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Abstract

In the present age of technology, the buzzwords are low-power, energy-efficient

and compact systems. This directly leads to the date processing and hardware

techniques employed in the core of these devices. One of the most power-hungry

and space-consuming schemes is that of image/video processing, due to its high

quality requirements. In current design methodologies, a point has nearly been

reached in which physical and physiological effects limit the ability to just encode

data faster. These limits have led to research into methods to reduce the amount

of acquired data without degrading image quality and increasing the energy con-

sumption.

Compressive sensing (CS) has emerged as an efficient signal compression and re-

covery technique, which can be used to efficiently reduce the data acquisition and

processing. It exploits the sparsity of a signal in a transform domain to perform

sampling and stable recovery. This is an alternative paradigm to conventional

data processing and is robust in nature. Unlike the conventional methods, CS

provides an information capturing paradigm with both sampling and compres-

sion. It permits signals to be sampled below the Nyquist rate, and still allowing

optimal reconstruction of the signal. The required measurements are far less

than those of conventional methods, and the process is non-adaptive, making the

sampling process faster and universal.

In this thesis, CS methods are applied to magnetic resonance imaging (MRI) and

JPEG 2000, which are popularly used imaging techniques in clinical applications

and image compression, respectively. Over the years, MRI has improved dramat-

ically in both imaging quality and speed. This has further revolutionized the field

of diagnostic medicine. However, imaging speed, which is essential to many MRI

applications still remains a major challenge. The specific challenge addressed in

this work is the use of non-Fourier based complex measurement-based data acqui-

sition. This method provides the possibility of reconstructing high quality MRI

data with minimal measurements, due to the high incoherence between the two

chosen matrices. Similarly, JPEG2000, though providing a high compression, can

be further improved upon by using compressive sampling. In addition, the image

quality is also improved. Moreover, having a optimized JPEG 2000 architecture



ii

reduces the overall processing, and a faster computation when combined with CS.

Considering the requirements, this thesis is presented in two parts. In the first

part: (1) A complex Hadamard matrix (CHM) based 2D and 3D MRI data

acquisition with recovery using a greedy algorithm is proposed. The CHM mea-

surement matrix is shown to satisfy the necessary condition for CS, known as

restricted isometry property (RIP). The sparse recovery is done using compres-

sive sampling matching pursuit (CoSaMP); (2) An optimized matrix and modified

CoSaMP is presented, which enhances the MRI performance when compared with

the conventional sampling; (3) An energy-efficient, cost-efficient hardware design

based on field programmable gate array (FPGA) is proposed, to provide a plat-

form for low-cost MRI processing hardware. At every stage, the design is proven

to be superior with other commonly used MRI-CS methods and is comparable

with the conventional MRI sampling.

In the second part, CS techniques are applied to image processing and is combined

with JPEG 2000 coder. While CS can reduce the encoding time, the effect on the

overall JPEG 2000 encoder is not very significant due to some complex JPEG 2000

algorithms. One problem encountered is the big-level operations in JPEG 2000

arithmetic encoding (AE), which is completely based on bit-level operations. In

this work, this problem is tackled by proposing a two-symbol AE with an efficient

FPGA based hardware design. Furthermore, this design is energy-efficient, fast

and has lower complexity when compared to conventional JPEG 2000 encoding.
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Chapter 1

Introduction

Information processing is a dominant part in any field that uses present tech-

nologies. Computational and analytical tools are being continuously developed

for the extraction of information from data, and are fast becoming irrelevant in

the face of large problem sizes necessitated by todays applications. Therefore,

the challenge is to devise new and computationally efficient set of information

processing tools that can effectively cope with this huge set of data.

Any compressible signal can be well approximated using sparse representation and

hence could be exploited for reduction in complexity of encoding. Compressive

sensing (CS) provides a dramatic reduction in sampling rates and computation

complexity in data compression. It aims to measure sparse and compressible

signals close to their intrinsic information rate rather than their Nyquist rate.

It addresses the shortcomings of the traditional transform-based methods by di-

rectly acquiring compressed samples. It uses the concept that a small group of

non-adaptive linear projections of a sparse signal contain enough information to

reconstruct the complete data and also preserve the originality of the signal. An

appropriate way to obtain linear measurements is by using incoherent sampling

in a transform domain that is equipped with fast transform algorithms. Hence,

the CS theory has been rapidly gaining more attention in image/video processing

due to the requirement for processing large data. Most signals exhibit a sparse

representation in some basis (e.g., Fourier, wavelet domain). Since most problems

can be formulated using a set of linear equations, CS theory is finding use in most

practical applications.



2 Introduction

1.1 Research Problem

In present clinical practice, magnetic resonance imaging (MRI) is one of the most

popular imaging modalities due to its excellent depiction of soft tissues, and

inherent absence of emitted ionizing radiation. The traditional approach of MRI

data acquisition is to sample at Nyquist rate followed by use of coding methods

for compression. Recent trends have advanced to 3D-MRI and generally require

faster acquisition techniques to achieve clinical practicality. Unfortunately, such

accelerations may result in a compromise of image quality, in terms of spatial and

temporal resolution, signal-to-noise ratio (SNR) etc.

Despite its many advantages, a fundamental limitation of MRI is the linear rela-

tion between the number of measured data samples and net scan time. Increased

scan duration presents a number of practical challenges in clinical imaging in-

cluding higher susceptibility to physiological motion artifacts, diminished clinical

throughput, and added patient discomfort. This shows the importance of imaging

speed in MRI applications. However, the speed at which data can be collected in

MRI is fundamentally limited by physical (gradient amplitude and slew-rate) and

physiological (nerve stimulation) constraints [3]. Therefore, the prime concern is

to seek methods to reduce the amount of acquired data without degrading the

image quality.

In the past several years, the practical performance of CS theory, has been suc-

cessfully demonstrated for a large range of clinical applications including non-

Cartesian and 3D-MR angiography (MRA) [3, 4], and time-resolved imaging [5].

Several groups in the MRI community have proposed novel numerical techniques

for robust CS with specific focus on MR image reconstruction including nonlinear

conjugate gradient (CG) [3], interior point (IP) [6], Bregman iteration or inverse

scale space [7], and iterative reweighted least squares or FOCUSS [8,9] methods.

Since there has been very few comparison of the computational performance of

these techniques on large-scale problems to date, the best approach that can meet

the clinical demands is still an open question. Moreover, to improve the speed, it

becomes necessary that the processing algorithms are also computationally sped

up. There have various attempts where central processing unit (CPU), graphic

processing unit (GPU), field programmable gate array (FPGA) and application

specific integrated circuit (ASIC) [10–15] being used for this purpose, which have

time durations ranging from minutes to hours. Again, though there are solutions

for reduction in computation time, the desire for the least computational time

needs to be ascertained.

In conventional digital image sampling and compression system, natural image

signals are sampled according to Shannon sampling theory and quantized into

discrete digital signals. Once processed using image encoder, only a part of the
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transform coefficients are retained, while most of the other sampled data will be

discarded. This is further entropy encoded, particularly in JPEG 2000, which is a

cumbersome process. All the data is entropy encoded bit-by-bit and this leads to a

slower system and high complexity. Hence, combining CS with image encoder can

be one solution that could lead to having very few data transformed data (e.g., less

than 10%) when compared to conventional image transforms. It is a known fact

that, due to CPU dependencies, software-based processing is much slower than

hardware-based processing. Moreover, with modern image/video technologies

low-complexity, low-energy and small-size hardware systems are most preferable.

This, further adds up to the necessity of having a image encode-decode system

that addresses the aforementioned issues.

Considering the issues related to MRI and natural imaging, a solution is nec-

essary that will help in overcoming these issues. This points to compressive

sensing, which has been successful in providing reconstruction of data from very

few samples. This study focusses on applying CS techniques for encoding and

reconstruction, in order to overcome the drawbacks persisting in MRI and natural

imaging. Specifically, this work focuses on; i) To reduce the MRI data acquisition

without compromising quality of the processed data and; ii) CS-based JPEG 2000

optimized system that provides a high compression ratio and image quality, and

also have a low-complexity and low-energy consumption.

Even though there exist many CS methods for 2D/3D-MRI processing, to the

best of my knowledge, these methods either provide a GPU-based implementa-

tion of purely software-based system. While these are feasible solutions, it is

rather more practical to have a purely hardware system. And, while thinking of

a hardware solution, it is of utmost importance that the processing blocks have

low-complexity, have low-energy consumption and most importantly maintain the

data quality. The key innovations addressed in this work is the use of complex

matrices for CS. In this methodology the acquisition is minimal compared to the

conventional Fourier transform used in MRI. For an 256 × 256 image data, the

required measurements is about 5K to 8K. The reconstruction quality is main-

tained. The idea behind this innovation is to provide a low-cost, energy efficient

and low MRI scan time. This would make MRI scanning more user-friendly when

compared to the existing MRI scanning. A similar challenge exists in JPEG 2000

processing, and one of the computation intensive block is the arithmetic cod-

ing. Furthermore, encoding/decoding large images in real-time requires efficient

architecture, and hence the solution lies in using CS-based methods.
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1.2 Contributions

The primary essence of this work is to provide a low-complexity, low-cost, energy-

efficient encoding-decoding system for MRI and natural imaging, while overcom-

ing the processing speed issues. Though the application of CS techniques varies

for MRI and natural imaging, the core CS principles are same. In case of MRI

processing, CS is used for data acquisition and reconstruction of images. For

CS-based natural imaging, the aim is to reduce the transform data and embed

the CS principles in JEPG 2000.

Specifically the contributions are summarized as follows:

1. 2D and 3D MRI processing using CS-based complex measure-

ments: A non-Fourier based 2D and 3D MRI data acquisition and recon-

struction is designed. To enable CS techniques in this work, a complex

Hadamard matrix proposed. This structure is used for the first time in this

work and is elaborated in Chapter 3. The data acquisition is performed us-

ing complex Hadamard matrix and the transform used is the Daubechies-4

wavelet [16]transform since they are highly incoherent. The combination of

the complex Hadamard and wavelet transform, called the sensing matrix is

shown to satisfy restricted isometry property. A specific bound for CoSaMP

reconstruction is derived with respect to 3D-MRI. This bound is optimized

for 3D-MRI performance. Furthermore, comparison is drawn with an ex-

isting non-Fourier 3D CS algorithm. The simulation platform is built and

performance of the system is shown in terms of signal-to-noise ratio. This

method is discussed in Chapter 3.

2. Optimization of Complex Hadamard Matrix for Enhanced 2D/3D-

MRI Performance: Chapter 4 mainly deals with the optimization algo-

rithm and its effectiveness for 3D-MRI. An optimized version of the com-

plex Hadamard matrix is presented and verified for CS properties, which

is the primary requirement for any matrix to be used for CS-based pro-

cessing. This is primarily a structured unitary matrix and hence termed

as unitary complex Hadamard matrix. Furthermore, when used with the

optimized CoSaMP(discussed in Chapter 3), ensures an enhanced 3D-MRI

reconstruction. The numerical results are demonstrated for 3D-MRI and a

comparison shows a significant increase in signal-to-noise ratio.

3. Performance efficient CS-based FPGA hardware architecture for

MRI processing: In Chapter 5, a fast and efficient CS-based hardware is

designed. The main features of this implementation is its pipeline structure

and efficient memory organization. These features aim at providing reduced

complexity and increase the speed, which is one of the issues in MRI. A

simulation platform is built and the tabulated results show the same signal-
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to-noise ratio as when done through software methods. A comparison with

other existing architectures, shows the efficiency of this architecture.

4. Low-complexity energy-efficient CS-based natural image process-

ing hardware: A low-complex and energy-efficient pipelined hardware-

based architecture is presented in Chapter 6. The main aim is to provide

an architecture that can fit easily with the existing JPEG 2000 and is based

on CS principles. The idea behind the use of CS is to drastically reduce

the transform coefficients. This in turn makes the encoder less complex and

easily portable on low-power devices.

5. Two-symbol arithmetic encoding architecture for efficient entropy

coding in CS-based JPEG 2000: Chapter 7 mainly deals with entropy

encoding. Here, a high-performance two-symbol arithmetic encoding hard-

ware is presented. Most of the JPEG 2000 entropy coders are based on

processing one symbol per clock cycle. This bit-by-bit serial operation is

computationally intense and requires huge hardware resources. Alongside,

the energy efficiency is goes down significantly due to its serial nature. This

issue is dealt with in this chapter and results compared with some of the

existing hardware architectures.

1.3 Organization

This dissertation begins with a review on the relevant topics used in this work

in Chapter 2. This includes compressive sensing, magnetic resonance imaging,

field programmable gate arrays and JPEG 2000. Chapters 3, 4 and 5 deal with

CS-based MRI processing, optimizations and their hardware architecture design.

Chapters 6 and 7 are mainly on JPEG 2000 hardware architecture design and

application of CS for an improved efficiency.

In Chapter 3 a CS-based MRI processing method is detailed, by deriving a proof

for restricted isometry property and bound for CoSaMP. Simulation results for

both 2D-MRI and 3D-MRI are presented separately, in Sections 3.4.1 and 3.4.2,

respectively.

Chapter 4 deals with optimizing the earlier proposed matrix and reconstruction

algorithm, for an enhanced 3D-MRI performance. The derivation for the re-

stricted isometry property is given in Section 4.3. Finally, the simulation results

and discussions are presented in Section 4.4.

A fast and efficient hardware-based architecture is designed in Chapter 5. The

system blocks are presented in Section 5.4, with the related FPGA architecture
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in Section 5.3. Again, for the purpose of validation and comparison, simulations

results are shown in Section 5.5 and followed with discussions.

Chapter 6 details on the aspects of the hardware structure of the transform block

of JPEG 2000 combined with CS techniques. The system model is presented in

Section 6.3 and the related CS processing is detailed in Section 6.4. The designed

hardware architecture with the details of pipelining and timing diagrams are

presented in Section 6.5, for both encoder and decoder. The simulated results

are discussed in Section 6.6.

In Chapter 7, a two-symbol arithmetic encoder for JPEG 2000 is presented. The

detailed architecture and process is explained in Sections 7.3 and 7.4. The com-

bined JPEG 2000 architecture from the Chapters 6 and 7 is shown Section 7.5,

which is targeted for an FPGA. The simulation results for the arithmetic encoder

is tabulated in Section 7.6.

Finally, Chapter 8 summarizes the results of this dissertation and possible future

directions for this work.



Chapter 2

Background

In this chapter, an overview of various theoretical aspects dealt in this thesis are

provided. In Section 2.1, a brief description on compressive sensing theory is

provided. In Section 2.2 we discuss magnetic resonance imaging with respect to

single slice and 3D MRI. Section 2.5 and 2.4 provide an overview of the field

programmable gate arrays and JPEG 2000 image processing, respectively.

2.1 Compressive Sensing Theory

Compressed sensing (CS) [17–20] offers a framework for simultaneous sensing and

compression of finite-dimensional vectors, that rely on the reduction of linear

dimensions. Specifically, in CS we do not acquire signal x directly but rather

acquire M < N linear measurements y = Φx using an M × N CS matrix Φ,

where y is the measurement vector. Ideally, the matrix Φ is designed to reduce

the number of measurements M as much as possible while allowing the recovery

of a wide class of signals x from their measurement vectors y. However, the fact

that M < N renders matrix Φ rank-deficient, meaning that it has a non-empty

nullspace. This in turn, implies that for any particular signal x0 ∈ RN , an infinite

number of signals x will yield the same measurements y0 = Φx0 = Φx for the

chosen CS matrix Φ.

The motivation behind the design of matrix Φ is, therefore, to allow for dis-

tinct signals x, x′ within a class of signals of interest to be uniquely identifiable

from their measurements y = Φx, y′ = Φx′, even though M � N . We must

therefore make a choice on the class of signals that we aim to recover from CS

measurements.
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2.1.1 Sparsity

Sparsity is the signal structure behind many compression algorithms that employ

transform coding, and is the most prevalent signal structure used in CS. Sparsity

also has a rich history of applications in signal processing problems in the last

century (particularly in imaging), including denoising, deconvolution, restoration

etc [21–23].

To introduce the notion of sparsity, we rely on a signal representation in a given

basis {ψi}Ni=1 for RN . Every signal x ∈ RN is representable in terms of N co-

efficients {θ}Ni=1 as x =
∑N

i=1 ψiθi; arranging the ψi as columns into the N × N
matrix ψ and the coefficients θi into the N × 1 coefficient vector θ, we can write

succinctly that x = ψθ, with θ ∈ RN . Similarly, if we use ψ containing N unit-

norm column vectors of length L with L×N (i.e., ψ ∈ RL×N), then for any vector

x ∈ RL there exist infinitely many decompositions θ ∈ RN such that x = ψθ. In

a general setting, we refer to ψ as the sparsifying dictionary [24]. These concepts

are extendable to complex signals as well [25, 26]. We say that a signal x is K-

sparse in the basis ψ if there exists a vector θ ∈ RN with only K � N nonzero

entries such that x = ψθ. We call the set of indices corresponding to the nonzero

entries the support of θ and denote it by supp(θ). We also define the set ΣK

that contains all signals x that are K-sparse. A K-sparse signal can be efficiently

compressed by preserving only the values and locations of its nonzero coefficients,

using O(Klog2N) bits: coding each of the K nonzero coefficients locations takes

log2N bits, while coding the magnitudes uses a constant amount of bits that de-

pends on the desired precision, and is independent of N . This process is known

as transform coding, and relies on the existence of a suitable basis Ψ that renders

signals of interest sparse or approximately sparse.

For signals that are not exactly sparse, the amount of compression depends on the

number of coefficients of θ that we keep. Consider a signal x whose coefficients

θ, when sorted in order of decreasing magnitude, decay according to the power

law

|θ(I(n))| ≤ Sn−1/r, n = 1, . . . , N, (2.1)

where I indexes the sorted coefficients. Due to the rapid decay of their coeffi-

cients, such signals are well-approximated by K-sparse signals. The best K-sparse

approximation error for such a signal obeys

σψ(x,K) := arg min
x′∈ΣK

‖x− x′‖2 ≤ CSK−s, (2.2)

with s = 1
r
− 1

2
and C denoting a constant that does not depend on N [27].

That is, the signal’s best approximation error in an l2-norm sense, has a power

law decay with exponent s as K increases. We dub such a signal s-compressible.

When ψ is an orthonormal basis, the best sparse approximation of x is obtained
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by hard thresholding the signal’s coefficients, so that only the K coefficients with

largest magnitudes are preserved.

2.1.2 Design of Measurement Matrices

The main design criteria for the CS matrix Φ is to enable the unique identification

of a signal of interest x from its measurements y = Φx. Clearly, when we consider

the class of K-sparse signals ΣK , the number of measurements M > K for any

matrix design, since the identification problem has K unknowns even when the

support Ω =supp(x) of the signal x is provided. In this case, we simply restrict

the matrix Φ to its columns corresponding to the indices in Ω, , denoted by ΦΩ,

and then use the pseudoinverse to recover the nonzero coefficients of x:

xΩ = Φ†Ωy. (2.3)

Here xΩ is the restriction of the vector x to the set of indices Ω, and M † =

(MT )−1MT denotes the pseudoinverse of the matrix M . The implicit assumption

in (2.3) is that ΦΩ has full column-rank so that there is a unique solution to

y = ΦΩxΩ.

We begin by determining properties of Φ that guarantee that distinct signals

x, x′ ∈ ΣK , x 6= x′, lead to different measurement vectors Φx 6= Φx′. In other

words, we want each vector y = RM to be matched to at most one vector x ∈ ΣK

such that y = Φx. A key relevant property of the matrix in this context is its

spark.

Definition 1. [28] The spark spark(Φ) of a given matrix Φ is the smallest

number of columns of Φ that are linearly dependent.

The spark is related to the Kruskal Rank from the tensor product literature; the

matrix Φ has Kruskal rank spark(Φ) − 1. This definition allows us to pose the

following straightforward guarantee.

Theorem 1. [28] If spark(Φ) > 2K , then for each measurement vector y ∈ RM

there exists at most one signal x ∈ ΣK such that y = Φx.

It is easy to see that spark ∈ [2,M+1], so that Theorem 1 yields the requirement

M ≥ 2K.

While Theorem 1 guarantees uniqueness of representation for K-sparse signals,

computing the spark of a general matrix Φ has combinatorial computational

complexity, since one must verify that all sets of columns of a certain size are

linearly independent. Thus, it is preferable to use properties of Φ that are easily

computable to provide recovery guarantees. The coherence of a matrix is one

such property.
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Definition 2. [29] The coherence µ(Φ) of a matrix Φ is the largest absolute

inner product between any two columns of Φ:

µ(Φ) = max
1≤i 6=j≤N

|〈Φi,Φj〉|
||Φi||l2||Φj||2

(2.4)

It can be shown that µ(Φ) ∈
[√

N−M
M(N−1)

, 1
]
; the lower bound is known as the

Welch bound [30,31]. Note that when N �M , the lower bound is approximately

µ(Φ) ≥ 1/
√
M . One can tie the coherence and spark of a matrix by employing

the Gershgorin circle theorem.

Theorem 2. [32] The eigenvalues of an m×m matrix M with entries Mi,j, 1 ≤
i, j ≤ m, lie in the union of m discs di = di(ci, ri), 1 ≤ i ≤ m, centered at

ci = Mi,i with radius ri = Σj 6=i|Mi,j|.

Applying this theorem on the Gram matrix G = ΦT
ΩΦΩ leads to the following

result.

Lemma 1. [28] For any matrix Φ,

spark(Φ) ≥ 1 +
1

µ(Φ)
. (2.5)

By merging Theorem 1 with Lemma 1, we can pose the following condition on Φ

that guarantees uniqueness.

Theorem 3. [28, 33, 34] If

K <
1

2
(1 +

1

µ(Φ)
, (2.6)

then for each measurement vector y ∈ RM there exists at most one signal x ∈ ΣK

such that y = Φx.

Theorem 3, together with the Welch bound, provides an upper bound on the

level of sparsity K that guarantees uniqueness using coherence K = O(
√
M).

The prior properties of the CS matrix provide guarantees of uniqueness when the

measurement vector y is obtained without error. Hardware considerations intro-

duce two main sources of inaccuracies in the measurements: inaccuracies due to

noise at the sensing stage (in the form of additive noise y = Φx + n), and inac-

curacies due to mismatches between the CS matrix used during recovery, Φ, and

that implemented during acquisition, Φ′ = Φ + ∆ (in the form of multiplicative

noise [35,36]). Under these sources of error, it is no longer possible to guarantee
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uniqueness; however, it is desirable for the measurement process to be tolerant to

both types of error. To be more formal, we would like the distance between the

measurement vectors for two sparse signals y = Φx, y′ = Φx′ to be proportional

to the distance between the original signal vectors x and x′. Such a property

allows us to guarantee that, for small enough noise, two sparse vectors that are

far apart from each other cannot lead to the same (noisy) measurement vector.

This behavior has been formalized into the restricted isometry property (RIP).

