A performance-based optimization method for topology
design of continuum structures with mean compliance
constraints

Qing Quan Liang®* and Grant P. Steven”

* Liang Computing Pty Ltd, 4/52 Orpington Street, Ashfield, NSW 2131, Australia
®School of Engineering, University of Durham, Durham, DHI 3LE, UK

Abstract

A performance-based optimization (PBO) method for optimal topology design of linear
elastic continuum structures with mean compliance constraints is presented in this paper. The
performance-based design concept is incorporated in continuum topology optimization, which
is treated as the problem of improving the performance of a continuum design domain in
terms of the efficiency of material usage and overall stiffness. A simple scheme is employed
in the proposed method to suppress the formation of checkerboard patterns. Two energy-
based performance indices are derived for quantifying the topology performance of plane
stress structures and plates in bending. Performance-based optimality criteria incorporating
performance indices are proposed, and can be used in any continuum topology optimization
methods for compliance minimization problems to obtain the optimum. Numerical examples
are provided to demonstrate the effectiveness and validity of the PBO method in producing

optimal topologies of continuum structures.
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1. Introduction

The performance-based design is currently a popular design concept in the filed of structural
engineering. This design concept describes the required and possessed performance of a
structure being concerned. The performance is classified into serviceability, restorability,
safety and cost. The performance of a structure is quantified by performance indices.
Structural responses, such as stresses and displacements, are used as performance indices to
evaluate the performance of structures. Many design codes of practice have been changing
from the limit state design to the performance-based design. The intent is to provide owners
and designers with alternative performance objectives for different structures and needs.
Performance objectives are qualitatively expressed by non-engineering terms that can be

easily understood by the owners and community.

The cost performance has increasingly become an important consideration in structural design
because of the limited material resources, technological competition and environmental
impacts. Structural optimization methods are efficient tools for achieving the cost-
performance objective, and can be categorized into sizing, shape and topology optimization.
The importance of topology optimization is justified by the fact that it can significantly
improve the cost performance of a structure when comparing with sizing and shape
optimization. In an integrated design process, topology optimization can be used as a

preprocessing tool for sizing and shape optimization.

The shape optimization problem of continuum structures has been solved by Zienkiewicz and
Campblell [1] using a sequential programming technique. A survey on continuum shape
optimization has been conducted by Haftka and Grandhi [2]. Topology optimization of

continuum structures as a generalized shape optimization problem has received considerable



attentions in recent years, as demonstrated by the work of Rozvany et al. [3]. In 1988,
Bendsee and Kikuchi [4] introduced the homogenization-based optimization (HBO) method,
which is shown to be effective in generating optimal topologies of continuum structures. In
the HBO method, topology optimization is transformed to the problem of material
redistribution within a design domain constructed by composite material with microstructures.
The effective material properties of the composite material are calculated using the theory of
homogenization. The homogenization-based design concept has been used to solve the
problems of maximum stiffness topology design by Suzuki and Kikuchi [5], Diaz and
Bendsee [6], Tenek and Hagiwara [7], Bendsee et al. [8], and Krog and Olhoff [9], frequency
optimization by Diaz and Kikuchi [10] and Ma et al. [11], and optimization against buckling

by Min and Kikuchi [12].

Simple approaches to topology optimization of continuum structures have been reported in
the literature. The density function approach proposed by Mlejnek and Schirrmacher [13] and
Yang and Chuang [14] uses the material density of each finite element as the design variable
to solve the topology optimization problem. The effective material properties can be
evaluated using the relationships between the material density and Young’s modulus, as
suggested by Gea [15]. Alternatively, the optimal topology of a continuum structure can be
generated by removing underutilized elements from the structure in an evolutionary manner.
This kind of optimization techniques is known as the hard kill optimization (HKO) method,
which has been reported by Rodriguez and Seireg [16], Atrek [17], Rozvany et al. [18], Xie
and Steven [19,20], and Hinton and Sienz [21]. Without element elimination, Mattheck and
Burkhardt [22] and Baumgartner et al. [23] suggested a soft kill optimization (SKO) method.

In the SKO, by setting the Young’s modulus equal to the effective stress of elements in an



optimization process, the optimal topology that represents an efficient load-carrying

mechanism in the design domain can be characterized by the variation in its modulus.

