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Abstract. In this study, a novel method is proposed to combine modified 

detrended fluctuation analysis (DFA) and entropy to extract features of electro-

encephalogram (EEG), which are then processed using a random forest algorithm 

to generate a new DoA index. The bispectral index (BIS) was used as the refer-

ence standard. The proposed DoA index achieved Pearson and Spearman corre-

lation coefficients of 0.97 (p<0.01) and 0.95 (p<0.01) with the BIS index, respec-

tively. Additionally, the mean squared error (MSE), root mean squared error 

(RMSE), and mean absolute error (MAE) were 20.45, 4.52, and 2.85, respec-

tively. These results indicate that the proposed DoA index is more accurate in 

patients’ consciousness level assessment. 
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1 Introduction 

General anesthesia is often given to surgical patients to induce a state of loss of con-

sciousness, disappearance of external stimuli, decrease of motor function and memory 

forgetfulness by anesthetics inhibiting the central nervous system. The purpose is to 

help intraoperative patients tolerate medical procedures and ensure comfort and safety. 

However, it is significant to maintain appropriate anesthesia depth as both overdose and 

underdose can pose significant risks to patients. Overdose would prolong postoperative 

recovery, cause serious brain injury and even increase the postoperative mortality of 

patients [1], [2]. While underdose leads to intraoperative awareness, which can induce 

severe physical and psychological trauma [3], and symptoms of posttraumatic stress 

disorder (PTSD) in patients [4].  

In clinical operations, anesthetists often judge the Depth of Anesthesia (DoA) 

through the vital signs and physiological parameters of patients, such as blood pressure, 

heart rate, sweating, and tears applied in the PRST score [5]. However, the qualitative 

judgment of DoA based on descriptive behavioral assessments of patients’ response to 

the irritant reaction would inevitably lead to the assessment error of anesthesia status. 

And the inconsistent conclusions on DoA may be drawn from different anesthetists.  
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Since the above method cannot be recorded in a real-time manner, several methods 

have been proposed, such as heart rate [6], evoked potential [7], ECG [8], and other 

biomedical signals [9], and some of them have already been applied clinically, espe-

cially electroencephalogram (EEG). As the representation of brain activity, EEG can 

directly track the variation of the central nervous system induced by the anesthetics 

[10]. Take a widely applied EEG-based anesthesia monitor, BIS monitor, as an exam-

ple, the EEG was recorded from the 2 or 4 sensors placed on the forehead, and then 

processed with the proposed especially methods to present a 0-100 dimensionless num-

ber to quantify the depth of anesthesia ranging from very deep anesthesia to awake 

state. However, the BIS monitor suffers from the variability of EEG patterns during 

different stages and anesthetics applied [11], which disrupt the EEG representation. 

Therefore, many methods have been proposed in the past decade for the exploration 

like entropy, fractal analysis and deep learning methods. Shalbaf et al. implemented 

sample entropy (SampEn) and permutation entropy (PermEn) with Aritificial Neural 

Network (ANN) model to quantify the DoA over the 2 data groups of sevoflurane and 

propofol. The multivariate empirical mode decomposition with multi-scale PermEn 

was applied on DoA monitoring by [13]. Liang et al. compared various entropy meth-

ods in classifying 3 consciousness states [14]. Jospin et al. and Gifani et al. both applied 

Detrended Fluctuation Analysis (DFA) and focused on finding the optimal scale range 

to better represent the relationship between the EEG sequence and anesthesia state [15], 

[16]. Nguyen-Ky et al. modified DFA and built a model thus improving the discrimi-

nation between the awake state and light anesthesia state [17]. Liu et al. applied Short-

time Fourier Transform (STFT) and transformed the time series into spectrum, thus 

classifying the awareness state via Convolutional Neural Network (CNN) [18]. Asfar 

et al. further composited Long-short term memory (LSTM) and attention layers on dis-

criminating awareness levels. 

