the MSE
as a loss function will result in small counting errors (i.e.
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(a) Level 4 Pathway, Forward Direction

(b) Main Door (2), Forward Direction

(c) Building Entrance, Forward Direction

(d) Main Drive (3), Forward Direction

(e) Main Drive (7), Backward Direction

Fig. 9. Performance of the proposed approaches for a selection of sequences. Performance varies for the different networks across the different views.

less than 1.0) being suppressed by the loss function; with far
greater emphasis given to errors when estimating windows
that contain a large number of people. As such the system
is prone to learning a small positive bias. Using the MAE
resolves this problem and the system is largely free of bias
and correctly detects when no one is present, however the
networks are now more prone to under-counting. Using the
sum of the two metrics as the loss somewhat alleviates the
under-counting, while retaining the ability to correctly detect
windows without a person (i.e. little to no bias). We note that
all metrics are somewhat prone to under-counting on some
sequences such as ‘Main Door (2)’ where large crowds are
present. As noted earlier, this can be attributed to the nature
of the dataset where there are very few examples of windows
with 10 or more people.

C. Impact of Secondary Output

Table V and Figure 11 show the impact of the secondary
output on system performance. From Table V, it is clear that

the secondary output has a beneficial impact on performance.
Looking at Figure 11, we can see that the secondary output
has two main benefits: assisting with the correct identification
of situations where 0 people are present, as evidenced by
the small bias present in the single output networks shown
in Figure 11 (a) and (c); and improving the detection and
counting of larger groups, in particular for the LSTM network
(see Figure 11 (b)).

System MSE MAE RE
2D DCNN (1 Output) 0.32 0.25 52.93%
1D LSTM (1 Output) 0.47 0.29 81.51%
2D DCNN (2 Outputs) 0.32 0.23 42.43%
1D LSTM (2 Outputs) 0.46 0.28 55.20%

TABLE V
AVERAGE PERFORMANCE ACROSS 22 FOLDS FOR NETWORK THAT DO OR
DON’T USE THE SECONDARY OUTPUT. ALL NETWORKS USE BOTH GREY

SCALE AND OPTICAL FLOW IMAGES.
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(a) Pool Stairs, Backward Direction

(b) Beside External Stairs (Bottom), Forward Direction

(c) Main Door (2), Forward Direction

(d) Main Drive (4), Backward Direction

Fig. 10. Performance of the 2D CNN with different loss functions for different sequences. It can be seen that using MSE alone leaves the system more prone
to learning a small positive bias. Use of the MAE alone results in the correct counting of observations that contain 0 people, but at the cost of more severe
under-counting.

(a) External Lift, Forward Direction

(b) Building Entrance, Forward Direction

(c) Level 3 External Lift

Fig. 11. Performance of the proposed networks (2D CNN and LSTM) with and without the secondary output. All networks use both grey scale and optical
flow images.
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D. Comparison to Scene Dependant Approach

Table V-D compares the proposed approach (2D CNN
network) to the scene dependant technique of [11]. As the
approach of [11] is scene dependant, the first half of each
sequence (i.e. one hour) is used to train the system, and it is
tested on the second hour. The proposed approach is trained
on the data from the other sequences, as per the rest of the
evaluation. Results are reported for all systems on the second
hour of footage only, and as such results for the proposed
system are different to those results reported in Table III.

From Table V-D, we can see that the proposed approach
typically achieves lower MSE and MAE than the scene
dependant technique, however when assessing based on the
relative error, performance is somewhat more mixed. The
baseline scene dependant technique performs badly on views
with lots of clutter and occlusions, such as ‘Pool Stairs’, ‘Level
3 Pathway’, ‘External Lift’ and ‘Building Entrance’. Plots for
the first two of these sequences are shown in Figure 12 (a)
and (b), and it can be seen that in the presence of such clutter
and spurious motion, large false counts are recorded. This is
particularly problematic in ‘External Lift’, where the gate is
frequently obscured by large crowds of pedestrians moving
across the pathway in a direction perpendicular to that of the
gate.