For the maximum stiffness topology design, the mean compliance of a structure is commonly
used in most of the existing optimization methods as the objective function, and the constraint
is imposed on a somewhat arbitrarily specified material volume. In stress-based optimization
methods, either the number of iterations or the material volume is used as the termination
condition for determining the optimum. Obviously, appropriate criteria for identifying the
optimum are still lacking in these continuum topology optimization methods that can lead to
many locally optimal solutions. To overcome this problem, performance-based optimality
criteria in terms of performance indices have been developed and incorporated in the
performance-based optimization (PBO) method by Liang et al. [24-26] to obtain the optimum.
In practice, the PBO method for continuum structures with displacement constraints has been
proposed by Liang et al. [27,28] as a rational and efficient tool for automatically generating
optimal strut-and-tie models for the design and detailing of structural concrete, which

includes reinforced and prestressed concrete structures.

In this paper, an extension of the PBO method for topology design of linear elastic continuum
structures with mean compliance constraints is presented. The performance-based design
concept is incorporated in continuum topology optimization. The performance objective is to
minimize the weight of a structure for a required stiffness performance. Element removal
criteria based on the strain energy density of elements are described together with a simple
scheme for suppressing the formation of checkerboard patterns. Performance-based optimality

criteria are formulated for determining optimal topologies from the optimization process. A



performance-based optimization procedure is presented. Numerical examples are examined to

show the efficiency of the PBO method as a practical design tool.

2. Performance objective

The performance-based optimal design is to design a structure or structural component that
can perform physical functions in a specified manner throughout its design service life at
minimum cost or weight. The performance of an optimized design for stiffness can be
expressed by its weight and associated strain energy. For practical purposes, the minimum
material quantity should be sought by using optimization methods rather than specified by the
designer. It is realistic to treat the weight of a structure as the objective function and structural
responses such as the mean compliance or displacements as constraints since limitations on
structural responses are specified in design codes. The performance objective of topology
optimization is to seek a minimum-weight design with an acceptable mean compliance. This

can be expressed in mathematical forms as follows:

minimize W =) w, () (1)
e=1

subjectto C<C" )

th<e<t? 3)

in which W is the total weight of a structure, w, is the weight of the eth element, 7 is the

thickness of elements, C is the absolute value of the mean compliance of the structure, C* is
the prescribed limit of C, and # is the total number of elements in the structure, ¢*is the

lower limit of element thickness and ¢V is the upper limit of element thickness. Since the



thickness of a continuum structure has a significant effect on the weight of the final design, it
is treated as one of the design variables in order to obtain the best design. To simplify the
optimization problem, the uniform sizing of element thickness is considered in the proposed

method.

3. Element removal criteria

By performing a finite element analysis on a continuum structure under applied loads, it can
be found that some regions of the structure are not as effective in carrying loads as other
regions. Removing these underutilized regions from a structure can result in a higher
performance design. The criteria for element removal can be formulated on the basis of the
design sensitivity analysis of constraints with respect to design variables. In the PBO method,
the design sensitivity analysis is to investigate the effect of element removal on the changes of
the mean compliance of a continuum structure. Approximate concepts are employed in the

design sensitivity analysis.

Consider a linearly elastic continuum structure under applied loads and boundary conditions.

By modeling the structure with finite elements, the equilibrium equation for the structure can

be written by

[K]{u} = {P} “4)

where [K]is the stiffness matrix of the structure, {u} is the displacement vector and {P}is the

nodal load vector. When the eth element that is less effective in carrying loads is removed



from a design domain, the stiffness matrix and displacement vector of the structure are

changed accordingly. Eq. (4) can be rewritten as
(IK]+[AKD({u} + {Auj) = {P} )

in which [AK]is the changes of the stiffness matrix and {Au} is the change of nodal

displacements vector. The loads applied to the structure are assumed to be unchanged in an
optimization process. Since only the eth element is removed from the structure, the change of
the stiffness matrix can be derived as follows

[AK]=[K,]-[K]=-k.] (6)

where [K, ]is the stiffness matrix of the resulting structure and [£,] is the stiffness matrix of
the eth element. The change of displacement vector due to element elimination can
approximately be obtained from Egs. (4) and (5) by neglecting higher order terms as

{Au} = ~[K]"'[AK {u} (7

The strain energy or mean compliance of a structure is represented by
L oot
C=Jir ®)