Despite the fact that several investigations have been made, the results were not as 

satisfactory as invented. Most efforts have been made to search the optimal scaling 

range for the sequences under anesthesia states individually or overall. The self-simi-

larity variations calculated from the linear trend reduction under different awareness 

levels cannot present linear persistently. Furthermore, repeated calculations on increas-

ing scales suffer from computation efficiency, which prevents DFA application in real-

time monitoring. 

In this study, we proposed a novel method that integrated DFA and entropy-based 

feature extraction with an optimized random forest model to predict the depth of anes-

thesia (DoA) as shown in Fig. 1. The dataset utilized in this study comprises EEG re-

cordings from 73 patients, which were split into training, validation, and test sets in a 

60%, 20%, and 20% ratio, respectively. Specifically, EEG recordings from 45, 14, and 

14 patients were used for feature selection, model evaluation, and performance assess-

ment. To ensure reproducibility, a random number generator was set to the default seed 

and algorithm. 

For each EEG recording, a sliding window technique was applied. While longer 

windows enhance effectiveness, they reduce computational efficiency. Given the need 

for real-time application, we set the window length to 10 seconds with a 1-second step 
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size, ensuring that the DoA index updates every second. The BIS index, corresponding 

to the final second of each window, serves as the reference for the DoA prediction. 

During preprocessing, a zero-phase bandpass finite impulse response (FIR) filter was 

applied to the EEG signals to ensure phase consistency and minimize distortion. The 

cutoff frequencies of 0.5 Hz and 47 Hz were chosen based on literature recommenda-

tions to capture relevant brain activity efficiently. 

For feature extraction, DFA was employed to measure self-affinity. The EEG time 

series was repeatedly partitioned into sub-sequences, and the fluctuation was computed 

as the mean square difference from the linear fitting of each sub-sequence. This fluctu-

ation was then analyzed using linear regression on a log-log plot of fluctuations versus 

scales. However, this method can be sensitive to outliers introduced by temporal dis-

tortions in the EEG, potentially compromising the accuracy of DoA assessments. To 

mitigate this, we explored using the quartile-based threshold to reject these outliers. 

Furthermore, the necessity of the flipping procedure as suggested by previous studies, 

where the time series is reversed and processed to capture additional information, is 

evaluated and compared with standard methods. 

In addition to DFA, three other features—sample entropy (SampEn), permutation 

entropy (PermEn, and fuzzy entropy (FuzzEn)—were extracted from each EEG epoch, 

with parameter settings based on [12], [14]. The features were normalized by setting 

the mean to 0 and the standard deviation to 1 to improve convergence during training. 

The random forest model was optimized by adjusting hyperparameters such as the ap-

plied method, number of learning cycles, learning rate, minimum leaf size and maxi-

mum number of splits. 

Model performance was evaluated using the mean square error (MSE) between the 

predicted DoA index and the target BIS index on the validation set. The model with the 

lowest MSE was selected for further investigation. In the test group, the proposed DoA 

index was compared with other methods using metrics such as Spearman correlation, 

MSE, root mean square error (RMSE), and mean absolute error (MAE). Spearman cor-

relation is preferred over Pearson correlation due to its ability to capture nonlinear re-

lationships without assumptions about data distribution. MAE represents the absolute 

prediction error, while MSE and RMSE magnify the influence of larger errors, making 

them more sensitive to outliers. Unlike MSE, which squares the error, RMSE and MAE 

preserve the original scale, making them more intuitive. While RMSE tends to be larger 

than MAE due to the squared errors, this difference highlights discrepancies in error 

distribution. Finally, we introduce the R² score, which normalizes the error and provides 

a consistent evaluation standard across different methods. 

 

Fig. 1. Flowchart 
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2 Method 

2.1 Data Collection  

We collected EEG signals from 73 adult patients undergoing general anesthesia using 

the ASPECT A-1050 monitor (Aspect Medical Systems, Natick, MA, USA). The elec-

trodes were placed on the forehead by an experienced anesthesiologist, ensuring proper 

skin cleaning and impedance levels. The EEG data was recorded at 128 Hz, and the 

BIS index was recorded simultaneously. All procedures were approved by the USQ 

ethics committee, and written informed consent was obtained from each patient. 

