
MNRAS 474, 536–546 (2018) doi:10.1093/mnras/stx2599
Advance Access publication 2017 October 11

The open flux evolution of a solar-mass star on the main sequence
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Accepted 2017 October 4. Received 2017 September 29; in original form 2017 March 27

ABSTRACT
Magnetic activity is known to be correlated to the rotation period for moderately active main-
sequence solar-like stars. In turn, the stellar rotation period evolves as a result of magnetized
stellar winds that carry away angular momentum. Understanding the interplay between mag-
netic activity and stellar rotation is therefore a central task for stellar astrophysics. Angular
momentum evolution models typically employ spin-down torques that are formulated in terms
of the surface magnetic field strength. However, these formulations fail to account for the
magnetic field geometry, unlike those that are expressed in terms of the open flux, i.e. the
magnetic flux along which stellar winds flow. In this work, we model the angular momentum
evolution of main-sequence solar-mass stars using a torque law formulated in terms of the
open flux. This is done using a potential field source surface model in conjunction with the
Zeeman–Doppler magnetograms of a sample of roughly solar-mass stars. We explore how
the open flux of these stars varies with stellar rotation and choice of source surface radii. We
also explore the effect of field geometry by using two methods of determining the open flux.
The first method only accounts for the dipole component while the second accounts for the
full set of spherical harmonics available in the Zeeman–Doppler magnetogram. We find only
a small difference between the two methods, demonstrating that the open flux, and indeed the
spin-down, of main-sequence solar-mass stars is likely dominated by the dipolar component
of the magnetic field.

Key words: techniques: polarimetric – stars: activity – stars: evolution – stars: magnetic field –
stars: rotation.

1 IN T RO D U C T I O N

Understanding how the angular momentum and rotation periods
of low-mass stars (M� � 1.3 M�) evolve over their lifetimes
is an important goal within stellar astrophysics. For example,

� E-mail: w.see@exeter.ac.uk

rotation is known to be correlated to numerous forms of magnetic
activity including X-ray emission (Pizzolato et al. 2003; Wright
et al. 2011), chromospheric activity (Noyes et al. 1984; Mamajek &
Hillenbrand 2008) and large-scale magnetic field generation (Petit
et al. 2008; Vidotto et al. 2014b; See et al. 2015b; Folsom et al. 2016;
See et al. 2016). The stellar rotation period can also be used as a
proxy for the stellar age using the so-called gyrochronology rela-
tions (Barnes 2003, 2007, 2010), at least for stars whose rotation
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periods have converged on to a single track in the rotation period–
age plane (for solar-mass stars, convergence occurs at ∼1 Gyr).
Finally, the magnetic activity and rotation history of a host star can
also have a significant impact on the potential habitability of exo-
planets (Wood et al. 2014; Tu et al. 2015; Ribas et al. 2016; Gallet
et al. 2017). For example, stellar winds can significantly compress
planetary magnetospheres (Vidotto et al. 2013; See et al. 2014)
and reduce their ability to protect the planetary atmosphere from
the erosive effects of the wind. Planetary atmospheres can also be
eroded away by photoevaporation caused by high-energy radiation
(Lammer et al. 2003). The rate at which this occurs depends strongly
on the initial rotation period of the host star (Johnstone et al. 2015b).

Along the main sequence, the main agent of angular momentum
evolution is magnetized stellar winds that carry angular momentum
away from the central star. Many authors have studied the rate at
which stars lose angular momentum (Cohen & Drake 2014; Vidotto
et al. 2014a; Garraffo, Drake & Cohen 2015; Nicholson et al. 2016;
See et al. 2017) or formulated braking laws that describe how the
angular momentum loss varies as a function of the parameters of
the host star (Matt et al. 2012b; Reiners & Mohanty 2012; Réville
et al. 2015a). These braking laws have subsequently been used to
model stellar rotation period evolution from the pre-main sequence
(PMS) to ages older than the Sun (Gallet & Bouvier 2013, 2015;
Brown 2014; Johnstone et al. 2015a; Matt et al. 2015; Amard
et al. 2016; Blackman & Owen 2016; van Saders et al. 2016).

Numerous studies have shown that the open flux is an impor-
tant parameter in the context of angular momentum loss (Mestel &
Spruit 1987; Vidotto et al. 2014a; Réville et al. 2015a,b). However,
it is not directly observable and must be estimated using physi-
cal models. One such model is the potential field source surface
(PFSS) model (Altschuler & Newkirk 1969). This model takes an
input magnetogram of the stellar surface and extrapolates the field
upwards to the so-called source surface; a spherical surface that
represents the limit of coronal confinement. Once the source sur-
face is reached, the field lines are assumed to be open and radial,
mimicking the action of plasma pressure opening up closed field
lines.

A number of factors can affect the amount of open flux estimated
by the PFSS model. The first is the choice of an input magnetogram.
Previous theoretical work has shown that, when considering indi-
vidual field modes, stars with dipolar surface fields have the most
open flux and that the open flux decreases with increasing spherical
harmonic degree (quadrupole, octupole, etc.; Garraffo et al. 2015;
Réville et al. 2015a). For stellar studies, the input magnetogram is
typically a Zeeman–Doppler imaging (ZDI) map (Jardine, Collier
Cameron & Donati 2002; Gregory et al. 2006; Fares et al. 2010;
Lang et al. 2012; Johnstone et al. 2014; See et al. 2015a). ZDI
is a tomographic technique that is capable of reconstructing the
large-scale surface magnetic field structure of cool-dwarf stars
(Semel 1989; Brown et al. 1991; Donati & Brown 1997; Donati
et al. 2006). Over the last two decades, a considerable amount of
effort has been dedicated to investigating the field geometry of low-
mass stars. It has been found that their surface fields are composed
of a mixture of spherical harmonic modes (e.g. Jeffers et al. 2014;
Boro Saikia et al. 2015, 2016; Folsom et al. 2016). However, recent
work suggests that the open flux is dominated by the dipolar com-
ponent of the field, at least for the choice of source surface radius
used in those works (Lang et al. 2014; Jardine, Vidotto & See 2017;
See et al. 2017). This is because the dipolar component of the field
decays the most slowly with height above the stellar surface. Given
that the ZDI technique can typically reconstruct the stellar magnetic
field up to a spherical harmonic mode of, at least, � = 5, ZDI maps

are an appropriate choice of inner boundary condition for the PFSS
model in the context of determining the open flux.

The source surface radius is another parameter that can affect
the amount of open flux recovered. Within the PFSS model, it is a
free parameter but it is observationally unconstrained for stars other
than our Sun. For a given input map, more of the flux is forced to be
open for smaller values of the source surface radius. Additionally,
if the source surface is sufficiently small, the higher order field
modes may not have completely decayed away and may contribute
towards the open flux. Typically, the source surface radius is picked
to have values similar to the solar value (∼2.5r�) but in reality it
should vary as a function of the fundamental parameters of the star
(Réville et al. 2015b).

