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Abstract

In this study, we evaluate and compare the diagnostic performance of ultrasound for

non-invasive axillary lymph node (ALN) metastasis detection. The study was based

on fusing shear wave elastography (SWE) and B-mode ultrasonography (USG) images.

These images were subjected to pre-processing and feature extraction, based on bi-

dimensional empirical mode decomposition and higher order spectra methods. The

resulting nonlinear features were ranked according to their p-value, which was

established with Student's t-test. The ranked features were used to train and test six

classification algorithms with 10-fold cross-validation. Initially, we considered B-

mode USG images in isolation. A probabilistic neural network (PNN) classifier was

able to discriminate positive from negative cases with an accuracy of 74.77% using

15 features. Subsequently, only SWE images were used and as before, the PNN clas-

sifier delivered the best result with an accuracy of 87.85% based on 47 features.

Finally, we combined SWE and B-mode USG images. Again, the PNN classifier deliv-

ered the best result with an accuracy of 89.72% based on 71 features. These three

tests indicate that SWE images contain more diagnostically relevant information

when compared with B-mode USG. Furthermore, there is scope in fusing SWE and

B-mode USG to improve non-invasive ALN metastasis detection.
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1 | INTRODUCTION

The incidence of breast cancer is the second most common among women (Siegel et al., 2019). Breast cancer often metastasizes to the axillary lymph

node (ALN). The role of analysis of ALN is important as it provides a reliable prognosis in staging breast cancers leading to early treatment and inter-

vention (Goldhirsch et al., 2011). Current clinical pathways for ALN metastasis detection are structured as follows. All patients will undergo pre-

operative ultrasound of the axillary region to detect lymph nodes. If it is suspicious, fine needle aspiration or ultrasound guided core biopsy will be

performed for histopathological confirmation. A sentinel lymph node biopsy (SLNB) is suggested if B-mode ultrasonography (USG) features are not

suspicious and in suspicious cases if the histopathology result shows no evidence of metastatic nodal involvement. If histopathology results or B-

mode USG strongly indicates malignant involvement, then axillary lymph node dissection (ALND) is recommended (Amanti et al., 2009; Van la Parra

et al., 2009). As such, this pathway indicates that the accuracy of ultrasound scans is insufficient when it comes to identifying involved lymph nodes

(Fernández et al., 2011; Mainiero et al., 2010). Ultrasound methods are especially unreliable for patients with early stage breast cancer (Evans

et al., 2014; Lee et al., 2013). Ultrasound guided core biopsy, SLNB, and ALND are invasive and these methods expose patients to considerable risk

(della Rovere et al., 2006; Giuliano et al., 2011; Wu & Burstein, 2004). Hence, there is a need to find a reliable non-invasive method for inferring the

ALN status prior to invasive interventions, such as surgery. Such a method might improve early stage breast cancer management.

Ultrasound is one of the readily available, non-invasive imaging techniques currently utilized in clinical pathways for ALN metastasis detection. It is a

relatively simple and quick method which does not expose patients to radiation. Hence, focusing on improving the diagnostic relevance of ultrasound

scanning is one way to resolve the problem of non-invasive ALN metastasis detection. Standard methods for ultrasound-based ALN metastasis detection

involve analysing morphological characteristics of images captured during scans. For example, radiologists look for the presence of cortical thickening and

loss of fatty hilum (Alvarez et al., 2006; Ecanow et al., 2013; Tamaki, Tamaki, Kamada, Uehara, Miyashita, Chan, et al., 2013). Unfortunately, the sensitivity

of standard methods is low for non-palpable ALN studies (Choi et al., 2011; Coutant et al., 2009). Another method that can be used for metastasis detec-

tion in organs is ultrasound elastography. This method can provide information about the stiffness of lesions (Choi et al., 2011; Evans et al., 2014; Tamaki,

Tamaki, Kamada, Uehara, Miyashita, Ishida, & Sasano, 2013). Shear wave elastography (SWE) is a widely used non-invasive medical imaging technique to

measure tissue elasticity. Studies have shown that it can be used to differentiate between benign and malignant breast lesions (Kilic et al., 2016; Luo

et al., 2019). Recently the method has also been applied to ALN metastasis detection in clinical settings (Ng et al., 2021; Seo & Sohn, 2018; Youk

et al., 2017). The potential of this method was also recognized by the American College of Radiology (ACR), who included SWE in the 5th edition of their

Breast Imaging Reporting and Data System (BI-RADS) lexicon (Acharya, Ng, et al., 2017; American College of Radiology and D'Orsi, Carl J, 2013; Berg

et al., 2012; Evans et al., 2012; Ng et al., 2016; Olgun et al., 2014). Having two ultrasound-based methods for ALN metastasis detection raises the ques-

tion on which method is better or indeed which method should be used as part of the clinical pathway. Furthermore, as it may not be an either/or ques-

tion, we need to investigate whether there is scope in fusing the information captured with both methods to improve ALN metastasis detection.