The dataset was randomly divided into training, validation, and test groups, com-

prising 70%, 15%, and 15% of the data, respectively, as shown in Table 1. For conven-

ience, the level of consciousness was categorized into five states—A, B, C, D, and E—

based on BIS ranges of 0-20, 21-40, 41-60, 61-80, and 81-100, respectively. 

Table 1. Data separation 

Group Patients  State Percentage 

Train 45 

A 533 0.19% 

B 41615 14.51% 

C 159315 55.55% 

D 68315 23.82% 

E 17039 5.94% 

Validate 14 

A 1 0.00% 

B 16521 15.56% 

C 60462 56.96% 

D 15980 15.06% 

E 13178 12.42% 

Test 14 

A 15 0.02% 

B 9456 10.65% 

C 49898 56.19% 

D 23609 26.58% 

E 5831 6.57% 

2.2 Preprocessing  

Raw EEG signals are often contaminated by various types of noise, such as ocular ar-

tifacts, muscle artifacts, cardiac artifacts, and extrinsic artifacts [20]. These unavoidable 

components can provide inaccurate information and hinder subsequent analysis [21]. 

To build a reliable DoA index, most studies preprocess EEG data, commonly applying 

a bandpass filter. We filtered the raw EEG segments using a bandpass filter with a 

frequency range of 0.5 to 47 Hz and a minimum order, as suggested by [22]. 
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Additionally, we applied a zero-phase filter to eliminate phase distortion. Since the 

EEG was processed in real-time, with data being added and the BIS index updated 

every second, we adopted a sliding window method with a 10-second EEG segment at 

a 1-second step size as suggested by [19]. The sliding window procedure on different 

EEG epochs and the relevant BIS index are shown in Fig. 2. 

 

Fig. 2. The subplot of the last second EEG epoch (top, blue line), the current second EEG epoch 

(middle, red line), and the relevant BIS index (bottom) for the last second (blue circle) and the 

current second (red circle). 

2.3 Detrended Fluctuation Analysis Algorithm 

DFA was initially introduced by [23], and applied to measure long-range memory of 

the DNA sequence. The procedure is explained as follows: 

For a given time-series 𝑥(𝑡) with a finite length 𝑁, DFA starts with centering and 

cumulating the original sequence to obtain the integrated sequence 𝑌(𝑖), 

 𝑌(𝑖) = ∑ [𝑥(𝑡) − 〈𝑥〉]𝑖
𝑡=1 , 𝑖 = 1,… , 𝑁  (1) 

where 〈𝑥〉 represents the mean of the sequence. 

For a given box size 𝑠, 𝑌(𝑖) is partitioned into 𝑚 non-overlapping intervals of length 

𝑠 to build final 𝑌𝑣(𝑖), 𝑣 = 1,… ,𝑚. If 𝑁 is indivisible by 𝑠, to avoid omitting samples 

at the end, the integrated sequence 𝑌(𝑖) is flipped, partitioned similarly, and combined 

with 𝑌(𝑖) to obtain the partitioned integrated sequence 𝑌𝑣(𝑖), 𝑣 = 1,… , 2𝑚. Here we 

only considered the local trend 𝑃𝑣(𝑖) as linear in each interval, which is commonly used 

in EEG processing. 