The change of the strain energy of a structure due to the removal of the eth element can

approximately be derived as follows



AC =%{P}T{Au} = —%{P}T[K]_l[AK]{M} = —%{u}T[AK]{u} =%{ue}T[ke]{ue} ©)

in which {u,} is the displacement vector of the eth element. Eq. (9) indicates that the change

of the strain energy of a structure due to the removal of the eth element is equal to the strain
energy of the eth element. This means that the element strain energy is a measure of element

contribution to the overall stiffness performance of a structure, and is denoted as
Lor
Co =5 lu [k Jud (10)

To achieve the performance objective, it is obvious that a small number of elements with the
lowest strain energy should be systematically removed from a design domain. For continuum
structures modeled with different size finite elements, the element strain energy per unit
weight, which is defined as the strain energy density of the element, should be calculated for

element elimination. The strain energy density of the eth element is

Checkerboard patterns often present in optimal topologies generated by continuum topology
optimization methods when elements whose numerical stability is not guaranteed are used in
the finite element analysis. The presence of checkerboard patterns leads to difficulty in
interpreting and manufacturing optimal structures. As a result of this, it is desirable to
suppress the formation of checkerboard patterns in continuum topology optimization. An

investigation conducted by Jog et al. [29] shows that using higher-order elements whose



numerical stability is guaranteed by the Babuska-brezzi condition can prevent checkerboard
patterns from occurring. However, the use of higher-order elements significantly increases the
computational cost. Youn and Park [30] suggested a density redistribution method, which is
shown to be effective in suppressing the formation of checkerboard patterns. A similar
scheme to the density redistribution method is incorporated in performance-based
optimization algorithms. In this scheme, the nodal strain energy densities of an element are

calculated by averaging the strain energy densities of neighboring elements as follows

Coa =— D7, (12)

where ¢

n

, 1s the nodal strain energy density and M is the number of elements that connect to

that node. The strain energy density of each element can be recalculated from the nodal strain

energy densities at the nodes of that element by

Ce—Q G (13)

nd=1

in which ¢, is the recalculated strain energy density of the eth element and Q is the number

of nodes in the element. This simple scheme can effectively suppress the formation of

checkerboard patterns as demonstrated by examples presented in this paper.

For structures subject to multiple loading conditions, a logical AND scheme can be used in
optimization algorithms to take account of the effects of different loading conditions on

optimal designs, as suggested by Liang et al. [25]. In the logical AND scheme, an element is



eliminated from the design domain only if its strain energy density (¢, ) is the lowest for all

loading conditions. A loop is used to count elements with the lowest strain energy density
until they made up the specified amount that is the element removal ratio times the total
number of elements in the initial design domain. The element removal ratio (R) for each
iteration is defined as the ratio of the number of elements to be removed to the total number of
elements in the initial design domain. The element removal ratio is not changed in the whole

optimization process.

4. Performance-based optimality criteria (PBOC)

4.1 General

By gradually eliminating elements with the lowest strain energy densities from a design
domain, the distribution of strain energy densities will consequently become more and more
uniform. The uniform strain energy density has been used as an optimality condition in truss
topology optimization approaches, and can be derived by using the Kuhn-Tucker condition
[31]. However, the uniform condition of element strain energy densities in a continuum
structure under applied loads is seldom achieved by numerical topology optimization methods
even if the mean compliance constraint has been violated. This means that a minimum-weight
design with an acceptable stiffness performance is not necessarily a structure in which the
distribution of element strain energy densities is absolutely uniform. Therefore, the uniformity
of element strain energy densities cannot be incorporated in continuum topology optimization
methods as a termination condition for determining the optimum. Performance-based

optimality criteria are proposed here for obtaining optimal topologies.
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4.2 PBOC for plane stress structures

In design problems with element thickness or cross-sectional design variables, an infeasible
design in an optimization process can be converted into a feasible one by the scaling
procedure. Due to its simplicity and efficiency, this scaling procedure has been used in truss
topology optimization by Kirsch [32]. The scaling design concept has been utilized to develop
performance indices for evaluating the performance of structural topologies and shapes

subject to stress and displacement constraints by Liang et al. [24,26].