With this study, we put forward the hypothesis that ultrasound imagery, captured with current technology, contains sufficient information to

improve the diagnostic quality of ALN metastasis detection. To test this hypothesis, we have evaluated the detection rate of SWE for differentiating

non-metastatic from metastatic ALN in breast cancer patients. Subsequently the results were compared with the findings established by B-mode

USG parameters for the same problem. The comparative study was established with a sophisticated information extraction system, based on feature

engineering and machine classification. We have used bi-dimensional empirical mode decomposition (BEMD) and higher order spectra (HOS) to

extract nonlinear features which capture the subtle pixel changes that indicate malignant involvement. The features were used to train and test a

range of classification algorithms. This system distilled a label, either positive or negative, from B-mode USG and SWE ALN ultrasound imagery. A

positive label indicates that metastasis is present, and a negative label indicates its absence. Comparing these labels with ground truth, established by

clinical experts, enabled us to determine the accuracy, sensitivity, and specificity of the information extraction system. We found that an information

extraction system based on B-mode USG imagery with probabilistic neural network (PNN) classification achieved an Accuracy (ACC) of 74.77%, Sen-

sitivity (SEN) of 64.00%, and Specificity (SPE) of 84.21%. For SWE imagery, the same classifier achieved ACC of 87.85%, SEN of 88.00%, and SPE of

87.72%. For a final test, we combined the most significant features from both B-mode USG and SWE.With the combined features, the PNN classifier

achieved ACC of 89.72%, SEN of 84.00%, and SPE of 94.74%. We learned that SWE-based diagnosis support is more relevant than B-mode USG-

based support. Furthermore, there is scope in fusing the information from SWE and B-mode USG to improve the reliability of ultrasound-based ALN

metastasis detection. To the best of our knowledge, this is the first work on automated ALN detection which fuses shear wave and B-mode ultra-

sound to improve the breast cancer detection quality.

To support our hypothesis, we have structured the remainder of this article as follows. Section 2 introduces the study methods. These methods

were used to implement and test the sophisticated information extraction system. As such, Section 3 provides the test results. These results consti-

tute feedback for the wider research community, as discussed in Section 4. The last section provides a summary and concluding remarks.

2 | METHODS

In this section, we describe the methods used to construct a processing system that determines if an ultrasound image shows ALN metastasis.

The system design incorporates feature engineering, classification, and quality assessment. The basic idea, which helped to resolve the design
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choices, unfolds as follows. We use pre-processing to create the same image type for both B-mode USG and SWE raw images. After that unifica-

tion, we proceed with feature engineering. That involves feature extraction and feature selection. Once the features are selected, we form feature

vectors to train and test the classification algorithms. As such, we have tested six algorithms, namely: support vector machine (SVM), decision tree

(DT), K-nearest neighbour (K-NN), PNN, linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA). The performance of these

algorithms was established by comparing the test results with ground truth created by human experts through a medical diagnostic process. This

ground truth was provided in the form of labels which accompany the raw ultrasound images.

Figure 1 shows an overview diagram of the information extraction system. The diagram depicts two data sources, one for B-mode USG imag-

ery and one for SWE imagery. Next, the data is pre-processed and subjected to BEMD. Radon transformation and HOS techniques were used for

feature extraction. The resulting features were grouped into three sets. The first set contained features extracted from B-mode USG images, the

second set contained features from SWE images, and the third set contained the features from both B-mode USG + SWE images. Thereafter,

Student's t-test was utilized to rank the features in each set. Once the features were ranked, they were used to train and test the six classification

algorithms with 10-fold cross-validation. The number of features (NoF) was established based on the best classification performance. As a result,

we established the information content of B-mode USG images, SWE images, and a combination of B-mode USG + SWE images based on an

objective measure for classification performance. The sections below describe the individual methods in more detail.

2.1 | Data

The ultrasound images that were used as data for this study were from patients referred from the Department of Surgery, University Malaya

Medical Centre between August 2018 to December 2019. This study was approved by the institution's Medical Ethics Committee (MECID No:

201879-6469). Written informed consent were obtained from the patients.

F IGURE 1 Overview block diagram

PHAM ET AL. 3 of 19
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Ultrasound images were collected from 107 patients who underwent pre-operative assessment due to suspicious breast lesions (BI-RADS

5 and above). Two images of the same ALN were taken from each patient: one SWE and one B-mode USG. Both histopathological analysis and

ultrasound imaging were used by radiologists to diagnose ALN metastasis:

1. Negative: 57 patients without metastasis.

2. Positive: 50 patients with metastasis.

The ultrasound (US) images were taken using Aixplorer ultrasound system (SuperSonic Imagine). A transducer with a linear operation range

between 4 and 15 MHz was used during the scans. Two radiologists with 5- and 15-years of experience carried out the scans. Prior to the mea-

surements, they underwent a 1-month training course which helped them to familiarize with the SWE method. Special emphasis was placed on

both detecting and analysing ALNs. The histological diagnosis results were only disclosed after the analysis and detection tasks were completed.

During the B-mode USG scans, the patients were in the supine position with their arms placed above the head. Two orthogonal planes were

taken for breast lesions. Three-dimensional (3D) measurements and colour Doppler were recorded. One image plane was taken for ALN detection

and the short axis diameter was recorded. Loss of fatty hilum and cortical thickening, with a cut-off point of >3 mm, were used as indicators to

establish a suspicion that metastasis is present.

