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ABSTRACT
The mining industry is undergoing a significant transformation, driven by advancements in 
remote sensing technology that enable the collection of large-scale data on the geological and 
geotechnical properties of mined materials. As the volume and complexity of data generated 
by advanced imaging methods continue to increase, traditional analytical techniques struggle 
to effectively process and interpret this information. To explore current practices and the 
application of machine learning in interpreting complex imaging data for mine material 
characterisation, a review of 92 studies from 2004 to 2024 was conducted. This review focuses 
on key aspects of mining operations, including exploration, extraction, and waste manage
ment. It highlights the unique challenges inherent in the mining environment—particularly the 
heterogeneous nature of geological and mined material samples, which can result in spurious 
absorption features that complicate data analysis. In addition, it discusses the challenges posed 
by high-dimensional data resulting from sensor capabilities, as well as the cost and time 
constraints associated with existing algorithms. Ultimately, the review underscores both the 
opportunities and limitations of current machine learning approaches in analysing geological 
and mined materials, emphasising the need for ongoing research to overcome these chal
lenges and fully utilise machine learning-based remote sensing in the mining sector.
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Introduction

The mining industry is shifting towards the adoption 
of machine learning and image-based material char
acterisation, spurred by advancements in remote sen
sing technology that enhance accessibility and safety. 
This transition is replacing traditional methods, such 
as laboratory analysis and visual inspections, with 
more efficient techniques that provide critical insights 
into the geological and geotechnical properties of 
materials (El-Omairi & El Garouani, 2023; Qin & Li,  
2023). Machine learning-driven image analysis plays 
a vital role throughout the mining process, from 
mineral identification during the exploration phase 
(Shirmard et al., 2022) to ore quality evaluation during 
and after extraction (Xu et al., 2019), as well as char
acterising waste and its associated geotechnical prop
erties (Thiruchittampalam et al., 2024).

Recent developments in the characterisation of 
mining materials have been greatly enhanced by 
sophisticated remote sensing techniques, including 
multispectral and hyperspectral imaging (Birdwell 
et al., 2020; Esmaeili et al., 2024; Karan et al., 2016; 
Kirsch et al., 2018), along with their downstream 
applications (Vignesh & Kiran, 2020). The operability 

of these advanced sensors in mining environments is 
particularly advantageous, as the outcomes depend 
heavily on data with enhanced spatial-spectral- 
temporal resolutions, which are crucial due to the 
dynamic nature of mining operations. The compre
hensive data produced by these techniques, encom
passing both compositional and morphological 
aspects at various scales, facilitates high-resolution 
mapping of geological variations and geotechnical 
properties.

However, the increased complexity of the data has 
resulted in a surge in data volumes and dimensionality 
(Taylor & Vukovic, 2001), leading to a more intricate 
and sparse feature space. To navigate this complexity 
without presuming specific data distributions, new 
image analysis techniques, particularly those based on 
machine learning and deep learning classification 
(Alzubaidi et al., 2021; Madhuanand et al., 2021), have 
emerged. These methods offer robust capabilities for 
extracting and refining knowledge from remote sensing 
data (Jooshaki et al., 2021), with their effectiveness 
further enhanced by specific methodologies employed 
in pre-classification (Jakob et al., 2017). The mining and 
remote sensing communities are actively working to 
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advance these image analysis methods, from pre- 
processing to classification.

The outcomes of these advancements have various 
applications in mining, including the development of 
mining plans that serve as operational and manage
ment blueprints for mines (Carabassa et al., 2020; 
Y. Fu & Aldrich, 2020; Liu et al., 2023). 
Consequently, advancements in machine learning- 
based image analysis of remote sensing data present 
transformative opportunities for geological and mined 
material characterisation (Aznar-Sánchez et al., 2018; 
Mou et al., 2023; Worlanyo & Jiangfeng, 2021), sig
nificantly enhancing the efficiency, sustainability, and 
safety of mining operations (Abaidoo et al., 2019).

Over the past two decades, a diverse array of 
machine learning and image analysis techniques has 
been applied to remote sensing data for geological and 
mined material characterisation, driven by technolo
gical advancements and increased computational 
power. These techniques have evolved, with newer 
methods providing improved accuracy, speed, and 
versatility. This systematic review aims to evaluate 
these techniques, offering insights into the current 
state of machine learning-based geological and 
mined material characterisation and identifying 
potential opportunities for further innovation and 
improvement within the domain of image analysis 
for geological and mined material characterisation. 
Staying abreast of developments in machine learning 
and image analysis can greatly enhance the efficacy of 
the material characterisation process.

The scope of this review is focused on the explora
tion, extraction, and waste management aspects of 
mining, which are critical stages where accurate and 
efficient geological and mined material characterisa
tion can significantly impact the triple bottom line. 
However, this review excludes material characterisa
tion after mineral processing and tailings characterisa
tion because these processes introduce external 
variables that alter the material properties, making 
the analysis significantly different from raw material 
assessment. The complexity and specificity of these 
modified materials warrant a separate in-depth 
study, distinct from the scope of this review.

Research methods

Scope of the review

In this study, we conducted a comprehensive literature 
review with a systematic approach, utilising the Scopus 
database. The review involved exploration of literature 
spanning a 20-year period, from 2004 to 2024. Imaging 
for material characterisation in mining began in the late 
1980s with the AMIRA P243 project. This project catered 
to the increased gold exploration using the Landsat 
Thematic Mapper and SPOT imaging satellites, which 

were introduced during that period (Cudahy, 2016; 
Gabell et al., 1992). Further, the efforts of the researchers 
to utilise remote sensing techniques in the early 1980s are 
highlighted in the review by Goetz et al. (1983). The 
review is limited to the past 20 years to ensure the rele
vance and recentness of tools and techniques in deriving 
potential new strategies for machine learning-based 
characterisation of geological and mined materials.

After conducting the initial search on Scopus, 
a two-stage process was employed to select papers 
for the review. In the first stage, papers meeting the 
specified Scopus search criteria were chosen if they 
were relevant to the fields of machine learning-based 
image analysis and geological material characterisa
tion related to mining. This included peer-reviewed 
journal articles, conference papers, books, magazines/ 
bulletins, and scientific reports. In the second stage, 
papers were shortlisted according to their suitability to 
the review and based on the following criteria:

(a) The study focused on the characterisation of 
geological and mined material using remotely 
captured images in exploration, extraction and 
waste management coupled with analysis 
grounded in machine learning algorithms.

(b) The study aimed to characterise mined materi
als to provide insights into geological or geo
technical aspects.

(c) The study centred around panchromatic, red- 
green-blue (RGB), multispectral and hyper
spectral images.

A considerable quantity of image analysis and com
puter vision papers that lacked direct relevance to the 
mining domain were excluded. Subsequently, to 
ensure comprehensiveness, additional searches were 
conducted on Google Scholar, Web of Science, and 
ScienceDirect using specific keyword combinations, 
including “image analysis”, “computer vision”, 
“machine learning”, “deep learning”, “exploration”, 
“extraction”, “mine waste” and “mining”. This 
approach was employed to verify the Scopus search 
results and identify any potentially missed papers of 
relevance. The initial entries from each search were 
considered, and the process continued until no further 
pertinent entries were found after examining five 
pages within a search window. At the end of the 
filtering process, a total of 92 research articles 
(Figure 1) were retained for further analysis.