Definition 3. [37] A matrix Φ has the (K, δ)-restricted isometry property ((K, δ)-

RIP) if, for all x ∈ ΣK,

(1− δ)‖x‖2
2 ≤ ‖Φx‖2

2(1 + δ)‖x‖2
2. (2.7)

In words, the (K, δ)-RIP ensures that all submatrices of Φ of size M × K are

close to an isometry, and therefore distance-preserving. We will show later that

this property suffices to prove that the recovery is stable to presence of additive

noise n. In certain settings, noise is introduced to the signal x prior to measure-

ment. Recovery is also stable for this case; however, there is a degradation in the

distortion of the recovery by a factor of N/M [38–40].

Furthermore, the RIP also leads to stability with respect to the multiplicative

noise introduced by the CS matrix mismatch ∆ [35,36]. The RIP can be connected

to the coherence property by using, once again, the Gershgorin circle theorem

(Theorem 2).

Lemma 2. [41] If Φ has unit-norm columns and coherence µ = µ(Φ), then Φ

has the (K, δ)-RIP with δ ≤ (K − 1)µ.

One can also easily connect RIP with the spark. For each K-sparse vector to

be uniquely identifiable by its measurements, it suffices for the matrix Φ to have

the (2K, δ)-RIP with δ > 0, as this implies that all sets of 2K columns of Φ

are linearly independent, i.e., spark(Φ) > 2K (Theorems 1 and 3). We will

see later that the RIP enables recovery guarantees that are much stronger than

those based on spark and coherence. However, checking whether a CS matrix Φ

satisfies the (K, δ)-RIP has combinatorial computational complexity.

Now that we have defined relevant properties of a CS matrix Φ, we discuss specific

matrix constructions that are suitable for CS. An M×N Vandermonde matrix V

constructed from N distinct scalars has spark(V ) = M + 1 [27]. Unfortunately,

these matrices are poorly conditioned for large values of N , rendering the recovery

problem numerically unstable. Similarly, there are known matrices Φ of size

M ×M2 that achieve the coherence lower bound

µΦ = 1/
√
M, (2.8)
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such as the equiangular tight frames [31]. It is also possible to construct determin-

istic CS matrices of sizeM×N that have the (K, δ)-RIP forK = O(
√
MlogM/log(N/M))

[42]. These constructions restrict the number of measurements needed to recover a

K-sparse signal to be M = O(K2logN), which is undesirable for real-world values

of N and K. Fortunately, these bottlenecks can be defeated by randomizing the

matrix construction. For example, random matrices Φ of size M×N whose entries

are independent and identically distributed (i.i.d.) with continuous distributions

have spark(Φ) = M + 1 with high probability. It can also be shown that when

the distribution used has zero mean and finite variance, then in the asymptotic

regime (as M and N grow) the coherence converges to µΦ = 2
√
logN/M [43,44].

Similarly, random matrices from Gaussian, Rademacher, or more generally a sub-

gaussian distribution have the (K, δ)-RIP with high probability if

M = O(Klog(N/K)/δ2). (2.9)

A Rademacher distribution gives probability 1/2 to the values ±1. A random

variable X is called subgaussian if there exists c > 0 such that E(eXt) ≤ ec
2t2/2

for all t ∈ R. Examples include the Gaussian, Bernoulli, and Rademacher random

variables, as well as any bounded random variable.

Finally, we point out that while the set of RIP-fulfilling matrices provided above

might seem limited, emerging numerical results have shown that a variety of

classes of matrices Φ are suitable for CS recovery, including subsampled Fourier

and Hadamard transforms [45,46].

2.1.3 CS Recovery Algorithms

We now focus on solving the CS recovery problem, given y and Φ, find a signal

x within the class of interest such that y = Φx exactly or approximately. When

we consider sparse signals, the CS recovery process consists of a search for the

sparsest signal x that yields the measurements y. By defining the l0 norm of a

vector ‖x‖0 as the number of nonzero entries in x, the simplest way to pose a

recovery algorithm is using the optimization

x̂ = arg min
x∈RN

‖x‖0. (2.10)

Solving (2.10) relies on an exhaustive search and is successful for all x ∈ ΣK when

the matrix Φ has the sparse solution uniqueness property (i.e., for M as small

as 2K). However, this algorithm has combinatorial computational complexity,

since we must check whether the measurement vector y belongs to the span

of each set of K columns of Φ, K = 1, 2, . . . , N . Our goal, therefore, is to find

computationally feasible algorithms that can successfully recover a sparse vector x

from the measurement vector y for the smallest possible number of measurements

M .
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An alternative to the l0 norm used in (2.10) is to use the l1 norm, defined as

‖x‖1 =
∑N

n=1 |x(n)|. The resulting adaptation of (2.10), known as basis pursuit

(BP) [22], is formally defined as

x̂ = arg min
x∈RN

‖x‖1subjecttoy = Φx. (2.11)

Since the l1 norm is convex, (2.11) can be seen as a convex relaxation of (2.10).

Thanks to the convexity, this algorithm can be implemented as a linear program,

making its computational complexity polynomial in the signal length [47]. The

optimization (2.11) can be modified to allow for noise in the measurements y =

Φx+ n; we simply change the constraint on the solution to

x̂ = arg min
x∈RN

‖x‖1subjectto‖y − Φx‖2 ≤ ε, (2.12)

whereε ≥ ‖n‖2 is an appropriately chosen bound on the noise magnitude. This

modified optimization is known as basis pursuit with inequality constraints (BPIC)

and is a quadratic program with polynomial complexity solvers [47]. The La-

grangian relaxation of this quadratic program is written as

x̂ = arg min
x∈RN

‖x‖1 + λ‖y − Φx‖2, (2.13)

and is known as basis pursuit denoising (BPDN). There exist many efficient

solvers to find BP, BPIC, and BPDN solutions; for an overview, see [48]. Of-

tentimes, a bounded-norm noise model is overly pessimistic, and it may be

reasonable instead to assume that the noise is random. For example, addi-

tive white Gaussian noise n ∼ N (0, σ2I) is a common choice. Approaches de-

signed to address stochastic noise include complexity-based regularization [49]

and Bayesian estimation [50]. These methods pose probabilistic or complexity-

based priors, respectively, on the set of observable signals. The particular prior

is then leveraged together with the noise probability distribution during signal

recovery. Optimization-based approaches can also be formulated in this case; one

of the most popular techniques is the Dantzig selector [51]:

x̂ = arg min
x∈RN

‖x‖1suchthat‖ΦT (y − Φx)‖∞ ≤ λ
√

logNσ, (2.14)

where ‖ ·‖∞ denotes the l∞-norm, which provides the largest-magnitude entry in

a vector and λ is a constant parameter that controls the probability of successful

recovery.

An alternative to optimization-based approaches, are greedy algorithms for sparse

signal recovery. These methods are iterative in nature and select columns of Φ

according to their correlation with the measurements y determined by an appro-

priate inner product. For example, the matching pursuit and orthogonal matching

pursuit algorithms (OMP) [24,52] proceed by finding the column of Φ most cor-

related to the signal residual, which is obtained by subtracting the contribution

of a partial estimate of the signal from y. The OMP method is formally defined
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Algorithm 1 Orthogonal Matching Pursuit

Input: CS matrix Φ, measurement vector y

Output: Sparse representation x̂

Initialize:x̂0, r = y, Ω = ∅, i = 0

while halting criterion false do

i← i+ 1

b← ΦT r {form residual signal estimate}
Ω = Ω

⋃
supp(T(b, 1)) {update support with residual}

x̂i|Ω ← Φ†Ωy, x̂i|ΩC ← 0 {update signal estimate}
r ← y − Φx̂i {update measurement residual}

end while

return x̂← x̂i

as Algorithm 1, where T(x,K) denotes a thresholding operator on x that sets all

but the K entries of x with the largest magnitudes to zero, and x|Ω denotes the

restriction of x to the entries indexed by Ω. The convergence criterion used to

find sparse representations consists of checking whether y = Φx exactly or ap-

proximately; note that due to its design, the algorithm cannot run for more than

M iterations, as Φ has M rows. Other greedy techniques that are a similar, or

rather derived from OMP include CoSaMP [53], and Subspace Pursuit (SP) [54].

Another variant is known as iterative hard thresholding (IHT) [55]: starting from

an initial signal estimate x̂0 = 0, the algorithm iterates a gradient descent step

followed by hard thresholding, i.e.,

x̂ = T(x̂i−1 + ΦT (y − Φx̂i−1), K), (2.15)

until a convergence criterion is met.

2.1.4 CS Recovery Guarantees

Many of the CS recovery algorithms above come with guarantees on their per-

formance. We group these results according to the matrix metric used to obtain

the guarantee.

Theorem 4. [37, 53–55] Let the signal x ∈ ΣK and write y = Φx + n. The

outputs x̂ of the CoSaMP, SP, IHT, and BPIC algorithms, with Φ having the

(cK, δ)-RIP, obey

‖x− x̂‖2 ≤ C1‖x− xK‖2 + C2
1√
K
‖x− xK‖1 + C3‖n‖2, (2.16)

where xK = arg minx′∈ΣK ‖x − x′‖2 is the best K-sparse approximation of the

vector x when measured in the l2 norm. The requirements on the parameters c,δ
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of the RIP and the values of C1, C2, and C3 are specific to each algorithm. For

example, for the BPIC algorithm, c = 2 and δ =
√

2 − 1 suffice to obtain the

guarantee in (2.16).

The type of guarantee given in Theorem 4 is known as uniform instance optimal-

ity, in the sense that the CS recovery error is proportional to that of the best

K-sparse approximation to the signal x for any signal x ∈ RN . In fact, the formu-

lation of the CoSaMP, SP and IHT algorithms was driven by the goal of instance

optimality, which has not been shown for older greedy algorithms like MP and

OMP. Theorem 4 can also be adapted to recovery of exactly sparse signals from

noiseless measurements.

Corollary 1. Let the signal x ∈ ΣK and write y = Φx. The CoSaMP, SP, IHT,

and BP algorithms can exactly recover x from y if Φ has the (cK, δ)-RIP, where

the parameters c, δ of the RIP are specific to each algorithm.

The error in Theorem 4 is proportional to the noise magnitude ‖n‖2, and the

bounds can be tailored to random noise with high probability.

Theorem 5. [51] Let the signal x ∈ ΣK and write y = Φx + n, where n ∼
N (0, σ2I). Suppose that λ =

√
2(1 + 1/t) in (2.14) and that Φ has the (2K, δ2K)

and (3K, δ3K)-RIPs with δ2K + δ3K < 1. Then, with probability at least 1 −
N t/
√
π logN , we have

‖x̂− x‖2 ≤ C(1 + 1/t)2Kσ2 logN. (2.17)

The main difference between the guarantees that rely solely on coherence and

those that rely on the RIP and probabilistic sparse signal models is the scaling

of the number of measurements M needed for successful recovery of K-sparse

signals. According to the bounds (2.8) and (2.9), the sparsity level that allows

for recovery with high probability in Theorems 4 and 5 is K = O(M) instead of

K = O(
√
M) for deterministic guarantees.

2.1.5 Structure of CS Matrices

While most initial work in CS has emphasized the use of randomized CS matrices

whose entries are obtained independently from a standard probability distribu-

tion, such matrices are often not feasible for real-world applications due to the

cost of multiplying arbitrary matrices with signal vectors of high dimension. In

fact, very often the physics of the sensing modality and the capabilities of sens-

ing devices limit the types of CS matrices that can be implemented in a specific
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application. Furthermore, in the context of analog sampling, one of the prime

motivations for CS is to build analog samplers that lead to sub-Nyquist sampling

rates. These involve actual hardware and therefore structured sensing devices.

Hardware considerations require more elaborate signal models to reduce the num-

ber of measurements needed for recovery as much as possible. In this section, we

review available alternatives for structured CS matrices; in each case, we provide

known performance guarantees, as well as application areas where the structure

arises. In Section VI we extend the CS framework to allow for analog sampling,

and introduce further structure into the measurement process. This results in

new hardware implementations for reduced rate samplers based on extended CS

principles. Note that the survey of CS devices given in this section is by no

means exhaustive [56]; our focus is on CS matrices that have been investigated

from both a theoretical and an implementation point of view.

2.1.5.1 Subsampled Incoherent Bases

The key concept of a frames coherence can be extended to pairs of orthonormal

bases. This enables a new choice for CS matrices: one simply selects an orthonor-

mal basis that is incoherent with the sparsity basis, and obtains CS measurements

by selecting a subset of the coefficients of the signal in the chosen basis [57]. We

note that some degree of randomness remains in this scheme, due to the choice

of coefficients selected to represent the signal as CS measurements.

Formally, we assume that a basis Φ ∈ RN×N is provided for measurement pur-

poses, where each column of Φ = [Φ1,Φ2, . . .ΦN ] corresponds to a different basis

element. Let Φ be an N ×M column submatrix of Φ that preserves the basis

vectors with indices Γ and set y = Φ
T
x. Under this setup, a different metric

arises to evaluate the performance of CS.

Theorem 6. The mutual coherence of the N-dimensional orthonormal bases Φ

and Ψ is the maximum absolute value of the inner product between elements of

the two bases:

µ(Φ,Ψ) = max
1≤i,j≤N

|〈Φi,Ψj〉|, (2.18)

where Ψj denotes the jth column, or element, of the basis Ψ. The mutual coher-

ence µ(Φ,Ψ) has values in the range [N−1/2, 1]. For example, µ(Φ,Ψ) = N−1/2

when Φ is the discrete Fourier transform basis, or Fourier matrix, and Ψ is the

canonical basis, or identity matrix, and µ(Φ,Ψ) = 1 when both bases share at

least one element or column.

There are two main categories of applications where subsampled incoherent bases

are used. In the first category, the acquisition hardware is limited by construc-

tion to measure directly in a transform domain. The most relevant examples are
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magnetic resonance imaging (MRI) [58] and tomographic imaging [59], as well as

optical microscopy [60]; in all of these cases, the measurements obtained from the

hardware correspond to coefficients of the images 2D continuous Fourier trans-

form, albeit not typically selected in a randomized fashion. Since the Fourier

functions, corresponding to sinusoids, will be incoherent with functions that

have localized support, this imaging approach works well in practice for spar-

sity/compressibility transforms such as wavelets [57], total variation [59], and the

standard canonical representation [60]. The second category involves the design

of new acquisition hardware that can obtain projections of the signal against a

class of vectors. The goal of the matrix design step is to find a basis whose ele-

ments belong to the class of vectors that can be implemented on the hardware.

For example, a class of single pixel imagery based on optical modulators [61, 62]

can obtain projections of an image against vectors that have binary entries. Ex-

ample bases that meet this criterion include the Walsh-Hadamard and noiselet

bases [63]. The latter is particularly interesting for imaging applications, as it

is known to be maximally incoherent with the Haar wavelet basis. In contrast,

certain elements of the Walsh-Hadamard basis are highly coherent with wavelet

functions at coarse scales, due to their large supports. Permuting the entries

of the basis vectors (in a random or pseudorandom fashion) helps reduce the

coherence between the measurement basis and a wavelet basis.

2.1.5.2 Structurally Subsampled Matrices

In certain applications, the measurements obtained by the acquisition hardware

do not directly correspond to the sensed signals coefficients in a particular trans-

form. Rather, the observations are a linear combination of multiple coefficients of

the signal. The resulting CS matrix has been termed a structurally subsampled

matrix [64].

Consider a matrix of available measurement vectors that can be described as the

product Φ = RU, where R is a P × N mixing matrix and U is a basis. The

CS matrix Φ is obtained by selecting M out of P rows at random, and normal-

izing the columns of the resulting subsampled matrix. There are two possible

downsampling stages: first, R might offer only P < N mixtures to be available

as measurements; second, we only preserve M < P of the mixtures available to

represent the signal. This formulation includes the use of subsampled incoherent

bases simply by letting P = N and R = I, i.e., no coefficient mixing is per-

formed. To provide theoretical guarantees we place some additional constraints

on the mixing matrix R.

Compressive ADCs are one promising application of CS, using this bases. A

first step in this direction is the architecture known as the random demodulator

(RD) [65]. The RD employs structurally subsampled matrices for the acquisition
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of periodic, multitone analog signals whose frequency components belong in a

uniform grid. Such signals have a finite parametrization and therefore fit the

finite-dimensional CS setting.

2.1.5.3 Subsampled Circulant Matrices

The use of Toeplitz and circulant structures [66, 67] as CS matrices was first

inspired by applications in communications including channel estimation and

multi-user detection where a sparse prior is placed on the signal to be estimated,

such as a channel response or a multiuser activity pattern. When compared with

generic CS matrices, subsampled circulant matrices have a significantly smaller

number of degrees of freedom due to the repetition of the matrix entries along

the rows and columns.

A circulant matrix U is a square matrix where the entries in each diagonal are

all equal, and where the first entry of the second and subsequent rows is equal

to the last entry of the previous row. Since this matrix is square, we perform

random subsampling of the rows to obtain a CS matrix Φ = RU, where R is

an M × N subsampling matrix, i.e., a submatrix of the identity matrix. We

dub Φ a subsampled circulant matrix. Even when the sequence defining U is

drawn at random from the distributions described, the particular structure of the

subsampled circulant matrix Φ = RU prevents the use of the proof techniques

used in standard CS, which require all entries of the matrix to be independent.

However, it is possible to employ different probabilistic tools to provide guarantees

for subsampled circulant matrices. The results still require randomness in the

selection of the entries of the circulant matrix.

There are several sensing applications where the signal to be acquired is con-

volved with the sampling hardwares impulse response before it is measured. Ad-

ditionally, because convolution is equivalent to a product operator in the Fourier

domain, it is possible to speed up the CS recovery process by performing mul-

tiplications by the matrices Φ and ΦT via the fast fourier transform (FFT). In

fact, such an FFT-based procedure can also be exploited to generate good CS

matrices [66].

2.2 Magnetic Resonance Imaging

The MRI signal is generated by protons in the body, mostly those in water

molecules. A strong static field B0 polarizes the protons, yielding a net mag-

netic moment oriented in the direction of the static field. It is this net magnetic

moment, or simply magnetization, which is manipulated and produces the nu-
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clear magnetic resonance (NMR) signal. The field direction and its perpendicular

plane are often referred to as the longitudinal direction and the transverse plane.

The interaction of the magnetization M with an external magnetic field B is

governed by the Bloch equation,

dM

dt
= M × γB +

M0 −Mz

T1

+
Mxy

T2

, (2.19)

where M0, Mz and Mxy are the equilibrium, longitudinal and transverse magne-

tization and γ, T1 and T2 are constants and are specific to different materials and

types of tissues.

Applying a radio frequency (RF) excitation field B1 to the net magnetization

tips it and produces a magnetization component Mxy, transverse to the static

field. The magnetization precesses at characteristic frequency f0 = γ
2π
B0. Here

f0 denotes the precession frequency, B0 the static field strength, and γ/2π is a

constant (42.57MHz/T ) [37]. A typical 1.5T clinical MR system has a frequency

of about 64 MHz. The transverse component of the precessing magnetization

produces a signal detectable by a receiver coil. The transverse magnetization

at a position r and time t is represented by the complex quantity m(r, t) =

|m(r, t)| ·e−iφ(r,t), where |m(r, t)| is the magnitude of the transverse magnetization

and φ(r, t) is its phase. The phase indicates the direction of the magnetization

on the transverse plane. The transverse magnetization m(r) can represent many

different physical properties of tissue. One very intuitive property is the proton

density of the tissue, but other properties, like relaxation, can be emphasized as

well. The image of interest in MRI is m(r), the image of the spatial distribution

of the transverse magnetization.

Magnetization that is excited to the transverse plane precesses at the Larmor

frequency. The precession creates a changing magnetic flux, which in turn (ac-

cording to Faraday’s law) induces a changing voltage in a receiver coil tuned to

the Larmor frequency. This voltage is the MR signal that is used for imaging. The

received signal is the cumulative contribution from all the excited magnetization

in the volume. With only the homogeneous B0 field present, the system does not

contain any spatial information. The received signal is a complex harmonic with a

single frequency peak centered at the Larmor frequency. The spatial distribution

information comes from three additional fields that vary spatially. Three gradi-

ent coils, Gx, Gy and Gz create a linear variation in the longitudinal magnetic

field strength as a function of spatial position. For example, when Gx is applied,

the magnetic field will vary with position B(x) = |B0| + Gxx. As a result, the

resonance frequency of the magnetization will vary in proportion to the gradient

field. This variation is used to resolve the spatial distribution.

The main difference between a 2D and 3D MRI sequence is that, in a 2D sequence,

each RF pulse excites a narrow slice. Whereas in a 3D sequence, each RF pulse

excites the entire imaging volume and encoding (e.g., phase encoding) is used
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to discriminate spatially [68]. Moreover, greater sensitivity is achieved with a

3D sequences since each acquisition represents an average of the entire sampled

volume. However, the use of 3D MRI acquisitions implies long imaging times.

2.2.1 Imaging

In general, a B1 RF field at the resonance frequency excites the whole volume. It

is possible through the use of the gradients to selectively excite a smaller portion

of it, for example only exciting a slice. The general idea is that only magnetization

precessing close to the resonance frequency is affected by the RF field, whereas

magnetization at distant frequencies is not affected. When a gradient field is

applied, the resonance frequency varies with position. If during that time, a B1

RF field with a limited bandwidth (for example a sinc shaped envelope pulse) is

applied, only magnetization at a slice location corresponding to that frequency

band is excited. Exciting a slice limits the imaging spatial encoding to two

dimension. Exciting a slab or a volume requires three dimensional encoding. MR

systems can encode spatial information by superimposing the gradient fields on

top of the strong static field.

There is a Fourier relation between the received MR signal and the magnetiza-

tion distribution and that the magnetization distribution can be decoded by a

spectral decomposition. To see this Fourier relation more concretely consider the

following: the gradient induced variation in precession frequency causes a location

dependent phase dispersion to develop. The additional frequency contributed by

gradient fields can be written as

f(r) =
γ

2π
G(t) · r, (2.20)

where G(t) is a vector of the gradient fields’ amplitudes. The phase of magne-

tization is the integral of frequency starting from time zero,soon after the RF

excitation:

φ(r, t) = 2π

∫ t

0

γ

2π
G(s) · rds = 2πr · k(t), wherek(t) ≡ γ

2π
G(s)ds. (2.21)

The receiver coil integrates over the entire volume, producing a signal

s(t) =

∫
R

m(r)e−i2πk(t)·rdr. (2.22)

This is the signal equation for MRI, that is, the received signal at time t is

the Fourier transform of the object m(r) sampled at the spatial frequency k(t).

Such information is fundamentally encoded and very different than traditional

optical imaging where pixel samples are measured directly. The design of an

MRI acquisition method centers on developing the gradient waveforms G(t) that
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drive the MR system. These waveforms, along with the associated RF pulses

used to produce the magnetization, are called a pulse sequence. The integral of

the G(t) waveforms traces out a trajectory k(t) in spatial frequency space, or

K-space.