In See et al. (2017), we studied how the open flux and the cor-
responding spin-down torque varied using a sample of low-mass
stars with a wide range of masses and rotation periods. We found
that the open flux of stars with Rossby numbers, Ro, greater than
∼0.01 follows the classical activity rotation relation shape but that
Ro � 0.01 stars departed from this relation. These results were ob-
tained using the simplifying assumption that all the stars had source
surface radii of rss = 3.41r�. This is a useful assumption since it
allows for a rapid assessment of how stellar open flux varies over a
large portion of the HR diagram. However, it ignores the fact that
the source surface radius likely varies as a function of mass and
rotation period. Indeed, to these authors’ knowledge, there has not
been a systematic study of how the source surface affects the open
flux recovered for a set of realistic input magnetograms to date.

In this study, we will use a sample of 22 main-sequence stars of
roughly solar mass (0.9 M� < M� < 1.1 M�) which have had their
large-scale surface magnetic fields mapped to investigate the open
flux evolution main-sequence solar-mass stars. Using a PFSS model,
we investigate how the open flux of these stars varies for different
source surface radii and the effect of including/excluding higher
order field modes. The angular momentum evolution of a solar-
mass star can then be calculated over its lifetime using these open
flux formulations, in conjunction with the braking law of Réville
et al. (2015a). We use rotation period data from open clusters of
known ages to constrain our angular momentum evolution model
and determine how the source surface radius and open flux vary over
the main-sequence lifetime. In Section 2, we outline the details
of our spin-down model. In Section 3, we outline two methods
of determining the open flux as a function of rotation and source
surface radius. In Section 4, we discuss the open cluster data we
use to calibrate our model. In Section 5, we present the results
of our angular momentum evolution model. A discussion and the
conclusions follow in Section 6.

2 A N G U L A R M O M E N T U M EVO L U T I O N
M O D E L

In order to determine how the rotation period of a star evolves, we
need to solve the angular momentum equation,

d��

dt
= J̇

I�

− ��

I�

dI�

dt
, (1)

where �� = 2π/Prot is the stellar angular velocity, Prot is the stellar
rotation period, t is time, J̇ is the angular momentum-loss rate or
spin-down torque and I� is the moment of inertia of the star. For
simplicity, we will assume solid body rotation throughout the entire
main-sequence lifetime. We use the evolutionary models of Baraffe
et al. (2015) for a solar-mass star to determine how the moment of
inertia changes with time although we note that the internal structure
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Figure 1. Mass-loss rate against rotation period for a solar-mass star as
calculated using the model of Cranmer & Saar (2011).

of a star remains relatively constant on the main sequence and so the
changes in angular velocity are dominated by the spin-down torque
term in equation (1).

For the spin-down torque, we use the formulation of Réville et al.
(2015a),

J̇ R15 = Ṁ��r
2
� K2

3

(
ϒopen(

1 + f 2/K2
4

)1/2

)2m

, (2)

where Ṁ is the mass-loss rate, r� is the stellar radius, ϒopen =
�2

open/(r2
� Ṁvesc) is a measure of the magnetization of the open field

lines, �open is the open flux, vesc = (2GM�/r�)1/2 is the stellar escape
velocity, M� is the stellar mass, f = ��r

3/2
� (GM�)−1/2 is the angu-

lar rotation speed normalized to the breakup speed and K3 = 0.65,
K4 = 0.06 and m = 0.31 are fit parameters determined from the
results of magnetohydrodynamic (MHD) simulations.1 We use the
model of Cranmer & Saar (2011) to estimate the mass-loss rate.
This is a 1D model that estimates the magnitude of the Alfvén wave
energy flux generated by subsurface convective motions. The model
tracks this energy flux through the stellar surface and estimates the
amount that is deposited as heat in the transition region. It is this heat
that is responsible for driving the winds in this model. Many previ-
ous studies have shown that magnetic activity scales with rotation. In
the model of Cranmer & Saar (2011), this scaling is encapsulated by
the magnetic filling factor that is estimated using empirical scaling
relations based on previously published data. Fig. 1 shows the mass-
loss rate of a solar-mass star as a function of rotation period using
this model. Similarly to other phenomena related to magnetic activ-
ity, the mass-loss rate increases with decreasing rotation period and
saturates at the fastest rotation periods. In order to estimate the open
flux, we will use the PFSS model in conjunction with ZDI maps.
Investigating how the open flux varies with rotation and source sur-
face radii will form the focus of this work and will be presented
in Section 3. Having calculated J̇ R15, we will assume that the real
spin-down torque is proportional to this value, i.e. J̇ = kJ̇ R15. Such
an assumption has also been made in previous works (Gallet &
Bouvier 2013, 2015; Johnstone et al. 2015a). We will fit for the
proportionality constant, k, and discuss its physical significance in
Section 5. Lastly, Table 1 contains the solar values that we use in
this study.

1 The value of K3 is given as 1.4 by Réville et al. (2015a). However, this is
a typographical error and the true value is K3 = 0.65 (Réville, priv. comm.).

Table 1. Adopted solar values in this study.

M� (solar mass) 2.0 × 1033 g
r� (solar radius) 6.96 × 1010 cm
Prot,� (solar rotation period) 26 d
τ c (solar-mass convective turnover time) 14.45 d
Prot,crit (critical rotation period) 1.45 d
rss,� (solar source surface radius) 2.5 r�
t� (solar age) 4.6 Gyr

3 E S T I M AT I N G T H E O P E N F L U X

3.1 The PFSS model

In order to estimate the open flux, we use the PFSS model
(Altschuler & Newkirk 1969). In this model, the magnetic field
is assumed to be in a potential state, i.e. current free, and the three
components are given by

Br = −
N∑

l=1

l∑
m=l

[lalmrl−1 − (l + 1) blmr−(l+2)]Plm (cos θ ) eimφ (3)

Bθ = −
N∑

l=1

l∑
m=l

[almrl−1 + blmr−(l+2)]
d

dθ
Plm (cos θ ) eimφ (4)

Bφ = −
N∑

l=1

l∑
m=l

[almrl−1 + blmr−(l+2)]Plm (cos θ )
im

sin θ
eimφ, (5)

where l is the spherical harmonic degree, m is the azimuthal number,
alm and blm are the amplitudes of each spherical harmonic compo-
nent and Plm are the Legendre polynomials. Equations (3)–(5) only
apply between the stellar surface and the source surface with the
field assumed to decay radially as an inverse square law above the
source surface. In order to determine the values of alm and blm, two
boundary conditions are required. The first is the field geometry at
the stellar surface which is set using ZDI maps. We use a sample
of 22 main-sequence stars with masses between 0.9 and 1.1 M�.2