For plane stress continuum structures, the stiffness matrix of a structure is a linear function of
element thickness. Therefore, for structures with the mean compliance constraint, the element

thickness can be uniformly scaled to keep the mean compliance constraint active at each

iteration in the optimization process. By scaling the initial design with a factor of C,/C", the

scaled weight of the initial design can be expressed by

W, - [CZ jWo (14)

in which W is the actual weight of the initial design domain and C; is the strain energy of the

initial design under applied loads. Similarly, by scaling the current design with respect to the
mean compliance limit, the scaled weight of the current design at the ith iteration can be

determined by

W =[C" jW (15)
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where C, is the strain energy of the current structure under applied loads at the ith iteration

and W, is the actual weight of the current structure at the ith iteration.

The performance of the resulting structure at the ith iteration can be evaluated by the

performance index, which is proposed as

WE (C,/CHW, C,W,
PIES - = " =
WS (CICW,  CW,

(16)

It is seen that the performance index is composed of the strain energy and the weight of the
structure. The performance index composed of strain energy is called the energy-based
performance index in order to distinguish it from the stress-based performance index [24] and
the displacement-based performance index [26]. By systematically eliminating elements with
the lowest strain energy densities from a continuum structure, the performance of the
structure can gradually be improved. The higher value of the performance index means the
better performance of a structural topology. The performance characteristics of structural
topologies in an iterative optimization process can fully be demonstrated by the weight-
compliance curve as shown in Fig. 1. Performance characteristics indicate whether a proposed
design for specified performance is feasible. In addition, they provide a measure of the

success of the design configurations.

To obtain the optimal topology, the performance-based optimality criterion (PBOC) for plane

stress structures with the mean compliance constraint is proposed as

12
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(17)

maximize Pl , =

This PBOC means that the optimal topology of a continuum structure under applied loads is
found when its associated strain energy and material consumption are a minimum. The
optimal topology obtained represents an efficient load-carrying mechanism within the design
domain. It can be observed from Eq. (17) that the optimal topology does not depend on the
mean compliance limit. Since the performance index is a dimensionless number, the uniform
scaling of element thickness does not affect its values. Therefore, the element thickness of an
initial design domain can be assumed and needs not to be changed in the finite element
analysis and optimization process. The performance index can be employed to monitor the
optimization history so that the optimum can be identified from the performance index
history. Scaling the thickness of an optimal topology obtained can satisfy the actual mean

compliance constraint.

For a structure subject to multiple loading cases, the performance index of a structure at each
iteration can be calculated by using the strain energy of the structure under the most critical
loading case in the optimization process.

4.3 PBOC for plates in bending

When the thickness of a bending plate is uniformly scaled, the displacement vector of the

scaled plate can be represented by

w'y=— ) (18)
@
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where {u°}is the scaled displacement vector, and ¢ is the scaling factor. It can be seen from
Eq. (8) that the mean compliance of a bending plate is proportional to the displacement
vector. If the thickness of a bending plate is reduced by a factor ¢, the mean compliance will
increase with a factor of 1/¢’. In order to satisfy the mean compliance constraint, the plate

needs to be scaled by a factor

¢=(Cj (19)

By following the scaling procedure, the performance index of a bending plate at the ith

iteration can be derived as follows

C,

1/3
C /4
PI,, = [—0] WO (20)
It is seen that the performance index is a measure of structural responses and the weight of a
plate in the optimization process, and thus quantifies the performance of a bending plate.
Therefore, the performance-based optimality criterion for plates in bending with a mean

compliance constraint can be proposed as

i

1/3
C /4
maximize PI , = (FOJ WO (21)

It should be noted that for a bending plate under multiple load cases, the strain energy of the

plate under the most critical load case should be used in the calculation of the performance

14



index.

5. Performance optimization procedure

The finite element method is used in numerical topology optimization techniques as a

modeling and analytical tool. Based on the information obtained from the results of the finite

element analysis (FEA), underutilized elements can be identified, as discussed previously.

The performance of a structural topology can then gradually be improved by systematically

eliminating these underutilized elements from the structure. The process of FEA and

performance improvement is repeated until the termination criterion is satisfied. The main

steps of the performance-based optimization procedure are given as follows:

(1)

2)
3)

(4)

()

(6)

Model the initial design domain with fine finite elements. Applied loads, material
properties and support conditions are specified. Non-design regions that are not
removed in an optimization process are defined by specifying the number of their
material properties to a different number from that of design regions.

