
applied
sciences

Article

REISCH: Incorporating Lightweight and Reliable
Algorithms into Healthcare Applications of WSNs

Mishall Al-Zubaidie 1,2,* , Zhongwei Zhang 2 and Ji Zhang 2

1 Department of Computer Science, Education College for Pure Science, Thi-Qar University,
Nasiriyah 64001, Iraq

2 Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350,
Australia; Zhongwei.Zhang@usq.edu.au (Z.Z.); Ji.Zhang@usq.edu.au (J.Z.)

* Correspondence: u1070801@umail.usq.edu.au or Mishall.Al-Zubaidie@usq.edu.au; Tel.: +61-469-869-029

Received: 3 February 2020; Accepted: 11 March 2020; Published: 15 March 2020
����������
�������

Abstract: Healthcare institutions require advanced technology to collect patients’ data accurately and
continuously. The tradition technologies still suffer from two problems: performance and security
efficiency. The existing research has serious drawbacks when using public-key mechanisms such
as digital signature algorithms. In this paper, we propose Reliable and Efficient Integrity Scheme
for Data Collection in HWSN (REISCH) to alleviate these problems by using secure and lightweight
signature algorithms. The results of the performance analysis indicate that our scheme provides
high efficiency in data integration between sensors and server (saves more than 24% of alive sensors
compared to traditional algorithms). Additionally, we use Automated Validation of Internet Security
Protocols and Applications (AVISPA) to validate the security procedures in our scheme. Security
analysis results confirm that REISCH is safe against some well-known attacks.

Keywords: ECDSA; healthcare; homomorphic; integrity; pseudonym; WSN

1. Introduction

Medical records of patients require accurate, secure, and efficient electronic systems to be managed
and organized. Electronic medical record (EMR) systems are extremely useful for managing patients’
data. These systems are widely disseminated in the health sector [1]. Moreover, EMR systems need
patients’ data collection technology such as a wireless sensor network (WSN). This technology consists
of a group of sensing nodes that communicate wirelessly with each other to gather data about a
particular environment in various applications. A WSN often has limited resources such as energy and
memory, but it provides comfort, speed, accuracy and safety to humans by monitoring a specific area
without human intervention or presence [2]. An important application that has brought the attention
of sensor networks to many researchers is healthcare (HC), because of great importance in our lives to
reduce the effects of diseases on the health of patients. Providing better HC quality of lower cost will
be a key aim of all health industries over the next decades [3].

These applications relying on the use of WSNs are known as healthcare wireless sensor networks
(HWSNs) [4]. By using HWSNs, healthcare providers including physicians, doctors, and nurses can access
data and information about patients on an ongoing basis, whether at clinics or in hospitals. Therefore,
this medical record leads to more accurate diagnosis and thus is likely to lead to an improvement in the
patient’s condition. For many diseases that require constant monitoring and precise care, HWSN is the
best method used by doctors to get patients’ data, as this technology provides patients with comfort
and more care at less cost [2]. Since these applications monitor patients’ activities without interruption,
accurately and continually, they should lead to an improvement in their health condition [5].

Appl. Sci. 2020, 10, 2007; doi:10.3390/app10062007 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-3149-9129
https://orcid.org/0000-0001-6622-0346
http://dx.doi.org/10.3390/app10062007
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/6/2007?type=check_update&version=2

Appl. Sci. 2020, 10, 2007 2 of 36

Disclosure of medical records for patients in the HC systems results in weak security in these
systems. In addition, some security mechanisms such as public key signing significantly affect WSN
performance. Therefore, several issues need to be addressed when designing schemes for collecting
data in HC applications. These issues are critical to the acceptance and success of HC applications in
the healthcare sector. These issues listed are as follows:

• Communications security: To protect data and information between source and destination,
security mechanisms, such as signatures should be applied to prevent an attacker from accessing
records transferred between network entities (for example, sensor, Cluster Head (CH), and Base
Station (BS)/Local Server (LS)). These mechanisms should resist attacks such as disclosure,
alteration, replication, collision, preimage, and impersonation of medical records transmitted. The
communication channel should be protected end-to-end at both the wireless level and on the
Internet through the integration of a set of security mechanisms and privacy [6,7].

• Datasets security: Medical records stored on the EMR server as a repository become the target
of malicious attacks. In particular, if a HC application is based on a single server, the process of
hacking this server results in both data and information being detected [8]. Besides, access to
datasets without pseudonyms and signature mechanisms makes it easy for attackers to detect
users’ real identities (IDs). To protect users’ medical records, the EMR server should not contain
real information for users to prevent detection of users’ identities or tampering with datasets.
For instance, an EMR server contains only signatures and pseudonyms and users’ identifiers are
stored on the remote server, such as an Attributes Server (AS). Furthermore, the database should
be available to legitimate users at any time and from anywhere, and should support authorization
requests for access to partial data from an EMR repository and patients’ history from a remote
server, such as a Data Server (DS) [9].

• Performance of collection devices: WSN requires efficient security algorithms to work efficiently.
EMR systems use WSN to collect patient data. However, a WSN is source-constrained in terms
of energy, computing and memory. Therefore, when using signature mechanisms, security and
performance should be efficient. The efficiency of these algorithms is a major challenge in HC
applications. Namely, the sensor nodes should be very efficient to collect patient data accurately
and for a long time while protecting the data collected from the penetration [10,11].

Many attacks undermine the security of the WSN of collecting patients’ data and threaten the
privacy of the EMR repository. These attacks have been classified into passive, active, internal, and
external attacks [12–14]. For instance, potential attacks on data transferred or stored in an EMR
repository by WSN are a serious risk to HC systems. As shown in Figure 1, Intruder 1 can listen to
data as they are transferred from the patients’ sensors or CHs to the server (LS/BS). When the attacker
intercepts the message, he/she can obtain information about the physical location of the patient, ID,
timestamps, source address, target address, and the medical report sent by the sensors or directed by
medical staff devices. The patients’ data transmitted through the sensor networks requires complete
security, especially when movement through the network does not require the consent of the patient,
such as moving the data of an emergency case [15]. Additionally, Intruder 2 can perform an attack on
the LS/remote Central Server (CS) to penetrate the datasets to obtain patient information. An attacker
can also get information from the datasets, such as the patient’s name, age, address, type of disease,
and the seriousness of the disease. This information allows the attacker to harm the patient in different
ways, such as changing or destroying data [16]. However, designing a patients’ data collection scheme
with strong and heavy signing mechanisms without regard to network performance in data collection
is useless and infeasible for HWSN systems. Therefore, performance and security issues are essential
to provide care services in HC applications.

Appl. Sci. 2020, 10, 2007 3 of 36

Figure 1. An attack on communication security (Intruder 1) and datasets security (Intruder 2).

1.1. Our Contributions

We propose Reliable and Efficient Integrity Scheme for Data Collection in HWSN (REISCH) to
ensure that patient data is transferred/stored to the LS/BS securely and efficiently. The REISCH is
characterized as follows:

• REISCH applies the Elliptic Curve Digital Signature Algorithm (ECDSA) with BLAKE2bp instead
of ECDSA with Secure Hash Algorithm 1 (SHA1) to improve HWSN lifetime and prevent intruders
from altering/changing patients’ data.

• REISCH used the homomorphic mechanism with CHs to reduce energy consumption when
aggregating patient data from sensors.

• REISCH hides the sensor’s identification (SID) and location (SL) by using random pseudonyms.
This mechanism prevents intruders from detecting sensors information transmitted between
network terminals.

• Formal security analysis in REISCH is simulated by an automated validation of Internet security
protocols and applications (AVISPA). This tool is dramatically accepted as an effective way to
validate threat models in HWSN. AVISPA is used to check that our scheme is secure against both
passive and active attacks.

1.2. Paper Structure

The rest of this research is organized as follows. Section 2 discusses existing research related to our
study. The trust model, threat model, and an overview of techniques used in REISCH are explained in
Section 3. Section 4 provides details about the proposed data collection scheme. Section 5 discusses
security and performance analysis of the REISCH scheme. Finally, Section 6 presents the conclusion
and future work directions.

2. Related Existing Research

This section briefly discusses existing studies [17–25] designed to secure patient data in the EMR
and highlights their drawbacks.

Fan and Gong [17] implemented ECDSA on Micaz motes with the binary field (163-bit). They
improved signature verification via cooperation of the adjacent nodes. ECDSA’s implementation was also
presented in the sensor node (IRIS) [18]. However, because this node supported 8-bit of the microcontroller,
the author modified the SHA1 code from the 32 bits original to 8 bits. Through implementation,
the original algorithm is better in size and time than the modified algorithm. The author explained
the possibility of using the ECDSA algorithm with the sensor node (IRIS) held 8-bit microcontroller.

To store patient data accurately, data collection schemes should rely on reliable and fast hash
algorithms in ECDSA. The authors of [19] applied the ECDSA algorithm as a lightweight authentication
scheme in the WSN, demonstrating the effectiveness and efficiency of using ECDSA in WSN in terms of

Appl. Sci. 2020, 10, 2007 4 of 36

security and performance. Staudemeyer et al. [20] designed an ECC/ECDSA-based scheme to provide
privacy in WSN. However, they did not provide a performance analysis of the security algorithms during
exchange of data in WSN. Malathy et al. [21] focused on the efficiency of transmission in WSN to extend
the lifetime of sensor nodes with the use of ECDSA and generated message digest (MD) with data. Their
scheme relied on a colony optimization scheme to save energy in the WSN. However, it did not support
privacy parameters during data transfer. Sharavanan et al. [22] proposed a scheme to monitor the
heterogeneous network environments in WSN and protect the medical information of patients using
ECDSA. Unfortunately, their scheme addressed only the computation processes of transport. It did not
address the complicated computation processes that generate and verify the signature in ECDSA.

Recently, Sui and de Meer [23] designed a data aggregation scheme that focused on computation
in demand-response management to improve performance and security efficiency. Their scheme
was based on the identity signature (Bilinear Map) to protect information and data aggregated by
integration and authentication. Hathaliya et al. [24] proposed an elliptic curve cryptography (160
bits) scheme to encrypt and authenticate patients’ biometric properties. They used wearable sensors to
collect patient data and used a mobile device to send and store these data in the medical repository
(cloud server). Finally, Furtak et al. [25] designed a framework based on RSA-2048 bits and trusted
modules to secure the sensors’ domain and prevent unauthorized threats. They organized sensors into
master, replica, and gateway categories in the network area and data structure in the sensor memory.
In their framework, security procedures for the domain and sensor were used to support both integrity
and authentication. Moreover, many researchers [26–30] have pointed out that ECDSA is particularly
appropriate for authentication and authorization schemes because it performs lightweight processes
during security procedures. Many recent studies [31–35] have also pointed out that SHA1 suffers from
collision, preimage, and second preimage attacks. However, no schemes addressed SHA1 performance
and security (collision, preimage, and second preimage) problems in ECDSA.

3. Preliminary Techniques for Our Data Collection Scheme

Data collection technology should be efficient and secure to meet the requirements of health
institutions. The HWSN requires techniques to perform the data collection procedures before storing
patients’ data on the EMR server. To guarantee that only legitimate sensors are associated with the
trusted LS, our scheme uses a set of security techniques to integrate and authenticate the collected data
and detect false data in LS. In our scheme, we depend on algorithms that provide efficient lightweight
operations and a high-security level for signature operations. This section presents the trust model, the
threat model and the basic review of REISCH’s techniques.

3.1. Trust Model

We assume that the history of patient data and information is stored on remote and safe servers (CS,
AS, and DS). LS does not contain patients’ real information. It contains only signatures and pseudonyms.
Additionally, LS is not associated with CH outside a certain range. Moreover, the authorization provider
of the network cannot know the correlation between patient information and data, times, and locations.
Legitimate users can access partial data at LS without disclosing confidential patient information.

3.2. Threat Model

Building a threat model in HWSN is important to identify serious attacks on patients’ data
and subsequent disclosure. HWSN provides important services to the health sector compared to
traditional computer networks, such as LAN and MAN, but they are more vulnerable than the latter.
These networks rely on self-organization and synchronization to increase the flexible communications
of sensor nodes, but HWSN suffers from a security vulnerability. Because of the wireless radio
signals in WSN, it is easier for attackers to intercept data transmitted among sensors nodes, CHs, and
LS. These networks are targeted for many attacks that exploit resource-constrained, untrustworthy
communication and unattended processes. HWSN threats are as follows:

Appl. Sci. 2020, 10, 2007 5 of 36

• The attacker performs a man in the middle (MITM) attack to modify or replay attack to resend the
data to the CH/LS. The attacker’s aim is to use his/her device as a legitimate sensor in the network.

• The attacker can execute a denial of service (DoS) attack on the CH/LS. This attack exploits a
heavy transmission of duplicate or counterfeit data to destroy the HWSN.

• The attacker can apply several types of localization attacks such as Sybil, Wormhole, and Sinkhole
to intercept of network communications.

• The attacker performs an attack to penetrate the EMR repository in the LS, to access the patient’s
data and reveal their identities.

• The attacker can launch an eavesdropping attack to obtain patients’ data, and then perform an
analysis of these data to detect the linkability among data, information, and pseudonyms.

• The attacker can copy a legitimate sensor ID in more than one counterfeit sensor. These counterfeit
nodes send modified data to the network (node replication attack).

• Collision, preimage, and second preimage attacks can be implemented to change signatures and
data transferred between a network’s devices.

3.3. Overview of Techniques Used in REISCH

• Electronic medical record (EMR)

A medical record is a communication entity used to record and review patients’ health status
for members of the medical staff and patients themselves. Medical records are divided into two
categories: paper and electronic records. The paper record is a traditional method used to check
and record patient information. This type of medical record suffered from many problems when
dealing with patient data. These problems include delay, errors, lack of coordination of care
equality at different levels, management of health information and data, integration of scientific
evidence into HC services and decision-making practices [36], and security issues. The electronic
medical record rapidly processes and transmits data across digital devices. EMRs provide HC
services continuously and accurately. It has attracted the attention of both the HC industry and
researchers because it provides advantages in efficiency and effectiveness. Consequently, recent
studies [36–38] have indicated that the electronic medical record (EMR) reduces adverse effects
among patients and providers because of its many advantages:

1. It is easy for the patient to review his/her information/data; users can review the medical
record at the same time, auto-update, and quickly retrieve information.