The mean square deviation between 𝑃𝑣(𝑖) and 𝑌𝑣(𝑖) for each interval is calculated 

as: 

 𝐹𝑠
2(𝑣) = 〈(𝑌𝑣(𝑖) − 𝑃𝑣(𝑖))

2
〉 =

1

𝑠
∑ (𝑌𝑣(𝑖) − 𝑃𝑣(𝑖))

2, 𝑣 = 1,… , 2𝑚𝑠
𝑖=1 .  (2) 
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The average over all segments is taken, and the square root is used to obtain the 

fluctuation 𝐹(𝑠) at a specific 𝑠,  

 𝐹(𝑠) = {
1

2𝑚
∑ [𝐹𝑠

2(𝑣)]2𝑚
𝑣=1 }

1/2

  (3) 

The standard DFA focuses on how the fluctuation function 𝐹(𝑠) depends on 𝑠 by 

repeating steps 2 to 4 for several time scales.  

 𝐹(𝑠)~𝑠𝛼  (4) 

The self-affinity 𝛼 was then calculated at the log-log scale of the fluctuation func-

tion. The whole procedure can be expressed in Fig. 3. According to the suggested scale 

range from 3 to 100 [15], [16], we searched the optimal scale range to extract the self-

affinity. The self-affinity was calculated from the starting scale of 3, and the ending 

scale ranges from 4 to 100. The Pearson and Spearman correlation between the BIS 

index and the self-affinity extracted from the different ranges is plotted in Fig. 4. The 

maximum negative correlation can be found in the ending scale of 9 and 11 from the 

Pearson and Spearman correlation respectively. We selected the latter one since the 

results present a higher non-linear correlation. 

Fig. 3. Standard DFA procedure on a simulated time series, from the top to the end: the original 

time series; the integrated sequence; partition at different window size 𝑠; the mean square differ-

ences at each segment; and the loglog-plot on 𝐹(𝑠) versus 𝑠.  

To avoid omitting samples at the end, the sequence was flipped and the procedure 

was repeated [17], [24]. However, this doubled sequence might not provide more in-

formation but lower the calculation efficiency. We investigated the correlation between 

the BIS index and the self-affinity from DFA both with and without the flipping step. 

As shown in Table 2, the Pearson and Spearman correlation of DFA on the doubled 

sequence within the flipping procedure is decreased from -0.2042 and -0.3822 to -

0.2062 and -0.3838 compared with the single sequence without the procedure. Hence, 

we removed the procedure for the sake of efficiency and effectiveness.  
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Fig. 4. Scatter plot on Pearson and Spearman correlation between the BIS index and the self-

affinity from the different scales. 

Table 2. Pearson and Spearman correlation between the feature and the BIS index. 

Flipping procedure Pearson correlation Spearman correlation 

DFA-Double -0.2042 (p<0.01) -0.3822 (p<0.01) 

DFA-Single -0.2062 (p<0.01) -0.3838 (p<0.01) 

Since the fluctuation 𝐹(𝑠) is calculated from the mean square error between the orig-

inal sequence and local trends at each segment, the extracted feature self-affinity is 

easily influenced by the outliers of 𝐹𝑠
2(𝑣). Artifacts such as baseline drift will introduce 

abrupt EEG changes and cannot be easily removed by the bandpass filter. Therefore, 

we inspected the effect of the elimination of the outliers according to the threshold 

based on mean, median and quartile. As shown in Table 3, all the extracted self-affinity 

presents a negative relationship with the BIS index, which satisfies the assumption and 

matches the results proposed by  [15], [16]. 

Table 3. Threshold fluctuation correlation with BIS index. 

Outlier rejection Pearson correlation Spearman correlation 

DFA -0.3483 (p<0.01) -0.4655 (p<0.01) 

Median-based DFA -0.4702 (p<0.01) -0.5533 (p<0.01) 

Mean-based DFA -0.3792 (p<0.01) -0.4887 (p<0.01) 

Quartile-based DFA -0.4951 (p<0.01) -0.5576 (p<0.01) 

2.4 Sample Entropy Algorithm 

SampEn is a measure of regularity or predictability in time-series data and has been 

commonly used in the analysis of physiological signals, such as EEG and ECG [6], 

[22], to assess the complexity of these signals. It quantifies the likelihood that similar 
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patterns of data points (within a specified tolerance) will remain similar when compared 

over subsequent time points. For a time-series 𝑥(𝑡) with a finite length 𝑁, the proce-

dure of SampEn can be explained as follows: 