The large-scale surface magnetic fields of each of these stars have
been mapped with ZDI, sometimes over multiple epochs. The pa-
rameters of these stars are shown in Table 2 along with a reference
to the article their magnetic map was originally published in. The
stellar parameters are taken from the same references or Vidotto
et al. (2014b) and references therein. It should be noted that values
for the stellar parameters have been obtained from a number of
different sources which will add systematic consistency errors. The
second boundary condition is the requirement that the field must
become purely radial at some distance away from the star known as
the source surface radius, rss. As discussed in the introduction, the
value of rss is a free parameter in this model. The open flux is then
given by integrating the radial field over the source surface

�open =
∮

rss

|Br | dS. (6)

2 There are a number of reported masses for AB Dor in the literature. Donati,
Collier Cameron & Petit (2003b) give its mass as 1 M� which falls within
our mass bracket (0.9 M� ≤ 1 M� ≤ 1.1 M�). On the other hand, Guirado
et al. (2010) report a dynamical mass of 0.86 M�. It is therefore unclear
whether AB Dor should be included in our sample. We note that AB Dor
falls into the saturated regime and is not included in any of the fits in this
work. Its inclusion does not affect our final numerical results and it simply
serves to show that the field flux values we obtain in the saturated regime
are reasonable. We have therefore included it in this work.
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Table 2. Parameters of the stars mapped with ZDI listed in an ascending order of rotation period: stellar mass, radius, rotation period, age, surface dipolar
flux, total surface flux, and the source surface radius for which the open flux calculated using the multipolar method differs from the open flux calculated using
the dipolar method by 10% (see Sections 3.2 and 3.3). No value is listed for stars for which the dipolar and multipolar open fluxes never differ by more than
10 per cent. The observation epoch at which each star was observed and references for the paper in which the original magnetic map was published are also
listed. The stellar parameters are also taken from these references or Vidotto et al. (2014b) and references therein.

Star M� r� Prot Age ��,dip �� rss,10% Obs Ref.
ID (M�) (r�) (d) (Myr) (1023 Mx) (1023 Mx) (r�) epoch

AB Dor 1a 1 0.51 120 34.65 79.76 1.84 2001 Dec Donati et al. (2003a)
– – – – – 44.31 65.15 1.45 2002 Dec –
PELS 031 0.95 1.05 2.5 125 4.90 11.65 2.51 2013 Nov Folsom et al. (2016)
HII 296 0.9 0.93 2.61 125 25.72 27.69 – 2009 Oct Folsom et al. (2016)
BD-16351 0.9 0.88 3.21 42 14.62 15.55 – 2012 Sept Folsom et al. (2016)
HD 166435 1.04 0.99 3.43 3800 1.88 6.53 4.05 – Petit et al. (in preparation)
HD 175726 1.06 1.06 3.92 500 2.40 4.71 2.11 – Petit et al. (in preparation)
V 447 Lac 0.9 0.81 4.43 257 2.50 4.17 2.83 2014 Jun Folsom et al. (2016)
HN Peg 1.085 1.04 4.6 260 6.05 7.06 1.33 2007 Jul Boro Saikia et al. (2015)
– – – – – 2.96 4.65 1.76 2008 Aug –
– – – – – 4.39 5.91 1.33 2009 Jun –
– – – – – 5.44 7.30 1.29 2010 Jul –
– – – – – 4.56 7.72 2.06 2011 Jul –
– – – – – 8.17 9.46 1.13 2013 Jul –
TYC 5164-567-1 0.9 0.89 4.68 120 22.57 23.51 – 2013 Jun Folsom et al. (2016)
HD 39587 1.03 1.05 4.83 500 2.75 6.64 2.18 – Petit et al. (in preparation)
HIP 12545 0.95 1.07 4.83 24 40.75 45.62 1.06 2012 Sept Folsom et al. (2016)
HD 72905 1 1 5 500 1.90 4.57 3.23 – Petit et al. (in preparation)
DX Leo 0.9 0.81 5.38 257 7.85 8.48 – 2014 May Folsom et al. (2016)
V 439 And 0.95 0.92 6.23 257 4.31 4.51 – 2014 Sept Folsom et al. (2016)
HD 190771 0.96 0.98 8.8 2700 2.84 3.98 2.09 – Petit et al. (in preparation)
κ Ceti 1.03 0.95 9.3 600 4.38 6.23 1.85 2012 Oct do Nascimento et al. (2016)
HD 73350 1.04 0.98 12.3 510 1.69 3.44 2.84 – Petit et al. (in preparation)
HD 73256 1.05 0.89 14 830 1.21 2.12 2.66 2008 Jan Fares et al. (2013)
HD 56124 1.03 1.01 18 4500 1.11 1.12 – – Petit et al. (in preparation)
18 Sco 0.98 1.02 22.7 4700 0.42 0.62 2.26 2007 Aug Petit et al. (2008)
HD 9986 1.02 1.04 23 4300 0.33 0.34 – – Petit et al. (in preparation)
HD 46375 0.97 0.86 42 5000 0.81 0.83 – 2008 Jan Fares et al. (2013)

Note. aWe have listed the mass for AB Dor as 1 M� but there have been a range of reported masses for AB Dor in the literature. See the footnote in Section 3.1
for further discussion.

See et al. (2017) showed that for low-mass stars (<1.4 M�), the
open flux is determined predominantly by the dipolar component
of the magnetic field, at least for their chosen source surface radii
of rss = 3.41R�. In this work, we will investigate whether this
assumption holds for different choices of the source surface radii.
We will outline two methods of estimating the open flux of a solar-
mass star. The first method will use only the dipolar component of
the ZDI maps as inputs to the PFSS model while the second method
will use the full set of spherical harmonics available in ZDI maps.
We will refer to these as the dipolar and the multipolar methods,
respectively.