Perform a linear elastic finite element analysis on the structure.

Evaluate the performance of the resulting topology using Eq. (16) for plane stress
structures and Eq. (20) for plates in bending.

Calculate the strain energy densities of elements (¢, ) under each loading case.
Remove R (%) elements with the lowest strain energy densities (¢, ) from the design

domain.
Check continuity of the resulting structure. The continuity constraint affects resulting

topologies in the optimization process. It is assumed that two elements are connected
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(7)

(8)

)

(10)

together if they have at least one common edge. Any element that is not connected with
other elements is considered as a singular element, which is removed from the model.
Check the symmetry of the resulting structure. A scheme for checking the symmetry of
resulting structures is employed in the optimization algorithm. Extra elements are
removed from the structure to maintain the symmetry of resulting structures under an
initially symmetrical condition.

Save data for the current structure. The data for structures generated in the optimization
process is saved to files so that the optimization history can be kept track.

Repeat step (2) to (8) until the performance index is less than unity or kept constant in
later iterations.

Plot the performance index history and select the optimum. The optimal topology that
corresponds to the maximum performance index can be identified from the performance

index history.

6. Numerical examples

6.1 Verification of the PBO method

The Michell truss shown in Fig. 2 is known as an optimal solution, which was obtained by

using the analytical method by Michell [33]. This example is to show that whether the PBO

method proposed for topology design problems with mean compliance constraints can

reproduce the Michell truss. A continuum structure shown in Fig. 3 is used as the initial

structure for deriving the Michell truss, as adopted by Bendsee et al. [34]. The initial structure

is discretized into 110 x 80 four-node plane stress elements. The circular non-design domain

constructed approximately by rectangular elements is treated as the fixed support where no

16



deformations are allowed. A tip load is applied to the centre of the free end as illustrated in
Fig. 3. The Young’s modulus of material £ = 200 GPa, Poisson’s ratio v = 0.3, and the
thickness of elements # = 5 mm are assumed in the analysis. The element removal ratio R =

2% is employed in the optimization.

The performance characteristics of the Michell structure in the optimization process are
demonstrated by the dimensionless weight-compliance curve shown in Fig. 4. It is seen that
by gradually removing elements from the design domain, the mean compliance of the Michell
structure increases with the reduction in its weight. In addition, this curve indicates the
variation rate of the weight and mean compliance in the optimization process. The
performance index history of the Michell structure is presented in Fig. 5. The performance
index in the optimization process increases when elements with the lowest strain energy
density are gradually removed from the design domain. The maximum performance index is
1.33, which occurs at iteration 14. The optimal topology corresponding to the maximum
performance index is shown in Fig. 6(a). It is observed that the optimal topology obtained is a
continuum-like structure with a few small holes inside rather than a discrete Michell truss.
This demonstrates that continuum topology optimization may or may not result in truss-like
optimal structures so that is a more general approach than the truss topology optimization

method.

In order to generate a truss-like structure, the optimization process is continued. The resulting
topologies at iterations 17 and 23 are shown in Fig. 6(b) and (c), respectively. It can be seen
from these figures that when more and more elements are removed from the design domain,
the resulting topology is gradually evolved towards a truss-like structure. If the resulting

structure is to be designed as a truss, the topology shown in Fig. 6(c) agrees extremely well

17



with the Michell truss and solutions produced using the HBO method by Suzuki and Kikuchi

[5] and Bendsee et al. [34].

It is observed from Fig. 5 that the performance of resulting topologies at iterations from 14 to
23 decreases only slightly. This indicates that the material volume that is needed to construct
these structures is almost the same while satisfying the same mean compliance limit. In other
words, the structure can be designed by selecting one of these topologies shown in Fig. 6. The
performance index is a useful tool, which assists the selection of the best topology in
structural design when the structural performance, aesthetic and construction constraints are

taken into consideration.

6.2 Layout design of bridge structures

In this example, the PBO method is used to find the best layout of a bridge structure under
uniformly distributed traffic loading in the conceptual design stage. The design domain and
support conditions of a bridge structure are illustrated in Fig. 7, where the bottom supports are
fixed. The continuum design domain is modeled with 90 x 30 four-node, plane stress
elements. The two rows of elements below the loading level are treated as the non-design
domain, which represents the bridge deck. The uniformly distributed loading is modeled by
applying a 500 kN point load per node. The Young’s modulus of material £ = 200 GPa,
Poisson’s ratio v = 0.3 and the thickness of elements # = 300 mm are used in the analysis.