Performance is more mixed for the more front-on and less
obscured gates. Looking at ‘Main Door (1)’ and ‘Main Door
(2)’ shown in Figure 12 (c) and (d), we can see that the
proposed approach performs better on ‘Main Door (1)’, but
not ‘Main Door (2)’. This is due to the crowded nature of these
gates, and as noted earlier, the lack of data with similar crowd
levels in the rest of the dataset. The scene dependant approach,
having been trained on the previous hour of footage and thus
similar crowd densities, is better able to cope with the crowded
conditions of ‘Main Door (2)’. In Figure 12 (c) it can be seen
that although the larger crowds at the end of the sequence are
under-counted by the proposed approach, the more accurate
estimation throughout the remainder of the sequence leads to
a more accurate performance overall.

The tendency of the proposed approach to undercount in
many situations hampers it’s performance in sequences such
as ‘Main Drive (5)’, as seen in Figure 12 (e). The proposed
and scene dependent approach both follow the trends present
in the ground truth, however the proposed approach typically
reports fewer people than the baseline approach, leading to a
gradual accumulation of error. In spite of this, we note that
the proposed approach achieves lower MSE and MRE than
the baseline for this sequence, illustrating how these metrics,
when taken on their own, can be misleading.

Finally, we consider the performance of the techniques on
‘Level 4 Internal Lift’, as shown in Figure 12 (f). This view
is significantly different from other views in the dataset, with
the presence of perspective distortion, and the comparatively
unusual behaviour of people stopping and loitering around the
line of interest as they wait for the lift. In a situation signif-
icantly different from many others observed in the database,
the proposed approach struggles, while the baseline technique
obtains a more accurate overall count.

Test Set View Specific Proposed
MSE MAE RE MSE MAE RE

Pool Stairs 0.12 0.17 73.63% 0.03 0.05 27.83%
Lev. 3
Path.

0.56 0.56 346.52% 0.08 0.09 32.94%

Ext. Stairs
(B)

0.17 0.22 8.86% 0.19 0.12 38.89%

Bsd. Ext.
Stairs (B)

0.23 0.26 2.93% 0.09 0.15 9.71%

Ext. Lift 0.20 0.35 1104.38% 0.06 0.06 134.35%
Lev. 4
Path.

0.29 0.23 69.41% 0.30 0.20 52.96%

Main Door
(1)

1.17 0.73 21.10% 1.26 0.72 18.36%

Main Door
(2)

0.83 0.63 0.39% 1.22 0.69 19.30%

Ext. Stairs
(T)

0.37 0.39 12.16% 0.27 0.26 10.12%

Int. Stairs
(1)

0.69 0.41 3.28% 0.36 0.23 39.46%

Int. Stairs
(2)

0.20 0.23 7.41% 0.26 0.26 5.75%

Building
Entrance

5.17 1.85 231.77% 0.40 0.30 30.23%

Main Drv 0.29 0.35 38.60% 0.24 0.22 2.07%
Main Drv
(2)

0.21 0.26 69.21% 0.15 0.13 24.26%

Main Drv
(3)

2.19 0.43 76.81% 0.20 0.16 61.76%

Main Drv
(4)

0.34 0.29 38.87% 0.13 0.10 49.50%

Main Drv
(5)

0.16 0.20 5.25% 0.16 0.14 31.26%

Main Drv
(6)

0.36 0.27 70.20% 0.25 0.19 70.80%

Main Drv
(7)

0.61 0.52 8.78% 0.86 0.44 88.68%

Lev. 3 Ext.
Lift

0.06 0.07 26.35% 0.05 0.06 78.12%

Lev. 4 Int.
Lift

0.35 0.26 5.83% 0.29 0.30 73.24%

Lev. 4 Ext.
Lift

0.32 0.31 28.54% 0.40 0.29 42.18%

Average 0.68 0.41 102.29% 0.33 0.23 42.81%

TABLE VI
COMPARISON OF THE PROPOSED APPROACH TO THE SCENE DEPENDANT

APPROACH OF [11].