SWE was performed on the most suspicious ALNs as determined by B-mode USG. As such, the ‘most suspicious ALN’ was defined as the

ALN that exhibited loss of fatty hilum or eccentric cortical thickening. Patients were required to hold their breath while the radiologist held the

ultrasound probe for 10 s for the production of shear waves. A region of interest (ROI) circular box of the system (Q-box SuperSonic Imagine) was

placed at the stiffest region of the breast lesion and ALN (including the perilesional stiff tissue) (Youk et al., 2017). A standardized size of Q-box

diameter which included 3 mm for breast lesion and 1–2 mm for ALN were used (Luo et al., 2019; Tourasse et al., 2012). Quantitative values

within ROI included the mean (E mean), maximum (E max), minimum (E min), elasticity ratio (E ratio), and standard deviation (E SD) of elasticity

values, defined in kPa.

Quantitative assessment of SWE images were performed using colour patterns based on a colour elastic map, adapted from Luo et al. (2019).

The colour patterns were defined as follows: Colour Pattern 1: homogeneous pattern of ALN; Colour Pattern 2: filling defect within ALN; Colour

Pattern 3: homogeneous within ALN with localized coloured area at the margin; and, Colour Pattern 4: filling defect within ALN with a localized

coloured area at the margin.

2.1.1 | Histopathological analysis

Gold standard assessment was histopathological results taken from surgical specimens of SLNB or ALND. The results showed non metastatic or

metastatic disease.

2.2 | Pre-processing

The objective for the pre-processing algorithms was to prepare the ultrasound imagery for feature extraction. The first step was to harmonize the

raw data through greyscaling the SWE images. Thereafter, the images were processed by top-hat filtering and contrast enhancement. The follow-

ing paragraphs detail the methods used.

2.2.1 | Greyscale

This pre-processing technique uses colorimetry to calculate the grayscale values for the SWE images (Saravanan, 2010). The grayscale algorithm

makes SWE images similar to B-mode USG images and after that step, both image types can be processed with the same algorithms. Unfortu-

nately, colour information is lost in the process of transferring SWE images to grayscale.

2.2.2 | Top-hat filtering

That operation extracts small elements and details from the harmonized ultrasound images (Coster & Chermant, 2001). There exist two types of

top-hat transform: the white top-hat transform is defined as the difference between the input image and its opening by some structuring element,

while the black top-hat transform is defined dually as the difference between the closing and the input image.

4 of 19 PHAM ET AL.
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2.2.3 | Contrast enhancement

Adaptive histogram equalization was used to improve the top-hat filtered image contrast. That is achieved by changing each grayscale pixel with a

transformation function derived from a neighbourhood region (Pizer et al., 1987). The algorithm used in this study operates on small regions in

the image called tiles. The algorithm enhances the contrast of each tile, so that the histogram of the output region approximately matches a speci-

fied histogram. Independent operations on individual tiles might introduce artificial boundaries. Bilinear interpolation is used to reduce the tile dif-

ferences along the boundaries.

2.3 | Bi-dimensional empirical mode decomposition

In this study, we have used BEMD for texture analysis (Faust, Acharya, et al., 2018; Mozaffarilegha et al., 2020), because this method can extract

global structure even when fractals are present (Chen & Jeng, 2014). The data was examined in an adaptive time–frequency–amplitude space

which accommodates non-linear and non-stationary image texture. The BEMD algorithm decomposes the top-hat filtered ultrasound images into

four intrinsic mode functions (IMFs) (Nunes et al., 2005). The second row of images in Figure 2 shows IMF1 for example images. Similarly, rows

3–5 in Figure 2 show IMF2 to IMF4, respectively, for the same example images. As such, the BEMD algorithm is based on a two-dimensional

(2D) extension of the empirical mode decomposition, which uses a sifting process which considers the neighbouring windows to detect extrema

iteratively (Huang et al., 1998). The sifting process uses the radial basis function (RBF) to connect the maxima and minima points, forming an

‘envelope’.

2.4 | Feature extraction

Feature engineering is the art of finding algorithms that extract relevant information from data. For this study, we focused on HOS methods to

accomplish that task. We have designed a two-step process that extracts 288 features from each IMF image. Step 1 employs a Radon transform

to convert the 2D imagery into one-dimensional (1D) signals (Acharya et al., 2013; Acharya, Meiburger, Faust, et al., 2019; Radon, 1986). The

algorithm steps-through a 180� semi-circle with 10� increments. The 18 results are passed on to the second step. Step 2 uses four HOS algo-

rithms to extract four features from these signals (Chandran et al., 1997; Chandran & Elgar, 1991, 1992, 1993; Chua et al., 2010). The four fea-

tures were normalized bispectrum (HOS entropy), normalized bispectrum squared (HOS entropy2), normalized bispectrum cubic (HOS entropy3),

and HOS entropy phase (Nikias & Mendel, 1993). The feature extraction process can be summarized as follows: four IMFs were extracted from

each ultrasound image. With the radon transform 18 1D signals were extracted from each IMF. From each 1D signal four HOS features were

extracted. Hence, the algorithm chain extracted 288 = 4 � 18 � 4 features for each ultrasound image.