2. Patient understanding of care services is improved; it facilitates patient participation and
cooperation in decision-making.

3. It reduces errors in documents and reduces the embarrassment of the patient with a professional.
4. It increases transparent cooperation and improves the interaction between the patient and

the providers.
5. The use and quality of health information, quality of care, efficiency, cost of care, facilitate

data collection, retrieval, and use of patients’ data are improved.

EMR is efficient because it provides many features and supports the use of WSN. EMR is defined
as a one-organization system [39]. Currently, most Australian professionals use an EMR, which
is rated similarly in several countries such as Germany, New Zealand, and the Netherlands [40].
EMR stores patient health data within a single institution and uses WSN to store patient data in
a local repository for use in reports, disease diagnosis, and treatment. However, an EMR only
contains a partial patient medical history [40]. For example, doctors may use an EMR to identify
a patient’s prescription and avoid errors, and the nurse may use an EMR to monitor tests and
reports for a patient. However, if the doctor needs complete data about a patient’s medical history,
he/she needs to send a request to the CS. However, performance and security efficiency are the
main issues when using WSN with an EMR.

Appl. Sci. 2020, 10, 2007 6 of 36

• Security properties of EMRs

Security of EMRs relies on the elliptic curve discrete logarithm problem (ECDLP) [41]. ECDSA
utilizes small parameters which improve the performance of computations, thus diminishing
process time and storage. These features are essential for large institutions and limited-resource
devices such as WSN because these networks require intensive/complex processes, memory,
or ower consumption [42].

Since the intruder can tamper with the collected data (d) when they are transferred from sensors
to LS, patients’ data integrity is important in the HWSN environments [43]. Many reputable
organizations such as NIST and IEEE use ECDSA as standard [44]. ECDSA with a 160-bit key
achieves the equivalent for symmetric cryptography with a 80-bit key [45]. It is suitable for
limited-resource devices because it produces small keys and provides computation speed in the
integrity process. Furthermore, ECDSA uses four-point multiplication (PM) operations: one PM
each for public key and signature generation and two for verification. Besides, it comprises three
procedures: key generation, signature, and verification. These procedures are described as follows:

– Key generation:

1 Select a pseudorandom integer private key (Kpr) and compute public key (Kpu) = KprG

– Signature generation:

1 Select a pseudorandom integer k, 1 ≤ k ≤ n-1.
2 Compute e = SHA1 (d) and kG = (x1, y1).
3 Compute r = x1 mod n. If r = 0 then go to Step 1.
4 Compute k−1 mod n and s= k−1(e + Kprr)mod n. If s = 0 then go to Step 1, else signature

for the message m is (r, s).

– Signature verification:

1 Verify that r and s are integers in the interval [1,n−1].
2 Compute e = SHA1 (d).
3 Compute w = s−1 mod n, u1 = ew mod n, u2 = rw mod n and X = u1G + u2Kpu.
4 If X = θ, then reject the signature. Otherwise, convert the x-coordinate x1 of X to an

integer x̄1, and compute v = x̄1 mod n, accept the signature if and only if v = r.

ECDSA becomes inappropriate to sign d if applied poorly and incorrectly. It becomes reliable if the
parameters are validated effectively [46]. In REISCH, we use ECDSA-256 bit to add a high-security
level and take care to consume system resources.

• Integrity and authentication of EMRs

In this subsection, we explain the two one-way hash functions, both of which are related to our study.

– SHA family

Secure Hash Algorithm (SHA) is one of the traditional hash algorithms that provides integrity
and authentication when used with digital signatures. For instance, SHA1 was used in the
ECDSA algorithm to perform the signature process. SHA consists of several varieties: SHA0,
SHA1, SHA2, and SHA3. Both SHA2 and SHA3 consist of SHA224, SHA256, SHA384, and
SHA512, but SHA3 uses a different structure than the rest of the SHA family. SHA0, SHA1 and
SHA2 are built on the basis of the Merkle–Damgard structure, as shown in Figure 2 [47], and
were designed by the National Security Agency (NSA). SHA3 is also known as KECCAK and
is built on sponge construction and uses two-stage absorbing and squeezing. Since 2007, NIST
has adopted KECCAK because of the practical attacks on SHA0, SHA1, and SHA2. KECCAK
became the rival standard in 2015 [47]. However, some research [48,49] has indicated that
SHA3 can suffer from fault injection threats.

Appl. Sci. 2020, 10, 2007 7 of 36

Figure 2. The Merkle–Damgard construction of SHA (0, 1 and 2) hash functions.

SHA is a one-way function consisting of two phases that divide the message into blocks of
the same size (such as 512 or 1024). A set of zeros is added and followed by one at the end
of the last block of the message [18]. This phase is called preprocessing or padding. The
second stage is the MD computation. At this stage, all message blocks are entered into the
iterations (SHA1 (80), SHA2 (64), and SHA3 (256)) one by one, containing constants and logic
operations (OR, AND, and XOR) in the compression function (F) to produce MD. Each hash
algorithm produces a fixed length of MD such as 160 for SHA1 and 224, 256, 384, and 512 for
SHA2 and SHA3 [50]. Table 1 shows the comparison between SHA1, SHA2, and SHA3 [51].
Many existing schemes to collect data in WSN [18,52–54] have used the SHA algorithm to
support integrity and authentication. However, these schemes do not address the collision
and preimage problems in the SHA algorithm [31–35].

Table 1. Comparison of SHA family.

Algorithm SHA1 SHA2 SHA3

MD 160 224 256 384 512 224 256 384 512

Word size 32 32 32 64 64 64 64 64 64

Block size 512 512 512 1024 1024 1152 1088 832 576

Message size <264 <264 <264 <2128 <2128 - - - -

Iterations 80 64 64 80 80 24 24 24 24

Security 80 112 128 192 256 112 128 192 256

Weak security
Yes, practical
such as
Collision and preimage

Yes, practical
such as
preimage and length extension

Yes, theoretical
such as
fault injection

Performance Fast Less Lowest

Year 1995 2004 2015

Designer NSA Guido Bertoni and et al.

Construction Merkle–Damgård Sponge

– BLAKE family

Aumasson et al. [55] proposed a BLAKE hash algorithm to overcome the efficiency problems
in previous hash algorithms. This algorithm offers several features such as simplicity, speed,
and parallel operations in hardware and software implementations. It is immune to second
preimage, side-channel and length-extension attacks. BLAKE implements HAIFA construction
which is an enhanced version of Merkle–Damgård. This development of construction is
accomplished by adding a salt and a counter to the algorithm stages to prevent security
vulnerability for second preimage attacks in Merkle–Damgård. BLAKE’s local wide-pipe
structure also makes collision attacks impossible [47]. BLAKE uses the LAKE hash algorithm
and compresses the message blocks in hash-tree constructions with Bernstein’s stream cipher
ChaCha, which is a variation of Salsa20-256. Skein and Grøstl [56] considered NIST, a BLAKE

Appl. Sci. 2020, 10, 2007 8 of 36

of competing algorithms, in the final round of hash algorithms such as KECCAK. BLAKE
supports several versions: 244, 256, 384, and 512. Subsequently, Aumasson et al. [57]
developed BLAKE2 to improve the speed in software implementation and to reduce memory.
BLAKE2 has 32% less memory than BLAKE. In addition, BLAKE2 contains two versions,
BLAKE2s and BLAKE2b, to be used with 32-bit and 64-bit platforms, respectively. Moreover,
the authors developed the latest versions, BLAKE2bp and BLAKE2sp, to improve the speed
of MD production during parallel processes. Table 2 shows the BLAKE family [50].

Table 2. Versions of BLAKE hash function.

BLAKE Version Word Message Block MD Salt Round

BLAKE-28 32 bits <264 512 224 128 14
BLAKE-32 32 bits <264 512 256 128 14
BLAKE-48 64 bits <2128 1024 384 256 16
BLAKE-64 64 bits <2128 1024 512 256 16
BLAKE2s/BLAKE2sp 32 bits - 256 128-256 64 10
BLAKE2b/BLAKE2bp 64 bits - 512 160-512 128 12

Figure 3 shows the architecture of the BLAKE hash function. In BLAKE, the message is
divided into blocks, and the last block is padded with 1 followed by zeros to complete the last
block size to 512 or 1024 bits. BLAKE consists of two parts: the compression function and
iteration mode. The compression function consists of chain value, message blocks, salt value,
and counter value. The BLAKE compression function uses three phases: initialization, round
functions, and finalization. The initialization phase uses the chain value, salt, and counter to
create a 4 × 4 matrix, and produces a 16-word value for different initializing states (V). These
states are entered into the round function (r) with parallel rounds in the phase of the round
functions. The output of this phase is a new V that is used to generate the chain value for
the finalization phase. In the finalization phase of the chain, salt and new state values are
applied with ⊕ operations to produce a new chain value. BLAKE is one of the fastest hash
algorithms and has strong security [50,58]. Recent research has pointed out that BLAKE is a
suitable algorithm for source limited devices [59,60].

Figure 3. Architecture of BLAKE hash function.

• De-identification mechanism

Encryption and k-anonymity mechanisms are applied to hide patients’ data. However, these
mechanisms suffer from serious-shortcomings. For instance, encryption of collected data [61] has
the following drawbacks:

Appl. Sci. 2020, 10, 2007 9 of 36

1. A temporary HC provider such as a researcher doctor will not benefit from the encrypted
data, and, if he/she is able to get the collected data by the decryption process, this is a security
weakness in the HWSN system.

2. Huge datasets encryption is dramatically burdening for the LS system, which causes complexity
of operations and processor power consumption [62].

3. The datasets of collected data perform intensive and continuing operations on medical records
such as add, delete, and edit, and, if the records are encrypted, this will multiply the burden on
the LS [63].

4. Encryption can contain implicitly direct information about the HC patients. The breach of this
encryption will expose the patients’ information to intruders [64].

The k-anonymity of collected data suffers from the following:

1. The removal process of all the patients’ information obstructs the HC provider from dealing
with the linked patients’ data [61].

2. Inserting a large set of false medical records would greatly reduplicate the dataset size.
Consequently, this process consumes LS resources, particularly with the intensive and
continuous access of the datasets by HC providers.

To address these disadvantages, we use random pseudonyms in REISCH’s requests to hide the
correlation of patients’ information with data. The medical records transmitted/stored among
the sensors, CHs and LS, do not contain any patients’ real information. This mechanism prevents
the intruders from identifying patients’ IDs. In addition, this mechanism is fast and does not
need complex operations. When the EMR system wants to add a new HC provider/patient, the
REISCH sends a request to the remote servers (CS and AS), which provides LS with the required
information about updating random pseudonyms. These random pseudonyms are linked with the
users’ IDs. This mechanism enables sensors to access and store a specific patients’ data without
exceeding granted privileges.

• One time passcode (OTP)

OTP is a forceful way of validating sensors in HWSN environments if applied with reliable
signature technologies. Using a static passcode/nonce without other validation mechanisms is
a security weakness with respect to attacks. Thereupon, OTP presents significant support to
the validation process. This mechanism is a countermeasure against replay, MITM, and DoS
threats [65]. The intruder cannot utilize this passcode/nonce to authenticate the HWSN later.
The sensor sends OTP within a validation request. If the validation process is achieved, the LS
will delete OTP from memory and it will be unacceptable to use it again. OTP provides a strong
mechanism to relieve the intruders’ risks in the HWSN communications. In REISCH, we apply
OTP to get a random nonce with each link to sensors in HC applications to guarantee that only
legitimate sensors are communicated to the HWSN.

• Efficient HC data management using XML

The other important part of the proposed EMR system is the repository. The repositories
contain data in various contexts since these systems have difficulties dealing with these different
coordinates for data. The extensible access control (XML) is considered convenient for the exchange
of various data via different environments. XML is the symbolic, simple, and flexible language
designed to manage, describe, and exchange data across the Internet. It divides the data into
the form of useful information through data organization, for the purpose of sharing data across
different systems and storing them in the dataset. Moreover, XML has several features that make it
suitable for data management, such as support for unicode, the representation of computer data
structures (trees, records, and lists), and using a formula read by both humans and computer.
However, XML should support the security mechanisms to provide different levels of protection of

Appl. Sci. 2020, 10, 2007 10 of 36

sensitive data in the whole or part of the XML document [66]. Access to the data is a challenge in big
data management systems that use different techniques. In addition, the exchange of information
over an insecure environment has become essential, particularly in HC applications. However,
this information needs mechanisms to identify the arrival of unauthorized users to protect patient
data. Patient data transmitted between sensors (nodes and CHs) and network devices (such as
a nurse and a LS device) need data management algorithms to maintain both performance and
security at the same time. EMR including patients’ confidential data and private information needs
to be accessed by HC professionals. Thus, sharing such EMR without breaching a patient’s privacy
requires EMR management in an efficient and secure manner. XML technology has begun showing
its superiority in the exchanging of complex data over different systems.