2.2.2 Image Acquisition

Constructing a single MR image commonly involves collecting a series of frames

of data, called acquisitions. In each acquisition, an RF excitation produces new

transverse magnetization, which is then sampled along a particular trajectory in

K-space. In principle, a complete MR image can be reconstructed from a single

acquisition by using a K-space trajectory that covers a whole region of K-space

[69]. This is commonly done in applications such as imaging brain activation.

However, for most applications this results in inadequate image resolution and

excessive image artifacts. Magnetization decays exponentially with time. This

limits the useful acquisition time window. Also, the gradient system performance

and physiological constraints limit the speed at which K-space can be traversed.

These two effects combine to limit the total number of samples per acquisition.

As a result, most MRI imaging methods use a sequence of acquisitions; each one

samples part of K-space. The data from this sequence of acquisitions is then used

to reconstruct an image.

Traditionally the K-space sampling pattern is designed to meet the Nyquist cri-

terion, which depends on the resolution and field of view (FOV). Image resolution

is determined by the sampled region of K-space: a larger region of sampling gives

higher resolution. The supported field of view (FOV) is determined by the sam-

pling density within the sampled region: larger objects require denser sampling

to meet the Nyquist criterion. Violation of the Nyquist criterion causes the linear

reconstruction to exhibit artifacts. The appearance of such artifacts depends on

the details in the sampling pattern.

There is considerable freedom in designing the K-space trajectory for each ac-

quisition. By far the most popular trajectory uses straight lines from a Carte-

sian grid. Most pulse sequences used in clinical imaging today are Cartesian.

Reconstruction from such acquisitions is wonderfully simple: apply the inverse

Fast Fourier Transform (FFT). More importantly, reconstructions from Cartesian

sampling are robust to many sources of system imperfections. While Cartesian

trajectories are by far the most popular, many other trajectories are in use,

including sampling along radial lines and sampling along spiral trajectories. Ra-

dial acquisitions are less susceptible to motion artifacts than Cartesian trajecto-

ries [70], and can be significantly undersampled [71], especially for high contrast

objects [72,73]. Spirals make efficient use of the gradient system hardware, and are
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used in real-time and rapid imaging applications [74]. Reconstruction from such

non-Cartesian trajectories is more complicated, requiring filtered back-projection

algorithms [75] or K-space interpolation schemes (e.g. gridding [76]).

2.2.3 Non-Fourier MRI Mathematical model

In this section, a overview of non-Fourier MRI acquisition is provided. The

advantage of using a non-Fourier acquisition over conventional Fourier-based is

that, non-Fourier coding can reduce the acquired signal space while maximizing

the amount of pertinent image information that is captured. It partially encodes

the field-of-view (FOV) by employing non-sinusoidal spatial encoding profiles

induced via RF excitation. MRI sampling other than the Fourier has been used

for effectively volume imaging of the heart [77], increasing effective relaxation

times [78] etc. This non-Fourier based encoding can be derived from some of the

well-known mathematical basis, such as Hadamard [79] and wavelet [78] that are

also popular in signal processing. Imaging without the Fourier transform partially

encodes the FOV by employing non-sinusoidal spatial encoding profiles induced

via radio-frequency (RF) excitation. In general MR imaging, the received signal

can be described by

f(k) =

∫
V

ρ(r)ei2πk.rdr, (2.23)

where ρ(r) is the excited spin density function throughout the sample volume V , r

is the spatial position of the spins, and k is a reciprocal spatial term corresponding

to the applied gradients.

To obtain a non-Fourier based theory, we adopt and briefly review the theory

from [80] for a 2D spin-echo experiment.(2.23) can be represented as

f(ky, kx) =

∫ α

−α

∫ ∫
ρ(x, y, z)ei2π(kxx+kyy)dxdydz, (2.24)

where 2α is the thickness of the excited slice, with the readout, phase encode,

and slice-select gradients as Gx, Gy and Gz respectively. Fig.2.1 illustrates the

direction of excitations applied for each of these gradients. Slice selection can

be additionally performed by the slice-selective 180◦ refocusing RF pulse. With

a known FOV, the readout and phase encoding gradient manipulations produce

samples at kx = n∆kxZ and ky = m∆ky steps through K-space, such that

−N/2 < n ≤ N/2, −M/2 < m ≤ M/2. In matrix form, the magnetic resonance

system response can then be defined by placing the above mentioned samples in

a M ×N K-space matrix S, with readout samples placed in columns.

With the non-Fourier encoding methodology, the initial slice-selective RF pulse

is replaced with a spatial excitation profile along the phase encode direction and
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Figure 2.1: Illustration of 3D-MRI encoding directions.

eliminating Gy. An envelope for the RF is defined as p(t) =
∑M

m=1 pm
∏

((t −
m∆t)/∆t), where

∏
(t) is zero except in the interval 0 ≤ t < 1. If this RF is

low flip (θ(r) < 30◦) [81] and is applied in a phase encode gradient with duration

M∆t, and then followed by a re-phasing for half area, each constituent hard pulse

pm excites some magnetization that remains undisturbed by subsequent hard

pulses and precedes under the influence of the remaining gradients. With no other

y applied, each hard pulse generates a Fourier sample km = (1/2M −m)Gy∆t,

scaled by the complex value pm. In the low flip-angle approximation, the signal

received due to this arbitrary RF pulse is a superposition of the individual hard

pulse contributions [82]

a(p, kx) =

∫ α

−α

∫ ∫
ρ(x, y, z)(

M∑
m=1

pme
i2πkmy)

ei2π(kxx+kyy)dxdydz

(2.25)

=
M∑
m=1

(km, kx), (2.26)

where p is a row vector containing the pm, i.e., p = (p1, · · · , pM). With sufficient

gradient strength, the km can precisely reflect the phase encodes ky of the Fourier

basis. The Fourier transform term in Equation.(2.25) is the spatial profile of trans-

verse magnetization generated by the RF pulse p̃(y) ≈ F{p}. Equation.(2.26) can

be rewritten in matrix-vector form as a = pS, when the length-M input vector p

describes the RF excitation waveform,a is the length-N output response vector of

sampled data, and S is the M×N K-space matrix corresponding to the spin dis-

tribution. One may now consider MR image encoding using arbitrary RF inputs

p. Given an arbitrary invertible matrix P , we can use its rows as the RF pulse of

each repetition of non-Fourier encoding. Populating the sampled responses into

the rows of matrix A, the MR imaging can be expressed as [82]

A = PS, (2.27)
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which yields the K-space matrix by using an appropriate inverse

St = P †A. (2.28)

Finally, the inverse transform of St yields the desired image. Based on (2.28),

many non-Fourier transforms for input vectors have been studied [82] [79] and

also used [77] [83] for MRI.

2.3 CS-based MRI Processing

MRI scanning time mainly depends on the number of samples taken during ac-

quisition. Therefore, any application of CS to MRI should provide improvement

in image acquisition speed. Since current MRI scanning time lasts at least 30

minutes, fast MRI will reduce patient discomfort and image distortion due to

patient movement during acquisition.

State of the art development of CS-based MRI can be divided into three cate-

gories, 1) Fourier transform using CS [2, 84–90], where the conventional Fourier

transform is maintained; 2) Use of sparse matrix Ψ in combination with the con-

ventional Fourier transform and perform CS reconstruction [61, 91–96]. These

methods are a step closer to having a complete CS based MRI system; and 3)

CS-based non-Fourier data acquisition and corresponding reconstruction method

that use random encoding in place of the Fourier encoding along the phase encod-

ing direction [97, 98]. These CS-based MRI processing are simulated and tested

on real MRI scanners as an add-on component.

Even though there has been extensive research on CS-based MRI, there are no

commercial products available as yet. The dependencies on the other hardware

components of the MRI scanner are high.

2.4 Image Processing with JPEG 2000

JPEG 2000 is an image compression standard and coding system, created in

the year 2000 by the joint photographic experts group (JPEG) committee. This

standard supersedes their original discrete cosine transform-based JPEG standard

with a newly designed, wavelet-based method, called the lifting wavelet transform.

The aim of JPEG 2000 is not only improving compression performance over

JPEG but also adding important features such as image scalability and editability.

Variable rates (very high and very low) are supported and the ability to handle

a very large range of effective bit-rates is one of the strengths of JPEG 2000.
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A performance comparison graph is shown in Fig. 2.2. For low compression ratios,

JPEG produces slightly better images, whereas for medium to high compression

ratios one can attain higher quality with JPEG 2000. It also provides excellent

compression performance and is used in many applications like printing, photog-

raphy and medical imaging.
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Figure 2.2: Performance comparison of JPEG 2000 vs. JPEG.

In JPEG 2000 encoder as shown in Fig. 2.3, an image is first level-shifted and then

a component transform is performed to obtain three color components. A discrete

wavelet transform is applied to these color samples and transform coefficients

are obtained. After performing the discrete wavelet transform, each sub-band is

divided into code-blocks, which are then independently processed by an embedded

block coding with optimized truncation (EBCOT) tier-1 engine. The EBCOT

tier-1 engine has two most computational intensive components, namely, bit-plane

coding (BC) and arithmetic encoding (AE). The AE module implements binary,

shift-based arithmetic coding to efficiently encode the symbols that it receives

from the EBCOT engine. The context that is sent by the EBCOT engine provides

an extra meaning to the symbol that needs to be encoded. The bit-plane coder

processes the bit planes as coding passes and generates a sequence of symbols

called the context (CX) and decision (D) pair. The D bit is also referred to

as symbol.For example, a binary ‘1’ symbol that originates from a significance

propagation pass is different from a ‘1’ symbol that is generated from a magnitude

refinement pass. Consequently, each of these symbols are accompanied by distinct

context labels and encoded in a very different manner. The previous sequence of

symbols dominates the current state of a coding context and each of these context

states are stored in form of tables. The context states are unique in nature and

determines the probability of a less probable symbol in the AE module. The state

of a given context is updated using a fixed state transition table. This probability

estimation and encoding method is termed MQ-coding.
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Figure 2.3: JPEG 2000 encoder block diagram.

2.5 Field Programmable Gate Array Architec-

ture

Altera was the first to introduce the 8-input fracturable look-up table (LUT)

with the Stratix II family in 2004. At its core is the adaptive logic module

(ALM) with 8 inputs, which can implement a full 6-input LUT (6-LUT) or select

7-input functions. The ALM can also be efficiently partitioned into independent

smaller LUTs, providing the performance advantage of larger LUTs and the area

efficiency of smaller LUTs. The Stratix series of FPGAs also excels in routing

through the MultiTrack interconnect. As a result, Altera FPGA architecture is

at least one generation ahead of the competition, and routing architecture is two

generations ahead.

The key to the high-performance, area-efficient architecture is the ALM. It con-

sists of combinational logic, two registers, and two adders as shown in Fig. 2.4.

The combinational portion has eight inputs and includes a LUT that can be

divided between two adaptive LUTs (ALUTs) using Alteras patented LUT tech-

nology. An entire ALM is needed to implement an arbitrary six-input function,

but because it has eight inputs to the combinational logic block, one ALM can

implement various combinations of two functions. A LUT is typically built out of

SRAM bits to hold the configuration memory (CRAM) LUT-mask and a set of

multiplexers to select the bit of CRAM that is to drive the output. To implement

a t-input LUT; a LUT that can implement any function of t inputs2t SRAM bits

and a 2t : 1 multiplexer are needed.

The key to high-performance Stratix IV FPGAs is the area-efficient ALM. It has

8 inputs with a fracturable look-up table (LUT) that can be divided into two

adaptive LUTs (ALUTs) using Altera’s patented LUT technology. Each ALM

is capable of: (1) A full 6-input LUT or select 7-input LUT; (2) Two indepen-

dent outputs of multiple combinations of smaller LUT sizes for efficient logic

packing; (3) Implementing complex logic-arithmetic functions without additional

resources. The fracturable LUT, two full adders, two registers, and additional



2.5 Field Programmable Gate Array Architecture 27

Combina-
tional 
Logic

Adder

Adder

Reg

Reg

ALM 
Inputs

Regout0

combout1

regout1

combout0

Figure 2.4: Internal structure of an ALM.

logic enhancements that enable the ALM to be partitioned into two independent

LUTs for maximizing efficiency, make Stratix IV FPGAs the fastest and biggest

40-nm FPGAswith no wasted logic. This is the major advantage of Stratix IV

FPGA architecture when the applications need high-speed and low-complexity

FPGA. Stratix IV devices are 35 percent faster and can effectively pack 80 per-

cent more logic compared to the nearest competing logic cell, thereby cutting

costs by packing more logic in a smaller, less expensive device.



Chapter 3

2D and 3D MRI Processing

Using CS-Based Complex

Measurements

3.1 Introduction

In recent times, compressive sensing (CS) has proved its potential to reduce data

acquisition time for magnetic resonance images (MRI). For a CS-based MRI imag-

ing scheme to be effective, the signal of interest should be sparse or compressible

in a known representation, and the measurement scheme should have good math-

ematical properties with respect to this representation. Although the Fourier

transform has been commonly used for MRI data, it does not strongly satisfy

CS mathematical properties. This limits the achievable time reduction factors

necessary for 3D-MRI.

In this chapter, the aim is to exploit the sparsity which is implicit in MR images,

and develop an approach based on exploiting the spatial and temporal redundan-

cies. This, to some extent, would degrade the signal-to-noise ratio (SNR), but is

worth when the amount of acquired data can be reduced. Implicit sparsity means

transform sparsity, i.e., the underlying object of interest happens to have a sparse

representation in a known and fixed mathematical transform domain. To begin

with, consider the identity transform, so that the transform domain is simply the

image domain itself. Here sparsity means that there are relatively few significant

pixels with nonzero values. For example, angiograms are extremely sparse in

pixel representation. More complex medical images may not be sparse in pixel

representation, but they do exhibit transform sparsity, since they have a sparse

representation in terms of spatial finite differences, their wavelet coefficients, or

other transforms.
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Based on compressive sensing methods, the attempt is to provide the following

contributions for 2D and 3D MRI:

• Non-Fourier based MRI data acquisition using the complex Hadamard ma-

trix and show that, when used with Daubechies-4 wavelet transform satisfies

the RIP. This complex Hadamard matrix structure is proposed and used

for the first time;

• Complex measurements based CoSaMP reconstruction, whose computa-

tional complexity is less than the original CoSaMP;

• Comparison of our proposed method with the conventional Fourier sampling

and also its efficiency with respect to computational complexity. Further-

more, we demonstrate our proposed method through the measure of peak

signal-to-noise ratio (PSNR) and compare with the commonly used orthog-

onal matching pursuit (OMP) [99] algorithm; and

• Compare results with the NFCS-3D Fista [2] method, and show that our

proposed method has higher PSNR for a 3D phantom, when implemented

on similar lines as outlined in [2].

3.2 Related Work

Conventional MRI based processing relies on the Fourier transform for data acqui-

sition, including 3D and dynamic MRI [2,87–90]. In many instances, it is observed

that the Fourier matrices are not necessarily well suited for CS reconstruction for

arbitrary sparse matrix Ψ [97]. Since Fourier encoding is not universal, the in-

coherent condition is only weakly satisfied with respect to sparse transforms.

Some research also suggests that, by using additional slice-selective excitation in

a wavelet basis, it is possible to improve 3D image CS reconstruction [3]. For

example, a wavelet transform in a coarse scale has its energy concentrated rather

than spread out in the Fourier domain, which suggests the incoherence condition

is barely satisfied [57]. This shows that the use of matrices other than the Fourier

ones could possibly lead to better results.

Several matrices have been proposed in the literature for CS, such as indepen-

dent identically distributed Gaussian matrix [100], and Bernoulli matrices as

in [101] [102]. Their main advantage is that they are universally incoherent with

any sparse signal and thus, the number of compressed measurements required

for exact reconstruction is almost minimal. However, they inherently have two

major drawbacks in practical applications, namely, huge memory buffering for

storage of matrix elements and high computational complexity due to their com-

pletely unstructured nature [59]. Another group of matrices based on Fourier and
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Hadamard were also proposed [103] where it was called the partial fast Fourier

transform (PFFT) and scrambled block Hadamard ensemble respectively. PFFT

exploits the fast computational property of fast Fourier transform (FFT) and

thus, significantly reduces the complexity of a sampling system. However, it is

only incoherent with signals which are sparse in the time domain, severely nar-

rowing its scope of applications.

A few reconstruction algorithms have been in popular use for image processing

in CS. To name a few, orthogonal matching pursuit (OMP) [104], a modified

version of gradient projection for sparse reconstruction (GPSR) [105]. Though

these algorithms are fast, they require a large number of samples which could

be time-consuming to acquire. Also, algorithms like GPSR and its many varied

versions are computationally burdensome. There are a few more reconstruction

algorithms like compressive sampling matching pursuit (CoSaMP) [53] that have

been suggested for image/video processing. The CoSaMP algorithm considers the

shortcomings of other existing reconstruction algorithms and is computationally

effective.

Some 3D-MRI methods [92, 106, 107] have been recently proposed in the litera-

ture. A forward-backward splitting based reconstruction for 3D-MRI is proposed

in [2], for highly undersampled sequences. All of these tackle the problem of re-

construction with respect to Fourier data acquisition. As already discussed above,

using the Fourier transform has some drawbacks when used for CS. In [108], CS-

based 3D-MRI reconstruction using many-core graphic processing units (GPU)

architectures are proposed that can achieve fast data acquisition than using 3D

FFT and reconstruction with quasi-Newton algorithm [109].

Hence, considering the drawbacks of the Fourier-based data acquisition for 2D

and 3D MRI, a non-Fourier based acquisition is inevitable. This method would

overcome the drawbacks of Fourier-based methods and when combined with a

suitable reconstruction algorithm yields outputs that are comparable with the

conventional 2D and 3D MRI.

3.3 Compressive Sensing for 2D and 3D MRI

The properties that enable CS for MRI is the sparsity of the transform data and

the coded nature of MR acquisition. The three key factors of CS is transform

sparsity, mutual incoherence and non-linear reconstruction, and MRI processing

obeys these properties [58]. Hence, data modeling is done as per CS theory as

follows: An orthonormal basis where a real-valued, finite-length, discrete signal

x in RN is represented by an N × 1 column vector {ψi}Ni=1, since an image can be

vectorized into an one-dimensional array. This signal x can be expressed using
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an N ×N basis matrix Ψ = [ψ1|ψ2| . . . |ψN ] as

x =
N∑
i=1

ψiαi = Ψα, (3.1)

with vector ψi as columns, α is the N × 1 column vector of the coefficients

αi = 〈x, ψi〉 = ψ∗i x, (3.2)

where ψ∗i is the transpose of ψi.

Signal x is said to be k-sparse if only k of the αN coefficients in (3.1) are non-

zero and the rest are zeroes. For the purpose of direct signal acquisition, an

M × N matrix Φ that has measurement vectors φ∗j as rows, and the M < N

inner products between α and vectors {φj}Mj=1 as yj = 〈α, φj〉. Arranging yj
measurements inM×1 vector form and then substituting (3.2) for α, the following

equation for y is obtained

y = Φα = ΦΨx = Θx, (3.3)

where Θ is an M × N sensing matrix. The measurements y will be the random

measurements that are sufficient for exact reconstruction of the MRI.

Random point k-space sampling in all dimensions is generally impractical as the

k-space trajectories have to be relatively smooth because of hardware and physi-

ological considerations. Instead, we aim to design a practical incoherent sampling

scheme that mimics the interference properties of pure random undersampling as

closely as possible yet allows rapid collection of data.

In this section, the theory of non-Fourier encoding of MRI and CS is combined and

applied to MRI acquisition and reconstruction. Relating the proposed matrices

to (3.3), the complex Hadamard matrix is the matrix Φ and we use Daubechies-4

wavelet as the matrix Ψ. This wavelet is used, since it satisfies the CS properties

and has been popularly used in MRI [97]. The Daubechies-4 wavelet is generated

based on these CS properties and for the purpose that the resulting sensing matrix

satisfies the restricted isometry property (RIP).

3.3.1 Complex Hadamard Matrix

A complex Hadamard matrix (CHM) is defined as a square matrix composed of

elements +1, -1, +i, and -i, whose row vectors are orthogonal. If H is a com-

plex Hadamard matrix, then H∗ represents the complex conjugate transpose of

the matrix. It possesses a unique property known as the half-spectrum prop-

erty, where only half of the complex spectrum is necessary to restore the original

data completely. The existence of such a property is important for applications
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in signal processing for discrete or complex signals. Moreover, the CHM is pre-

ferred over the Fourier sampling, since it is requires less computations compared

to Fourier, which is an important aspect when the system is required to be im-

plemented as a hardware. In the discussions below, the analysis is confined to a

2× 2 matrix where

Hm = H2

[
1 i

−i −1

]
⊗m . (3.4)

where ⊗m is the right hand side Kronecker product being applied m times.

Let HM be a M ×M complex Hadamard matrix and h(j, k) be an element in it,

where 0 ≤ j, k ≤M − 1 and N = 2m. Then, the transformation is given by

h(j, k) = (−1)
∑m−1
x=0 jx+ 1

2
(jx⊕km), (3.5)

where 〈jm−1, jm−2, . . . , j0〉 and 〈km−1, km−2, . . . , k0〉 denote the respective binary

representation of the decimal j and k respectively and ⊕ is the direct sum oper-

ator. Comparing with the real Walsh-Hadamard transform, if w(j, k) denotes

the element of the transform at row j and column k, it may be noted that

h(j, k) = w(j, k) iff jx + 3kx = 4jx, kx [110].

Specifically, the CHM is generated based on the products of the row vectors of a

complex Rademacher matrix as follows

HN(m, k) =
n−1∏
r=0

Rn(r, k)br , (3.6)

where Rn(r, k) = CRAD(r, 4k+1
2n+2 ) is the (r,k) element of the complex Rademacher

matrix Rn, m = bn−12n−1 + . . . + b121 + b020 and br = 0 or 1. The complex

Rademacher function (CRAD) over a normalized time base 0 ≤ t ≤ 1 is given by

CRAD(0, t) =


1, t ∈ [0, 1

4
]

j, t ∈ [1
4
, 1

2
]

−1, t ∈ [1
2
, 3

4
]

−j, t ∈ [3
4
, 1]

and CRAD(r,t) is obtained by compressing CRAD(0,t) in the horizontal direction

by a factor of 2r [111].

Furthermore, the transform can be obtained by performing matrix factorization

as follows

HM =

[
HM/2 S2m−1HM/2

HM/2 −S2m−1HM/2

] [
Xe

X0

]
H2

[
1 1

1 −1

]
(3.7)

where H2 is the boundary condition, S2k =

[
I2k−1 0

0 jI2k−1

]
,

Xe = [X(0), X(2), ..., X(M − 2)]T and

X0 = [X(1), X(3), ..., X(M − 1)]T .
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The complex Hadamard matrix adopted in our work is of the following form

H4 = Φ =


1 1 1 1

1 j −1 −j
1 −1 1 −1

1 −j −1 j

 . (3.8)

In our proposed system, Hadamard encoding derives the matrix H from the

M × N CHM, whose rows are the spatial excitation p̃(y). For reduced basis

adaptive imaging, the encoding matrix Ĥ is k×M/f , where k ≤M/f , reflecting

the additional non-Fourier efficiency. In every case, the sampled signals form the

matrix

A(f) = P̂S(f), (3.9)

of size k×LN , k ≤M/f . The non-Fourier inversion of (3.9) yields the individual

coil subsampled k-sparse matrices as

S(f)
e = P̂ †A(f). (3.10)

The matrix S(f) can be separated by reversing the concatenation, and its con-

stituents can be used with the MRI algorithm of choice to reconstruct the full

M ×N image of the field of view (FOV).