2.5 | T-test based feature ranking

A t-test seeks to establish that a given statistic follows a Student's t-distribution under the null hypothesis (Student, 1908). We have used the t-

test to determine if the mean of a set which contains the values of a specific feature extracted from all 50 positive samples is significantly differ-

ent from the mean of a set that contains the values of the same feature, extracted from the 57 negative samples. Our null hypothesis was that

both sets have the same mean. The so-called p-value is the result of these efforts. As such, this value measures the probability that features

extracted from additional US images are similar to the results already observed, based on the assumption that the two classes have no statistical

relationship (Murtaugh, 2014). A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypoth-

esis. In our study, it meant that features with a lower p-value were better in discriminating positive versus negative ALN metastasis cases. There-

fore, we ranked the features according to their p-value in ascending order. This was done for features extracted from B-mode USG imagery, SWE

imagery, and for features extracted from both B-mode USG and SWE imagery.

2.6 | Classification

As part of this study, we have tested the ability of six classifiers to discriminate between positive (metastasis) and negative (normal) ALNs. The

classifiers were trained and tested according to the rules of 10-fold cross-validation. The following text describes the data handling for 10-fold

cross-validation, and it introduces the individual classification algorithms.

PHAM ET AL. 5 of 19
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2.6.1 | Feature vectors

t-test based feature ranking resulted in three ordered sets of features having 288 elements each. We use that information to generate 287 sets of

feature vectors for each ordered set of features. The feature vector sets are assembled as follows. The first set contains 107 2D feature vectors,

57 with a negative label and 50 with a positive label. The first element is the most significant feature, and the second element is the second most

significant feature. The next set contains 3D feature vectors whose elements are sourced from the three most significant features. This continues

until all 287 feature vector sets are created. As such, set 287 contains feature vectors with all 288 features. Each of the 861 = 287 � 3 feature

vector sets was used to train and test six classification algorithms based on 10-fold cross-validation.

F IGURE 2 Example images, together with their IMF processing, from both positive and negative classes

6 of 19 PHAM ET AL.

 14680394, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.12947 by U

niversity O
f Southern Q

ueensland, W
iley O

nline L
ibrary on [13/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.6.2 | 10-fold cross-validation

This validation method reduces the bias that arises from splitting a dataset into training and testing subsets (Kohavi, 1995). For this study, we had

50 positive and 57 negative feature vectors. In the first step, we have split the available feature vector set into 10 parts. Table 1 provides more

details on that split. In a second step, we generated 10 folds as follows: Each of the 10 parts was used for testing and the remaining nine parts

were used for training the classification algorithm. The individual classifiers are described below.

2.6.3 | Decision tree

A DT is a classifier can be expressed as a recursive partition of the instance space (Loh, 2011; Rokach & Maimon, 2005). The algorithm creates

nodes and assembles them in the form of a rooted tree. The root node has no incoming edges—it sources the data. Internal nodes have one

incoming and two outgoing edges. Each internal node decides, based on the input attributes, over which output edge the data is passed. That

decision splits the instance space into two sub-spaces. Nodes with only one input are called leaves. These leaves return the classification result—

either positive or negative.

2.6.4 | Linear discriminant analysis

In 1936, Fischer proposed LDA. The algorithm computes a projection hyperplane which minimizes the variance between classes while at the same

time maximizing the distance between the projected means of the classes. The functionality is based on solving an eigenvalue problem where the

corresponding eigenvector defines the hyperplane of interest. We have used the resulting hyperplane as a decision border which establishes a

classification system (Balakrishnama & Ganapathiraju, 1998; Izenman, 2013; Xanthopoulos et al., 2013).

2.6.5 | Quadratic discriminant analysis

QDA extends LDA by allowing the intraclass covariance matrices to differ between classes, so that discrimination is based on quadratic rather

than on linear functions (Pardoe et al., 2007; Srivastava et al., 2007).

2.6.6 | K-nearest neighbour

The k-nearest-neighbour classifier is commonly based on the Euclidean distance between a test sample and the specified training samples

(Kramer, 2013). An object is classified by a plurality vote of its neighbours, with the object being assigned to the class most common among its K-

NNs (Altman, 1992).

2.6.7 | Probabilistic neural network

PNNs can be used to solve pattern recognition and classification problems. The PNN algorithm establishes the parent probability distribution

function of each class with an approximated Parzen window and a non-parametric function (Mohebali et al., 2020).

TABLE 1 Partitioning of the feature vector set

Feature vector class

Part

1 2 3 4 5 6 7 8 9 10

Number of negative feature vectors 5 5 5 6 6 6 6 6 6 6

Number of positive feature vectors 5 5 5 5 5 5 5 5 5 5

PHAM ET AL. 7 of 19
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2.6.8 | Support vector machine

A SVM constructs a hyperplane in a high-dimensional space, which is used to separate positive and negative cases (Cortes & Vapnik, 1995). The clas-

sification quality depends on the separation between the class specific data points. The hyperplane is chosen such that it has the largest distance to

the nearest training-data point of any class (so-called functional margin). That minimizes the generalization error of the classifier (Noble, 2006).