• Homomorphic scheme

A homomorphic is a mechanism for merging all messages and signatures together to improve
both performance efficiency and security. This mechanism consists of many types such as linear,
polynomial, full, and aggregate signature [67]. In this study, we focus on the aggregate signature
because it deals with multi-sensors signatures, messages, and different private keys depending on
different devices such as sensors. Furthermore, this process is extremely suitable for multihop-based
networks during the integration of signatures into a single signature. We assume that we have a
range of messages M = {m1, . . . , mn} and a range of signatures S = {s1, . . . , sn}, M contains all group’s
messages together, where S is one signature for all signatures, A is an aggregate function, and V is a
verification function. The process of homomorphic signatures is as follows:

– Each device generates Kpr and Kpu keys and broadcasts the Kpu keys to network members.
– Each device signs the m by the signature algorithm, which includes the device’s ID, message

and private key s(Kpr, mi, ID).
– The aggregation procedure in the intermediate nodes such as CH relies on A to collect all

public keys, messages and signatures A(Kpu1 ,. . . , Kpun ; m1,. . . , mn; s1,. . . sn).
– The verification procedure will be in the final entity such as LS, which uses V to validate the

signatures V(Kpu1 ,. . . , Kpun ; m1,. . . , mn; s1,. . . sn). If the verification process fails, it means that
the data integrity operation is incorrect.

The homomorphic aggregate signature scheme is important to support the performance of network
devices by making the intermediate nodes such as CH perform a single signature process for
all members’ signatures of the group rather than the signature verification process (the ECDSA
verification process consumes more time and energy than the signature process) [68]. In addition,
homomorphic increases security measures in preventing the tracking of patients’ information and
data or changing signatures of legitimate network devices [69].

4. The Proposed Data Collection Scheme

In this section, we provide details about REISCH that possesses security and performance
efficiency features in HWSN. The section consists of three parts: the network model, security goals,
and proposed data collection protocols.

4.1. Network Model

Figure 4 shows the network model in which our proposed REISCH scheme is based:

1. Sensor (SN): This entity collects raw data related to a specific patient. It sends these data to the CH.

2. Cluster Head (CH): This entity aggregates data from the sensors that followed it. Then, it sends
these data to the LS.

3. Local Server (LS): This entity receives data from all CHs in each round and stores it in EMR’s
repository. These data are subsequently sent periodically to the Central Server (CS).

Appl. Sci. 2020, 10, 2007 11 of 36

4. Central Server (CS): This entity is a gateway accessing remote servers such as the Attributes Server
(AS) and the Data Server (DS). It receives data from the LS and sends data to the DS after being
authenticated by the AS. Security procedures in AS and DS are left for future directions.

Figure 4. General REISCH model.

Among the WSNs, the low-energy adaptive clustering hierarchy (LEACH) protocol is used.
LEACH uses clustering architecture to improve the WSN lifetime. More details about this protocol
are available in [70]. Each group of SNs collects raw data for a specific patient [71]. These SNs sign
data before sending them to CHs. Each CH aggregates data and signatures from his followers. Then,
each CH uses homomorphic property with all data and signatures without verifying the signatures to
reduce energy consumption on the CH and send them to the LS. As the LS has unlimited resources,
it verifies and validates collected data from SNs. The LS sends data stored on the EMR’s repository
to the central repository to allow HC users (patients and providers) to access them by sending
authentication/authorization requests to the CS, AS, and DS. This paper focuses on performance and
security issues in SNs, CHs, LS, and CS. Security issues for datasets and transferred data in CS, AS,
and DS are left for future works.

4.2. Security Goals of REISCH Scheme

The REISCH has the following security services:

• Information confidentiality: This service is achieved to hide SNs/patients’ identities and to
protect patients secrecy from disclosure by intruders.

• Data integrity: This service is required to protect the patient data from tampering by intruders.
The collected data should arrive at the intended target without alteration to provide a reliable
communication channel among SNs, CHs, LS, and CS [72].

• Non-repudiation: This is a feature to prove that the m is sent by a particular SN in the HWSN. If a
legitimate entity in HWSN performs internal attacks, he/she cannot deny his/her messages while
availing the privileges granted to him/her.

• Forward secrecy/Backward secrecy: This requirement is performed when network entities use
new keys and parameters temporarily without depending on old ones in the future. While
backward secrecy prevents the newly joined sensors from accessing previous messages before
entering the HWSN.

Appl. Sci. 2020, 10, 2007 12 of 36

• Freshness: It indicates that the data collection message is new and updated to guarantee that
the intruder cannot replay the previous message at a later time. This goal is accomplished by a
checking of time, a random passcode, and random signatures within each data collection round to
counteract spoofing risks such as replay, MITM, and impersonation.

• Security of Localization: This feature ensures that the patient/sensor’s real location is protected
from detection, or sends error messages to the LS by an intruder.

• Scalability: HWSN applications elaborate in a scalable environment in both data and devices.
Thus, these applications need data collection schemes capable of processing and adapting to the
ever-increasing number of devices of the HWSN. This feature indicates the ability of the data
collection scheme to properly handle huge HWSN devices. Public key signature schemes are
convenient to provide this requirement [73].

• Survivability: It provides a certain level of services in patient data collection or network capability
to withstand failure/threats in an appropriate manner and continue to provide services between
SNs and LS for as long as possible.

• Accountability: This property means tracking the behaviour of malicious threats/suspicious
activities by legitimate users/counterfeiting attacks in accessing EMR repository.

• Efficiency: HWSN sources such as energy, storage, and processor should be within the design
objectives of security protocols in HWSN.

4.3. REISCH’s Scheme

In this subsection, we explain the details of REISCH in terms of entities preparation, using
ECDSA-BLAKE2bp, applying a camouflage signature, and implementing homomorphic and
REISCH protocols.

4.3.1. Entities Preparation

To start collection and storage processes, the HWSN network should be prepared with the following points:

• Each sensor (SNi) and LS server provides SNi pseudonym (SNPseud), SNi pseudonym signature
(SigLSi(SNPseud)) and SNi location (SNSL).

• All entities (SNi, CHi, LS and CS) generate Kpui and Kpri to apply asymmetric cryptographic.

• Each entity broadcasts Kpui to network members.

• Each SNi uses ECDSA signatures (SigSN and SigCH) to achieve collected data integrity.

• Each server (LS and CS) uses ECDSA signatures (SigLS and SigCS) to achieve storage data integrity.

4.3.2. Using ECDSA-BLAKE2bp

REISCH implements ECDSA-BLAKE2bp (NIST prime 256-bit) to sign all messages (m) among
HWSN entities (SNi, CHi, LS and CS). The collected data are formatted as XML-enabled files to
allow different devices in the HWSN network to deal easily and flexibly with these records. We use
the BLAKE2bp algorithm instead of SHA1 to perform the hash function on collected and stored
data (Section 3.3; in the second point in both signature generation and signature verification, we use
BLAKE2bp (d) instead of SHA1 (d)). In REISCH, we use ECDSA-BLAKE2bp to ensure data integrity
as well as add SNPseud within SigSN to prevent changing data. LS and CS accept only valid signature
after verification. The high performance and security of the ECDSA-BLAKE2bp algorithm makes it an
appropriate choice to protect EMR health records. Using ECDSA-BLAKE2bp with XML also adds the
feature of managing medical records in HWSN.

4.3.3. Applying Camouflage Signature

REISCH uses the camouflage process to hide the data signature and completely prevent traceability,
analysis or alteration of data. The camouflage process starts by signing the data to obtain a 64-bit MD

Appl. Sci. 2020, 10, 2007 13 of 36

and then adding a 64-bit counterfeit signature to a total length of 64-bit + 64-bit = 128-bit. In addition,
each SNi adds padding (0000) to become the total length of the 132-bit signature, as shown in Figure 5.
SNi performs the process of exchanging data signature segments based on Parity (even/odd) value.
It receives this value invisibly from the LS because this value is included in the ephemeral random value
(SigLsEi). SNi tests SigLsEi; if “even”, it divides the 132-bit into four segments (each segment to 33-bit)
and exchanges the segments. Then, SNi truncates the 32 bit from the first segment and divides it into
four segments (each segment to 8-bit). If SigLsEi is “odd”, it divides the 132 bit into three segments (each
segment to 44-bit) and then exchanges the segments. It then truncates the 42 -bit and divides the first
segment into three segments (each segment to 14 bit). Because the exchanging operation is based on Parity
sent from the LS, this process prevents the detection of the original signature of the data and prevents the
data from being changed. Thus, this process protects patient data from tampering or alteration.

Figure 5. Camouflage signature.

4.3.4. Implementing Homomorphic

REISCH uses the homomorphic property with the ECDSA-BLAKE2bp algorithm to increase
network performance. Because the verification process in ECDSA consumes more time and processing
than the signature process, it is convenient to use the homomorphic property in HWSN to support
both performance and security. The LEACH protocol is based on the principle of clustering to reduce
energy consumption, thus REISCH uses the aggregate signature to allow CHi to aggregate signatures
and data without using verification. To double security in REISCH, CHi performs the process of
aggregating temporary signatures such as SigSnT3s and SigSnT4s in addition to random numbers
(SNRNs) and data. Temporary signatures contain unclear original signatures that prevent an intruder
from penetrating patient data. The homomorphic procedure reduces energy consumption and thus
increases the possibility of using the ECDSA algorithm with HWSN for as long as possible.

4.3.5. REISCH’s Protocols

The REISCH scheme consists of three protocols. During these protocols, REISCH provides reliable
data collection processes to protect collected patients’ data.

Protocol 1 between SNs and CHs:

This protocol performs the data collection process (Figure 6 shows the first protocol processes
between SNi and CHi in the data collection). The process is as follows:

SNi Side

• At the beginning of each round, each SNi receives a one-time passcode (LSOTPi) and a random
number (SNRNi). This LSOTPi contains an ephemeral random value (SigLsEi) of the same length as
the signature. SNi extracts SigLSi(SNPseud) from the dataset and executes ⊕ to extract the secret
value SigLsEi.

Appl. Sci. 2020, 10, 2007 14 of 36

• Then, SNi executes the Parity (as shown in Section 4.3.3) process based on SigLsEi to get the
temporary signature (SigSnT1).

• After that, SNi generates an ephemeral random value (SigSnEi) with the same signature length
and uses it with SigSnT1 to compute the SigSnT2 value.

• Next, SNi computes the Di f value that represents the subtraction value of the distance between
CHi and SNi (SNCH D) and the distance between LS and SNi (SN LSD). Di f specifies that SNi is
within the HWSN framework (1000 m × 1000 m).

• Additionally, SNi computes a new timestamp (SNTS) and one time passcode (SNOTP). SNi also
performs a hidden process for SNTS and SNOTP at a temporary value (SNTSt) with the addition of
a value of only seconds (SS) at the end of the SNTSt .

• Furthermore, SNi uses SNP to concatenate secret parameters such as SNTSt , SNOTP, SNRNi , SNPseud
and SNSL to match them at the LS. To protect both SNP and SigSnEi, SNi uses the ⊕ operation
to hide them by calculating the temporary values of SigSnT3 and SigSnT4. At this point, SNi
computes the message (SNm) and sends it to CHi which is a sequence of SigSnT3, SigSnT4, SNRNi ,
Di f , SNTSt and data collection.

CHi Side

• CHi also receives LSOTPi of the LS and SNm of SNi.

• Afterwards, CHi truncates Di fi and tests its value within the HWSN framework by computation
Di fi ≤Maximum value, where the Maximum value should be less than or equal to 707.1068.

• Then, CHi computes the timestamp (CHTS1) to prevent late messages.

• CHi truncates SS from SNTSt to obtain SNTSi . If the difference between CHTS1 and SNTSi is less
than the4T delay rate (we assumed that4T = 3), namely, that the message is fresh.

Collection protocol:
Receives LSOTPi from LS and cuts SNRNi
Extracts SigLsEi = LSOTPi ⊕ SigLSi(SNPseud)

Computes SigSN = SigSN(Data||SNPseud)

Specifies SNParity for SigLsEi

SigSnT1 = exchange SigSN segments by SNParity

SigSnT2 = SigSnT1 ⊕ SigSnEi

SN CH D =
√
(CHX2 − SNX1)

2 + (CHY2 − SNY1)
2

SN LS D =
√
(LSX2 − SNX1)

2 + (LSY2 − SNY1)
2

Computes Di f = SN CH D− SN LS D
Generates SNTS and SNOTP

Computes SNTSt = Date⊕ Time⊕ SNOTP ⊕ Di f
||SS

SNP = SNTSt ||SNOTP ||SNRNi ||SNPseud ||SNSL

SigSnT3 = SNP ⊕ SigSnT2

SigSnT4 = SigLsEi ⊕ SigSnEi

SNm = SigSnT3||SigSnT4||SNRNi ||Di f ||SNTSt ||
Data

SNm to CHi

From SNi : (data collection message)
Receives LSOTPi from LS and SNm from SNi

Cuts Di fi and SNTSt from SNm

Checks Di fi ≤Maximum value
Cuts SSi from SNTSt
Generates CHTS1
Extracts SNTSi from CHTS1 by depending SSi

Checks CHTS1 − SNTSi ≤ 4T

Figure 6. Data collection protocol.

Protocol 2 between CHs and LS:

This protocol performs the data aggregation process (Figure 7 shows the second protocol processes
between CHi and LS in the data aggregation). The process is as follows:

Appl. Sci. 2020, 10, 2007 15 of 36

CHi Side

• Each CHi receives temporary signatures, random numbers and collected data from its SNi followers.
• Then, CHi executes the signature process SigCH for the temporary signatures received (SigSnT3s)

of its SNi followers.

• Thereafter, CHi extracts the SigLsEi unique value from LSOTPi similar to the first protocol based
on SigLSi(CHPseud) stored.

• Next, CHi Performs CHParity process based on SigLsEi extracted (as described in Section 4.3.3) to
compute SigChT1. Moreover, CHi computes SigChT2 depending on the SigChT1⊕ SigLsEi operation.

• After that, CHi generates CHTS2 and CHOTP to prevent the problem of replaying messages later.
CHi calculates CHP which represents the sequence of secret parameters. In addition, CHi computes
CHA to complete the process of aggregating temporary signatures (SigSnT3s and SigSnT4s),
random numbers (SNRNs), and collected data (Datas).

• Finally, CHi computes CHm and sends it to the LS.