For a given embedding dimension 𝑚 and tolerance 𝑟, the m-dimension template 

vector 𝑌𝑚(𝑖) is defined as: 

 𝑋𝑚(𝑖) = {𝑋(𝑖), 𝑋(𝑖 + 1), … , 𝑋(𝑖 + 𝑚 − 1)}, 1 ≤ 𝑖 ≤ 𝑁 −𝑚 + 1  (5) 

The Chebyshev distance between two vectors 𝑋𝑚(𝑖) and 𝑋𝑚(𝑗) is calculated as:  

 𝐷𝑖𝑠𝑡[𝑋𝑚(𝑖), 𝑋𝑚(𝑗)] = 𝑚𝑎𝑥(|𝑋𝑚(𝑖 + 𝑘)| − |𝑋𝑚(𝑗 + 𝑘)|) , 1 ≤ 𝑘 ≤ 𝑚 − 1, 𝑖 ≠ 𝑗  (6) 

Let 𝐵𝑖(𝑗) be the number of the distances between 𝑋𝑚(𝑖) and 𝑋𝑚(𝑗) that are less than 

a threshold computed from the tolerance 𝑟 (𝑟 ∗ 𝑠𝑡𝑑, the standard deviation of 𝑥(𝑡)).  

 𝐵𝑚
𝑟 (𝑖) =

1

𝑁−𝑚+1
∑ 𝐵𝑖(𝑗)
𝑁−𝑚
𝑗=1,𝑗≠𝑖   (7) 

𝐵𝑚
𝑟  stands for the whole vector satisfying the condition and is defined as: 

 𝐵𝑚
𝑟 =

1

𝑁−𝑚
∑ 𝐵𝑚

𝑟 (𝑖)𝑁−𝑚
𝑖=1   (8) 

For 𝑚 + 1, we obtain 𝐵𝑚+1
𝑟  by repeating step 1 to 4 and the SampEn is then calcu-

lated as:  

 𝑆𝑎𝑚𝑝𝐸𝑛 = − ln⁡(
𝐵𝑚+1
𝑟

𝐵𝑚
𝑟 )  (9) 

Here we take 𝑚 and 𝑟 as 2 and 0.2 respectively as suggested by [12].  

2.5 Permutation Entropy Algorithm 

PermEn assesses the complexity of a time series by analyzing the ordinal patterns of 

its data points and is less sensitive to noise and data outliers compared to other entropy 

measures [25]. It involves assigning a symbolic representation to each data point based 

on its relative order within a sliding window. For a time-series 𝑥(𝑡) with a finite length 

𝑁, the procedure of PermEn can be explained as follows: 

For a given embedding dimension 𝑚 and time delay 𝜏, the vector 𝑋𝑚
𝜏 (𝑖) is con-

structed as:  

 𝑋𝑚
𝜏 (𝑖) = ⁡ {𝑥(𝑖), 𝑥(𝑖 + 𝜏), … , 𝑥(𝑖 + (𝑚 − 1)𝜏)}, 1 ≤ 𝑖 ≤ 𝑁 − (𝑚 + 1)𝜏  (10) 

The possible ordinal pattern is defined as 𝑚! in number. Each vector 𝑋𝑚
𝜏 (𝑖) can be 

represented by one of them.  

The probability 𝑃𝑗 of each pattern occurring is defined as 𝑃𝑗, where 𝑗 = 1,… ,𝑚!. 

The normalized PermEn is calculated as:  

 𝑃𝑒𝑟𝑚𝐸𝑛 =
∑ 𝑃𝑗 ln 𝑃𝑗
𝑚!
𝑗=1

ln𝑚!
  (11) 
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Here we take 𝑚 and 𝜏 as 6 and 1 respectively as suggested by [12].  