3.2 Dipolar method of determining open flux

Fig. 2 shows the surface flux associated with the dipolar component
(l = 1) of the ZDI maps, ��, dip, as a function of rotation period.
In this work, we will define the unsaturated regime to be Ro > 0.1.
For solar-mass stars, which have convective turnover times of
14.45 d (calculated using equation 11 of Wright et al. 2011),
this corresponds to a critical rotation period of Prot,crit = 1.45 d.
The fit to the unsaturated stars (those stars with Prot > Prot,crit)
has the form ��,dip = (6.69 ± 3.28) × 1024P −1.58±0.23

rot . This fit,
as well as the others in this work, was done using the bisector
ordinary least-squares method (Isobe et al. 1990). The errors
on the fit are determined by considering only the scatter of the

Figure 2. Surface dipolar flux against rotation period. Stars observed at
multiple epochs are connected by a vertical line. The fit to the stars in the
unsaturated regime (solid blue line, Prot > 1.44 d) has the form ��,dip =
(6.69 ± 3.28) × 1024P −1.58±0.23

rot . The surface dipolar flux has a value of
3.72 × 1024 Mx in the saturated regime (dashed blue line, Prot < 1.44 d).
Two solar symbols indicate the typical variation of the surface dipolar flux
over the solar cycle (values are taken from Jardine et al. 2017).
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points. From the presently available data, it is difficult to constrain
the value of the surface dipolar flux in the saturated regime.
Currently, only a single star of roughly solar mass in the saturated
regime (AB Dor) has been mapped with ZDI. For now, we will
assume that the surface dipolar flux transitions continuously from
the unsaturated regime to the saturated regime such that it has a
value of 6.69 × 1024P −1.58

rot,crit = 3.72 × 1024 Mx. This corresponds
well with the surface dipolar flux of AB Dor. However, further ZDI
observations of solar-mass stars in the saturated regime will be
required to determine if this estimate of dipolar flux in the saturated
regime is a representative of the true value.

In general, equations (3) and (6) should be used to calculate the
open flux when using all the available spherical harmonics in a ZDI
map. However, when considering only the dipolar component of the
ZDI map, the open-to-surface flux ratio is simply given by

�open,dip

��,dip
= 3r̃2

ss

2r̃3
ss + 1

, (7)

where r̃ss = rss/r� is the ratio of the source surface radii to the
stellar radii. This simple expression exists because we are dealing
with only a single spherical harmonic mode and no cross-terms
arise when calculating the integral in equation (6). A full deriva-
tion of equation (7) is available in Appendix A. By combining
equation (7) with the expression for the surface dipolar flux, as a
function of rotation period, derived from Fig. 2, we have a simple
way of estimating the dipolar open flux of a star as a function of ro-
tation period and source surface radii. In this work, we will assume
that the source surface radius can be parametrized as

rss = rss,�
(

Prot

Prot,�

)n

, (Prot > Prot,crit)

rss = rss,�
(

Prot,crit

Prot,�

)n

, (Prot < Prot,crit), (8)

where values for the solar source surface radius, rss, �, and rota-
tion period, Prot, �, can be found in Table 1 and n is a power-law
index that we will determine in Section 5. In principle, to prop-
erly determine the source surface radius, one should consider the
location where the plasma thermal pressure and bulk ram pressure
of the wind are able to overcome the magnetic pressure of the
field causing the field lines to open up (see Réville et al. 2015b
for an in-depth discussion of how to determine the source surface
radius). However, we choose to use the simplified form presented
in equation (8). Such a dependence is not unreasonable given that
many phenomena associated with stellar activity, such as large-scale
magnetic fields (Vidotto et al. 2014b; See et al. 2015b), mass loss
(Cranmer & Saar 2011) and X-ray emission (Wright et al. 2011),
have a power-law dependence on rotation in the unsaturated regime
with saturation occurring for the fastest rotators. It should also be
noted that the source surface radius of a given star should vary due
to various forms of intrinsic variability in the stellar magnetic field
such as stellar cycles. These short-term fluctuations are not con-
sidered by our model and the value calculated using equation (8)
should be regarded as a source surface radius value averaged over
evolutionary time-scales.

3.3 Multipolar method of determining open flux

In this section, we will estimate the open flux using the full set of
spherical harmonics available from the ZDI maps. Unfortunately,
there is no simple analytic method of estimating the open flux from
the surface flux analogous to equation (7) due to the summation

Figure 3. Open flux normalized to the surface dipolar flux against source
surface radii for HD 166435 (cyan circles), HD 190771 (yellow squares)
and HD 56124 (purple triangles). At rss/r� = 1, the open flux is equal to
flux at the stellar surface since all the magnetic flux is forced to be open.
The dashed line represents the normalized open flux from a purely dipolar
field, i.e. equation (7). Cyan and yellow arrows indicate the rss,10% values
for HD 166435 and HD 190771. No arrow is shown for HD 56124 since the
discrepancy between the open fluxes determined from the multipolar case
and the dipolar case never exceeds 10 per cent.

over different modes in equation (3). We must therefore numerically
evaluate equation (6) for a range of source surface radii to determine
the impact of the higher order modes on the open flux. Fig. 3 shows
the open flux, �open, normalized to the surface dipolar flux, ��, dip,
against source surface radius for three stars from our sample. A
dashed line represents the open flux expected in a purely dipolar
case, i.e. as calculated by equation (7). The three chosen stars rep-
resent three cases. The surface magnetic field of HD 56124 (purple
triangles), as determined from ZDI, is strongly dipolar. As such, it
follows the pure dipole case (dashed line) very closely. On the other
hand, the dipolar component represents only a small fraction of the
magnetic energy in the ZDI map of HD 166435 (cyan circles). This
star therefore shows large deviations from the pure dipole case at
the smallest values of rss. HD 190771 (yellow squares) represents
an intermediate case and is also a representative of the majority of
the stars in our sample. From Fig. 3, it is clear to see why See et al.
(2017) found that the dipole component dominated the open flux
for their chosen source surface radii of rss = 3.41r�. Even for HD
166435, which has one of the weakest dipole components in our
sample, the effects of higher order spherical harmonics have become
small by rss = 3.41r�. In Table 2, we list rss,10% values for each star.
This is the source surface radius at which the discrepancy between
the open flux calculated using the full set of spherical harmonic
modes and the open flux calculated considering just the dipolar
mode exceeds 10% (no value is listed if it never exceeds 10%). We
also indicate the rss,10% values for HD 166435 and HD 190771 with
cyan and yellow arrows in Fig. 3, respectively. The choice of 10%
is arbitrary but serves to illustrate how dominant the dipolar mode
is for each star. In most cases, the discrepancy between the two
methods only exceeds 10% at relatively small rss values; less than
2r� for the majority of our sample and less than 3r� for all but two
stars.