LS Side

• After LS sends LSOTPi for all SNi, it waits to receive CHm of all CHi per round. The LS truncates
CHRNi , SSi and CHA from each CHm received. It uses SSi to reconfigure CHTS2 ; in addition, the
LS generates a timestamp (LSTS1) and tests4T between LSTS1 and CHTS2 to confirm the freshness
of the message.

• Then, it tests whether CHRNi matches the value previously sent. If CHRNi is correct, it is used to
determine CHPseudi and the latter is used to determine CHi location (CHSLi).

• Afterwards, the LS retrieves temporary signatures and random numbers (SigSnT3s , SigSnT4s and
SNRNs) from CHA. The LS uses the SigLsEi value to specify a Parity (even/odd) value for all
SNi and CHi. It computes a signature (SigLS1i) for all SNi signatures that followed a specific CHi
(SigSnT3s) and exchange the SigLS1i segments based on CHParity.

• After that, the LS calculates SigLsT1i which equals SigChT2 in CHi based on SigLS1i ⊕ SigLsEi. To
ensure the legitimacy of CHi, the LS extracts the secret parameters at CHPi and tests the match
CHPseudi and CHSLi in the datasets.

• At this point, the LS checks for data integrity collected by SNi. Similarly, the LS uses SNRNi

to determine SNPseudi, and performs data signature (SigLS2i) that equals the SigSN in SNi and
exchanges the SigLS2i segments based on SNParityi .

• Next, the LS uses SigSnT4i and SigLsEi to extract SigSnEi. Thereafter, the LS uses SigSnT3i and
SigSnEi to compute SigLsT2i .

• Finally, the LS extracts the secret parameters for SNi from SNPi and tests matching SNPseudi and
SNSLi in datasets. If all signatures and parameters are validated correctly, then that the data
collected by SNi are legitimate and correct and have not been tampered with by the intruder.

Appl. Sci. 2020, 10, 2007 16 of 36

Generates LSOTPi = SigLSi(SNPseudi)⊕ SigLsEi ||SNRNi
Sends a unique LSOTPi for each SNi

LSOTPi to SNs

Aggregation protocol:
Generates SigCH for SigSnT3s

Extracts SigLsEi = LSOTPi ⊕ SigLSi(CHPseud)

Specifies CHParity for SigLsEi

SigChT1 = exchange SigCH segments by CHParity

SigChT2 = SigChT1 ⊕ SigLsEi

Generates CHTS2 and CHOTP

CHP = CHTS2 ||CHOTP ||CHRNi ||CHPseud ||CHSL

CHA=A(SigSnT3i . . . SigSnT3n ||SigSnT4i . . . SigSnT4n

||SNRNi . . . SNRNn ||Datai . . . Datan)

CHm=CHP ⊕ SigChT2||CHRNi ||SS||CHA

CHm to LS

From CHi : (data aggregation message)
Cuts CHRNi , SSi and CHAi from CHm

Uses CHRNi to specify CHPseudi
Uses CHPseudi to specify CHSLi coordinates
Generates LSTS1 and checks LSTS1 − CHTS2 ≤ 4T
Retrieves SigSnT3s , SigSnT4s and SNRNs from CHA

Computes SigLS1i for SigSnT3s

Uses SigLsEi to specify CHParityi and SNParityi
Exchanges SigLS1i segments by CHParityi
Computes SigLsT1i = SigLS1i ⊕ SigLsEi

Extracts CHPi = SigLsT1i ⊕ SigChT2i
Checks CHPseudi and CHSLi in datasets
Uses SNRNi to specify SNPseudi
Computes SigLS2i = SigLSi(Datai ||SNPseudi)

Exchages SigLS2i segments by SNParityi
Computes SigSnEi = SigSnT4i ⊕ SigLsEi

Computes SigLsT2i = SigLS2i ⊕ SigSnEi

Extracts SNPi = SigLsT2i ⊕ SigSnT3i
Checks SNPseudi and SNSLi in datasets

Figure 7. Data aggregation protocol.

Protocol 3 between LS and CS:

This protocol performs the data storage process (Figure 8 shows the third protocol processes
between the LS and CS in the data storage). The process is as follows:

LS Side

• In sending case to CS, the LS initially generates a new pseudonym (LSPseudn) and timestamp
(LSTS2) to prepare for the process of sending data to the CS.

• Then, the LS computes the SigLS signature based on the CS ’s old pseudonym (CSPseudo).

• After that, the LS generates and sends LSOTP to the CS, which is based on the SigLS, LSPseudn ,
LSTS2 as well as appending SS at the end of LSOTP.

• In receiving case from CS, LS truncates parameters embedded within CSm. Thereafter, the LS generates
LSTS3 to check the arrival time of CSm.

• Furthermore, the LS computes CSOTP that relying mainly on LSPseudn . Afterwards, the LS extracts
CSPseudn to calculate SigLS3. The LS tests matching SigLS3 and SigCS, and if the result is identical, this
means that mutual authentication process between the LS and CS is performed correctly and legitimately.

• After this stage, the LS prepares the data storage request to CS. First, the LS generates LSTS4 and
LSRN to ensure randomness and freshness.

• After that, the LS computes the SigLS4 signature that depends on the LsT1 temporary parameters.

• Then, the LS computes the SigLS5 data signature that depends on temporary parameters such as
LsT2, LsT3, and SigLS4 as well as the Data.

• Finally, the LS sends LSm which includes SigLS5, SS, LSRN and Data to CS.

Appl. Sci. 2020, 10, 2007 17 of 36

CS Side

• In sending case to LS, CS generates CSTS1 , CSPseudn , CSOTP, and CSRN . CS uses CSTS1 to test the
message arrival time of the LS. Depending on generated secret parameters, such as CSOTP, CS
computes CsT1 and CsT2 temporarily.

• In addition, the CS generates a SigCS signature that includes the temporary value (CsT2).

• At this point, the CS computes and sends CSm to LS containing the sequence of parameters such
as SigCS, CsT1, CsT2, SS and CSRN .

• In receiving case from LS, CS receives LSm of LS. The CS generates CSTS2 new to test access time
LSm. The CS calculates SigCS1 and SigCS2 similarly to SigLS4 and SigLS5 respectively.

• At this point, the CS checks matching SigCS2 and SigLS5, and, if the result is identical, it means that CS
received patients’ data from the LS correctly and integrated without any changes by malicious attacks.

Storage protocol:
Generates LSPseudn and LSTS2

LSOTP = SigLS(CSPseudo)⊕ LSPseudn
⊕LSTS2 ||SS

LSOTP to CS Generates CSTS1 , checks CSTS1 − LSTS2 ≤ 4T
Retrieves SigLS(CSPseudo), extracts LSPseudn

Generates CSPseudn , CSOTP and CSRN

CsT1 = CSTS1 ⊕ CSOTP ⊕ LSPseudn ⊕ CSRN

CsT2 = CSTS1 ⊕ CSOTP ⊕ CSPseudn ⊕ LSPseudn

CSm = SigCS(CsT2)||CsT1||CsT2||SS||CSRN

CSm to LS

Cuts CsT1, CsT2, SS and CSRN from CSm

Generates LSTS3 , checks LSTS3 − CSTS1 ≤ 4T
CSOTP = CSTS1 ⊕ CsT1 ⊕ LSPseudn ⊕ CSRN

CSPseudn = CSTS1 ⊕ CSOTP ⊕ CsT2

⊕LSPseudn

SigLS3 = SigLS(CSTS1 ⊕ CSOTP ⊕ CSPseudn

⊕LSPseudn), checks SigLS3 = SigCS

Generates LSTS4 and LSRN

LsT1 = LSTS4 ⊕ LSPseudn ⊕ LSRN ⊕ CSRN

SigLS4 = SigLS(LsT1)

LsT2 = CSTS1 ⊕ CSOTP ⊕ CSPseudn

LsT3 = LsT2 ⊕ LSPseudn

SigLS5 = SigLS(Data||LsT3)⊕ SigLS4

LSm = SigLS5||SS||LSRN ||Data

LSm to CS

From LS: (data storage message)
Generates CSTS2 , checks CSTS2 − LSTS4 ≤ 4T
SigCS1 = SigCS(LSTS4 ⊕ LSPseudn ⊕ LSRN ⊕ CSRN)

CsT3 = CSTS1 ⊕ CSOTP ⊕ CSPseudn

CsT4 = LSPseudn ⊕ CsT3

SigCS2 = SigCS(Data||CsT4)⊕ SigCS1

Checks SigCS2 = SigLS5

Figure 8. Data storage protocol.

5. Discussion

In this section, we discuss the security and performance analysis for the REISCH scheme. Analyses
demonstrate that REISCH is efficient for use in patient data collection within the HWSN environment
in terms of security and performance.

5.1. Security Analysis

In this section, the theoretical and experimental security analysis is provided to examine REISCH
protocols in repelling known attacks.

5.1.1. Theoretical Analysis

In this section, we examine the REISCH scheme theoretically with the set of threats mentioned in the
threat model. We provide a theoretical analysis of REISCH resistance to known attacks as follows:

Appl. Sci. 2020, 10, 2007 18 of 36

• MITM and replay

Proof 1: An intruder tries to change or delete part of data/information when transferred between
the network’s entities. This situation is not possible because REISCH applies the ECDSA algorithm
to sign data as well as some information such as SNPseud. Additionally, an intruder cannot replay a
message late due to the REISCH’s entities use of timestamps such as SNTS and CHTS. Consequently,
REISCH resists MITM and replay attacks successfully. �

• DoS

Proof 2: An intruder applies a DoS attack to destroy availability service in servers such as the LS and
CS. The servers in REISCH initially check lightweight parameters such as SigLsEi in LS and CSPseudo in
CS before completion of the authentication process. Moreover, these parameters change randomly in
the communication process between entities. This procedure allows servers to check small parameters
and prevent DoS duplicate messages. Therefore, REISCH withstands DoS threats. �

• Localization

Proof 3: An intruder tries to use the Sybil attack by using many legitimate SN IDs with fake data. Since
SNi waits for random SigLsEi from LS each round, the intruder cannot deceive LS with fake data.
Additionally, an intruder uses Wormhole attack by using many SNi to camouflage communications
between network entities. Each SNi sends implicitly SNSLi to LS and Di f to CHi as well as a
timestamp. These parameters prevent counterfeit communications. Furthermore, if an intruder aims
to apply a Sinkhole attack using node as a sink to attract all patient data from SNi, it cannot apply to
REISCH because LS sends a unique LSOTPi including SigLSi(SNPseudi

) for all SNi. That intruder fails
to detect SigLSi and SNPseudi

. Hence, REISCH strongly overcomes localization attacks. �

• EMR repository

Proof 4: Assume that an intruder can penetrate datasets in LS. First, LS does not contain real
patient information (real information such as the name is stored in AS). When the intruder gets
these data, he/she cannot disclose that they belong to a particular patient. Second, the LS ’datasets
tremendously are difficult to penetrate. Furthermore, LS contains partial data for patients because
the total data and patient history are transferred to DS by CS periodically. Thereupon, REISCH
resists the EMR repository attack. �

• Eavesdropping

Proof 5: When an intruder eavesdrops and gets some of the messages transferred among SNi, CHi,
LS, and CS, this intruder will not benefit from these messages that are being trapped because these
messages contain no real information. Furthermore, the secret parameters, are completely hidden.
Thus, REISCH prevents eavesdropping attacks from revealing patient information. �

• Node replication

Proof 6: An intruder applies a node replication attack using more than one SNi with the the same
legitimate ID. In REISCH, we suppose that all SNi are inside a specific area in the hospital or clinic.
Therefore, any SNi outside this area finds it extremely difficult to send messages from fake SNi
with same legitimate ID. In addition, LS waits SNm by CHi at the same number of SNi and the LS
removes replicated SNm or SigSnT3. In addition, when SNi dies, LS records this situation in the
dataset to prevent replication risks. As a result, REISCH effectively resists replication attacks. �

• Collision and preimage

Proof 7: An intruder tries to implement a collision (the generation of two different messages that
produce the same MD =h (m) = h (m’)), preimage (the generation of a message that produces
the same existing MD value as h (m) = MD), and second preimage (the generation of a different
message from the received message and produce the same existing MD value) attacks when
messages and signatures are transferred between REISCH’s entities. These attacks cannot be

Appl. Sci. 2020, 10, 2007 19 of 36

implemented on REISCH protocols because our protocols use the BLAKE2bp hash instead of
SHA1, which resists these attacks. Consequently, REISCH successfully prevents collision and
preimage attacks. �

5.1.2. Experimental Analysis

In this section, we use the AVISPA tool to simulate the REISCH’s protocols. This tool is extremely
important to examine/check applicability passive and active attacks on security protocols. We tested
the exchanging of SNs’ data/information with network entities (CHi, LS and CS) and analyzed the
results, as shown following subsections.

AVISPA Summary

AVISPA is a formal verification and validation tool that is used to trace and analyze threats on
HWSN’s security protocols. This tool depends on high-level protocol specification language (HLPSL)
to achieve its functions. In addition, AVISPA includes backends to trace/detect attacks in many ways,
intermediate format (IF) to read HLPSL’s codes and output format (OF) to produce simulation results.
In this paper, we depend on the On-the-Fly Model-Checker (OFMC) and the Constraint-Logic-based
Attack Searcher (CL-AtSe) backends because our scheme deals with XoR operations. It presents a
simple and easy way (push-button) to run HLPSL codes (the readers can get more information about
AVISPA details in [72,74]). Additionally, the communication channel in AVISPA is Dolev–Yao (dy)
that is used to transfer the sensors’ data/information during HWSN’s simulation. Moreover, AVISPA
has been used in recent research because this tool has significant advantages such as threats tracking,
implementation robustness, simplicity, analysis of results and statistics [15,72,75,76].