Meta-analysis of reviewed studies

A comprehensive meta-analysis has identified 
China (21), India (13), Germany (11), Australia 
(10), and the United States (9) as the foremost 
contributors to research in the field of machine 
learning-based image analysis for geological and 
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mined material characterisation, as depicted in 
Figure 2(a). From a temporal standpoint, the pro
gression of studies in the field of mining, 
Figure 2(b) reveals a predominant focus on the 
exploration of materials. However, a shift in 
emphasis can be observed in recent studies, with 
an increasing number of them considering waste 
characterisation. This shift towards waste charac
terisation could be attributed to the growing 
emphasis on sustainability within the industry 
(Mancini et al., 2024). Moreover, there has been 
a noticeable surge in the number of published use 
cases for machine learning-based image analysis for 
geological and mined material characterisation 
since 2015. This trend can be attributed to 
advancements in sensors, increased accessibility to 
computational resources, and significant develop
ments in image analysis techniques (Qin & Li,  
2023).

Figure 3 provides a comprehensive overview of 
the focus areas in the reviewed studies, revealing 
that the 52 out of 92 are primarily centred on the 
characterisation of mining materials for exploration 
purposes. The escalating global demand for raw 
materials has heightened exploration efforts in the 
mining sector, supported by government incentives 
and reduced funding restrictions from geological 
agencies. However, post-transition to private own
ership, funding for further research typically 
declines. Further examination of Figure 3(b,c) 
uncovers a broad application of RGB and hyper
spectral data in these studies. There appears to be 
a preference for ground-based sensors, as they are 
cheaper to deploy. However, airborne sensors, 
which cover larger areas more efficiently, follow 
closely behind despite not providing the same level 
of detail.

Sensors utilised in the reviewed studies
Data serves as the fundamental element for machine 
learning-driven image analysis pertinent to geological 
and mined materials. Consequently, comprehending 
the sensors employed in the investigation, in conjunc
tion with the data generated by these sensors, will 
establish a foundation for image analysis. Hence, 
a brief analysis of sensor and related data produced 
by these sensors (Figure 4) in reviewed studies are 
discussed in this section.

Red-green-blue (RGB) sensors. Ground-based RGB 
sensors have improved the precision and granularity 
of data registration and alignment in geological studies 
in mine environments. For instance, Kurz et al. (2008) 
utilised the Nikon D200 camera’s calibrated lens for 
accurate registration and alignment of digital images 
with lidar point clouds and three dimensional (3D) 
models for geological study. The camera’s known 
exterior orientation, in conjunction with the calibrated 
lens, facilitates the exact registration and alignment of 
the digital images with the lidar data. Higher resolu
tion of the calibrated lens, compared to the spectral 
images, guarantees that the digital images offer com
prehensive information to aid the validation and inter
pretation of spectral classification outcomes. The 
calibrated lens offers a known focal length and pixel 
scale, which are critical parameters for accurately con
verting image coordinates into the object coordinate 
system during the registration and alignment proce
dure. In essence, the RGB camera’s calibrated lens is 
instrumental in achieving precise registration and 
alignment between the digital images and other data 
such as, the lidar data, thereby enabling the integration 
of spectral classifications with the 3D models. The 
D200, being an older digital single-lens reflex (DSLR) 
model, may have a limited ISO range and less effective 
noise reduction capabilities compared to more 

Figure 1. Flow diagram illustrating the process of article selection for the systematic review.
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modern cameras, which could affect image quality in 
low-light conditions. Additionally, the fixed pixel 
count means that the camera has a finite resolution, 
which could limit the level of detail in photorealistic 
models when compared to higher-resolution sensors. 
Furthermore, the camera’s reliance on calibrated 
lenses for image acquisition suggests that any imper
fections in the calibration process could introduce 
errors into the photogrammetric models. In a more 
recent study by Kurz et al. (2022), the Canon EOS 6D 
camera, equipped with an 85 mm lens, was employed 
for data acquisition due to its full-frame DSLR cap
abilities that yield high-resolution images. The high- 
resolution images captured by the Canon EOS 6D 
camera were utilised to generate photorealistic 3D 

outcrop models using structure from motion (SfM) 
algorithm. These 3D models provided a geospatial 
framework for all outcrop data, facilitating the geor
eferencing and integration of hyperspectral imaging 
imagery and spectral mapping results. The detailed 
and continuous depiction of the outcrop exposure 
offered by the high-resolution images contributed to 
the precise mapping and analysis of the geological 
features and mineralogical variations in the mine 
areas.

In airborne image acquisition using RGB sensors, 
DSLR cameras were initially deployed on unmanned 
aerial vehicles (UAV). For example, Booysen et al. 
(2019) used the Canon S110 RGB camera to obtain 
geomorphic data, which had a resolution of 4.9 cm at 

Figure 2. Distribution of publications (a) across different countries and (b) over the course of 20 years (2004–2024), which studied 
machine learning-based geological and mined material characterisation.
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a 120 m flight altitude. This data was integrated with 
hyperspectral data because spectral data alone can lack 
sufficient discrimination potential due to spatial and 
spectral sensor resolutions or noise produced during 
acquisition. Over time, RGB sensors specifically 
designed for aerial surveys were introduced into geo
logical and mined material characterisation. For 
instance, Yang et al. (2023) utilised a DJI Inspire 2 
UAV with its default camera system, Zenmuse X5S, to 
investigate the use of RGB images for mapping small 
pit wall sections in mine sites (the ground sampling 
distance of the top pit was 0.626 cm/pixel and the pick 
pit was 0.574 cm/pixel). The study found that the 
UAV-acquired RGB images showed promise for sim
ple geological settings. However, in more complex 
geological conditions, they deviated from human- 
labelled ground truth maps. Another study proposed 
a deep learning method for high-resolution geological 
mapping using the vast amount of data acquired using 

a DJI Phantom 4 Pro UAV with a 1-inch CMOS 
sensor (Sang et al., 2020). The studies highlight the 
progress made in the field of airborne RGB sensors 
and their application in characterising materials. This 
technological advancement has paved the way for 
high-resolution geological mapping and data gather
ing from mine sites that were previously inaccessible. 
Furthermore, it has opened up opportunities for the 
application of machine learning and deep learning 
techniques in the autonomous characterisation of geo
logical and mined materials.

Multispectral sensors. When examining studies that 
utilises multispectral data, it becomes apparent that 
only a limited number of such studies exist. This 
scarcity may be attributed to the fact that multispectral 
data offers a lower spatial resolution in comparison to 
RGB data, as well as a reduced spectral resolution 
when contrasted with hyperspectral data. However, 

Figure 3. Distribution of studies according to the (a) phase of mining, (b) used data type (panchromatic, red-green-blue (RGB), 
multispectral, and hyperspectral data, or combination of these) and (c) deployed platform (ground-based, airborne, spaceborne 
sensors, or combination of these).
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the studies that employed multispectral data have 
demonstrated its advantages in geological and mined 
material characterisation. It serves as a bridge between 
RGB and hyperspectral data, offering a viable solution 
when there are limited computational resources, mak
ing the management of hyperspectral data or RGB 
data with extremely high spatial resolution challen
ging. For instance, to address the limitations of grays
cale and RGB data in material characterisation, which 
stem from insufficient spectral information for 

detecting coal and gangue, Hu et al. (2019) investi
gated the use of ground-based multispectral imaging 
technology (MSI). Their MSI system, which included 
a filter device, a fixed focal length lens, and a xiSpec 
series of array spectral camera (MQ022HG-IM- 
SM5X5-NIR, XIMEA GmbH, Munster, Germany) 
equipped with a CMOS imager, was capable of captur
ing 25 wavelengths of imaging within the spectral 
range of 675 to 975 nm. The technology allows for 
the differentiation between coal and gangue at various 

Figure 4. Sensors used in machine learning based geological and mined material characterisation along with the year of 
publication, the platforms where they are deployed, and the data acquired using these sensors.
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wavelengths, with certain wavelengths providing bet
ter classification results. For instance, the ninth wave
length at 773.776 nm was found to be most effective in 
distinguishing between coal and gangue. Furthermore, 
it has proven to demonstrate high classification accu
racy of materials in inaccessible areas of mine sites, 
particularly when only a few geological changes occur.