3 | RESULTS

In this section, we document the classification and feature selection results. In the previous steps we have extracted the information from raw

ultrasound images. The information was captured in feature vectors and these feature vectors were arranged for 10-fold cross-validation. These

feature vectors allowed us to investigate the information extracted from B-mode USG, SWE, and B-mode USG + SWE. That investigation took

the form of classification-based feature selection. The basic idea was to use every feature vector set to train and test each classification algorithm.

Based on the results, we detected the highest accuracy for B-mode USG, SWE, and B-mode USG + SWE. Doing so revealed the classification per-

formance of a specific classification algorithm and the NoF used to achieve that classification performance.

3.1 | B-mode USG results

Table 2 documents the highest accuracy results that were achieved by testing six classification algorithms with feature vectors extracted from B-

mode USG imagery. Each row in the table body provides information about NoF, confusion matrix, and classification performance for one of the six

classification algorithms. For the binary classification problem of separating positive from negative, the confusion matrix has four entries, namely,

True Positive, True Negative, False Positive, and False Negative. The entry values were calculated by rounding the mean result for all folds to the

nearest integer. The classification performance was established with ACC, positive predictive value, SEN, and SPE measures. Overall, the best classifi-

cation performance was achieved by the PNN classifier. That algorithm achieved a classification ACC of 74.77% with the 15 best features.

Figure 3 documents our efforts to train and test the PNN classification algorithm. The graph represents the average accuracy of the algorithm

over the NoF in the feature vectors used for training and testing. In this case, average accuracy indicates the mean accuracy for all 10 folds. Purely

for display purposes, we limited the NoF to a range of 2–24. The resulting graph has a maximum of 74.80% for 15 features, which corresponds to

the highest accuracy achieved for B-mode USG imagery.

3.2 | SWE results

Table 3 documents the highest accuracy results that were achieved by testing six classification algorithms with feature vectors extracted from B-

mode USG + SWE imagery. Overall, the best classification performance was achieved by the PNN classifier. That algorithm achieved a classifica-

tion ACC of 87.85% with the 47 best features.

Figure 4 documents our efforts to train and test the PNN classification algorithm. For display purposes, we limited the NoF to a range of 2–

72. The resulting graph has a maximum of 87.85% for 47 features, which corresponds to the highest accuracy achieved for SWE imagery.

3.3 | B-mode USG + SWE results

Table 4 documents the highest accuracy results that were achieved by testing six classification algorithms with feature vectors extracted from B-

mode USG + SWE imagery. Overall, the best classification performance was again achieved by the PNN classifier. That algorithm achieved a clas-

sification ACC of 89.72% with the 71 best features.

TABLE 2 B-mode USG classification results

Classifier NoF TP TN FP FN ACC PPV SEN SPE

DT 5 32 32 25 18 59.81% 56.14% 64.00% 56.14%

LDA 15 36 39 18 14 70.09% 66.67% 72.00% 68.42%

QDA 2 32 37 20 18 64.49% 61.54% 64.00% 64.91%

K-NN 14 36 41 16 14 71.96% 69.23% 72.00% 71.93%

PNN 15 32 48 9 18 74.77% 78.05% 64.00% 84.21%

SVM 16 32 41 16 18 68.22% 66.67% 64.00% 71.93%
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Figure 5 documents our efforts to train and test the PNN classification algorithm. For display purposes, we limited the NoF to a range of 2–

95. The resulting graph has a maximum of 89.72% for 71 features, which corresponds to the highest accuracy achieved for B-mode USG + SWE

imagery.

The 71 features, from B-mode USG + SWE imagery were selected based on the highest accuracy value of 89.72%. Table 5 shows the

selected features, starting with the highest rank (1) down to the lowest rank (71). The rank corresponds to the t-value where a higher value indi-

cates that the feature was better in discriminating positive from negative cases, which justifies a higher feature rank. Careful analysis of the table

shows that 60 of the top features were extracted from SWE images and 11 features were extracted from B-mode USG images. IMF4 was most

often selected (34 occurrences), followed by IMF1 (20), IMF3 (11), and IMF2 (6). With 22 occurrences, Bi spectrum Entropy 1 features most

prominently in the table, followed Bi spectrum Entropy 3 with 17 occurrences, and Bi spectrum Entropy 2 with 16 occurrences. Phase entropy

also occurred 16 times.

4 | DISCUSSION

HOS entropy features are able to capture subtle changes in pixel variation (Acharya, Sudarshan, et al., 2017; Noronha et al., 2014). Hence, they

have been used in automated medical image classification (Acharya et al., 2016; Acharya, Meiburger, Koh, et al., 2019; Acharya, Ng, et al., 2017;

Koh et al., 2017).

It can be noted from the features demonstrated in Table 5 that most of the HOS-based features have shown higher feature values for the

presence of metastatic ALN (positive cases) as compared with the negative class. The presence of metastatic ALNs will cause a sudden change in

pixel value. Therefore, pixel value variability increases entropy value.