In low flip-angle approximation, the radio-frequency (RF) encoding matrix P̂ is

derived from the Fourier transform of each row of HM . The rows of P̂ are then

used as RF excitations in consecutive experiment repetitions. For the 4-element

array, once all repetitions are completed, the samples are arranged in the 128 ×
(256 × 4) composite response matrix A(f), which then represents the Hadamard

spatially encoded FOV contents. Since Hadamard matrices are orthogonal, the

inversion is achieved by multiplying this acquired composite response matrix by

the Hermitian conjugate of the RF encoding matrix, i.e., P̂† = P̂He in (3.10). This

results in the subsampled composite k-sparse matrix S
(f)
e which is further divided

into four parts, each sized 128× 256, corresponding to each coil l = 1, . . . , 4.

For a matrix to be used for CS, it is important that its necessary conditions are

satisfied. In this discussion, we show the RIP of the sensing matrix Θ by proving

that matrix Φ satisfies the RIP. Matrix Θcis the combination of Φ and

Ψ =
√

2

(
1+−j2π

2

)2

expj2π (3.11)

as in (3.8). It is shown that matrix Φ satisfies the RIP and for this we follow the

proof of the RIP for structured matrices. From

(1− δs)||α||2l2 ≤ ||Φα||
2
l2
≤ (1 + δs)||α||22, (3.12)
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it is shown that for an M ×N matrix Φ ∈ RIP(k, δs) if the following inequality

holds for some isometry constant δs ∈ (0, 1).

The following lemma and definition will also be used to arrive at the proof of Φ

satisfying the RIP.

Lemma 3. [41]: If Φ has unit-norm columns and the coherence parameter is µ,

then Φ ∈ RIP(k, δs) with δs ≤ (k − 1)µ for k-sparse vectors.

If Φ satisfies the RIP and the matrix being incoherent with Ψ, will ensure that

the combined sensing matrix is bound by the RIP conditions. Further to this, the

Daubechies-4 wavelet is mutually incoherent with Hadamard matrix [112]. The

mutual coherence is considered for the following reason. In general, the signal of

interest may not be sparse in a particular basis but in some orthonormal basis

Ψ. Then, the signal of interest becomes Ψx with x being sparse and then we

consider the matrix Θ = ΦΨ [113]. A low mutual coherence value indicates that

a signal which is sparse in one basis has a dense representation in another base.

Using two matrices with maximum mutual incoherence between leads to a sparse

representation of signals, and higher the incoherence, lesser are the measurements

required. This makes it possible to recover the signal correctly, and thus suitable

for CS-based 3D-MRI processing.

Now we prove that there exists, for a certain constant δs, a matrix Φ satisfying

the RIP of order k. A matrix is said to have the RIP of order k if δs is very close

to 1. The proof is as follows,

Theorem 7. Let Φ ∈ RM×N is a complex Hadamard matrix, Ψ be the Daubechies-

4 wavelet as in (3.11)and µ be the coherence parameter. Then Θ = ΦΨ can be

used for CS, since Φ satisfies the RIP of order k with a constant δs

Proof. If k is fixed to be as k < N and 0 < δs < 1 and from Lemma 3, then for

complex Hadamard matrix Φ we have,

1− δs ≤
||Φx||2
||x||2

≤ 1 + δs, (3.13)

for all x ∈ RN with probability of atleast

1− 2

(
12

δs

)k

e−mµ( δs
2

). (3.14)

As Φ is linear, we only need to consider the cases where ||x||2 = 1. For unit

vectors, that is for all x ∈ RN we have from [114] that(
12

δs

)k

2e−mµ
δs
2 . (3.15)
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Rearranging the probability terms in (3.12), we get

1− δs
2
≤ ||Φα||2
||α||2

≤ 1 +
δs
2
, (3.16)

with probability more than

1− 2

(
12

δs

)k

e−mµ( δs
2

), (3.17)

for all α ∈ RN . Now we define the smallest number such that ||Φx||2 ≤ (1 +

α)||x||2. To show that α ≤ δs, we have, for any unit vector x ∈ RN there exists

α such that ||x− α||2 ≤ δs
4

. Let vx be a vector such that ||x− vx||2 ≤ δs
4

. Then

||Φx||2 ≤ ||Φvx||2 + ||Φ(x− vx)||2 ≤ 1 +
δs
2

+ (1 + α)
δs
4
. (3.18)

For a smallest α, ||Φx||2 ≤ (1 + α)||x||2 for all x ∈ RN , it is required that

α ≤ δs
2

+ (1 + α)
δs
2

=⇒ α ≤ 3δs
4− δs

≤ δs. (3.19)

This proves that

||Φx||2
||x||2

≤ 1 + δs, (3.20)

for all x ∈ RN .

And, the lower bound is given by,

||x||2 ≥ ||Φvx||2 − ||Φ(x− vx)||2 (3.21)

≥ 1− δs
2
− (1 + δs)

δs
4
≥ 1− δs.

This completes the proof that Φ satisfies the RIP.

Utilizing the relationship between µ and δs and Applying the Welch bound in-

equality [30] to (2), µ ∈
[√

N−M
M(N−1)

, 1
]
, where the lower bound is also known as

the Welch bound and, when N �M , µ = 1√
M

.

Moreover, there exists a universal lower bound [115]

µ�

(√
logN

M log(M/ logN)

)
≥ 1√

M
(3.22)

for 2 logN ≤ M ≤ N/2 and all Θ. Hence, by estimating δs in terms of µ(Θ)

we cannot construct an M × N matrix of order larger than
√
M and δs < 1.

Therefore, from Lemma 2 and (2), we obtain

δs = (k − 1)

(√
logN

M log(M/ logN)

)
(3.23)

as a constant for matrix Θ satisfying the RIP of order k. �
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For the reconstruction of the acquired MRI data, the CoSaMP [53] algorithm

outlined in Algorithm 2 is used. The inputs are sampling matrix Θ, noisy sample

vector e, sparsity level k and output is an k-sparse approximation of the target

signal x. Note that the Algorithm 2 is different from the standard CoSaMP [53] in

the sense that the sampling matrix Θ is actually the sensing matrix. Hence, the

CoSaMP used in this work performs complex measurements based reconstruction

whereas CoSaMP [53] has a randomly generated matrix as the sampling matrix.

Algorithm 2 CoSaMP for MRI

z = 0, xz = 0 {Initialization}
while halting criterion false do

v ← e−Θxz {Updating samples}
y ← Θ∗v {Proxy signal formation}
Ω← supp(y2k)

T ← Ω ∪ supp(xz) {Merge supports}
a | T ← ΘT e {Signal estimation using least squares}
a | Tc ← 0

xz+1 ← ak
z = z + 1

end while

x← xz

One of the main reasons of using CoSaMP reconstruction is that it provides

rigorous bounds on computational costs and storage [53]. Moreover, it holds

a temporal solution with k non-zero entries, and in each iteration it adds an

additional set of 2k (instead of k) candidate non-zeros that are most correlated

with the residual. After the pruning step, only the largest k elements are taken

and a constant number of iterations are sufficient until stopping criterion is met.

Having the measurement matrix Φ with the isometry constant δS and y = φx+ e

is a vector of samples of an arbitrary signal contaminated with arbitrary noise,

and e is the noise vector, then CoSaMP produces a k-sparse approximation a

that satisfies,

‖x− a‖2 ≤ C max{η, 1√
k
‖x− xk/2‖1 + ‖e‖2} (3.24)

where η is the precision parameter and xk/2 is the best k/2-sparse approximation

to x.

3.3.2 Computational Complexity

In this section, we discuss the selection of CoSaMP reconstruction for CHM-based

CS, based on its computational complexity and implementation suitability on a
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hardware platform. Table 3.1 shows the complexity of some of the well-known

CS algorithms that are used in image and MRI reconstruction. The complexity is

calculated based on an M×N matrix of a k-sparse basis and α is the redundancy.

As observed, CHM-based CoSaMP has the lowest computational complexity of

the order of O(M logN). Another important fact of CoSaMP in general is that

it does not depend on the sparsity level k and redundancy parameter α. This

greatly affects the running time and also the algorithm complexity and hence the

choice of CoSaMP in our proposed method.

Table 3.1: Computational complexity of some popular CS reconstruction algo-

rithms used for MRI. The complexity is based on a M ×N matrix for a k-sparse

basis, u is the median filter and α is the redundancy.

CS reconstruction algorithm Complexity

Subspace Pursuit (SP) [54] O(MNk)

Orthogonal Matching Pursuit (OMP) [99] O(αN2)

Gradient Projection for Sparse Representation (GPRS) [105] O(N2)

Matching Pursuit(MP) [24] O(αN2)

Regularized OMP [116] O(MNk)

NFCS-3D [2] O(uNα)

CoSaMP [53] O(N logN)

CoSaMP with CHM (proposed) O(M logN)

Other than reduction in data acquisition time for 3D-MRI, we also consider that

our proposed methods should be physically implementable with low-complexity

and less hardware resources. In conventional methods, processing required for

data acquisition is enormous due to its repetitive nature and leads to a slower

system. One of the main issues is the number of multiplications required to obtain

a single 2D slice of a 3D image. And, when 3D processing has to be undertaken,

the processing increases N-fold. This also makes the MRI system bulkier, while

trying to reduce the acquisition time through parallel processing techniques. One

possible way of reducing the time required for processing is by designing systems,

that require less hardware resources. Hardware resources is directly proportional

to the processing elements required for computation and its complexity. A FPGA-

based hardware implementation is demonstrated in Chapter 5.

3.4 Numerical Results

In this section, we present some of the simulation results that we conducted

to demonstrate the effectiveness of our proposed method. All the algorithms

and simulations are implemented in MATLAB and the tests are performed on

a 2.8 GHz AMD Phenom processor with 8 GB RAM on a Microsoft Windows



382D and 3D MRI Processing Using CS-Based Complex Measurements

7 operating system. The simulations are performed in two different sets, i.e.,

one for 2D-MRI and another for 3D-MRI. Several real MRI data sets obtained

from [1] are simulated.

3.4.1 Simulations for 2D-MRI

Experiments are conducted in order to demonstrate the efficiency of the pro-

posed measurement matrix, namely the CHM and its suitability for MRI images.

Several MRI test images are simulated. In all the cases, the simulations are per-

formed using the following three measurement matrices with a fixed number of

data samples:

• Complex Hadamard matrix: is the proposed measurement matrix and has

complex entries as discussed in Subsection 3.3.1;

• Random Fourier matrix: is used in most of the standard CS-based MRI

systems [84] [94] [95]. A comparison will show that the proposed CHM

outperforms this measurement matrix; and

• Random Gaussian matrix: is a commonly used measurement matrix for CS

in general for images. We will demonstrate that our method outperforms

this sampling.

Firstly, in order to justify the efficiency of the proposed matrix, simulations are

performed and the rate-distortion performance graph is obtained as shown in

Fig. 3.1. The graph is plotted for less than 2K measurements. It is noteworthy

how the complex matrix performs in comparison to other matrices used for test,

as can be observed from Fig. 3.1. At lower sampling rates, the PSNR using

complex Hadamard matrix is significantly higher than that of Fourier or Gaussian

matrices. This is one of the important aspects required in compressive sampling,

since we aim to obtain high performance with minimal samples. There is a

difference of approximately 10 dB between CHM and Gaussian sampling, and

this is maintained throughout various sampling rates. Due to this nature of

CHM, it is most suitable in reducing the complexity of the system by performing

computation with fewer samples and still gaining reasonable quality.

Furthermore, tests are performed in order to check the suitability of the proposed

reconstruction method with other popularly used reconstruction methods like

gradient projection for sparse reconstruction (GPSR) [105], orthogonal matching

pursuit (OMP) [99], L1-minimization and iterative shrinkage/threshold (IST)

[117]. Fig. 3.2 shows the problem complexity and CPU time taken to perform the

reconstruction. These reconstruction methods are evaluated with measurements

taken using the proposed CHM.
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Figure 3.1: Rate distortion performance of various measurement matrices.

To validate our proposed system, three test images of 256×256 size are considered.

The experiments are conducted using 4K and 10K measurements. To compare

our system with other state-of-the-art methods, random Fourier and random

Gaussian matrices are also tested in conjunction with CoSaMP reconstruction.

All the algorithms are implemented in MATLAB and all the tests are performed

on a 2.8 GHz AMD Phenom processor with 3 GB RAM. The running time of the

proposed system is also noted. Each image is processed within 0.76 sec, which is

the time taken from data acquisition to reconstruction of the image. Alongside, a

similar processing of MRI data is performed using Fourier and Gaussian matrices

for the purpose of final PSNR comparison. Hence, for each set of MRI data

there are three CS systems with different measurement matrices executed. The

observations are depicted in Figs. 3.3, 3.4 and 3.5. PSNR comparison for all the

test images are presented in Table 3.2 and 3.3. From these data, it is evident

that even for 4K samples, the proposed method has a PSNR of 25 dB and above

for all the test cases. In the 4K range, it is about 3 dB higher than the random

Fourier matrix and outperforms the random Gaussian matrix by approximately

10 dB.

Comparing the PSNR of the reconstructed figures, it can be noted that the pro-

posed CHM measurement matrix outperforms by a PSNR of at least 10 dB in

most cases, when compared to the Gaussian and Fourier sampling. The proposed

method shows a PSNR of 40 dB for most of the images for just 10K samples,
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Figure 3.2: Runtime performance of reconstruction methods with respect to image

complexity.

(a) Original im-

age

PFFT, PSNR= 16.96 dB

(b) FFT sampling

Gaussian, PSNR= 11.23 dB

(c) Gaussian sam-

pling

Proposed, PSNR= 31.95 dB

(d) CHM sam-

pling

(e) Original im-

age

PFFT, PSNR= 27.44 dB

(f) FFT sampling

Gaussian, PSNR= 36.72 dB

(g) Gaussian

sampling

Proposed, PSNR= 41.09 dB

(h) CHM sam-

pling

Figure 3.3: Reconstructed data for a 256×256 angio MRI image with 4K samples

(from (b) to (d)) and 10K samples (from (f) to (h))
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(a) Original im-

age

PFFT, PSNR= 20.74 dB

(b) FFT sampling

Gaussian, PSNR= 10.81 dB

(c) Gaussian sam-

pling

Proposed, PSNR= 30.29 dB

(d) Proposed

CHM sampling

(e) Original im-

age

PFFT, PSNR= 37.42 dB

(f) FFT sampling

Gaussian, PSNR= 39.11 dB

(g) Gaussian

sampling

Proposed, PSNR= 39.41 dB

(h) Proposed

CHM sampling

Figure 3.4: Reconstructed data for a 256×256 knee MRI image with 4K samples

(from (b) to (d)) and 10K samples (from (f) to (h)).

(a) Original im-

age

PFFT, PSNR= 15.61 dB

(b) FFT sampling

Gaussian, PSNR= 20.87 dB

(c) Gaussian sam-

pling

Proposed, PSNR= 26.64 dB

(d) Proposed

CHM sampling

PFFT, PSNR= 23.71 dB

(e) FFT sampling (f) Original im-

age

Gaussian, PSNR= 36.34 dB

(g) Gaussian

sampling

Proposed, PSNR= 41.51 dB

(h) Proposed

CHM sampling

Figure 3.5: Reconstructed data for a 256×256 spine MRI image with 4K samples

(from (b) to (d)) and 10K samples (from (f) to (h)).
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Table 3.2: PSNR performance comparison for 256× 256 test images with 4K mea-

surements.

Image PSNR with PSNR with PSNR with

random Fourier random Gaussian proposed

matrix (dB) matrix (dB) CHM (dB)

“angio256” 16.96 11.23 31.95

“mri256” 23.15 12.15 28.43

“knee256” 20.74 10.81 30.29

“spine256” 15.61 20.87 26.64

“brain256” 8.89 9.75 26.68

Table 3.3: PSNR performance comparison for 256 × 256 test images with 10K

measurements.

Image PSNR with PSNR with PSNR with

random Fourier random Gaussian proposed

matrix (dB) matrix (dB) CHM (dB)

“angio256” 27.44 36.72 41.09

“mri256” 33.13 34.83 40.86

“knee256” 37.42 39.11 39.41

“spine256” 23.71 36.34 41.51

“brain256” 33.7 37.22 40.40

which is approximately 15% of the original image. The quality of image is also

high for very small number of samples. As expected, the more samples taken,

the higher the PSNR, but still the proposed matrix provides a higher quality in

comparison with the other two measurement matrices. As in case of any image

processing, reconstruction from more number of samples provides a higher PSNR,

which can also be observed from the tabulated results. However, it is to be noted

that, even by using just about 10% of the original image data, the proposed

sampling method can yield good quality reconstruction.

3.4.2 Simulations for 3D-MRI

For the purpose simulations, the 3D-MRI images used are of size 256×256×160.

In addition, we also generate a 3D Shepp-Logan phantom using MATLAB as

outlined in [2] for a fair comparison of our method with the Fourier based NFCS-

3DFista [2].

We first compare the PSNRm for our method with the Fourier based NFCS-
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(a) (b)

Figure 3.6: 3D Shepp-Logan phantom of size 256 × 256 × 11. Fig.1(a) is a single

2D original slice and Fig.1(b) shows the reconstruction from our proposed method.

3DFista, for a 3D phantom. PSNRm is where we take the mean of all the PSNR

values obtained, which is given by [2]

PSNRm = 1
N

∑N
i=1 PSNRi where

PSNRi = 20 log R
RMSE

The above notations and equations to calculate PSNR are

same as that used for NFCS-3DFista. Again, this is done so that all parameters

are comparable.

A single slice of the generated 3D phantom and the reconstructed 2D image our

proposed method is shown in Fig. 3.6. The results are tabulated in Table 3.4. The

data in the frequency domain are acquired using random cartesian subsampling

patterns. As depicted in the Table 3.4, for this pattern we obtain the PSNRm

values at least 1 dB higher than that of [2] and have iterations much fewer than

the NFCS-3DFista. Though the PSNRm is not very high, the iterations required

makes our method more efficient. Furthermore, this also shows that our method

would require less computation time when compared with NFCS-3DFista. All

the values for NFCS-3DFista have been taken from the data presented in [2].

Next, we present the efficiency of our method with respect to conventional Fourier

sampling and most popularly used OMP reconstruction. Fig. 3.7 shows the PSNR

plotted with respect to the sampling rate (i.e., k/N). The data used for the

graphs is real data supplied via the international consortium of brain mapping

(ICBM) [1]. The performances of CHM and Fourier-based data acquisition with

OMP reconstruction provide very similar results, and are much lower to the

reconstruction using CoSaMP. There is at least 3 to 4 dB difference observed

throughout various sampling rates when compared with Fourier-based CoSaMP

reconstruction. Moreover, as determined previously in Fig. 3.1, CoSaMP perfor-

mance is proven to be superior to the Fourier and Gaussian sampling. This can

be easily observed in Fig. 3.7. From the same graph, we can also conclude that

the CoSaMP algorithm, when used with Fourier transform can provide better re-
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Table 3.4: Comparison of number of iterations and corresponding PSNRm for

proposed method and NFCS-3D [2]. The acceleration factors vary from 4 to 16

times.

Accl. factor
Proposed NFCS-3D [2]

PSNRm(dB) No. of iterations PSNRm(dB) No. of iterations

x4 20.73 18 18.85 39

x8 17.93 56 15.63 73

x16 16.12 103 14.68 137

sults than used with OMP reconstruction. This is due to the provision of bounds

in CoSaMP, which is not present in OMP. Furthermore, when CHM acquisition

is combined with CoSaMP, the PSNR results are further improved. Hence, our

proposed CHM-based CoSaMP is more suitable for CS-based 3D-MRI.

Furthermore, we perform multiple data acquisition with CHM with 10K, 20K

and 30K samples. For better analysis and comparison of the proposed CoSaMP

scheme with the OMP scheme, the data is reconstructed using both algorithms.

We make a further combination of CHM with two different Φ matrices, namely,

Daubechies-4 wavelet and the identity matrix commonly used in CS as the sparse

matrix. The advantage of having wavelet coefficients is in terms of energy com-

paction in fewer coefficients, but does have a higher mutual coherence between

the Φ and Ψ matrices.

By performing these simulations, we prove our choice of sparse matrix to be suit-

able when used in combination with CHM. The results are tabulated in Tables 3.5

and 3.6, for two different datasets. From the results, CoSaMP proves to be better

than OMP, when used with CHM. There is a difference of about 2 to 3 dB in all

cases. Considering that OMP has been extensively used in many CS-based MRI

reconstruction, it is notable that the proposed reconstruction provides a better

quality, which is of utmost importance in MRI.

Figs. 3.8 and 3.9 illustrate the performance of our proposed method with the

conventional fast Fourier transform (FFT) based reconstruction without CS and

the CHM-based OMP reconstruction, using identity matrix and Daubechies-4

wavelet respectively. To obtain this output, the image is reconstructed utilizing

only 30K measurements, which is less than half of the fully sampled image. From

the figures, it is evident that the difference of the reconstructed image from the

proposed algorithm is better than that of OMP. Even with the use of different

sparse matrices, the results for CoSaMP is superior to that of the OMP algorithm.

From all the above illustrations we can conclude that, the choice of CoSaMP

reconstruction algorithm is appropriate for CS-based 3D-MRI. And, when used

with CHM, the output is in-par with conventional 3D-MRI using the FFT. A

3D-MRI reconstructed data from the proposed method for the two data sets are
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Figure 3.7: PSNR versus the sampling rate comparing the CHM with the Fourier

and Gaussian sampling. The reconstruction is performed with proposed CoSaMP

and with OMP each time.

also shown in Figs. 3.10 and 3.11.

Table 3.5: PSNR performance for dataset-1.

PSNR (dB) PSNR (dB) PSNR (dB)

with 10K With 20K With 30K

measurements measurements measurements

CHM-CoSaMP-Identity 26.84 32.18 43.29

CHM-OMP-Identity 23.15 32.60 38.43

CHM-CoSaMP-Wavelet 27.32 33.04 44.32

CHM-OMP-Wavelet 24.61 32.87 38.10

Overall, from the simulation results the main idea of using a new non-Fourier

basis for 3D-MRI is demonstrated. The results observed in every stage points to

the fact that, matrices other than the conventional Fourier transform can possibly

be used and also provide good results. This can also provide faster 3D-MRI scans

and obtain accuracies close to the conventional non-CS method of MRI scans.
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(a) Original (b) CHM-CoSaMP (c) Difference

(d) Original (e) CHM-OMP (f) Difference

(g) Original (h) CHM-CoSaMP (i) Difference

(j) Original (k) CHM-OMP (l) Difference

Figure 3.8: Fully sampled and reconstructed images for a 256×256 single 2D slice of

a 3D dataset. The Ψ matrix used is the identity matrix and CHM is the Φ matrix.