Thiruchittampalam et al. (2024) demonstrated that 
airborne multispectral data, captured using 
a Micasense Altum PT sensor with six bands, can 
assist in characterising coal spoil in dumps based on 
its geomechanical properties. They also reported that 
when this data is used in conjunction with textural 
features extracted from high-resolution RGB data, the 
accuracy of characterisation can be significantly 
improved. In addition, spaceborne multispectral ima
ging has been instrumental in early-stage exploration 
work and metallogenic prediction. Sensors such as 
Landsat-8 OLI and EO-1 advanced land imager 
(Mielke et al., 2016, Nair et al., 2020) as well as 
ASTER (Xu et al., 2019) have been utilised in these 
studies. The findings from these studies have con
firmed the feasibility of mineral detection using large- 
scale missions during exploration stages. However, for 
a more detailed geological analysis, further investiga
tions employing hyperspectral data are recommended 
due to hyperspectral capabilities to provide contiguous 
spectral information.

Hyperspectral sensors. In studies characterising geo
logical and mined materials, hyperspectral imaging 
systems widely used to its ability to record distinct 
reflectance patterns of materials. These patterns repre
sent contiguous spectral data from minerals in the 
visible to near-infrared (VNIR) and short-wave infra
red (SWIR) ranges. These patterns reflect the miner
als’ atomic structure and chemical composition. For 
instance, VNIR images operating in the 0.4–1.0 μm 
range can map alteration minerals of metal ores such 
as iron (Fe), copper (Cu), and manganese (Mn). 
Conversely, SWIR images, which operate in the 
0.93–2.5 μm range, are capable of identifying minerals 
containing OH-groups and carbonates (S. Wang et al.,  
2022). Due to these capabilities, many studies used 
hyperspectral imaging for identification of specific 
minerals such as clay minerals (Lamrani et al., 2021; 
Murphy et al., 2015), tin-tungsten (Lobo et al., 2021), 
calcitic and dolomitic carbonate units (Thiele et al.,  
2021), dolomite, limestone distribution (Kurz et al.,  
2022), lithium-bearing minerals (Booysen et al., 2022), 
and ferric iron minerals (Murphy & Monteiro, 2013). 
However, due to the limited spatial resolution of 
hyperspectral data, it is often used in conjunction 
with other sensors that have a higher spatial resolu
tion. This combination allows for more detailed and 
spatially precise geological studies. For instance, 
a system combining a Canon EOS 6D DSLR camera 

and a HySpex SWIR-320 camera was used to map 
dolomite and limestone distribution in weathered out
crops (Kurz et al., 2022). In a study conducted by Lobo 
et al. (2021), a detailed mapping and characterisation 
of Tin-Tungsten deposits were carried out using 
Specim F×10and F×17hyperspectral cameras, along 
with a Canon 60D RGB camera. The hyperspectral 
cameras, F×10and FX17, were particularly notable 
for their extensive spectral range of 97–1720 nm. 
This range was divided into 628 spectral bands, each 
with a Full Width at Half Maximum (FWHM) ranging 
from 1.34 to 3.48 nm. Furthermore, these cameras 
boasted a resolution of 1024 pixels per line, ensuring 
high-definition imaging for the study. This combina
tion of sensors facilitated a comprehensive spatial and 
spectral analysis of the deposits. Further, the applica
tions are extended to discriminating between ore and 
waste in a porphyry copper deposit, thereby facilitat
ing efficient extraction processes and indirect charac
terisation of ore grade (Dalm et al., 2017).

Airborne hyperspectral sensors have played 
a pivotal role in the detection and characterisation of 
mining materials. Specifically, they have been crucial 
in mapping hydrothermal alteration zones, which has 
significantly contributed to mineral exploration 
efforts. These sensors provide data that enhances the 
understanding of mineral compositions and distribu
tions, thereby facilitating more efficient and targeted 
exploration strategies. The AVIRIS (and subsequently 
AVIRIS-NG) sensor, mounted on the ER-2 aircraft, is 
a notable example of such sensors. It provides hyper
spectral data with 224 continuous spectral channels 
covering the wavelength range of 0.38–2.5 µm. With 
an approximate 10 nm spectral interval and a spatial 
resolution of 15.5 m × 15.5 m, it has proven effective in 
detecting and accurately characterising hydrothermal 
alteration zones (Adep & Ramesh, 2017). Another 
effective hyperspectral scanner is the ProSpecTIR- 
VS, flown on a Cessna 206 aircraft. It offers 
a nominal 5 nm spectral resolution in the 
0.4–2.45 µm range and a spatial resolution of 1 m. 
The thermal imagery analysis from this sensor con
firmed strong spatial heterogeneity of surface heat 
sources and overall higher surface temperatures for 
acid-sulphate alteration zones (Kruse et al., 2012). In 
2022, the NEO HySpex was introduced with 504 spec
tral channels in the spectral ranges of 0.4–1.0 μm and 
1.0–2.5 μm (S. Wang et al., 2022). This sensor was 
used for detecting and mapping alteration zones in 
a porphyry mineralisation area. The studies show the 
use of increased spectral resolution over a short span, 
from 224 spectral channels in AVIRIS to 504 spectral 
channels in NEO HySpex, for material characterisa
tion. This progression indicates the continuous 
advancements in hyperspectral sensing technology 
and its increasing effectiveness in mineral exploration 
in mine sites.
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Spaceborne hyperspectral imaging has brought 
about a revolution in the domain of large-scale 
mineral exploration. It has particularly enhanced the 
efficiency of early-stage exploration processes. It 
involves the use of sensors, such as the Hyperion, 
which offer 242 spectral bands, allowing for detailed 
analysis of the Earth’s surface. The high spectral reso
lution (10 nm) of these images enables the identifica
tion and characterisation of different materials based 
on their unique spectral signatures. This technology 
has been instrumental in enhancing geological map
ping and early-stage exploration work (Mielke et al.,  
2016Nair et al., 2020; Sudharsan et al., 2019), as it 
provides comprehensive data about the mineral com
position. Furthermore, the wide swath width of 7.5 km 
and spatial resolution (30 m) of these sensors allow for 
large-scale and precise imaging, making hyperspectral 
imaging an invaluable resource in the field of geology 
and mineral exploration. The potential of spaceborne 
hyperspectral imaging continues to be explored, pro
mising exciting advancements in the future (Kumar 
et al., 2020). emphasised the need for improvements in 
the signal-to-noise ratio (SNR) of future spaceborne 
sensors to match the material mapping capabilities of 
current airborne sensors like AVIRIS. Recent studies 
have identified PRISMA data as a viable alternative to 
Hyperion, largely due to its superior SNR (Habashi 
et al., 2024).