In addition, it can be noted from our classification results that using B-mode USG alone, our proposed system is able to obtain the highest

classification accuracy of 74.77% using 15 features with a PNN classifier. We have obtained a classification accuracy of 87.85% using SWE

images with PNN classifier. We have obtained an accuracy of 89.72% using B-mode USG + SWE images with a PNN classifier. Among the

F IGURE 3 Testing the PNN classifier with feature vectors extracted from B-mode USG imagery

TABLE 3 SWE classification results

Classifier NoF TP TN FP FN ACC PPV SEN SPE

DT 17 39 46 11 11 79.44% 78.00% 78.00% 80.70%

LDA 46 40 49 8 10 83.18% 83.33% 80.00% 85.96%

QDA 22 39 50 7 11 83.18% 84.78v 78.00% 87.72%

K-NN 67 43 50 7 7 86.92% 86.00% 86.00% 87.72%

PNN 47 44 50 7 6 87.85% 86.27% 88.00% 87.72%

SVM 41 42 48 9 8 84.11% 82.35% 84.00% 84.21%

PHAM ET AL. 9 of 19
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evaluated classifiers, the PNN classifier has yielded the best performance for this application, which may be due to the use of a RBF kernel func-

tion. This nonlinear kernel has helped to obtain a higher classification performance. Both accuracy (2%) and specificity (7%) for automated ALN

metastasis detection increase when we fuse information from B-mode USG and SWE images.

F IGURE 4 Testing the PNN classifier with feature vectors extracted from SWE imagery

TABLE 4 B-mode USG combined with SWE classification results

Classifier NoF TP TN FP FN ACC PPV SEN SPE

DT 26 41 48 9 9 83.18% 82.00% 82.00% 84.21%

LDA 62 40 51 6 10 85.05% 86.96% 80.00% 89.47%

QDA 65 41 51 6 9 85.98% 87.23% 82.00% 89.47%

K-NN 47 44 49 8 6 86.92% 84.62% 88.00% 85.96%

PNN 71 42 54 3 8 89.72% 93.33% 84.00% 94.74%

SVM 20 42 45 12 8 81.31% 77.78% 84.00% 78.95%

F IGURE 5 Testing the PNN classifier with feature vectors extracted from both B-mode USG and SWE imagery

10 of 19 PHAM ET AL.
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TABLE 5 Performance values of the 71 best features extracted from B-mode USG and SWE imagery