E. Comparison to Scene Independent Approaches

We compare the proposed approach to the scene invariant,
deep learning method of Cao et al. [15]3, and the scene de-
pendant approach of [11] trained in a scene invariant method.
Both systems are trained in the same manner as the proposed
approach, using 17 of the 22 sequences as the training set. The
4 validation sequences are not used by the approach of [11].
For the approach is Cao et al. [15], data is rescaled to the
target size specified in their paper, each of the three networks
are trained independently and the networks are selected using
4 validation sequences. Results for the systems are shown in
Table VII and Figure 13.

From these results, it can be seen that the proposed approach
outperforms the baselines on the majority of sequences, par-
ticularly in terms of MAE and MSE. The baselines achieve
somewhat mixed results, with both performing very poorly
on a number of sequences. This is to be expected for [11]

3We re-implement [15] following the architecture described in their paper
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(a) Pool Stairs

(b) External Lift

(c) Main Door (1)

(d) Main Door (2)

(e) Main Drive (5)

(f) Level 4 Internal Lift

Fig. 12. Performance of the proposed approach compared to the scene dependent technique of [11] for a selection of scenes.

as it is a scene dependant technique, however we notice
that on test views where a similar view is present in the
training set (i.e. the pairs ‘External Stairs (Top)’ and ‘External
Stairs (Bottom)’; and ‘Main Drive (3)’ and ‘Main Drive
(6)’) performance is good and can outperform the proposed
approach in terms of relative error. From Figure 13, it can
be seen that in some cases such as for ‘Main Drive (3)’ (see
Figure 13, (h)) this is due to a learned bias that fortuitously
leads to an approximately correct estimate over the sequence,
while for others (i.e. ‘External Stairs (Top)’) it is able to learn
a somewhat scene invariant representation, though some bias
in the forward direction does still appear to be present (see

Figure 13, (c)).

The deep learning approach of Cao et al. [15] also performs
well for a number of sequences, and typically outperforms [11]
in terms of MAE and MSE. We note that Cao et al. [15] is
very effective at detecting when the gate is empty and avoiding
spurious counts; however the cost of this is that on the whole
this approach tends to undercount, and does at times learns
a representation that fails to count any people at all (rows
in Table VII with a 100% RE). The nature of the approach,
where three networks are used to estimate the total crowd
count, mode of crowd motion and the ratio of people entering
to leaving is likely the source of this limitation; as errors
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Test Set Denman et al. [11] Cao et al. [15] Proposed
MSE MAE RE MSE MAE RE MSE MAE RE

Pool Stairs 0.25 0.39 335.87% 0.09 0.07 55.29% 0.03 0.05 26.68%
Level 3 Pathway 0.18 0.28 193.08% 0.44 0.31 176.50% 0.08 0.09 35.40%

External Stairs (Bottom) 0.23 0.16 23.23% 0.37 0.19 44.34% 0.18 0.12 39.28%
Beside External Stairs (Bottom) 0.25 0.33 35.04% 0.72 0.39 11.48% 0.09 0.14 10.72%

External Lift 0.09 0.22 414.42% 0.05 0.06 35.25% 0.06 0.06 122.92%
Level 4 Pathway 0.51 0.44 19.83% 0.78 0.30 100.00% 0.29 0.20 52.94%
Main Door (1) 2.01 1.08 54.69% 3.33 1.16 48.12% 1.23 0.72 18.83%
Main Door (2) 1.83 0.91 25.14% 2.28 1.00 36.26% 1.20 0.69 19.11%

External Stairs (Top) 0.64 0.55 3.55% 1.32 0.56 100.00% 0.26 0.26 8.51%
Internal Stairs (1) 0.58 0.37 52.03% 0.65 0.35 39.64% 0.36 0.24 39.64%
Internal Stairs (2) 0.64 0.56 95.99% 0.39 0.25 23.46% 0.28 0.26 6.89%
Building Entrance 0.87 0.65 43.29% 0.50 0.36 16.06% 0.40 0.30 30.22%