Panchromatic sensors. In the domain of grayscale 
data capturing, specific camera and lens models are 
selected for their unique capabilities that cater to the 
requirements of the task at hand. For ground-based 
applications, such as the sorting of coal and gangue, 
the Hikrobot MV-CA050-10 GMGC, a 5-megapixel 
23” CMOS GigE Area Scan Camera, is employed. This 
camera model is favoured for its small exposure time, 
high resolution, excellent imaging quality, high trans
mittance, good stability, and manual aperture control. 
The camera lens used in conjunction is the Hikrobot 
MVL-MF0828M-8MP, a high-resolution prime fixed 
focal length 23” 8 mm 8MP FA Lens, which enhances 
the imaging clarity (Jiang et al., 2021). For airborne 
applications, the Canon EOS M camera is used in 
tandem with the Rikola Hyperspectral Imager for cap
turing overlapping hyperspectral scans of the pit wall. 
The Canon EOS M camera, along with its lens (EF-M 
22 mm f2 STM), is utilised to capture grey-scale 
images as part of the photogrammetry workflow. The 
camera positions are determined from an attached 
GPS device, and the imaging geometry is recon
structed using a SfM and multiview stereo (MVS) 
workflow (Lorenz et al., 2018). The careful selection 
of these camera and lens models is pivotal in achieving 
accurate image recognition and sorting in ground- 
based applications, and precise reconstruction of sur
face geometry in airborne applications. Thus, the 

choice of camera and lens models plays a crucial role 
in the success of grayscale data capturing tasks, 
whether they are ground-based or airborne.

Sensor fusion. Numerous studies have validated the 
effectiveness of an integrated approach, utilising mul
tiple sensors and platforms, in obtaining comprehen
sive material characteristics across large mine areas. 
A study by Kokaly et al. (2017) compared the 
Corescan Hyperspectral Core Imager Mark III, 
HyMap, and HySpex SWIR − 384, each offering dif
ferent spectral and spatial resolutions. The study 
assessed the consistency of mineral information 
derived from these spectrometers across various data
sets, successfully identifying porphyry copper-related 
alteration and mineralised rock in remote areas. 
Another study integrated terrestrial and airborne 
multi-sensor remote sensing techniques for explora
tion mapping and monitoring, employing ground- 
based hyperspectral data from Specim AisaFenix and 
Telops Hyper-Cam LW, as well as UAV-based data 
from Senop Rikola (Kirsch et al., 2018). This approach 
demonstrated its ability to map vertical outcrops in 
a quarry, including sulfide-rich hydrothermal zones. 
Barton et al. (2021) used a combination of ground and 
UAV-based hyperspectral imaging using a Headwall 
Photonics Micro-Hyperspec system, exploring the 
potential of hyperspectral imaging in conjunction 
with lidar data for accurate large-scale mineral map
ping. Lidar data integration helps in generating spa
tially registered maps of different mineral types. 
Further, multiple sensors help in overcoming the lim
itations and potential sources of error in single sensor- 
based imaging, such as noise in spectra and the pre
sence of mineral mixtures within pixels. In a recent 
study conducted by Thiruchittampalam et al. (2024), 
an RGB sensor (Zenmuse P1) and a multispectral sen
sor (Micasense Altum PT) were utilised in a UAV to 
gather textural and spectral data for the characterisa
tion of spoil material in a spoil dump area. The study 
demonstrated that the higher spatial resolution pro
vided by the RGB sensor, coupled with the higher 
spectral resolution offered by the multispectral sensor, 
contributed to a more comprehensive feature set, 
thereby enhancing the accuracy of classification.

The combination of airborne and spaceborne ima
ging systems, specifically the Hyperion, AVIRIS, and 
AVIRIS-NG sensors, and the VNIR-SWIR spectral 
bands of ASTER data, has also been shown to be 
effective for mineral exploration and mapping. Kruse 
et al. (2003) utilised both the Hyperion sensor and the 
airborne AVIRIS sensor, demonstrating that the com
bination of these sensors could yield valuable geologic 
and mineralogic information. Similarly, Kumar et al. 
(2020) combined the use of AVIRIS-NG hyperspectral 
data and the VNIR-SWIR spectral bands of ASTER 
data for lithological mapping. The amalgamation of 
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data from AVIRIS-NG and ASTER facilitated the for
mulation of an innovative methodology. This metho
dology integrates spectral enhancement procedures 
with machine learning protocols to automate litholo
gical mapping. By capitalising on the advantages 
inherent in both datasets, this approach significantly 
enhances the precision of lithological categorisation.

The integration of satellite, and airborne sensors 
has significantly enhanced the efficiency and accuracy 
of geological and mined material characterisation, 
particularly in remote and inaccessible areas. A study 
by Booysen et al. (2019) employed a multiscale remote 
sensing approach using multiple sensors and cameras, 
including the Sensefly eBee equipped with a Canon 
S110 RGB camera, the Aibotix Aibot X6v2 equipped 
with a Senop Rikola hyperspectral imager, the 
HyMap-Hyperspectral whiskbroom sensor for aerial 
hyperspectral imaging, and the ASTER sensor for 

spaceborne multispectral imaging. Each sensor offered 
different spectral channels and spatial resolutions, 
allowing for detailed analysis of targets at various 
spatial levels. These studies demonstrated the effec
tiveness of this integrated approach in an area char
acterised by remote and difficult terrain such as mine 
area. These findings underscore the potential of 
a multiple sensors and platform-based remote sensing 
approach in enhancing material characterisation.

Overview of the review

The process of characterising geological and mined 
material using image analysis techniques encompasses 
several steps (Figure 5). The workflow typically begins 
with preprocessing, which involves preparing the raw 
data for further analysis by correcting distortions and 
enhancing image quality. Feature extraction then 

Figure 5. This review evaluates the processes from pre-classification to classification involved in machine learning-based data 
analysis for geological and mined materials throughout the mining cycle, utilising remote sensing data.
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derived to capture local, global, and object-specific 
information, respectively (W. Fu & Yang, 2022). 
Feature selection follows, aiming to identify the most 
relevant features for improving the efficiency and 
accuracy of subsequent classification tasks. In recent 
years, machine learning techniques, including super
vised, semi-supervised, and unsupervised learning, 
have been employed to enhance classification perfor
mance, complementing conventional methods. 
Supervised learning relies on labelled data, but its 
effectiveness is often limited by the availability of 
such data. Semi-supervised learning, which combines 
a small amount of labelled data with a larger pool of 
unlabelled data, has shown promise in improving 
classification accuracy while reducing the need for 
extensive manual labelling (Zhixin Zhang et al.,  
2024). Unsupervised learning, on the other hand, 
does not require labelled data and is used to discover 
patterns and structures within the data, although it 
may not always meet practical application needs 
(Guo et al., 2022). Advanced techniques like 
Generative Adversarial Networks (GANs) models 
have been integrated into semi-supervised frameworks 
to further enhance feature representation and model 
robustness, thereby improving the overall perfor
mance of image analysis. This review discusses the 
evolution of geological and mined material character
isation in mining, from preprocessing to classification, 
over the past two decades throughout the entire 
mining cycle (i.e. exploration, extraction and waste 
management).

Machine learning based data analysis for 
geological and mined materials in the mining 
cycle

Exploration

Drill core mapping
The rise of machine learning-driven data analysis has 
significantly transformed the examination of drill 
cores, transitioning from a subjective and labour- 
intensive process to a more automated and objective 
system. Recent studies highlight the considerable pro
mise of integrating various data sources, particularly 
hyperspectral data with mineralogical information, 
alongside advanced deep learning techniques. This 
integration aims to enhance machine learning work
flows, improving both efficiency and accuracy while 
addressing the limitations of existing core logging 
methods.

For instance, Acosta et al. (2019) demonstrated the 
effectiveness of combining hyperspectral data with 
detailed mineral images obtained from scanning elec
tron microscopy-mineral liberation analysis (SEM- 
MLA). Their methodology included critical preproces
sing steps, such as adjusting high-resolution MLA 

images to align with the spatial resolution of hyper
spectral data. By visually coregistering the images 
based on structural features and mineral composi
tions, they effectively fused the datasets for classifica
tion. They employed machine learning classifiers like 
Random Forest (RF) and Support Vector Machine 
(SVM), which are adept at handling high- 
dimensional data with limited training samples. 
Their findings indicated that this framework success
fully mapped minerals and alteration patterns in drill- 
core samples, showcasing the potential of data fusion 
and machine learning in geological analysis.