The reconstruction is performed with CoSaMP as in Fig(b) and with OMP as in

Fig (c).
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(a) Original (b) CHM-CoSaMP (c) Difference

(d) Original (e) CHM-OMP (f) Difference

(g) Original (h) Proposed CHM-

CoSaMP

(i) Difference

(j) Original (k) CHM-OMP (l) Difference

Figure 3.9: Fully sampled and reconstructed images for a 256×256 single 2D slice

of a 3D dataset. The Ψ matrix used is the Daubechies-4 wavelet and CHM is the

Φ matrix. The reconstruction is performed with CoSaMP as in Fig(b) and with

OMP as in Fig (c).
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(a) Original 3D model (b) Proposed

Figure 3.10: Reconstructed 3D-MRI model from fully sampled and Proposed meth-

ods.

(a) Original 3D model (b) Proposed

Figure 3.11: Reconstructed 3D-MRI model from fully sampled and Proposed meth-

ods.

Table 3.6: PSNR performance for dataset-2.

PSNR (dB) PSNR (dB) PSNR (dB)

With 10K With 20K With 30K

measurements measurements measurements

CHM-CoSaMP-Identity 27.98 34.07 44.35

CHM-OMP-Identity 26.15 32.68 43.72

CHM-CoSaMP-Wavelet 27.61 34.94 44.38

CHM-OMP-Wavelet 26.09 32.24 42.42
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3.5 Summary

In this paper, a CS-based 3D-MRI implementable encoding scheme superior to

conventional Fourier encoding is demonstrated. An efficient approach of com-

pressive sampling for MRI using complex Hadamard measurements and CoSaMP

reconstruction for MRI is proposed. A new measurement matrix called the com-

plex Hadamard matrix is proposed and shown to satisfy the restricted isometry

property using the Daubechies-4 wavelet transform. This is a sufficient condition

for use in CS. CoSaMP in combination with complex Hadamard is used for the

first time for the purpose of 3D-MRI reconstruction and shown to be suitable for

the same. The results are compared with the state-of-the-art Fourier basis, and

it is observed that the PSNR of the proposed method is better than the existing

CS reconstruction methods.

Moreover, the fact that 3D-MRI can be very well represented in the complex

Hadamard basis using relatively fewer coefficients is presented. To justify the

use of this combined system, simulations are performed on real clinical data of

healthy subjects, and compared with the conventional sampled data. The recon-

struction image quality is indicated by the PSNR, which proves that our method

is comparable with conventional 3D-MRI. We also observe that the data acqui-

sition and reconstruction using our method is faster than conventional method,

with comparable image quality.



Chapter 4

Optimization of Complex

Hadamard Matrix for Enhanced

2D/3D-MRI Performance

In the previous chapter, a combination of the simple complex Hadamard ma-

trix (CHM) with CoSaMP was proposed with minimal update of the bounds for

reconstruction. For an efficient practical setting, it is necessary that an opti-

mized structured matrix be defined, which strongly satisfies the CS conditions.

One of the main properties is the incoherence property. The fact that small mu-

tual coherence between the measurement matrix and the sparsifying matrix is

a requirement for achieving successful CS reconstruction. Therefore, designing

measurement matrices with smaller coherence is desired.

It is well-known that, any random matrix satisfies the RIP, where the entries are

generated by a probability distribution such as the Gaussian or Bernoulli process,

or from randomly chosen partial Fourier ensembles. This has been widely studied

and applied in most practical cases. But, the use of structured CS matrices implies

that existing RIP results pertaining to such matrices are not applicable in their

case. In the past, researchers have often resorted to numerical simulations to

prove the efficacy of structured CS matrices arising in various practical settings

[118] [119]. Since this thesis deals with the complex Hadamard matrix, which is

a structured matrix, proving its efficiency is a challenging task. Furthermore, its

usability in practical situations is explored.

Hence, in this chapter we deal with this challenge and provide the following

contributions

1. Generate a new CHM matrix based on unitary matrix principles for a im-

proved MRI performance;
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2. Show its suitability for CS-based applications by proving the RIP and in-

coherence property;

3. Study the practical implications with respect to the CHM and also with

some of the existing structured matrices.

4.1 Related Work

The first family of sensing matrices for l1-based reconstruction algorithms con-

sisted of random Gaussian/Bernoulli matrices, more generally, sub-Gaussian ran-

dom matrices [120]. Their main advantage is that they are universally incoherent

with any sparse signal and thus, the number of compressed measurements re-

quired for exact reconstruction is almost minimal. However, they inherently have

two major drawbacks for practical applications, namely, huge memory buffering

for storage of matrix elements and high computational complexity due to their

completely unstructured nature [57]. The second family is partial Fourier [57],

and more generally, randomizing rows of any orthonormal matrix. One of the

most commonly used matrix is a partial Fourier matrix that exploits the fast

computational property of the FFT and thus reducing the complexity of a sam-

pling system. However, a partial Fourier matrix is only incoherent with signals

which are sparse in the time domain, severely narrowing its scope of applications.

Recently, random filtering was proposed empirically in [119] as a potential sam-

pling method for fast low-cost compressed sensing applications. Unfortunately,

this method currently lacks a theoretical foundation for quantifying and analyzing

its performance.

4.2 Matrix Formulation

In the previous chapter, the complex Hadamard matrix was used for MRI data ac-

quisition. The sensing matrix used was a combination of the CHM and Daubechies-

4 wavelet transform. The aim is to formulate a modified CHM so that more effi-

cient MRI processing can be achieved. This also includes exact CS reconstruction.

The CoSaMP algorithm used, is the same as outlined in Section 4.3.1.

Towards this end, a unitary CHM (UCHM) with structurally permuting the CHM

matrix is generated. For rest of the discussions, this matrix will be termed as

UCHM for simplicity.

Definition 4. The complex Hadamard matrix HN of order N = 2n is unitary if it

is a square matrix with elements {±1,±j}, and HN is orthogonal in the complex
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domain, the matrix is generated based on the property,

1√
N

N−1∑
k=0

HN(p, k)H∗N(q, k) =

{
N, forp = q

0, forp 6= q
(4.1)

where H∗N denotes the conjugate transpose of matrix HN , and p,q and k are the

row and column indices respectively.

One of the reasons that has led to the widespread applicability of CS theory in

various application areas is the revelation that certain probabilistic constructions

of matrices satisfy the RIP (Chapter 2: Definition 3) with high probability.

4.3 Restricted Isometry Property

In this section, the RIP can be established for the generated UCHM using Rademacher

sequence.

Theorem 8. Let the elements of the generating sequence Θp = {ai}pi=1 be inde-

pendent and identically distributed realizations of Rademacher random variables

taking values ±1 with probability 1/2. Choose a subset Ω of cardinality n ≡= |Ω|
uniformly at random from the set [1 . . .m]. Finally, let U be any p × p unitary

matrix, and Θ be the n× p matrix obtained by sampling n rows of X correspond-

ing to the indices in Ω and renormalizing the resulting columns by
√
m/n. Then

for each integer p, S > 2, and for any z > 1 and δS ∈ (0, 1), there exist absolute

constant C such that whenever

n ≥ Czµ2
US log3 p log2 S (4.2)

the matrix Θ ∈ RIP(K, δS) with probability exceeding 1.20 max{exp(−Cδ2
Sz), p−1}.

Proof. We begin by recalling the result established in [59], which states that if

matrices in a particular class satisfy RIP with probability exceeding 1− η for the

Bernoulli sampling model, then it follows that matrices belonging to the same

class satisfy the RIP with probability exceeding 1−2η for the uniformly permuted

sampling model.

Next, consider the Banach space B ≡ (Cp×p, ‖·‖T,S) and define variables {Yi}pi=1

and {Ỹi}pi=1 that take values in B as follows

Yi ≡
m

n
eixix

H
i −

1

p
Ip, (4.3)

Ỹi ≡
m

n
(eixix

H
i − e′ix′ix

′H
i ), i = 1 . . . p
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where, {ei} are the Bernoulli random variables arising in the Bernoulli sampling

model, {xHi } denote the rows of X, and {e′i}, {x′i} are independent copies of

{ei} and {xi} respectively. In other words, each random variable Ỹi ≡ Yi − Y ′i
is a symmetric version of the corresponding variables Yi where Y ′i denotes an

independent copy of Yi. In particular, we have that
∑p

i=1 Ỹi in B is a symmetric

version of
∑p

i=1 Yi and, as a consequence, the following symmetric inequalities

hold for all u > 0 [121].

E

[
‖

p∑
i=1

Ỹi‖T,S

]
≤ 2E

[
‖

p∑
i=1

Yi − E[

p∑
i=1

Yi]‖T,S

]
, (4.4)

Pr

(
E

[
‖

p∑
i=1

Yi‖T,S

]
> 2E

[
p∑
i=1

Yi‖T,S

]
+ u

)
(4.5)

≤ 2 Pr

[
‖

p∑
i=1

Ỹi‖T,S > u

]
.

Specifically, for any integer p > 2 and r = 2 log p, we have Bernoulli sampling

model

(E[‖Θ‖rmax])1/r ≤
√
m

n
(E[‖X‖rmax])1/r (4.6)

≤
√

16µ2
U log p

n
.

Substituting (4.7) in (4.6), we obtain

Pr

(√
m

n
‖X‖max >

√
16eµ2

U log p

n

)
≤ (4.7)

nonumberPr
(
‖X‖max >

√
e(E[‖X‖rmax])1/r

)
(4.8)

Pr
(
‖X‖rmax > er/2E[‖X‖rmax]

)
≤ E[‖X‖rmax]

er/2 · E[‖X‖rmax]
= p−1

obtained from a simple application of Markov’s inequality. Next, define B1 ≡
16eµ2U log p

n
. Then from (4.9) we obtain

Pr

({√
m

n
‖X‖max >

√
B1

}⋃{√
m

n
‖X ′‖max >

√
B1

})
≤ 2p−1 (4.9)

where X ′ is comprised of {x′Hi } as its rows, and a union bounding argument.
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Further, we also have

max
i
‖Ỹi‖T,S = max

i
‖m
n

(eixix
H
i − e′ix′ix

′H
i )‖T,S (4.10)

≤ max
i

{
‖m
n
‖xixHi ‖T,S + ‖m

n
x′ix

′H
i ‖T,S

}
≤ max

i

{
S(

√
m

n
‖xHi ‖∞)2 + S(

√
m

n
‖x′Hi + ‖∞)2

}
≤ S(

m

n
‖X‖2

max +
m

n
‖X ′‖2

max)

obtained from triangle inequality and from, ‖X‖max ≡ maxi‖xHi ‖∞ and ‖X ′‖max ≡
maxi ‖x

′H
i ‖∞. It is then easy from (4.9) and (4.11) that we have maxi ‖Ỹi‖T,S ≤

2SB1 with probability exceeding 1− 2p−1.

Finally, define E ≡ {maxi ‖Ỹi‖T,S ≤ 2Sb1}. Based on this, whenever n ≥
Cε−2µ2

US log3 p log2 S we have

Pr(Ỹ ≥ 16qε+ 4rSB1 + tE) <

(
C

q

)
+ 2 exp

(
− t2

1024qε2

)
(4.11)

for any integer r ≥ q, t > 0, and ε ∈ (0, 1). Next, choose q = deCe, t =

32
√
qηε, and r = d t

2SB1
e for some η > 1. Further, define a new constant C1

def
=

max{e√q, C} and let n ≥ C1ε
−2µ2

US log3 p log2 S. Note that this choice of n

ensures r ≥ q, resulting in

Pr(Ỹ ≥ (16q + 96
√
q)ηεE) < exp

(
−
√
qηεn

3µ2
US log p

)
+ 2 exp(−η2). (4.12)

Noting that Pr(Ec ≤ 2p−1 implies,

Pr(Ỹ ≥ (16q + 96
√
qη)ε) < exp

(
−
√
qηεn

3µ2
US log p

)
+ 2 exp(−η2) + 2p−1. (4.13)

Finally, what remains to be shown is that Y = ‖
∑p

i=1 Yi‖T,S = ‖ΘHΘ− Ip‖T,S ≤
δS with high probability. Note that, if n ≥ C1ε

−2µ2
US log3 p log2 S then E[Y ] ≤ ε,

we get from (4.6)

Pr(Y ≥ (2+16q+96
√
qη)ε) < 2 exp

(
−
√
qηεn

3µ2
US log p

)
+4 exp(−η2)+4p−1. (4.14)

By defining C ′ ≡ (2 + 16q + 96
√
q) and C ′ηε > (2 + 16q + 96

√
qη)ε since η > 1.

If we choose η = δS
C′ε

then
√
qηεn

3µ2US log p
> η2. Therefore, (4.14) can be simplified as

Pr(Y ≥ δS) < 10 max{exp(− 1

C ′ε2
δ2
S), p−1} (4.15)

This ends the proof that the UCHM satisfies the RIP. �
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4.3.1 Complex Hadamard based CoSaMP

In this section, the bounds are derived for the UCHM-based CoSaMP. Among

many CS reconstruction algorithms, CoSaMP provides a stopping criterion so

that the reconstruction procedure stops after a certain number of iterations. The

running time bound indicates that, with each matrix multiplication the error

reduces by a constant factor. Hence, the CoSaMP algorithm achieves linear

convergence. The total running time is also proportional to the reconstruction

signal-to-noise ratio. The selection of CoSaMP over OMP and other reconstruc-

tion methods, is due to its fast convergence, the algorithm complexity does not

depend on the sparsity K [53] and its suitability for implementing on a hardware

platform(e.g.,FPGA, GPU).

As the matrix changes, the reconstruction bounds change simultaneously. Con-

sider an M × N sensing matrix Θ with the restricted isometry constant C and

y = Θx + e is a vector of samples of an arbitrary and e is noise, then CoSaMP

produces a K-sparse approximation a that satisfies,

‖x− a‖2 ≤ C max{η, 1√
K
‖x− xs/2‖1 + ‖e‖2}, (4.16)

where η is the precision parameter and xK/2 is the best K/2-sparse approximation

to x.

Now, we derive the bounds for the CoSaMP algorithm. The reconstruction error

is bounded by the product of a constant C and the noise power in the form

‖x − x̂‖2
2 ≤ C.‖e‖2

2 [53]. We obtain the bound based on matrix Θ, that is a

constant times ‖ΘTe
∗ e‖. Then, x̂l is the result obtained at the lth iteration and T

is the support.

Theorem 9. For a K-sparse vector x, under the condition δbk ≤ δ, solution of

CoSaMP at the lth iteration satisfies

‖x− x̂l‖2 ≤ 2−l‖x‖2 + (C − 1)‖Θ∗Tee‖2. (4.17)

In addition, after

[log2(
‖x‖2

‖Θ∗Tee‖2

(4.18)

iterations, the algorithm leads to an accuracy bounded by

‖x− x̂l‖2 ≤ C‖ΘTe
∗ e‖2 (4.19)

where b = 4, δ = 0.1 and C =
29−14δ4K+δ24K

(1−δ4K)2
≤ 34.1
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Algorithm 3 CoSaMP

Require: K,M ,Θ,y,a where y = Mx+ e and x = Θα

K is the cardinality of α and e is the additive noise, a = 2

Result: x̂ : K-sparse approximation of x

Initialize the support T 0 = Θ, the residual y0
r = y and set t=0

while stop criterion is not satisfied do

t = t+ 1

Find new support elements: T∆ = supp(Θ∗M∗yt−1
r , ak)

Update support: T̃ t = T t−1
⋃
T∆

Compute a temporal estimate: αp = (MΘT̃t
)†y

Prune small entries: T t = supp(αK)

Calculate a new estimate: x̂t = ΘTt(αp)Tt
Update the residual: ytr = y −Mx̂t

end while

From final solution x̂ = x̂t

Proof. Beginning from the following equation,

‖x− x̂l‖2 ≤ 0.5‖x− x̂l−1‖2 + 16.6C‖ΘTe
∗ e‖2 (4.20)

for δ4K ≤ 0.1, and applying it recursively, we arrive at

‖x− x̂l‖2 ≤ 0.5K‖x− x̂l−K‖2 + 16.6

(
K−1∑
j=0

0.5j

)
C‖ΘTe

∗ e‖2 (4.21)

By setting K = l it easily leads to (4.17), since ‖x − x̂0‖2 = ‖x‖2. Inserting the

number of iterations l∗ as in (4.18) to (4.17) yields

‖x− x̂l‖2 ≤ 2−l‖x‖2 + 2 · 14− 6δ4K

(1− δ4K)2
‖ΘTe
∗ e‖2

≤
(

1 + 2 · 14− 6δ4K

(1− δ4K)2

)
‖ΘTe
∗ e‖2

≤ 29− 14δ4K + δ2
4K

(1− δ4K)2
‖ΘTe
∗ e‖2

(4.22)

Then, applying the condition δ4K ≤ 0.1 to the above equation leads to the result.

�

The CoSaMP algorithm used for reconstruction is outlined in Algorithm 3. Unlike

other reconstruction algorithms, CoSaMP requires that the sparsity level K be

provided as part of its input. To reduce the running time, K can be varied

along a geometric progression as K = 1, 2, . . . ,M . Furthermore, partially known

supports can be incorporated in CoSaMP unlike the OMP which is one of the

commonly used reconstruction algorithm in image processing.
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4.4 Numerical Results

Figure 4.1: PSNR versus sampling rate graph comparing the proposed UCHM,

CHM proposed in Chapter 3, FFT with CoSaMP reconstruction and FFT with

OMP used in Chapter 3. Daubechies-4 wavelet is used as the matrix Φ

In this section, 2D-MRI and 3D-MRI processing with optimized complex Hadamard

matrix UCHM and modified CoSaMP is compared with the CHM-based CoSaMP

used in Chapter 3. The aim is to show the increase in peak signal-to-noise ratio

and hence, the enhanced performance of UCHM-based 2D/3D-MRI.

Similar to the Chapter 3, the 3D-MRI images used are of size 256 × 256 × 160,

supplied by the international consortium of brain mapping (ICBM) [1]. The sim-

ulation procedure followed is also identical. Fig. 4.1 depicts PSNR of various

systems. First is the UCHM-CoSaMP, which is the modified version of CHM-

CoSaMP system; second, the CHM-CoSaMP system; and the third and fourth

are the FFT-based CoSaMP and OMP systems. Thought the aim is to compare

the UCHM with CHM, we also consider the FFT-based system since the per-

formance of the FFT-CoSaMP is closer to the CHM-CoSaMP system. For all

cases, the sparse matrix Φ is the Daubechies-4 wavelet. From the graph, it can

be clearly seen that the UCHM-CoSaMP system performance is superior to that

of CHM-CoSaMP that was proposed in Chapter 3. The PSNR improvement is
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(a) Original Image (b) Reconstructed Image

Figure 4.2: Fully sampled and reconstructed images with 10K measurements for a

256×256 ‘angio’ 2D-MRI image.

(a) Original Image (b) Reconstructed Image

Figure 4.3: Fully sampled and reconstructed images with 10K measurements for a

256×256 ‘knee‘ 2D-MRI image.

approximately 5 dB throughout. For this we can conclude that, by modifying

the CHM to imbibe unitary properties, the performance of the CS system has

increased.

4.4.1 Simulation Results for 2D MRI

In order to have a fair comparison the 2D-MRI images used in Chapter 3, which

are three test images of 256 × 256 size. The experiments are conducted for 10K

measurements. Figs. 4.2, 4.3 and 4.4 depict three examples of 2D-MRI. The

PSNR of these images with the proposed UCHM-CoSaMP system and the CHM-

CoSaMP system for 10K measurements are shown in Table 4.1. It can be clearly

seen that, the performance with the UCHM is atleast 11dB higher than CHM.
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(a) Original Image (b) Reconstructed Image

Figure 4.4: Fully sampled and reconstructed images with 10K measurements for a

256×256 ‘spine‘ 2D-MRI image.

Table 4.1: PSNR performance 2D-MRI images with 10K measurements.

Image UCHM-based PSNR CHM-based PSNR

‘angio’ 52.39 41.09

‘knee’ 50.01 40.86

‘spine’ 48.93 39.41

The values for the CHM-CoSaMP are taken from the Table 3.3 of Chapter 3.

4.4.2 Simulation Results for 3D MRI

Figs. 4.5 and 4.6 shows the visual comparison of the reconstructed data with the

original data. The datasets used are again the same that are used perviously. The

PSNR values of the proposed UCHM-CoSaMP systems and the CHM-CoSaMP

system are tabulated in Tables 4.2 and 4.3. In both datasets, a PSNR difference

of 4 to 5 dB is observed. This difference remains for almost all the datasets that

are simulated for these systems.

Table 4.2: PSNR performance 3D dataset-1.

Measurements UCHM-based PSNR CHM-based PSNR

6K measurements 28.61 -

10K measurements 31.88 27.32

20K measurements 46.03 33.04

30K measurements 48.97 44.32
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(a) Original Image (b) Reconstructed Image

Figure 4.5: Fully sampled and reconstructed images with 20K measurements for a

256×256 single 2D slice of 3D dataset-1.

(a) Original Image (b) Reconstructed Image

Figure 4.6: Fully sampled and reconstructed images with 20K measurements for a

256×256 single 2D slice of 3D dataset-2.

Table 4.3: PSNR performance 3D dataset-2.

Measurements UCHM-based PSNR CHM-based PSNR

6K measurements 29.05 -

10K measurements 32.11 27.61

20K measurements 46.90 34.94

30K measurements 48.65 44.38
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4.5 Summary

In this chapter, we introduced and analyzed a new version of complex Hadamard

matrix called structured unitary complex Hadamard matrix. This matrix is a an

optimized version of the CHM proposed in Chapter 3. It was shown with proof

that this matrix satisfies RIP conditions, which is a sufficient condition to be used

as a CS matrix. Furthermore, this method is simulated for 3D-MRI and results

are observed to superior than the ones discussed in Chapter 3.



Chapter 5

Computation Efficient

FPGA-Based Hardware

Architecture for MRI Processing

5.1 Introduction

High-performance sparse signal recovery algorithms typically require a signifi-

cant computational resources for the problem sizes occurring in most practical

applications. While the computational complexity is not a major concern for

applications where offline processing on central processing units (CPU) or graph-

ics processing units (GPU) can be afforded (e.g., in MRI), it becomes extremely

challenging when real-time processing with high throughput is required. Hence,

to meet the stringent throughput, latency, and power-consumption constraints of

real-time applications, developing dedicated hardware implementations, such as

application specific integrated circuits (ASIC) or field-programmable gate arrays

(FPGA), is of paramount importance.

Several studies showed that the performance of medical image processing algo-

rithms, such as image registration and 3-D segmentation, can achieve significant

improvements by implementing them on FPGA [10, 122] and GPU [123, 124].