N Feature

Group negative Group positive

p-value t-valueMean SD Mean SD

1 SWE1 BiSE1 10� 0.847927 0.076808 0.923888 0.03241 1.88E-09 6.807523

2 SWE1 BiSE2 10� 0.61826 0.13497 0.767569 0.094954 1.36E-09 6.67782

3 SWE1 BiSE3 10� 0.435029 0.141112 0.608944 0.142851 6.84E-09 6.319104

4 SWE1 BiSE1 100� 0.872225 0.03009 0.900041 0.030305 6.53E-06 4.752766

5 SWE4 BiSE1 10� 0.403328 0.041076 0.439774 0.042439 1.81E-05 4.499065

6 SWE4 BiSE2 10� 0.088062 0.024786 0.111125 0.031896 7.86E-05 4.133957

7 SWE4 BiSE3 10� 0.042613 0.018298 0.059203 0.02451 0.000171 3.922425

8 SWE4 BiSE1 30� 0.384628 0.039689 0.417731 0.047858 0.000204 3.862733

9 SWE1 BiSEPh 10� 3.507566 0.091669 3.414671 0.152417 0.000332 3.754922

10 SWE4 BiSE2 20� 0.057613 0.017584 0.073599 0.026338 0.000473 3.638945

11 SWE4 BiSE2 30� 0.054189 0.018409 0.070209 0.026534 0.000569 3.57997

12 SWE4 BiSE3 30� 0.013447 0.00792 0.020807 0.012519 0.000592 3.576643

13 SWE4 BiSE3 20� 0.021982 0.011088 0.032734 0.018696 0.000648 3.555047

14 SWE4 BiSE1 20� 0.352431 0.037945 0.382998 0.051022 0.000786 3.476107

15 SWE3 BiSEPh 40� 3.30541 0.222354 3.141142 0.287614 0.00151 3.271108

16 USG1 BiSE1 20� 0.782564 0.035649 0.804265 0.034084 0.001731 3.216145

17 SWE1 BiSEPh 80� 3.561141 0.006353 3.564381 0.003922 0.001786 3.214582

18 SWE1 BiSE2 100� 0.696054 0.04816 0.732528 0.070984 0.002907 3.066636

19 SWE2 BiSE1 10� 0.605904 0.047728 0.635775 0.053278 0.003053 3.037022

20 SWE1 BiSE1 160� 0.798603 0.03658 0.818047 0.030203 0.003271 3.010344

21 SWE4 BiSE1 40� 0.377457 0.040222 0.402865 0.046755 0.00351 2.992115

22 SWE4 BiSEPh 140� 0.950543 0.235496 1.080616 0.216896 0.003657 2.973277

23 USG1 BiSE1 160� 0.798603 0.03658 0.818896 0.035469 0.004424 2.909825

24 SWE3 BiSE3 10� 0.166226 0.074668 0.20712 0.071639 0.004711 2.888354

25 USG1 BiSE1 70� 0.827659 0.033827 0.844968 0.028402 0.004872 2.876521

26 USG1 BiSE1 120� 0.828745 0.033532 0.845538 0.027906 0.005641 2.826313

27 SWE4 BiSEPh 150� 0.979327 0.252761 1.108462 0.219873 0.00564 2.826213

28 SWE4 BiSE2 40� 0.061266 0.018073 0.072461 0.02235 0.005793 2.823696

29 USG1 BiSE2 120� 0.622579 0.075301 0.657216 0.051242 0.005978 2.809499

30 SWE4 BiSEPh 180� 1.592947 0.187638 1.691713 0.178056 0.006239 2.791569

31 SWE4 BiSE3 40� 0.018354 0.008952 0.023894 0.011514 0.007168 2.750298

32 SWE3 BiSE2 10� 0.244355 0.071159 0.279638 0.061776 0.00711 2.74549

33 SWE4 BiSE2 160� 0.061134 0.022445 0.073466 0.024045 0.00747 2.730234

34 SWE4 BiSE2 130� 0.062614 0.023268 0.076048 0.027428 0.007924 2.71165

35 SWE4 BiSEPh 110� 1.22281 0.244755 1.344901 0.220965 0.007828 2.711487

36 SWE3 BiSE3 120� 0.221181 0.064028 0.186699 0.068732 0.008767 2.673073

37 USG1 BiSE1 60� 0.82 0.039052 0.837438 0.02814 0.008788 2.671992

38 SWE4 BiSE2 120� 0.072569 0.030537 0.09246 0.044382 0.009236 2.663813

39 SWE3 BiSE1 120� 0.441628 0.061967 0.47698 0.07469 0.00961 2.642753

40 SWE4 BiSE3 130� 0.018883 0.013195 0.026117 0.014923 0.009639 2.639959

41 SWE3 BiSE1 110� 0.438941 0.06123 0.469725 0.061498 0.011026 2.588684

42 SWE4 BiSEPh 170� 1.169662 0.168885 1.254345 0.168976 0.011072 2.587085

43 USG2 BiSE1 10� 0.605904 0.047728 0.629652 0.047428 0.011393 2.576482

44 SWE3 BiSE2 110� 0.256161 0.056953 0.284259 0.056501 0.012009 2.55701

45 SWE1 BiSE1 20� 0.782564 0.035649 0.800779 0.038385 0.012894 2.531766

46 SWE4 BiSE3 120� 0.022366 0.017962 0.035399 0.032433 0.0138 2.522367

(Continues)
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Figure 6 shows the bispectrum magnitude plots of negative and positive classes (Chandran & Elgar, 1991, 1992, 1993; Nikias &

Mendel, 1993; Vicnesh et al., 2020). It can be noted from this figure that the plots are unique, and that the signatures from plots have yielded

higher classification performance.

Table 2 shows the classification results based on features extracted from B-mode ultrasound. The highest accuracy was 74.77%. Table 3

shows the classification performance results obtained using SWE images. These results indicate an accuracy of 87.85%. Fusing features extracted

from both ultrasound imaging modalities, we achieved an accuracy of 89.72%, as shown in Table 4. This indicates that data fusion improved the

ALN detection performance. Having these clear results translates into the following advantages of the proposed system:

1. To the best of our knowledge this is the first work to use B-mode USG and SWE for automated detection of ALNs.

2. Obtained higher classification accuracy (ACC 89.72%) and specificity (94.74%).

3. Combination of BEMD and HOS entropies have yielded highest classification performance.

4. Proposed model is accurate and robust as we have used 10-fold cross-validation.

5. Proposed unique bispectrum magnitude plots for two classes.

Limitations of this work are as follows:

1. In this work, we used 107 images (57 negative and 50 positive). That small number of images might be insufficient to represent the variations

of ultrasound images encountered in a clinical setting. Furthermore, that number of images is not sufficient to train and test deep learning

models (Faust, Hagiwara, et al., 2018).

TABLE 5 (Continued)