Similarly, Contreras Contreras et al. (2019) further 
explored the capabilities of hyperspectral data, focus
ing on determining different mineral assemblages, 
structural features, and alteration patterns. Utilising 
a SisuRock drill core scanner equipped with an 
AisaFenix VNIR-SWIR hyperspectral sensor, they 
conducted extensive preprocessing to correct for sen
sor shifts and lens effects. They employed the Extreme 
Learning Machine (ELM) technique for classification, 
which proved to be more efficient than traditional 
methods like RF, particularly when dealing with less 
mixed materials. This study highlighted the impor
tance of optimising classification techniques and 
exploring feature extraction methods to enhance accu
racy in mineral mapping tasks.

In another approach, Pane and Sihombing (2021) 
utilised spectral data from Short-Wavelength Infrared 
(SWIR) and Thermal Infrared (TIR) to identify 
mineral features, evaluating various classification 
methods such as K-Nearest Neighbors (KNN) and 
Multi-layer Perceptron (MLP). Their findings under
scored the effectiveness of SVM and MLP in classify
ing rock minerals, while also acknowledging 
limitations such as potential overfitting and challenges 
in generalising models to different regions. This high
lights the ongoing need for refinement in machine 
learning methods to ensure robust applications in 
geological research.

Günther et al. (2021) contributed to this discourse 
by employing high-resolution RGB images of drill 
cores, addressing preprocessing challenges such as 
digital depth references and image quality variability. 
Their use of the Mask R-CNN model demonstrated 
that even minimal labeled data could yield significant 
efficiency gains in manual drill core analysis. 
However, they also identified the need for further 
evaluation of labelled data selection and the challenges 
posed by inconsistent image quality. This indicates the 
necessity of establishing strict guidelines for data 
acquisition to fully utilise machine learning’s potential 
in geological applications.

Lastly, Abdolmaleki et al. (2022) focused on hyper
spectral images of drill core samples from a silver ore 
deposit. The study utilised ENVI’s spectral hourglass 
workflow, which involved reducing the dimensionality 
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of the hyperspectral data from 256 bands to 40 using 
a Minimum Noise Function (MNF) transformation. 
By comparing a supervised deep learning model, 
ENVI-Net5 architecture, with traditional methods 
like the Spectral Angle Mapper (SAM) and k-means 
clustering, they found that the deep learning approach 
significantly outperformed the others in ore and waste 
discrimination. However, the study also noted limita
tions, such as the potential for false positives and the 
challenges of replicating ideal laboratory conditions in 
the field. These studies demonstrate the importance of 
continuous improvement and adaptation of machine 
learning techniques to ensure their effectiveness in 
real-world geological scenarios.

In-field geological and mineralogical mapping
In recent years, the integration of machine learning 
techniques into geological and mineralogical mapping 
has revolutionised the way data is analysed and inter
preted. This section provides a brief overview of these 
advancements and their implications for the mining 
field.

For instance, Kruse et al. (2003), centered around 
the Earth Observing 1 Hyperion Sensor, aimed to 
evaluate its effectiveness in mineral mapping relative 
to the established AVIRIS sensor. Key preprocessing 
steps included atmospheric correction to achieve 
apparent reflectance, linear transformations to 
minimise noise, and destriping to address vertical 
striping in Hyperion data. The classification process 
employed Minimum Noise Fraction (MNF) transfor
mation to enhance spectral data and identify end
member spectra for mineral mapping. Although the 
findings indicated that Hyperion could yield compar
able mineralogical insights to AVIRIS under optimal 
conditions, its lower signal-to-noise ratio (SNR) posed 
limitations on detailed spectral mapping, especially in 
challenging environments. Kurz et al. (2008) shifted 
the focus to the integration of lidar and ground-based 
hyperspectral scanning to improve geological map
ping methodologies. This study emphasised the 
importance of robust data preprocessing, which 
involved the application of image processing algo
rithms to extract geological features, registration of 
hyperspectral images to the lidar coordinate system, 
and bundle adjustment for precise image orientation 
and positioning. The classification utilised 
a maximum likelihood classifier based on the first 
ten bands of the MNF transform to effectively distin
guish geological from non-geological pixels. The 
results revealed a more nuanced understanding of 
geological distributions, particularly in limestone and 
dolomite layers, although challenges such as sensor 
noise and reflectance correction underscored the 
need for further refinement. Similarly, Kurz et al. 
(2009) and Kurz et al. (2013) employed Mixture 
Tuned Matched Filtering (MTMF) to unmix spectral 

data, generating thematic images that classify various 
rock types, such as limestone and dolomite, and quan
tify dolomitisation and clay content. The study 
acknowledges limitations, including challenges in 
semi-automatic feature extraction from lidar data 
and the impact of factors like shadowing and low 
signal-to-noise ratios on method effectiveness. 
Similarly, Kruse et al. (2012) employed minimum 
noise fraction (MNF) transformation was employed 
for spectral compression and noise suppression, facil
itating effective classification through matched filter 
(MF) and mixture tuned matched filtering (MTMF) 
algorithms. The study’s findings underscored the cap
ability of HSI to reveal mineral distributions in three 
dimensions, enhancing exploration and evaluation of 
geological features. However, limitations arose from 
the National Elevation Dataset’s inadequacies affect
ing geocorrection accuracy. Further, Okyay et al. 
(2016) et al. focused on the lower Mississippian 
Reeds Spring Formation, utilising both ground-based 
hyperspectral imaging and laboratory reflectance 
spectroscopy. They applied Spectral Feature Fitting 
(SFF) and Mixture-tuned Match Filtering (MTMF) 
for classification, revealing a decrease in tripolite 
with depth. However, geometric distortions in hyper
spectral images posed challenges, suggesting integra
tion with terrestrial LiDAR for enhanced accuracy.