REISCH Scheme with AVISPA

In this subsection, we explain the REISCH scheme in AVISPA. REISCH includes four roles, namely
localServer (LS)), sensori (SNi), clusterHeadi (CHi), and centralServer (CS), as well as supporting
roles, namely session and environment. Moreover, there are three sections to complete communication
properly and securely: transition, composition, and goal specification. The transition section is used in
the essential roles to keep a correct communication sequence. The composition section is used in the
supporting roles to connect essential roles in specific sessions. The goal specification section includes
security goals such as secrecy and authentication. Secrecy means known secrets only for specific
entities while authentication depends on witness (freshness claim) and request (validation) processes
to perform strong authentication. In addition, our scheme uses parameters such as RCV (receiving
process), SND (sending process), _inv (private key), dy (communication channel by Dolev-Yao model),
and intruder_knowledge (known information for an intruder). We assume that the intruder uses the
public key (ki) and knows public keys for REISCH entities (kSNpu, kCHpu, and kLS). Figure 9 shows
the REISCH framework in AVISPA. Figures 10–13 show the REISCH roles in AVISPA.

Figure 9. REISCH’s framework.

Appl. Sci. 2020, 10, 2007 20 of 36

role sensori (SNi,CHi,LS:agent, KSNpu,KCHpu,KLSpu:public_key, ECDSA:hash_func, SNpseud,SNsl,Data:text,
SND,RCV:channel (dy))

played_by SNi def=
local

State:nat,
SNrni,SigLsEi,SigSnEi,SNparity:text, MAXv:message,
SigSN,SigSnT1,SigSnT2,SigSnT3,SigSnT4,SigLSi:text,
Dif,SNts,SNtst,SNotp,Date,Time,SS,SNp,LSotpi:text

const
sec1,sec2,sec3,auth3:protocol_id

init
State := 0

transition
% SNi receives (LSotpi) from LS
1.State=0

/\RCV (SNi.LSotpi’.SNrni’) =|> State’:=1
/\SigSnEi’:=new () /\SigLSi’:={ECDSA (SNpseud)}_inv (KSNpu) /\SigLsEi’:=xor (LSotpi’,SigLSi)
/\SigSN’:={ECDSA (Data.SNpseud)}_inv (KLSpu) /\SNparity’:=SigSN’/\SigSnT1’:=SNparity’
/\SigSnT2’:=xor (SigSnT1’,SigSnEi’) /\SNts’:=new ()/\SNotp’:=new ()
/\SNtst’:=xor (Date,xor (Time,xor (SNotp’,xor (Dif)))) /\SNp’:={ (SNtst’.SNotp’.SNrni’.SNpseud.SNsl)}
/\SigSnT3’:=xor (SNp’,SigSnT2’)/\SigSnT4’:=xor (SigLsEi’,SigSnEi’)
/\secret ({SigSN’,SigLsEi’,SigSnEi’},sec1,{SNi,LS}) /\secret ({SNpseud,SNsl},sec2,{SNi,LS})
/\secret ({MAXv,SNts’},sec3,{SNi,CHi})

% SNi sends (SNm) to CHi
/\SND (CHi.SigSnT3’.SigSnT4’.SNrni’.Dif.SNtst’.SS.Data) /\witness (SNi,CHi,auth3,{SNtst’,SNrni’,Dif})
end role

Figure 10. SNi role in HLPSL.

role clusterHeadi (CHi,LS,SNi:agent, KCHpu,KLSpu,KSNpu:public_key, ECDSA:hash_func,CHpseud,CHsl:text
,MAXv:message,SND,RCV:channel (dy))

played_by CHi def=
local

State:nat,
SNrns,SNrni,SigLsEi,SNparityi,SNts,LSotpi:text, SigCH,SigChT1,SigChT2,SigSnT3s,SigSnT4s,
SigSnT3i,SigSnT4i,SigLSi,Difi,SNtst,CHts1,CHts2,SS,SSi,CHp,CHparity,CHotp,CHrni,Datai,
Datas,CHa:text

const
sec3,sec4,sec5,auth4:protocol_id

init
State := 0

transition
% CHi receives (LSotpi) from LS
1.State=0 /\RCV (CHi.LSotpi’.CHrni’)=|> State’:=1

% CHi receives from SNi
2.State=1/\RCV (CHi.SigSnT3i’.SigSnT4i’.SNrni’.Difi’.SNtst’.SSi’.Datai’)=|>State’:=2

/\CHts1’:=new () /\SigSnT3s’:={(SigSnT3s’.SigSnT3i’)}/\SigSnT4s’:={(SigSnT4s.SigSnT4i’)}
/\SNrns’:=SNrni’/\Datas’:=Datai’ /\SigCH’:={ECDSA (SigSnT3s’)}_inv (KLSpu)
/\CHparity’:=SigCH’ /\SigChT1’:=xor (CHparity’,CHts1’)
/\SigLSi’:={ECDSA (CHpseud)}_inv (KCHpu) /\SigLsEi’:=xor (LSotpi,SigLSi’)
/\SigChT2’:=xor (SigChT1’,SigLsEi’) /\CHts2’:=new ()/\CHotp’:=new ()
/\secret ({MAXv,SNts},sec3,{CHi,SNi}) /\secret ({SigCH,SigLsEi,CHpseud,CHsl},sec4,{CHi,LS})
/\secret ({CHotp’,CHts2’},sec5,{CHi,LS})

% CHi sends (CHm) to LS
/\SND (LS. (xor ((CHts2’.CHotp’.CHrni.CHpseud.CHsl),SigChT2)).CHrni.SS. (SigSnT3s.SigSnT4s
.SNrns’.Datas’)) /\witness (CHi,LS,auth4,{CHts2’,CHotp’,CHrni,SNrns’})

end role

Figure 11. CHi role in HLPSL.

Appl. Sci. 2020, 10, 2007 21 of 36

role localServer (LS,CHi,SNi,CS:agent, KLSpu,KCHpu,KSNpu,KCSpu:public_key, ECDSA:hash_func ,SNpseudi
,SNsli:text,SND,RCV:channel (dy))

played_by LS def=
local

State:nat,
SNrni,SNrns,SigLsEi,SigSnEi,SNparityi,SNp:text,
SigChT2,SigSnT3i,SigSnT4i,SigSnT3s,SigSnT4s,SigLsT1i,SigLsT2i,SigLS1i,SigLS2i,SigLSi:text,
CHrni,CHparityi,CHotpi,CHsli,CHts2,SS,Datai,Datas:text,LSpseudo,LSpseudn,CSpseudo,
CSpseudn:text, LSts2,LSts3,LSts4,LsT1,LsT2,LsT3,LSotpi,LSotpii:text,
CHpseudi,LSotp,CSotp,CSts1,CsT1,CsT2,CSrn,LSrn,SigLS3,SigLS4,SigLS5:text

const
sec1,sec2,sec4,sec5,sec6,sec7,auth1,auth2,auth4,auth5,auth6,auth7:protocol_id

init
State := 0

transition
% Starting signal
1.State=0 /\ RCV (start) =|>
% LS sends (LSotpi,LSotpii)to SNi & CHi

State’:=1/\ SNrni’:=new ()/\SigLsEi’:=new ()
/\LSotpi’:=xor ({ECDSA (SNpseudi)}_inv (KSNpu),SigLsEi’) /\witness (LS,SNi,auth1,{SigLsEi’,SNrni’})
/\SND (SNi.LSotpi’.SNrni’) /\SNrni’:=new ()/\SigLsEi’:=new ()
/\LSotpii’:=xor ({ECDSA (SNpseudi)}_inv (KCHpu),SigLsEi’) /\witness (LS,CHi,auth2,{SigLsEi’,SNrni’})
/\SND (CHi.LSotpii’.SNrni’)

2.State=1
% LS receives (CHm) from CHi

/\RCV (LS. (xor ((CHts2’.CHotpi’.CHrni’.CHpseudi’.CHsli’),SigChT2’)).CHrni’.SS’. (SigSnT3s’.SigSnT4s’
.SNrns’.Datas’)) =|>State’:=2 /\SigLS1i’:={ECDSA (SigSnT3s’)}_inv (KLSpu) /\CHparityi’:=SigLS1i’
/\SigLsT1i’:=xor (SigLS1i’,SigLsEi) /\SigChT2’:=xor ((CHts2’.CHotpi’.CHrni’.CHpseudi’.CHsli’),SigLsT1i’)
/\SNrni’:=SNpseudi/\Datai’:=Datas’ /\SigLS2i’:={ECDSA (Datai.SNpseudi)}_inv (KLSpu)
/\SNparityi’:=SigLS2i’ /\SigSnT3i’:=SigSnT3s’/\SigSnT4i’:=SigSnT4s’
/\SigSnEi’:=xor (SigSnT4i’,SigLsEi) /\SigLsT2i’:=xor (SNparityi’,SigSnEi’)
/\SNp’:=xor (SigLsT2i’,SigSnT3i’) /\request (LS,CHi,auth4,{CHts2,CHotpi’,CHrni’,SNrns’})
/\secret ({SigLS2i,SigLsEi,SigSnEi},sec1,{LS,SNi}) /\secret ({SNpseudi,SNsli},sec2,{LS,SNi})
/\secret ({CHparityi’,SigLsEi,CHpseudi,CHsli},sec4,{LS,CHi})
/\secret ({CHotpi’,CHts2’},sec5,{LS,CHi}) /\LSpseudn’:=new ()/\LSts2’:=new ()
/\LSotp’:=xor (SigLSi,xor (LSpseudn’,LSts2’))

% LS sends (LSotp) to CS
/\SND (CS.LSotp’.SS) /\secret ({LSpseudn,CSpseudn},sec6,{LS,CS})
/\witness (LS,CS,auth5,{CSpseudo,LSpseudn’,LSts2’})

3.State=2
% LS receives (CSm) from CS
/\ RCV (LS.{ECDSA (CsT2’)}_inv (KLSpu).CsT1’.CsT2’.SS’.CSrn’) =|>

State’:=3/\LSts3’:=new () /\CSotp’:=xor (CSts1,xor (CsT1’,xor (LSpseudn,CSrn’)))
/\CSpseudn’:=xor (CSts1,xor (CSotp’,xor (CsT2’,LSpseudn)))
/\SigLS3’:={ECDSA (xor (CSts1,xor (CSotp’,xor (CSpseudn’,LSpseudn))))}_inv (KLSpu)
/\secret ({SigLSi,CSotp’},sec7,{LS,CS}) /\request (LS,CS,auth6,{CSpseudn’,LSpseudn,CSts1})

% Prepares message to send data with mutual authentication
/\LSts4’:=new ()/\LSrn’:=new () /\LsT1’:=xor (LSts4’,xor (LSpseudn,xor (LSrn’,CSrn’)))
/\SigLS4’:={ECDSA (LsT1’)}_inv (KCSpu) /\LsT2’:=xor (CSts1,xor (CSotp’,CSpseudn’))
/\LsT3’:=xor (LsT2’,LSpseudn) /\SigLS5’:=xor ({ECDSA (Datas.LsT3’)}_inv (KCSpu),SigLS4’)

% LS sends (LSm) to CS
/\SND (CS.SigLS5’.SS.LSrn’.Datas) /\witness (LS,CS,auth7,{SigLS5,LSts4,LSrn’})
end role

Figure 12. LS server role in HLPSL.

As shown in Figure 12, the LS receives the start signal. Then, the LS generates and sends
new LSotpi for all sensors (SNi and CHi). LSotpi includes new SigLsEi and pseudonym signature.
Figures 10 and 11 both show that SNi and CHi receive LSotp from the LS. Furthermore, SNi and CHi
use freshness nonces, timestamp, and signature to support reliable security. For instance, SNi uses
SigLsEi, SigSnEi, SNts, and SigSN to achieve security processes with the CHi and LS. SNi collects
data and uses one ECDSA signature with XoR operations to protect collected data and send it to the CHi.
At this stage, the CHi aggregates data and adds security parameters. The CHi sends aggregation data
to the LS. After that, the LS uses LSotp, SigLS5, and LSrn to connect with the CS securely. Figure 13
shows the CS with the storage process. The CS receives LSotp and uses ECDSA (CsT2), CsT1, CsT2,
and CSrn to secure communication with the LS. Figure 14 shows session and environment roles as well
as security goals (secrecy and authentication). REISCH applies seven secrecy and seven authentication
goals. For instance, Sec1 represents secrets between SNi and the LS such as SigSN, SigLsEi, and
SigSnEi. In addition, the authentication goal, such as auth4 proves freshness between the CHi and LS
such as CHts2, CHotp, CHrni, and SNrni. Additionally, the environment role includes many attacks
(replay, MITM, and impersonating) to test the security level in the REISCH scheme.

Appl. Sci. 2020, 10, 2007 22 of 36

Results

The AVISPA tool describes the simulation results. We applied AVISPA with OFMC and CL-AtSe
backends. The results of both of OFMC (Figure 15) and CL-AtSe (Figure 16) demonstrate to that the
REISCH scheme is safe against passive and active attacks (as in the SUMMARY Section). Furthermore,
Figures 15 and 16 show analysis details about simulation reports such as number of sessions, goals
and statistical numbers. Moreover, the goals of authentication and secrecy in Figure 14 are applied to
prevent the penetration of sensors’ data/information in the network. These results prove that REISCH
is reliable in combatting known attacks such as replay, MITM, and impersonating.