In order to determine the effect of using the full spherical har-
monic decomposition available in the ZDI maps rather than just the

MNRAS 474, 536–546 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/474/1/536/4443202 by U
niversity of Southern Q

ueensland user on 04 February 2019



The open flux evolution of a solar-mass star 541

Figure 4. Open flux against rotation period calculated using rss = 2.49r�

(blue circles). Stars observed at multiple epochs are connected by a vertical
line. A fit to these points is shown with a solid blue line. Fits to the open flux
calculated using rss = 1.00r�, 1.50r� and 4.28r� are also shown. The data
points for these fits are translated vertically in the plot when compared to
the rss = 2.49r� data points and show a similar level of dispersion. However,
they are not plotted for clarity. The coefficients for these fits, as well as other
fits using different rss values, can be found in Table 3. Two solar symbols
indicate the variation of the open flux over the solar cycle.

dipole components, we require a method of estimating the open flux
as a function of rotation period and source surface radius. This is
done as follows. First, we calculate the open flux of all the stars in
our sample for a discrete set of different source surface radii, rss,i,
in the range 1r�–4.28r�. Here, i is an index labelling the different
source surface radii in this discrete set. For each of the source sur-
face radii, rss,i, we perform a fit to the unsaturated stars, similarly to
the one undertaken in Section 3.2, of the form �open,i = 10ci P

mi
rot ,

where mi and ci are fit parameters. As in Section 3.2, the satu-
rated value of the open flux is taken to be 10ci P

mi
rot,crit. In Fig. 4,

we show the open flux values for one choice of the source surface
radii, rss,i = 2.49r� (blue points) as well as the fit to these points
(solid blue line). This is the typical source surface radius chosen
when studying the Sun. The PFSS model predicts solar open fluxes
between ∼2 × 1022 and ∼8 × 1022 Mx (Jardine et al. 2017). For
a solar rotation period, we predict an open flux of 2.5 × 1022 Mx
using our fit, in good agreement with the solar values. Additionally,
we also show the fits for three other choices of rss,i to illustrate the
impact of rss,i on the fits. The data points for these fits are not shown
for clarity. A full list of mi and ci coefficients for all values of rss,i

are available in Table 3.

To calculate the open flux for an arbitrary Prot and rss, we pick
the two rss, i values from Table 3 which bound our choice of rss.
Using the mi and ci values associated with these two rss, i values,
we calculate two open flux values at the rotation period of interest,
i.e. �open,i = 10ci P

mi
rot . Lastly, we interpolate between these two

�open,i values to determine the open flux for our chosen rss. When
calculating the open flux using a rss > 4.28r�, the dipolar term
strongly dominates (see Fig. 3) and we simply use equation (7).

4 O PEN C LUSTER DATA

In order to constrain our model, we use the rotation periods of stars
in open clusters of known ages. Since we are studying rotation
period evolution on the main sequence, we have chosen clusters
that have ages of 125 Myr or greater. In recent years, rotation pe-
riod measurements in clusters older than 1 Gyr have been possible
thanks to the Kepler Space Telescope (Meibom et al. 2015; Barnes
et al. 2016). In particular, rotation period measurements from the
4 Gyr cluster M67 confirm that the Sun has a typical rotation period
for a star of its age and mass (Barnes et al. 2016). The clusters
we have used in this work and their ages are listed in Table 4. For
each cluster, we will consider all the stars with masses between
0.9 and 1.1 M� to be a representative of solar-mass stars. Fig. 5
shows the distribution of rotation periods for these stars in each of
the clusters as a function of age (plotted with grey plus symbols)
as well as our rotational evolution tracks (these will be discussed in
Section 5). We can see that the rotation period distributions evolve
with time. At early ages (<200 Myr), solar-mass stars can have
a large range of rotation periods with the fastest spinning nearly
100 times faster than the Sun. However, after ∼1 Gyr, the rotation
periods have nearly all converged on to a single valued track regard-
less of their rotational history. Similar to previous studies (Gallet &
Bouvier 2013, 2015; Johnstone et al. 2015a), we will fit our model
to the 25th, 50th and 90th percentiles of the rotation period distribu-
tions in each cluster. Implicit in this method is the assumption that a
star at a given percentile will remain at that percentile throughout its
entire evolution. We use a boot strapping method to determine the
rotation period at these percentiles for each cluster, as well as their
errors. These are listed for each cluster in Table 4. They are also plot-
ted with red downwards triangles (25th percentile), green squares
(50th percentile) and blue upwards triangles (90th percentile) in
Fig. 5.

5 TH E ROTAT I O N E VO L U T I O N O F A
SOLAR-MASS STAR

In this section, we will fit rotation evolution tracks to the 90th, 50th
and 25th percentiles in each of the open clusters. We will refer
to these as the fast, intermediate and slow tracks, respectively. In

Table 3. For a range of source surface radii, rss,i, we perform a fit of the form �open,i = 10ci P
mi
rot to the unsaturated stars. Here, we list the mi and ci values

for each rss,i.

rss,i/r� 1.00 1.30 1.50 1.69 1.88 2.10
mi −1.545 ± 0.200 −1.522 ± 0.206 −1.525 ± 0.211 −1.533 ± 0.215 −1.540 ± 0.217 −1.547 ± 0.219
ci 24.96 ± 0.18 24.86 ± 0.19 24.80 ± 0.20 24.75 ± 0.20 24.71 ± 0.20 24.67 ± 0.21

rss,i/r� 2.27 2.49 2.67 2.89 3.07 3.29
mi −1.551 ± 0.221 −1.554 ± 0.222 −1.557 ± 0.222 −1.559 ± 0.223 −1.561 ± 0.223 −1.563 ± 0.224
ci 24.63 ± 0.21 24.60 ± 0.21 24.57 ± 0.21 24.53 ± 0.21 24.51 ± 0.21 24.48 ± 0.21

rss,i/r� 3.41 3.55 3.70 3.87 4.07 4.28
mi −1.564 ± 0.224 −1.565 ± 0.224 −1.566 ± 0.224 −1.566 ± 0.224 −1.567 ± 0.225 −1.568 ± 0.225
ci 24.46 ± 0.21 24.45 ± 0.21 24.43 ± 0.21 24.41 ± 0.21 24.39 ± 0.21 24.37 ± 0.21
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Table 4. The open cluster data used in this study. For each cluster, we list the age as well as the 25th, 50th and 90th percentiles
of the angular velocity distribution of ∼solar-mass stars.