In terms of algorithms, Murphy et al. (2012) eval
uated the effectiveness of spectral angle mapper 
(SAM) and support vector machines (SVMs) for clas
sifying rock types using hyperspectral data from the 
West Angelas mine in Western Australia. SAM calcu
lates spectral angles for classification, excelling in sha
dowed areas, while SVMs leverage kernel machine 
theory for nonlinear classification, showing superior 
results when training and classification data are from 
the same population (Murphy et al., 2012). However, 
SVMs face challenges with independent spectral 
libraries and are sensitive to illumination changes. 
Consequently, Xu et al. (2019) investigated hydrother
mal alteration minerals associated with gold deposits 
in the Gulong area of Dayaoshan, China, utilising data 
from the Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER). The study 
employs a series of preprocessing steps, including 
atmospheric correction with the Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercubes 
(FLAASH) and mixed pixel decomposition optimised 
by genetic algorithms, to address challenges posed by 
high vegetation cover. Support Vector Machine 
(SVM) methods, enhanced through ant colony algo
rithm optimisation, are utilised for accurate extraction 
of mineral alteration information. The study success
fully identifies alteration minerals like pyrite, sericite, 
and chlorite, which are indicative of gold deposits, 
despite limitations in areas with dense vegetation. 
Krupnik and Khan (2020) explored high-resolution 
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hyperspectral imaging spectroscopy for mineral char
acterisation in two geological settings. Using a Specim 
SWIR camera, they perform spectral analyses and 
employ three classification techniques: Spectral 
Angle Mapper (SAM), Support Vector Machine 
(SVM), and Neural Network. The SVM classifier 
demonstrates superior performance in classifying car
bonate minerals with 84.4% accuracy, while SAM is 
more effective for sulfide minerals. Kumar et al. (2020) 
developed a mapping approach for the Hutti green
stone belt in India, utilising AVIRIS-NG using includ
ing machine learning algorithms including Support 
Vector Machine (SVM), Random Forest (RF), and 
Linear Discriminant Analysis (LDA), with SVM 
achieving the highest accuracy of 85.48% and 
a Kappa Coefficient of 0.83. The study highlighted 
SVM’s robustness against sample size reduction and 
mislabelling, producing a high-resolution litho- 
contact map. Sang et al. (2020) introduced a novel 
high-resolution geological mapping method that com
bines Unmanned Aerial Vehicle (UAV) technology 
with a Simple Linear Iterative Clustering- 
Convolutional Neural Network (SLIC-CNN). By auto
mating traditional geological mapping, this approach 
minimises extensive fieldwork. High-resolution RGB 
images captured by a DJI Phantom 4 Pro UAV were 
pre-processed into 32 × 32 pixel segments to facilitate 
effective pattern recognition. The classification inte
grates CNNs for content recognition and the SLIC 
algorithm for edge detection, achieving an Area 
Under the Curve (AUC) of 0.937 and a Kappa coeffi
cient of 0.8523, though further refinement is needed 
for complex geological features. For lithological 
boundary mapping, Vasuki et al. (2017) introduced 
the Interactive Lithological Boundary Detection 
(ILBD) method, which enhances the efficiency of 
boundary detection in complex geological images. 
Utilising the Simple Linear Iterative Clustering 
(SLIC) superpixel algorithm for initial over- 
segmentation, the method groups pixels based on 
color similarity in the CIELAB color space. User 
input is integral, guiding the segmentation process to 
refine boundaries and correct subtle color changes. 
The ILBD method significantly reduces interpretation 
time by a factor of four while maintaining over 96% 
similarity in boundary detection, showcasing its 
potential as a complementary tool to machine learn
ing-based classification methods.

Beyond these studies, analysing the outcomes 
derived from sensors based on the deployed platforms, 
Murphy et al. (2014) evaluated short-wave infrared 
(SWIR) absorption features captured at 10 m using 
a field-based platform for clay layer mapping at 
a mine face. They employed Automated Feature 
Extraction (AFE) for classification, which does not 
require prior spectral knowledge. They found that 
direct solar illumination yielded consistent clay 

absorption patterns, while cloud cover introduced 
noise, highlighting the need for improved detection 
methods and appropriate selection of platforms. 
Gloaguen et al. (2018), in their study on mineral 
exploration in Europe’s crust, integrated multi- 
sensor remote sensing data, including hyperspectral 
imaging from satellites, UAS, and ground systems. 
They indicated that UAS can significantly reduce 
acquisition costs and enhance data information poten
tial, although challenges related to atmospheric effects 
and topography still necessitate tailored correction 
workflows. Further, Lobo et al. (2021) explored the 
use of hyperspectral imaging for identifying mineral 
ores from tin-tungsten mine excavation faces. They 
assessed minerals like cassiterite and wolframite under 
controlled and simulated conditions, achieving 98% 
accuracy in the laboratory but only 85% in the field 
due to challenges like mixed pixels and illumination 
variations, also indirectly highlight importance of 
appropriate platform selection to improve accuracy 
of machine learning-based classification.

Extraction

In-field ore waste differentiation
This section explores the application of machine 
learning algorithms in the mining sector to distinguish 
between ore and waste materials in-field, focusing on 
recent developments. Dalm et al. (2017) assessed the 
potential of short-wavelength infrared (SWIR) hyper
spectral imagery for distinguishing ore and waste in 
a porphyry copper deposit. The study utilised 43 sam
ples collected from a South American mine, with half 
used for SWIR imaging and the other for X-ray fluor
escence (XRF) analysis. Preprocessing involved cali
brating the SWIR data for accurate mineralogical 
mapping, followed by principal component analysis 
(PCA) to identify variations in mineral composition. 
The findings indicated that SWIR hyperspectral ima
ging could discriminate 58% of samples with sub- 
economic copper grades, although it did not outper
form SWIR point spectrometry due to textural varia
bility and a limited sample size. Pu et al. (2019) 
focused on coal classification using a CNN with trans
fer learning, utilising the VGG16 model. A dataset of 
240 images (100 for training, 20 for validation per 
material) was created to train the model. 
Preprocessing included resizing and normalising 
images to fit the VGG16 input requirements. The 
CNN achieved an accuracy of 82.5% on the validation 
set, demonstrating its effectiveness. However, the 
study acknowledged limitations due to the small data
set size, suggesting that expanding the image database 
could enhance performance. Choros et al. (2022) 
developed a prototype scanning system that combined 
hyperspectral imaging with neural network classifica
tion to identify ore at a gold mine in Western 
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Australia. The system integrated hyperspectral cam
eras and a 3D LiDAR to capture detailed scans of the 
mine face. Data preprocessing involved decomposing 
hyperspectral images into 5 × 5 spatial patches, essen
tial for training a convolutional neural network 
(CNN). Two classification methods were employed: 
the Spectral Angle Mapper (SAM) and the CNN. 
Both methods achieved good accuracy in distinguish
ing ore from waste, although the quality of classifica
tion was limited by the small training dataset and 
environmental variations impacting performance. 
These studies highlight the integration of imaging 
technologies and machine learning algorithms in 
mining for effective in-field ore-waste classification, 
while also pointing out challenges such as dataset size, 
environmental factors, and textural variability that 
affect classification accuracy.

Material quality monitoring
Recent advancements in machine learning have sig
nificantly improved the material quality analysis irre
spective of challenges such as heterogenous nature of 
mined materials.

In the context of size and shape analysis, study by 
Weixing W. Wang (2007) presents an image segmen
tation algorithm tailored for analyzing mineral parti
cles, addressing challenges posed by irregular shapes 
and rough surfaces. The preprocessing phase enhances 
image quality through edge strengthening and noise 
reduction, facilitating effective segmentation. 
A region-based split-and-merge technique is 
employed for classification, although limitations such 
as over-segmentation persist, indicating the need for 
improved shape analysis and localised threshold deter
mination. Later, a study by Zelin Zhang et al. (2013) 
investigated the accuracy of parameters in machine 
vision systems for estimating the size distribution of 
coarse coal particles, utilising a dataset of 467 anthra
citic coal particles from the Tai-Xi coal preparation 
plant. The research highlights the critical importance 
of precise particle size representation, employing 
a backlit system for high-quality image capture and 
advanced segmentation techniques to mitigate edge 
detection issues. Among the nine parameters ana
lyzed, the minor axis of the equivalent ellipse 
(Dminor) and the breadth of the best-fit rectangle 
(DB) exhibited the highest accuracy ratios of 86.43% 
and 85.39%, respectively, while other parameters fell 
below 70% accuracy. Iwaszenko and Nurzynska (2019) 
proposed a robust segmentation method for delineat
ing rock grains using a five-dimensional intensity fea
ture vector. This vector incorporates pixel grey levels 
and local curvilinearity assessments. Machine learning 
classifiers, including k-nearest neighbors (kNN), 
SVM, and artificial neural networks (ANN), are eval
uated, with linear SVM achieving the highest accuracy 
(up to 89%). Despite promising results, challenges 

such as false positives and segmentation precision in 
complex structures remain, indicating the need for 
further refinement. The research conducted by 
Nurzynska and Iwaszenko (2020) and Iwaszenko and 
Smoliński (2021) further focused on enhancing rock 
grain boundary detection through texture analysis and 
machine learning techniques. The studies 
utilise images of rock materials, preprocessing them 
by creating ground truth masks to delineate grain 
edges. Various classifiers, including k-Nearest 
Neighbors (kNN), Random Forest (RF), Decision 
Trees (DT), Support Vector Machines (SVM), and 
Multi-Layer Perceptron (MLP), were employed to 
assess their effectiveness in segmenting grain bound
aries. SVM with a Radial Basis Function kernel and 
MLP demonstrated strong performance, albeit with 
high computational demands. Furthermore, the stu
dies explored texture feature extraction using first- 
order, second-order features, and matrices such as 
the run-length and grey tone difference. The ANN 
classifier achieved over 75% accuracy, improving to 
79% with a multi-texture approach. However, limita
tions were identified, including challenges in resolving 
fine grains and diminished accuracy from feature 
space dimensionality reduction.