Main Drive 2.03 1.05 394.76% 0.35 0.24 48.79% 0.22 0.20 1.63%
Main Drive (2) 0.29 0.39 111.36% 0.28 0.15 50.78% 0.14 0.12 24.34%
Main Drive (3) 1.45 0.44 6.01% 0.23 0.17 68.61% 0.19 0.15 62.12%
Main Drive (4) 0.35 0.53 229.46% 0.17 0.11 61.01% 0.12 0.10 49.99%
Main Drive (5) 0.90 0.53 32.95% 0.52 0.25 100.00% 0.15 0.14 32.46%
Main Drive (6) 0.35 0.30 45.31% 0.42 0.22 100.00% 0.24 0.18 70.40%
Main Drive (7) 1.12 0.80 32.50% 0.93 0.50 27.63% 0.81 0.42 88.75%

Level 3 External Lift 0.72 0.64 606.40% 0.11 0.06 42.05% 0.05 0.06 77.33%
Level 4 Internal Lift 0.47 0.40 63.46% 0.43 0.27 21.43% 0.30 0.31 75.56%
Level 4 External Lift 0.79 0.80 387.60% 0.46 0.30 23.78% 0.39 0.28 39.76%

Average 0.75 0.54 145.73% 0.67 0.33 55.93% 0.32 0.23 42.43%
TABLE VII

PERFORMANCE OF THE PROPOSED APPROACH COMPARE TO THE SCENE INVARIANT APPROACH OF CAO ET AT. [15] AND THE APPROACH OF DENMAN ET
AL. [11] TRAINED IN A SCENE INVARIANT MANNER.

in any one of the networks can lead to counting errors. The
proposed approach, which uses both inputs jointly within the
one network, effectively reduces the number of ways in which
counting errors can occur, thus leading to increased accuracy.
We do note however that the approach of Cao et al. [15]
generally performs much better in the presence of perspective
distortion. The sequences ‘External Lift’, ‘Building Entrance’,
‘Level 3 External Lift’, ‘Level 4 Internal Lift’ and ‘Level 4
External Lift’ all contain significant perspective distortion, and
Cao et al’s [15] approach achieves impressive results on all of
these.

Overall, we see the proposed approach performs more
consistently than the other two techniques. While there are
some scenes where it is outperformed by the other techniques,
we don’t observe any of the complete failure that at times
occurs with the other systems, such as the failure to count
anyone, or the presence of a bias leading to large over-
counting.

VI. CONCLUSION

In this paper we have proposed a scene invariant approach
for pedestrian throughput estimation using deep networks and
LSTMs. The proposed approach has been demonstrated on a
new 44 hour database, that captures over 11, 000 pedestrian
movements from 22 distinct views cover indoor and outdoor
scenes and a variety of camera angles and fields of view. Using
this database, we demonstrate the efficacy of the proposed
approach, achieving similar or better performance to a scene
dependent approach in a majority of views - particularly
those which contain significant clutter and occlusions and
are otherwise difficult to count. We also show improved
performance over an existing deep-learning based pedestrian
throughput technique [15] on the proposed database.

We find that while the inclusion of LSTMs within the
network does not lead to an overall gain in performance, we
do nonetheless see improvements for full or partially side-on
gates and those with perspective distortion, suggesting further
investigation is warranted. Future work will focus on how
both the simplistic 2D representation and the spatio-temporal
volume representation can be jointly used with simple supple-
mentary information about the scene such as coarse gate pose
information (i.e. front on, side-on, presence of perspective or
not) to leverage the relative strengths of both methods and
improve overall performance. Other approaches such as 3D
convolutional neural networks will also be explored to better
extract temporal information, and additional data will continue
to be collected to further expand the database, and evaluate
the proposed and future techniques. Recent developments
in crowd counting with deep neural networks will also be
investigated, such as the use of deep metric learning [24]
and the multi-scale regression approach of [25], as potential
methods to further improve performance. Finally, comparisons
to other approaches such as [16] will be made as data becomes
available.
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