The R = 1% is adopted in the optimization process.

Fig. 8 shows the performance characteristic of the bridge structure in the optimization

process. In the early stages of the optimization process, element elimination only has a minor
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effect on the overall stiffness performance of the bridge structure. However, after iteration 65,
further element removal leads to a large increase in the mean compliance, as indicated by the
plateau of the curve. This can also be seen from the performance index history of the bridge
structure presented in Fig. 9, which shows that the performance of the structure drops sharply
after iteration 65. This is because the load-carrying mechanism is destroyed by further

element elimination. The maximum performance index is 1.40, which occurs at iteration 56.

The topology optimization history of the bridge structure is presented in Fig. 10. It is
observed that the part below the bridge deck is systematically removed since they have no
contributions to the structural efficiency. The optimal topology obtained is shown in Fig.
10(c). This optimum design indicates a well-known tie-arch bridge structural system that has
commonly been used in bridge engineering. In the design of bridge structures, the designer
usually needs to consider various important aspects, such as structural performance, economy,
aesthetic and constructability. The aesthetic issue may weight over the economical aspects if
the beauty of a bridge is of importance to the surrounding environment. To select a bridge
form that not only has a good looking but also has a high structural performance, the
performance index plays an important role. It is seen from Fig. 10 that the performance of the
topology obtained at iteration 64 is almost the same as that of the optimum. However, the
form shown in Fig. 5.12 (d) looks better than the optimum. Therefore, it is suggested that the
topology shown in Fig. 10(d) shall be used as the final design proposal for the bridge layout.
The arch of the bridge can be constructed by using either concrete or steel trusses, which are

the structural form used in the Sydney Harbor Bridge.

6.3 Plate in bending
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A clamed square plate (400 x 400) under a concentrated load of 500 N applied at its centre is
optimized using the PBO method. The design domain of the plate in bending is divided into
50 x 50 four-node plate elements. The Young’s modulus £ = 200 MPa, Poisson’s ratio v=
0.3 and the thickness of the plate # = 5 mm are assumed in the analysis. Four elements around
the loaded point are frozen so this region is not removed during the optimization process. The

element removal ratio R = 1% is adopted.

The performance characteristics of the plate in bending are fully captured using the PBO
method and are demonstrated in Fig. 11. The performance index history of the plate is shown
in Fig. 12, where the maximum performance index is 2.13. After reaching its highest
performance, the plate fails due to further element removal, as indicated by the sharp drop of
the performance index shown in Fig. 12. The topology optimization history of the plate in
bending is presented in Fig. 13. It is seen that the corners of the plate have been removed

since these regions have the less contribution to the overall stiffness performance.

6.4 Effects of finite element meshes

This example is to investigate the effects of finite element meshes on the optimal topologies
of continuum structures optimized by the PBO method while other conditions are fixed. The
Michell type structure with a simply supported condition is used as the test example. Fig. 14
shows the design domain for the simply supported Michell structure under a concentrated
load of P =100 kN. The design domain is divided into three different meshes, such as 70 x
35,100 x 50 and 120 x 60, using four-node plane stress elements. The Young’s modulus £ =
200 GPa, Poison’s ratio v = 0.3 and the thickness of all elements # = 10 mm are specified.

Plane stress conditions are assumed in the finite element modeling. To eliminate the effects of

20



element removal ratio on final solutions, the element removal ratio R = 1% is used for all
cases. The structure is analyzed and optimized by using the PBO method for three different

finite element discretizations.

Fig. 15 shows the performance index histories for the Michell structure modeled with
different finite element meshes. It is observed from Fig. 15 that the discrepancies of the
performance index value between different meshes increase with the increases in the iteration
numbers. It is shown that the finer the mesh used to model the structure, the higher the
performance of the optimal topology obtained. The maximum performance indices of
optimized structures for meshes 70 x 35, 100 x 50 and 120 x 60 are 1.53, 1.60 and 1.67,
respectively. It can be observed that performance indices reach the peak values at different
iterations for the structure optimized using different meshes for the same element removal
ratio. After reaching the peak, performance indices decrease and finally drop very sharply. It
is also observed that more iterations are usually needed for a structure modeled using a finer

mesh to obtain the optimum.