Other significant contributions by researchers 
include determining the lithology and grade of ore. 
Perez et al. (2012) developed a lithological classifica
tion method employing Gabor texture analysis com
bined with support vector machine (SVM) 
classification. The approach utilises a dataset of 120 
rock images, segmented into 128 sub-images for 
detailed texture analysis. Gabor filters are applied at 
multiple spatial scales and orientations, generating 
a feature vector of 240 features per sub-image. The 
SVM, utilising a radial basis function (RBF) kernel, 
achieves over 80% accuracy, outperforming previous 
methods like Wavelet-PCA (40.83%). However, it pri
marily focuses on texture features, suggesting future 
enhancements with colour information. Additionally, 
Mohapatra (2015) proposes a methodology for auto
mated coal grade characterisation using image proces
sing and machine learning, addressing the limitations 
of traditional analysis methods. This study employed 
a Radial Basis Function Neural Network (RBFNN) for 
classification, which outperformed other classifiers, 
including Multilayer Perceptron (MLP) and 
Probabilistic Neural Network (PNN), achieving an 
average performance accuracy of 90.66% through five
fold cross-validation. The preprocessing for classifica
tion involved shifting and contrast enhancement to 
reduce distortions, and feature selection techniques 
such as One Way ANOVA were emphasised to 
enhance classification accuracy.

Patel et al. (2017) aimed to develop an online 
vision-based technology for iron ore classification, 
employing a multiclass SVM model with a Gaussian 
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radial basis function (RBF) kernel. Utilising 2200 
images captured via a conveyor belt system, the 
researchers extracted 18 features, including histo
gram-based color and texture features. The SVM 
model demonstrated high sensitivity, accuracy, and 
specificity, outperforming alternative methods such 
as k-nearest neighbor and Naïve Bayes, despite limita
tions related to feature similarities among classes. 
Building upon, Patel et al. (2019a) introduced 
a support vector machine regression (SVR) model 
for online quality assessment of iron ores, utilising 
data from images captured on a conveyor belt. 
A total of 280 image features were extracted and opti
mised using a sequential forward floating selection 
(SFFS) algorithm, enhancing model performance 
while reducing complexity. The SVR model, employ
ing a radial basis kernel function (RBF), demonstrated 
a high predictive accuracy with an R2 value of 0.9402, 
outperforming other regression models like Gaussian 
Process Regression (GPR) and Artificial Neural 
Networks (ANN). However, the model’s applicability 
to diverse mining conditions necessitates recalibration 
and optimisation due to its tendency to overestimate 
iron ore grades. Consequently, Patel et al. (2019b) 
investigated the impact of moisture on SVM perfor
mance, utilising both classification and regression 
models on images of dry and wet ore samples from 
the Guamine mine in India. This study revealed that 
dry samples yielded superior model performance 
compared to wet ones, underscoring the need for 
tailored feature selection based on sample conditions.

Ore waste differentiation prior to processing
The adoption of machine learning-based data analysis 
for ore-waste differentiation prior to processing has 
the potential to enhance both efficiency and accuracy 
in ore quality assessment and sorting processes prior 
to processing.

Considering incoporation of traditional machine 
learning approaches, study by Singh and Rao (2006) 
explored image processing techniques for distinguish
ing ferruginous Indian manganese ores. The metho
dology includes contrast adjustment, conversion to 
CIELAB color space, and binary image transformation 
to facilitate classification via the nearest neighbour 
rule. A Sobel filter is utilised to detect alumina 
lumps, demonstrating the potential for improved ore 
quality and sorting. However, the study notes com
plexities in image characteristics that necessitate 
further refinement of the processing techniques to 
enhance accuracy. Dou et al. (2018) employed the 
Relief-SVM method, which optimises rock picking 
efficiency under varying surface conditions – dry, 
wet, and those covered by slime. Using data from 
Dafeng and Baijigou coal mines, the study processes 
16 datasets with 19 features per sample, achieving 
mean accuracies between 94% and 98% through 

feature selection and SVM classification. The Relief 
algorithm enhances classification by evaluating feature 
importance, allowing for reduced training time with 
fewer optimal features. Dou et al. (2019) further high
lighted that not all features contribute equally, with the 
H first moment being the most impactful. Desta and 
Buxton (2020) focused on integrating image and point 
data to classify ore and waste materials in polymetallic 
sulphide deposits. Utilising both supervised 
(K-means) and unsupervised (support vector classifi
cation) techniques, the study enhances classification 
accuracy by fusing data from different spectral 
regions. Preprocessing steps, including Gaussian fil
tering and normalisation, ensure data quality. Despite 
challenges in data integration and feature selection, 
the study demonstrates the potential of data fusion 
techniques to improve material classification in high- 
throughput mining operations. Weidong W. Wang 
et al. (2021) employed a Support Vector Machine 
(SVM) for classification, optimising its parameters 
through K-fold cross-validation. This approach 
includes converting images to grayscale and applying 
histogram equalisation, achieving a recognition accu
racy of 95.12%. The study highlights the importance of 
eigenvalues from grayscale means and wavelet coeffi
cients in constructing a mathematical recognition 
model. Jiang et al. (2021) integrated image processing 
techniques with a multilayer perceptron (MLP) model, 
achieving a recognition accuracy of 96.15% and 
a grasping accuracy of 85% at a conveyor belt speed 
of 0.4 m/s. The method employs a Gaussian filter for 
noise reduction and the Reverse Selection Edge 
Extraction Method (RS-EEM) to eliminate back
ground interference, utilising features derived from 
the gray level co-occurrence matrix (GLCM) for clas
sification. B. Wang et al. (2022) introduced a novel 
method for detecting coal content in gangue using 
image analysis combined with a particle swarm opti
misation-support vector machine (PSO-SVM) 
approach. This method improves upon traditional, 
labor-intensive techniques by employing high- 
resolution images captured by a Canon EOS550D 
camera. The study utilises multiscale image segmenta
tion and various preprocessing techniques to extract 
relevant features, which are refined using the Pearson 
correlation coefficient. The PSO algorithm optimises 
SVM parameters, achieving average relative errors of 
9.5% to 10.0% in predicting coal content, offering real- 
time detection advantages over conventional methods. 
Huang et al. (2022) aimed to enhance volume predic
tion accuracy through shape clustering and image 
analysis. It employs a multiscale edge detection algo
rithm based on the Gaussian function and Hessian 
matrix for image segmentation, followed by an 
improved K-means algorithm for shape classification. 
This approach significantly reduces average relative 
errors in volume prediction, notably decreasing 
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gangue particle error from 13.41% to 12.54%. 
However, limitations include potential errors during 
segmentation and the influence of abnormal data 
points on regression results.