However, GPU may not be suitable for applications that require irregular mem-

ory accesses [125]. On the other hand, FPGA may not be suitable for applications

which have large and complex computational kernels that require double-precision

floating point calculations due to limitations in silicon area. As a result, devel-

opers have to decide which architecture is suitable for their application such that

they can achieve the most performance enhancement. FPGA provide several ad-

vantages for MR image processing. MR images contain large amounts of data

and the algorithm requires frequent access to these data stored in memory. An-
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other significant potential advantage of FPGA over GPU and CPU is low power

consumption. GPU and CPU have a lower degree of parallelism in their archi-

tectures than FPGA and to achieve similar speeds, must have clock frequencies

many times higher than FPGA (in the case of CPU, about 30 times higher).

These high clock frequencies increase power consumption. As a result, FPGA

can be considered a power-efficient alternative to other accelerators and typically

do not require expensive cooling methods.

In order to overcome the above mentioned drawbacks, the following contributions

are presented:

• Hardware based pipeline structure for the complex Hadamard matrix pro-

posed in Chapter 3;

• Efficient memory organization for fast data access and processing;

• A fast hardware architecture for CS-based MRI encoding and reconstruc-

tion;

5.2 Related Work

While significant research efforts have been devoted to the design of high-performance

and low-complexity sparse signal recovery algorithms, e.g., [24,52,53,117], much

less is known about their economical implementation in dedicated hardware. CS

applied to most applications are computationally intensive due to iterative algo-

rithms and require high-performance techniques to achieve near real-time solu-

tions, but end up consuming enormous hardware resources. Power consumption

and hardware size becomes a huge bottleneck, if CS needs to be used in practical

applications. Hence, it is necessary to design hardware architectures that provides

low power consumption, high throughput and near real-time solutions. Some of

the ASIC implementations are reported in [126], where the authors compared sev-

eral implementations of greedy pursuit algorithms for sparse channel estimation

in wireless communication systems. A similar recovery algorithm specifically de-

signed for signals acquired by the modulated wideband converter is implemented

on FPGA in [127]. Another FPGA implementation for generic CS problems of

dimension 32× 128 is developed in [128]. All these implementations rely on algo-

rithms that are well-suited for the recovery of highly sparse signals in hardware.

Traditionally, algorithms which directly calculate the image in a single backward

reconstruction step, can be accelerated with GPU or FPGA [13–15, 129, 130].

However, when the number of samples is reduced, these methods generally gen-

erate very poor quality images. Thus, there is a strong motivation to accelerate
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iterative reconstruction methods for practical MRI systems. However, while there

has been a substantial amount of previous work aimed at using the GPU [131–133]

to accelerate iterative reconstruction approaches like simultaneous algebraic re-

construction technique (SART), there have been far fewer publications addressing

FPGA implementations of iterative reconstruction. In [134], for example, back-

ward projection was implemented on an FPGA, and the forward projection step

was performed on a GPU. GPU and FPGA of course have very different features.

GPU can have hundreds of parallel computing cores, and FPGA can support high

performance logic customization for specific computations. A better performance

design can be expected if an algorithm having significant computational diversity

using the architecture advantages of GPU and FPGA are exploited. Moreover,

the use of FPGA can help to significantly reduce the power consumption of the

overall system.

The current literature for FPGA hardware-based MRI-CS is mainly targeted for

filter algorithms [135],classifying images [136] and for CS reconstruction [137].

Moreover, the implementation is not completely FPGA-based. Multiples digital

signal processing (DSP) cores are used in [137] and a combination of GPU and

FPGA in others. Some implementations also utilize the high-speed feature of

FPGA to control the complete system. In [107], the main kernel of the MRI

system is FPGA-based and hence speeding up the data processing. In our pro-

posed FPGA-based architecture, the complete system is implemented including

the controller. This would make the complete MRI system portable on a Vir-

tex or Xilinx FPGA. To the best of our knowledge, this is the first hardware

architecture that implements a complete MRI-CS on a FPGA hardware.

5.3 System Architecture

A top level hardware block diagram is depicted in Fig. 5.1. As observed, the com-

putational intensive component is the reconstruction process, which is an iterative

process. It is composed of three major components, two for the core calculations,

namely the least-squares component and multiply and sorting component, and

one for data formation and control, namely the bus-control component. Among

these three, different levels of parallelism are realized according to the priority

and crucial levels of the algorithm. For example, the least-squares module is de-

veloped with extremely high parallelism and full pipeline, since it computes and

updated estimates, and performs residue calculations. These are the important

processing steps in the CoSaMP algorithm.

Hence, this architecture achieves a good trade-off between performance and re-

source consumption. Moreover, scalability is another remarkable aspect of our

architecture that only the size of memory needs to be linearly expanded when



5.4 Hardware Process 65

QR decomposition

controller

RAM Boundary 

multiplicatio

n and delay

Internal 

multiplication 

addition and 

delay

Data bus

 Tx

Address Generation for QR 

decomposition

Controller

RAM
xT

Figure 5.1: Architecture of the hardware reconstruction process.
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Figure 5.2: Block diagram for MRI hardware processing.

A generic CS system has two main blocks, namely, the compressive sampling

and reconstruction blocks. CS utilizes two matrices for sparse representation and

recovery, i.e., the Φ matrix and Ψ matrix. The proposed CHM is the Φ matrix and



66
Computation Efficient FPGA-Based Hardware Architecture for MRI

Processing

Ψ is an identity matrix, and they are incoherent to each other. Using CoSaMP

for reconstruction is most suited with CHM due to the reduction in running

time, which is in the order of O(N logN). Fig. 5.2 depicts our proposed CS

system architecture. The main components that are computationally intensive

are CoSaMP reconstruction and QR decomposition associated with it.

In this paper, the optimization problem is dealt with a well-known greedy algo-

rithm known as CoSaMP, which is an iterative reconstruction algorithm that

offers rigorous bounds on computational costs and storage. It requires only

matrix-vector multiplications with matrix Φ. It also provides a stopping cri-

terion such that the reconstruction procedure stops after a fixed number of it-

erations. CoSaMP requires that the sparsity level K be provided as part of its

input. For this purpose, when the signal length N is large, phase transition anal-

ysis suggests that most sparse signals can be recovered when M ≈ 2K logN .

To reduce the running time, K can be varied along a geometric progression as

K = 1, 2, ...,M [53]. Therefore, CoSaMP is considered as an optimal choice for

hardware implementation for sparse signal recovery. It is also to be noted that

all greedy algorithms need square matrix calculations which are performed by

iterations, resulting in high computational costs. This calls for a least squares

method suitable for FPGA-based processing to be implemented in conjunction

with CoSaMP.

CoSaMP requires matrix Θ, noise vector e, and sparsity level k as inputs. The

output x̂t of the system is an approximation of the original signal x̂. If x̂t is

a k-sparse signal, then we need to find the M columns of Θ that contribute to

y. At each iteration, we choose the column of Θ which is best correlated with

the remaining part of y. We then determine its contribution, subtract it from y,

and perform the next iteration on the residual vector. After finding the relevant

columns of Θ, the values of the signal are found through solving a least square

equation. After finding M columns of Θ which are closely related to y, the

second stage is to solve the least square problem. This often involves finding the

inverse of matrix H, where H−1 = ΘTΘ. A set of eight multipliers are used in

parallel to perform these steps. The critical problem in this method is to find the

square root and the division in the final stage of each column processing. In this

implementation, we use pipelined fixed-point inverse square root computation

which utilizes only six clock cycles. This eliminates the division process and

hence reduces the time and hardware area consumption.

The hardware architecture of the reconstruction algorithm of our proposed method

is illustrated in Fig. 5.2. This architecture can be implemented on a field pro-

grammable gate array (FPGA), application specific integrated circuit (ASIC),

graphic processing unit (GPU) etc. As shown, we have used QR decomposition

in matrix computations for CoSaMP that involve complex matrix calculations.

QR decomposition is a procedure where a complex matrix is decomposed into an
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orthogonal and a triangular matrix. Furthermore, this implementation of com-

plex matrix provides a scalable architecture consuming only a small hardware

area and memory utilization [138] [139].
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Figure 5.3: Internal structure of the reconstruction process.

Fig. 5.3 demonstrates the internal structure of the reconstruction process. The

processing that takes place can be described as follows,

Multiply-sorting component : This component calculates the matching vector and

gets the index collection by sorting. It is composed of a multiply module and a

sorting module. As the realizations have some minor differences between the 1st

and kth iterations, their working status should be switched by a temporary vari-

able. In the multiply module, there are multiply-and-add sub-blocks in parallel

to calculate the products in the every iteration. The result of multiply module is

then transferred to the sorting module, which is made up of 3s comparators in

serial. When all the N elements of vector y get through these comparators once,

the indices of largest 3s is obtained. However, only the first 2s indices are needed

for the rest of the iterations except in the 1st, where 3s is needed.

Least-squares component : This component solves the least squares problem by

a highly parallelized and fully pipelined module. The module adopts QR de-

composition algorithm, which is currently the fastest recursive algorithm, and is

implemented in a linear systolic array. A systolic array is a pipeline arrange-

ment of processing units, commonly used for parallel computing. The computed

data is stored independently for each unit. Once the least squares calculation is

complete, the result is transferred to a sorting module, which is composed of s

comparators, to obtain the largest s elements. This is the new approximation of

the target signal. This operation is the most crucial part in sparse recovery. QR

decomposition has its unique advantages, which avoids burdensome matrix mul-

tiplications which are replaced by a series of rotations, and its excellent accuracy

and stability.
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5.4.1 QR Decomposition for Complex Hadamard Matrix

QR decomposition is a procedure where a matrix is decomposed into an orthogo-

nal and a triangular matrix. This procedure is used in our FPGA implementation

of complex matrix so that we can obtain a scalable architecture consuming only

a small hardware area and memory utilization [138] [139].

The matrix D determines the orthogonal matrix Q and triangular matrix R, such

that D = QR. Then the inverse of this matrix can be obtained by,

D−1 = (QR)−1 = R−1Q−1 = R−1QH (5.1)

where QH is the Hermitian transpose of Q. Furthermore, this can be effectively

implemented by a systolic array with processing elements based on the coordinate

rotation digital computer (CORDIC) [140] algorithm. In our proposed system,

we use the implementation from [139], which is based on the three angle complex

rotation approach and enables significant reduction in latency.

All the matrix calculations perform fixed-point arithmetic, since this provides

faster results and consumes less hardware. Since most of the processing involves

multiplications, adder-shifter combinations are used wherever feasible. RAMs are

used in the design to obtain an efficient sequential process and in turn provide a

nominal operating frequency of about 82 MHz. By adopting this implementation

procedure, we attempt to reduce the computational complexity and also speed up

the 3D-MRI process. The system is ported on a FPGA and provides a processing

time of 17µ secs per slice [141].

5.4.2 Data Processing on Hardware

In this paper, the hardware has been implemented for N = 256 and a sparsity of

K = 8. Each data uses 24-bit (10 integer bits and 14 fractional bits) fixed-point

format. It is observed that a larger number of fractional bits do not actually

influence the result and our fixed-point format computation is comparable to the

floating point simulation. To perform the dot product, 64 multipliers are operated

in parallel and the results are added together. Multiply and addition are divided

into 3 pipeline stages to decrease the logic output delays. Multiplication takes

place in the first stage of the pipeline. In the second stage, eight additions are

performed in parallel each adding eight values. These results are added to produce

the final output in the third stage. It is fully pipelined so that the data is available

at each clock cycle. Once the index that has close correlation to y is found, the

residual is updated by subtracting it from the correlation of the columns of Φ.

The CoSaMP reconstruction requires as inputs, the CHM matrix Φ, noise vector

e, and sparsity level K. The output α of the system is an approximation to the
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(a) Fully sampled (b) Proposed (c) Difference

(d) Fully sampled (e) Proposed (f) Difference

Figure 5.4: Reconstructed images of a two slices ((a) and (d)) from a total MRI

scan samples of dataset-1 [1].

original signal x. If x is a K-sparse signal, then we need to find the K columns

of Φ that contribute to y. At each iteration, we choose the column of Φ which is

best correlated with the remaining part of y. We then determine its contribution,

subtract it from y, and perform the next iteration on the residual vector. After

finding the relevant columns of Φ, the values of the signal are found through

solving a least squares equation.

After finding k columns of Φ which are closely related to y, the second stage is to

solve the least square problem. This often involves finding the inverse of a matrix

C, where C = ΦTΦ. The main purpose of this is to solve for α′. Here, we use QR

decomposition in a similar way as was used in the compression process. A set of

eight multipliers are used in parallel to perform these steps. The critical problem

in this method is to find the square root and the division in the final stage of each

column processing. In this implementation, we use a pipelined fixed-point inverse

square root computation which utilizes only six clock cycles. This eliminates the

division process and hence reduces the time and hardware area consumption.
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(a) Fully sampled (b) Proposed (c) Difference

(d) Fully sampled (e) Proposed (f) Difference

Figure 5.5: Reconstructed images of a two slices ((a) and (d))from a total MRI

scan samples of dataset-2 [1].

5.5 Simulation Results

The proposed hardware architecture is implemented using the Verilog hardware

description language, and synthesized using Altera Stratix IV E series FPGA

[142]. This design utilizes 60% of resources of this FPGA capacity. It runs on

a single clock frequency of 82 MHz and has three pipeline stages. This helps

to overcome some of the bottlenecks caused by the multiplication and addition

combinatorial logic in the design. The overall process takes about 810 cycles for

data acquisition using the CHM and reconstruction of a 256 × 256 MRI image.

Hence the total processing time is 22µ seconds. The major bottleneck of this

architecture lies in the reconstruction process, where the residual needs to be

computed, entailing complex matrix multiplications.

To provide a better insight into the efficiency of our architecture, we measure the

reconstruction time alone and observe the processing time is 17µ seconds. This is

about 7µ seconds faster than the architecture in [128], which is among the fastest

architectures in the literature and implemented on a Xilinx FPGA. Furthermore,

to obtain fair comparison, we also simulate and synthesize our design on a Xilinx

Virtex 5 FPGA [143] and obtain a processing time of about 20.4µ seconds, which

is still about 4µ seconds faster than the design in [128].
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The comparison of our implementation with some of the existing FPGA and non-

FPGA hardware solutions are shown in Table 5.1. All the tabulated architectures

use 256 × 256 image for processing, and the running time is with respect to the

reconstruction process. All the architectures use the conventional MRI sampling

process based on the Fourier transform. Moreover, all the existing architecture

are merely for reconstruction and not a complete CS system. Most of them

implement the orthogonal matching pursuit (OMP) [128] [144] and total variance

(TV) [145] reconstruction algorithms, while our proposed architecture is based

upon the CoSaMP algorithm, which provides a pre-set stopping criterion that is

not available in OMP and TV. This stopping criterion results in a guaranteed

quality of the final approximation. The operating frequency comparison with that

in [128] shows a difference of 45 MHz and the reason for this is optimization of the

logic blocks for the place-and-route hardware process. This means the routing of

data and control paths are near-optimal and utilizes minimal hardware resources,

which can be observed during synthesis. Furthermore, our design is optimized

to obtain an operating frequency of 82 MHz using sequential logic rather than

combinatorial logic. An un-optimized architecture of our proposed design can

also provide a similar low-frequency design, but will consume most of the FPGA

hardware resources. Alongside a novel architecture, we also ensure that a low-cost

optimal power design is provided.

Table 5.1: Hardware comparison with existing CS reconstruction architectures.

Architecture Device Frequency Time taken

(MHz) (secs)

Proposed 1 Stratix IV FPGA 82 17µ

Proposed 2 Virtex 5 FPGA 67 20.4µ

OMP [128] Virtex 5 FPGA 39 24µ

OMP [144] Virtex 5 FPGA 85 and 69 27.14µ

TV [145] - - 38m

OMP [146] Intel core i7 - 68m

OMP [12] GPU - 37.5m

To validate the proposed system, several test data from [1] are considered. The

data obtained is of a healthy male and female of age between 18-65 years of age.

All the reconstructed images are of the size of 256 × 256. Some of the random

samples are provided in Figs. 5.4 and 5.5 The reconstructed image is compared

with the fully sampled Fourier MR image and difference is shown. The difference

between our proposed reconstruction using the CHM and fully sampled image is

also shown. It is observed that, there is still more improvement required, nonethe-

less has a good quality in comparison with the original. Unfortunately, due to the

lack of PSNR results available in the literature, we could not perform a PSNR

comparison with the existing architectures. It can be noted that, even after using

fixed-point logic for all the arithmetic calculations, the PSNR is approximately 42



72
Computation Efficient FPGA-Based Hardware Architecture for MRI

Processing

dB. A perceptual comparison of the proposed hardware outputs with the original

image is also conducted, which demonstrates that the proposed design is able to

provide images that are close to the original ones in reconstruction quality.

5.6 Practical Application

An important factor affecting the performance of CS-based MRI recovery is the

sampling trajectory chosen in the frequency domain. Pure random sampling is

impractical, due to hardware and physiological constraints. This directly impacts

the RIP and coherence of the measurement matrix [147]. Hence it is suitable to

use a structured matrix for a CS-based MRI.

This work is suitable for commercial implications provided that some hardware

system related contingencies like the analog detectors, digitizers are resolved.

These MRI scanner building blocks are designed to be used with Fourier trans-

form. This would imply that MRI scanners currently available in market would

need to undergo changes to accommodate the compressive sensing based module.

Compared to current MRI scanning time [148], the improvement expected is

about 25% based on the simulation results. In saying that, the major roadblock

would be the cost of changing the existing MRI scanners to suit CS techniques.

5.7 Summary

In this chapter, we present a complete hardware architecture of a CS-based data

acquisition and reconstruction. The system is implemented on a Altera Stratix

IV E series FPGA and verified for MRI suitability. This hardware is tested with

various real data samples, sampled using the CHM and then reconstructed using

CoSaMP. Furthermore, the performance is compared with existing software and

GPU based implementations. QR decomposition is used for the implementation

of the CHM in order to provide a fast, scalable and pipelined processing.



Chapter 6

Low-complexity Energy-Efficient

CS-based Natural Image

Processing Hardware

6.1 Introduction

In this chapter, we aim to provide a low-complexity energy-efficient framework

for image processing based on CS principles. In the previous chapters, complex

Hadamard matrix (CHM) and CoSaMP for MRI data was proposed, and proved

superior when compared to some of the popularly used CS methods. We ex-

tend this concept for image processing with minimal modifications applied to the

measurement matrix Φ, hence maintaining the originality of the matrix. Further-

more, the proposed concept will be incorporated in the discrete wavelet transform

(DWT) of JPEG 2000, to provide an energy efficient hardware architecture.

Conventionally, after acquisition of an image, transform is performed on the image

using pixel values. Afterwards, many coefficients that carry negligible energy are

discarded prior to entropy coding. Therefore, much of the acquired information

is discarded during this process although the image is fully acquired. In this

Chapter, an alternative coding paradigm to conventional image compression is

proposed based on CS principles. Two-dimensional discrete wavelet transform

(DWT) is applied for sparse representation. Unlike in the JPEG 2000 encoder, the

DWT coefficients are not directly encoded, but re-sampled with equal importance

of information instead. At the decoder side, CS reconstruction is incorporated in

the JPEG 2000 decoder. The recovery quality depends on the number of received

CS measurements, and not which of the measurements that are received.

Most of the work in the literature on CS-based image processing (sometimes
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termed as compressive imaging (CI)), use measurement matrices that are either

random or structured, but the use of complex matrices is not known. The com-

plex Hadamard matrix is chosen not only for the reason that it satisfies the

RIP conditions, but also for its suitability of implementation on hardware plat-

forms. Moreover, we also investigate the behavior of the CHM with respect to

natural images. Traditionally, the performance metrics for signal processing are

latency and throughput. However, with the growing industry of portable, mo-

bile devices, it has become increasingly important that systems are not only fast,

but also energy-efficient. One such high computation requirement is for imag-

ing applications. Due to this reason, an FPGA-based system presents a very

viable solution. Currently, only a few commercially available FPGAs provide

both millions of gates and low-power features. At the same time, matching the

image compression algorithms to completely use these FPGA features is neces-

sary. Thus, instead of low-level hardware optimization techniques, algorithmic

techniques for minimizing energy dissipation is viable.

Keeping in mind the requirements of providing an efficient framework, the fol-

lowing contributions are made:

1. A complete framework of compression and reconstruction of natural images

based on CS principles is proposed.

2. The proposed complex measurement matrix is combined with the most

popular CS reconstruction algorithms, and compared with CoSaMP. The

use of random matrices with CoSaMP is also demonstrated to verify the

efficiency of the proposed framework.

3. A low-complexity energy-efficient hardware architecture based on FPGA is

presented so that the complete JPEG 2000 is energy-efficient.

6.2 Related Work

The key elements of compressive imaging are the measurement matrix and recon-

struction algorithm. The measurement matrix is selected based on a sufficient

condition that satisfies the restricted isometric property. Several matrices have

been proposed in the literature for image/video CS, such as independent identi-

cally distributed Gaussian matrix [100], and Bernoulli matrices [101] [102]. Their

main advantage is that they are universally incoherent with any sparse signal and

thus, the number of compressed measurements required for exact reconstruction is

almost minimal. However, they inherently have two major drawbacks for practical

applications namely, huge memory buffering for storage of matrix elements and

high computational complexity due to their completely unstructured nature [59].
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The authors in [100], [149] reduce the sampling rate for image/video signals by al-

locating the CS measurements according to the sparsity of images/frames. They

exploit inter-frame correlation to predict local sparsity for image blocks [100].

However, the approach cannot be applied in single-image acquisition and can

have poor performance in recovering high speed objects. Further, they utilize the

information within one image block to help to predict the sparsity of neighboring

blocks, but is difficult to implement in a parallel-processing system.

Another class of matrices based on Fourier and Hadamard were also proposed

[103], where it is called the scrambled block Hadamard ensemble. Partial Fourier

transform [103] has fast computational property and thus significantly reduces

the complexity of a sampling system. However, it is only incoherent with signals

which are sparse in the time domain, severely narrowing its scope of applications.

Random Fourier matrices in the wavelet domain applied to the whole image are

proposed in [150]. Simultaneously, this need to send the sampled data until the

whole image is measured, which are not suitable for image reconstruction appli-

cations with limited storage and complexity. The authors in [151] proposed block

compressive sensing for natural images, using the techniques of hard thresholding

and projection onto the convex set (POCS). Here, image acquisition is conducted

through the same measurement operator in a block-by-block manner, motivated

by the success of the block DCT coding framework used in JPEG. However, the

used frame expansions are not adaptive for all blocks.

JPEG 2000 is one of the most commonly used compression standard for im-

age processing. Inspite of being efficient compared to JPEG standard, it has

some shortcomings. The DWT block which is a 9/7 lifting wavelet transform is

computationally intensive and requires fast algorithms to cope with real-time ap-

plications. This make the system highly complex and also consumes high power.

Incorporating CS processing with the conventional image coders have also been

explored in [152–154]. In [152], the discrete cosine transform (DCT) is used for

smooth regions, and a bi-orthogonal wavelet transform is used for uneven regions.