2.6 Fuzzy Entropy Algorithm 

FuzzEn is a variation of sample entropy that incorporates fuzziness or uncertainty 

into the similarity calculation [26]. This method is particularly useful in situations 

where data uncertainty or imprecision is present, such as in medical diagnosis or finan-

cial forecasting. FuzzEn accounts for the degree of similarity between data points rather 

than treating them as strictly similar or dissimilar. Cao & Lin et al. combined FuzzEn 

with Empirical Mode Decomposition for measuring the complexity of EEG signals 

with eyes open and closed. 

For a given embedding dimension 𝑚 and time delay 𝜏, the vector 𝑋𝑚(𝑖) is con-

structed as:  

 𝑋𝑚(𝑖) = {𝑋(𝑖), 𝑋(𝑖 + 1), … , 𝑋(𝑖 + 𝑚 − 1)}, 1 ≤ 𝑖 ≤ 𝑁 −𝑚 + 1  (12) 

For a given vector 𝑋𝑚
𝜏 (𝑖), determine the similarity degree 𝐷𝑖𝑗

𝑚,𝜏
 using the Chebyshev 

distance 𝐷𝑖𝑠𝑡𝑖𝑗
𝑚,𝜏

 between 𝑋𝑚
𝜏 (𝑖) and 𝑋𝑚

𝜏 (𝑗), and the fuzzy membership function 𝑓𝑚:  

 𝐷𝑖𝑗
𝑚,𝜏 = ⁡𝑓𝑚(𝐷𝑖𝑠𝑡𝑖𝑗

𝑚,𝜏) = exp⁡(−
(𝐷𝑖𝑠𝑡𝑖𝑗

𝑚,𝜏
)𝑛

⁡𝜏
)  (13) 

Construct the function 𝜑𝑚 as:  

 𝜑𝑚 =
1

𝑁−𝑚
∑ (

1

𝑁−𝑚−1
∑ 𝐷𝑖𝑗

𝑚,𝜏𝑁−𝑚
𝑗=1,𝑗≠𝑖 )𝑁−𝑚

𝑖=1   

 (14) 

Step 4: For 𝑚 + 1, repeat step 1 to 3 to obtain 𝜑𝑚+1 

 𝐹𝑢𝑧𝑧𝐸𝑛 = − ln
𝜑𝑚+1

𝜑𝑚   (15) 

Here we take 𝑚 and 𝑟 as 2 and 0.1 respectively as suggested by [27]. 

2.7 Fitting Model  

Random forest proposed by [28], has been applied and successfully involved in various 

practical EEG-based problems [29], including artifact detection and removal [30], EEG 

spike detection [31], motor imagery classification [32], seizure detection [33] and so 

on. Liu et al. applied it in DoA monitoring and outperformed than the regression model 

Support Vector Machines (SVM) and ANN [34].  

Compared with decision tree, random forest introduces randomness by searching for 

the best feature among a random set of features rather than the given set. This random-

ness enhances the stability and accuracy of predictions. For regression tasks, the criteria 

are set by mean square error, and iterations continue until satisfying the condition. Here, 

the hyperparameters including methods, number of leaning cycles, learning rate, mini-

mum leaf size and maximum number of splits, are varied in the range: “Bootstrap 
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aggregation” or “Least-squares boosting (LSBoost)”, [10 − 500] , [1−3, 1−2, … , 1] , 

[1 − 50] and [1 − 99]. 
In this study, we compare the performance of random forest with other models com-

monly used in DoA prediction, including linear models, SVM, ANN and decision trees. 

The performance is evaluated based on correlation coefficient, MSE, RMSE and MAE. 

3 Result 

3.1 Model Selection 

As shown in Table 4, the random forest model achieves the highest Pearson correlation 

0.6430 (p-value<0.01). It also attains a low MSE of 176.7423, RMSE of 13.2944, and 

MAE of 8.3865. These results demonstrate the random forest model's superior perfor-

mance in capturing the underlying trend and providing accurate predictions for DoA. 

Table 4. Performance evaluation on the regression models. 