Cluster Age �25 �50 �90 Ref.
name (Myr) (��) (��) (��)

Pleiades 125 4.83 ± 0.14 6.14 ± 0.24 44.91 ± 9.63 Hartman et al. (2010)
M50 130 4.39 ± 0.46 5.45 ± 0.34 23.01 ± 8.67 Irwin et al. (2009)
M35 150 4.39 ± 0.10 5.12 ± 0.23 24.90 ± 4.90 Meibom, Mathieu & Stassun (2009)
M34 220 3.77 ± 0.17 4.75 ± 0.63 28.89 ± 4.74 Meibom et al. (2011b)
M37 550 3.08 ± 0.04 3.34 ± 0.03 4.46 ± 0.67 Hartman et al. (2009)
Praesepe 580 2.64 ± 0.05 2.76 ± 0.04 2.85 ± 0.03 Delorme et al. (2011)
Hyades 625 2.68 ± 0.07 2.75 ± 0.06 3.07 ± 0.05 Delorme et al. (2011)
NGC 6811 1000 2.32 ± 0.02 2.42 ± 0.02 2.59 ± 0.05 Meibom et al. (2011a)
NGC6819 2500 1.20 ± 0.01 1.22 ± 0.01 1.39 ± 0.05 Meibom et al. (2015)
M67 4200 0.83 ± 0.02 0.92 ± 0.03 1.04 ± 0.03 Barnes et al. (2016)

Figure 5. The rotation evolution of a solar-mass star. Plus symbols indicate
the observed rotation periods of solar-mass stars in open clusters. Blue
upwards triangles, green squares and red downwards triangles represent the
90th, 50th and 25th percentile in each of the clusters, respectively. The blue,
green and red tracks show the rotation evolution of a fast, intermediate and
slow solar-mass star as calculated with the dipole method (solid lines) and
the multipolar method (dashed lines). The horizontal dashed line indicates
the saturation threshold. Data and references for the cluster data can be
found in Table 4.

order to determine the best-fitting values for the power-law index
of the source surface radii scaling, n, and the scaling constant used
to determine the spin-down torque, k, we require a goodness-of-fit
parameter. We will use

X =
∑

j

(log �obs,j − log �model,j )2. (9)

Here, �obs,j refers to the observed angular velocities from open
clusters and �model,j refers our model’s estimate of �obs,j. The sum-
mation over the index, j, is performed over the 25th, 50th and 90th
percentiles for every cluster as shown in Table 4. This is a similar
goodness-of-fit parameter to that used by Johnstone et al. (2015a).
However, unlike these authors, we do not assign different weights
to the different clusters. Tests indicate that giving older clusters a
larger weighting does not significantly change our results.

In Fig. 6, we calculate the value of X over a grid of n and k values
using the dipole method of determining the open flux (as described
in Section 3.2). There is a well-defined minimum in X which occurs

Figure 6. The goodness-of-fit parameter, X, calculated over a grid of source
surface power indices, n, and torque scalefactors, k, for the dipolar method.
X values larger than 0.6 have been truncated to 0.6. The inset shows a higher
resolution search through the n and k values around the minima. Contours
for X = {0.16, 0.19, 0.3} are also shown on the inset. The minimum in X
occurs at ndip = −0.84 and kdip = 10.64.

at ndip = −0.84 and kdip = 10.64. It is worth noting that some
degeneracy exists between ndip and kdip however. A more (less)
negative value of ndip can be partially offset by a larger (smaller)
kdip value for only a small increase in our goodness-of-fit parameter.
Using ndip and kdip, we calculate the fast, intermediate and slow
tracks that are plotted with solid red, green and blue lines in Fig. 5.
By combining equations (7) and (8) with the fit from Fig. 2 and the
value of ndip, we can also determine the functional dependence of
the open flux on the rotation period in our model. This is given by

�open,dip = 7.27 × 1023 P̃ −3.26
rot

31.3P̃ −2.52
rot + 1

, (Prot > Prot,crit)

�open,dip,sat = 2.00 × 1023, (Prot < Prot,crit), (10)

where P̃rot = Prot/Prot,�.
The fact that kdip = 10.64 has a value that is greater than 1 sug-

gests that we are underestimating the spin-down torque in some
way. This could be attributed to a number of reasons. For instance,
the coronal temperature, a parameter that is kept fixed in the sim-
ulations of Réville et al. (2015a), can affect the rate at which an-
gular momentum is lost from a star, even for a fixed mass-loss rate
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(Pantolmos & Matt 2017). Additionally, the mass-loss rates we use
may be systematically underestimated causing a lower than ex-
pected spin-down torque. It is worth emphasizing that mass-loss
rates are extremely difficult to estimate and poorly constrained ob-
servationally. Differences between the mass-loss rate estimated by
the model of Cranmer & Saar (2011) and the real mass-loss rates
of stars could be absorbed into the fit parameter k (and perhaps n).
Currently, there is no way of determining how much of the fact
that kdip is larger than 1 can be attributed to inaccurately estimat-
ing mass-loss rates. Although the mass-loss rates predicted by the
model of Cranmer & Saar (2011) agree reasonably well with obser-
vations of the Sun, they may be less accurate for younger or more
rapidly rotating stars. Lastly, we have assumed solid body rotation
for simplicity. However, if core-envelope decoupling were included,
the stellar wind braking should be more efficient since it would be
acting on the envelope only. This should reduce the value of kdip

which we obtain with our model. Johnstone et al. (2015a) obtain a
torque scaling value of 11 within their model which is comparable
to our value. However, Gallet & Bouvier (2015) obtained a value of
1.7 in their solar-mass models which suggests their models may be
capturing the relevant physics more accurately.

It is also worth noting that the particular values of ndip and kdip we
obtain are dependent on the form of the flux–rotation relation that
we adopt, i.e. the fit from Fig. 2. For example, if we only fit to the
stars in Fig. 2 with masses 0.95 M� ≤ M� ≤ 1.05 M�, we recover
ndip = −0.67 and kdip = 8.25. It is clear that more ZDI observations
of solar-mass mass stars are needed in order to refine our model. For
the remainder of this work, we will consider the canonical ndip and
kdip values to be those determined using the full ZDI sample, i.e.
the stars with masses 0.9 M� ≤ M� ≤ 1.1 M� since this matches
the mass bin width chosen for the open cluster rotation period data.

We perform this procedure again but using the multipolar method
to determine the open flux (as described in Section 3.3). The equiv-
alent plot of Fig. 6 for the multipolar method looks very similar
(not shown) with a minimum in X occurring at nmulti = −0.82 and
kmulti = 10.18. These values are similar to those calculated using the
dipole-only method. Using the multipolar method of determining
the open flux in conjunction with the nmulti and kmulti values, we plot
the fast, intermediate and slow rotator tracks in Fig. 5 with dashed
lines. The dashed rotation tracks lay almost exactly on the top of
the solid rotation tracks determined using the dipolar method.

In Figs 7a and 7b, we plot the open flux and angular momentum-
loss rate for both the dipolar and multipolar methods. The open
flux and angular momentum-loss rates are both monotonically de-
creasing functions of age for the fast, intermediate and slow tracks.
However, the fast tracks show a change in behaviour at ∼200 Myr.
As can be seen in Fig. 5, this is the age at which fast track stars tran-
sition from the saturated to the unsaturated regime. Unlike the fast
track, stars on the intermediate and slow tracks are never rotating
quickly enough to be in the saturated regime.