The CS acquisition is split as low and high frequency components in [153], while

the results of [154] are suitable for lossless compression. All these perform recon-

struction using OMP, which is not suitable for hardware implementation due to

its computational complexity rising from the iterative bounds.

Hence to address the discrepancies of the existing architectures, a low-complexity

energy-efficient architecture is investigated. This architecture incorporates com-

pressive sensing technique, which requires few samples for exact recovery, and a

low-power consuming transform and memory design that would provide a plat-

form for real-time processing.
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6.3 System Model
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Figure 6.1: System model with for CS processing.

The CS encoder consists of an image transform, quantization and a measurement

matrix block. As shown in Fig. 6.1, the image data x is transformed using one of

the most commonly used image transforms, such as the discrete wavelet transform

used in JPEG 2000. The transformed data α is CS sampled using matrix Φ to

obtain k-sparse measurements. The CS decoder consists of two blocks, i.e., the

CS reconstruction and inverse image transform blocks. The reconstruction is

performed by linearly optimizing a set of equations using matrix Φ. Once the

measurements are reconstructed, the original signal is obtained from matrix Ψ

and these reconstructed measurements.

The wavelet transform is adopted since the wavelets have time-frequency loca-

tion and multi-resolution characteristics, and therefore can decompose the image

signal into a number of sub-band signals in different spatial resolution, frequency

and directional characteristics. The wavelet transform also overcomes the block

artifacts which are usually present when other transforms are used instead. The

compressive sensing matrix employed in this processing is CHM, which is similar

to the one used for 2D/3D MRI in Chapter 3, but with the columns of the matrix

randomized. The proposed matrix Φ satisfies the RIP and hence it is possible

to recover the signal correctly, and thus suitable for CS-based image processing.

Relating the proposed matrices to (3.3), the DWT and CHM are denoted by

Ψ and Φ, respectively. If Φ is a structurally random matrix, its rows are not

stochastically independent because they are randomized from the same random

seed vector and thus are correlated. This is the main difference between a struc-

turally random matrix and a sub-Gaussian matrix. Relaxing the independence

among its rows enables a structurally random matrix to have some particular

structure with fast computation.

When considering natural images for processing, it is extremely rare that an im-

age can have non-zero values and therefore CS cannot be applied as is. It is a

known fact that, any image can have a sparse representation in a certain trans-

form domain, which is the 9/7 irreversible DWT in our system. This transform

is used for lossy compression in JPEG 2000 [155]. The main advantage over the
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discrete cosine transform (DCT) is that, DCT previously carries out a division

into squared blocks, while the DWT works in its totality. Moreover the decompo-

sition into subbands gives a higher flexibility in terms of scalability in resolution

and distortion.

At the decoder, CoSaMP reconstruction is performed followed by the inverse

discrete wavelet transform (IDWT). Since the process is for lossy compression,

noise component is included during the CoSaMP reconstruction iterations. This

is to ensure a perfect reconstruction of the image.

6.4 CS Processing

The matrix Φ used in image processing varies when compared to use in MRI

processing. In the case of MRI, the CHM is used for data acquisition and the

matrix is structured. In case of image processing, measurement samples are

acquired only after the image transform. Though the basis of the matrix Φ still

remains to be a CHM, the diagonal entries are randomized to provide better

quality results for a variety of images. The matrix Φ is defined as

Φ =

√
N

M
R, (6.1)

where R ∈ N×N is a diagonal random matrix whose diagonal entries are random

variables Ri with identical distribution P (Ri = ±1) = 1/2. This diagonal matrix

of random variables flips signals sample signs locally. The scaling coefficient
√

N
M

is to normalize the transform so that energy of the measurement vector is almost

similar to that of the input signal vector. Once randomized, the entries are i.i.d

Bernoulli random variables.

With (6.1), the framework can recover k-sparse signals exactly as per the follow-

ing:

Theorem 10. Recovery of k-sparse signals exactly, with a probability of at least

1 − δ, if the number of measurements are M ≥ O(N
B
klog2(N

δ
)). For the DWT,

the number of measurement needed is on the order of O(Klog2(N
δ

)).

Proof. This is similar to the corollary of Candes et. al [ [57], Theorem 1.1].

It can be said so, due to the fact that Φ being an orthonormal matrix (when

randomized with R) representing the mutual coherence between Φ and Ψ. The

mutual coherence once again is similar to the work of Do et. al [ [156], Theorem

III.A]. �
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Having the measurement matrix Φ with restricted isometry constant δ and y =

φx + e is a vector of samples of an arbitrary and e is the noise vector, then

CoSaMP produces a k-sparse approximation to a that satisfies

‖x− a‖2 ≤ C.max{η, 1√
k
‖x− xs/2‖1 + ‖e‖2} (6.2)

where η is the precision parameter and xk/2 is a best k/2-sparse approximation

to x.

6.5 Hardware Architecture

The hardware architecture details the structure of the encoder and decoder struc-

ture and interface of DWT and randomized CHM. The main aim is to have a

low-complexity and energy efficient design. This can be achieved by processing

techniques such as pipelining and a combination of parallel-pipeline processing for

arithmetic elements. Pipelining is an efficient design practice for both time and

energy performance. In FPGA designs with large data, throughput is another im-

portant factor in power dissipation. Pipelining is a technique in which increasing

the power dissipation may decrease the overall energy dissipation. Moreover, CS

further contributes in having a energy efficient design by using up only a small

percent of samples when compared with conventional image processing meth-

ods. In this section, an encoder and decoder design that includes pipelining and

parallel processing is presented.

6.5.1 Encoder

Fig. 6.2 outlines the flowchart for the encoder. The processing is performed row-

wise first and then column-wise. This ensure that the arithmetic computations

are re-used and hence reduce the complexity and in turn lead to a energy efficient

design.

With reference to Fig. 6.3, once the input coefficients and quantization steps are

available, the DWT is performed. Initially the pixels of a row are fetched into the

row processor. The 4 lifting steps of the DWT are applied to all pixels in that

row. The lifting structure is show in Fig. 6.4. Specifically, the diagram shows the

signal flow for samples x0 to x8. A pair of samples at equal positions is weighted

by negative coefficients α and added to the intermediate sample. The next lifting

step combines the results of the summations in pairs using the coefficients β. The

third and fourth lifting step act in a similar manner using the weights γ and δ.

The property of integer-to-integer mapping, which will be essential for lossless

compression, is simply imposed by properly rounding the intermediate values to
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Figure 6.2: Flow chart for the proposed encoder architecture.
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integer values. The result after all the lifting steps is an interleaved sequence of

a low-pass filter output and a high-pass filter output.

X0 X1 X2 X3 X4 X5 X6 X7 X8

+ + + +

+ + + + +

+ + + +

+ + + + +

Input

First 
step
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γ 

α α α α α α 

γ γ γ γ γ γ γ 
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α α 

                                                                                                                                     K2

                                                                                                                                        K1

High Pass

Low Pass

Figure 6.4: 9/7 lifting wavelet structure. α, β, γ and δ are the lifting parameters.

In the column DWT, the 4 steps of the DWT is performed sequentially. There

are two column processors performing column DWT simultaneously. When the

2D-DWT of first level decomposition is done the coefficients of the 1HL, 1LH

and 1HH are compressive sensed. This ensures that the samples required for

further processing is very minimal and this affects the transmission to a greater

extent. The next step is quantization and is pipelined with the second level of

DWT decomposition. The whole processing is pipelined and the last to perform

is the 2LL to 2HH sub-bands quantization. The timing diagram for the encoder

processing is depicted in Fig. 6.5, which shows the pipeline structure employed.

Clock

I_start_dwt

row_dwt 

column_dwt

DWT+CS DWT+CS DWT+CS DWT+CS DWT+CS DWT+CS DWT+CS

Quantization quant quant quant

DWT+CS
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32 rows for level1 or 16 rows for level2

Figure 6.5: Timing diagram of DWT with CS.

6.5.2 Decoder

Fig. 6.6 depicts the proposed decoder that incorporates CS reconstruction with

the typical JPEG 2000 decoder structure. The main component is the IDWT
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Figure 6.6: Block diagram of the proposed decoder.

combined with the CoSaMP algorithm. In the IDWT architecture, only one core

component works sequentially. Inverse quantization is performed only at the start

of processing. The IDWT processing is sequential i.e., Level 2 column processing

core (CPC) then the Level 2 row processing core (RPC), which is followed by

Level 1 CPC and RPC. An address mechanism is used for reading from the

external code block memory and to write into the internal wavelet memory. This

mechanism is necessary for proper processing, since the input to the core (i.e.,

for CPC and RPC) is in the form (H L H L . . . ), which is different from the data

sequence stored in the memory.

For each sub-band, the data is multiplied with the quantization factor. The data

is of 10 bits, with the MSB being the sign bit. For multiplication purposes, 9

magnitude bits are used and the output is converted into its 2’s complement based

on the value of the sign bit. The output is concatenated with 0’s or 1’s to convert

to 16 bits prior to the IDWT processing. The core is based on the 9/7 lifting

scheme shown in Fig. 6.7. The IDWT filtering algorithm basically consists of four

lifting steps, and hence the computation is performed in four stages. These four

stages are realized as a single combinational circuit. The intermediate results

generated at all stages are temporarily stored for further pipelined processing. A

particular component with the IDWT block, which performs both column and

row processing is based on a flag bit. Its input is fed through multiplexors, which

are controlled by the address generation mechanism modules.
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6.5.3 Energy-efficient Processing

Memory blocks are the one of the most frequently used block and it also has

high power dissipation. The other block is the transform block, which requires

multiplications. In order to enable a low-power storage for the proposed design,

power consumption for various types of memories is analyzed based on Altera

FPGAs. Fig. 6.9 illustrates the power dissipation for three possible bindings for

storage Altera FPGAs based on the number of data entries; namely, registers,

slice based RAM, and block RAM. For large storage elements, those with more

than 30 entries block RAM shows an advantage in power dissipation over other

memory implementations. Hence, in the proposed image processing systems,

we consider the use of block RAMs. In addition, the memory mapping of these

RAMs are managed in a way that only a minimal number of accesses are required.

The mapping approach consists of two algorithms that obtain a power-efficient

mapping of logical memories to FPGA embedded memory blocks. Since most

embedded memory block dynamic power is a result of clock-induced pre-charging,

some specific cases are identified where user specified RAM read and write enable

signals can be automatically converted or combined with the corresponding read

and write clock enable signals. In some cases, memory banking is done. As a

result of this banked mapping, only one embedded memory block is clocked per
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Figure 6.11: 16K × 8 bits memory mapping with banking and address selection

logic.

access and to perform this some supporting logic is added. In all the cases, the

correct functional behavior is ensured.

The conversion of user-specific read and write enable signals to respective clock

enables primarily reduces power by eliminating line pre-charging when embedded

memory block data access is not required, and maintains the functionality. The

combining of the data enable and clock enable signals, forms a new combined

clock enable signal, which can be attached to the memory port clock enable

input. Figs. 6.10 and 6.11 depict two different memory mapping alternatives

used in the proposed system. In the mapping in Fig. 6.11, the width of each

physical memory block matches the width of the logical memory, whereas the

depth of each physical memory block is reduced compared to its logical memory

counterpart. This mapping requires the inclusion of address decoding circuitry

to determine which memory block contains the requested data. In addition, a

multiplexer is required on the read port to select the requested word during read

requests. Although dynamic power is consumed by the added address decoder

and multiplexer, all but one of the embedded memory blocks are disabled during

RAM accesses, saving considerable dynamic power. Unused memory blocks are

disabled by connecting the outputs of the address decoder to memory block clock

enable signals.

Other than memory blocks, multiplication logic blocks also consume more power

when compared to other blocks in the design. To provide an overall energy-

efficient design, restructuring the multiplication block is done in our proposed

system. The matrix multiplication algorithm considers two n× n input matrices

A and B, and computes the product C = A × B. The architecture utilizes

parallelism and pipelining, also includes logic for the output matrix C. The

output of first product is overlapped with the computation of the next and hence
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no wait cycles are wasted. Thus, a throughput of one data sample per clock cycle

is achieved. Fig. 6.12 shows the architecture of a single processing element (PE)

of a linear array of multiplication block. The algorithm computes the product

efficiently, both in terms of latency and energy, by cleverly moving the entries of

the input matrices through the linear array. The entries from matrix A are fed into

the linear array in column-major order from the block memory, while the entries

from matrix B are fed into the linear array in row-major order. Furthermore,

the entries from matrix A does not begin until n cycles after the entries from

matrix B. The PE computes the sums of products, which are entries for matrix

C. In the figure, A, B1, B2, and B3 are the temporary storage registers, Ain,

Bin are the inputs and Cin is the output. Since there are multiple PEs, each

PE input will have the i-th row and the k-th column of matrix A and the k-th

row and the j-th column of matrix B, and the corresponding output will be i-th

row and j-th column of matrix C. The execution time is 2n− 1, since processing

is pipelined and input from left to right. This linear array based design ensures

that connections are only made between neighboring PE and further ensures that

only short interconnects are used. All outputs flow from right to left and each PE

is always active, which maximizes the throughput. For this architecture, when

n > 24, block-wise matrix multiplication with blocks of size (n/p) is used, where

p is the number of PEs. This technique decreases throughput but saves area and

energy.
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6.6 Numerical Results

This section deals with two simulation aspects of CS-based natural image pro-

cessing. Firstly, the comparison of various popular reconstruction algorithms

against the choice of CoSaMP reconstruction is performed. Secondly, simulations

are conducted to demonstrate the performance with respect to the conventional

JPEG 2000 system. Alongside, energy efficiency in terms of latency ad resource

utilization is compared.

Table 6.1 presents the computation complexity for block processing of an image.

This computation is based on the running time of a 256 × 256 block size in a

FPGA hardware environment. The running time is indicated through the matrix

vector multiplications because in hardware-based implementations, higher the

multiplications/divisions more complex is the system. Additionally, the systems is

pipelined to have optimal utilisation of resources. The Gaussian based processing

uses the Gaussian elimination method [157] and hence the complexity is O(N3)

[158]. FFT uses the hardware based on CooleyTukey algorithm [159] with a

computation complexity of O(N logN) [160]. In case of CHM, the complexity

is calculated based on the time required to read the data, perform DWT and

simultaneously perform CS processing. The overall computation time is N + 1

cycles, with DWT complexity being O(N). The added complexity to this is the

CHM based CoSaMP which is O(M logN). Therefore, due to pipelining and

reusing arithmetic hardware, the system complexity is O(N).

Table 6.1: Computational complexity for CHM, random FFT, random Gaussian

in block processing. The complexity is based on a M × N matrix for a k-sparse

basis. CoSaMP reconstruction is used in all cases.

CS Algorithm Complexity

CHM O(N)

FFT O(N logN)

Gaussian O(N3)

To demonstrate the system, a couple of test images were used. Fig. 6.13 shows one

of the test images that is reconstructed using the random FFT, random Gaussian

and CHM with 2K measurements. The visual quality can be easily compared with

the original test image, and shows that the reconstruction quality with CHM is

far superior than random FFT and random Gaussian. The PSNR for this test

image with various measurements is also tabulated in Table 6.2. From this we

can conclude that by using less number of measurements, the reconstructed image

has a better quality than its counterparts. The CHM shows a consistent higher

performance by approximately 3dB than Gaussian for most of the measurements.
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(a) Original image (b) With FFT

(c) With Gaussian (d) With Complex Had

Figure 6.13: Original and reconstructed test images.

Table 6.2: PSNR performance using a 256× 256 test image.

Measurements FFT Gaussian Proposed

M dB dB dB

1K 9.24 16.36 17.22

2K 10.27 18.17 21.35

3K 11.07 18.36 23.96
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(a) Original image (b) With 3K samples (c) With 8K samples

Figure 6.14: Original and reconstructed output of a 256× 256 image-1.

(a) Original image (b) With 3K samples (c) With 8K samples

Figure 6.15: Original and reconstructed output of a 256× 256 image-2.

(a) Original image (b) With 3K samples (c) With 8K samples

Figure 6.16: Original and reconstructed output of a 256× 256 image-3.



6.7 Summary 89

Table 6.3: PSNR performance of various test images considered.

PSNR with 3K samples PSNR with 8K samples

Image-1 27.72 33.28

Image-2 22.96 29.36

Image-3 25.45 33.06

Figs. 6.14, 6.15 and 6.16 show the reconstruction data of three test images using

proposed encoding and decoding with 3K and 8K measurements respectively.

Comparing the PSNR in Table 6.2, it can be noted that more the measurements,

better is the image quality. Each test image has different kind of complexity

involved. For example, the image-1 has a large part with a plain background,

and hence the PSNR value is greater than the other test images. Similarly, since

image-2 has irregular structure throughout, its PSNR at 3K measurements is

comparatively low.

6.7 Summary

In this paper, a novel approach of compressive sampling using complex measure-

ments is proposed. This matrix is compared with some of the existing methods

and the performance is observed to be at least 3 dB higher. The proposed frame-

work provides an advantage that, it needs very low measurements to represent

the image. Alongside, it also yields a high quality output which is close to the

conventional JPEG 2000 processing.

This architecture provides four important features: (i) It is universal with a wide

range of sparse signals; (ii) The number of measurements required for exact recon-

struction is nearly optimal; (iii) It has very low complexity and fast computation

based on block processing; and (iv) Minimal computation/memory requirement

and high quality of reconstruction.



Chapter 7

Two-symbol Arithmetic

Encoding Architecture For

Efficient Entropy Coding in

CS-Based JPEG 2000

7.1 Introduction

The JPEG 2000 encoder architecture includes the building blocks of component

transform, discrete wavelet transform, quantization, embedded block coding with

optimized truncation (EBCOT) [155] [161], and the rate allocation. The main

blocks that are computationally complex and clock hungry, are the DWT and the

EBCOT blocks. In EBCOT, AE processing is serial in nature and hence increases

the system latency. In Chapter 6, an efficient design for transform incorporating

CS principles was demonstrated. In this chapter, the aim is to provide an efficient

arithmetic encoding technique for JPEG 2000.

Nowadays, almost every multimedia application necessitates good compression

techniques, needs to provide efficient solutions, and requires an excellent visual

quality. To support these features, the algorithms that are employed are com-

putationally intensive and complex. The JPEG 2000 standard [155] is an image

compression standard, featuring low bit-rate, lossy and lossless coding, region

of interest and error resilience. JPEG 2000 is superior to the original JPEG

standard in the sense of both performance and functionality [161].

The contribution in this chapter is outlined as follows

• A two-symbol hardware architecture is designed and the step-by-step pro-
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cess is explained;

• The critical path is analyzed for the proposed architecture;

• A complete CS-based JPEG 2000 encoder hardware architecture is pre-

sented.

7.2 Related Work

The AE algorithm is serial in nature and hence the major throughput bottle-

neck of JPEG 2000. The standard [155] provides a reference AE implementation,

which processes one CX-D pair at a time. Previous work has proposed several

methods where one CX-D pair is processed with FIFO (first in, first out) inserted

between BC and AE. However, this implementation can alleviate the problem

only to a very small extent and results in an increase in hardware resources due

to the inclusion of the FIFO module. Other single symbol processing methods

(e.g., [162]) have doubled the frequency of operation than that of BC, which can

offer the required AE performance but with drawbacks of clock-domain crossing

issues and tedious methods to solve them. There are methods where separate AE

modules are used for each of the three passes of the BC module. This kind of im-

plementation reduces coding efficiency and the correlation of successive symbols

that have not been considered appropriately. In [163], the bit-plane coder, FIFO

and the AE modules are designed to achieve a high-speed low-power EBCOT

module and there is a 27% improvement in power consumption. However, this

implementation requires many hardware resources and although two CX-D pairs

are read at once, they are not processed in every clock cycle.

A split arithmetic encoder is proposed in [164], which operates at 9.25 MHz and

provides a 55% increase in performance compared to the standard architecture,

but fails to provide a solution for AE which can handle the BC throughput

effectively. The AE module stalls many times waiting for the context update

tables and this causes a major bottleneck in delivering an efficient solution. A

dual context modeling architecture is proposed in [165], where the AE module is

processed in four pipeline stages and operates at 185 MHz. Since a pass switching

technique is used, the coding efficiency is reduced drastically.

In [166], AE is implemented to operate at twice the frequency of the bit-plane

coder, but only 25% improvement in throughput is observed. Chen et.al [167] pro-

pose a parallel AE implementation which encodes 50 Msymbols/sec at 100 MHz.

However, this architecture lacks an optimized hardware implementation. An-

other implementation of AE has four MQ-coders used in parallel to match up the

speed of the BC module generating CX-D pairs [168] [169]. This implementation

consumes a large hardware area.
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As mentioned earlier, some implementations have been proposed to double the

AE engine operating frequency than that of BC and provide a solution to address

the EBCOT bottleneck [162]. However, these methods still fail to provide the

required throughput. Some of the methods [170] [171] are one-symbol AE engines

showing about 24% increase in execution time [170] as opposed to the conven-

tional architecture. However, method in [171] does not include all the procedures

of AE. According to [172], there can be situations where 12 CX-D pairs are gen-

erated at a single clock cycle from the BC module and thus multi-symbol AE

processing is necessary. A multi-symbol AE module can reduce the input storage

significantly and also increase the overall performance. If AE can process more

than one symbol per clock cycle, the AE bottleneck can be reduced drastically

and a reduction in memory can be achieved.

There are a few two-symbol architectures available that provide some good results,

but a complete two-symbol per clock cycle solution still lacks. For instance, one

of them uses the inverse multiple branch selection method [173]. In [174], a

throughput of 52 Msymbols/sec is achieved at a cost of increased hardware and

memory storage. Noikaew et. al [175] uses a prediction process to determine

the upper bound and index values but the throughput is only 62 Msymbols/sec.

It also does not provide the code update procedure for two-symbol processing.

Parallel processing techniques have also been used to arrive at a two-symbol

architecture in [176], but with constraints on the interval register. In this case,

the two-symbol update is possible only if the value of the interval register is less

than two.

After considering both the advantages and disadvantages of the existing architec-

tures, we propose a new two-symbol architecture, which is capable of encoding

two CX-D pairs in every clock cycle and overcomes the interval and code up-

date issue, while also providing a higher throughput and an operating frequency

of 100 MHz. The coding efficiency is not affected and the memory is also kept

minimum. Furthermore, the critical path is observed to be 9.4 ns and hence the

AE engine can operate at a higher frequency above 100 MHz. This factor is of

high importance in hardware implementations and also provides room for future

optimization. Our proposed architecture is fast and efficient in the sense of the

interval and code update , byte output, renormalization, and flush procedures.

The proposed architecture is able to eliminate the AE bottleneck in JPEG 2000

and also increases the performance of the EBCOT engine as a whole.