Model Pearson correlation MSE RMSE MAE 

Linear 0.6274 (p<0.01) 188.2222 13.7194 10.6388 

SVM  0.6274 (p<0.01) 173.6409 13.1773 9.9380 

NN  0.6274 (p<0.01) 188.2222 13.7194 10.6388 

Decision tree  0.4271 (p<0.01) 260.1368 16.1288 11.9830 

Random forest  0.6430 (p<0.01) 176.7423 13.2944 10.0644 

3.2 Feature Combination DFA 

To verify the effectiveness of the proposed modified DFA and feature combination, we 

measured the performance of the DoA index from a random forest model using one to 

four feature inputs. The quartile-based self-affinity feature alone does not present the 

highest correlation with the BIS index compared with the entropy methods, its combi-

nation with entropy-based features significantly lowers the MSE, RMSE, and Mean 

Absolute Error (MAE). Specifically, these metrics decreased from 133.0488, 11.5347, 

and 8.0047 to 72.7818, 8.5312, and 5.7753, respectively. These results demonstrate the 

superior performance of the proposed feature combination in awareness identification. 

Table 5. Performance evaluation on the regression models. 

 

Model MSE RMSE MAE 

Modified DFA 176.7423 13.2944 10.0644 

SampEn 262.7302 16.2090 11.1085 

PermEn 185.4590 13.6183 10.4100 

FuzzEn 287.3668 16.9519 12.4655 
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Alpha_SampEn 177.5950 13.3265 9.1611 

Alpha_PermEn 166.0570 12.8863 9.7160 

Alpha_FuzzEn 168.6683 12.9872 9.5670 

SampEn_PermEn 179.0892 13.3824 9.3173 

PermEn_FuzzEn 193.7137 13.9181 10.2417 

SampEn_FuzzEn 229.5838 15.1520 10.3540 

Alpha_SampEn_PermEn 159.9403 12.6468 8.7352 

Alpha_SampEn_FuzzEn 135.5484 11.6425 8.0325 

Alpha_PermEn_FuzzEn 323.7834 17.9940 13.3155 

SampEn_PermEn_FuzzEn 133.0488 11.5347 8.0047 

Alpha_SampEn_PermEn_FuzzEn 122.3104 11.0594 7.5957 

3.3 Model Optimization 

The optimization process for the random forest model used in real-time DoA monitor-

ing involved searching over various parameters, including methods, the number of 

learning cycles, learning rate, and minimum leaf size, to minimize the estimated cross-

validation loss (MSE). The final results selected the “Bag” aggregation method and 496 

trained trees.  

The comparison of real-time DoA monitoring between the unoptimized and opti-

mized random forest models is shown in Fig. 5. The distortions are mitigated by the 

model optimization and the R-square is increased from -0.2063 to 0.8778, respectively. 

A negative R-square indicates that the unoptimized model fits the data worse than 

simply returning the mean of the DoA index. The significant increase in the R-square 

value after optimization demonstrates a substantial reduction in estimation error. 

Fig. 5. random forest model output comparison. 

                                        

      

  

  

  

  

   

   

 
 
 
  
 
 
 
 

                                          

         

                  

                                        

      

  

  

  

  

   

   

 
 
 
  
 
 
 
 

                                        

         

                  



12  Xing Chen and Bo Song 

3.4 DoA 

Since Jospin et al. and Gifani et al. focus solely on feature extraction without a fitting 

model, we predicted the DoA using the same random forest model as the proposed 

method. Although they both investigated optimal DFA parameter settings, Figure 8 

shows no significant difference in DoA estimation between these methods and the pro-

posed model. Both methods also suffer from under-fitting. For the entropy-based DoA 

monitoring, Shalbaf et al. can represent peri-operative trends but it is limited in identi-

fying awake and deep anesthesia states. The LSTM model focuses only on the lower 

DoA range and cannot accurately represent real awareness variations. While the method 

proposed by (Dutt and Saadeh 2023) performs well, it occasionally produces abnormal 

indices larger than 100. 