To understand why the two methods produce such similar results,
we need to understand how the source surface radius evolves over
the main sequence. Fig. 7c shows the source surface radius evolution
for the fast, intermediate and slow tracks. These are calculated
using equation (8) in conjunction with the rotation evolution tracks
shown in Fig. 5 and our best-fitting values for ndip and nmulti. Over
the course of the main sequence, the source surface radii of these
stars shrink as the star spins down and magnetic activity declines.
For the intermediate and slow rotators, the source surface radius
steadily drops from ∼10r� at ∼100 Myr to ∼2.5r� by the age of the
Sun. However, the fast rotator is spinning rapidly enough during its
early main-sequence lifetime that its source surface radius attains

Figure 7. (a) Open flux, (b) angular momentum-loss rate and (c) source
surface radii against age. In each panel, tracks are shown for fast (blue),
intermediate (green) and slow (red) rotators calculated using the dipolar
(solid lines) and multipolar (dashed lines) methods. In panel (c), the optimal
source surface radii for a number of roughly solar-mass stars, as determined
by Réville et al. (2016), are shown with star symbols (see the text).

the saturation value of ∼25r�. Indeed, no solar-mass star can have
a source surface radius larger than the saturation value under this
model. From Fig. 3 and Table 2, we see that, for the majority of the
stars in our sample, large differences in the open flux obtained from
the dipolar and multipolar methods only occur at source surface
radii smaller than roughly two or three stellar radii. Since all three
tracks (and the tracks for any other percentile one might calculate)
maintain source surface radii larger than 2.5r� until the age of the
Sun, it should be a no surprise that there is very little difference
between the dipolar and multipolar methods for calculating the open
flux in the range of ages we have studied here. If we were to extend
the rotation tracks to ages significantly past the age of the Sun, it is
possible that the source surface radii would become small enough
for the differences between the two methods of calculating the open
flux to matter. However, currently, the rotation period behaviour of
stars much older than the Sun is unclear. We will discuss this issue
further in Section 6.

In Fig. 7c, we also plot the optimum source surface for a number
of stars as estimated by Réville et al. (2016). These authors used 3D
MHD simulations to study a sample of stars that are all roughly solar
mass, using ZDI maps as a boundary condition for the magnetic
field at the stellar surface. Their sample consisted of the stars BD-
16351, TYC 5164-567-1, HII 296, DX Leo and AV 2177. The
majority of these stars are also in our own sample. From their
MHD simulations, they were able to determine the open flux of
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each star. They then modelled each star with a PFSS model and
determined the source surface radius that would be required for the
PFSS model to produce the same open flux as their MHD models.
These optimum source surface radii are plotted in Fig. 7c with
star symbols. We can compare the optimum source surface radii
of Réville et al. (2016) to the source surface radii as estimated by
our own model. Taking nmulti = −0.82 from our multipolar method,
we predict source surface radii of 13.5r�, 10.1r�, 16.4r�, 9.0r� and
6.3r� for BD-16351, TYC 5164-567-1, HII 296, DX Leo and AV
2177, respectively. The optimum source surface radii that Réville
et al. (2016) predict are 8.1r�, 10.7r�, 9.3r�, 7.6r� and 4.6r�. We
see that our estimates are close to those of Réville et al. (2016)
but our model tends to produce source surface radii that are larger,
sometimes by a factor of ∼1.7. It is worth pointing out that the stars
modelled by Réville et al. (2016) are all slow/moderate rotators. Our
model predicts that the source surface radii of slowly/moderately
rotating stars only change by a factor of a few. A similar study to
that of Réville et al. (2016) modelling stars on the rapidly rotating
track, where the source surface radii appear to change much more
drastically over the main sequence in our model, would provide a
much more stringent comparison.

Lastly, it is worth commenting on the source surface radii values.
Our model estimates that the fastest rotators have rss > 25r� which
is an order of magnitude larger than the Sun’s source surface radii.
Our simplified model requires that the source surface radii be this
large for the fastest rotators but it is not clear whether, in reality,
closed field loops can be maintained out to such a large distance. For
instance, magnetocentrifugal forces acting on the coronal plasma
may cause closed loops to open up closer to the stellar surface
than they otherwise would have. Since our model does not self-
consistently model the interactions between the stellar wind plasma
and magnetic field, it is not possible to say how large an effect
this might have. Such questions are left to future investigations and
will require more sophisticated modelling of the relevant physics to
answer.

6 D I S C U S S I O N A N D C O N C L U S I O N S

In this work, we have used a PFSS model, in conjunction with a
sample of ZDI maps, to analyse how the open flux of solar-mass stars
varies as a function of rotation and source surface radius. We then
use these open flux relationships and the braking law of Réville et al.
(2015a) to model the rotation period evolution of solar-mass stars on
the main sequence up to the age of the Sun. We have assumed solid
body rotation for simplicity. Within the PFSS model, the source
surface radius is a free parameter. Previous works using this model
have typically set the source surface radius to a value close to the
solar value (∼2.5r�). However, in this work, using rotation period
data from open clusters, we are able to constrain how the source
surface radius varies with the rotation period of the star. We predict
that the fastest rotators begin life on the main sequence with a
source surface radius of ∼26r� while the intermediate and slower
rotators start out with a source surface radius of ∼10r�. Eventually,
the source surface radii of solar-mass stars will converge and reach
the solar source surface radius by the age of the Sun.

Previous rotation period evolution models have typically used
braking laws that are formulated in terms of the dipolar surface
magnetic field strength (e.g. Matt et al. 2012b). However, we use the
braking law of Réville et al. (2015a), which is formulated in terms
of the open flux. In principle, this braking law allows us to account
for higher order spherical harmonic modes in the surface magnetic

field. In practice, however, we find that the dipole component of
the magnetic field dominates the open flux for all but the smallest
choices of the source surface radius. As outlined in Section 5, the
dipolar open flux in our model can be analytically calculated as a
function of rotation period by combining equations (7) and (8) with
the fit from Fig. 2.

When considering the effect of field geometry on angular mo-
mentum evolution, our results suggest that it would be reasonable to
use the braking law of Matt et al. (2012b) over that of Réville et al.
(2015a). However, some caution should be exercised when directly
comparing models using the two braking laws. The model we have
presented uses two fit parameters. These are the power-law indices
for the source surface radius, n, and the torque scaling parameter, k.
Other models that use the braking law of Matt et al. (2012b) usually
have a similar torque scaling parameter to the one used in this work.
However, since they do not have to model the open flux, they do not
need a fit parameter like our n. Instead, these models have other free
parameters. For instance, disc lifetimes are a free parameter in the
work of Gallet & Bouvier (2013) and Gallet & Bouvier (2015) while
the mass-loss rates used by Johnstone et al. (2015a) are specified
as power laws of mass and rotation, where the power-law indices
are fit parameters. Uncertainties in different models are therefore
absorbed in different places making a direct comparison between
models difficult. In the future, these uncertainties can be reduced
through further observations of the rotation period distributions of
open clusters, magnetic field strengths and disc lifetimes.