7.3 Arithmetic Encoding System Model

The arithmetic coder is based on the statistical binary arithmetic coding tech-

nique, also known as the MQ-coder. The bit-plane coder provides the CX and
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D information to the AE stage for further processing. The AE stage executes in

a sequential process, where a series of CX-D pairs are coded using context-based

probability estimation. The D bit is either a logic 0 or 1. The CX bits provide

significant information about a single bit and its neighbors. With each binary

decision, the current probability interval is subdivided into two sub-intervals, and

the code stream is modified (if necessary) so that it points to the base (the lower

bound) of the probability sub-interval assigned to the symbol. Since the coding

process involves the addition of binary fractions rather than the concatenation of

integer codewords, the more probable binary decisions are always coded at the

cost of less than one bit per decision. The MQ-coder is capable of producing

at most two code bytes at once. A symbol can belong to one of two possible

categories i.e., most probable symbol (MPS) and least probable symbol (LPS),

based on the probability of their occurrence. The new interval is obtained from

the sub-interval corresponding to the new symbol. AE can be described by the

following classical equations

MPS coding:

C = C + A×Qe (7.1)

A = A− A×Qe

LPS coding:

C = C (7.2)

A = A×Qe

where C is the base of the current interval, A is the length of the current interval,

and Qe is the estimated probability (Qe).

To avoid complex multiplications, a simple trick is used to simplify the above

equations. A is bounded to lie in the range of (0.75, 1.5). When A falls below the

lower bound of the range, it is doubled until A returns to the range. This process

is termed renormalization. Each time as A doubles,C needs to be doubled. Since

A is of the order of unity [155], (7.2) and (7.3) can be simplified as MPS coding:

C = C +Qe (7.3)

A = A−Qe

LPS coding:

C = C (7.4)

A = Qe

The current interval is split in a recursive manner until all the symbols of a

code-block are received from the bit-plane coder. The interval length division is
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Figure 7.1: Interval length division.
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Figure 7.2: AE flowchart.
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shown in Fig. 7.1 whereas the AE flowchart is illustrated in Fig. 7.2. JPEG 2000

uses 19 contexts for any given type of bits, and each of these contexts has an

associated probability state that identifies the MPS and the index (I). The MPS

and I point to a probability estimation table, which determines the Qe for the

LPS, the next index values (NMPS, NLPS), and the probable symbol change

of the MPS (SWITCH). The AE algorithm mainly deals with updating a set of

registers based on the MPS and LPS. These registers are A, C, Ct and B. The

structures of the registers A and C are depicted in Fig. 7.3 [177].

Register MSB LSB

C

(Code Register)

A 

(Interval Register)

0000 cbbb bbbb bsss xxxx xxxx xxxx xxxx

aaaa aaaa aaaa aaaa

“a” represents fractional bits of A register

“b” represents fractional bits in the C register

“s” represents space bits, which provides constraints on carryover

“b” represents bits for Byteout

“c” represents the carry bit

Figure 7.3: Structure of registers A and C.

Register A is a 16-bit interval register that contains the value of the current

interval as required by AE, and register C is the code register containing the

partial coded bits at every stage of encoding. Register A is initialized to 0x8000

to signal the beginning of the interval. Since the AE algorithm is implemented

in fixed-point integer arithmetic, the initial value of A (0x8000) is equivalent to

the decimal value of 0.75. Register C is of 28 bits, of which the lower 16 bits

represent the lower bound of the interval and the upper 12 bits are used as a

buffer for overflow [176].

Probability estimation Qe and the status of MPS are used to update registers A

and C. Whenever the value of A falls below 0.75, the renormalization procedure

is invoked and both registers are shifted left till A becomes greater than 0.75.

Simultaneously, register Ct is decremented by the number of shifts occurred in

these registers. The initial value of Ct is 0xC and B is 0x00. This procedure

repeats continually until all the CX-D pairs of the code block are processed.

During this process, whenever Ct becomes zero, the previous valid value in B, if

any, is transferred to the output byte stream that forms the final encoded stream.
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Figure 7.4: (a) Renormalization flowchart; (b) Byte-out flowchart; and (c) Flush

procedure flowchart.

The byte-out procedure is then performed in parallel and register B is updated

with the new value. Until the completion of the code block, A and C accumulate

all the coding bits. In order to remove dependency and to provide error resilience

in the bit stream, AE undergoes a termination process after every code block.

This is done in a separate process dubbed flush. The renormalization, byte-out

and flush flowcharts are illustrated in Fig. 7.4 [155].

Theoretically, the renormalization procedure executes a maximum of 15 times

simultaneously, and hence the byte-out procedure can occur only twice at the

same time. This means that at any given time we can have only 2 bytes generated

at once. The byte-out procedure always outputs the previous generated bytes and

stores the present bytes to output during the next cycle. Since the markers in the

byte stream have a value of 0xFF, in order to distinguish them from legitimate

code bytes, a bit-stuffing procedure is carried out in register B during which Ct

is updated with a value of 0x7, since the stuffed bit takes up a single bit space.
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7.4 Two-symbol Arithmetic Encoding Architec-

ture

The block diagram of the proposed two-symbol AE architecture is depicted in

Fig. 7.5. It processes two CX-D pairs every clock cycle. The architecture involves
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Figure 7.5: Block diagram of the proposed two-symbol AE architecture.

two main stages, namely, the interval update and code update stage. The other

units include the probability estimation tables, index prediction, memory storage,

and the AE controller. The following sections provide details on the two main

stages.

7.4.1 Interval Update Stage

The Interval Update stage as shown in Fig. 7.6 has the value of register A pre-

dicted beforehand. Since we process two symbols simultaneously, two register A

predictions are performed in pipeline. Register A update mainly depends on the

three MSB bits of the present register A, the left-shifted value of Qe, and the

decision bit MPS or LPS. Register A can have three kinds of updated values,

namely, 1) A − Qe without renormalization; 2) A − Qe with subsequent renor-

malization; and 3) Qe with renormalization only once at the end. Since A has

to be greater than 0x8000, it can be renormalized twice at the most. This con-

dition considers the type of updates A can have, the minimum value of A and

the maximum value of Qe (0x5601). Hence, A−Qe will always be greater than
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Figure 7.6: Interval (A) Update procedure.

0x29FF, meaning there are two zeroes present at the MSB. Therefore, there can

only be three ways of renormalization. When A is updated with Qe, the values

are obtained from the probability estimation table. The renormalization of A will

be with either one shift, two shifts or no renormalization at all. The prediction of

A is carried out in two stages where the first stage updates A using the first CX-D

pair information and the corresponding probability estimation tables. Once the

intermediate A value becomes available, the net update of A is performed using

the second CX-D pair and the second set of probability estimation tables. If the

two contexts are the same, the updated index and MPS of the first symbol will

be used as input for A updation of the second symbol.This whole process is car-

ried out in pipeline with other AE stages, hence enabling two-symbol processing

each time. A similar two-stage update A architecture is presented in [175]. Our

architecture, however, is different due to the use of different conditions and short

combinatorial paths, so that the A update is sped up. Another major difference is

the way the A update module is embedded in the pipeline stages. This enables us

to implement effective pipelining of the AE module and avoids any intermediate

stalls in two-symbol processing.

7.4.2 Code Update Stage

Fig. 7.7 depicts the block diagram of the Code Update procedure, which includes

updating registers C, Ct and B. Carry propagation and bit-stuffing are handled

in the same module. The renormalization and byte-out procedures are also per-

formed in parallel with the C update, reducing the critical path to a large extent.
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In the standard architecture, the renormalization and byte-out procedures exe-

cute sequentially and are achieved by serial shifters and lengthy conditional logic

for generating output bytes. Having just a parallel architecture for register A
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Figure 7.8: (a) Register C update module; (b) Mask Generation module.

update and a sequential procedure for register C update will be useless, since

the delay in processing will be too long and also two-symbol processing will be

limited by the register C update procedure. Hence, we perform the register C

update and byte-out procedures in parallel. Renormalization is done in a single

clock in comparison to the looping procedure in the standard architecture. Due to

this, there can be a possibility of generating a 16-bit value at once and therefore

have two register B values at the same time. This procedure is performed for two

sets of contexts, and hence the same procedure of renormalization can generate

another 16-bit output. In the worst scenario, there would be a maximum of four

bytes generated at the same time, and therefore there is a need to have a method

to output four bytes simultaneously. To achieve this, we use a mask generator

to generate corresponding output enable signals. The byte-out procedure occurs

whenever register Ct becomes zero. When this occurs, the byte already available

in register B is outputted and the most significant byte of register C is moved to

B. The mask generator generates the required mask, while the register C update

module performs the required updates for the first symbol. The update is deter-

mined by R, which provides the information whether the shift amount required

has to be a value from the leading zeroes (lzeroes) table or the value determined

by the MSBs of A − Qe. The carry bits generated from the register C update

module (Fig. 7.8)(a)) are used for the mask generation as shown in Fig. 7.8(b). If

the value of B is 0xFE or 0xFF, a decision is made whether or not bit-stuffing is

required, since these values correspond to byte stream markers. After encoding all

the symbols of each code block, a flush procedure is performed as described in the

standard. During flush, a maximum of 3 bytes can be generated simultaneously.
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7.4.3 Probability Estimation Table and State Update

In the JPEG 2000 standard [155], there are only 4 tables defined, i.e., the Qe

table, NMPS table, NLPS table and SWITCH table. To facilitate two-symbol

processing, we define three more tables, namely, the lzeroes table, renormalized

Qe table and 2∗Qe table. The lzeroes table records the count of zeroes in the MSB

of the corresponding Qe value in the table. This is used during the renormal-

ization of interval register A. The renormalized Qe table stores the renormalized

result of the corresponding Qe value in the probability table. By using this table,

some of the combinatorial logic is reduced and a value can be directly selected

when Qe is to be updated as the new A. When A ≥ 0x8000, it is replaced with

the corresponding value in the 2 ∗ Qe table. The probability states are updated

every time after the interval and code update occurs. These updated values are

used when the next CX-D pair is processed.

7.4.4 Index Prediction

The index pointer is used to pick the right set of values for registers A and C

update. Since two-symbol processing is implemented, the index corresponding to

the second CX-D pair is predicted beforehand. This is done by using the previous

MPS value and the index. A default index and MPS is available during the start

of process as defined in the standard [155].

7.4.5 Critical Path Analysis

Critical path analysis is a very powerful approach for identifying bottlenecks in

concurrent architectures. In conventional JPEG 2000 hardware implementation,

critical paths are seen starting from bit-plane processing in BPC and goes upto

the byte-out procedure of AE. Simple pipelining in BPC and AE can substantially

shorten the critical paths, but this will incur the problem of having to incorporate

a chain of storage elements, which can lead to a further increase in resource

utilization. Hence, in our proposed AE architecture, we employ pipeline stages

in a manner that the storage is kept minimal. We have also replaced some of the

arithmetic operations with shift operations, wherever possible. For instance, two

consecutive shifting operations required for C update contribute the critical path.

If we decrease the number of consecutive shift operations in updating register C,

faster extraction of the output bit-stream may be feasible, eventually resulting in

a shorter critical path delay.
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Figure 7.9: Top level block diagram of CS-based JPEG 2000 encoder.

Fig. 7.9 depicts the block diagram of a CS-based JPEG 2000 encoder system. The

2D wavelet transform block with sequence control and CS, is the same system that

was proposed in Chapter 6. The proposed two-symbol AE is interfaced with the

2D wavelet transform block as shown in the figure. The sequence control block

mainly performs the data control of the transformed coefficients and transfers

them to AE via CS block, for sequential processing. Every block processing uses

SRAMs, for storing the symbols temporarily.

7.6 Simulation Results

The proposed two-symbol architecture is implemented using the Verilog hardware

definition language and synthesized on an Altera Stratix II FPGA. The hardware

implementation cost is shown in Table 7.1. Since the proposed architecture has 4

pipeline stages, combinatorial logic is reduced and sequential logic is used wher-

ever feasible. This helps in shortening the critical paths, which is advantageous

in this design. Having a low critical path timing, i.e., 9.4 ns, shows that our

circuit can operate at fairly high frequencies. The hardware utilization of the AE

module and its control units is 1.2K ALUTs of Stratix II FPGA. The memory
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Table 7.1: Hardware implementation cost.

ALUT 1267

Registers 1321

Pipeline stages 4

Throughput 212 Msymbols/sec

frequency 106.2 MHz

Critical path 9.4 ns

Table 7.2: Number of clock cycles for 512×512 image, code block size 64×64,

lossless compression.

Image Name Clock Cycles

Lena 839943

Peppers 916049

Baboon 989841

Jet 795816

used for this implementation is a FIFO for 16 CX-D pairs, where CX is of five

bits and D is one bit. Hence, a memory unit of 32×8 bits is used.

The proposed AE module is evaluated using 10 images of various sizes ranging

from 512×512 to 16384×16384. All the tested images are of full color (4:4:4).

To test the functionality of the AE module, a complete JPEG 2000 system is

constructed using Verilog and ported onto a FPGA. The design is optimized in

such a way that the operating frequencies of every module in the system operate

well above 100 MHz. This also ensures that there are no critical paths that

affect the AE module. Multiple AE engines are not required to keep in pace

with the throughput of the BC engine and we have a single operating frequency

for the EBCOT engine. The frequency is kept at 100 MHz, although our AE

engine can operate above this frequency. Some of the standard 512×512 test

images with clock cycle consumption are summarized in Table 7.2 for which the

AE engine was tested for throughput. We observe that the encoding time is

strongly dependent on the number of symbols to be encoded. Our AE engine can

encode 212 Msymbols/sec at 106.2 MHz with lossless coding and also processes

two symbols for every clock cycle at all conditions of AE processing. There are

no stall conditions encountered, since the bit-plane coder generates enough CX-

D pairs that the AE engine can continuously process. Due to this, the memory

requirement at the input of AE is drastically reduced.

It is observed that the AE engine processes two symbols for every clock cycle

irrespective of the interval and code registers, unlike the constraints on A in [176].

Our proposed AE design is different when compared to that of [176] by the
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Table 7.3: Frequency and throughput comparison among the proposed two-symbol

architecture and other one-symbol and two-symbol architectures in the literature.

Type Device Frequency Throughput Hardware Critical

(MHz) (Msymbol/s) path (ns)

Two-symbol Stratix II 106.2 212.4 1.2K ALUT 9.4

(Proposed) 1321 registers

(4.8K gates)

Conventional[1] Stratix II 42 42 4536 ALUT 17

(One-symbol) 6689 registers

One-symbol[4] 0.35um ASIC 150 150 7.2K gates 5.37

Two-symbol [5] Stratix 88 22 8.5K LE

One-symbol [7] 0.35um ASIC 180 150 13.6 K

Two-symbol [9] FPGA 26.29 52.58

Two-symbol [10] Spartan 3 125.68 62.84

Two-symbol [11] 0.35um ASIC 90.9 180(cond) 7.7K gates 11

One-symbol [14] Virtex II Pro 112

One-symbol [15] FPGA 55 54 152K gates

One-symbol [16] 0.35um ASIC 200 200 6.9K gates 4.82

Two-symbol [17] 0.18um ASIC 200 - 18.7K gates

One-symbol [19] 0.18um ASIC 100 - 56K gates

One-symbol [20] Virtex II Pro 120 -

One-symbol [22] 0.18um ASIC 200 - 3.2K gates

One-symbol [25] ASIC 50 - 11K gates 10

Two-symbol [27] LX80 Stratix 48.3 96.6 6974 Slices
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Table 7.4: Throughput per cycle

Technology Technology Throughput per cycle

Proposed FPGA 2 symbols

Two-symbol [11] ASIC 2 symbols

Two-symbol [17] ASIC 1.2 symbol

Two-symbol [9] FPGA 1.9 symbol

One-symbol [24] FPGA 1 symbol

following: (i) we use two sets of pre-calculated tables, as well as a table for

2 ∗ Qe, which makes it possible to use a less number of shifters by comparison;

(ii) the pipeline stages that incorporate A and C updates are specifically designed

to achieve shorter critical paths; (iii) the mask that is used to output bytes does

not use the present generated byte, but rather the MSB of the register C; (iv)

as seen in Table 7.3, though our implementation is on a Stratix II FPGA, its

throughput is comparable or even better than that of the design in [176], an

ASIC-based design.

A comparison of performance, cost and the throughput with previously proposed

methods is carried out. The comparison is shown in Table 7.3. The resource

consumption mentioned in the table is only with respect to the AE module and

not the complete EBCOT engine. The critical path in our implementation is

observed in the C update module, during the flush procedure. The flush procedure

information is not described in any of the available two-symbol methods due to

intensive computation which reduces the throughput of the system. Since we

consider this procedure as part of our AE implementation, our proposed method

is more efficient than the existing methods.

Comparing the results in Table 7.3, it can be concluded that the throughput of our

method more than doubles compared to that of conventional one-symbol methods,

if operated at similar frequencies. However, the conventional method [155] cannot

operate at high frequency due to the combinatorial paths in its implementation.

Table 7.4 presents a comparison of throughput per cycle with respect to the

technology used and type of architecture. It is observed that among the available

FPGA implementations in the references, our design processes two symbols every

clock cycle compared to others [174,178], though it is same as that of [176] which

is an ASIC-based design.
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7.7 Summary

A new two-symbol architecture for arithmetic coding in JPEG 2000 is proposed in

this paper, which is able to encode two symbols every clock cycle. The processes

for interval update, code update, index prediction, mask generation and efficient

renormalization are described. The byte-out procedure is implemented to output

four bytes at a time, so that the proposed AE engine is able to constantly maintain

the processing of two symbols per cycle. It also keeps the critical paths minimal.

This architecture is highly optimized for timing and cost. It operates at 106.2

MHz achieving upto 212 Msymbols/sec. The results show that our two-symbol

architecture is fast and efficient. The performance of our two-symbol architecture

doubles that of the conventional one-symbol methods, in terms of throughput

and is about 50% faster than the existing two-symbol methods. The hardware

utilization is minimal and hence the architecture is cost effective. The design is

synthesized on an Altera Stratix II FPGA. This architecture may be improved to

process multiple symbols and to further enhance the performance of the design.

JPEG 2000 is one of the most popular image compression standards offering sig-

nificant performance advantages over previous image standards. The high com-

putational complexity of the JPEG 2000 algorithms makes it necessary to employ

methods that overcome the bottlenecks of the system and hence an efficient so-

lution is imperative. One such crucial algorithm in JPEG 2000 is arithmetic

coding and is completely based on bit level operations. In this paper, an effi-

cient hardware implementation of arithmetic coding is proposed which employs

efficient pipelining and parallel processing for intermediate blocks. The idea is to

provide a two-symbol coding engine, which is efficient in terms of performance,

memory and hardware. This architecture is implemented in the Verilog hardware

definition language and synthesized using the Altera field programmable gate ar-

ray. The only memory unit used in our design is a FIFO (first in, first out) of

256 bits to store the context-decision (CX-D) pairs at the input, which is negli-

gible compared to existing arithmetic coding hardware designs. Our simulation

and synthesis results demonstrate that the operating frequency of the proposed

architecture is greater than 100 MHz and it achieves a throughput of 212 Msym-

bols/sec, doubling the throughput of conventional one-symbol implementations

while enabling at least 50% throughput increase compared to existing two-symbol

architectures.



Chapter 8

Conclusions

This dissertation mainly focusses on providing a compressive sensing based solu-

tion. A complex Hadamard matrix in combination with CoSaMP has been used

to achieve the required goals. Furthermore, this work, though is based on CS,

provides solution to two different applications. The first being 2D and 3D-MRI

processing and the second one is natural image processing. At various stages, the

proposed method have proven to be superior to the existing CS methods. In ad-

dition, low-complexity and energy-efficient hardware architectures are designed,

to provide a flexibility of use in practical scenarios.

Specifically, in the first part, a MRI data acquisition and reconstruction system

is designed based on CS principles. Firstly, a complex Hadamard matrix is used

for data acquisition. A modified CoSaMP for MRI is presented and the system is

verified for many real datasets. The system is further compared with an existing

3D-MRI system from literature, based on a phantom. The proposed system

performs better than the existing one. The results are validated based on the

signal-to-noise ratio.

Next, the already proposed system is optimized to enhance the performance and

increase efficiency for 3D-MRI. This was necessary due to the high complexity

and huge data processing requirements in 3D-MRI. In conjunction, an new matrix

based on CHM is defined, termed as unitary CHM. This matrix satisfies restricted

isometry property and is proved in this work.

Finally for MRI, a FPGA-based hardware architecture is proposed. This ar-

chitecture is less complex and high performance compared to existing solutions

available for MRI. From simulations, it is observed that the SNR results remain

the same, while providing high throughput.

In the second part, the focus shifts to natural image processing. Here, CS tech-
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niques are applied to a JPEG 2000 encoder-decoder. The motivation behind

combining CS with an image encoder-decoder, was to provide a system that

drastically reduced the transform samples. This target is achieved by using CHM

with the traditional JPEG 2000 wavelet transform, known as 9/7 lifting wavelet.

The results after the use of CS show that, a high SNR valued reconstruction is

possible with very low number of measurement samples. This proposed system

is hardware-based and provides an energy-efficient solution.

Since AE is a serial processing block in the JPEG 2000 encoder, it is of utmost

importance to have an efficient solution, especially when a high performance

CS-based transform is conducted. Hence, a two-symbol arithmetic encoder for

JPEG 2000 is developed to increase the overall encoder efficiency. Furthermore,

this is integrated with the CS-based JPEG 2000 transformation to obtain an

efficient encoder architecture.

This work is suitable for commercial implications provided that some hardware

system related contingencies are resolved. This would imply that MRI scanners

currently available in market would need to undergo changes to accommodate

the compressive sensing based module. Compared to current MRI scanning time

[148], the improvement expected is about 25% based on the simulation results. In

saying that, the major roadblock would be the cost of changing the existing MRI

scanners to suit CS techniques. In the case of JPEG 2000, the whole CS-based

encoder/decoder is FPGA/ASIC-based and ready to be used commercially.

8.1 Future Work

This discussion concludes with some recommendations of possible future work,

which are extensions of the problems considered in this thesis:

• Further reduction in hardware system complexity: Though the

hardware architectures that are proposed in this thesis are less complex

and energy-efficient, there is still room for hardware optimization. Once

the target hardware (e.g., FPGA, ASIC) is chosen, and efficient pipelin-

ing, place and route will provide a better performance. The system can be

further optimized based on the target devices and applications.

• Application of CHM to general medical images: Since the CS-based

techniques are usually generic in nature, the proposed method is not bound

to only MRI-images. There is a scope for using this method for any kind

of medical image.

• Optimizing the system for diffusion MRI and functional MRI:

Diffusion MRI allows mapping of the diffusion process of molecules, which
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is mainly water, in tissues and in-vivo, and functional MRI measures the

brain activity by detecting associated changes in blood flow. Having a CS

system specifically aiming at these types of MRI, will provide pathways for

having reduced cost and less computationally intensive MRI hardware. In

turn, this can also increase the speed of MRI process, whose scanning time

causes patient discomforts.

• Two-symbol architecture for JPEG 2000 decoder: Following in sim-

ilar lines with the encoder, there is a possibility of having a two-symbol

arithmetic decoding process. The JPEG 2000 entropy decoding has a huge

dependency on the inverse transform, and having a CS-based reconstruc-

tion process is to be investigated. If a solution to this is arrived at, the

JPEG 2000 would be a quite simple. This can be advantageous in various

imaging devices and applications.
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