5.1.3. Security Comparison

In this section, we discuss the superiority of REISCH over existing schemes in terms of security
(Table 3 shows a comparison of security features between our scheme and existing schemes). Compared
with the scheme in [17] that uses a small key (F2163) and is extremely vulnerable to attacks, REISCH
uses a key with 256 bit that resists attacks (reputable organization recommendations). REISCH also uses
BLAKE2bp to get rid of hash attacks (collision and preimage) while the scheme in [18] focused on SHA1
performance without attention to the collision/preimage threats. In addition, all security parameters in
REISCH such as SNi’s location are completely hidden, while the scheme in [19] transfers some information
explicitly, such as ID (the elliptic curve parameters), in the registration and authentication phases.

role centralServer (CS,LS:agent, KCSpu,KLSpu:public_key, ECDSA:hash_func,SND,RCV:channel (dy))
played_by CS def=
local

State:nat,
SigCS1,SigCS2,LSts4:text, LSpseudo,LSpseudn,CSpseudo,CSpseudn:text,
CsT1,CsT2,CsT3,CsT4,LSts2,CSts1,CSts2,CSotp,CSrn,LSrn,SS,Datas,LSotp,SigLSi,SigLS5:text

const
sec6,sec7,auth5,auth6,auth7:protocol_id

init
State := 0

transition
% CS receives from LS
1.State=0

/\RCV (CS.LSotp’.SS)=|> State’:=1 /\CSts1’:=new ()/\CSpseudn’:=new ()
/\CSotp’:=new ()/\CSrn’:=new () /\CsT1’:=xor (CSts1’,xor (CSotp’,xor (LSpseudn,CSrn’)))
/\CsT2’:=xor (CSts1’,xor (CSotp’,xor (CSpseudn,LSpseudn)))
/\request (CS,LS,auth5,{CSpseudo,LSpseudn,LSts2})
/\secret ({LSpseudn,CSpseudn},sec6,{CS,LS}) /\secret ({SigLSi,CSotp’},sec7,{CS,LS})

% CS sends to LS
/\SND (LS.{ECDSA (CsT2’)}_inv (KLSpu).CsT1’.CsT2’.SS.CSrn’)
/\witness (CS,LS,auth6,{CSpseudn,LSpseudn,CSts1’})

% CS receives from LS
2.State=1

/\RCV (CS.SigLS5’.SS’.LSrn’.Datas’)=|> State’:=2/\CSts2’:=new ()
/\SigCS1’:={ECDSA (xor (LSts4,xor (LSpseudn,xor (LSrn,CSrn))))}_inv (KCSpu)
/\CsT3’:=xor (CSts1,xor (CSotp,CSpseudn)) /\CsT4’:=xor (LSpseudn,CsT3’)
/\SigCS2’:=xor ({ECDSA (Datas.CsT4’)}_inv (KCSpu),SigCS1’)
/\request (CS,LS,auth7,{SigLS5,LSts4,LSrn’})

end role

Figure 13. CS server role in HLPSL.

Appl. Sci. 2020, 10, 2007 23 of 36

role session (SNi,CHi,LS,CS:agent, KSNpu,KCHpu,KLSpu,KCSpu:public_key, ECDSA:hash_func ,MAXv:message,
SNpseudi,SNsli,Datai:text)

def=
local

SND1,RCV1,SND2,RCV2,SND3,RCV3,SND4,RCV4:channel (dy)
composition

sensori (SNi,CHi,LS,KSNpu,KCHpu,KLSpu,ECDSA,SNpseudi,SNsli,Datai,SND3,RCV3)
/\clusterHeadi (CHi,LS,SNi,KCHpu,KLSpu,KSNpu,ECDSA,SNpseudi,SNsli,MAXv,SND2,RCV2)
/\localServer (LS,CHi,SNi,CS,KLSpu,KCHpu,KSNpu,KCSpu,ECDSA,SNpseudi,SNsli,SND1,RCV1)
/\centralServer (CS,LS,KCSpu,KLSpu,ECDSA,SND4,RCV4)

end role

role environment ()
def=
const

kSNpu,kCHpu,kLS,kCS,ki:public_key, ecdsa:hash_func,datai,snpseudi,snsli:text,
sni,chi,ls,cs,i:agent,maxV:message,
sec1,sec2,sec3,sec4,sec5,sec6,sec7,auth1,auth2,auth3,auth4,auth5,auth6,auth7:protocol_id
intruder_knowledge = {sni,chi,ls,i,kSNpu,kCHpu,kLS,ki}

composition
session (sni,chi,ls,cs,kSNpu,kCHpu,kLS,kCS,ecdsa,maxV,datai,snpseudi,snsli)
% Check replay attack
%/\ session (sni,chi,ls,cs,kSNpu,kCHpu,kLS,kCS,ecdsa,maxV,datai,snpseudi,snsli)
% Check MITM attack
%/\ session (chi,sni,ls,cs,kSNpu,kCHpu,kLS,kCS,ecdsa,maxV,datai,snpseudi,snsli)
% Check impersonate SNi
/\ session (i,chi,ls,cs,kSNpu,kCHpu,kLS,kCS,ecdsa,maxV,datai,snpseudi,snsli)
% Check impersonate CHi
%/\ session (sni,i,ls,cs,kSNpu,kCHpu,kLS,kCS,ecdsa,maxV,datai,snpseudi,snsli)
% Check impersonate LS
%/\ session (sni,chi,i,cs,kSNpu,kCHpu,kLS,kCS,ecdsa,maxV,datai,snpseudi,snsli)

end role

goal
secrecy_of sec1,sec2,sec3,sec4,sec5,sec6,sec7
authentication_on auth1,auth2,auth3,auth4,auth5,auth6,auth7

end goal
environment ()

Figure 14. Supporting roles in HLPSL.

% OFMC
% Version of 2006/02/13
SUMMARY

SAFE
DETAILS

BOUNDED_NUMBER_OF_SESSIONS
PROTOCOL

/home/span/span/testsuite/results/REIESCH_new11.if
GOAL

as_specified
BACKEND

OFMC
COMMENTS
STATISTICS

parseTime: 0.00s
searchTime: 532.61s
visitedNodes: 1899 nodes
depth: 7 plies

Figure 15. Simulation result using OFMC.

SUMMARY
SAFE

DETAILS
BOUNDED_NUMBER_OF_SESSIONS
TYPED_MODEL

PROTOCOL
/home/span/span/testsuite/results/REIESCH_new11.if

GOAL
As Specified

BACKEND
CL-AtSe

STATISTICS

Analysed : 325 states
Reachable : 325 states
Translation: 0.12 seconds
Computation: 0.01 seconds

Figure 16. Simulation result using CL-AtSe.

Appl. Sci. 2020, 10, 2007 24 of 36

Table 3. Comparison of security features.

Security Feature Fan and Gong [17] Lavanya and Natarajan [19] Staudemeyer et al. [20] Malathy et al. [21] Sharavanan et al. [22] Sui and de Meer [23] Hathaliya et al. [24] Furtak et al. [25] REISCH

Anti MITM X X X X X
Anti replay X X X X X X X
Availability X X X X X
Anti Sybil X X X
Anti Wormhole X X
Anti fake sink X X
Anti repository attack X X
Anti eavesdropping X X X X X X X X
Anti node replication X X
Anti collision/preimage X X
Pseudonym X X X
Homomorphic X X
Mutual authentication X X X

Appl. Sci. 2020, 10, 2007 25 of 36

This allows intruders to distinguish a specific SNi. Additionally, this scheme did not address
the problem of hiding the SNi location. Although the authors of [20] addressed privacy in their
scheme’s architecture to protect the SNi parameters. Their scheme did not use the signatures
camouflage or SNOTP that are used in REISCH to support the privacy of data signing. This makes the
privacy parameters in their scheme vulnerable to analysis and easy tracking. Furthermore, REISCH
outperforms the scheme in [21], which did not use the signature aggregation scheme to support security
and hide signatures. The scheme in [22] uses ECDSA to secure heterogeneous network environments.
However, their scheme gives medical evaluators privileges to modify the medical parameters in
the monitoring environment, SNi’s locations and even creates keys that could be the cause of an
internal attack. Moreover, some information sent from SNi to the server can clearly leak to intruders.
Fortunately, REISCH does not suffer from these problems. REISCH adds sufficient randomization
to hide security parameters, and patient records are protected even after LS is penetrated, while the
scheme in [23] needs to support randomization and protect user information when a demand–response
management unit is penetrated by an intruder. Besides, an intruder can send messages from a forged
unit and deceive users after penetrating this module and revealing information. REISCH is robust
against information leakage, while the scheme in [24] uses a 160-bit key that is vulnerable to attacks.
It explicitly sends patient identities within the encrypted message in the login and authentication
phases. If an intruder can break the encryption, he/she can use this information in data disclosure.
REISCH uses ECDSA-BLAKE2bp and random pseudonyms to secure data signing. The scheme in [25]
is based on SHA1 and HMAC, which are vulnerable to attacks in signing and authenticating collected
data. It also does not include a pseudonym mechanism to protect SNi parameters from misbehaving.

5.2. Performance Analysis

In this section, the theoretical and experimental performance analysis is presented to examine the
computation processes of REISCH in improving the performance of the HWSN lifetime.

5.2.1. Theoretical Analysis

REISCH uses several features that qualify it to be efficient in HWSN performance. First, it relies on
the ECDSA algorithm that integrates data collected by small keys compared to public key cryptography
algorithms (RSA, DSA and Elgamal). For instance, ECDSA produces 256-bit equivalent keys in security
for 3072-bit keys produced by RSA, DSA, and Elgamal. Second, REISCH implicitly uses BLAKE2bp
with ECDSA, which is dramatically efficient in the operation of a hash function instead of SHA1. Third,
REISCH uses the homomorphic property to combine signatures in CHs and significantly reduces
energy dissipation. Fourth, REISCH relies on the LEACH routing protocol, which is the most efficient
energy-saving protocol in WSN. Fifth, REISCH relies on rapid random pseudonyms to protect medical
records rather than complex and costly processes of encryption and anonymity. Finally, REISCH
uses XML to support efficient patient data management. Therefore, these features allow REISCH to
maintain the energy of the SNs as long as possible.

5.2.2. Experimental Analysis

In this section, we evaluate the performance of REISCH in the execution of security operations
in conjunction with the collected and saved data. As noted in previous sections, SNs require
performance-efficient signatures to perform services for as long as possible in patients’ monitoring and
care. We provide tests on hash algorithms (SHA and BLAKE) and the signature algorithm (ECDSA).
Additionally, we applied these algorithms to HWSN to analyze performance properties such as time,
storage, and energy. Table 4 shows all the simulation parameters used in HWSN, while Table 5
shows computational operations in the REISCH scheme. All hash and signature algorithms were
implemented by C language while WSN was designed in Octave under Ubuntu 16.04 LTS, processor
Intel Core i5 2.6 GHz, OS type 64-bit, Memory 4 GiB, and disk 32.0 GB.

Appl. Sci. 2020, 10, 2007 26 of 36

Table 4. REISCH’s simulation parameters.

Parameters Value

Area of WSN 1000 m × 1000 m
Number of SNs 200
Number of CHs 5%
Number of hops 2
Node type Homogeneous
Node distribution Random
LS location (500, 500)
Di f Maximum value (707.1068)
Initial energy 25 J
Size of packet 200 K, 400 K, 800 K and 1 M
Control packet size 50 B
Rounds 1000
Routing protocol LEACH
Propagation energy 10 nJ/bit/m2

Multi-hop propagation energy 0.0013 pJ/bit/m4

Aggregation energy 5 nJ/bit/signal
Number of runs 100
Simulation time 300 s
Simulator Octave

Table 5. REISCH’s computational processes.

Number of Process
Process Type SN CH LS Running Time Storage Energy

SHA1 hash 1 1 Many 0.05529 160 bits 0.008464
BLAKE2bp hash 1 1 Many 0.040606 512 bits 0.006216
Keys generation 2 2 2 0.000859 256 bits 0.000132
Point multiplication 2 2 Many 0.000543 - 0.000083
ECDSA-SHA1 signature 1 1 - 0.072838 256 bits 0.011151
ECDSA-SHA1 verification - - Many 0.073103 - 0.011191
ECDSA-BLAKE2bp signature 1 1 - 0.050046 256 bits 0.007662
ECDSA-BLAKE2bp verification - - Many 0.052076 - 0.007972

The computation of energy in our scheme is based on the Micaz sensor specification. This process
uses parameters such as current (0.0567), voltage (2.7), and time to extract both power and energy
using power = current × voltage and energy = time × power. We relied on real data provided by
the City of Melbourne that is licensed under CC 4.0 [77]. These data were generated by sensors to
monitor environmental parameters such as humidity, temperature, and light, as well as to include
some information such as timestamp and ID. We divided these data into different sizes (200 K, 400 K,
800 K, and 1 M) and then converted them into an XML context. We used a large data size such as 1 M to
test signature processes and security parameters in consuming sensor energy and thus the applicability
of WSN. Furthermore, there are no communication channels between patients and SNs. To check
performance, we implemented the SHA1-160, SHA2-256, BLAKE2s-256, BLAKE2b-512, BLAKE2sp-256,
and BLAKE2bp-512 algorithms with 1 MB data size, as shown in Figure 17. Moreover, Figure 18 shows
that ECDSA-BLAKE2bp gives the best execution time of ECDSA-SHA1. In addition, Figures 19, 20,
and 21 show execution time (minimum, maximum, and average) for hash functions when using 200 K,
400 K, 800 K, and 1 M data. We also notice that BLAKE2bp has the best performance in terms of
execution time in all figures. Additionally, Figures 22, 23, and 24 show the execution time (minimum,
maximum, and average) for the ECDSA algorithms when using 200 K, 400 K, 800 K, and 1 M data.
Thus, the amendment to the ECDSA algorithm is entirely appropriate for the use of security measures
with the longest life of the SNs from the original algorithm.

Appl. Sci. 2020, 10, 2007 27 of 36

Figure 17. Comparison of SHA and BLAKE2 with 1 MB data.

Figure 18. Execution time of ECDSA-SHA1 and ECDSA-BLAKE2bp with 1 MB data.

Figure 19. Minimum execution time of hash functions with different data sizes.

Appl. Sci. 2020, 10, 2007 28 of 36

Figure 20. Maximum execution time of hash functions with different data sizes.

Figure 21. Average execution time of hash functions with different data sizes.

Figure 22. Minimum execution time of ECDSA algorithms with different data sizes.