For this work, we have restricted ourselves to studying solar-mass
stars on the main sequence up the age of Sun. However, this is only
one part of the lifetime of a star. In comparison to the main sequence,
modelling the rotation period evolution of stars on the PMS is much
more difficult. Early on, in the classical T Tauri phase, the presence
of a circumstellar disc is an additional element that must be con-
sidered. Throughout the entire PMS stars spin-up as they contract
towards the main sequence. However, their rotational velocities
are much slower than expected from contraction alone (Vogel &
Kuhi 1981) indicating that significant spin-down torques are acting
on PMS stars. There is strong evidence that the presence of discs
inhibits the spin-up of these stars (Edwards et al. 1993; Bouvier,
Forestini & Allain 1997; Rebull, Wolff & Strom 2004) although
the precise mechanism by which this is achieved is still unclear.
Common suggestions include disc locking (Choi & Herbst 1996)
or accretion-powered stellar winds (Matt et al. 2010, 2012a). Ad-
ditionally, changes in the surface magnetic field associated with
internal structure changes may also play a role (Gregory et al. 2012;
Folsom et al. 2016).

In contrast to young main-sequence stars, the rotation period
evolution of stars older than the age of the Sun remains relatively
unconstrained. Consequently, rotation evolution models, such as the
one we have presented, cannot be extended beyond the age of the
Sun with any reliability. However, recent advances have allowed
for the determination of rotation periods and asteroseismic ages
of old field stars (Garcı́a et al. 2014). These stars appear to be
rotating much faster than expected from gyrochronology. Indeed,
dramatically reduced braking appears to be required to explain the
rapid rotation of these stars (van Saders et al. 2016). One possible
explanation for such a reduction is that the nature of the dynamo
changes at a Rossby number of ∼2 such that the surface magnetic
field is concentrated into smaller scales (Metcalfe, Egeland & van
Saders 2016). Under this interpretation, the Sun (Rossby number
∼2) is on the verge of transitioning to a state of reduced braking.
If this suggestion is true, we might expect our result, that it is
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the dipole component of the magnetic field which predominantly
governs the rotation evolution of main-sequence solar-mass stars, to
break down at old ages. This suggestion will take time to confirm,
however, since there are currently no ZDI observations of stars with
Rossby numbers much bigger than 2.

In principle, the technique we have outlined in this work can
also be applied to stars of other masses. However, there would
be a number of additional barriers to overcome. First, more ZDI
maps of saturated stars would be required. Presently, the open flux
behaviour for solar-type stars in the saturated regime is relatively
unconstrained in comparison to the unsaturated regime (see fig. 2b
of See et al. 2017). As discussed in Section 5, for solar-mass stars,
only the most rapid rotators spend any time in the saturated regime
and those that do, rapidly spin-down into the unsaturated regime.
Therefore, the loose constraints on the saturated level of the open
flux for solar-mass stars are not a large problem. However, the crit-
ical rotation period at which saturation sets in increases for lower
mass stars. This is easily seen in fig. 6 of Johnstone et al. (2015a).
Consequently, the loose constraints in the saturated regime are more
problematic for lower mass stars since they can spend more time
in the saturated regime. Secondly, the method we have used to esti-
mate our source surface radii is calibrated to the Sun (equation 8).
Since the source surface radii of other stars are unknown, we would
have nothing to calibrate to when studying the angular momentum
evolution of stars with different masses. A possible method of over-
coming this problem would be to recast equation (8) as rss = αP n

rot,
where α is a constant of proportionality. This would, however, in-
troduce another parameter to fit for. Finally, the magnetic properties
of the very lowest masses (<0.2 M�) appear to exist in one of the
two states: either strong and dipolar or weak and multipolar (Morin
et al. 2010). See et al. (2017) showed that the spin-down properties
corresponding to these two states are very different with the instan-
taneous spin-down time-scales of the strong dipolar stars being two
orders of magnitude shorter than their weak multipolar counter-
parts. As discussed by these authors, detailed angular momentum
evolution modelling of these stars must wait until the number of
<0.2 M� stars of known ages which have been mapped with ZDI
is vastly expanded.
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A P P E N D I X A : D E R I V I N G TH E D I P O L A R
O P E N F L U X

In this appendix, we derive the ratio of open flux to surface flux for
a pure dipole mode. We remind the reader that the radial component
of the magnetic field, Br, in the PFSS model is given by

Br = −
N∑

l=1

l∑
m=−l

[lalmrl−1 − (l + 1) blmr−(l+2)]Plm (cos θ ) eimφ.

(A1)

From equations (4) and (5), the condition that Bθ (rss) = Bφ(rss) = 0
requires that the alm and blm coefficients obey the relation

almrl−1
ss + blmr−(l+2)

ss = 0. (A2)

Combining equations (A1) and (A2), one finds that

Br =
N∑

l=1

l∑
m=−l

Blmfl(r)Plmeimφ, (A3)

where Blm and fl(r) are given by

Blm = −almlrl−1
� + blm(l + 1)r−(l+2)

� , (A4)

fl(r) =
[

(l + 1)r̃−(l+2) + lr̃−(2l+1)
ss r̃ l−1

lr̃
−(2l+1)
ss + (l + 1)

]
, (A5)

where r̃ = r/r� and r̃ss = rss/r�. For a dipole, equation (A3) there-
fore reduces to

Br = B10f1(r) cos θ, (A6)

where we have chosen to use the l = 1, m = 0 mode and note that
the Legendre polynomial P10 is given by cos θ . An identical result
is obtained for the l = 1, m = 1 mode or any combination of the
l = 1 modes but we will proceed with the l = 1, m = 0 mode for
convenience. In equation (A6), f1(r) is given by

f1(r) = 2r̃−3 + r̃−3
ss

r̃−3
ss + 2

. (A7)

The flux at a given radial distance from the stellar surface for a pure
dipole mode is therefore given by

�10(r) =
—

S

|Br(r)|dS

= B10f1(r)r2
∫

| cos θ | sin θdθ

∫
dφ

= 2πB10f1(r)r2, (A8)

where S is a spherical surface of radius r. Finally, the ratio of the
open flux to the surface flux for a pure dipole mode is given by

�10(rss)

�10(r�)
= f1(rss)

f1(r�)

(
rss

r�

)2

. (A9)

Substituting equation (A7), one obtains

�10(rss)

�10(r�)
= �open,dip

��,dip
= 3r̃2

ss

2r̃3
ss + 1

. (A10)
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