Additionally, the scatter plot shown in Fig. 7 (A) displays the relationship and R-

square as 0.8778 (p<0.01). Fig. 7 (B) presents the results of Bland-Altman analysis 

within bias as -0.0018 and limit agreement as 8.8627 and -8.8663.  

Fig. 6. DoA performance comparison on RMSE and MAE. 

4 Discussion 

DoA estimation is one of the most important indices in intra-operative monitoring and 

post-operative recovery. While previous studies have focused on EEG-based spectrum 

features, they often overlook temporal features. We believe that appropriate modified 

time-domain analysis within an ensemble learning method can perform better than 

commonly used spectrum features within machine learning. 

In this study, we modified the time-domain analysis method, DFA, and combined it 

with SampEn, PermEn, and FuzzEn as inputs to a random forest model for identifying 

awareness levels. The proposed method was investigated using intra-operative EEG 

recordings and BIS index data from 73 patients. Metrics such as MSE, RMSE, MAE, 

and R-square indicated the effectiveness of the proposed method in discriminating 
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anesthesia states. However, the method still struggles with detecting very deep anes-

thesia states and abrupt distortions. 

 

 

Fig. 7. (A) The scatter plot of the proposed DoA index. (B) The Bland-Altman plot of the BIS 

index and the proposed DoA index. 

Previous studies [35] have shown that the SFS and SEF95 metrics dominate in deep 

anesthesia states due to their ability to capture frequency variations and phase coupling. 

For very deep anesthesia states, characterized by burst suppression patterns, the con-

scious level corresponds to the quasi-periodic alternation between high-voltage slow 

waves (bursts) and low voltage or isoelectric periods (suppression) [36]. According to 

the American Clinical Neurophysiology Society (ACNS), burst suppression is defined 

as a background with more than 50% attenuation or suppression, with bursts lasting a 

minimum of 0.5 seconds [37]. 

The proposed feature extraction methods convert the input sequence into several 

templates and investigate their relationships, rather than detecting these alternations. 

Additionally, the lack of very deep anesthesia state recordings impedes performance. 

To assess the pros and cons of the proposed method, we further examined the best and 

worst performance cases. In Fig. 8, the proposed index presents the trend of intra-oper-

ative awareness variation with fewer disturbances and more stable monitoring results 

compared to the BIS index. However, abnormal outliers sometimes appear even in the 

best-performing recordings. In the worst performance case shown in Fig. 9, the pro-

posed index produces larger and more frequent outliers. 

Since only the modified DFA focuses on outliers in each second, the entropy meth-

ods applied here should be further inspected. All methods in this study process EEG 

epochs by breaking the sequence into multiple sub-sequences and investigating corre-

lations among them, thus neglecting the connection between EEG epochs over time. 
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Fig. 8. Best performance Norm

 

Fig. 9. Worst performance Norm 

Although the proposed method can indicate the conscious level, it still limits the two 

considerations. The modified DFA improves the computation efficiency at the feature 

extraction stage, while model optimization requires further investigation and develop-

ment, such as pruning in random forest. Moreover, the variability of human EEG and 

anesthetics should be considered in the future study.  

5 Conclusion 

In this study, we extracted self-affinity features and entropy features from EEG, and 

took them as inputs to a random forest model to assess the DoA level. The results 

demonstrated the effectiveness of the proposed method in discriminating levels of 
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awareness. The proposed method achieved relatively low MSE, RMSE, and MAE be-

tween the proposed DoA index and the BIS which is the most popular one. Addition-

ally, the correlation and R-square values were generally high. These results highlight 

the computational efficiency of the proposed method and its feasibility for real-time 

intra-operative DoA monitoring systems, which is crucial for practical applications in 

clinical settings. 

Future work will focus on incorporating more relevant features and applying ad-

vanced machine learning techniques to further improve the accuracy and robustness of 

DoA assessment. 
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