Figure 23. Maximum execution time of ECDSA algorithms with different data sizes.

Appl. Sci. 2020, 10, 2007 29 of 36

Figure 24. Average execution time of ECDSA algorithms with different data sizes.

We computed message complexity which is the number of messages transmitted between network
entities. For each round, SN and CH send one message while CH and LS receive a set of aggregated
messages. Thus, the message complexity with modified algorithms for SNs is (156,972), CHs is (8313),
and LS is (165,285), while with original algorithms for SNs is (142,541), CHs is (7572) ,and LS is
(150,113). Message overhead is to calculate the message size between network entities. In each round,
the message overhead of SN is (1024 + 32) bytes while CH is (15,360 + 32) bytes. Figure 25 demonstrates
that REISCH-ECDSA-BLAKE2bp is better than REISCH-ECDSA-SHA1 in terms of alive SNs, namely,
HWSN will have a longer life span to collect patient data when it uses REISCH-ECDSA-BLAKE2bp.
We noticed that REISCH with the modified algorithm (ECDSA-BLAKE2bp) has more alive SNs by 24%
than the original algorithm (ECDSA-SHA1). Furthermore, the first SN dies when using the modified
algorithm in round 322, while in the original algorithm is in round 295.

0 100 200 300 400 500 600 700 800 900 1000

Round number

0

20

40

60

80

100

120

140

160

180

200

N
u
m

b
e
r
 o

f
li
v
in

g
 S

N
s

Live SNs through rounds

REISCH-ECDSA-SHA1

REISCH-ECDSA-BLAKE2bp

Figure 25. Comparison of alive SNs.

5.2.3. Performance Comparison

In this section, we discuss the superiority of REISCH to existing schemes in terms of performance
(Table 6 shows a comparison of the ECDSA’s signature and verification (running time) between our
scheme and existing schemes). Due to different environments, security parameters and network
parameters such as key length, number of SNs, etc., it is difficult to compare schemes’ performances.
However, we made some comparisons to illustrate the superiority of REISCH on the existing schemes
in terms of performance. The scheme in [17] focused on accelerating ECDSA’s verification based on
computation results for neighboring SNs. These computations consume additional energy. In addition,
this scheme is vastly expensive if applied to a cluster scheme because CH needs to accomplish one PM

Appl. Sci. 2020, 10, 2007 30 of 36

in each signature for each SNi and will thus consume energy in the intermediate SNs. REISCH does
not need these computations because signatures’ verification is performed in LS. Schemes in [18,19,21]
used ECDSA to sign data without using homomorphic property. Consequently, the performance of
the SNs would be remarkably low due to signature and verification processes in each round. The
scheme in [18] addressed the bits (8 and 32) of data processing in SHA1 but did not address the
cost of energy consumption by SHA1. In addition, the scheme in [19] did not support the clustering
environment to reduce energy consumption and the computation time to generate and verify the
signature which was not clearly indicated. Furthermore, the scheme in [22] used SHA2, which is more
secure than SHA1 but performs heavy processes that significantly affect the energy of SNs. It also
addresses only computations in transport while REISCH addresses computations in transport and
processing using BLAKE2bp and homomorphic property. The schemes in [20,24,25] rely on the use of
encryption to protect data without a homomorphic property, since encryption processes extremely
consume SNs resources (as mentioned in Section 3.3, Point 3), while REISCH uses signatures and
homomorphic property to improve HWSN network performance. Although the scheme in [23] uses
encryption and signature of data with homomorphic properties, encryption can particularly affect
network performance, especially through a burden on the servers. Moreover, the scheme in [25] has
implemented the RSA-2048 bits algorithm, which is significantly expensive in encryption operations.
In addition, it uses several parameters such as many keys, 2048-bit key length, and SNi addresses
(master, replica, and gateway) that cause storage problems in the pre-deployment and registration
phases (consumption of SNs resources). It uses a random routing of the sensor network without
relying on a specific routing protocol such as LEACH. This scheme considers the structure of the data
in the SNi memory and does not pay attention to the structure of the data as they are transferred to the
servers. REISCH uses XML to support performance of the LS and CS without having to convert data
formats between network devices. In terms of alive SNs, REISCH provides more than 24% while the
method in [78] 17.5%, the method in [79] 18.26% (100 nodes), the method in [80] 16% (100–700 nodes),
and the method in [81] 7.14% (100 nodes) and 4% (50 nodes). Thus, REISCH provides longer network
lifetime than the schemes in [78–81]. Recent research (e.g., [26–30]) has used different ways to improve
ECDSA’s procedures. However, REISCH provides better performance in terms of ECDSA’s signature
and verification than existing schemes (as shown in Table 6).

Appl. Sci. 2020, 10, 2007 31 of 36

Table 6. Comparison of ECDSA’s procedures.

Running Time (s) Fan and Gong [17] Kodali [18] Malathy et al. [21] Kittur and Pais [26] Kuang et al. [27] Marino et al. [28] Zhao et al. [29] Liu et al. [30] REISCH

Signature 0.38 0.941 0.59 0.078 0.3472 0.434 0.084 0.051 0.050
Verification 0.65 - - 0.079 - 0.429 0.088 0.105 0.052

Appl. Sci. 2020, 10, 2007 32 of 36

6. Conclusions and Future Work

Wireless sensor networks provide unique and important care services when used with EMRs.
Unfortunately, these networks suffer from performance and security problems, as mentioned in the
previous sections. Therefore, we propose a REISCH scheme to address performance and security
problems and cover gaps in existing research. As a result, REISCH uses ECDSA-BLAKE2bp and
provides the best performance from using the original ECDSA-SHA1 algorithm. REISCH with the
modified algorithm saves more than 24% alive SNs. In addition, the results of the security analysis
prove that REISCH is safe against attacks in the threat model. Future directions planned for the
development of this scheme are as follows:

1. Our scheme requires security mechanisms to support authentication requests (such as encryption
and mutual authentication) and authorization (access control models) and thus allow legitimate
users (patients and providers) to access medical records on remote servers (AS and DS).

2. Support for our scheme is by using ECDSA-BLAKE2bp with efficient curves such as the Edward
curve and efficient PM methods such as Frobenius to improve the efficiency of patients’ data
signing in HWSN.

3. We intend to integrate our scheme into a real HWSN environment to evaluate the efficiency and
feasibility of REISCH algorithms to improve the lifetime of SNs in patients’ data collection as long
as possible.

Author Contributions: Conceptualization, M.A. and Z.Z.; methodology, M.A.; software, M.A.; formal analysis,
Z.Z.; writing—original draft preparation, M.A.; writing—review and editing, M.A., Z.Z., and J.Z.; supervision,
Z.Z. and J.Z.; and project administration, M.A.

Funding: This research received no external funding.

Acknowledgments: We would like to acknowledge and thank the efforts of Barbara Harmes who revised our
paper as well as the valuable feedback of the reviewers.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SN, CH Sensor, Cluster Head
LS, CS Local Server, Central Server
Kpui , Kpri Public and private keys
OTP One time passcode
Pseud Pseudonym generated by entities (SN, CH, LS, CS)
Parity The value specifies the signature of even/odd
P Entity parameters
RN The random number generated by entities
TS Timestamp generated by entities
SigSN, SigCH Signatures generated by SN, CH
SigLS, SigCS Signatures generated by LS, CS
SigSnEi, SigLsEi Random ephemeral value the same length as the signature generated by SN, LS
SNCH D Distance between SN and CH
SN LSD Distance between SN and LS
Di f Value proves SN in the HWSN’s area
SL Sensor location
m Message sent by entity
A Aggregation function
h(.) One-way hash function
‖, ⊕ Concatenation and exclusive or operations

Appl. Sci. 2020, 10, 2007 33 of 36

References

1. Sarkar, B.K. Big data for secure healthcare system: a conceptual design. Complex Intell. Syst. 2017, 3, 133–151.
2. Kumar, P.; Lee, H.-J. Security issues in healthcare applications using wireless medical sensor networks: A

survey. Sensors 2011, 12, 55–91.
3. Al Ameen, M.; Liu, J.; Kwak, K. Security and privacy issues in wireless sensor networks for healthcare

applications. J. Med. Syst. 2012, 36, 93–101.
4. Ayyildiz, C.; Erdem, H.E.; Dirikgil, T.; Dugenci, O.; Kocak, T.; Altun, F.; Gungor, V.C. Structure health

monitoring using wireless sensor networks on structural elements. Ad Hoc Netw. 2019, 82, 68–76.
5. Javadi, S.S.; Razzaque, M. Security and privacy in wireless body area networks for health care applications.

In Wireless Networks and Security; Springer: Berlin, Germany, 2013; pp. 165–187.
6. Manogaran, G.; Varatharajan, R.; Lopez, D.; Kumar, P.M.; Sundarasekar, R.; Thota, C. A new architecture

of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system.
Future Gener. Comput. Syst. 2018, 82, 375–387.

7. Bruland, P.; Doods, J.; Brix, T.; Dugas, M.; Storck, M. Connecting healthcare and clinical research: Workflow
optimizations through seamless integration of EHR, pseudonymization services and EDC systems. Int. J.
Med. Inf. 2018, 119, 103–108.

8. Chuang, M.-C.; Chen, M.C. An anonymous multi-server authenticated key agreement scheme based on trust
computing using smart cards and biometrics. Expert Syst. Appl. 2014, 41, 1411–1418.

9. Griggs, K.N.; Ossipova, O.; Kohlios, C.P.; Baccarini, A.N.; Howson, E.A.; Hayajneh, T. Healthcare blockchain
system using smart contracts for secure automated remote patient monitoring. J. Med. Syst. 2018, 42, 130.

10. Al-Turjman, F.; Alturjman, S. Confidential smart-sensing framework in the IoT era. J. Supercomput. 2018, 74,
5187–5198.

11. Verma, G.K.; Singh, B.; Singh, H. Bandwidth efficient designated verifier proxy signature scheme for
healthcare wireless sensor networks. Ad Hoc Netw. 2018, 81, 100–108.

12. Aceto, G.; Persico, V.; Pescapé, A. The role of information and communication technologies in healthcare:
Taxonomies, perspectives, and challenges. J. Netw. Comput. Appl. 2018, 107, 125–154.

13. Gao, Y.; Ao, H.; Feng, Z.; Zhou, W.; Hu, S.; Tang, W. Mobile Network Security and Privacy in WSN.
Proc. Comput. Sci. 2018, 129, 324–330.

14. Li, J.; Zhang, W.; Kumari, S.; Choo, K.K.R.; Hogrefe, D. Security analysis and improvement of a mutual
authentication and key agreement solution for wireless sensor networks using chaotic maps. Trans. Emerg.
Telecommun. Technol. 2018, 29, e3295.

15. Al-Zubaidie, M.; Zhang, Z.; Zhang, J. PAX: Using Pseudonymization and Anonymization to Protect Patients’
Identities and Data in the Healthcare System. Int. J. Environ. Res. Public Health 2019, 16, 1–36.

16. Pawar, P.M.; Nielsen, R.H.; Prasad, N.R.; Prasad, R. GSHMAC: Green and Secure Hybrid Medium Access
Control for Wireless Sensor Network. Wirel. Pers. Commun. 2018, 100, 267–281.

17. Fan, X.; Gong, G. Accelerating signature-based broadcast authentication for wireless sensor networks.
Ad Hoc Netw. 2012, 10, 723–736.

18. Kodali, R.K. Implementation of ECDSA in WSN. In Proceedings of the 2013 International Conference on
IEEE Control Communication and Computing (ICCC), Thiruvananthapuram, India, 13–15 December 2013;
pp. 310–314.

19. Lavanya, M.; Natarajan, V. LWDSA: Lightweight digital signature algorithm for wireless sensor networks.
In Sādhanā; Springer: Berlin, Germany, 2017; pp. 1–15.

20. Staudemeyer, R.C.; Pöhls, H.C.; Wójcik, M. The road to privacy in IoT: beyond encryption and signatures,
towards unobservable communication. In Proceedings of the 2018 IEEE 19th International Symposium on
“A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Chania, Greece, 12–15 June 2018;
pp. 14–20.

21. Malathy, S.; Geetha, J.; Suresh, A.; Priya, S. Implementing Elliptic Curve Cryptography with ACO Based
Algorithm in Clustered WSN for Border Surveillance. In Proceedings of the IEEE 2018 Fourth International
Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics
(AEEICB), Chennai, India, 27–28 February 2018; pp. 1–5.

22. Sharavanan, P.; Sridharan, D.; Kumar, R. A Privacy Preservation Secure Cross Layer Protocol Design for IoT
Based Wireless Body Area Networks Using ECDSA Framework. J. Med. Syst. 2018, 42, 196.

Appl. Sci. 2020, 10, 2007 34 of 36

23. Sui, Z.; de Meer, H. Bap: A batch and auditable privacy preservation scheme for demand-response in smart
grids. IEEE Trans. Ind. Inf. 2019, 16, 842–853.

24. Hathaliya, J.J.; Tanwar, S.; Tyagi, S.; Kumar, N. Securing electronics healthcare records in Healthcare 4.0: A
biometric-based approach. Comput. Electr. Eng. 2019, 76, 398–410.

25. Furtak, J.; Zieliński, Z.; Chudzikiewicz, J. A Framework for Constructing a Secure Domain of Sensor Nodes.
Sensors 2019, 19, 2797.

26. Kittur, A.S.; Pais, A.R. A new batch verification scheme for ECDSA ∗ signatures. Sādhanā 2019, 44, 157.
27. Kuang, B.; Fu, A.; Yu, S.; Yang, G.; Su, M.; Zhang, Y. Esdra: An efficient and secure distributed remote

attestation scheme for IoT swarms. IEEE Internet Things J. 2019, 6, 8372–8383.
28. Marino, F.; Moiso, C.; Petracca, M. PKIoT: A public key infrastructure for the internet of things. Trans. Emerg.