Other studies have employed deep learning techni
ques, where feature extraction is an intrinsic compo
nent of the process, for instance, Hong et al. (2017) 
developed an automatic recognition system using 
a convolutional neural network (CNN) model based 
on AlexNet. To address the challenge of limited train
ing data, it employs data enhancement techniques and 
transfer learning, utilising a dataset of 2012 images 
from Shanxi, China. The CNN model, fine-tuned for 
coal and gangue recognition, achieves a recognition 
rate of 0.96, outperforming traditional neural net
works and SVMs. The study acknowledges limitations 
regarding sample variety and quantity, suggesting 
future work to expand the dataset for improved gen
eralisability. Li et al. (2019) introduced a hierarchical 
deep learning framework aimed at improving coal and 
gangue detection during mining operations. Utilising 
datasets from three mines in China, the authors 
employed a Gaussian pyramid principle for preproces
sing, enabling multi-level feature extraction. The clas
sification is performed using coal and gangue regional 
proposal networks (CG-RPN) combined with convo
lutional neural networks (CNNs), achieving an accu
racy of 98.33%, surpassing previous methods by 0.8%. 
This approach effectively detects multiple objects in 
a single image, although it highlights the need for 
model simplification and enhanced multithreading 
for online applications. Hu et al. (2019) explored the 
feasibility of multispectral imaging for identifying coal 
and gangue. It standardises the color space using 
Gamma correction and extracts features through 
Histogram of Oriented Gradient (HOG), Local 
Binary Patterns (LBP), and Haar features. Support 
Vector Machine (SVM) classifiers, optimised via 
Grid Search (GS), Genetic Algorithm (GA), and 
Particle Swarm Optimisation (PSO), are employed 
for classification. The findings reveal that LBP com
bined with GS-SVM yields the best classification accu
racy. Future work may focus on deep learning 
algorithms to streamline the identification process, 
minimising manual preprocessing efforts. Sun et al. 
(2021) developed a coal and gangue separating robot 
system utilising a convolutional neural network 
(CNN) and the CG-YOLO algorithm for high recog
nition accuracy exceeding 98%. Implemented in 
a simulated environment, the system optimises layout 
and performance for real-time operations. These stu
dies demonstrate significant improvements in coal 
and gangue differentiation, although they face limita
tions related to image quality, computational intensity, 
and potential overfitting, suggesting a need for further 
research to enhance their applicability. Further, these 
studies highlight the need for further advancements to 

address regional variability in mined material types 
and improve system robustness.

Waste management

The development of studies concentrated on detecting 
and characterising granularity and geotechnical char
acteristics in mine dump materials through the appli
cation of machine learning-based data analysis.

Iwaszenko (2020) aimed to determine the grain size 
composition of coal mining waste by utilising image 
processing algorithms. Data was collected from the 
“Rymer” pile, where rocks were photographed and ana
lyzed in the HSV color space, specifically using the 
V channel for processing. Various preprocessing filters 
were tested, with the Median filter yielding the best 
results. Edge detection was then performed using 
three algorithms: gradient magnitude, multiscale linear 
filtering, and the Statistical Dominance Algorithm 
(SDA). The SDA algorithm proved most effective in 
delineating grain boundaries, producing long segments 
and dot-like structures that facilitated segmentation, 
despite notable over-segmentation compared to manual 
methods. Limitations included artifacts from poor 
lighting and challenges in distinguishing true grain 
edges from shadows and mineral structures. 
Consequently, Sun et al. (2022) introduced the 
SLFTIC algorithm, an enhanced superpixel segmenta
tion method aimed at improving the segmentation of 
coal mine waste rock images. SLFTIC integrates colour, 
spatial position, and texture information to overcome 
limitations of traditional segmentation methods, parti
cularly when target and background colors are similar 
and edges are weak. The algorithm employs 
a preprocessing step that calculates pixel distances 
based on these features, utilising a window to assess 
the convex-concave degree of pixels, which is crucial 
for accurate clustering. A modified k-means clustering 
approach is used for classification, focusing on 
a balanced distance metric that enhances segmentation 
results for complex textures. The findings indicate that 
SLFTIC outperforms the traditional SLIC algorithm, 
showing improvements in undersegmentation error, 
boundary recall, and compactness, despite a slightly 
longer processing time due to the additional computa
tions required. Building upon this, Cai et al. (2022) 
focused on developing a deep learning-based network 
for detecting and analyzing the granularity distribution 
of mine dump materials, specifically conglomerate and 
clay. The researchers created the Conglomerate and 
Clay Dataset (CCD) through field sampling and image 
labeling. The model employs random sampling for 
robust preprocessing and utilises a keypoint-based 
detection algorithm to localise materials in orthophoto 
images, avoiding traditional bounding box complex
ities. The stacked hourglass-type network architecture 
improves accuracy by leveraging outputs from previous 
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networks. Results demonstrate that this approach out
performs traditional and other deep learning algorithms 
in granularity detection, achieving minimal error and 
standard deviation. Taking this further, 
Thiruchittampalam et al. (2024) focused on enhancing 
the geotechnical characterisation of coal spoil piles 
through high-resolution optical and multispectral data 
combined with machine learning. Conducted at a mine 
dump site in New South Wales, Australia, UAVs cap
tured imagery using advanced cameras. Preprocessing 
involved image segmentation using Gaussian blur and 
Otsu’s thresholding to differentiate between back
ground and spoil piles. The classification utilised var
ious machine learning algorithms, emphasising feature 
selection via the minimum redundancy maximum rele
vance (mRMR) algorithm. The ensemble (subspace dis
criminant) algorithm, integrating features from both 
RGB and multispectral data, achieved an accuracy of 
80.2%. The study underscored the importance of incor
porating textural, statistical, and structural information 
while also noting the challenges posed by feature selec
tion and scale on classification outcomes. Together, 
these studies highlight the potential of machine learning 
techniques in effectively managing and characterising 
mining waste, as well as promoting sustainable manage
ment practices.

Conclusions

This systematic review underscores the transformative 
advancements in the application of image analysis for 
remote sensing data-based geological and mined 
material characterization over the past two decades. 
The evolution of image sensors, progressing from 
basic RGB technologies to sophisticated hyperspectral 
systems, has significantly enriched our understanding 
and analysis of geological and mined materials. The 
integration of multi-sensor data has emerged as 
a significant technique for geological mapping, enhan
cing the precision of geological feature interpretation 
and enabling more accurate assessments in complex 
environments.

Innovative classification methods have proven 
effective in mineral identification, although challenges 
such as sensor noise and mixed spectral signals persist. 
The incorporation of advanced machine learning 
models, particularly deep learning frameworks, has 
revolutionised the extraction phase, facilitating accu
rate differentiation between ore and gangue. Despite 
these promising developments, critical limitations 
remain, particularly in the areas of model simplifica
tion, multithreading capabilities, and image segmenta
tion accuracy. Addressing these challenges is essential 
for optimising systems to enable real-time detection 
and more effective sorting processes. Furthermore, the 
progress in waste management through sophisticated 
algorithms emphasises the importance of feature 

integration for accurate waste characterisation while 
also highlighting issues such as over-segmentation 
that require further refinement.

Overall, the findings of this review advocate for 
continuous innovation in machine learning-based 
remote sensing data analysis within the mining sector. 
By refining methodologies, enhancing sensor capabil
ities, and optimising algorithms, the industry can 
improve resource management and promote environ
mental sustainability, paving the way for a more effi
cient and responsible future in mining. The ongoing 
research and development in this field will be crucial 
to overcoming existing challenges and fully realising 
the potential of these advanced technologies.
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