N Feature

Group negative Group positive

p-value t-valueMean SD Mean SD

47 SWE3 BiSEPh 120� 3.138986 0.324469 2.977761 0.338902 0.01385 2.50448

48 SWE4 BiSE3 160� 0.018184 0.012395 0.024257 0.012737 0.014316 2.491774

49 SWE1 BiSE2 160� 0.539504 0.103581 0.580482 0.065836 0.015216 2.471445

50 SWE4 BiSE3 110� 0.02777 0.020301 0.042398 0.03735 0.015924 2.467859

51 SWE3 BiSE1 10� 0.441871 0.081832 0.480681 0.081287 0.015701 2.456374

52 USG2 BiSEPh 150� 3.520828 0.065396 3.544804 0.03267 0.016676 2.442305

53 SWE1 BiSE1 40� 0.797144 0.037816 0.81404 0.034013 0.016667 2.432959

54 SWE2 BiSE3 110� 0.317734 0.069173 0.352125 0.076353 0.016953 2.428487

55 SWE3 BiSE3 110� 0.177436 0.067456 0.209352 0.069055 0.01768 2.411199

56 SWE4 BiSE1 120� 0.4278 0.045477 0.452427 0.058693 0.018351 2.401288

57 SWE4 BiSE3 100� 0.03642 0.024201 0.052047 0.040281 0.019222 2.390745

58 SWE4 BiSE2 110� 0.072942 0.030215 0.091148 0.047165 0.021703 2.340556

59 SWE4 BiSEPh 70� 0.969568 0.204163 1.05734 0.18412 0.02128 2.338077

60 SWE1 BiSEPh 100� 3.548975 0.02998 3.529635 0.051781 0.022923 2.321661

61 SWE4 BiSE3 180� 0.02818 0.014957 0.035943 0.019506 0.024568 2.285982

62 SWE4 BiSEPh 100� 2.302574 0.48042 2.493738 0.38448 0.024405 2.283925

63 SWE2 BiSE2 10� 0.413249 0.06847 0.445011 0.074554 0.02449 2.283828

64 SWE1 BiSEPh 140� 3.562154 0.007447 3.564936 0.005058 0.024549 2.283294

65 SWE4 BiSEPh 90� 1.217874 0.218661 1.319028 0.240488 0.02571 2.264418

66 USG1 BiSE1 140� 0.817562 0.027427 0.831099 0.033708 0.026201 2.258688

67 SWE4 BiSE3 80� 0.023004 0.014098 0.033369 0.029716 0.027436 2.253834

68 USG4 BiSE1 40� 0.377457 0.040222 0.396572 0.046966 0.027046 2.244849

69 SWE4 BiSE2 100� 0.08225 0.033138 0.101358 0.051686 0.027738 2.241153

70 USG3 BiSEPh 40� 3.30541 0.222354 3.198353 0.268701 0.028314 2.226783

71 SWE2 BiSE3 140� 0.347745 0.07387 0.313594 0.085154 0.030091 2.200977

Note: N indicates the feature rank, and the feature name is composed from the imaging method (B-mode SWE or USG) combined with the IMF value (1–4).
BiSE indicates bi-spectrum entropy. The angle (x�) refers to the Radon transform angle. There are two mean and standard deviation (SD) columns, one for

the positive group and the other for the negative group. The feature performance is summarized with p- and t- values.
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2. The PNN classifier uses a large amount of memory, and it needs a proper smoothing parameter to achieve peak performance.

In the future, we intend to extend this work using more images, and also to explore the possibility of detecting other types of cancers like thyroid,

ovarian carcinoma, and other diseases such as liver cirrhosis.

F IGURE 6 Bispectrum magnitude plots obtained from SWE images: (a) negative and (b) positive

PHAM ET AL. 13 of 19
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5 | CONCLUSION

In this study, we investigated image acquisition and processing methods that can be used to improve the diagnostic relevance of ultrasound scans

for ALN metastasis detection. To facilitate the study, we constructed a sophisticated information extraction system. That system takes B-mode

USG and SWE imagery from the ALN as input. Based on a specific input image, the system indicates if it shows signs of metastasis (positive) or

not (negative). The generated labels were compared with the ground truth established by experienced human radiologists. The result of this com-

parison was reported in terms of ACC, SEN, SPE, and PPV. Our study was driven by the hypothesis that ultrasound imagery, captured with current

technology, contains sufficient information to improve ALN metastasis detection. To test this hypothesis, we have used the proposed information

extraction system to generate labels from SWE and B-mode USG ultrasound imagery. In a configuration that incorporated PNN, the information

extraction system achieved an accuracy of 73.83% for discriminating positive versus negative cases based on B-mode USG imagery. With the

same configuration, the system achieved 87.85% ACC for SWE imagery. This indicates that SWE images hold more diagnostically relevant infor-

mation. In a last test, we combined the features extracted from both B-mode USG and SWE images to determine the diagnostic relevance of com-

bining data from multiple sources. This test resulted in the best classification accuracy of 89.72%. From a data science perspective, these results

make sense because combining the information from different data sources usually leads to better results. Having improved non-invasive methods

to support the diagnosis of ALN metastasis might lead to a lower number of invasive diagnostic support tests. Lowering the number of invasive

tests can reduce the risk for patients and improve overall outcome.
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ACRONYMS

ACC Accuracy

ACR American College of Radiology

ALN Axillary lymph node

ALND Axillary lymph node dissection

BEMD Bi-dimensional empirical mode decomposition

DT Decision tree

FN False negative

FP False positive

HOS Higher order spectra

IMF Intrinsic mode functions

K-NN K-nearest neighbour

LDA Linear discriminant analysis

NoF Number of features

PNN Probabilistic neural network

PPV Positive predictive value

QDA Quadratic discriminant analysis

RBF Radial basis function

ROI Region of interest

SEN Sensitivity

SLNB Sentinel lymph node biopsy

SPE Specificity

SWE Shear wave elastography

SVM Support vector machine

TN True negative

TP True positive

UMMC University Malaya Medical Centre

US Ultrasound

USG Ultrasonography
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