Telecommun. Technol. 2019, 30, e3681.
29. Zhao, Y.; Yu, Y.; Li, Y.; Han, G.; Du, X. Machine learning based privacy-preserving fair data trading in big

data market. Inf. Sci. 2019, 478, 449–460.
30. Liu, Y.; Zhao, Y.; Tian, A.; Yu, Y.; Du, X. Blockchain based privacy-preserving software updates with

proof-of-delivery for internet of things. J. Parallel Distrib. Comput. 2019, 132, 141–149.
31. Chiriaco, V.; Franzen, A.; Thayil, R.; Zhang, X. Finding partial hash collisions by brute force parallel

programming. In Proceedings of the 2017 IEEE Long Island Systems, Applications and Technology
Conference (LISAT), Farmingdale, NY, USA, 5 May 2017; pp. 1–6.

32. Merrill, N. Better Not to Know? The SHA1 Collision & the Limits of Polemic Computation. In Proceedings
of the ACM 2017 Workshop on Computing Within Limits, Berkeley, California, USA, 22–24 June 2017;
pp. 37–42.

33. Yang, Y.; Zhang, X.; Yu, J.; Zhang, P.; Chen, F. Research on the hash function structures and its application.
Wirel. Pers. Commun. 2017, 94, 2969–2985.

34. Giechaskiel, I.; Cremers, C.; Rasmussen, K.B. When the Crypto in Cryptocurrencies Breaks: Bitcoin Security
under Broken Primitives. IEEE Secur. Priv. 2018, 16, 46–56.

35. Park, S.y.; Kim, K. A study on the processing and reinforcement of message digest through two-dimensional
array masking. In Proceedings of the IEEE 2018 International Conference on Information Networking
(ICOIN), Chiang Mai, Thailand, 10–12 January 2018; pp. 540–544.

36. Beglaryan, M.; Petrosyan, V.; Bunker, E. Development of a tripolar model of technology acceptance:
hospital-based physicians’ perspective on EHR. Int. J. Med. Inf. 2017, 102, 50–61.

37. Alkureishi, M.A.; Lee, W.W.; Lyons, M.; Wroblewski, K.; Farnan, J.M.; Arora, V.M. Electronic-clinical
evaluation exercise (e-CEX): a new patient-centered EHR use tool. Pat. Educ. Couns. 2018, 101, 481–489.

38. Senteio, C.; Veinot, T.; Adler-Milstein, J.; Richardson, C. Physicians’ perceptions of the impact of the EHR on
the collection and retrieval of psychosocial information in outpatient diabetes care. Int. J. Med. Inf. 2018, 113,
9–16.

39. Muthee, V.; Bochner, A.F.; Osterman, A.; Liku, N.; Akhwale, W.; Kwach, J.; Prachi, M.; Wamicwe, J.;
Odhiambo, J.; Onyango, F.; et al. The impact of routine data quality assessments on electronic medical record
data quality in Kenya. PLoS ONE 2018, 13, e0195362.

40. Heart, T.; Ben-Assuli, O.; Shabtai, I. A review of PHR, EMR and EHR integration: A more personalized
healthcare and public health policy. Health Policy Technol. 2017, 6, 20–25.

41. Al-Zubaidie, M.; Zhang, Z.; Zhang, J. Efficient and Secure ECDSA Algorithm and its Applications: A Survey.
Int. J. Commun. Netw. Inf. Secur. 2019, 11, 7–35.

42. Dou, Y.; Weng, J.; Ma, C.; Wei, F. Secure and efficient ECC speeding up algorithms for wireless sensor
networks. Soft Comput. 2017, 21, 5665–5673.

43. Bachiller, Y.; Busch, P.; Kavakli, M.; Hamey, L. Survey: Big Data Application in Biomedical Research.
In Proceedings of the ACM 2018 10th International Conference on Computer and Automation Engineering,
Brisbane, Australia, 24–26 February 2018; pp. 174–178.

44. Hoceini, O.; Afifi, H.; Aoudjit, R. Authentication Based Elliptic Curves Digital Signature for ZigBee Networks.
In International Conference on Mobile, Secure, and Programmable Networking; Springer: Berlin, Germany, 2017;
pp. 63–73.

45. Abueh, Y.J.; Liu, H. Message authentication in driverless cars. In Proceedings of the 2016 IEEE Symposium
on Technologies for Homeland Security (HST), Waltham, MA, USA, 10–11 May 2016; pp. 1–6.

Appl. Sci. 2020, 10, 2007 35 of 36

46. Franeková, M.; Holečko, P.; Bubeníková, E.; Kanáliková, A. Transport scenarios analysis within C2C
communications focusing on security aspects. In Proceedings of the 2017 IEEE 15th International Symposium
on Applied Machine Intelligence and Informatics (SAMI), Herl’any, Slovakia, 26–28 January 2017; pp.
000461–000466.

47. Shi, Z.; Ma, C.; Cote, J.; Wang, B. Hardware implementation of hash functions. In Introduction to Hardware
Security and Trust; Springer: Berlin, Germany, 2012; pp. 27–50.

48. Luo, P.; Li, C.; Fei, Y. Concurrent error detection for reliable SHA-3 design. In Proceedings of the IEEE 2016
International Great Lakes Symposium on VLSI, Boston, MA, USA, 18–20 May 2016; pp. 39–44.

49. Luo, P.; Athanasiou, K.; Fei, Y.; Wahl, T. Algebraic fault analysis of SHA-3. In Proceedings of the IEEE
2017 Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland,
27–31 March 2017; pp. 151–156.

50. Chaves, R.; Sousa, L.; Sklavos, N.; Fournaris, A.P.; Kalogeridou, G.; Kitsos, P.; Sheikh, F. Secure hashing:
SHA-1, SHA-2, and SHA-3. In Circuits and Systems for Security and Privacy, Taylor & Francis Group: Abingdon,
UK, 2016; pp. 105–132.

51. Dobraunig, C.; Eichlseder, M.; Mendel, F. Analysis of SHA-512/224 and SHA-512/256. In International
Conference on the Theory and Application of Cryptology and Information Security; Springer: Berlin, Germany, 2015;
pp. 612–630.

52. Al Maashri, A.; Pathuri, L.; Awadalla, M.; Ahmad, A.; Ould-Khaoua, M. Optimized hardware crypto engines
for XTEA and SHA-512 for wireless sensor nodes. Ind. J. Sci. Technol. 2016, 9, 2016.

53. Lu, Y.; Zhai, J.; Zhu, R.; Qin, J. Study of wireless authentication center with mixed encryption in WSN. J. Sens.
2016, 2016, 1–7.

54. Saha, S.; Das, R.; Datta, S.; Neogy, S.; A cloud security framework for a data centric WSN application.
In Proceedings of the ACM 17th International Conference on Distributed Computing and Networking,
Singapore, 4 January 2016; pp. 1–6.

55. Aumasson, J.-P.; Henzen, L.; Meier, W.; Phan, R.C.-W. SHA-3 proposal blake. NIST 2008, 229, 1–48.
56. Cho, H. ASIC-resistance of multi-hash proof-of-work mechanisms for blockchain consensus protocols. IEEE

Access 2018, 6, 66210–66222.
57. Aumasson, J.P.; Neves, S.; Wilcox-O’Hearn, Z.; Winnerlein, C. BLAKE2: Simpler, smaller, fast as MD5.

In International Conference on Applied Cryptography and Network Security; Springer: Berlin, Germany, 2013;
pp. 119–135.

58. Körber, O.; Keller, J.; Holmbacka, S. Energy-efficient Execution of Cryptographic Hash Functions on big.
LITTLE Architecture. In Proceedings of the IEEE 2018 13th International Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), Lille, France, 9–11 July 2018; pp. 1–7.

59. Mozaffari-Kermani, M.; Azarderakhsh, R.; Aghaie, A. Fault detection architectures for post-quantum
cryptographic stateless hash-based secure signatures benchmarked on ASIC. ACM Trans. Embed. Comput.
Syst. (TECS) 2017, 16, 1–19.

60. Yang, Y.; Chen, F.; Sun, Z.; Wang, S.; Li, J.; Chen, J.; Ming, Z. Secure and efficient parallel hash function
construction and its application on cloud audit. In Soft Computing; Springer: Berlin, Germany, 2018; pp. 1–19.

61. Neubauer, T.; Heurix, J. A methodology for the pseudonymization of medical data. Int. J. Med. Inf. 2011, 80,
190–204.

62. Zhou, J.; Cao, Z.; Dong, X.; Vasilakos, A.V. Security and privacy for cloud-based IoT: Challenges.
IEEE Commun. Mag. 2017, 55, 26–33.

63. Vatsalan, D.; Sehili, Z.; Christen, P.; Rahm, E. Privacy-preserving record linkage for big data: Current
approaches and research challenges. In Handbook of Big Data Technologies; Springer: Berlin, Germany, 2017;
pp. 851–895.

64. Bogos, S.; Gaspoz, J.; Vaudenay, S. Cryptanalysis of a homomorphic encryption scheme. Cryptogr. Commun.
2018, 10, 27–39.

65. Chen, C.M.; Fang, W.; Wang, K.H.; Wu, T.Y. Comments on “an improved secure and efficient password and
chaos-based two-party key agreement protocol”. Nonlinear Dyn. 2017, 87, 2073–2075.

66. Jo, S.M.; Chung, K.Y. Design of access control system for telemedicine secure XML documents. Multimed.
Tools Appl. 2015, 74, 2257–2271.

67. Emmanuel, N.; Khan, A.; Alam, M.; Khan, T.; Khan, M.K. Structures and data preserving homomorphic
signatures. J. Netw. Comput. Appl. 2018, 102, 58–70.

Appl. Sci. 2020, 10, 2007 36 of 36

68. Luo, F.; Wang, F.; Wang, K.; Chen, K. A more efficient leveled strongly-unforgeable fully homomorphic
signature scheme. Inf. Sci. 2019, 480, 70–89.

69. Kapusta, K.; Memmi, G.; Noura, H. Additively homomorphic encryption and fragmentation scheme for
data aggregation inside unattended wireless sensor networks. In Annals of Telecommunications; Springer:
Berlin, Germany, 2019; pp. 1–9.

70. Awaad, M.H; Jebbar, W.A. Extending the WSN lifetime by dividing the network area into a specific zones.
Int. J. Comput. Netw. Inf. Secur. 2015, 7, 33–39.

71. Awaad, M.H; Jebbar, W.A. Study to analyze and compare the leach protocol with three methods to improve
it and determine the best choice. J. Comput. Sci. Control Syst. 2014, 7, 5–12.

72. Al-Zubaidie, M.; Zhang, Z.; Zhang, J. RAMHU: A New Robust Lightweight Scheme for Mutual Users
Authentication in Healthcare Applications. Secur. Commun. Netw. 2019, 2019, 1–26.

73. Kumar, N.; Kaur, K.; Misra, S.C.; Iqbal, R. An intelligent RFID-enabled authentication scheme for healthcare
applications in vehicular mobile cloud. Peer-to-Peer Netw. Appl. 2016, 9, 824–840.

74. Team, T.A. AVISPA v1.1 User Manual. Available online: http://www.avispa-project.org (accessed on 25 June 2019).
75. Iqbal, U.; Shafi, S. A Provable and Secure Key Exchange Protocol Based on the Elliptical Curve Diffe–Hellman

for WSN. In Advances in Big Data and Cloud Computing; Springer: Berlin, Germany, 2019; pp. 363–372.
76. Ostad-Sharif, A.; Arshad, H.; Nikooghadam, M.; Abbasinezhad-Mood, D. Three party secure data

transmission in IoT networks through design of a lightweight authenticated key agreement scheme.
Futur. Gener. Comput. Syst. 2019, 100, 882–892.

77. City of Melbourne Open Data Team. Sensor Readings, with Temperature, Light, Humidity every 5 Minutes
at 8 Locations. 19 October 2018. Available online: https://data.melbourne.vic.gov.au/Environment/Sensor-
readings-with-temperature-light-humidity-ev/ez6b-syvw (accessed on 18 May 2019).

78. Elhoseny, M.; X.; El-Minir, H.K.; Riad, A.M. An energy efficient encryption method for secure dynamic WSN.
Secur. Commun. Netw. 2016, 9, 2024–2031.

79. Elhoseny, M.; Elminir, H.; Riad, A.; Yuan, X. A secure data routing schema for WSN using elliptic curve
cryptography and homomorphic encryption. J. King Saud Univ. Comput. Inf. Sci. 2016, 28, 262–275.

80. Prithi, S.; Sumathi, S. LD2FA-PSO: A novel learning dynamic deterministic finite automata with pso
algorithm for secured energy efficient routing in wireless sensor network. Ad Hoc Netw. 2020, 97, 102024.

81. Vinitha, A.; Rukmini, M.S.S. Secure and energy aware multi-hop routing protocol in WSN using taylor-based
hybrid optimization algorithm. J. King Saud Univ. Comput. Inf. Sci. 2019, 1–12.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.avispa-project.org
https://data.melbourne.vic.gov.au/Environment/Sensor-readings-with-temperature-light-humidity-ev/ez6b-syvw
https://data.melbourne.vic.gov.au/Environment/Sensor-readings-with-temperature-light-humidity-ev/ez6b-syvw
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Our Contributions
	Paper Structure

	Related Existing Research
	Preliminary Techniques for Our Data Collection Scheme
	Trust Model
	Threat Model
	Overview of Techniques Used in REISCH

	The Proposed Data Collection Scheme
	Network Model
	Security Goals of REISCH Scheme
	REISCH's Scheme
	Entities Preparation
	Using ECDSA-BLAKE2bp
	Applying Camouflage Signature
	Implementing Homomorphic
	REISCH's Protocols

	Discussion
	Security Analysis
	Theoretical Analysis
	Experimental Analysis
	Security Comparison

	Performance Analysis
	Theoretical Analysis
	Experimental Analysis
	Performance Comparison

	Conclusions and Future Work
	References