Optimal topologies obtained using three different meshes are presented in Fig. 16. The
optimal topology generated using 70 x 35 finite elements indicates a truss-like structure as
shown in Fig. 16(a). By inspection, it is seen that the in-plane member size of the truss is
approximately proportional to the axial force carried by that member. In other words, the
distribution of element strain energy density within the optimal topology is approximately
uniform since elements with the lowest strain energy density are systematically eliminated
from the design domain. It is also seen from Fig. 16(a) and (b) that these optimal topologies
are almost identical. However, the optimal topology with a finer mesh discretization exhibits

a truss-like structure in which the in-plane member size is smaller than that with a coarse one.
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The optimal solution obtained by Michell [33] using the analytical method indicates a pined-
joint truss with finite members. The strain filed in the Michell truss was assumed to be
linearlized. In addition, compression and tensile members of the Michell truss are subjected to
the same allowable stress. It should be noted that the Michell truss is theoretical optima,
which is not necessarily a practical design. It is noted that a more accurate solution can be
achieved by using a finer mesh in the finite element analysis. To see whether the optimal
structure can approach the Michell truss, a 120 x 60 mesh is used to divide the design
domain. The optimal topology obtained using 120 x 60 elements is presented in Fig. 16(c). It
is seen that a more Michell truss-like structure is obtained by using the finer elements in
continuum topology optimization. If elements were refined infinitely, the optimal structure

would be towards the Michell truss.

This investigation shows that the optimal structure converges to the theoretical optima as
sufficiently fine elements are used. Even coarse mesh can produce a rough idea of the
optimal structure. In the conceptual design stage, if the PBO method is used to find the
primary layout of an optimal structure, a coarse mesh can be used to solve the optimization
problem. After obtaining the optimal topology, shape optimization techniques can be

employed to further improve its performance.

7. Conclusions

This paper has presented a PBO method incorporating the uniform sizing of element thickness
for topology design of linear elastic continuum structures with mean compliance constraints.
The optimal topology of a continuum structure is generated by gradually deleting elements

with the lowest strain energy densities from a continuum design domain. Two energy-based
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performance indices have been developed for evaluating the topology performance of plane
stress structures and of bending plates subject to mean compliance constraints. Performance-
based optimality criteria have been proposed to allow for the optimal topology to be identified
from the optimization history. Performance characteristics of structural topologies in an

optimization process are expressed by the weight-compliance curves.

The PBO method can produce optimal topologies that might be obtained by analytical
methods and other continuum topology optimization approaches. It is shown that simply
recalculating the strain energy densities of elements can suppress the formation of
checkerboard patterns in the proposed method. Continuum topology optimization methods
may or may not result in truss-like optimal structures. This study also indicates that the finite
element mesh has considerable effects on the optimal topologies and their performance. The
finer the mesh used to model a structure, the higher the performance of the optimal topology

obtained.

Performance indices formulated in this paper are very useful tools, which assist the structural
designer in the selection of the best topology in structural design when considering the
required performance, aesthetic and construction constraints. They can also be used to rank
the efficiency of structural topologies and shapes generated by different structural
optimization methods. Performance-based optimality criteria proposed herein can be
incorporated in any continuum topology optimization methods for compliance optimization
problems to determine optimal designs. The mathematical formulation of the PBO method is
simple to understand by practicing engineers. Moreover, the performance-based optimization
concept incorporated in the proposed method is consistent with the performance-based design

concept being adopted in current building codes of practice. Therefore, the PBO method is a
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valuable design tool for practicing engineers in the performance-based layout design of

continuum structures.
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(a) Optimal Topology at iteration 14, P/, =1.23

(b) Topology at iteration 17, Pl = 1.22

(c) Topology at iteration 23, Pl =1.19

Fig. 6. Topology optimization history of Michell structure
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(b) Topology at iteration 20, PI,, =1.24

(a) Topology at iteration 10, PI,, = 1.11

(d) Optimum at iteration 59, PI,, =2.13
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(c) Topology at iteration 40, P/

Fig. 13. Topology optimization history of the plate in bending
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Fig. 16. Mesh effects on optimal topologies of Michell



